WO2019132372A1 - Cold rolled steel sheet having excellent aging resistance and workability, and manufacturing method therefor - Google Patents
Cold rolled steel sheet having excellent aging resistance and workability, and manufacturing method therefor Download PDFInfo
- Publication number
- WO2019132372A1 WO2019132372A1 PCT/KR2018/016118 KR2018016118W WO2019132372A1 WO 2019132372 A1 WO2019132372 A1 WO 2019132372A1 KR 2018016118 W KR2018016118 W KR 2018016118W WO 2019132372 A1 WO2019132372 A1 WO 2019132372A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- cold
- rolled steel
- rolling
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
Definitions
- the present invention relates to a cold-rolled steel sheet and a method of manufacturing the same, and more particularly to a cold-rolled steel sheet for processing which is particularly suitable for materials such as automobiles, household appliances, and the like, and has excellent endurance and workability.
- a cold-rolled steel sheet for use as a material for automobiles, home appliances and the like is required to have good endurance properties in order to ensure moldability.
- Aging is a phenomenon in which carbon (C) and nitrogen (N), which are interstitial elements, adhere to the dislocations in the crystal grains as time elapses, so that the movable potential is decreased and the material is hardened.
- strain aging occurs, it causes stressor strain defects, which causes the workability of the material to deteriorate. Therefore, it is important to appropriately suppress the aging in terms of securing processability of the processable cold-rolled steel sheet.
- IF steel is a type of steel which ensures the endurance by precipitating solid carbon (C) and nitrogen (N) by adding carbonitride forming elements such as titanium (Ti), niobium (Nb) and vanadium (V) into steel. Therefore, the IF steel can be produced by continuous annealing in which productivity and material uniformity are ensured, instead of prolonged annealing.
- alloying elements such as titanium (Ti), niobium (Nb), and vanadium (V) are expensive and are not desirable from the economical point of view. Raising the recrystallization temperature due to the precipitation of these alloying elements may be a problem.
- high-temperature annealing must be accompanied, and defects such as surface flaws are caused by high-temperature annealing.
- Patent Document 1 Korean Published Patent Application No. 10-2010-0047503 (Published May 10, 2010)
- the present invention provides a cold-rolled steel sheet having improved endurance and workability effectively by optimizing steel composition and manufacturing process conditions, and a method of manufacturing the same.
- a cold rolled steel sheet excellent in endurance and workability is characterized by containing 0.1% or less of C, 0.5% or less of Si, 0.1 to 0.5% of Mn, 0.015 to 0.1% of Al, 0.01 to 0.1% % Or less of S, not more than 0.01% of S, not more than 0.01% of N, not more than 0.005% of Nb, not more than 0.005% of Ti, not more than 0.005% of V and the balance of Fe and other unavoidable impurities, Satisfies the following relational expression (1), and the solid solution C and N content in the crystal grains satisfy the following relational expression (2).
- [C] and [N] in the relational expression 1 and the relational expression 2 refer to the content of C and N, respectively, by weight.
- Nb, Ti and V may be included in an amount of 0.001% or less, respectively.
- the aging index of the cold-rolled steel sheet may be 10 MPa or less.
- the yield point elongation of the cold-rolled steel sheet may be 0.5% or less.
- the yield strength of the cold-rolled steel sheet may be 350 MPa or less.
- a cold rolled steel sheet excellent in endurance and workability is characterized by containing 0.1% or less of C, 0.5% or less of Si, 0.1 to 0.5% of Mn, 0.015 to 0.1% of Al, 0.01 to 0.1% %, S: not more than 0.01%, N: not more than 0.01%, Nb: not more than 0.005%, Ti: not more than 0.005%, V: not more than 0.005%, and other Fe and other unavoidable impurities; Hot-rolling the reheated slab to provide a hot-rolled steel sheet; Cold-rolling the hot-rolled steel sheet to provide a cold-rolled steel sheet; Continuously annealing the cold-rolled steel sheet; Subjecting the continuously annealed cold rolled steel sheet to first-precision rolling at a first reduction rate of 1 to 3%; Rolling the primary-precision rolled cold-rolled steel sheet at a temperature in the range of 200 to 400 ° C for 10 minutes or less; The cold-rolled steel sheet subjected to the dis
- the movable potential generated by the primary corrective rolling by the potential fixing annealing can be fixed to the potential by diffusion.
- the movable potential can be regenerated to the cold-rolled steel sheet by the secondary corrective rolling.
- the reheating temperature of the slab may be 1200 ° C or higher.
- the finish rolling temperature of the hot rolling may be higher than Ar3.
- the reduction ratio of the cold rolling may be 50 to 95%.
- the temperature of the continuous annealing may be 600 to 900 ⁇ ⁇ .
- the hot-rolled steel sheet may be rolled at 550 to 750 ° C to be provided for the cold rolling.
- Nb, Ti and V may be included in an amount of 0.001% or less, respectively.
- the present invention relates to a cold-rolled steel sheet excellent in endurance and workability and a method of manufacturing the same, and the preferred embodiments of the present invention will be described below.
- the embodiments of the present invention can be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described below.
- the embodiments are provided to explain the present invention to a person having ordinary skill in the art to which the present invention belongs.
- the cold rolled steel sheet excellent in endurance and workability is characterized by containing 0.1% or less of carbon (C), 0.5% or less of silicon (Si), 0.1 to 0.5% of manganese (Mn) (N): 0.005% or less, Ti (Ti): 0.005% or less, and the content of titanium (Ti) 0.005% or less, vanadium (V): 0.005% or less, the balance Fe and other unavoidable impurities.
- Silicon (Si) is an element used as a deoxidizing agent and is an element that improves strength by solid solution strengthening. However, when the content is excessive, not only the strength increases more than necessary, but also a plating defect may be caused by the Si-based oxide generated on the surface of the steel sheet during annealing. Therefore, the present invention can limit the upper limit of the silicon (Si) content to 0.5%, and the upper limit of the more preferable silicon (Si) content can be 0.3%.
- Manganese (Mn) binds with solid sulfur (S) in the steel and precipitates as MnS, thereby preventing hot shortness due to solid sulfur (S).
- the lower limit of the manganese (Mn) content of the present invention may be limited to 0.1%.
- the manganese (Mn) content of the present invention may be in the range of 0.1 to 0.5%.
- the preferred manganese (Mn) content may range from 0.1 to 0.4%, more preferably the manganese (Mn) content may range from 0.15 to 0.3%.
- Aluminum (Al) is an element having a great deoxidation effect and is an element that prevents the degradation of the formability due to solid nitrogen N by causing AlN to precipitate by reacting with nitrogen (N) in the steel. Therefore, the present invention can limit the lower limit of the aluminum (Al) content to 0.015% in order to achieve this effect. However, if aluminum (Al) is added in excess, the ductility may be drastically lowered and the workability may be lowered.
- the present invention can limit the upper limit of the aluminum (Al) content to 0.1%. Therefore, the aluminum (Al) content of the present invention may be in the range of 0.015 to 0.1%.
- the preferred aluminum (Al) content may range from 0.015 to 0.07%, and more preferably the aluminum (Al) content may range from 0.02 to 0.05%.
- Phosphorus (P) not more than 0.01%
- Phosphorus (P) is an element capable of improving the strength without significantly reducing the ductility of the steel.
- the present invention can limit the upper limit of the phosphorus (P) content to 0.01%.
- S Sulfur
- S is an element that is inevitably contained in the steel, or an element that causes red-hot brittleness when it is in an employment state. Addition of manganese (Mn) can induce precipitation of MnS, but excessive MnS precipitation is not preferable because it hardens the steel. Therefore, the present invention can limit the upper limit of the sulfur (S) content to 0.01%.
- Nitrogen (N) is an element that is inevitably contained in the steel. Nitrogen (N) present in the state of employment lowers ductility, deteriorates endurance, and can degrade processability. Therefore, the present invention can limit the upper limit of the nitrogen (N) content to 0.01%.
- Titanium (Ti), niobium (Nb) and vanadium (V) are elements that easily form carbonitride by bonding with carbon (C) or nitrogen (N) at high temperatures.
- these elements are not only expensive but also cause an increase in the recrystallization temperature, and they are also an element causing a problem of excessively increasing the strength when added excessively.
- the effect of ensuring the endurance of the present invention is not expressed by the addition of titanium (Ti), niobium (Nb) and vanadium (V), the content of titanium (Ti), niobium (Nb) and vanadium (C) and nitrogen (N), even when the amount of carbon (C) is positively suppressed.
- titanium (Ti), niobium (Nb) and vanadium (V) are contained inevitably, they are preferably contained in an amount of 0.005% or less, respectively. More preferably, the content of titanium (Ti), niobium (Nb) and vanadium (V) may be 0.002% or less and the content of titanium (Ti), niobium (Nb) and vanadium (V) have.
- the present invention may be Fe and unavoidable impurities in addition to the above-mentioned steel composition.
- Unavoidable impurities can be intentionally incorporated in a conventional steel manufacturing process, and can not be entirely excluded, and the meaning of ordinary steel manufacturing industry can be understood easily. Further, the present invention does not exclude the addition of other compositions other than the above-mentioned steel composition in the whole.
- the cold rolled steel sheet excellent in endurance and workability is characterized in that the total carbon (C) and nitrogen (N) contents in the crystal grains satisfies the following relational expression 1 and the solid carbon (C) The content can satisfy the following relational expression (2).
- [C] and [N] in the relational expression 1 and the relational expression 2 refer to the content of carbon (C) and nitrogen (N), respectively, by weight.
- carbon (C) and nitrogen (N) can be limited to satisfy the following relational expressions 1 and 2.
- Relation 1 is a condition for limiting the total carbon (C) and nitrogen (N) contents in the crystal grains
- Relation 2 is a condition for limiting the content of the solid carbon (C) and nitrogen (N) in the crystal grains.
- [C] and [N] in the relational expression 1 and the relational expression 2 refer to carbon (C) and nitrogen (N) content, respectively, by weight%.
- Relation 1 means that carbon (C) and nitrogen (N) should be contained at a certain level or higher.
- the content of the solid carbon (C) and the nitrogen (N) in the crystal grains is lowered to a certain level or less through a series of steps as described later.
- Content is lower than a certain level. Therefore, the present invention can effectively ensure the endurance and workability of the final product through the limitation of the steel composition and the limitation of the carbon (C) and nitrogen (N) contents according to the relational expression.
- the cold rolled steel sheet satisfying the steel composition and the relational expression of the present invention has an aging index of 10 MPa or less and a yield point elongation of 0.5% or less So that the anti-hypersensitivity can be effectively ensured.
- the cold-rolled steel sheet satisfying the steel composition and the relational expression of the present invention has a yield strength of 350 MPa or less, workability can be effectively ensured while assuring anti-aging properties.
- the cold rolled steel sheet excellent in endurance and workability is characterized by containing 0.1% or less of carbon (C), 0.5% or less of silicon (Si), 0.1 to 0.5% of manganese (Mn) (N): 0.005% or less, Ti (Ti): 0.005% or less, and the content of titanium (Ti) 0.005% or less, vanadium (V): 0.005% or less, the balance Fe and other unavoidable impurities; Hot-rolling the reheated slab to provide a hot-rolled steel sheet; Cold-rolling the hot-rolled steel sheet to provide a cold-rolled steel sheet; Continuously annealing the cold-rolled steel sheet; Subjecting the continuously annealed cold rolled steel sheet to first-precision rolling at a first reduction rate of 1 to 3%; Rolling the primary-precision rolled cold-rolled steel sheet at a temperature in the range of 200 to 400 ° C for 10 minutes or less; The cold-rolled steel sheet subjected to the dislocation-fixing
- the slab alloy composition of the present invention corresponds to the alloy composition of the cold-rolled steel sheet described above, and the description of the slab alloy composition of the present invention is replaced with the description of the alloy composition of the cold-rolled steel sheet described above.
- the slab having the above-mentioned steel composition can be reheated to a temperature higher than a predetermined temperature. Most of the precipitates present in the steel should be recycled, and the present invention can limit the lower limit of the reheating temperature to 1200 ° C. The lower limit of the preferable reheating temperature for further increasing the solubility of the precipitate may be 1250 ⁇ .
- the hot-rolled steel sheet can be provided by hot-rolling the reheated slab.
- the present invention can limit the lower limit of the hot rolling finishing temperature to the Ar3 temperature.
- the hot-rolled steel sheet can be wound within a predetermined temperature range.
- nitrogen (N) remaining in the solid state can be additionally precipitated with AlN, thereby ensuring excellent endurance.
- the hot-rolled steel sheet is rolled at less than 550 ° C, the workability can be damped by the dissolved nitrogen (N) remaining without being precipitated as AlN.
- the lower limit of the hot- is a temperature range exceeding 750 ⁇ ⁇ , there may arise a problem that the crystal grains are coarse and the cold rolling property is deteriorated. Therefore, the present invention can limit the upper limit of the hot-rolled sheet coiling temperature to 750 ⁇ . Therefore, the hot rolled steel sheet coiling temperature of the present invention may be in a temperature range of 550 to 750 ⁇ ⁇ .
- the rolled hot-rolled steel sheet can be cold-rolled at a reduction ratio of 50 to 95% to produce a cold-rolled steel sheet.
- the thickness of the final cold-rolled steel sheet is determined by the reduction rate of the cold-rolling, and it is difficult to achieve the final target thickness when the reduction rate of the cold-rolling is less than 50%.
- the reduction rate exceeds 95%, the load of the rolling equipment becomes excessive, which may cause a problem in the process. Therefore, the cold rolling reduction ratio of the present invention may be in the range of 50 to 95%.
- Continuous annealing of the cold-rolled steel sheet can be carried out at a constant annealing temperature for recrystallization of the elongated crystal grains during cold rolling. If the continuous annealing temperature is lower than 600 ° C, recrystallization does not sufficiently occur, and therefore, dislocations generated during cold rolling can not be sufficiently removed, resulting in a problem of deterioration in ductility. Therefore, the present invention can limit the lower limit of the continuous annealing temperature to 600 ⁇ ⁇ . However, when the continuous annealing temperature exceeds 900 ° C, there is a problem that the crystal grains are coarse, the strength is lowered and the workability is lowered. In this invention, the upper limit of the continuous annealing temperature can be limited to 900 ° C. Therefore, the continuous annealing temperature of the present invention may be in the range of 600 to 900 ⁇ ⁇ . In addition, the continuous annealing of the present invention can be performed within 10 minutes to ensure economical efficiency and productivity.
- the movable potential generated by the primary corrective rolling is a position where the solid carbon (C) and the nitrogen (N) can be easily adhered via potential fixing annealing to be performed later.
- the reduction ratio of the primary corrective rolling is less than 1%, sufficient dislocation is not generated enough to mostly adhere the solid carbon (C) and the nitrogen (N), and the present invention is characterized in that the lower limit of the reduction ratio of the primary corrective rolling 1%.
- the upper limit of the reduction ratio of the primary corrective rolling can be limited to 3%.
- the upper limit of the reduction ratio of the preferred first-order rolling may be 2%.
- the steel sheet in which the movable potential is generated by the primary corrective rolling is heat-treated at 200 DEG C or more for 30 seconds or more to produce a steel sheet to which the movable potential is fixed.
- the movable potential generated immediately after the first electrostatic rolling is fixed to the electric potential by the diffusion during the dislocation annealing, and the higher the dislocation annealing temperature is, the more the time required for dislocation fixing is reduced. It takes about 30 seconds at the dislocation annealing temperature of 200 ° C, but it takes longer time at the lower temperature. Therefore, the present invention can limit the lower limit of the dislocation-annealing temperature to 200 ⁇ ⁇ in terms of productivity.
- the dislocation-fixing annealing temperature exceeds 400 ° C, the fixed carbon (C) may be re-used.
- the upper limit of the dislocation annealing temperature may be limited to 400 ° C.
- the potential fixing annealing time of the present invention may be 20 seconds or more and less than 10 minutes. In terms of productivity, the potential fixing annealing time may be one minute or less.
- the steel sheet to which the dislocations are fixed in the dislocation-fixed annealing can be subjected to secondary-precision rolling at a reduction ratio of 0.8 to 3% to provide a steel sheet having the movable dislocations again.
- the present invention can limit the lower limit of the secondary corrective rolling reduction to 0.8% for the workability recovery effect.
- the present invention can limit the upper limit of the reduction ratio of the secondary correction rolling to 3%. More preferably, the upper limit of the reduction ratio of the secondary corrective rolling to prevent the hardening of the material may be 2%.
- the slabs having the composition shown in the following Table 1 were produced.
- the slabs were reheated to 1250 ⁇ ⁇ , hot rolled, rolled at 620 ⁇ ⁇ and then cold rolled at a reduction ratio of 70% to obtain cold-rolled steel sheets of 1.2 mm in thickness.
- the obtained cold-rolled steel sheet was subjected to continuous annealing (or unsupervised placing), primary corrective rolling, dislocation-fixed annealing, and secondary correction rolling under the conditions shown in Table 2 below to obtain final steel plate specimens.
- the continuous annealing was carried out at a temperature of 750 ° C. for 30 seconds and then maintained at 400 ° C. for 60 seconds.
- the temperature of the continuous annealing was maintained at 700 ° C. for 60 minutes and then maintained at 400 ° C. for 300 minutes.
- the carbon (C) and nitrogen (N) contents in the grain and the carbon (C) and nitrogen (N) contents in the grain were measured for each specimen.
- the tensile strength of each specimen was measured and the yield strength was measured.
- the aging index and elongation at break were measured to investigate the aging characteristics.
- the measurement results for each specimen are shown in Table 3 below.
- the contents of carbon (C) and nitrogen (N) in the crystal grains were measured by wet element analysis of the inorganic element for the parts excluding the grain boundaries. Internal carbon content (C) and nitrogen (N) Respectively.
- the inorganic element wet component analysis and the internal friction test are merely examples for measuring the content of carbon (C) and nitrogen (N) in the crystal grains, the amount of the solid carbon (C) and the nitrogen (N) in the crystal grains, Is not necessarily bound to these measurement methods.
- the aging index refers to the difference in yield strength before and after the artificial aging, and the specimen is held at a temperature of 100 ° C for 1 hour so that carbon (C) and nitrogen (N) The specimens before and after the accelerating aging were subjected to tensile tests and measured.
- [C] and [N] in the relational expression 1 and the relational expression 2 refer to the content of carbon (C) and nitrogen (N), respectively, by weight.
- the yield point elongation shape does not occur, but the content of carbon (C) and nitrogen (N) in the steel is high and has a yield strength of 385 MPa, which means that the steel has an excessively high strength for use as a working material. It is preferable that the yield strength does not exceed 350 MPa for use as a working material.
- the heat treatment temperature of the dislocation-fixed annealing satisfies the heat treatment temperature range of the dislocation-annealing of the present invention, and the solid solution carbon and the nitrogen (N) As a result, it can be confirmed that good endurance can be secured.
- Example 24 the solid carbon (C) and the nitrogen (N) are sufficiently fixed to the potential through the dislocation fixing heat treatment to satisfy the aging index of 10 MPa or less. However, it can be confirmed that the yield point elongation phenomenon remains because the rolling reduction rate is not lowered.
- Comparative Example 9 is a low carbon steel in which the anti-aging property is not ensured.
- steel composition there is no significant difference from the present invention, but the carbon (C) content in the crystal grain is high and the carbon (C) It can be confirmed that the relational expression 2 of the present invention is not satisfied.
- Comparative Example 10 is an IF steel in which most of the carbon (C) and nitrogen (N) in the crystal grains exists in the form of carbide or nitride, satisfying the relational expressions 1 and 2, and securing the anti-aging property.
- Comparative Example 10 essentially contains a precipitate-forming element such as titanium (Ti) and niobium (Nb), which is not preferable from the economical point of view, and there is a risk of occurrence of surface defects due to high temperature heating.
- the cold-rolled steel sheet according to one aspect of the present invention and the method of manufacturing the same can effectively ensure endurance and workability by optimizing steel composition and manufacturing process conditions, and can effectively secure productivity and economical efficiency in cold- .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
A cold rolled steel sheet having excellent aging resistance and workability, according to one embodiment of the present invention, comprises, by wt%, 0.1% or less of C, 0.5% or less of Si, 0.1-0.5% of Mn, 0.015-0.1% of Al, 0.01% or less of P, 0.01% or less of S, 0.01% or less of N, 0.005% or less of Nb, 0.005% or less of Ti, 0.005% or less of V, and the balance of Fe and other inevitable impurities, wherein the total amounts of C and N in grains can meet the following relation 1, and the amounts of solid-solute C and N in the grains can meet the following relation 2.
[Relation 1] ([C]/12.01 + [N]/14.01) x 105 ≥ 10
[Relation 2] ([C]/12.01 + [N]/14.01) x 105 ≤ 5
In relation 1 and relation 2, [C] and [N] are respectively the amounts of C and N and mean wt%.
Description
본 발명은 냉연강판 및 그 제조방법에 관한 것으로, 상세하게는 내시효성 및 가공성이 우수하여 자동차, 가전제품 등의 소재로 특히 적합한 가공용 냉연강판 및 그 제조방법에 관한 것이다.The present invention relates to a cold-rolled steel sheet and a method of manufacturing the same, and more particularly to a cold-rolled steel sheet for processing which is particularly suitable for materials such as automobiles, household appliances, and the like, and has excellent endurance and workability.
일반적으로 자동차, 가전제품 등의 소재로 사용되는 가공용 냉연강판은 성형성 확보를 위해 우수한 내시효성이 요구된다. 시효는 시간의 경과에 따라 침입형 고용원소인 탄소(C) 및 질소(N)가 결정립 내의 전위에 고착됨으로써 가동전위가 감소하여 소재가 경화되는 현상으로, 변형 시효라고도 한다. 변형 시효가 발생하는 경우, 스트레쳐 스트레인(Stretcher strain) 결함을 유발하여 소재의 가공성을 떨어뜨리는 원인이 되기 때문에, 가공성 냉연강판의 가공성 확보 측면에서 시효를 적절히 억제하는 것이 중요하다. Generally, a cold-rolled steel sheet for use as a material for automobiles, home appliances and the like is required to have good endurance properties in order to ensure moldability. Aging is a phenomenon in which carbon (C) and nitrogen (N), which are interstitial elements, adhere to the dislocations in the crystal grains as time elapses, so that the movable potential is decreased and the material is hardened. When strain aging occurs, it causes stressor strain defects, which causes the workability of the material to deteriorate. Therefore, it is important to appropriately suppress the aging in terms of securing processability of the processable cold-rolled steel sheet.
냉연강판의 내시효성을 확보하기 위한 대표적인 기술로는 상소둔(Batch Annealing)을 이용하는 방법이 있다. 상소둔을 이용하는 경우, 소재가 고온에서 장시간(일반적으로, 5시간 이상) 유지되는바, 결정립 내의 고용 탄소(C)가 결합력이 강한 탄화물로 석출되어 고착됨으로써 내시효성이 확보될 수 있다. 하지만, 상소둔은 공정 특성상 장시간이 소요되는바, 생산성이 낮고, 소재의 부위별로 재질 편차가 심하게 발생하는 단점이 존재한다.As a typical technique for securing the endurance of the cold-rolled steel sheet, there is a method using batch annealing. In the case of using the calcined body, the material is held at a high temperature for a long time (generally, for 5 hours or more), so that the solidified carbon C in the crystal grains precipitates and is fixed with a carbide having a strong bonding force. However, it takes a long time due to the nature of the process, so the productivity is low, and there is a disadvantage that the material variation occurs severely in each part of the material.
이러한 상소둔의 단점을 극복하기 위한 연구의 결과로 IF강(Interstitial Free Steel)이 등장하였다. IF강은 티타늄(Ti), 니오븀(Nb) 및 바나듐(V)과 같은 탄질화물 형성원소를 강 내에 첨가함으로써 고용 탄소(C) 및 질소(N)를 석출시켜 내시효성을 확보하는 강종이다. 따라서, IF강은 장시간의 상소둔 공정 대신, 생산성 및 재질 균일성이 확보되는 연속소둔(Continuous Annealing)을 통해 제조될 수 있다. 다만, 티타늄(Ti), 니오븀(Nb) 및 바나듐(V) 등의 합금원소는 고가의 원소로서 경제적 측면에서 바람직하지 않으며, 이들 합금원소들의 석출물 형성에 따른 재결정 온도 상승이 문제될 수 있다. 또한, 재결정 온도가 상승됨에 따라 고온 소둔이 필수적으로 수반되어야 하며, 고온 소둔에 의해 표면 흠 등의 결함이 발생하는 문제점이 존재한다. Interstitial Free Steel has emerged as a result of research to overcome these shortcomings. IF steel is a type of steel which ensures the endurance by precipitating solid carbon (C) and nitrogen (N) by adding carbonitride forming elements such as titanium (Ti), niobium (Nb) and vanadium (V) into steel. Therefore, the IF steel can be produced by continuous annealing in which productivity and material uniformity are ensured, instead of prolonged annealing. However, alloying elements such as titanium (Ti), niobium (Nb), and vanadium (V) are expensive and are not desirable from the economical point of view. Raising the recrystallization temperature due to the precipitation of these alloying elements may be a problem. In addition, as the recrystallization temperature rises, high-temperature annealing must be accompanied, and defects such as surface flaws are caused by high-temperature annealing.
(특허문헌 1) 대한민국 공개특허공보 제10-2010-0047503호 (2010.05.10. 공개)(Patent Document 1) Korean Published Patent Application No. 10-2010-0047503 (Published May 10, 2010)
본 발명의 강 조성 및 제조공정 조건을 최적화함으로써 내시효성 및 가공성이 효과적으로 향상된 냉연강판 및 그 제조방법을 제공하고자 한다.The present invention provides a cold-rolled steel sheet having improved endurance and workability effectively by optimizing steel composition and manufacturing process conditions, and a method of manufacturing the same.
본 발명의 과제는 상술한 내용에 한정되지 않는다. 통상의 기술자라면 본 명세서의 전반적인 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.The object of the present invention is not limited to the above description. Those of ordinary skill in the art will have no difficulty understanding the further subject of the present invention from the general context of this specification.
본 발명의 일 측면에 따른 내시효성 및 가공성이 우수한 냉연강판은, 중량%로, C: 0.1% 이하, Si: 0.5% 이하, Mn: 0.1~0.5%, Al: 0.015~0.1%, P: 0.01% 이하, S: 0.01% 이하, N: 0.01% 이하, Nb: 0.005% 이하, Ti: 0.005% 이하, V: 0.005% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, 결정립 내의 전체 C 및 N 함량이 하기 관계식 1을 만족하고, 결정립 내의 고용 C 및 N 함량이 하기 관계식 2를 만족할 수 있다.A cold rolled steel sheet excellent in endurance and workability according to one aspect of the present invention is characterized by containing 0.1% or less of C, 0.5% or less of Si, 0.1 to 0.5% of Mn, 0.015 to 0.1% of Al, 0.01 to 0.1% % Or less of S, not more than 0.01% of S, not more than 0.01% of N, not more than 0.005% of Nb, not more than 0.005% of Ti, not more than 0.005% of V and the balance of Fe and other unavoidable impurities, Satisfies the following relational expression (1), and the solid solution C and N content in the crystal grains satisfy the following relational expression (2).
[관계식 1] ([C]/12.01 + [N]/14.01) x 105 ≥ 10[Relation 1] ([C] /12.01 + [N] /14.01) x 10 5 ? 10
[관계식 2] ([C]/12.01 + [N]/14.01) x 105 ≤ 5[Relation 2] ([C] /12.01 + [N] /14.01) x 10 5 5
단, 상기 관계식 1 및 관계식 2의 [C] 및 [N]는 각각 C 및 N의 함량으로, 중량%를 의미한다.[C] and [N] in the relational expression 1 and the relational expression 2 refer to the content of C and N, respectively, by weight.
상기 Nb, Ti 및 V는 각각 0.001% 이하로 포함될 수 있다.Nb, Ti and V may be included in an amount of 0.001% or less, respectively.
상기 냉연강판의 시효지수는 10MPa 이하일 수 있다.The aging index of the cold-rolled steel sheet may be 10 MPa or less.
상기 냉연강판의 항복점 연신율은 0.5% 이하일 수 있다.The yield point elongation of the cold-rolled steel sheet may be 0.5% or less.
상기 냉연강판의 항복강도는 350MPa 이하일 수 있다.The yield strength of the cold-rolled steel sheet may be 350 MPa or less.
본 발명의 일 측면에 따른 내시효성 및 가공성이 우수한 냉연강판은, 중량%로, C: 0.1% 이하, Si: 0.5% 이하, Mn: 0.1~0.5%, Al: 0.015~0.1%, P: 0.01% 이하, S: 0.01% 이하, N: 0.01% 이하, Nb: 0.005% 이하, Ti: 0.005% 이하, V: 0.005% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하는 슬라브를 재가열하고; 상기 재가열된 슬라브를 열간압연하여 열연강판을 제공하고; 상기 열연강판을 냉간압연하여 냉연강판을 제공하고; 상기 냉연강판을 연속소둔하고; 상기 연속소둔된 냉연강판을 1~3%의 제1 압하율로 1차 정정압연하고; 상기 1차 정정압연된 냉연강판을 200~400℃의 온도범위에서 10분 이하로 전위고착 소둔하고; 상기 전위고착 소둔된 냉연강판을 0.8~3%의 제2 압하율로 2차 정정압연하여 제조될 수 있다.A cold rolled steel sheet excellent in endurance and workability according to one aspect of the present invention is characterized by containing 0.1% or less of C, 0.5% or less of Si, 0.1 to 0.5% of Mn, 0.015 to 0.1% of Al, 0.01 to 0.1% %, S: not more than 0.01%, N: not more than 0.01%, Nb: not more than 0.005%, Ti: not more than 0.005%, V: not more than 0.005%, and other Fe and other unavoidable impurities; Hot-rolling the reheated slab to provide a hot-rolled steel sheet; Cold-rolling the hot-rolled steel sheet to provide a cold-rolled steel sheet; Continuously annealing the cold-rolled steel sheet; Subjecting the continuously annealed cold rolled steel sheet to first-precision rolling at a first reduction rate of 1 to 3%; Rolling the primary-precision rolled cold-rolled steel sheet at a temperature in the range of 200 to 400 ° C for 10 minutes or less; The cold-rolled steel sheet subjected to the dislocation-fixing annealing can be subjected to secondary-precision rolling at a second reduction ratio of 0.8 to 3%.
상기 1차 정정압연에 의해 상기 냉연강판에 가동전위가 생성될 수 있다.By the primary correction rolling, a movable potential can be generated in the cold-rolled steel sheet.
상기 전위고착 소둔에 의해 상기 1차 정정압연에 의해 생성된 가동전위가 확산에 의해 전위에 고착될 수 있다.The movable potential generated by the primary corrective rolling by the potential fixing annealing can be fixed to the potential by diffusion.
상기 2차 정정압연에 의해 상기 냉연강판에 가동전위가 재생성될 수 있다.The movable potential can be regenerated to the cold-rolled steel sheet by the secondary corrective rolling.
상기 슬라브의 재가열 온도는 1200℃ 이상일 수 있다.The reheating temperature of the slab may be 1200 ° C or higher.
상기 열간압연의 마무리 압연 온도는 Ar3 이상일 수 있다.The finish rolling temperature of the hot rolling may be higher than Ar3.
상기 냉간압연의 압하율은 50~95%일 수 있다.The reduction ratio of the cold rolling may be 50 to 95%.
상기 연속소둔의 온도는 600~900℃일 수 있다.The temperature of the continuous annealing may be 600 to 900 占 폚.
상기 열연강판은 550~750℃에서 권취되어 상기 냉간압연에 제공될 수 있다.The hot-rolled steel sheet may be rolled at 550 to 750 ° C to be provided for the cold rolling.
상기 Nb, Ti 및 V는 각각 0.001% 이하로 포함될 수 있다.Nb, Ti and V may be included in an amount of 0.001% or less, respectively.
본 발명의 일 측면에 따르면, 강 조성 및 제조공정 조건을 최적화함으로써 내시효성 및 가공성이 효과적으로 향상된 냉연강판 및 그 제조방법을 제공할 수 있다.According to an aspect of the present invention, it is possible to provide a cold-rolled steel sheet in which endurance and workability are effectively improved by optimizing steel composition and manufacturing process conditions, and a manufacturing method thereof.
본 발명의 일 측면에 따르면, 고가의 합금원소의 첨가량을 최소화하여 경제성을 효과적으로 확보한 냉연강판 및 그 제조방법을 제공할 수 있다.According to an aspect of the present invention, it is possible to provide a cold-rolled steel sheet in which economical efficiency is effectively ensured by minimizing the addition amount of expensive alloying elements and a method of manufacturing the same.
본 발명의 일 측면에 따르면, 장시간의 상소둔 공정을 거치지 않아 생산성을 효과적으로 확보한 냉연강판 및 그 제조방법을 제공할 수 있다.According to an aspect of the present invention, it is possible to provide a cold rolled steel sheet in which productivity can be effectively ensured without being subjected to a prolonged tempering step and a manufacturing method thereof.
본 발명은 내시효성 및 가공성이 우수한 냉연강판 및 그 제조방법에 관한 것으로, 이하에서는 본 발명의 바람직한 실시예들을 설명하고자 한다. 본 발명의 실시예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명되는 실시예들에 한정되는 것으로 해석되어서는 안된다. 본 실시예들은 당해 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 본 발명을 더욱 상세하게 설명하기 위하여 제공되는 것이다.The present invention relates to a cold-rolled steel sheet excellent in endurance and workability and a method of manufacturing the same, and the preferred embodiments of the present invention will be described below. The embodiments of the present invention can be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The embodiments are provided to explain the present invention to a person having ordinary skill in the art to which the present invention belongs.
본 발명의 일 측면에 따른 내시효성 및 가공성이 우수한 냉연강판은, 중량%로, 탄소(C): 0.1% 이하, 규소(Si): 0.5% 이하, 망간(Mn): 0.1~0.5%, 알루미늄(Al): 0.015~0.1%, 인(P): 0.01% 이하, 황(S): 0.01% 이하, 질소(N): 0.01% 이하, 니오븀(Nb): 0.005% 이하, 티타늄(Ti): 0.005% 이하, 바나듐(V): 0.005% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함할 수 있다.The cold rolled steel sheet excellent in endurance and workability according to one aspect of the present invention is characterized by containing 0.1% or less of carbon (C), 0.5% or less of silicon (Si), 0.1 to 0.5% of manganese (Mn) (N): 0.005% or less, Ti (Ti): 0.005% or less, and the content of titanium (Ti) 0.005% or less, vanadium (V): 0.005% or less, the balance Fe and other unavoidable impurities.
이하, 본 발명의 강 조성에 대하여 보다 상세히 설명한다. 이하, 특별히 달리 표시하지 않는 한 각 원소의 함량을 나타내는 %는 중량을 기준으로 한다.Hereinafter, the steel composition of the present invention will be described in more detail. Hereinafter, unless otherwise indicated, the percentages representing the content of each element are by weight.
탄소(C): 0.1% 이하Carbon (C): Not more than 0.1%
탄소(C)가 과다하게 첨가되는 경우, 연성 및 강도가 지나치게 상승하여 가공성이 크게 저하되는바, 본 발명은 탄소(C) 함량의 상한을 0.1%로 제한할 수 있다.When carbon (C) is added excessively, ductility and strength are excessively increased, and workability is significantly lowered, so that the present invention can limit the upper limit of the carbon (C) content to 0.1%.
규소(Si): 0.5% 이하Silicon (Si): not more than 0.5%
규소(Si)는 탈산제로 사용되는 원소이며, 고용강화에 의해 강도를 향상시키는 원소이다. 하지만, 그 함량이 과도할 경우 강도가 필요 이상으로 상승할 뿐만 아니라, 소둔 시 강판 표면에 생성되는 Si계 산화물에 의해 도금 결함이 유발될 수 있다. 따라서, 본 발명은 규소(Si) 함량의 상한을 0.5%로 제한할 수 있으며, 보다 바람직한 규소(Si) 함량의 상한은 0.3%일 수 있다.Silicon (Si) is an element used as a deoxidizing agent and is an element that improves strength by solid solution strengthening. However, when the content is excessive, not only the strength increases more than necessary, but also a plating defect may be caused by the Si-based oxide generated on the surface of the steel sheet during annealing. Therefore, the present invention can limit the upper limit of the silicon (Si) content to 0.5%, and the upper limit of the more preferable silicon (Si) content can be 0.3%.
망간(Mn): 0.1~0.5%Manganese (Mn): 0.1 to 0.5%
망간(Mn)은 강 중의 고용 황(S)과 결합하여 MnS로 석출됨으로써, 고용 황(S)에 의한 적열취성(Hot shortness)을 방지하는 원소이다. 적열취성 방지의 효과를 위해, 본 발명의 망간(Mn) 함량의 하한은 0.1%로 제한될 수 있다. 다만, 망간(Mn)이 과다하게 첨가되는 경우, 재질이 경화되어 연성을 현저히 떨어뜨리므로, 본 발명은 가공성 확보 차원에서 망간(Mn) 함량의 상한을 0.5%로 제한할 수 있다. 따라서, 본 발명의 망간(Mn) 함량은 0.1~0.5%의 범위일 수 있다. 바람직한 망간(Mn) 함량은 0.1~0.4%의 범위일 수 있으며, 보다 바람직한 망간(Mn) 함량은 0.15~0.3%의 범위일 수 있다.Manganese (Mn) binds with solid sulfur (S) in the steel and precipitates as MnS, thereby preventing hot shortness due to solid sulfur (S). For the purpose of preventing red embrittlement, the lower limit of the manganese (Mn) content of the present invention may be limited to 0.1%. However, when manganese (Mn) is added excessively, the material is hardened and the ductility is significantly lowered, so that the upper limit of manganese (Mn) content can be limited to 0.5% in order to ensure workability. Accordingly, the manganese (Mn) content of the present invention may be in the range of 0.1 to 0.5%. The preferred manganese (Mn) content may range from 0.1 to 0.4%, more preferably the manganese (Mn) content may range from 0.15 to 0.3%.
알루미늄(Al): 0.015~0.1%Aluminum (Al): 0.015 to 0.1%
알루미늄(Al)은 탈산 효과가 매우 큰 원소이며, 강 중의 질소(N)와 반응하여 AlN을 석출시킴으로써, 고용 질소(N)에 의해 성형성이 저하되는 것을 방지하는 원소이다. 따라서, 본 발명은 이러한 효과를 달성하기 위하여 알루미늄(Al) 함량의 하한을 0.015%로 제한할 수 있다. 다만, 알루미늄(Al)이 과다하게 첨가되는 경우, 연성이 급격히 저하되고, 가공성이 열위해질 수 있는바, 본 발명은 알루미늄(Al) 함량의 상한을 0.1%로 제한할 수 있다. 따라서, 본 발명의 알루미늄(Al) 함량은 0.015~0.1%의 범위일 수 있다. 바람직한 알루미늄(Al) 함량은 0.015~0.07%의 범위일 수 있으며, 보다 바람직한 알루미늄(Al) 함량은 0.02~0.05%의 범위일 수 있다.Aluminum (Al) is an element having a great deoxidation effect and is an element that prevents the degradation of the formability due to solid nitrogen N by causing AlN to precipitate by reacting with nitrogen (N) in the steel. Therefore, the present invention can limit the lower limit of the aluminum (Al) content to 0.015% in order to achieve this effect. However, if aluminum (Al) is added in excess, the ductility may be drastically lowered and the workability may be lowered. The present invention can limit the upper limit of the aluminum (Al) content to 0.1%. Therefore, the aluminum (Al) content of the present invention may be in the range of 0.015 to 0.1%. The preferred aluminum (Al) content may range from 0.015 to 0.07%, and more preferably the aluminum (Al) content may range from 0.02 to 0.05%.
인(P): 0.01% 이하Phosphorus (P): not more than 0.01%
인(P)은 강의 연성을 크게 감소시키지 않으면서도 강도를 향상시킬 수 있는 원소이지만, 인(P)의 함량이 과다하게 첨가되는 경우, 결정립계에 편석되어 강을 경화시키는 문제가 발생할 수 있다. 따라서, 본 발명은 인(P) 함량의 상한을 0.01%로 제한할 수 있다.Phosphorus (P) is an element capable of improving the strength without significantly reducing the ductility of the steel. However, when the content of phosphorus (P) is excessively added, there may arise a problem of segregating the grain boundaries to harden the steel. Therefore, the present invention can limit the upper limit of the phosphorus (P) content to 0.01%.
황(S): 0.01% 이하Sulfur (S): not more than 0.01%
황(S)은 강 중에 불가피하게 함유되는 원소이나, 고용 상태로 존재 시 적열취성을 유발하는 원소이기도 하다. 망간(Mn)의 첨가를 통해 MnS의 석출을 유도할 수 있으나, 과다한 MnS 석출은 강을 경화시키기 때문에 바람직하지 않다. 따라서, 본 발명은 황(S) 함량의 상한을 0.01%로 제한할 수 있다.Sulfur (S) is an element that is inevitably contained in the steel, or an element that causes red-hot brittleness when it is in an employment state. Addition of manganese (Mn) can induce precipitation of MnS, but excessive MnS precipitation is not preferable because it hardens the steel. Therefore, the present invention can limit the upper limit of the sulfur (S) content to 0.01%.
질소(N): 0.01% 이하Nitrogen (N): not more than 0.01%
질소(N)는 강 중에 불가피하게 함유되는 원소이다. 고용 상태로 존재하는 질소(N)는 연성을 떨어뜨리고, 내시효성을 악화시킬 뿐만 아니라, 가공성을 떨어뜨릴 수 있다. 따라서, 본 발명은 질소(N) 함량의 상한을 0.01%로 제한할 수 있다.Nitrogen (N) is an element that is inevitably contained in the steel. Nitrogen (N) present in the state of employment lowers ductility, deteriorates endurance, and can degrade processability. Therefore, the present invention can limit the upper limit of the nitrogen (N) content to 0.01%.
티타늄(Ti), 니오븀(Nb), 바나듐(V): 각각 0.005% 이하Titanium (Ti), niobium (Nb), vanadium (V): not more than 0.005%
티타늄(Ti), 니오븀(Nb) 및 바나듐(V)은 고온에서 탄소(C) 또는 진소(N)와 결합하여 탄질화물을 쉽게 형성하는 원소이다. 또한, 이들 원소는 고가일 뿐 아니라, 재결정 온도를 상승시키는 요인이 되며, 과도하게 첨가되는 경우 강도를 지나치게 상승시키는 문제를 발생시키는 원소이기도 하다. 더불어, 본 발명에서 내시효성 확보는 티타늄(Ti), 니오븀(Nb) 및 바나듐(V)의 첨가에 의해 발현되는 효과가 아니므로, 티타늄(Ti), 니오븀(Nb) 및 바나듐(V)의 함량을 적극 억제하더라도 높은 함량의 탄소(C) 및 질소(N)를 포함하는 경우에 대해서도 우수한 내시효성을 확보할 수 있다. 따라서, 본 발명에서는 티타늄(Ti), 니오븀(Nb) 및 바나듐(V)의 함량을 적극 억제하는 것이 바람직하다, 즉, 본 발명에서는, 강 중에 티타늄(Ti), 니오븀(Nb) 및 바나듐(V)이 불가피하게 함유되더라도 각각 0.005% 이하로 함유되는 것이 바람직하다. 더욱 바람직한 티타늄(Ti), 니오븀(Nb) 및 바나듐(V)의 함량은 각각 0.002% 이하일 수 있으며, 더욱더 바람직한 티타늄(Ti), 니오븀(Nb) 및 바나듐(V)의 함량은 각각 0.001% 이하일 수 있다.Titanium (Ti), niobium (Nb) and vanadium (V) are elements that easily form carbonitride by bonding with carbon (C) or nitrogen (N) at high temperatures. In addition, these elements are not only expensive but also cause an increase in the recrystallization temperature, and they are also an element causing a problem of excessively increasing the strength when added excessively. In addition, since the effect of ensuring the endurance of the present invention is not expressed by the addition of titanium (Ti), niobium (Nb) and vanadium (V), the content of titanium (Ti), niobium (Nb) and vanadium (C) and nitrogen (N), even when the amount of carbon (C) is positively suppressed. Therefore, in the present invention, it is preferable to positively suppress the contents of titanium (Ti), niobium (Nb) and vanadium (V). That is, in the present invention, titanium (Ti), niobium ) Are contained inevitably, they are preferably contained in an amount of 0.005% or less, respectively. More preferably, the content of titanium (Ti), niobium (Nb) and vanadium (V) may be 0.002% or less and the content of titanium (Ti), niobium (Nb) and vanadium (V) have.
본 발명은, 상술한 강 조성 이외에 나머지는 Fe 및 불가피한 불순물일 수 있다. 불가피한 불순물은 통상의 철강 제조공정에서 의도되지 않게 혼입될 수 있는 것으로, 이를 전면 배제할 수는 없으며, 통상의 철강제조 분야의 기술자라면 그 의미를 쉽게 이해할 수 있다. 또한, 본 발명은, 앞서 언급한 강 조성 이외의 다른 조성의 첨가를 전면적으로 배제하는 것은 아니다.The present invention may be Fe and unavoidable impurities in addition to the above-mentioned steel composition. Unavoidable impurities can be intentionally incorporated in a conventional steel manufacturing process, and can not be entirely excluded, and the meaning of ordinary steel manufacturing industry can be understood easily. Further, the present invention does not exclude the addition of other compositions other than the above-mentioned steel composition in the whole.
본 발명의 일 측면에 따른 내시효성 및 가공성이 우수한 냉연강판은, 결정립 내의 전체 탄소(C) 및 질소(N) 함량이 하기 관계식 1을 만족하고, 결정립 내의 고용 탄소(C) 및 질소(N) 함량이 하기 관계식 2를 만족할 수 있다.The cold rolled steel sheet excellent in endurance and workability according to one aspect of the present invention is characterized in that the total carbon (C) and nitrogen (N) contents in the crystal grains satisfies the following relational expression 1 and the solid carbon (C) The content can satisfy the following relational expression (2).
[관계식 1] ([C]/12.01 + [N]/14.01) x 105 ≥ 10[Relation 1] ([C] /12.01 + [N] /14.01) x 10 5 ? 10
[관계식 2] ([C]/12.01 + [N]/14.01) x 105 ≤ 5[Relation 2] ([C] /12.01 + [N] /14.01) x 10 5 5
단, 상기 관계식 1 및 관계식 2의 [C] 및 [N]는 각각 탄소(C) 및 질소(N)의 함량으로, 중량%를 의미한다.However, [C] and [N] in the relational expression 1 and the relational expression 2 refer to the content of carbon (C) and nitrogen (N), respectively, by weight.
이하, 본 발명의 관계식에 대하여 보다 상세히 설명한다.Hereinafter, the relational expression of the present invention will be described in more detail.
관계식Relation
본 발명의 강 조성 중, 탄소(C) 및 질소(N)는 아래의 관계식 1 및 2를 만족하도록 제한될 수 있다. 관계식 1은 결정립 내의 전체 탄소(C) 및 질소(N) 함량을 제한하는 조건이며, 관계식 2는 결정립 내의 고용 탄소(C) 및 질소(N) 함량을 제한하는 조건이다.In the steel composition of the present invention, carbon (C) and nitrogen (N) can be limited to satisfy the following relational expressions 1 and 2. Relation 1 is a condition for limiting the total carbon (C) and nitrogen (N) contents in the crystal grains, and Relation 2 is a condition for limiting the content of the solid carbon (C) and nitrogen (N) in the crystal grains.
[관계식 1] ([C]/12.01 + [N]/14.01) x 105 ≥ 10[Relation 1] ([C] /12.01 + [N] /14.01) x 10 5 ? 10
[관계식 2] ([C]/12.01 + [N]/14.01) x 105 ≤ 5[Relation 2] ([C] /12.01 + [N] /14.01) x 10 5 5
단, 상기 관계식 1 및 관계식 2의 [C] 및 [N]는 각각 탄소(C) 및 질소(N) 함량으로, 중량%를 의미한다.However, [C] and [N] in the relational expression 1 and the relational expression 2 refer to carbon (C) and nitrogen (N) content, respectively, by weight%.
관계식 1은 일정 수준 이상의 함량으로 탄소(C) 및 질소(N)를 함유해야 함을 의미한다. 또한, 관계식 2는 후술하는 바와 같이 일련의 공정을 통해 결정립 내의 고용 탄소(C) 및 질소(N) 함량이 일정 수준 이하로 낮아지는바, 최종 제품에서 결정립 내의 고용 탄소(C) 및 질소(N) 함량이 일정 수준 이하로 낮아짐을 의미한다. 따라서, 본 발명은 전술한 강 조성 제한 및 관계식에 의한 탄소(C) 및 질소(N) 함량의 제한을 통해 최종 제품의 내시효성 및 가공성을 효과적으로 확보할 수 있다.Relation 1 means that carbon (C) and nitrogen (N) should be contained at a certain level or higher. In the formula (2), the content of the solid carbon (C) and the nitrogen (N) in the crystal grains is lowered to a certain level or less through a series of steps as described later. ) Content is lower than a certain level. Therefore, the present invention can effectively ensure the endurance and workability of the final product through the limitation of the steel composition and the limitation of the carbon (C) and nitrogen (N) contents according to the relational expression.
내시효성이 열위한 일반 탄소강의 경우 30MPa 수준의 시효지수를 가지며, 항복점 연신 현상이 발생하는 반면, 본 발명의 강 조성 및 관계식을 만족하는 냉연강판은 10MPa 이하의 시효지수, 0.5% 이하의 항복점 연신율을 가지는바, 내시효성을 효과적으로 확보할 수 있다. 또한, 본 발명의 강 조성 및 관계식을 만족하는 냉연강판은 350MPa 이하의 항복강도를 가지는바, 내시효성을 확보함과 동시에 가공성을 효과적으로 확보할 수 있다. The cold rolled steel sheet satisfying the steel composition and the relational expression of the present invention has an aging index of 10 MPa or less and a yield point elongation of 0.5% or less So that the anti-hypersensitivity can be effectively ensured. In addition, since the cold-rolled steel sheet satisfying the steel composition and the relational expression of the present invention has a yield strength of 350 MPa or less, workability can be effectively ensured while assuring anti-aging properties.
이하, 본 발명의 제조방법에 대하여 보다 상세히 설명한다.Hereinafter, the production method of the present invention will be described in more detail.
본 발명의 일 측면에 따른 내시효성 및 가공성이 우수한 냉연강판은, 중량%로, 탄소(C): 0.1% 이하, 규소(Si): 0.5% 이하, 망간(Mn): 0.1~0.5%, 알루미늄(Al): 0.015~0.1%, 인(P): 0.01% 이하, 황(S): 0.01% 이하, 질소(N): 0.01% 이하, 니오븀(Nb): 0.005% 이하, 티타늄(Ti): 0.005% 이하, 바나듐(V): 0.005% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하는 슬라브를 재가열하고; 상기 재가열된 슬라브를 열간압연하여 열연강판을 제공하고; 상기 열연강판을 냉간압연하여 냉연강판을 제공하고; 상기 냉연강판을 연속소둔하고; 상기 연속소둔된 냉연강판을 1~3%의 제1 압하율로 1차 정정압연하고; 상기 1차 정정압연된 냉연강판을 200~400℃의 온도범위에서 10분 이하로 전위고착 소둔하고; 상기 전위고착 소둔된 냉연강판을 0.8~3%의 제2 압하율로 2차 정정압연하여 제조될 수 있다.The cold rolled steel sheet excellent in endurance and workability according to one aspect of the present invention is characterized by containing 0.1% or less of carbon (C), 0.5% or less of silicon (Si), 0.1 to 0.5% of manganese (Mn) (N): 0.005% or less, Ti (Ti): 0.005% or less, and the content of titanium (Ti) 0.005% or less, vanadium (V): 0.005% or less, the balance Fe and other unavoidable impurities; Hot-rolling the reheated slab to provide a hot-rolled steel sheet; Cold-rolling the hot-rolled steel sheet to provide a cold-rolled steel sheet; Continuously annealing the cold-rolled steel sheet; Subjecting the continuously annealed cold rolled steel sheet to first-precision rolling at a first reduction rate of 1 to 3%; Rolling the primary-precision rolled cold-rolled steel sheet at a temperature in the range of 200 to 400 ° C for 10 minutes or less; The cold-rolled steel sheet subjected to the dislocation-fixing annealing can be subjected to secondary-precision rolling at a second reduction ratio of 0.8 to 3%.
본 발명의 슬라브 합금조성은 전술한 냉연강판의 합금조성과 대응하는바, 본 발명의 슬라브 합금조성에 대한 설명은 전술한 냉연강판의 합금조성에 대한 설명으로 대신하도록 한다.The slab alloy composition of the present invention corresponds to the alloy composition of the cold-rolled steel sheet described above, and the description of the slab alloy composition of the present invention is replaced with the description of the alloy composition of the cold-rolled steel sheet described above.
슬라브 재가열Reheating slabs
전술한 강 조성으로 구비되는 슬라브를 일정 온도 이상의 온도로 재가열할 수 있다. 강 중에 존재하는 석출물을 대부분 재고용시켜야 하는바, 본 발명은 재가열온도의 하한을 1200℃로 제한할 수 있다. 석출물의 고용도를 더욱 높이기 위한 바람직한 재가열온도의 하한은 1250℃일 수 있다.The slab having the above-mentioned steel composition can be reheated to a temperature higher than a predetermined temperature. Most of the precipitates present in the steel should be recycled, and the present invention can limit the lower limit of the reheating temperature to 1200 ° C. The lower limit of the preferable reheating temperature for further increasing the solubility of the precipitate may be 1250 캜.
열간압연Hot rolling
재가열된 슬라브를 열간압연하여 열연강판을 제공할 수 있다. 오스테나이트 단상영역에서 열간압연을 수행하기 위하여, 본 발명은 열간압연 마무리온도의 하한을 Ar3 온도로 제한할 수 있다.The hot-rolled steel sheet can be provided by hot-rolling the reheated slab. In order to perform hot rolling in the austenite single phase region, the present invention can limit the lower limit of the hot rolling finishing temperature to the Ar3 temperature.
열연강판 권취Hot-rolled steel sheet coiling
열연강판을 일정 온도범위에서 권취할 수 있다. 550℃ 이상의 온도범위에서 열연강판을 권취하는 경우, 고용된 상태로 남아있는 질소(N)를 AlN으로 추가적으로 석출시킬 수 있는바, 우수한 내시효성을 확보할 수 있다. 반면, 550℃ 미만에서 열연강판을 권취하는 경우, AlN으로 석출되지 않고 잔존하는 고용 질소(N)에 의해 가공성이 열위해질 수 있는바, 본 발명은 열연강판 권취온도의 하한을 550℃로 제한할 수 있다. 또한, 750℃ 초과의 온도범위에서 열연강판을 권취하는 경우, 결정립이 조대화되어 냉간압연성을 떨어지는 문제가 발생할 수 있다. 따라서, 본 발명은 열연강판 권취온도의 상한을 750℃로 제한할 수 있다. 따라서, 본 발명의 열연강판 권취온도는 550~750℃의 온도범위일 수 있다.The hot-rolled steel sheet can be wound within a predetermined temperature range. When the hot-rolled steel sheet is rolled in a temperature range of 550 占 폚 or more, nitrogen (N) remaining in the solid state can be additionally precipitated with AlN, thereby ensuring excellent endurance. On the other hand, when the hot-rolled steel sheet is rolled at less than 550 ° C, the workability can be damped by the dissolved nitrogen (N) remaining without being precipitated as AlN. In the present invention, the lower limit of the hot- . Further, when the hot-rolled steel sheet is rolled in a temperature range exceeding 750 占 폚, there may arise a problem that the crystal grains are coarse and the cold rolling property is deteriorated. Therefore, the present invention can limit the upper limit of the hot-rolled sheet coiling temperature to 750 캜. Therefore, the hot rolled steel sheet coiling temperature of the present invention may be in a temperature range of 550 to 750 占 폚.
냉간압연Cold rolling
권취된 열연강판을 50~95%의 압하율로 냉간압연하여 냉연강판을 제조할 수 있다. 냉간압연의 압하율에 의해 최종 냉연강판의 두께가 결정되는바, 냉간압연의 압하율이 50% 미만인 경우 최종 목표 두께를 달성하기 어렵기 때문이다. 또한, 압하율이 95%를 초과하는 경우 압연 설비의 부하가 과도해져서 공정상 문제가 발생할 수 있다. 따라서, 본 발명의 냉간압연 압하율은 50~95%의 범위일 수 있다.The rolled hot-rolled steel sheet can be cold-rolled at a reduction ratio of 50 to 95% to produce a cold-rolled steel sheet. The thickness of the final cold-rolled steel sheet is determined by the reduction rate of the cold-rolling, and it is difficult to achieve the final target thickness when the reduction rate of the cold-rolling is less than 50%. In addition, when the reduction rate exceeds 95%, the load of the rolling equipment becomes excessive, which may cause a problem in the process. Therefore, the cold rolling reduction ratio of the present invention may be in the range of 50 to 95%.
연속소둔Continuous annealing
냉간압연 시 연신된 결정립의 재결정화를 위해 일정 소둔온도에서 냉연강판의 연속소둔을 실시할 수 있다. 연속소둔 온도 600℃ 미만에서는 재결정이 충분히 일어나지 않으므로, 냉간압연시 생성된 전위들이 충분히 제거되지 않아 연성이 떨어지는 문제가 발생할 수 있다. 따라서, 본 발명은 연속소둔 온도의 하한을 600℃로 제한할 수 있다. 다만, 연속소둔 온도가 900℃를 초과하는 경우, 결정립이 조대화되어 강도가 저하되고 가공성이 떨어지는 문제가 발생할 수 있는바, 본 발명은 연속소둔 온도의 상한을 900℃로 제한할 수 있다. 따라서, 본 발명의 연속소둔 온도는 600~900℃의 범위일 수 있다. 또한, 본 발명의 연속소둔은 경제성 및 생산성 확보를 위해 10분 이내의 시간으로 수행될 수 있다.Continuous annealing of the cold-rolled steel sheet can be carried out at a constant annealing temperature for recrystallization of the elongated crystal grains during cold rolling. If the continuous annealing temperature is lower than 600 ° C, recrystallization does not sufficiently occur, and therefore, dislocations generated during cold rolling can not be sufficiently removed, resulting in a problem of deterioration in ductility. Therefore, the present invention can limit the lower limit of the continuous annealing temperature to 600 占 폚. However, when the continuous annealing temperature exceeds 900 ° C, there is a problem that the crystal grains are coarse, the strength is lowered and the workability is lowered. In this invention, the upper limit of the continuous annealing temperature can be limited to 900 ° C. Therefore, the continuous annealing temperature of the present invention may be in the range of 600 to 900 占 폚. In addition, the continuous annealing of the present invention can be performed within 10 minutes to ensure economical efficiency and productivity.
1차 정정압연Primary corrective rolling
연속소둔 된 강판을 1~3%의 압하율로 1차 정정압연하여 가동전위가 생성된 강판을 제공할 수 있다. 1차 정정압연에 의해 생성된 가동전위는 후에 실시될 전위고착 소둔을 통해 고용 탄소(C) 및 질소(N)가 쉽게 고착될 수 있는 위치이다. 1차 정정압연의 압하율이 1% 미만인 경우, 고용 탄소(C) 및 질소(N)를 대부분 고착시킬 만큼의 전위가 충분히 생성되지 않는바, 본 발명은 1차 정정압연의 압하율의 하한을 1%로 제한할 수 있다. 또한, 1차 정정압연의 압하율이 과다한 경우, 필요 이상으로 다량의 가동전위가 생성되어 재질을 경화시키므로, 가공성이 저하되는 문제가 발생할 수 있다. 따라서, 본 발명은 1차 정정압연의 압하율을 상한을 3%로 제한할 수 있다. 또한, 재질의 경화를 방지하기 위한 바람직한 1차 정정압연의 압하율 상한은 2%일 수 있다.It is possible to provide a steel sheet in which a continuously-annealed steel sheet is primary-precision rolled at a reduction ratio of 1 to 3% to generate a movable potential. The movable potential generated by the primary corrective rolling is a position where the solid carbon (C) and the nitrogen (N) can be easily adhered via potential fixing annealing to be performed later. When the reduction ratio of the primary corrective rolling is less than 1%, sufficient dislocation is not generated enough to mostly adhere the solid carbon (C) and the nitrogen (N), and the present invention is characterized in that the lower limit of the reduction ratio of the primary corrective rolling 1%. In addition, when the reduction ratio of the primary corrective rolling is excessive, a large amount of the movable potential is generated more than necessary, and the material is hardened, so that the workability may be deteriorated. Therefore, in the present invention, the upper limit of the reduction ratio of the primary corrective rolling can be limited to 3%. In order to prevent the hardening of the material, the upper limit of the reduction ratio of the preferred first-order rolling may be 2%.
전위고착 소둔Dislocation anchoring
1차 정정압연에 의해 가동전위가 생성된 강판을 200℃ 이상에서 30초 이상 열처리하여 가동전위가 고착된 강판을 제조할 수 있다. 1차 정전압연 직후에 생성된 가동전위는 전위고착 소둔 시 확산에 의해 전위에 고착되며, 전위고착 소둔 온도가 높을수록 전위고착에 요구되는 시간이 감소하게 된다. 200℃의 전위고착 소둔 온도에서는 약 30초의 시간이 소요되지만, 더 낮은 온도에서는 보다 긴 시간이 소요된다. 따라서, 본 발명은 생산성 측면에서 전위고착 소둔 온도의 하한을 200℃로 제한할 수 있다. 다만, 전위고착 소둔 온도가 400℃를 초과하는 경우, 고착된 탄소(C)의 재고용이 발생할 수 있는바, 본 발명은 전위고착 소둔 온도의 상한을 400℃로 제한할 수 있다. 충분한 전위고착 및 생산성을 고려하여, 본 발명의 전위고착 소둔 시간은 20초 이상, 10분 미만일 수 있다. 생산성 측면에서 바람직한 전위고착 소둔 시간은 1분 이하일 수 있다. The steel sheet in which the movable potential is generated by the primary corrective rolling is heat-treated at 200 DEG C or more for 30 seconds or more to produce a steel sheet to which the movable potential is fixed. The movable potential generated immediately after the first electrostatic rolling is fixed to the electric potential by the diffusion during the dislocation annealing, and the higher the dislocation annealing temperature is, the more the time required for dislocation fixing is reduced. It takes about 30 seconds at the dislocation annealing temperature of 200 ° C, but it takes longer time at the lower temperature. Therefore, the present invention can limit the lower limit of the dislocation-annealing temperature to 200 占 폚 in terms of productivity. However, when the dislocation-fixing annealing temperature exceeds 400 ° C, the fixed carbon (C) may be re-used. In this invention, the upper limit of the dislocation annealing temperature may be limited to 400 ° C. In consideration of sufficient dislocation fixing and productivity, the potential fixing annealing time of the present invention may be 20 seconds or more and less than 10 minutes. In terms of productivity, the potential fixing annealing time may be one minute or less.
2차 정정압연Second order rolling
전위고착 소둔에서 전위가 고착된 강판을 0.8~3%의 압하율로 2차 정정압연하여 가동전위가 다시 형성된 강판을 제공할 수 있다. 전위고착 소둔 후에는 대부분의 전위가 고착되어 가동성이 떨어진 상태이지만, 2차 정정압연을 통해 가동전위가 다시 생성되어 가공성이 회복될 수 있다. 따라서, 본 발명은 가공성 회복 효과를 위해 2차 정정압연 압하량의 하한을 0.8%로 제한할 수 있다. 반면, 2차 정정압연의 압하량이 과다한 경우, 재질이 경화되어 가공성이 저하될 수 있는바, 본 발명은 2차 정정압연의 압하율의 상한을 3%로 제한할 수 있다. 재질의 경화를 방지하기 위한 더욱 바람직한 2차 정정압연의 압하율 상한은 2%일 수 있다.The steel sheet to which the dislocations are fixed in the dislocation-fixed annealing can be subjected to secondary-precision rolling at a reduction ratio of 0.8 to 3% to provide a steel sheet having the movable dislocations again. After the potential fixing annealing, most of the potentials are fixed and the movable property is in a deteriorated state, but the movable potential is generated again through the secondary correction rolling, and the workability can be restored. Therefore, the present invention can limit the lower limit of the secondary corrective rolling reduction to 0.8% for the workability recovery effect. On the other hand, when the reduction amount of the secondary correction rolling is excessive, the material may be hardened and the workability may be lowered, so that the present invention can limit the upper limit of the reduction ratio of the secondary correction rolling to 3%. More preferably, the upper limit of the reduction ratio of the secondary corrective rolling to prevent the hardening of the material may be 2%.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 후술하는 실시예는 본 발명을 예시하여 보다 구체화하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. Hereinafter, the present invention will be described more specifically by way of examples. It should be noted, however, that the embodiments described below are for the purpose of further illustrating the present invention and are not for limiting the scope of the present invention.
하기의 표 1의 조성을 갖는 슬라브를 제조하였으며, 이러한 슬라브를 1250℃로 재가열하여 열간압연을 실시하고, 620℃에서 권취한 후 70%의 압하율로 냉간압연하여 1.2mm 두께의 냉연강판을 얻었다.The slabs having the composition shown in the following Table 1 were produced. The slabs were reheated to 1250 占 폚, hot rolled, rolled at 620 占 폚 and then cold rolled at a reduction ratio of 70% to obtain cold-rolled steel sheets of 1.2 mm in thickness.
얻어진 냉연강판에 대해 하기의 표 2에 나타난 조건으로 연속소둔(또는 상소둔), 1차 정정압연, 전위고착 소둔, 2차 정정압연을 실시하여 최종적인 강판 시편을 얻었다. 연속소둔은 750℃의 온도에서 30초간 유지한 후 400℃에서 60초간 유지하였으며, 상소둔은 700℃에서 60분간 유지 후 400℃에서 300분간 유지하였다.The obtained cold-rolled steel sheet was subjected to continuous annealing (or unsupervised placing), primary corrective rolling, dislocation-fixed annealing, and secondary correction rolling under the conditions shown in Table 2 below to obtain final steel plate specimens. The continuous annealing was carried out at a temperature of 750 ° C. for 30 seconds and then maintained at 400 ° C. for 60 seconds. The temperature of the continuous annealing was maintained at 700 ° C. for 60 minutes and then maintained at 400 ° C. for 300 minutes.
각각의 시편에 대하여 결정립 내의 탄소(C) 및 질소(N) 함량과, 결정립 내에 고용된 탄소(C) 및 질소(N) 함량을 각각 측정하였다. 또한, 각각의 시편에 대해 인장시험을 실시하여 제조 직후의 항복강도를 측정하였으며, 시효 특성을 알아보고자 시효지수 및 항복점 연신율을 측정하였다. 각각의 시편에 대한 측정 결과는 하기의 표 3과 같다.The carbon (C) and nitrogen (N) contents in the grain and the carbon (C) and nitrogen (N) contents in the grain were measured for each specimen. The tensile strength of each specimen was measured and the yield strength was measured. The aging index and elongation at break were measured to investigate the aging characteristics. The measurement results for each specimen are shown in Table 3 below.
결정립계를 제외한 부분에 대해 무기원소 습식 성분분석을 실시하여 결정립 내의 탄소(C) 및 질소(N) 함량의 측정하였으며, 내부마찰 시험을 실시하여 결정립 내의 고용 탄소(C) 및 질소(N) 함량을 측정하였다. 다만, 무기원소 습식 성분분석 및 내부마찰 시험은 결정립 내의 탄소(C) 및 질소(N) 함량, 결정립 내의 고용 탄소(C) 및 질소(N) 함량을 측정하기 위한 일 예에 불과하며, 본 발명의 범위가 이들 측정 방법에 반드시 구속되는 것은 아니다.The contents of carbon (C) and nitrogen (N) in the crystal grains were measured by wet element analysis of the inorganic element for the parts excluding the grain boundaries. Internal carbon content (C) and nitrogen (N) Respectively. However, the inorganic element wet component analysis and the internal friction test are merely examples for measuring the content of carbon (C) and nitrogen (N) in the crystal grains, the amount of the solid carbon (C) and the nitrogen (N) in the crystal grains, Is not necessarily bound to these measurement methods.
시효지수는 인위적으로 일으킨 가속시효의 전후의 항복강도의 차이를 의미하며, 탄소(C) 및 질소(N)가 확산을 통해 전위에 고착할 수 있도록 100℃의 온도에서 1시간 동안 시편을 유지하는 가속시효의 전후의 시편에 대해 각각 인장시험을 실시하여 측정하였다. The aging index refers to the difference in yield strength before and after the artificial aging, and the specimen is held at a temperature of 100 ° C for 1 hour so that carbon (C) and nitrogen (N) The specimens before and after the accelerating aging were subjected to tensile tests and measured.
구분division | 성분 (중량%)Component (% by weight) | |||||||||
CC | SiSi | MnMn | AlAl | PP | SS | NN | NbNb | TiTi | VV | |
강1River 1 | 0.003 0.003 | 0.20 0.20 | 0.20 0.20 | 0.03 0.03 | 0.009 0.009 | 0.008 0.008 | 0.002 0.002 | -- | -- | -- |
강2River 2 | 0.003 0.003 | 0.20 0.20 | 0.20 0.20 | 0.03 0.03 | 0.008 0.008 | 0.008 0.008 | 0.003 0.003 | -- | -- | -- |
강3River 3 | 0.003 0.003 | 0.20 0.20 | 0.21 0.21 | 0.03 0.03 | 0.008 0.008 | 0.008 0.008 | 0.005 0.005 | -- | -- | -- |
강4River 4 | 0.003 0.003 | 0.19 0.19 | 0.20 0.20 | 0.04 0.04 | 0.008 0.008 | 0.009 0.009 | 0.010 0.010 | -- | -- | -- |
강5River 5 | 0.020 0.020 | 0.21 0.21 | 0.21 0.21 | 0.04 0.04 | 0.008 0.008 | 0.009 0.009 | 0.003 0.003 | -- | -- | -- |
강6River 6 | 0.030 0.030 | 0.21 0.21 | 0.21 0.21 | 0.04 0.04 | 0.008 0.008 | 0.009 0.009 | 0.003 0.003 | -- | -- | -- |
강7River 7 | 0.031 0.031 | 0.21 0.21 | 0.19 0.19 | 0.04 0.04 | 0.009 0.009 | 0.009 0.009 | 0.005 0.005 | -- | -- | -- |
강8River 8 | 0.030 0.030 | 0.19 0.19 | 0.20 0.20 | 0.04 0.04 | 0.009 0.009 | 0.008 0.008 | 0.010 0.010 | -- | -- | -- |
강9River 9 | 0.062 0.062 | 0.19 0.19 | 0.20 0.20 | 0.04 0.04 | 0.009 0.009 | 0.009 0.009 | 0.002 0.002 | -- | -- | -- |
강10River 10 | 0.062 0.062 | 0.20 0.20 | 0.20 0.20 | 0.03 0.03 | 0.008 0.008 | 0.008 0.008 | 0.003 0.003 | -- | -- | -- |
강11River 11 | 0.061 0.061 | 0.19 0.19 | 0.20 0.20 | 0.04 0.04 | 0.009 0.009 | 0.008 0.008 | 0.005 0.005 | -- | -- | -- |
강12River 12 | 0.060 0.060 | 0.19 0.19 | 0.20 0.20 | 0.04 0.04 | 0.009 0.009 | 0.008 0.008 | 0.010 0.010 | -- | -- | -- |
강13River 13 | 0.090 0.090 | 0.20 0.20 | 0.20 0.20 | 0.04 0.04 | 0.008 0.008 | 0.008 0.008 | 0.002 0.002 | -- | -- | -- |
강14River 14 | 0.091 0.091 | 0.19 0.19 | 0.21 0.21 | 0.03 0.03 | 0.008 0.008 | 0.009 0.009 | 0.003 0.003 | -- | -- | -- |
강15River 15 | 0.090 0.090 | 0.20 0.20 | 0.19 0.19 | 0.04 0.04 | 0.008 0.008 | 0.008 0.008 | 0.005 0.005 | -- | -- | -- |
강16River 16 | 0.092 0.092 | 0.19 0.19 | 0.20 0.20 | 0.04 0.04 | 0.008 0.008 | 0.008 0.008 | 0.010 0.010 | -- | -- | -- |
강17River 17 | 0.113 0.113 | 0.20 0.20 | 0.21 0.21 | 0.03 0.03 | 0.008 0.008 | 0.008 0.008 | 0.015 0.015 | -- | -- | -- |
강18River 18 | 0.003 0.003 | 0.20 0.20 | 0.21 0.21 | 0.03 0.03 | 0.009 0.009 | 0.009 0.009 | 0.002 0.002 | -- | -- | -- |
강19River 19 | 0.032 0.032 | 0.20 0.20 | 0.21 0.21 | 0.04 0.04 | 0.009 0.009 | 0.009 0.009 | 0.003 0.003 | -- | -- | -- |
강20River 20 | 0.021 0.021 | 0.20 0.20 | 0.19 0.19 | 0.03 0.03 | 0.009 0.009 | 0.008 0.008 | 0.003 0.003 | -- | -- | -- |
강21River 21 | 0.095 0.095 | 0.21 0.21 | 0.21 0.21 | 0.03 0.03 | 0.009 0.009 | 0.008 0.008 | 0.002 0.002 | -- | -- | -- |
강22River 22 | 0.056 0.056 | 0.20 0.20 | 0.20 0.20 | 0.03 0.03 | 0.008 0.008 | 0.008 0.008 | 0.005 0.005 | -- | -- | -- |
강23River 23 | 0.012 0.012 | 0.21 0.21 | 0.21 0.21 | 0.03 0.03 | 0.008 0.008 | 0.009 0.009 | 0.007 0.007 | -- | -- | -- |
강24River 24 | 0.071 0.071 | 0.19 0.19 | 0.20 0.20 | 0.04 0.04 | 0.009 0.009 | 0.009 0.009 | 0.010 0.010 | -- | -- | -- |
강25River 25 | 0.056 0.056 | 0.20 0.20 | 0.21 0.21 | 0.04 0.04 | 0.008 0.008 | 0.008 0.008 | 0.005 0.005 | -- | -- | -- |
강26River 26 | 0.020 0.020 | 0.21 0.21 | 0.21 0.21 | 0.03 0.03 | 0.009 0.009 | 0.008 0.008 | 0.003 0.003 | -- | -- | -- |
강27River 27 | 0.021 0.021 | 0.21 0.21 | 0.21 0.21 | 0.03 0.03 | 0.008 0.008 | 0.008 0.008 | 0.003 0.003 | -- | -- | -- |
강28River 28 | 0.019 0.019 | 0.19 0.19 | 0.20 0.20 | 0.04 0.04 | 0.009 0.009 | 0.008 0.008 | 0.003 0.003 | -- | -- | -- |
강29River 29 | 0.020 0.020 | 0.20 0.20 | 0.20 0.20 | 0.03 0.03 | 0.008 0.008 | 0.008 0.008 | 0.003 0.003 | -- | -- | -- |
강30River 30 | 0.019 0.019 | 0.19 0.19 | 0.20 0.20 | 0.04 0.04 | 0.009 0.009 | 0.008 0.008 | 0.003 0.003 | -- | -- | -- |
강31River 31 | 0.021 0.021 | 0.20 0.20 | 0.19 0.19 | 0.03 0.03 | 0.008 0.008 | 0.008 0.008 | 0.003 0.003 | -- | -- | -- |
강32River 32 | 0.020 0.020 | 0.20 0.20 | 0.20 0.20 | 0.04 0.04 | 0.009 0.009 | 0.008 0.008 | 0.003 0.003 | -- | -- | -- |
강33River 33 | 0.020 0.020 | 0.21 0.21 | 0.20 0.20 | 0.04 0.04 | 0.008 0.008 | 0.008 0.008 | 0.003 0.003 | -- | -- | -- |
강34River 34 | 0.020 0.020 | 0.21 0.21 | 0.21 0.21 | 0.04 0.04 | 0.008 0.008 | 0.008 0.008 | 0.003 0.003 | -- | -- | -- |
강35River 35 | 0.020 0.020 | 0.20 0.20 | 0.20 0.20 | 0.03 0.03 | 0.008 0.008 | 0.008 0.008 | 0.003 0.003 | -- | -- | -- |
강36River 36 | 0.019 0.019 | 0.21 0.21 | 0.19 0.19 | 0.04 0.04 | 0.009 0.009 | 0.008 0.008 | 0.003 0.003 | -- | -- | -- |
강37River 37 | 0.050 0.050 | 0.21 0.21 | 0.20 0.20 | 0.03 0.03 | 0.008 0.008 | 0.008 0.008 | 0.003 0.003 | -- | -- | -- |
강38River 38 | 0.003 0.003 | 0.20 0.20 | 0.21 0.21 | 0.03 0.03 | 0.009 0.009 | 0.009 0.009 | 0.002 0.002 | 0.015 0.015 | 0.015 0.015 | -- |
강39River 39 | 0.050 0.050 | 0.21 0.21 | 0.21 0.21 | 0.03 0.03 | 0.009 0.009 | 0.008 0.008 | 0.003 0.003 | -- | -- | -- |
구분division | 재결정 소둔Recrystallization annealing | 1차 정정압연Primary corrective rolling | 전위고착 소둔Dislocation anchoring | 2차 정정압연Second order rolling | |
압하율 (%)Reduction rate (%) | 온도 (℃)Temperature (℃) | 시간 (min)Time (min) | 압하율 (%)Reduction rate (%) | ||
강1River 1 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 1.01.0 |
강2River 2 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 1.01.0 |
강3River 3 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 1.01.0 |
강4River 4 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 1.01.0 |
강5River 5 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 1.01.0 |
강6River 6 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 1.01.0 |
강7River 7 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 1.01.0 |
강8River 8 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 1.01.0 |
강9River 9 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 1.01.0 |
강10River 10 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 1.01.0 |
강11River 11 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 1.01.0 |
강12River 12 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 1.01.0 |
강13River 13 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 1.01.0 |
강14River 14 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 1.01.0 |
강15River 15 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 1.01.0 |
강16River 16 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 1.01.0 |
강17River 17 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 1.01.0 |
강18River 18 | 연속소둔Continuous annealing | 1.01.0 | 100100 | 10.010.0 | 1.01.0 |
강19River 19 | 연속소둔Continuous annealing | 1.01.0 | 100100 | 50.050.0 | 1.01.0 |
강20River 20 | 연속소둔Continuous annealing | 1.01.0 | 140140 | 1.01.0 | 1.01.0 |
강21River 21 | 연속소둔Continuous annealing | 1.01.0 | 170170 | 0.50.5 | 1.01.0 |
강22River 22 | 연속소둔Continuous annealing | 1.01.0 | 200200 | 0.50.5 | 1.01.0 |
강23River 23 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 0.30.3 | 1.01.0 |
강24River 24 | 연속소둔Continuous annealing | 1.01.0 | 400400 | 0.20.2 | 1.01.0 |
강25River 25 | 연속소둔Continuous annealing | 1.01.0 | 450450 | 0.50.5 | 1.01.0 |
강26River 26 | 연속소둔Continuous annealing | 0.20.2 | 300300 | 1.01.0 | 1.01.0 |
강27River 27 | 연속소둔Continuous annealing | 0.50.5 | 300300 | 1.01.0 | 1.01.0 |
강28River 28 | 연속소둔Continuous annealing | 1.51.5 | 300300 | 1.01.0 | 1.01.0 |
강29River 29 | 연속소둔Continuous annealing | 2.02.0 | 300300 | 1.01.0 | 1.01.0 |
강30River 30 | 연속소둔Continuous annealing | 3.03.0 | 300300 | 1.01.0 | 1.01.0 |
강31River 31 | 연속소둔Continuous annealing | 3.53.5 | 300300 | 1.01.0 | 1.01.0 |
강32River 32 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 0.60.6 |
강33River 33 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 0.80.8 |
강34River 34 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 2.02.0 |
강35River 35 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 3.03.0 |
강36River 36 | 연속소둔Continuous annealing | 1.01.0 | 300300 | 1.01.0 | 3.53.5 |
강37River 37 | 연속소둔Continuous annealing | 1.01.0 | -- | -- | -- |
강38River 38 | 연속소둔Continuous annealing | 1.01.0 | -- | -- | -- |
강39River 39 | 상소둔Appeal | 1.01.0 | -- | -- | -- |
구분division | (C/12.01+N/14.01)X105 (C / 12.01 + N / 14.01) X 10 5 | 시효지수(MPa)Aging Index (MPa) | 항복점 연신율(%)Yield point elongation (%) | 항복강도(MPa)Yield strength (MPa) | 비고Remarks | |
결정립내전체Whole in crystal grain | 결정립내고용In-grain employment | |||||
강1River 1 | 12.512.5 | 1.91.9 | 2.72.7 | 0.00.0 | 186186 | 발명예1Inventory 1 |
강2River 2 | 19.519.5 | 0.30.3 | 0.50.5 | 0.00.0 | 188188 | 발명예2Inventory 2 |
강3River 3 | 16.616.6 | 5.05.0 | 8.38.3 | 0.00.0 | 205205 | 발명예3Inventory 3 |
강4River 4 | 10.810.8 | 3.73.7 | 5.95.9 | 0.00.0 | 212212 | 발명예4Honorable 4 |
강5River 5 | 19.919.9 | 3.93.9 | 6.36.3 | 0.00.0 | 235235 | 발명예5Inventory 5 |
강6River 6 | 10.310.3 | 3.63.6 | 6.26.2 | 0.00.0 | 265265 | 발명예6Inventory 6 |
강7River 7 | 19.619.6 | 4.74.7 | 7.57.5 | 0.00.0 | 270270 | 발명예7Honorable 7 |
강8River 8 | 16.416.4 | 3.13.1 | 5.55.5 | 0.00.0 | 275275 | 발명예8Honors 8 |
강9River 9 | 10.710.7 | 0.60.6 | 1.01.0 | 0.00.0 | 295295 | 발명예9Proposition 9 |
강10River 10 | 18.918.9 | 4.74.7 | 8.78.7 | 0.00.0 | 298298 | 발명예10Inventory 10 |
강11River 11 | 12.112.1 | 0.60.6 | 1.01.0 | 0.00.0 | 305305 | 발명예11Exhibit 11 |
강12River 12 | 17.817.8 | 2.62.6 | 4.74.7 | 0.00.0 | 310310 | 발명예12Inventory 12 |
강13River 13 | 12.712.7 | 1.01.0 | 1.81.8 | 0.00.0 | 332332 | 발명예13Inventory 13 |
강14River 14 | 14.614.6 | 0.80.8 | 1.61.6 | 0.00.0 | 342342 | 발명예14Inventory 14 |
강15River 15 | 19.519.5 | 4.04.0 | 6.66.6 | 0.00.0 | 346346 | 발명예15Honorable Mention 15 |
강16River 16 | 15.915.9 | 3.93.9 | 6.66.6 | 0.00.0 | 342342 | 발명예16Inventory 16 |
강17River 17 | 19.119.1 | 4.14.1 | 6.26.2 | 0.00.0 | 385385 | 비교예1Comparative Example 1 |
강18River 18 | 17.117.1 | 15.615.6 | 29.229.2 | 0.60.6 | 182182 | 비교예2Comparative Example 2 |
강19River 19 | 16.916.9 | 10.110.1 | 14.714.7 | 0.50.5 | 265265 | 비교예3Comparative Example 3 |
강20River 20 | 18.618.6 | 10.410.4 | 20.420.4 | 0.20.2 | 241241 | 비교예4Comparative Example 4 |
강21River 21 | 13.713.7 | 7.37.3 | 13.613.6 | 0.10.1 | 349349 | 비교예5Comparative Example 5 |
강22River 22 | 14.114.1 | 3.63.6 | 6.56.5 | 0.00.0 | 302302 | 발명예17Inventory 17 |
강23River 23 | 12.012.0 | 1.11.1 | 1.71.7 | 0.00.0 | 206206 | 발명예18Inventory 18 |
강24River 24 | 15.115.1 | 4.54.5 | 9.09.0 | 0.00.0 | 329329 | 발명예19Evidence 19 |
강25River 25 | 20.520.5 | 19.119.1 | 37.637.6 | 0.80.8 | 300300 | 비교예6Comparative Example 6 |
강26River 26 | 16.516.5 | 10.410.4 | 17.417.4 | 0.60.6 | 213213 | 비교예7Comparative Example 7 |
강27River 27 | 16.916.9 | 7.17.1 | 12.412.4 | 0.40.4 | 221221 | 비교예8Comparative Example 8 |
강28River 28 | 19.319.3 | 1.71.7 | 2.72.7 | 0.00.0 | 235235 | 발명예20Inventory 20 |
강29River 29 | 15.315.3 | 0.80.8 | 1.51.5 | 0.00.0 | 238238 | 발명예21Inventory 21 |
강30River 30 | 18.118.1 | 0.60.6 | 1.01.0 | 0.00.0 | 250250 | 발명예22Inventory 22 |
강31River 31 | 16.116.1 | 0.60.6 | 1.21.2 | 0.00.0 | 358358 | 발명예23Inventory 23 |
강32River 32 | 14.514.5 | 2.12.1 | 3.53.5 | 0.60.6 | 275275 | 발명예24Honors 24 |
강33River 33 | 13.313.3 | 1.91.9 | 3.63.6 | 0.00.0 | 240240 | 발명예25Honors 25 |
강34River 34 | 14.214.2 | 3.73.7 | 5.65.6 | 0.00.0 | 245245 | 발명예26Evidence 26 |
강35River 35 | 14.014.0 | 2.02.0 | 3.93.9 | 0.00.0 | 255255 | 발명예27Honors 27 |
강36River 36 | 16.016.0 | 1.71.7 | 3.13.1 | 0.00.0 | 360360 | 발명예28Evidence 28 |
강37River 37 | 17.317.3 | 16.416.4 | 31.831.8 | 0.60.6 | 253253 | 비교예9Comparative Example 9 |
강38River 38 | 10.110.1 | 0.20.2 | 0.30.3 | 0.00.0 | 210210 | 비교예10Comparative Example 10 |
강39River 39 | 0.70.7 | 0.60.6 | 1.31.3 | 0.00.0 | 203203 | 비교예11Comparative Example 11 |
표 1 내지 표 3에 나타난 바와 같이, 본 발명의 강 성분 및 제조 조건을 만족하는 발명예 1 내지 22, 발명예 25 내지 27은 시효지수가 10MPa 이하이고, 항복점 연신 현상이 발생하지 않아 우수한 내시효성을 가짐을 확인할 수 있다. 이는 재결정 후 결정립 내 전체 탄소(C) 및 질소(N)의 함량은 높지만, 1차 정정압연 및 전위고착 열처리에 의해 고용 상태의 탄소(C) 및 질소(N)의 함량이 낮아진 결과로서 설명될 수 있다. 이 경우, 발명예 1 내지 22, 발명강 25 내지 27은 결정립 내의 전체 탄소(C) 및 질소(N)의 함량은 아래의 관계식 1을 만족하고, 결정립 내의 고용 상태의 탄소(C) 및 질소(N) 함량은 아래의 관계식 2를 만족하는 것을 확인할 수 있다.As shown in Tables 1 to 3, Inventive Samples 1 to 22 and Inventive Samples 25 to 27, which satisfy the steel composition and manufacturing conditions of the present invention, have an aging index of 10 MPa or less, yield point elongation does not occur, As shown in Fig. This is explained as a result that the content of carbon (C) and nitrogen (N) in the solid state is lowered by the primary corrective rolling and the potential fixing heat treatment after the recrystallization, . In this case, the contents of the total carbon (C) and nitrogen (N) in the crystal grains satisfy the following relational expression 1 and the carbon (C) and nitrogen N) content satisfies the following relational expression (2).
[관계식 1] ([C]/12.01 + [N]/14.01) x 105 ≥ 10[Relation 1] ([C] /12.01 + [N] /14.01) x 10 5 ? 10
[관계식 2] ([C]/12.01 + [N]/14.01) x 105 ≤ 5[Relation 2] ([C] /12.01 + [N] /14.01) x 10 5 5
단, 상기 관계식 1 및 관계식 2의 [C] 및 [N]는 각각 탄소(C) 및 질소(N)의 함량으로, 중량 %를 의미한다.However, [C] and [N] in the relational expression 1 and the relational expression 2 refer to the content of carbon (C) and nitrogen (N), respectively, by weight.
관계식 1 및 2와 표 3의 결과를 기초로, 결정립 내의 전체 탄소(C) 및 질소(N)의 몰수의 합에 대해 결정립 내의 고용 탄소(C) 및 질소(N)의 몰수의 합이 절반 이하의 수준인 경우, 내시효성 및 가공성을 효과적으로 확보할 수 있음을 도출할 수 있다.Based on the results of relational expressions 1 and 2 and Table 3, the sum of the number of moles of the solid carbon (C) and the nitrogen (N) in the crystal grain with respect to the sum of the total number of moles of carbon (C) and nitrogen It can be derived that the antioxidant property and the processability can be effectively secured.
비교예 1은 항복점 연신 형상은 발생하지 않으나, 강 내의 탄소(C) 및 질소(N)의 함량이 높아 385MPa의 항복강도를 가지므로, 가공용 소재로 사용하기에는 지나치게 강도가 높은 것을 확인할 수 있다. 가공용 소재로 사용하기 위해서는 항복강도가 350MPa를 초과하지 않는 것이 바람직하기 때문이다.In Comparative Example 1, the yield point elongation shape does not occur, but the content of carbon (C) and nitrogen (N) in the steel is high and has a yield strength of 385 MPa, which means that the steel has an excessively high strength for use as a working material. It is preferable that the yield strength does not exceed 350 MPa for use as a working material.
비교예 2 내지 6과 발명예 17 내지 19로부터 전위고착 소둔 시간 및 온도에 따른 시효 특성의 변화를 확인할 수 있다. 강 내에 함유된 탄소(C) 및 질소(N)는 온도가 높을수록 확산속도가 빠르기 때문에, 전위고착 소둔의 열처리 온도가 높을수록 전위고착 소둔의 열처리 시간이 짧아질 수 있다.From Examples 2 to 6 and Inventive Examples 17 to 19, it is possible to confirm the change of the aging characteristics according to the potential fixing annealing time and the temperature. The higher the temperature, the faster the diffusion rate of carbon (C) and nitrogen (N) contained in the steel. Therefore, the higher the annealing temperature for dislocation annealing, the shorter the annealing time for dislocation annealing.
비교예 2 내지 5의 경우, 전위고착 소둔의 열처리의 온도가 200℃ 미만인바, 충분한 탄소(C) 및 질소(N)의 확산 및 고착이 형성되지 않았으며, 그에 따라 결정립 내에 고용 탄소가 상당량 잔존하여 관계식 2를 만족하지 않음을 확인할 수 있다. 그 결과, 시효지수가 모두 10MPa를 초과하며, 항복점 연신 현상이 발생하여 내시효성이 열위함을 확인할 수 있다. In the case of Comparative Examples 2 to 5, diffusion and adhesion of sufficient carbon (C) and nitrogen (N) were not formed because the temperature of the heat treatment for dislocation annealing was less than 200 ° C, , It can be confirmed that the relation (2) is not satisfied. As a result, all of the aging index exceeded 10 MPa, and the elongation at the yield point was observed to confirm that the endurance was maintained.
또한, 비교예 2 및 3의 경우, 전위고착 소둔의 열처리 온도가 본 발명의 전위고착 소둔의 열처리 온도범위에 미치지 않으므로, 상대적으로 장시간의 전위고착 소둔을 실시하였음에도 불구하고 목적하는 물성을 달성하지 못함을 확인할 수 있다. 즉, 전위고착 소둔의 열처리 온도가 본 발명의 전위고착 소둔의 열처리 온도범위에 미치지 않는 경우, 생산성이 저하될 수 있다.In the case of Comparative Examples 2 and 3, since the heat treatment temperature for the dislocation-fixed annealing does not fall within the heat treatment temperature range of the dislocation-annealing of the present invention, the desired physical properties could not be achieved even though the dislocation annealing was performed for a relatively long time can confirm. That is, if the heat treatment temperature for the dislocation-fixed annealing does not fall within the heat treatment temperature range of the dislocation-annealing of the present invention, the productivity may be lowered.
또한, 비교예 6의 경우, 전위고착 소둔의 열처리 온도가 본 발명의 전위고착 소둔의 열처리 온도범위를 초과하는바, 탄소(C) 및 질소(N)의 재고용이 발생하며, 결과적으로 관계식 2를 만족하지 않게 됨을 확인할 수 있다. 따라서, 시효지수가 10MPa를 초과하며, 항복점 연신 현상이 발생하여 내시효성이 열위함을 확인할 수 있다. In the case of Comparative Example 6, as the heat treatment temperature for dislocation-annealing exceeds the heat treatment temperature range for the dislocation-annealing of the present invention, re-use of carbon (C) and nitrogen (N) occurs, It can be confirmed that it is not satisfied. Therefore, it can be confirmed that the aging index exceeds 10 MPa and the yield point elongation phenomenon occurs, so that the endurance is maintained.
반면, 발명예 17 내지 19는 전위고착 소둔의 열처리 온도가 본 발명의 전위고착 소둔의 열처리 온도범위를 만족하는바 고용 탄소(C) 및 질소(N)가 전위에 충분히 고착되어 관계식 2를 만족하고, 결과적으로 양호한 내시효성을 확보할 수 있음을 확인할 수 있다. On the other hand, in Examples 17 to 19, the heat treatment temperature of the dislocation-fixed annealing satisfies the heat treatment temperature range of the dislocation-annealing of the present invention, and the solid solution carbon and the nitrogen (N) As a result, it can be confirmed that good endurance can be secured.
비교예 7 및 8과 발명예 20 내지 23으로부터 1차 정정압연 압하율에 따른 시효 특성의 변화를 확인할 수 있다. 전위고착 소둔 과정에서 강 내에 함유된 탄소(C) 및 질소(N)의 고착량을 확보하기 위해서는 충분한 밀도의 가동전위가 미리 생성되어야 하며, 이러한 가동전위는 1차 정정압연에 의해 생성될 수 있다.From the Comparative Examples 7 and 8 and Examples 20 to 23, it is possible to confirm the change in the aging characteristics with the first-round rolling reduction ratio. In order to secure the amount of carbon (C) and nitrogen (N) adhered in the steel during the dislocation-fixing annealing process, a sufficient moving electric potential must be generated in advance, and such a moving electric potential can be generated by the first- .
비교예 7 및 8의 경우, 1차 정정압연의 압하율이 본 발명의 1차 정정압연의 압하율에 미치지 못하는바, 충분한 밀도의 전위가 생성되지 못하며, 그에 따라 전위고착 소둔 후에도 결정립 내에 고용상태의 탄소(C) 및 질소(N)가 상당량 잔존하여 관계식 2를 만족하지 않음을 확인할 수 있다. 따라서, 비교예 7 및 8의 경우 시효지수가 10MPa를 초과하여 내시효성이 확보되지 않음을 확인할 수 있다. In the case of Comparative Examples 7 and 8, the reduction rate of the primary corrective rolling did not reach the reduction rate of the primary corrective rolling of the present invention, so that a sufficient density of dislocations could not be generated. As a result, The carbon (C) and nitrogen (N) of the carbon nanotubes remain in a considerable amount, and therefore, it can be confirmed that the relationship (2) is not satisfied. Therefore, in the case of Comparative Examples 7 and 8, it can be confirmed that the aging index exceeds 10 MPa and the endurance is not ensured.
반면, 발명예 20 내지 22는 1차 정정압연 압하율이 본 발명의 1차 정정압연의 압하율을 만족하는바, 충분한 전위를 형성하여 내시효성을 확보함을 확인할 수 있다. 있다. 다만, 발명예 23의 경우, 1차 정정압연의 압하율이 본 발명의 1차 정정압연의 압하율을 초과하는바, 내시효성 향상 효과는 미비한 반면, 항복강도가 지나치게 상승하여 가공성이 열위해지는 것을 확인할 수 있다.On the other hand, in Examples 20 to 22, it can be confirmed that the primary corrective rolling reduction ratio satisfies the reduction rate of the primary corrective rolling of the present invention, so that a sufficient potential is formed to secure the endurance. have. However, in the case of Inventive Example 23, since the reduction ratio of the primary corrective rolling exceeds the reduction ratio of the primary corrective rolling of the present invention, the effect of improving the endurance is insufficient, while the yield strength is excessively increased, Can be confirmed.
발명예 24 내지 28로부터 2차 정정압연 압하율에 따른 시효 특성의 변화를 확인할 수 있다. 1차 정정압연에서 생성된 가동전위는 전위고착 소둔을 통해 대부분 비가동전위로 전환되는바, 2차 정정압연을 통해 가동전위를 재생성시켜 가공성을 확보할 필요가 있다. From Examples 24 to 28, it is possible to confirm a change in the aging characteristics according to the second-order rolling reduction ratio. Since the movable potential generated in the primary corrective rolling is mostly converted to the nonconductive phase through the potential fixing annealing, it is necessary to regenerate the movable potential through the secondary corrective rolling to secure the processability.
다만, 발명예 24의 경우, 전위고착 열처리를 통해 고용 탄소(C) 및 질소(N)가 전위에 충분히 고착되어 시효지수 10MPa 이하를 만족하지만, 2차 정정압연의 압하율이 본 발명의 2차 정정압연의 압하율에 미치지 못하는바, 항복점 연신 현상이 잔존함을 확인할 수 있다.However, in the case of Example 24, the solid carbon (C) and the nitrogen (N) are sufficiently fixed to the potential through the dislocation fixing heat treatment to satisfy the aging index of 10 MPa or less. However, It can be confirmed that the yield point elongation phenomenon remains because the rolling reduction rate is not lowered.
또한, 발명예 28의 경우, 2차 정정압연의 압하율이 본 발명의 2차 정정압연의 압하율을 초과하는바, 필요 이상으로 전위가 생성되어 항복강도가 과도하게 상승하며, 그에 따라 가공성이 열위해지는 것을 확인할 수 있다.In the case of Inventive Example 28, since the reduction ratio of the secondary corrective rolling exceeds the reduction ratio of the secondary corrective rolling of the present invention, dislocation is generated more than necessary and the yield strength is excessively increased, It can be confirmed that it is dormant.
비교예 9는 내시효성이 확보되지 않은 저탄소강으로서, 강 조성 측면에 있어서는 본 발명과 큰 차이가 없으나, 결정립 내의 탄소(C) 함량이 높고, 결정립 내의 탄소(C)는 대부분 고용 상태로 존재하여 본 발명의 관계식 2를 만족하지 않음을 확인할 수 있다.Comparative Example 9 is a low carbon steel in which the anti-aging property is not ensured. In terms of steel composition, there is no significant difference from the present invention, but the carbon (C) content in the crystal grain is high and the carbon (C) It can be confirmed that the relational expression 2 of the present invention is not satisfied.
비교예 10은 IF강으로써, 결정립 내의 탄소(C) 및 질소(N)가 대부분 탄화물 또는 질화물의 상태로 존재하여 관계식 1 및 2를 모두 만족하고 내시효성도 확보할 수 있다. 다만, 비교예 10은 티타늄(Ti) 및 니오븀(Nb)과 같은 석출물 형성원소를 필수적으로 함유하는바, 경제성 측면에서 바람직하지 않으며, 고온가열에 따른 표면 결함 발생의 위험성이 잔존한다. Comparative Example 10 is an IF steel in which most of the carbon (C) and nitrogen (N) in the crystal grains exists in the form of carbide or nitride, satisfying the relational expressions 1 and 2, and securing the anti-aging property. However, Comparative Example 10 essentially contains a precipitate-forming element such as titanium (Ti) and niobium (Nb), which is not preferable from the economical point of view, and there is a risk of occurrence of surface defects due to high temperature heating.
비교예 11는 고온에서 5시간 이상의 장시간 열처리를 통해 대부분의 탄화물이 결정립계에 석출되는바, 관계식 1을 만족하지 않으며, 장시간의 열처리에 의해 생산성이 열위해지는 것을 확인할 수 있다.In Comparative Example 11, since most of the carbides were precipitated at the grain boundaries through the heat treatment for 5 hours or more at a high temperature, it was confirmed that the productivity did not satisfy the relational expression 1 and the heat treatment was performed for a long time.
따라서, 본 발명의 일 측면에 의한 냉연강판 및 그 제조방법은, 강 조성 및 제조공정 조건을 최적화함으로써 내시효성 및 가공성을 효과적으로 확보할 수 있으며, 냉연강판 제조 시 생산성 및 경제성을 효과적으로 확보할 수 있다.Accordingly, the cold-rolled steel sheet according to one aspect of the present invention and the method of manufacturing the same can effectively ensure endurance and workability by optimizing steel composition and manufacturing process conditions, and can effectively secure productivity and economical efficiency in cold- .
이상에서 실시예를 통하여 본 발명을 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, Therefore, the technical idea and scope of the claims set forth below are not limited to the embodiments.
Claims (15)
- 중량%로, C: 0.1% 이하, Si: 0.5% 이하, Mn: 0.1~0.5%, Al: 0.015~0.1%, P: 0.01% 이하, S: 0.01% 이하, N: 0.01% 이하, Nb: 0.005% 이하, Ti: 0.005% 이하, V: 0.005% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하고, 결정립 내의 전체 C 및 N 함량이 하기 관계식 1을 만족하고, 결정립 내의 고용 C 및 N 함량이 하기 관계식 2를 만족하는 내시효성 및 가공성이 우수한 냉연강판.0.01% or less of S, 0.01% or less of S, 0.01% or less of N, 0.01% or less of N, 0.1% or less of Si, 0.005% or less, Ti: 0.005% or less, V: 0.005% or less, and the balance of Fe and other unavoidable impurities, wherein the total C and N contents in the crystal grains satisfies the following relational expression 1, The cold-rolled steel sheet excellent in endurance and processability satisfying the relationship (2).[관계식 1] ([C]/12.01 + [N]/14.01) x 105 ≥ 10[Relation 1] ([C] /12.01 + [N] /14.01) x 10 5 ? 10[관계식 2] ([C]/12.01 + [N]/14.01) x 105 ≤ 5[Relation 2] ([C] /12.01 + [N] /14.01) x 10 5 5단, 상기 관계식 1 및 관계식 2의 [C] 및 [N]는 각각 C 및 N의 함량으로, 중량%를 의미한다.[C] and [N] in the relational expression 1 and the relational expression 2 refer to the content of C and N, respectively, by weight.
- 제1항에 있어서,The method according to claim 1,상기 Nb, Ti 및 V는 각각 0.001% 이하로 포함되는, 내시효성 및 가공성이 우수한 냉연강판.And Nb, Ti and V are each 0.001% or less.
- 제1항에 있어서,The method according to claim 1,상기 냉연강판의 시효지수는 10MPa 이하인, 내시효성 및 가공성이 우수한 냉연강판.Wherein the cold-rolled steel sheet has an aging index of 10 MPa or less, and is excellent in endurance and workability.
- 제1항에 있어서,The method according to claim 1,상기 냉연강판의 항복점 연신율은 0.5% 이하인, 내시효성 및 가공성이 우수한 냉연강판.The cold-rolled steel sheet has an elongation at break at a yield point of 0.5% or less, and is excellent in endurance and workability.
- 제1항에 있어서,The method according to claim 1,상기 냉연강판의 항복강도는 350MPa 이하인, 내시효성 및 가공성이 우수한 냉연강판.The cold-rolled steel sheet has a yield strength of 350 MPa or less, and is excellent in endurance and workability.
- 중량%로, C: 0.1% 이하, Si: 0.5% 이하, Mn: 0.1~0.5%, Al: 0.015~0.1%, P: 0.01% 이하, S: 0.01% 이하, N: 0.01% 이하, Nb: 0.005% 이하, Ti: 0.005% 이하, V: 0.005% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하는 슬라브를 재가열하고;0.01% or less of S, 0.01% or less of S, 0.01% or less of N, 0.01% or less of N, 0.1% or less of Si, 0.005% or less, Ti: 0.005% or less, V: 0.005% or less, the balance Fe and other unavoidable impurities;상기 재가열된 슬라브를 열간압연하여 열연강판을 제공하고;Hot-rolling the reheated slab to provide a hot-rolled steel sheet;상기 열연강판을 냉간압연하여 냉연강판을 제공하고;Cold-rolling the hot-rolled steel sheet to provide a cold-rolled steel sheet;상기 냉연강판을 연속소둔하고;Continuously annealing the cold-rolled steel sheet;상기 연속소둔된 냉연강판을 1~3%의 제1 압하율로 1차 정정압연하고;Subjecting the continuously annealed cold rolled steel sheet to first-precision rolling at a first reduction rate of 1 to 3%;상기 1차 정정압연된 냉연강판을 200~400℃의 온도범위에서 10분 이하로 전위고착 소둔하고;Rolling the primary-precision rolled cold-rolled steel sheet at a temperature in the range of 200 to 400 ° C for 10 minutes or less;상기 전위고착 소둔된 냉연강판을 0.8~3%의 제2 압하율로 2차 정정압연하는 내시효성 및 가공성이 우수한 냉연강판의 제조방법.Wherein the hot-rolled cold-rolled steel sheet is subjected to secondary-precision rolling at a second reduction ratio of 0.8 to 3%.
- 제6항에 있어서,The method according to claim 6,상기 1차 정정압연에 의해 상기 냉연강판에 가동전위가 생성되는, 내시효성 및 가공성이 우수한 냉연강판의 제조방법.And a movable potential is generated in the cold-rolled steel sheet by the primary corrective rolling.
- 제6항에 있어서,The method according to claim 6,상기 전위고착 소둔에 의해 상기 1차 정정압연에 의해 생성된 가동전위가 확산에 의해 전위에 고착되는, 내시효성 및 가공성이 우수한 냉연강판의 제조방법.And the movable potential generated by the primary fixed rolling is fixed to the potential by diffusion by the dislocation-fixed annealing.
- 제6항에 있어서,The method according to claim 6,상기 2차 정정압연에 의해 상기 냉연강판에 가동전위가 재생성되는, 내시효성 및 가공성이 우수한 냉연강판의 제조방법.And the movable potential is regenerated to the cold-rolled steel sheet by the secondary corrective rolling.
- 제6항에 있어서,The method according to claim 6,상기 슬라브의 재가열 온도는 1200℃ 이상인, 내시효성 및 가공성이 우수한 냉연강판의 제조방법.Wherein the reheating temperature of the slab is 1200 占 폚 or higher, and the cold-rolled steel sheet is excellent in endurance and workability.
- 제6항에 있어서,The method according to claim 6,상기 열간압연의 마무리 압연 온도는 Ar3 이상인, 내시효성 및 가공성이 우수한 냉연강판의 제조방법. Wherein the finish rolling temperature of the hot rolling is at least Ar3, and is excellent in endurance and workability.
- 제6항에 있어서,The method according to claim 6,상기 냉간압연의 압하율은 50~95%인, 내시효성 및 가공성이 우수한 냉연강판의 제조방법.Wherein the reduction ratio of the cold rolling is 50 to 95%, and the cold-rolled steel sheet has excellent endurance and workability.
- 제6항에 있어서,The method according to claim 6,상기 연속소둔의 온도는 600~900℃인, 내시효성 및 가공성이 우수한 냉연강판의 제조방법.Wherein the temperature of the continuous annealing is 600 to 900 占 폚.
- 제6항에 있어서,The method according to claim 6,상기 열연강판은 550~750℃에서 권취되어 상기 냉간압연에 제공되는, 내시효성 및 가공성이 우수한 냉연강판의 제조방법.Wherein the hot-rolled steel sheet is rolled at 550 to 750 占 폚 and is provided for the cold-rolling, wherein the cold-rolled steel sheet is excellent in endurance and workability.
- 제6항에 있어서,The method according to claim 6,상기 Nb, Ti 및 V는 각각 0.001% 이하로 포함되는, 내시효성 및 가공성이 우수한 냉연강판의 제조방법.And Nb, Ti and V are each 0.001% or less.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170179274A KR101988773B1 (en) | 2017-12-26 | 2017-12-26 | Cold-rolled steel sheet having excellent anti-aging properties and workability, and manufacturing method thereof |
KR10-2017-0179274 | 2017-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019132372A1 true WO2019132372A1 (en) | 2019-07-04 |
Family
ID=66845829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/016118 WO2019132372A1 (en) | 2017-12-26 | 2018-12-18 | Cold rolled steel sheet having excellent aging resistance and workability, and manufacturing method therefor |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101988773B1 (en) |
WO (1) | WO2019132372A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040112483A1 (en) * | 2001-01-26 | 2004-06-17 | Joel Marsal | High-strength isotropic steel, method for making steel plates and resulting plates |
JP2010265545A (en) * | 2009-04-13 | 2010-11-25 | Jfe Steel Corp | Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing the same |
KR101037871B1 (en) * | 2010-08-11 | 2011-05-31 | 충남대학교산학협력단 | Air handling unit using cooling/dehumidifying energy recovery technology |
KR101523966B1 (en) * | 2014-10-22 | 2015-05-29 | 현대제철 주식회사 | Method of manufacturing steel sheet |
KR101607041B1 (en) * | 2011-12-08 | 2016-03-28 | 제이에프이 스틸 가부시키가이샤 | Method for producing high-strength cold-rolled steel sheet having excellent anti-aging property and bake hardening property |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100276277B1 (en) * | 1996-04-25 | 2000-12-15 | 이구택 | The manufacturing method for low carbon steel sheet with excellent workability and anti-aging effect |
KR100345712B1 (en) * | 1998-10-16 | 2002-10-19 | 주식회사 포스코 | Manufacturing method of cold rolled steel sheet for CRT inner shield with excellent magnetic shielding |
KR100504369B1 (en) * | 2000-12-22 | 2005-07-28 | 주식회사 포스코 | Low carbon cold rolled steel sheets and its manufacturing method having low plastic deformation and anisotropy index |
KR20030035697A (en) * | 2001-11-02 | 2003-05-09 | 주식회사 포스코 | A method for manufacturing high intensity tin plating steel plate having good aging property and corrosion-resistance and broken-resistance |
KR100946067B1 (en) * | 2002-12-27 | 2010-03-10 | 주식회사 포스코 | Preparing method of baked hardening cold rolled steel sheet for hot dipping having good anti-aging property |
KR101067575B1 (en) | 2008-10-29 | 2011-09-27 | 현대하이스코 주식회사 | A high formability interstitial free steel and a method of the interstitial free steel |
-
2017
- 2017-12-26 KR KR1020170179274A patent/KR101988773B1/en active IP Right Grant
-
2018
- 2018-12-18 WO PCT/KR2018/016118 patent/WO2019132372A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040112483A1 (en) * | 2001-01-26 | 2004-06-17 | Joel Marsal | High-strength isotropic steel, method for making steel plates and resulting plates |
JP2010265545A (en) * | 2009-04-13 | 2010-11-25 | Jfe Steel Corp | Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing the same |
KR101037871B1 (en) * | 2010-08-11 | 2011-05-31 | 충남대학교산학협력단 | Air handling unit using cooling/dehumidifying energy recovery technology |
KR101607041B1 (en) * | 2011-12-08 | 2016-03-28 | 제이에프이 스틸 가부시키가이샤 | Method for producing high-strength cold-rolled steel sheet having excellent anti-aging property and bake hardening property |
KR101523966B1 (en) * | 2014-10-22 | 2015-05-29 | 현대제철 주식회사 | Method of manufacturing steel sheet |
Also Published As
Publication number | Publication date |
---|---|
KR101988773B1 (en) | 2019-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018009041A1 (en) | Hot forming member having excellent crack propagation resistance and ductility, and method for producing same | |
WO2017111510A1 (en) | Non-magnetic steel material having excellent hot workability and manufacturing method therefor | |
WO2018117501A1 (en) | Ultra-high strength steel sheet having excellent bendability and manufacturing method therefor | |
WO2020050573A1 (en) | Ultra high strength and high ductility steel sheet having excellent yield ratio and manufacturing method for same | |
WO2016104881A1 (en) | Hot press-formed (hpf) member having excellent bending characteristics and method for manufacturing same | |
WO2017188654A1 (en) | Ultrahigh-strength and high-ductility steel sheet having excellent yield ratio and manufacturing method therefor | |
WO2017105025A1 (en) | Ultra-high strength steel sheet having excellent chemical conversion treatability and bending processability and method for manufacturing same | |
WO2018110853A1 (en) | High strength dual phase steel having excellent low temperature range burring properties, and method for producing same | |
WO2020022778A1 (en) | High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof | |
WO2017111524A1 (en) | Ultra high-strength steel sheet having excellent hole expandability and manufacturing method therefor | |
WO2015099222A1 (en) | Hot-rolled steel plate having excellent welding property and burring property and method for manufacturing same | |
WO2023022445A1 (en) | Steel material for hot forming, hot-formed member, and manufacturing method therefor | |
WO2018030737A1 (en) | Ultra-thick steel material having excellent resistance to brittle crack propagation and preparing method therefor | |
WO2020111856A2 (en) | High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof | |
WO2018117470A1 (en) | High-strength steel plate having excellent burring workability in low temperature range and manufacturing method therefor | |
WO2022065797A1 (en) | High-strength thick hot-rolled steel sheet and method for manufacturing same | |
WO2019124765A1 (en) | High-strength steel sheet having excellent impact resistance, and method for manufacturing same | |
WO2018110906A1 (en) | High-carbon hot-rolled steel sheet having excellent surface quality and manufacturing method therefor | |
WO2021112488A1 (en) | Thick composite-phase steel having excellent durability and manufacturing method therefor | |
WO2020226301A1 (en) | Ultra-high strength steel sheet having excellent shear workability and method for manufacturing same | |
WO2019124781A1 (en) | Zinc-based plated steel sheet having excellent room temperature aging resistance and bake hardenability, and method for producing same | |
WO2020080602A1 (en) | Method for producing high manganese steel material having excellent anti-vibration characteristics and formability, and high manganese steel produced thereby | |
WO2020111891A1 (en) | High-strength steel plate having excellent low-temperature fracture toughness and elongation ratio, and manufacturing method therefor | |
WO2013154254A1 (en) | High carbon hot rolled steel sheet having excellent uniformity and method for manufacturing same | |
WO2022086049A1 (en) | High-strength steel sheet having excellent thermal stability, and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18894286 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18894286 Country of ref document: EP Kind code of ref document: A1 |