WO2019132265A1 - 인탱글형 탄소나노튜브 및 이의 제조방법 - Google Patents

인탱글형 탄소나노튜브 및 이의 제조방법 Download PDF

Info

Publication number
WO2019132265A1
WO2019132265A1 PCT/KR2018/014738 KR2018014738W WO2019132265A1 WO 2019132265 A1 WO2019132265 A1 WO 2019132265A1 KR 2018014738 W KR2018014738 W KR 2018014738W WO 2019132265 A1 WO2019132265 A1 WO 2019132265A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
entangled
carbon nanotubes
acid
precursor
Prior art date
Application number
PCT/KR2018/014738
Other languages
English (en)
French (fr)
Inventor
김성진
조동현
윤재근
김태형
김옥신
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180146925A external-priority patent/KR102379594B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019571542A priority Critical patent/JP6888223B2/ja
Priority to CN201880018122.XA priority patent/CN110418767B/zh
Priority to EP18896577.6A priority patent/EP3620434B1/en
Priority to US16/628,555 priority patent/US11618679B2/en
Publication of WO2019132265A1 publication Critical patent/WO2019132265A1/ko
Priority to US18/115,184 priority patent/US11987499B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts

Definitions

  • the present invention relates to an entangled carbon nanotube and a method for manufacturing the same, and more particularly, to an entangled carbon nanotube having improved dispersibility and conductivity by controlling a ratio of a tap density to a bulk density, and a method for manufacturing the same .
  • Carbon nanotubes which are one kind of fine carbon fibers, are tubular carbon having an average diameter of 1 ⁇ m or less. It is expected to be applied to various fields due to its high conductivity, tensile strength and heat resistance due to its specific structure. However, despite the availability of such carbon nanotubes, the use of carbon nanotubes is limited due to their low solubility and dispersibility.
  • the carbon nanotubes were linearly dispersed in a dispersion medium, and a conductive material dispersion was prepared and used. However, carbon nanotubes are not stable in dispersion medium due to strong Van der Waals attraction between them, and coagulation phenomenon occurs.
  • An object of the present invention is to provide an entangled carbon nanotube excellent in dispersibility and conductivity and a method for producing the same.
  • the present invention provides an entangled carbon nanotube having a bulk density of 31 to 85 kg / m 3 and satisfying the following formula 1:
  • X is the tap density (unit: kg / m < 3 >) of the entangled carbon nanotube
  • Y is the bulk density (unit: kg / m3) of the entangled carbon nanotube.
  • the present invention also relates to a process for preparing a mixture comprising mixing an organic acid and a vanadium precursor in a molar ratio of 1: 0.0463 to 1: 0.0875 to prepare a mixture; Mixing the mixture with a cobalt precursor to produce a catalyst precursor; Subjecting the aluminum hydroxide to a first heat treatment to produce a support; Supporting a catalyst precursor on the support, and then performing a second heat treatment to produce a supported catalyst; And reacting the supported catalyst with the carbon-based compound.
  • the present invention also provides a method for manufacturing the entangled carbon nanotube.
  • the entangled carbon nanotube according to the present invention is excellent in conductivity and dispersibility and can be contained in a high concentration in the carbon nanotube dispersion.
  • Example 1 is a scanning electron microscope image of a surface of an Entangled carbon nanotube of Example 3 magnified 400 times.
  • Example 2 is an image of a scanning electron microscope obtained by enlarging the surface of the entangled carbon nanotube of Example 3 1,000 times.
  • Example 3 is a scanning electron microscope image of the surface of the Entangled carbon nanotube of Example 4 magnified 400 times.
  • Example 4 is an image of a scanning electron microscope obtained by enlarging the surface of the entangled carbon nanotube of Example 4 1,000 times.
  • a carbon nanotube refers to a pristine carbon nanotube that has not been subjected to any further processing.
  • the entangled carbon nanotubes refer to a secondary structure in which a plurality of carbon nanotubes are entangled without a uniform shape such as a bundle or a rope.
  • the bundle-type carbon nanotubes are formed by arranging a plurality of carbon nanotubes in a bundle or rope-like secondary structure in which axes in the longitudinal direction of the unit are aligned in substantially the same orientation, Shape.
  • the unit of carbon nanotubes is a graphite sheet having a nano-sized diameter cylinder shape and has an sp 2 bonding structure. At this time, depending on the angle and structure of the graphite surface, the characteristics of the conductor or semiconductor may be exhibited.
  • the unit of the carbon nanotube may be a single-walled carbon nanotube (SWCNT), a double-walled carbon nanotube (DWCNT), or a multi-walled carbon nanotube (DWCNT) according to the number of walls MWCNT, and multi-walled carbon nanotubes. The thinner the wall thickness, the lower the resistance.
  • the bulk density of the carbon nanotubes can be measured according to ASTM B329, specifically, according to ASTM B329-06.
  • the bulk density can be measured using a Scott volumeter (Version USP 616).
  • the bulk density of the carbon nanotubes can be measured in accordance with the laboratory conditions, and substantially the same result as the result based on the above rule can be obtained.
  • the Tapped Bulk Density (TD) of carbon nanotubes is measured in accordance with ASTM B527-06, and specifically, can be measured using TAP-2S manufactured by LOGAN.
  • the tap density of the carbon nanotubes can be measured in accordance with the laboratory conditions, and even when the measurement is performed in accordance with the laboratory scale, substantially the same results as those based on the above rule can be obtained.
  • the specific surface area of the carbon nanotube is measured by the BET method and can be calculated from the amount of nitrogen gas adsorbed at a liquid nitrogen temperature (77 K) using, for example, BEL Japan's BELSORP-mino II .
  • the average diameter and length of the carbon nanotube unit can be measured using an electric field-type scanning electron microscope.
  • the entangled carbon nanotube according to an embodiment of the present invention has a bulk density of 31 to 85 kg / m 3 and satisfies the following formula 1:
  • X is the tap density (unit: kg / m < 3 >) of the entangled carbon nanotube
  • Y is the bulk density (unit: kg / m3) of the entangled carbon nanotube.
  • the carbon nanotubes can not be dispersed in the dispersion medium at a high concentration in the production of the carbon nanotube dispersion.
  • the carbon nanotube units constituting the entangled carbon nanotubes are too close to each other and are not easily released in the solvent. As a result, there is a high possibility that the carbon nanotube unit is broken during the dispersion process of the ingot-type carbon nanotubes, and as a result, the conductivity may be deteriorated.
  • the bulk density of the entangled carbon nanotubes may be preferably 32 to 80 kg / m < 3 >, more preferably 32 to 68 kg / m < 3 >.
  • the carbon nanotube dispersion can be sufficiently dispersed and dispersed at a high concentration in the production of the carbon nanotube dispersion.
  • the formula 1 is an index showing the morphology of the entangled carbon nanotube.
  • the value of the formula 1 may be 1.37 to 2.05, preferably 1.4 to 2.0, and more preferably 1.49 to 2.0.
  • the value of the formula 1 is less than the above-mentioned range, it means that the carbon nanotube units are entangled carbon nanotubes which are closely intertwined with each other. Therefore, it is difficult for the carbon nanotube units to be easily dispersed in the production of the carbon nanotube dispersion.
  • Entangled carbon nanotubes satisfying the above-described bulk density and Equation 1 have sufficient particle properties as conventional Entangled carbon nanotubes, and have a loose structure between carbon nanotubes like bundled carbon nanotubes Lt; / RTI > That is, the shape may be an entangled shape, or may have some characteristics of a bundled carbon nanotube. Accordingly, the entangled carbon nanotubes can be dispersed at a high concentration because the dispersion of the carbon nanotubes may occur slowly during the production of the carbon nanotube dispersion. Also, since the carbon nanotube units are loose, the carbon nanotube units can be more easily released than the conventional entangled carbon nanotube unit when dispersed in the dispersion medium.
  • the breakage of the carbon nanotube unit during the dispersion process is reduced, and as a result, the carbon nanotube unit having a relatively long length in the dispersion medium can be present. Accordingly, the conductivity of the carbon nanotube dispersion can be further improved.
  • the tap density of the entangled carbon nanotubes may be preferably 63 to 116 kg / m 3, and more preferably 65 to 102 kg / m 3.
  • the carbon nanotube unit is loosened between the carbon nanotube unit and the carbon nanotube unit in the dispersion medium, As a result, a relatively long carbon nanotube unit can be present in the dispersion medium. Accordingly, the conductivity of the carbon nanotube dispersion can be further improved.
  • the BET specific surface area of the entangled carbon nanotube may be 100 to 300 m 2 / g, preferably 150 to 280 m 2 / g, and more preferably 170 to 250 m 2 / g.
  • powder resistance is excellent, and it is advantageous for high-concentration dispersion.
  • the entangled carbon nanotubes may have a powder resistance value of 0.0171? ⁇ Cm or less, a maximum dispersion concentration of 3.3% by weight or more, preferably a powder resistance value of 0.0170? ⁇ Cm or less and a maximum dispersion concentration of 3.4% More preferably, the powder resistance value may be 0.0168? ⁇ cm m or less, and the maximum dispersion concentration may be 3.5% by weight or more.
  • the entangled carbon nanotubes having excellent conductivity can be contained in the carbon nanotube dispersion liquid at a high concentration, so that they may be more suitable than the conductive carbon nanotubes.
  • the maximum dispersion concentration of the entangled carbon nanotubes is determined by preparing a carbon nanotube dispersion by gradually injecting carbon nanotubes into N-methylpyrrolidone, and thereafter dispersing the maximum amount of carbon nanotubes dispersible in the carbon nanotube dispersion . ≪ / RTI > The powder resistance value of the ingot-type carbon nanotubes was measured by filling the insulating mold with the ingot-type carbon nanotubes at 1 g / cc, pressing the mixture, and then using Loresta-GX (trade name: MITSUBISHI CHEMICAL ANALYTECH) The surface current and voltage can be measured and calculated with four probes.
  • the average diameter of the unit bodies of the entangled carbon nanotubes may be preferably 30 nm or less, more preferably 10 to 30 nm. When the above-mentioned range is satisfied, the dispersibility and the conductivity can be improved.
  • the average length of the unit pieces of the entangled carbon nanotubes may be preferably 0.5 ⁇ m to 200 ⁇ m, more preferably 10 to 60 ⁇ m. When the above-mentioned range is satisfied, it is excellent in electrical conductivity and strength, and stable at room temperature and high temperature.
  • the entangled carbon nanotube unit preferably has an aspect ratio defined by the ratio of the length of the carbon nanotube unit (the length of the long axis passing through the center of the unit) to the diameter of the carbon nanotube unit (passing the center of the unit and the length of the minor axis perpendicular to the long axis) May be from 5 to 50,000, and more preferably from 10 to 20,000.
  • the average diameter and length of the carbon nanotube unit can be measured using an electric field scanning electron microscope.
  • the carbon nanotube layer surface per unit interval is a carbon crystal obtained by X-ray diffraction method (d 002) and to the O.335 O.342 nm, layer surface spacing (d 002) ⁇ O.3448-0.0028 (log ⁇ ) ( wherein , and? is the average diameter of the carbon nanotube unit), and the thickness Lc of the crystal in the C axis direction may be 40 nm or less.
  • the interplanar spacing (d 002 ) may preferably be less than 0.3444-0.0028 (1og ⁇ ), and more preferably less than 0.3441-0.0028 (log ⁇ ). When the above range is satisfied, the crystallinity of the carbon nanotube unit is improved, so that the conductivity of the entangled carbon nanotube including the same can be further improved.
  • the entangled carbon nanotube according to an embodiment of the present invention comprises: 1) mixing an organic acid and a vanadium precursor in a molar ratio of 1: 0.0463 to 1: 0.0875 to prepare a mixture; 2) preparing a catalyst precursor by mixing the mixture with a cobalt precursor; 3) subjecting the aluminum hydroxide to a first heat treatment to produce a support; 4) supporting a catalyst precursor on the support, and then performing a second heat treatment to produce a supported catalyst; 5) and reacting the supported catalyst with the carbon-based compound.
  • an organic acid and a vanadium precursor are mixed in a molar ratio of 1: 0.0463 to 1: 0.0875 to prepare a mixture.
  • the organic acid and the vanadium precursor can be mixed preferably in a molar ratio of 1: 0.047 to 1: 0.086, more preferably in a molar ratio of 1: 0.0475 to 1: 0.077.
  • a molar ratio of 1: 0.047 to 1: 0.086 more preferably in a molar ratio of 1: 0.0475 to 1: 0.077.
  • the particle size distribution of the catalyst particles becomes small.
  • the molar ratio of the organic acid to the vanadium precursor exceeds the above-mentioned range, bundle-type carbon nanotubes are produced in addition to the entangled carbon nanotubes.
  • the organic acid may be at least one member selected from the group consisting of citric acid, tartaric acid, fumaric acid, malic acid, acetic acid, butyric acid, palmitic acid and oxalic acid, of which citric acid is preferable.
  • the vanadium precursor may be a salt of a vanadium compound, preferably at least one selected from the group consisting of NH 4 VO 3 , NaVO 3 , V 2 O 5 and V (C 5 H 7 O 2 ) 3 , NH 4 VO 3 is more preferable.
  • the mixture and the cobalt precursor are then mixed to produce a catalyst precursor.
  • the mixture and the cobalt precursor may be mixed so that the molar ratio of vanadium and cobalt is 1: 1 to 1: 100, preferably 1: 5 to 1:20.
  • the above-mentioned range is satisfied, there is an advantage that the yield is increased.
  • the mixture and the cobalt precursor that is, the organic acid, the vanadium precursor, and the cobalt precursor can be used in the form of a solution dissolved in a solvent, and the solvent can be at least one kind selected from the group consisting of water, methanol and ethanol, desirable.
  • the concentration of the citric acid, vanadium precursor and cobalt precursor in the solution may be preferably 0.1 to 3 g / ml, more preferably 0.5 to 2 g / ml, even more preferably 0.7 to 1.5 g / ml .
  • Al (OH) 3 aluminum hydroxide (Al (OH) 3 ) is subjected to a first heat treatment to produce a support.
  • the aluminum hydroxide may be pretreated before performing the first heat treatment.
  • the pretreatment may be carried out at 50 to 150 ° C for 1 to 24 hours. By performing the pretreatment, the residual solvent or impurities that may be present on the surface of the aluminum hydroxide can be removed.
  • the aluminum hydroxide may have an average particle diameter of 20 to 200 ⁇ ⁇ , a porosity of 0.1 to 1.0 cm3 / g, and a specific surface area of less than 1 m2 / g.
  • the first heat treatment may be performed at 250 to 500 ° C, preferably 400 to 500 ° C. Also, the first heat treatment may be performed in an air atmosphere.
  • Aluminum (OH) 3 is contained in an amount of 30 wt% or more, Al (OH) 3 is 70 wt% or less, specifically, AlO (OH) 3 is contained in an amount of 60% by weight or less, but does not contain Al 2 O 3 .
  • the support may further include a metal oxide such as ZrO 2 , MgO, and SiO 2 .
  • the shape of the support is not particularly limited, but may be spherical or potato-shaped.
  • the support may have a porous structure, a molecular sieve structure, a honeycomb structure, or the like so as to have a relatively high surface area per unit mass or unit volume.
  • a catalyst precursor is supported on the support and then subjected to a second heat treatment to produce a supported catalyst.
  • the support may be such that the support and the catalyst precursor are uniformly mixed and aged for a predetermined time.
  • the mixing can be carried out specifically by rotating or stirring at a temperature of 45 to 80 ⁇ ⁇ .
  • the aging can be carried out for 3 to 60 minutes.
  • the catalyst precursor may be supported on the support and then dried.
  • the drying may be carried out at 60 to 200 ° C for 4 to 16 hours.
  • the second heat treatment may be performed in an air atmosphere for 1 to 6 hours.
  • the second heat treatment may preferably be performed at 700 to 800 ° C.
  • a supported catalyst in which the catalyst precursor is present in a state coated on the surface and the pores of the support is produced.
  • the final product, entangled carbon nanotubes manufactured using the supported catalyst satisfies the above-described bulk density and Equation (1).
  • the supported catalyst is reacted with the carbon-based compound.
  • the reaction of the supported catalyst with the carbon-based compound can be carried out by a chemical vapor synthesis method.
  • the supported catalyst is fed into a horizontal fixed bed reactor or a fluidized bed reactor, and the temperature of the catalyst is maintained at a temperature not lower than the pyrolysis temperature of the carbon-based compound in the gaseous state (hereinafter referred to as').
  • the gas-phase carbon compound or a gas mixture of the gas-phase carbon compound and a reducing gas (for example, hydrogen) and a carrier gas (for example, nitrogen) is injected to decompose the gas- And then growing the carbon nanotubes.
  • the carbon nanotubes produced by the chemical vapor synthesis method as described above have a crystal growth direction nearly parallel to the tube axis and a high crystallinity of the graphite structure in the tube length direction. As a result, the diameter of the unit is small, and the electrical conductivity and strength are high.
  • the production of the entangled carbon nanotubes may be performed at a temperature of 500 to 800 ° C, more specifically 550 to 750 ° C. In the reaction temperature range, the weight of the carbon nanotubes is maintained while maintaining the bulk size of the carbon nanotubes while minimizing the generation of amorphous carbon, so that the dispersibility according to the reduction of the bulk density can be further improved.
  • the heat source for the heat treatment induction heating, radiation heat, laser, IR, microwave, plasma, surface plasmon heating and the like can be used.
  • the carbon-based compound can supply carbon, and can be used without limitation, as long as it can exist in a vapor state at a temperature of 300 ° C or higher.
  • the carbon-based compound may be a carbon-based compound having a carbon number of 6 or less. More specifically, the carbon-based compound may be carbon monoxide, methane, ethane, ethylene, ethanol, acetylene, propane, propylene, butane, butadiene, pentane, pentene, cyclopentadiene, Cyclohexane, benzene, and toluene.
  • a removal step for removing metal impurities from the metal catalyst remaining in the entangled carbon nanotube can be selectively performed.
  • the metal impurity removing step may be performed according to a conventional method such as washing and acid treatment.
  • Aluminum hydroxide (Al (OH) 3 ) as an aluminum-based support precursor was first heat-treated at 450 DEG C for 4 hours in an air atmosphere to prepare an aluminum-based support containing AlO (OH) in an amount of 40 wt% or more.
  • NH 4 VO 3 aqueous solution was prepared by adding citric acid and NH 4 VO 3 in water at a molar ratio of 1: 0.0475 and dissolving them.
  • Co V molar ratio of 10: Co so that the 1 (NO 3) 2 ⁇ 6H 2 O and NH 4 VO 3 Aqueous solution to prepare a clear aqueous solution of catalyst precursor aqueous solution.
  • the support and the catalyst precursor aqueous solution were mixed such that the amount of Co and the amount of V in the catalyst precursor aqueous solution were 23 moles and 2.3 moles, respectively, based on 100 moles of Al in the support.
  • the catalyst precursor aqueous solution was supported on the support in a thermostatic chamber at 60 DEG C for 5 minutes and then dried in an air atmosphere at 120 DEG C for 12 hours. Subsequently, the supported catalyst was subjected to a second heat treatment at 720 ⁇ ⁇ for 4 hours in an air atmosphere to prepare a supported catalyst.
  • 0.1 g of the supported catalyst was placed in the center of a quartz tube having an inside diameter of 55 mm in diameter located in the fixed bed reactor.
  • the inside of the fixed bed reactor was heated to 650 ° C in a nitrogen atmosphere and maintained.
  • the mixture was stirred for 60 minutes while flowing nitrogen gas, ethylene gas, and hydrogen gas at a ratio of 1: 1: 1 at 0.3 l / min to prepare an entangled carbon nanotube ≪ / RTI >
  • Citrate and NH 4 VO 3 1 a molar ratio of 0.05 was put into water and NH 4 VO 3 was dissolved Except that an aqueous solution was prepared in the same manner as in Example 1, except that an aqueous solution was prepared.
  • Citrate and NH 4 VO 3 1 a molar ratio of 0.072 was added to the water and dissolved NH 4 VO 3 Except that an aqueous solution was prepared in the same manner as in Example 1, except that an aqueous solution was prepared.
  • Citrate and NH 4 VO 3 1 a molar ratio of 0.082 was added to the water and dissolved NH 4 VO 3 Except that an aqueous solution was prepared in the same manner as in Example 1, except that an aqueous solution was prepared.
  • Citrate and NH 4 VO 3 1 a molar ratio of 0.085 was added to the water and dissolved NH 4 VO 3 Except that an aqueous solution was prepared in the same manner as in Example 1, except that an aqueous solution was prepared.
  • Entangled carbon nanotubes were prepared in the same manner as in Example 1, except that NH 4 VO 3 aqueous solution was prepared by adding citric acid and NH 4 VO 3 to water at a molar ratio of 1: 0.045 and dissolving them to prepare an NH 4 VO 3 aqueous solution.
  • Entangled carbon nanotubes were prepared in the same manner as in Example 1, except that NH 4 VO 3 aqueous solution was prepared by adding citric acid and NH 4 VO 3 at a molar ratio of 1: 0.09 to water and dissolving them to prepare an NH 4 VO 3 aqueous solution.
  • Citrate and NH 4 VO 3 1 a molar ratio of 5.8 was added to water and dissolved NH 4 VO 3
  • the carbon nanotubes were prepared in the same manner as in Example 1 except that an aqueous solution was prepared, but the shape of the carbon nanotubes produced was of the bundle type.
  • Entangled carbon nanotubes (manufacturer: bayer, trade name: C150P) were used.
  • Entangled carbon nanotubes (manufacturer: LG Chem) were used.
  • Example 3 Entangled carbon nanotubes of Examples 3 and 4 were photographed by a scanning electron microscope (SEM), the results of Example 3 are shown in Figs. 1 and 2, and the results of Example 4 are shown in Figs. 3 and 4 .
  • SEM scanning electron microscope
  • FIGS. 1 and 3 are SEM images obtained by enlarging the surface of the Entangled carbon nanotube 400 times
  • FIGS. 2 and 4 are SEM images showing the surface of the Entangled carbon nanotube enlarged 1,000 times.
  • Specific surface area (m 2 / g): It can be calculated from the adsorption amount of nitrogen gas under liquid nitrogen temperature (77K) using BEL Japan's BELSORP-mino II.
  • Powder resistance value (ohm-cm @ 1 g / cc): An insulating mold was filled with carbon nanotubes at 1 g / cc and pressed. Using Loresta-GX (trade name: MITSUBISHI CHEMICAL ANALYTECH) The surface current and voltage were measured with four probes and the powder resistance was calculated.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 The molar ratio of citric acid and NH 4 VO 3 1: 0.0475 1: 0.05 1: 0.072 1: 0.082 1: 0.085 Secondary structural feature Entangled Entangled Entangled Entangled Entangled Manufacturing yield 11 11 18.5 21.8 22.7 Bulk density (kg / m3) 32 36 61 76 80 Tap density (kg / m3) 64 65 93 111 112 Tap Density / Bulk Density 2.0 1.8 1.52 1.46 1.41 Powder resistance value (ohm ⁇ cm @ 1 g / cc) 0.0162 0.0161 0.0166 0.0170 0.0171 Maximum dispersion concentration (% by weight) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
  • the entangled carbon nanotubes of Examples 1 to 5 prepared by adding citric acid and NH 4 VO 3 at a molar ratio of 1: 0.0475 to 1: 0.085 had a bulk density of 32 to 80 Kg / m < 3 >
  • the entangled carbon nanotubes of Examples 1 to 5 have low powder resistance and a high maximum dispersion concentration, they are not only excellent in conductivity but can be contained in the dispersion at a high concentration. Therefore, It could be predicted that it was appropriate.
  • the carbon nanotubes of Comparative Example 3 were prepared by mixing citric acid and NH 4 VO 3 1: 5.8, it was confirmed to be a bundle type and did not satisfy the formula (1). Further, even though the bundle-type carbon nanotubes of Comparative Example 3 are low in the powder resistance value, they can not be contained in the dispersion at a high concentration, and therefore, it is predicted that they are not suitable for use as a conductive material dispersion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 벌크 밀도가 31 내지 85 ㎏/㎥이고, 벌크 밀도에 대한 탭 밀도의 비율이 1.37 내지 2.05인 인탱글형 탄소나노튜브 및 이의 제조방법에 관한 것이다.

Description

인탱글형 탄소나노튜브 및 이의 제조방법
[관련출원과의 상호인용]
본 발명은 2017.12.26에 출원된 한국 특허 출원 제10-2017-0179768호 및 2018.11.26에 출원된 한국 특허 출원 제10-2018-0146925호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
[기술분야]
본 발명은 인탱글형 탄소나노튜브 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 벌크 밀도에 대한 탭 밀도의 비율을 조절하여 분산성 및 도전성을 향상시킨 인탱글형 탄소나노튜브 및 이의 제조방법에 관한 것이다.
미세 탄소섬유의 일종인 탄소나노튜브는 1 ㎛ 이하의 평균직경을 갖는 튜브형 탄소로서, 그 특이적 구조에 기인한 높은 도전성, 인장 강도 및 내열성 등으로 인해 다양한 분야로의 적용이 기대되고 있다. 그러나, 이와 같은 탄소나노튜브의 유용성에도 불구하고, 탄소나노튜브는 낮은 용해성과 분산성으로 인해 그 사용에 한계가 있다. 이에 탄소나노튜브를 분산매에 선분산시킨 후 도전재 분산액을 제조하여 사용하였다. 그러나, 탄소나노튜브는 서로 간의 강한 반데르발스 인력에 의해 분산매 중에 안정적인 분산 상태를 이루지 못하고 응집 현상이 일어나는 문제가 있다.
이러한 문제점을 해결하기 위하여 다양한 시도가 있어 왔다. 구체적으로 초음파 처리 등의 기계적 분산 처리를 통해 탄소나노튜브를 분산매 중에 분산시키는 방법이 제안된 바 있다. 그러나, 이 방법의 경우 초음파를 조사하고 있는 동안은 분산성이 우수하지만, 초음파 조사가 종료되면 탄소나노튜브의 응집이 시작되는 문제가 있다. 또, 다양한 분산제를 이용하여 탄소나노튜브를 분산 안정화하는 방법이 제안되고 있다. 그러나, 이들 방법 역시 탄소나노튜브를 분산매 중에 고농도로 분산시킬 경우, 점도 상승으로 인해 취급이 어렵게 되는 문제가 있다.
이에 따라, 도전성의 저하 없이 분산성이 향상된 탄소나노튜브의 개발이 요구되고 있다.
본 발명의 목적은 분산성 및 도전성이 우수한 인탱글형 탄소나노튜브 및 이의 제조방법을 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 벌크 밀도가 31 내지 85 ㎏/㎥이고, 하기 식 1을 만족하는 인탱글형 탄소나노튜브를 제공한다:
<식 1>
1.37 ≤ X/Y ≤ 2.05
상기 식 1에서,
X는 상기 인탱글형 탄소나노튜브의 탭 밀도(단위: ㎏/㎥)이고,
Y는 상기 인탱글형 탄소나노튜브의 벌크밀도(단위: ㎏/㎥)임.
또한, 본 발명은 유기산과 바나듐 전구체를 1: 0.0463 내지 1:0.0875의 몰비로 혼합하여 혼합물을 제조하는 단계; 상기 혼합물과 코발트 전구체를 혼합하여 촉매 전구체를 제조하는 단계; 수산화알루미늄을 제1 열처리하여 지지체를 제조하는 단계; 상기 지지체에 촉매 전구체를 담지시킨 후, 제2 열처리하여 담지 촉매를 제조하는 단계; 및 상기 담지 촉매와 탄소계 화합물을 반응시키는 단계;를 포함하는 인탱글형 탄소나노튜브의 제조방법을 제공한다.
본 발명에 따른 인탱글형 탄소나노튜브는 도전성 및 분산성이 우수하여 탄소나노튜브 분산액 내에 고농도로 포함될 수 있다.
도 1은 실시예 3의 인탱글형 탄소나노튜브의 표면을 400 배 확대한 주사전자현미경 이미지이다.
도 2는 실시예 3의 인탱글형 탄소나노튜브의 표면을 1,000 배 확대한 주사현미경 이미지이다.
도 3은 실시예 4의 인탱글형 탄소나노튜브의 표면을 400 배 확대한 주사전자현미경 이미지이다.
도 4는 실시예 4의 인탱글형 탄소나노튜브의 표면을 1,000 배 확대한 주사현미경 이미지이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 탄소나노튜브는 별도의 가공 처리를 하지 않은 프리스틴 탄소나노튜브(pristine carbonnanotube)를 의미한다.
본 발명에서 인탱글형 탄소나노튜브는 복수개의 탄소나노튜브의 단위체가 다발 혹은 로프 형태와 같은 일정한 형상이 없이 뒤엉켜 있는 2차 구조 형상을 지칭한다.
본 발명에서 번들형 탄소나노튜브는 복수개의 탄소나노튜브의 단위체가 단위체 길이 방향의 축이 실질적으로 동일한 배향으로 나란하게 배열되거나, 배열된 후 꼬여있거나 또는 뒤엉켜있는, 다발 혹은 로프 형태의 2차 구조 형상을 지칭한다.
본 발명에서 탄소나노튜브의 단위체는 흑연면(graphite sheet)이 나노 크기 직경의 실린더 형태를 가지며, sp2 결합 구조를 갖는다. 이때 상기 흑연면이 말리는 각도 및 구조에 따라서 도체 또는 반도체의 특성을 나타낼 수 있다. 상기 탄소나노튜브의 단위체는 벽을 이루고 있는 결합수에 따라서 단일벽 탄소나노튜브(SWCNT, single-walled carbon nanotube), 이중벽 탄소나노튜브(DWCNT, double-walled carbon nanotube) 및 다중벽 탄소나노튜브(MWCNT, multi-walled carbon nanotube)로 분류될 수 있으며, 벽 두께가 얇을수록 저항이 낮다.
본 발명에서 탄소나노튜브의 벌크 밀도는 ASTM B329에 의거하여 측정할 수 있고, 구체적으로는 ASTM B329-06에 의거하여 측정할 수 있다. 그리고 벌크 밀도는 Scott volumeter(Version USP 616)를 이용하여 측정할 수 있다.
본 발명에서 탄소나노튜브의 벌크 밀도는 실험실 상황에 맞추어 측정할 수 있고, 상기 규정에 의거한 결과와 실질적으로 동일한 결과가 도출될 수 있다.
실험실에서 측정할 경우, 5 ㎖ 실린더(제조사: DURAN, 재질: 유리)를 저울에 올린 후 0 점을 맞춘 후, 실린더에 탄소나토튜브를 5 ㎖를 넣고, 탄소나노튜브의 높이와 눈높이를 맞춰 눈금을 읽어 부피를 측정하고, 저울에 올려 무게를 측정한 후, 하기 식에 의해 벌크 밀도를 계산할 수 있다.
벌크 밀도(㎏/㎥)= 탄소나노튜브의 중량(㎏)/ 탄소나노튜브의 부피(㎥)
본 발명에서 탄소나노튜브의 탭 밀도(Tapped Bulk Density: TD)는 ASTM B527-06 규정에 의거하여 측정한 것으로서, 구체적으로는 LOGAN사제의 TAP-2S를 이용하여 측정할 수 있다.
본 발명에서 탄소나노튜브의 탭 밀도도 실험실 상황에 맞추어 측정할 수 있고, 실험실 규모에 맞추어 측정하는 경우에도, 상기 규정에 의거한 결과와 실질적으로 동일한 결과가 도출될 수 있다.
실험실 에서 측정할 경우, 5 ㎖ 실린더(제조사: DURAN, 재질: 유리)를 저울에 올린 후 0 점을 맞춘 후, 실린더에 탄소나토튜브를 넣고, 탄소나노튜브의 높이와 눈높이를 맞춰 눈금을 읽어 부피를 측정한 후, 저울에 올려 무게를 측정할 수 있다. 실린더를 바닥에 100회 정도 가볍게 두드린 후, 실린더의 눈금을 읽어 부피를 측정하고, 하기 식에 의해 탭 밀도를 계산할 수 있다.
탭 밀도(㎏/㎥) = (탄소나노튜브 중량(㎏))/(100회 두드린 후 탄소나노튜브 부피(㎥))
본 발명에서 탄소나노튜브의 비표면적은 BET법에 의해 측정한 것으로서, 예를 들면, BEL Japan사 BELSORP-mino Ⅱ를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출할 수 있다.
본 발명에서 탄소나노튜브 단위체의 평균직경 및 길이는 전계 방사형 주사전자 현미경을 이용하여 측정할 수 있다.
1. 인탱글형 탄소나노튜브
본 발명의 일실시예에 따른 인탱글형 탄소나노튜브는 벌크 밀도가 31 내지 85 ㎏/㎥이고, 하기 식 1을 만족한다:
<식 1>
1.37 ≤ X/Y ≤ 2.05
상기 식 1에서,
X는 상기 인탱글형 탄소나노튜브의 탭 밀도(단위: ㎏/㎥)이고,
Y는 상기 인탱글형 탄소나노튜브의 벌크 밀도(단위: ㎏/㎥)임.
상기 인탱글형 탄소나노튜브의 벌크 밀도가 상술한 범위 미만이면, 인탱글형 탄소나노튜브의 특성을 구현할 수 없으므로, 탄소나노튜브 분산액 제조시 고농도로 분산매 내에 분산될 수 없다. 상기 인탱글형 탄소나노튜브의 벌크 밀도가 상술한 범위를 초과하면, 인탱글형 탄소나노튜브를 구성하는 탄소나노튜브 단위체 사이가 너무 촘촘하여 용매 내에서 용이하게 풀어지지 않는다. 이로 인해 인탱글형 탄소나노튜브의 분산 과정에서 탄소나노튜브 단위체가 끊어질 가능성이 높고 결과적으로 도전성이 저하될 수 있다.
상기 인탱글형 탄소나노튜브의 벌크 밀도는 바람직하게는 32 내지 80 ㎏/㎥일 수 있고, 보다 바람직하게는 32 내지 68 ㎏/㎥일 수 있다. 상술한 범위를 만족하면, 충분한 입자성을 가질 수 있으므로, 탄소나노튜브 분산액 제조시 분산이 서서히 일어나고 고농도로 분산될 수 있다.
상기 식 1은 인탱글형 탄소나노튜브의 모폴로지를 나타내는 지표로서, 식 1의 값은 1.37 내지 2.05 이고, 바람직하게는 1.4 내지 2.0일 수 있고, 보다 바람직하게는 1.49 내지 2.0일 수 있다. 상기 식 1의 값이 상술한 범위 미만이면, 탄소나노튜브 단위체들이 매우 촘촘하게 서로 얽혀져 있는 인탱글형 탄소나노튜브인 것을 의미하므로, 탄소나노튜브 분산액 제조 시 탄소나노튜브 단위체들이 용이하게 분산되기 어렵다. 상기 식 1의 값이 상술한 범위를 초과하면, 탄소나노튜브 단위체들 사이의 상호 작용으로 인해 탄소나노튜브 단위체들의 간격이 넓은 것을 의미하므로, 탄소나노튜브 분산액 제조 시 고농도로 분산되기 어렵다.
상술한 벌크 밀도 및 식 1을 만족하는 인탱글형 탄소나노튜브는, 기존의 인탱글형 탄소나노튜브와 같이 충분한 입자성을 가지면서, 번들형 탄소나노튜브와 같이 탄소나노튜브 단위체들 사이가 느슨한 구조를 가질 수 있다. 즉, 형상은 인탱글형이나, 번들형 탄소나노튜브의 특성도 일부 가질 수 있다. 이에 따라, 상기 인탱글형 탄소나노튜브는 탄소나노튜브 분산액 제조시 분산이 서서히 일어날 수 있으므로 고농도로 분산될 수 있다. 또한, 탄소나노튜브 단위체 사이가 느슨하므로, 분산매 내에서 분산 시 탄소나노튜브 단위체들이 기존의 인탱글형 탄소나노튜브 단위체보다 용이하게 풀어질 수 있다. 이로 인해 분산 과정에서 탄소나노튜브 단위체가 끊어지는 현상이 감소되고, 결과적으로 분산매 내에서 비교적 길이가 긴 탄소나노튜브 단위체가 존재할 수 있게 된다. 이에 따라 탄소나노튜브 분산액의 도전성이 보다 향상될 수 있다.
상기 인탱글형 탄소나노튜브의 탭 밀도는 바람직하게는 63 내지 116 ㎏/㎥ 일 수 있고, 보다 바람직하게는 65 내지 102 ㎏/㎥일 수 있다. 상술한 범위를 만족하면, 탄소나노튜브 단위체 사이가 기존의 인탱글형 탄소나노튜브의 단위체에 비하여 느슨하여 분산매 내에서 용이하게 풀어질 수 있으므로, 분산 과정에서 탄소나노튜브 단위체가 끊어지는 현상이 감소되고, 결과적으로 분산매 내에서 비교적 길이가 긴 탄소나노튜브 단위체가 존재할 수 있게 된다. 이에 따라 탄소나노튜브 분산액의 도전성이 보다 향상될 수 있다.
상기 인탱글형 탄소나노튜브의 BET 비표면적은 100 내지 300 ㎡/g, 바람직하게는 150 내지 280 ㎡/g, 보다 바람직하게는 170 내지 250 ㎡/g일 수 있다. 상술한 범위를 만족하면, 분체저항이 우수하면서, 고농도 분산에 유리하다.
상기 인탱글형 탄소나노튜브는 분체 저항값이 0.0171 Ω·㎝ 이하이고, 최대 분산 농도가 3.3 중량% 이상일 수 있고, 바람직하게는 분체 저항값이 0.0170 Ω·㎝ 이하, 최대 분산 농도가 3.4 중량% 이상일 수 있고, 보다 바람직하게는 분체 저항 값이 0.0168 Ω·㎝ 이하, 최대 분산 농도가 3.5 중량% 이상일 수 있다. 상술한 조건을 만족하면, 도전성이 우수한 인탱글형 탄소나노튜브가 탄소나노튜브 분산액 내에 고농도로 포함될 수 있으므로, 도전재로 사용하기 보다 적합할 수 있다.
여기서, 상기 인탱글형 탄소나노튜브의 최대 분산 농도는 탄소나노튜브를 N-메틸 피롤리돈에 조금씩 투입하면서 탄소나노튜브 분산액을 제조한 후, 탄소나노튜브 분산액 내 분산될 수 있는 탄소나노튜브의 최대량을 측정한 것일 수 있다. 그리고, 상기 인탱글형 탄소나노튜브의 분체 저항값은 인탱글형 탄소나노튜브를 1 g/cc가 되도록 절연 몰드에 충진하고 가압한 후, Loresta-GX(상품명, 제조사: MITSUBISHI CHEMICAL ANALYTECH)를 이용하여, 표면의 전류와 전압을 4 개의 탐침으로 측정하고 산출할 수 있다.
상기 인탱글형 탄소나노튜브의 단위체의 평균직경은 바람직하게는 30 ㎚ 이하, 보다 바람직하게는 10 내지 30 ㎚일 수 있다. 상술한 범위를 만족하면, 분산성 및 도전성이 향상될 수 있다.
상기 인탱글형 탄소나노튜브의 단위체의 평균 길이는 바람직하게는 0.5 ㎛ 내지 200 ㎛, 보다 바람직하게는 10 내지 60 ㎛일 수 있다. 상술한 범위를 만족하면, 전기전도성 및 강도가 우수하고, 상온 및 고온에서 모두 안정적이다.
상기 인탱글형 탄소나노튜브 단위체는 탄소나노튜브 단위체의 길이(단위체의 중심을 지나는 장축의 길이)와 직경(단위체의 중심을 지나며, 상기 장축에 수직하는 단축의 길이)의 비로 정의되는 종횡비가 바람직하게는 5 내지 50,000 일 수 있으며, 보다 바람직하게는 10 내지 20,000 일 수 있다.
상기 탄소나노튜브 단위체의 평균직경 및 길이는 전계 방사형 주사전자 현미경을 이용하여 측정할 수 있다.
상기 탄소나노튜브 단위체는 X선 회절법으로 구한 탄소결정의 층면간격(d002)이 O.335 내지 O.342 nm 이고, 층면간격(d002)<O.3448-0.0028(logφ)(식 중, φ는 탄소나노튜브 단위체의 평균직경이다.)를 만족하며, 결정의 C축 방향의 두께(Lc)가 40 nm 이하일 수 있다. 층면간격(d002)는 바람직하게는 0.3444-0.0028(1ogφ) 미만일 수 있고, 보다 바람직하게는 0.3441-0.0028(logφ) 미만일 수 있다. 상술한 범위를 만족하면, 탄소나노튜브 단위체의 결정성이 향상되므로, 이를 포함하는 인탱글형 탄소나노튜브의 도전성이 보다 향상될 수 있다.
2. 인탱글형 탄소나노튜브의 제조방법
본 발명의 일실시예를 따른 인탱글형 탄소나노튜브는 1) 유기산과 바나듐 전구체를 1: 0.0463 내지 1:0.0875의 몰비로 혼합하여 혼합물을 제조하는 단계; 2) 상기 혼합물과 코발트 전구체를 혼합하여 촉매 전구체를 제조하는 단계; 3) 수산화알루미늄을 제1 열처리하여 지지체를 제조하는 단계; 4) 상기 지지체에 촉매 전구체를 담지시킨 후, 제2 열처리하여 담지 촉매를 제조하는 단계; 5) 및 상기 담지 촉매와 탄소계 화합물을 반응시키는 단계;를 포함하는 제조방법으로 제조된다.
이하, 본 발명의 일실시예에 따른 인탱글형 탄소나노튜브의 제조방법의 각 단계를 보다 구체적으로 설명한다.
1) 혼합물을 제조하는 단계
먼저, 유기산과 바나듐 전구체를 1: 0.0463 내지 1:0.0875의 몰비로 혼합하여 혼합물을 제조한다.
상기 유기산과 바나듐 전구체는 바람직하게는 1:0.047 내지 1:0.086의 몰비로 혼합할 수 있고, 보다 바람직하게는 1:0.0475 내지 1:0.077의 몰비로 혼합할 수 있다. 상술한 범위를 만족하면, 도전재 분산액 내에서 고농도로 분산할 수 있는 벌크 밀도 및 탭 밀도가 낮은 인탱글형 탄소나노튜브를 제조할 수 있다.
상기 유기산과 바나듐 전구체의 몰비가 상술한 범위 미만이면, 촉매 입자의 입도 분포가 작아지는 문제점이 발생한다. 상기 유기산과 바나듐 전구체의 몰비가 상술한 범위를 초과하면, 인탱글형 탄소나노튜브 외에도 번들형 탄소나노튜브가 제조된다.
상기 유기산은 시트르산, 타르타르산, 퓨마르산, 말산(malic acid), 아세트산, 뷰티르산, 팔미트산 및 옥살산으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 시트르산이 바람직하다.
상기 바나듐 전구체는 바나듐 화합물의 염일 수 있으며, 바람직하게는 NH4VO3, NaVO3, V2O5 및 V(C5H7O2)3으로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 NH4VO3가 보다 바람직하다.
2) 촉매 전구체를 제조하는 단계
이어서, 상기 혼합물과 코발트 전구체를 혼합하여 촉매 전구체를 제조한다.
상기 혼합물과 코발트 전구체는 바나듐과 코발트의 몰비가 1:1 내지 1:100이 되도록 혼합할 수 있고, 바람직하게는 1:5 내지 1:20이 되도록 혼합할 수 있다. 상술한 범위를 만족하면, 수율이 증가하는 이점이 있다.
상기 코발트 전구체는 코발트 화합물의 염일 수 있으며, 바람직하게는 Co(NO3)6H2O, CoCl2·6H2O, Co2(CO)8, [Co2(CO)6(t-BuC=CH)]로 이루어진 군에서 선택되는 1종 이상일 수 있고, 이 중 Co(NO3)2 ·6H2O가 보다 바람직하다.
상기 혼합물과 코발트 전구체, 즉 상기 유기산과 바나듐 전구체와 코발트 전구체는 용매에 용해된 용액 형태로 사용될 수 있으며, 상기 용매는 물, 메탄올 및 에탄올로 이루어진 군에서 1종 이상 일 수 있고, 이 중 물이 바람직하다.
상기 용액 내, 상기 시트르산과 바나듐 전구체와 코발트 전구체의 농도는 바람직하게는 0.1 내지 3 g/㎖, 보다 바람직하게는 0.5 내지 2 g/㎖, 보다 더 바람직하게는 0.7 내지 1.5 g/㎖일 수 있다.
3) 지지체를 제조하는 단계
이어서, 수산화알루미늄(Al(OH)3)을 제1 열처리하여 지지체를 제조한다.
상기 수산화알루미늄은 상기 제1 열처리를 수행하기 전에 전처리할 수 있다.
상기 전처리는 50 내지 150 ℃로 1 내지 24 시간 동안 수행할 수 있다. 상기 전처리를 수행하면, 수산화알루미늄의 표면에 존재할 수 있는 잔존 용매 또는 불순물을 제거할 수 있다.
상기 수산화알루미늄은 평균 입경이 20 내지 200 ㎛, 기공율이 0.1 내지 1.0㎤/g, 비표면적이 1㎡/g 미만일 수 있다.
상기 제1 열처리는 250 내지 500 ℃로 수행될 수 있고, 바람직하게는 400 내지 500 ℃에서 수행될 수 있다. 또한, 상기 제1 열처리는 공기 분위기 하에서 수행될 수 있다.
상술한 조건을 만족하면, 수산화알루미늄이 전환되어 AlO(OH)를 30 중량% 이상, Al(OH)3을 70 중량% 이하, 구체적으로는 AlO(OH)를 40 중량% 이상, Al(OH)3을 60 중량% 이하 포함하나, Al2O3는 포함하지 않는 지지체를 제조할 수 있다.
상기 지지체는 ZrO2, MgO 및 SiO2 등의 금속 산화물을 더 포함할 수 있다.
상기 지지체의 형상은 특별히 한정하지 않으나, 구형 또는 포테이토형일 수 있다. 또한, 상기 지지체는 단위 질량 또는 단위 부피당 비교적 높은 표면적을 갖도록 다공성 구조, 분자체 구조, 벌집 구조 등을 가질 수 있다.
4) 담지 촉매를 제조하는 단계
이어서, 상기 지지체에 촉매 전구체를 담지시킨 후, 제2 열처리하여 담지 촉매를 제조한다.
상기 담지는 상기 지지체와 상기 촉매 전구체를 균일하게 혼합한 후, 일정시간 동안 숙성시키는 것일 수 있다. 상기 혼합은 구체적으로는 45 내지 80℃ 온도 하에서 회전 또는 교반에 의해 수행될 수 있다. 상기 숙성은 3 내지 60 분 동안 수행될 수 있다.
상기 촉매 전구체는 상기 지지체에 담지된 후, 건조하는 단계를 더 포함할 수 있다.
상기 건조는 60 내지 200℃로 4 내지 16 시간 동안 수행될 수 있다.
상기 제2 열처리는 공기 분위기에서 1 내지 6 시간 동안 수행될 수 있다. 상기 제2 열처리는 바람직하게는 700 내지 800℃로 수행될 수 있다. 상술한 조건을 만족하면, 상기 촉매 전구체가 상기 지지체의 표면 및 세공에 코팅된 상태로 존재하는 담지 촉매가 제조된다. 또한, 상기 담지 촉매를 이용하여 제조된 최종 생산품인 인탱글형 탄소나노튜브가 상술한 벌크 밀도 및 식 1을 만족한다.
5) 담지 촉매와 탄소계 화합물의 반응 단계
이어서, 상기 담지 촉매와 탄소계 화합물을 반응시킨다.
상기 담지 촉매와 탄소계 화합물을 반응은 화학 기상 합성법에 의해 수행될 수 있다.
구체적으로, 상기 담지 촉매를 수평 고정층 반응기 또는 유동층 반응기 내에 투입하고, 상기 기체 상태(이하 ‘기상’이라 함)인 탄소계 화합물의 열분해 온도 이상 내지 상기 담지 촉매에 담지된 촉매의 융점 이하의 온도에서 상기 기상 탄소계 화합물, 또는 상기 기상 탄소계 화합물과 환원가스(예를 들면 수소 등) 및 운반가스(예를 들면 질소 등)의 혼합가스를 주입하여 기상 탄소계 화합물의 분해를 통해 화학적 기상 합성법으로 탄소나노튜브를 성장시킴으로써 수행될 수 있다. 상기와 같은 화학 기상 합성법에 의해 제조되는 탄소나노튜브는 결정의 성장방향이 튜브축과 거의 평행하고, 튜브 길이 방향으로 흑연 구조의 결정성이 높다. 그 결과, 단위체의 직경이 작고, 전기전도성 및 강도가 높다.
또, 상기 인탱글형 탄소나노튜브의 제조는 구체적으로는 500 내지 800℃, 보다 구체적으로는 550 내지 750 ℃로 수행될 수 있다. 상기 반응온도 범위 내에서는 비결정성 탄소의 발생을 최소화하면서 생성되는 탄소나노튜브의 벌크 크기를 그대로 유지하면서 중량이 낮아지므로, 벌크 밀도 감소에 따른 분산성이 더욱 향상될 수 있다. 상기 열처리를 위한 열원으로서는 유도 가열(induction heating), 복사열, 레이저, IR, 마이크로파, 플라즈마, 표면 플라즈몬 가열 등이 이용될 수 있다.
또, 상기 탄소계 화합물으로는 탄소를 공급할 수 있으며, 300 ℃ 이상의 온도에서 기상으로 존재할 수 있는 것이라면 특별한 제한없이 사용가능하다.
상기 탄소계 화합물은 탄소수 6 이하의 탄소계 화합물일 수 있으며, 보다 구체적으로는 일산화탄소, 메탄, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 프로필렌, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠 및 톨루엔으로 이루어진 군에서 선택되는 1종 이상인 것이 바람직하다.
본 발명의 제조방법은 인탱글형 탄소나노튜브 내에 잔류하는, 금속 촉매 유래 금속불순물을 제거하기 위한 제거 공정이 선택적으로 수행할 수 있다. 이때 상기 금속불순물 제거 공정은 세척, 산처리 등의 통상의 방법에 따라 수행될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
< 인탱글형 탄소나노튜브의 제조>
실시예 1
알루미늄계 지지체 전구체로서 수산화알루미늄(Al(OH)3)를 공기 분위기에서 450 ℃로 4 시간 동안 제1 열처리하여, AlO(OH)를 40 중량% 이상 포함하는 알루미늄계 지지체를 제조하였다.
별도로, 시트르산과 NH4VO3을 1:0.0475의 몰비로 물에 투입하고 용해시켜 NH4VO3 수용액을 제조하였다. Co:V의 몰비가 10:1이 되도록 Co(NO3)2 ·6H2O과 NH4VO3 수용액을 혼합하여 맑은 수용액인 촉매 전구체 수용액을 제조하였다.
상기 지지체 내 Al 100 몰에 대하여, 상기 촉매 전구체 수용액 내 Co가 23 몰와 V가 2.3 몰이 되도록, 상기 지지체와 상기 촉매 전구체 수용액을 혼합하였다.
상기 지지체에 촉매 전구체 수용액을 60 ℃의 항온조에서 5 분 동안 담지시킨 후, 공기 분위기에서 120 ℃로 12 시간 동안 건조하였다. 이어서, 공기 분위기 하에서 720 ℃로 4 시간 동안 제2 열처리하여 담지 촉매를 제조하였다.
상기 담지 촉매 0.1 g을 고정층 반응장치 내에 위치하는 직경 55 ㎜의 내경을 갖는 석영관의 중심부에 장착하였다. 고정층 반응장치의 내부를 질소 분위기에서 650 ℃까지 승온한 다음 유지시키고, 질소와 에틸렌 가스, 수소 가스의 부피비를 1:1:1로 하여 0.3 ℓ/분 흘리면서 60 분 동안 합성하여 인탱글형 탄소나노튜브를 수득하였다.
실시예 2
시트르산과 NH4VO3을 1:0.05의 몰비로 물에 투입하고 용해시켜 NH4VO3 수용액을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 인탱글형 탄소나노튜브를 제조하였다.
실시예 3
시트르산과 NH4VO3을 1:0.072의 몰비로 물에 투입하고 용해시켜 NH4VO3 수용액을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 인탱글형 탄소나노튜브를 제조하였다.
실시예 4
시트르산과 NH4VO3을 1:0.082의 몰비로 물에 투입하고 용해시켜 NH4VO3 수용액을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 인탱글형 탄소나노튜브를 제조하였다.
실시예 5
시트르산과 NH4VO3을 1:0.085의 몰비로 물에 투입하고 용해시켜 NH4VO3 수용액을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 인탱글형 탄소나노튜브를 제조하였다.
비교예 1
시트르산과 NH4VO3을 1:0.045의 몰비로 물에 투입하고 용해시켜 NH4VO3 수용액을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 인탱글형 탄소나노튜브를 제조하였다.
비교예 2
시트르산과 NH4VO3을 1:0.09의 몰비로 물에 투입하고 용해시켜 NH4VO3 수용액을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 인탱글형 탄소나노튜브를 제조하였다.
비교예 3
시트르산과 NH4VO3을 1:5.8의 몰비로 물에 투입하고 용해시켜 NH4VO3 수용액을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 탄소나노튜브를 제조하였으나, 제조된 탄소나노튜브의 형상은 번들형이었다.
비교예 4
인탱글형 탄소나노튜브(제조사: bayer, 상품명: C150P)를 이용하였다.
비교예 5
인탱글형 탄소나노튜브(제조사: 엘지화학)을 이용하였다.
실험예 1
실시예 3 및 실시예 4의 인탱글형 탄소나노튜브를 주사현미경(SEM)으로 촬영하였고, 실시예 3의 결과를 도 1 및 도 2에, 실시예 4의 결과를 도 3 및 도 4에 나타내었다.
여기서, 도 1 및 도 3은 인탱글형 탄소나노튜브의 표면을 400배 확대한 SEM 이미지이고, 도 2 및 도 4는 인탱글형 탄소나노튜브의 표면을 1,000배 확대한 SEM 이미지였다.
도 1 내지 도 4을 참조하면, 실시예 3 및 실시예 4의 탄소나노튜브는 인탱글형인 것을 확인할 수 있었다.
실험예 2
실시예 및 비교예의 탄소나노튜브를 하기와 같은 방법으로, 물성을 측정하였고, 그 결과를 하기 표 1 및 2에 나타내었다.
(1) 제조수율: {(제조된 탄소나노튜브의 총 중량) - (사용한 담지 촉매의 총 중량)}/(사용한 담지 촉매의 총 중량)
(2) 벌크 밀도: 무게를 알고 있는 5 ㎖ 실린더(제조사: DURAN, 재질: 유리) 에 탄소나노튜브를 채우고 무게를 측정한 후, 하기 식에 따라 벌크 밀도를 계산하였다.
벌크 밀도(㎏/㎥)=탄소나노튜브 중량(㎏)/탄소나노튜브 부피(㎥)
(3) 탭 밀도: ASTM B527-06 규정에 의거하여 LOGAN사제의 TAP-2S를 이용하여 측정하였다.
(4) 비표면적(㎡/g): BEL Japan사 BELSORP-mino Ⅱ를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출할 수 있다.
(5) 2차 구조 형상: 주사현미경(SEM)으로 촬영하여 확인하였다.
(6) 분체 저항값(ohm·cm @ 1g/cc): 탄소나노튜브를 1 g/cc가 되도록 절연 몰드에 충진하고 가압하였고, Loresta-GX(상품명, 제조사: MITSUBISHI CHEMICAL ANALYTECH)를 이용하여, 표면의 전류와 전압을 4 개의 탐침으로 측정하였고, 분체 저항값을 산출하였다.
(7) 최대 분산 농도(중량%): 탄소나노튜브를 N-메틸 피롤리돈에 조금씩 투입하면서 탄소나노튜브 분산액을 제조하였다. 그리고, 탄소나노튜브 분산액 내 분산될 수 있는 탄소나노튜브의 최대 분산 농도를 측정하였다.
구분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5
시트르산과 NH4VO3의 몰비 1:0.0475 1:0.05 1:0.072 1:0.082 1:0.085
2차 구조 형상 인탱글형 인탱글형 인탱글형 인탱글형 인탱글형
제조수율 11 11 18.5 21.8 22.7
벌크 밀도(㎏/㎥) 32 36 61 76 80
탭 밀도(㎏/㎥) 64 65 93 111 112
탭 밀도/벌크 밀도 2.0 1.8 1.52 1.46 1.41
분체 저항값(ohm·cm @ 1 g/cc) 0.0162 0.0161 0.0166 0.0170 0.0171
최대 분산 농도(중량%) 3.5 3.5 3.5 3.5 3.5
구분 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5
시트르산과 NH4VO3의 몰비 1:0.045 1:0.09 1:5.8 - -
2차 구조 형상 인탱글형 인탱글형 번들형 인탱글형 인탱글형
제조수율 10 24 19.2 20 44
벌크 밀도(㎏/㎥) 29 90 45 150 172
탭 밀도(㎏/㎥) 61 120 75 172 208
탭 밀도/벌크 밀도 2.1 1.33 1.66 1.17 1.21
분체 저항값(ohm·cm @ 1 g/cc) 0.0171 0.0181 0.0088 0.0180 0.0179
최대 분산 농도(중량%) 2.0 3.0 1.25 3.5 3.5
표 1 및 표 2를 참조하면, 시트르산과 NH4VO3를 1:0.0475 내지 1:0.085의 몰비로 투입하여 제조한 실시예 1 내지 실시예 5의 인탱글형 탄소나노튜브는 벌크 밀도가 32 내지 80 ㎏/㎥이고, 식 1을 만족하였다. 또한, 실시예 1 내지 실시예 5의 인탱글형 탄소나노튜브는 분체 저항값이 낮고, 최대 분산 농도가 높으므로, 도전성이 우수할 뿐만 아니라, 고 농도로 분산액에 포함될 수 있으므로, 도전재 분산액 용도로 적합하다는 것을 예측할 수 있었다.
한편, 시트르산과 NH4VO3를 1:0.045의 몰비로 투입하여 제조한 비교예 1의 인탱글형 탄소나노튜브는 벌크 밀도가 본 발명의 벌크 밀도 보다 낮고, 식 1을 만족하지 못한 것을 확인할 수 있었다. 또한, 비교예 1의 인탱글형 탄소나노튜브가 분체 저항값이 낮을지라도, 분산액 내에 고농도로 포함될 수 없으므로, 도전재 분산액 용도로 적합하지 않다는 것을 예측할 수 있었다.
또한, 시트르산과 NH4VO3를 1:0.09의 몰비로 투입하여 제조한 비교예 2의 인탱글형 탄소나노튜브는 벌크 밀도가 본 발명의 벌크 밀도 보다 높고, 식 1을 만족하지 못한 것을 확인할 수 있었다. 비교예 2의 인탱글형 탄소나노튜브는 분체 저항값이 높을 뿐만 아니라, 분산액 내에 고농도로 포함될 수 없으므로, 도전재 분산액 용도로 적합하지 않다는 것을 예측할 수 있었다.
또한, 비교예 3의 탄소나노튜브는 시트르산과 NH4VO3 1:5.8의 몰비로 투입하여 제조하였으므로, 번들형이고, 식 1을 만족하지 않는 것을 확인할 수 있었다. 또한, 비교예 3의 번들형 탄소나노튜브가 분체 저항값이 낮을지라도, 분산액 내에 고농도로 포함될 수 없으므로, 도전재 분산액 용도로 적합하지 않다는 것을 예측할 수 있었다.
시판중인 탄소나노튜브인 비교예 4 및 비교예 5의 인탱글형 탄소나노튜브는 벌크 밀도가 지나치게 높을 뿐만 아니라, 식 1을 만족하지 못하는 것을 확인할 수 있었다. 또한, 분체 저항값이 낮으므로, 도전재 분산액 용도로 적합하지 않다는 것을 예측할 수 있었다.

Claims (10)

  1. 벌크 밀도가 31 내지 85 ㎏/㎥이고,
    하기 식 1을 만족하는 인탱글형 탄소나노튜브:
    <식 1>
    1.37 ≤ X/Y ≤ 2.05
    상기 식 1에서,
    X는 상기 인탱글형 탄소나노튜브의 탭 밀도(단위: ㎏/㎥)이고,
    Y는 상기 인탱글형 탄소나노튜브의 벌크 밀도(단위: ㎏/㎥)임.
  2. 청구항 1에 있어서,
    상기 식 1의 값은 1.4 내지 2.0인 것인 인탱글형 탄소나노튜브.
  3. 청구항 1에 있어서,
    상기 인탱글형 탄소나노튜브의 벌크 밀도는 32 내지 80 ㎏/㎥인 것인 인탱글형 탄소나노튜브.
  4. 청구항 1에 있어서,
    상기 인탱글형 탄소나노튜브의 탭 밀도는 63 내지 116 ㎏/㎥인 것인 인탱글형 탄소나노튜브.
  5. 청구항 1에 있어서,
    상기 인탱글형 탄소나노튜브는 평균직경이 10 내지 30 ㎚인 탄소나노튜브 단위체를 포함하는 것인 인탱글형 탄소나노튜브.
  6. 청구항 5에 있어서,
    상기 탄소나노튜브 단위체는 X선 회절법으로 구한 탄소결정의 층면 간격(d002)이 O.335 내지 O.342 nm 이고,
    층면 간격(d002)<O.3448 - 0.0028(logφ)(식 중, φ는 탄소나노튜브 단위체의 평균직경이다.)를 만족하며,
    결정의 C축 방향의 두께(Lc)가 40 nm이하인 인탱글형 탄소나노튜브.
  7. 유기산과 바나듐 전구체를 1:0.0463 내지 1:0.0875의 몰비로 혼합하여 혼합물을 제조하는 단계;
    상기 혼합물과 코발트 전구체를 혼합하여 촉매 전구체를 제조하는 단계;
    수산화알루미늄을 제1 열처리하여 지지체를 제조하는 단계;
    상기 지지체에 촉매 전구체를 담지시킨 후, 제2 열처리하여 담지 촉매를 제조하는 단계; 및
    상기 담지 촉매와 탄소계 화합물을 반응시키는 단계;를 포함하는 인탱글형 탄소나노튜브의 제조방법.
  8. 청구항 7에 있어서,
    상기 혼합물을 제조하는 단계는 유기산과 바나듐 전구체를 1:0.047 내지 1:0.086의 몰비로 혼합하여 혼합물을 제조하는 단계인 것인 인탱글형 탄소나노튜브의 제조방법.
  9. 청구항 7에 있어서,
    상기 촉매 전구체를 제조하는 단계는 바나듐과 코발트의 몰비가 1:1 내지 1:100이 되도록 상기 혼합물과 코발트 전구체를 혼합하여 촉매 전구체를 제조하는 단계를 포함하는 인탱글형 탄소나노튜브의 제조방법.
  10. 청구항 7에 있어서,
    상기 유기산은 시트르산, 타르타르산, 퓨마르산, 말산(malic acid), 아세트산, 뷰티르산, 팔미트산 및 옥살산으로 이루어진 군에서 선택되는 1종 이상인 것인 인탱글형 탄소나노튜브의 제조방법.
PCT/KR2018/014738 2017-12-26 2018-11-27 인탱글형 탄소나노튜브 및 이의 제조방법 WO2019132265A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019571542A JP6888223B2 (ja) 2017-12-26 2018-11-27 エンタングル型カーボンナノチューブ及びその製造方法
CN201880018122.XA CN110418767B (zh) 2017-12-26 2018-11-27 缠结型碳纳米管及其制备方法
EP18896577.6A EP3620434B1 (en) 2017-12-26 2018-11-27 Entangled type carbon nanotubes and manufacturing method therefor
US16/628,555 US11618679B2 (en) 2017-12-26 2018-11-27 Entangled-type carbon nanotubes and method for preparing the same
US18/115,184 US11987499B2 (en) 2017-12-26 2023-02-28 Entangled-type carbon nanotubes and method for preparing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0179768 2017-12-26
KR20170179768 2017-12-26
KR1020180146925A KR102379594B1 (ko) 2017-12-26 2018-11-26 인탱글형 탄소나노튜브 및 이의 제조방법
KR10-2018-0146925 2018-11-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/628,555 A-371-Of-International US11618679B2 (en) 2017-12-26 2018-11-27 Entangled-type carbon nanotubes and method for preparing the same
US18/115,184 Division US11987499B2 (en) 2017-12-26 2023-02-28 Entangled-type carbon nanotubes and method for preparing the same

Publications (1)

Publication Number Publication Date
WO2019132265A1 true WO2019132265A1 (ko) 2019-07-04

Family

ID=67067707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014738 WO2019132265A1 (ko) 2017-12-26 2018-11-27 인탱글형 탄소나노튜브 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2019132265A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150037661A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 탄소나노튜브 제조용 촉매 및 이를 이용하여 제조된 탄소나노튜브
KR20150142408A (ko) * 2014-06-12 2015-12-22 주식회사 엘지화학 담지 촉매, 이로부터 얻어진 탄소나노튜브 응집체 및 이들의 제조방법
KR20170011834A (ko) * 2015-07-24 2017-02-02 주식회사 엘지화학 탄소나노튜브 집합체 제조장치 및 이를 이용한 탄소나노튜브 집합체 제조방법
KR20170037454A (ko) * 2015-09-25 2017-04-04 주식회사 엘지화학 탄소 나노튜브 분산액 및 이의 제조방법
KR20170037458A (ko) * 2015-09-25 2017-04-04 주식회사 엘지화학 탄소 나노튜브 분산액 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150037661A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 탄소나노튜브 제조용 촉매 및 이를 이용하여 제조된 탄소나노튜브
KR20150142408A (ko) * 2014-06-12 2015-12-22 주식회사 엘지화학 담지 촉매, 이로부터 얻어진 탄소나노튜브 응집체 및 이들의 제조방법
KR20170011834A (ko) * 2015-07-24 2017-02-02 주식회사 엘지화학 탄소나노튜브 집합체 제조장치 및 이를 이용한 탄소나노튜브 집합체 제조방법
KR20170037454A (ko) * 2015-09-25 2017-04-04 주식회사 엘지화학 탄소 나노튜브 분산액 및 이의 제조방법
KR20170037458A (ko) * 2015-09-25 2017-04-04 주식회사 엘지화학 탄소 나노튜브 분산액 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3620434A4 *

Similar Documents

Publication Publication Date Title
WO2013105779A1 (ko) 카본나노튜브 및 그 제조방법
WO2013105784A1 (ko) 카본나노튜브 및 그 제조방법
WO2014051271A1 (en) Catalyst composition for the synthesis of multi-walled carbon nanotube
WO2015008988A1 (ko) 담지촉매, 이의 제조방법 및 이를 이용하여 제조된 탄소나노구조체의 2차구조물
WO2017126777A1 (ko) 카본나노튜브 펠렛 및 이의 제조방법
WO2020022822A1 (ko) 탄소나노튜브, 이의 제조방법 및 이를 포함하는 일차전지용 양극
WO2017126776A1 (ko) 카본나노튜브 펠렛 제조장치
WO2013095045A1 (ko) 탄소나노구조체의 신규한 2차구조물, 이의 집합체 및 이를 포함하는 복합재
WO2020111520A1 (en) Process for preparing a carbon nanotube sheet comprising a uniaxially aligned yarn and carbon nanotube sheet prepared thereby
WO2020022725A1 (ko) 탄소나노튜브의 제조방법
WO2015099462A1 (ko) 비공유결합 개질된 탄소구조체 및 이를 포함하는 탄소구조체/고분자 복합체
WO2018212414A1 (ko) 탄화규소 분말 및 그 제조방법
WO2017126775A1 (ko) 카본나노튜브 펠렛 및 이의 제조방법
WO2016024658A1 (ko) 탄소나노물질을 포함하는 상전이 복합체 및 이의 제조방법
WO2016032284A1 (ko) 봉형 산화 몰리브덴의 제조방법 및 산화 몰리브덴 복합체의 제조방법
WO2019132265A1 (ko) 인탱글형 탄소나노튜브 및 이의 제조방법
WO2018182111A1 (ko) 탄소나노튜브 분산액 및 이의 제조방법
WO2020105968A1 (ko) 단분자가 결합된 질화붕소 나노튜브와 이를 이용한 콜로이드 용액의 제조 방법
WO2021215578A1 (ko) 롤투롤 대면적 그래핀 합성 장치, 대면적 그래핀의 제조방법 및 산화그래핀 직물의 환원방법
WO2019132266A1 (ko) 탄소나노튜브 조성물 및 이의 제조방법
WO2018169366A1 (ko) 번들형 탄소나노튜브 및 이의 제조방법
WO2023063672A1 (ko) 금속-cnt 나노 복합재 제조방법, 상기 제조방법으로 제조된 금속-cnt 나노 복합재를 포함하는 수전해 촉매전극, 및 상기 수전해 촉매전극의 제조방법
WO2015047048A1 (ko) 탄소나노튜브 집합체의 벌크 밀도 조절 방법
WO2022097949A1 (ko) 탄소나노튜브의 연속 합성 방법
KR102379594B1 (ko) 인탱글형 탄소나노튜브 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018896577

Country of ref document: EP

Effective date: 20191203

ENP Entry into the national phase

Ref document number: 2019571542

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE