WO2019132143A1 - 복합피복 강관 제조방법 및 이에 의해 제조된 복합피복 강관 - Google Patents

복합피복 강관 제조방법 및 이에 의해 제조된 복합피복 강관 Download PDF

Info

Publication number
WO2019132143A1
WO2019132143A1 PCT/KR2018/007550 KR2018007550W WO2019132143A1 WO 2019132143 A1 WO2019132143 A1 WO 2019132143A1 KR 2018007550 W KR2018007550 W KR 2018007550W WO 2019132143 A1 WO2019132143 A1 WO 2019132143A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
corrosion
layer
cover member
heat insulating
Prior art date
Application number
PCT/KR2018/007550
Other languages
English (en)
French (fr)
Inventor
박종원
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Publication of WO2019132143A1 publication Critical patent/WO2019132143A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/142Laminating of sheets, panels or inserts, e.g. stiffeners, by wrapping in at least one outer layer, or inserting into a preformed pocket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0218Pretreatment, e.g. heating the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2503/00Polyurethanes

Definitions

  • the present invention relates to a method of manufacturing a composite-coated steel pipe and a composite-coated steel pipe produced thereby.
  • Various marine structures such as harbor structures, marine bridges, transport facilities, marine piers or marine parks are installed in the ocean.
  • a marine structure is generally provided with columns for supporting the structure.
  • a concrete structure is used for such a column, a pile made of a steel pipe is used in consideration of the ease of construction and the life span.
  • Fig. 1 is a schematic view showing a structure of a marine steel pipe structure.
  • a marine steel pipe structure 10 is installed so that a steel pipe file 11 is fixed to the bottom of a sea bed to support the upper structure.
  • These marine structures can be classified into the following areas based on the depth: the maritime atmosphere, the marine area, the tidal area, the sea area, and the sea floor area.
  • the natural erosion rate of each part is about 0.128 mm per year for the sea atmosphere part, about 0.272 mm per year for the droplet part, about 0.083 mm per year for the tidal part, about 0.090 mm per year for the seawater part, 0.075 mm in diameter. That is, it is known that the splash zone in which oxygen is sufficiently supplied is particularly susceptible to corrosion, and the corrosion rate is highest at the upper part of the high water level. Therefore, it can be seen that the anti-corrosion technology applied to the upper part of the trough is very important.
  • an anti-corrosion structure should be applied to the surface of the steel pipe bundle 11 of the steel pipe.
  • an electric technique and a coating and dressing technique are widely known. Painting and dressing techniques are applied to areas above sea level (A), which are submerged by seawater, and electric techniques are generally applied to sea areas (B) and seabed areas.
  • Such a method is widely applied because it can improve the durability by applying the corrosion resistance of the stainless steel in the marine environment to the steel pipe and can maintain the quality characteristics of a large amount of coated steel pipe manufactured at the factory.
  • An aspect of the present invention is to provide a method of manufacturing a composite coated steel pipe having improved durability by combining a conventional coating method and a metal member cover method and a composite coated steel pipe manufactured by the method.
  • a method of manufacturing a composite coated steel pipe includes the steps of (a) forming a corrosion-preventing layer by coating a surface of a steel pipe with a corrosion-protective paint, (b) Attaching a heat insulating member to at least a part of the steel pipe along the longitudinal direction of the steel pipe, and (c) welding the cover member on the heat insulating member by wrapping the corrosion preventive layer with the cover member.
  • the step (a) according to an embodiment of the present invention may further include a step of removing a foreign substance by a shot blast method on the surface of the steel pipe before forming the corrosion preventive layer.
  • the steel pipe may be heated to a temperature of 150 to 300 degrees, and then the corrosion-resistant layer may be formed by coating an anticorrosive coating on the surface while rotating the heated steel pipe .
  • the step (a) according to an embodiment of the present invention may further include drying and curing the anti-corrosion layer after the anti-corrosion layer is formed.
  • the corrosion preventing layer may be formed to have a predetermined width along the circumference of the steel pipe.
  • the cover member is formed of a metal plate, one end is positioned on the heat insulating member, and the other end is wrapped in the anti- Welded to one end.
  • the anticorrosive coating according to an embodiment of the present invention may be an epoxy resin coating or a polyurethane resin coating.
  • the anticorrosion layer formed by coating the anticorrosive coating may have a thickness of 50 ⁇ m to 100 ⁇ m.
  • the cover member according to an embodiment of the present invention may be made of stainless steel (STS) formed to a thickness of 0.4 mm to 0.8 mm.
  • STS stainless steel
  • a composite coated steel pipe includes a steel pipe, a corrosion preventing layer formed by coating an anticorrosive paint on the surface of the steel pipe, a heat insulating member attached to the corrosion preventing layer along the longitudinal direction of the steel pipe, And a cover member surrounding the cover member.
  • the steel pipe according to an embodiment of the present invention is formed in a cylindrical structure, and the corrosion prevention layer may have a predetermined width along the circumference of the steel pipe.
  • the cover member according to an embodiment of the present invention may be welded to the one end in a state where the cover member is formed of a metal plate, one end is positioned on the heat insulating member, and the other end is wrapped around the one end.
  • the corrosion prevention is prevented by forming the corrosion prevention layer on the outer surface of the steel pipe and the double structure of covering the corrosion prevention layer with the cover member, thereby prolonging the life of the steel pipe.
  • the corrosion prevention layer by attaching the heat insulating member to the corrosion prevention layer, it is possible to prevent the corrosion prevention layer from being deteriorated by welding heat in the process of welding both ends of the cover member surrounding the corrosion prevention layer.
  • FIG. 1 is a view schematically showing the structure of a marine steel pipe structure.
  • FIG. 2 is a schematic process flow diagram of a method of manufacturing a composite-coated steel pipe according to an embodiment of the present invention.
  • FIG 3 is an exploded perspective view of a composite-coated steel pipe according to an embodiment of the present invention.
  • FIG. 4 is a photograph showing evaluation of endurance performance of a conventional paint coated in a composite coated steel pipe manufacturing process according to an embodiment of the present invention.
  • FIG. 5 is a plan view of a composite coated steel pipe according to an embodiment of the present invention.
  • FIG. 2 is a schematic process flow diagram of a method of manufacturing a composite-coated steel pipe according to an embodiment of the present invention
  • FIG. 3 is an exploded perspective view of a composite-coated steel pipe according to an embodiment of the present invention.
  • a composite coated steel pipe manufacturing method includes a surface treatment step S10 of cleaning the surface of a steel pipe 100 to remove foreign substances, (S30) of forming a corrosion preventing layer 110 by coating an anticorrosive coating on the surface of the heated steel pipe 100, a step of forming a corrosion preventing layer 110 (S50) of attaching the heat insulating member (120) to the cured corrosion prevention layer (110), and a step (S50) of attaching the corrosion prevention layer (110) 130).
  • the surface treatment step S10 is a step of removing rust or foreign matter scattered on the surface of the steel pipe 100 before forming the corrosion preventive layer 110 on the steel pipe 100, ) Of the conventional paint can be increased to prevent the peeling of the painted paint.
  • the surface treatment of the steel pipe 100 may be performed by a method such as shot blast, grit blast, or sand blast.
  • the heating step S20 is performed before forming the corrosion inhibiting layer 110 on the surface-treated steel pipe 100, and the corrosion inhibiting layer 110 is formed on the steel pipe 100 to have a uniform thickness
  • the surface of the steel pipe 100 can be heated and maintained at a predetermined temperature.
  • the steel pipe 100 may be heated so that the surface of the steel pipe 100 is maintained at 150 to 300 DEG C.
  • the length direction of the steel pipe 100 is taken as a reference, It may be preferable to heat the central portion 101 of the substrate 100 to maintain the temperature at 150 to 200 deg.
  • the coating paint can not be smoothly melted and the corrosion prevention layer 110 may be defective. If the temperature exceeds 200 ° C The characteristics of the steel pipe 100 are changed, and the coated paint can be flowed down from the steel pipe 100.
  • the anti-corrosive layer forming step S30 is performed by coating an anticorrosive layer 110 on the surface of the heated steel pipe 100 to prevent the steel pipe 100 from being corroded by seawater .
  • FIG. 4 is a photograph showing evaluation of endurance performance of a conventional paint coated in a composite coated steel pipe manufacturing process according to an embodiment of the present invention.
  • the above endurance performance is evaluated by the NORSOK-M501 evaluation method, and the NORSOK-M501 evaluation method is an evaluation method for the 'surface preparation and protective coating' in the Norwegian maritime industry standard certification.
  • the evaluation method is a method for evaluating durability of a coating which is subjected to cycles of wetting, ultraviolet irradiation, spraying of salt water, drying and wetting. Scratches 21, 31 and 41 are generated on flat test pieces 20, 30 and 40, (22, 32, 42) of the red rust corrosion in the flat test specimens (20, 30, 40) are observed over time.
  • the corrosion prevention layer 20 'formed on the first plate test piece 20 is formed by a thermal spraying coating method and the corrosion prevention layer 30' of the second plate test piece 30 is formed on the glass flake glass flake coating method, and the corrosion prevention layer 40 'of the third plate test piece 40 is formed by an organic coating method.
  • the corrosion paint of the steel pipe 100 according to the embodiment of the present invention May be a glass flake type epoxy resin coating material.
  • the corrosion preventive layer 110 may be formed to have a predetermined width L along the periphery of the central portion 101 of the steel pipe 100 formed in a cylindrical structure.
  • the curing step S40 is a step of drying the steel pipe 100 to cure the corrosion preventive layer 110 coated on the surface of the steel pipe 100.
  • the steel pipe 100 is exposed to the natural atmosphere to form the corrosion preventive layer 110 ) Can be cured.
  • the step of attaching the insulating member (S50) is a step of attaching the heat insulating member 120 to the cured corrosion inhibiting layer (110).
  • the heat insulating member 120 may be formed to be long in parallel with the longitudinal direction of the steel pipe 100 and may be attached to the corrosion preventing layer 110 along the longitudinal direction of the steel pipe 100.
  • the thermal insulation member 120 has a width w of 10 cm and a thickness t of 2 mm and a length l of a glass fiber pad having a size corresponding to the width L of the corrosion- glass fiber pad and may be attached to the corrosion inhibiting layer 110 along the longitudinal direction of the steel pipe 100 by a bonding method.
  • Fiberglass is resistant to high temperatures and does not burn.
  • the heat insulating member 120 made of such a material may be coated on the cover member 130 to prevent the corrosion preventing layer 110 from being deteriorated by welding heat in the process of covering the corrosion preventing layer 110 with the cover member 130. [ May be adhered onto the corrosion-preventing layer 110 corresponding to the welded portion at both ends of the corrosion-resistant layer 110.
  • the metal covering step (S60) is a step of covering the corrosion preventing layer (110) with the cover member (130).
  • the cover member 130 may be formed of a metal plate made of stainless steel (STS) formed to a thickness of 0.4 mm to 0.8 mm and may be curved so as to cover the outer surface of the steel pipe 100 .
  • STS stainless steel
  • FIG. 5 shows a top view of a composite coated steel pipe according to an embodiment of the present invention.
  • one end 131 of the cover member 130 is positioned on the heat insulating member 120, and the other end 132 of the cover member 130 is formed of a steel pipe (not shown)
  • the steel pipe 100 may be covered with the corrosion resistant layer 110 by welding with the one end 131 in a state in which the corrosion prevention layer 110 is wrapped around the circumference of the steel pipe 100.
  • a steel pipe and a cover member are welded to each other in a state where a cover member is wrapped around a steel pipe in which a corrosion preventive layer is not formed, and a galvanic corrosion phenomenon occurs between dissimilar metals such as a carbon steel pipe and a stainless steel cover member, galvanic corrosion has frequently occurred and there has been a problem that the coated steel pipe is locally weak due to pitting corrosion, which is a type of corrosion that occurs locally.
  • the corrosion preventing layer 110 is formed on the surface of the steel pipe 100 and the heat insulating member 120 is attached to the corrosion preventing layer 110
  • the galvanic corrosion occurring between the steel pipe 100 and the cover member 130 can be prevented and the thermal insulating member 120 can be prevented from being damaged by the galvanic corrosion of the cover member 130.
  • the steel pipe 100 is primarily coated through the corrosion-inhibiting layer 110 and is secondarily covered with the cover member 130, so that corrosion effects of the respective structures are combined to prevent corrosion
  • a composite coated steel pipe with improved durability life can be manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)

Abstract

본 발명은, (a) 강관(steel pipe)의 표면에 방식도료(corrosion-protective paint)를 도장하여 부식 방지층을 형성하는 단계, (b) 상기 부식 방지층의 적어도 일부에 상기 강관의 길이 방향을 따라 열 절연성 부재를 부착시키는 단계, (c) 상기 부식 방지층을 커버부재로 감싸서 상기 열 절연성 부재 상에서 상기 커버부재를 접합 연결시키는 단계를 포함하는 복합피복 강관 제조방법 및 상기 제조방법에 의해 제조된 복합피복 강관에 관한 것이다.

Description

복합피복 강관 제조방법 및 이에 의해 제조된 복합피복 강관
본 기재는 복합피복 강관 제조방법 및 이에 의해 제조된 복합피복 강관에 관한 것이다.
해양에는 항만 구조물, 해상 교량, 수송요 시설, 해상부두 또는 해상 공원 등과 같은 다양한 해상 구조물이 설치되고 있다. 이러한 해상 구조물은 일반적으로 구조물을 지탱하기 위한 기둥이 설치된다. 이러한 기둥에는 콘크리트 구조물이 이용되기도 하지만, 시공의 용이성과 수명 등을 고려하여 강관(steel pipe)으로 이루어지는 파일(pile)을 이용하고 있다.
도 1에는 해상 강관 구조물의 구조를 개략적으로 나타낸 도면이 도시되어 있다.
도 1을 참조하면, 해상 강관 구조물(10)은 강관 파일(11)이 해저의 바닥에 고정되어 상부의 구조물을 지지하도록 설치된다.
이러한 해상 구조물은 심도를 기준으로 해상 대기 부분/ 비말대 부분/ 간만대 부분/ 해수중 부분/ 해저토중 부분으로 구분할 수 있다.
각 부분의 자연 부식 속도는 해상 대기 부분은 연간 약 0.128 mm, 비말대 부분은 연간 약 0.272 mm, 간만대 부분은 연간 약 0.083 mm, 해수중 부분은 연간 약 0.090 mm, 해저토중 부분은 연간 약 0.075 mm 정도 부식되는 것으로 조사된 바 있다. 즉, 산소가 충분하게 공급되는 비말대(splash zone)는 특히 부식이 심하게 발생하고, 그 중에서도 고수위(High Water Level) 상부에서 부식 속도는 최고가 되는 것으로 알려져 있다. 따라서, 간만대 상부 부분에 적용되는 부식 방지 기술이 매우 중요함을 알 수 있다.
상기 강관파일(11)은 해수에 의한 부식을 방지하기 위하여 강관 파일(11)의 비말대 부분 표면에 방식(anti-corrosion) 구조가 적용되어야 한다. 상기 강관 파일(11)에 적용되는 방식 기술로는 전기 방식기술과 도장 및 복장 방식기술이 널리 알려져 있다. 해수에 의해 잠기는 영역(A)인 간만대 이상에는 도장 및 복장 기술이 적용되고, 해중부(B)와 해저 토중부는 전기방식 기술을 적용하는 것이 일반적이다.
최근에는 기존의 항타 공법에서 재킷식(jacket type) 공법으로 변하는 추세에 맞추어 강관에 금속부재 커버, 예를 들어, 스테인리스(STS, stainless steel) 커버로 강관을 감싼 후, 이를 현장에 시공하는 방식이 이용되고 있다.
이러한 공법은 스테인리스가 해양 환경에서 가지는 내식성을 강관에 적용하여 내구성을 향상시킬 수 있고, 공장에서 제조되어 대량의 피복 강관의 품질 특성을 균일하게 유지할 수 있는 장점이 있어 널리 확대 적용되고 있는 실정이다.
그러나, 이러한 금속부재 피복 강관은, 강관과 금속부재의 용접에 의한 접합부를 중심으로 갈바닉 부식(galvanic corrosion), 즉, 이종 금속 간에 부식이 일어나는 현상을 유발시킬 수 있으며, 이에 따라 국부적으로 발생하는 부식의 한 형태인 공식(pitting corrosion)이 발생할 수 있어 국부적으로 취약할 수 있는 문제점이 있다.
본 발명의 일 측면은, 기존의 도장 방식과 금속부재 커버 방식을 조합하여 내구성이 향상된 복합피복 강관의 제조방법 및 이에 의해 제조된 복합피복 강관을 제공하는 것이다.
본 발명의 일 실시예에 따른 복합피복 강관 제조방법은, (a)강관(steel pipe)의 표면에 방식도료(corrosion-protective paint)를 도장하여 부식 방지층을 형성하는 단계, (b)상기 부식 방지층의 적어도 일부에 상기 강관의 길이 방향을 따라 열 절연성 부재를 부착시키는 단계, (c)상기 부식 방지층을 커버부재로 감싸서 상기 열 절연성 부재 상에서 상기 커버부재를 용접 연결시키는 단계를 포함한다.
본 발명의 일 실시예에 따른 상기 단계(a)는, 상기 부식 방지층을 형성하기 전에 상기 강관의 표면을 쇼트 블라스트(shot blast) 방법에 의해 이물질을 제거하는 단계를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 상기 단계(a)에서, 상기 강관을 150 도 내지 300 도의 온도로 가열시킨 후, 상기 가열된 강관을 회전시키면서 표면에 방식도료를 도장시켜 부식 방지층을 형성시킬 수 있다.
본 발명의 일 실시예에 따른 상기 단계(a)는, 상기 부식 방지층이 형성된 후에 상기 부식 방지층을 건조시켜 경화시키는 단계를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 상기 단계(a)에서, 상기 부식 방지층을 상기 강관의 둘레를 따라 소정의 폭을 가지도록 형성할 수 있다.
본 발명의 일 실시예에 따른 상기 단계(c)에서, 상기 커버부재는 금속판재로 형성되어 일단을 상기 열 절연성 부재 상에 위치시키고, 타단은 상기 일단과 마주보도록 상기 부식 방지층을 감싼 상태에서 상기 일단과 용접 연결시킬 수 있다.
본 발명의 일 실시예에 따른 상기 방식도료는 에폭시계 수지도료 또는 폴리우레탄계 수지도료일 수 있으며, 상기 방식도료를 도장하여 형성되는 상기 부식 방지층은, 50 μm 내지 100 μm 의 두께를 가질 수 있다.
본 발명의 일 실시예에 따른 상기 커버부재는, 0.4 mm 내지 0.8 mm 의 두께로 형성된 스테인리스강(STS, stainless steel)으로 이루어질 수 있다.
본 발명의 일 실시예에 따른 복합피복 강관은, 강관, 상기 강관의 표면에 방식도료가 도장되어 형성된 부식 방지층, 상기 부식 방지층에 상기 강관의 길이 방향을 따라 부착된 열 절연성 부재, 및 상기 부식 방지층을 감싸는 커버부재를 포함할 수 있다.
본 발명의 일 실시예에 따른 상기 강관은 원통형 구조로 형성되고, 상기 부식 방지층은 상기 강관의 둘레를 따라 소정의 폭을 가질 수 있다.
본 발명의 일 실시예에 따른 상기 커버부재는 금속판재로 형성되어 일단이 상기 열 절연성 부재 상에 위치되고, 타단은 상기 일단과 마주보도록 상기 부식 방지층을 감싼 상태에서 상기 일단과 용접 연결될 수 있다.
본 발명의 일 실시예에 따르면, 강관의 외면에 부식 방지층을 형성하고, 상기 부식 방지층을 커버부재로 감싸는 이중 구조를 통해 부식을 방지하여 강관의 수명을 연장시킬 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 부식 방지층에 열 절연성 부재를 부착함으로써 상기 부식 방지층을 감싸는 커버부재의 양단을 용접 연결하는 과정에서 용접열에 의해 부식 방지층이 열화되는 것을 방지할 수 있다.
도 1은 해상 강관 구조물의 구조를 개략적으로 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 복합피복 강관 제조방법의 개략적인 공정 흐름도이다.
도 3은 본 발명의 일 실시예에 따른 복합피복 강관의 분해 사시도이다.
도 4는 본 발명의 일 실시예에 따른 복합피복 강관 제조 과정에서 도장되는 방식도료의 소재별 내구성능을 평가한 사진이다.
도 5는 본 발명의 일 실시예에 따른 복합피복 강관의 평면도이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우 뿐만 아니라 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 2는 본 발명의 일 실시예에 따른 복합피복 강관 제조방법의 개략적인 공정 흐름도이며, 도 3은 본 발명의 일 실시예에 따른 복합피복 강관의 분해 사시도이다.
도 2 및 도 3을 함께 참조하면, 본 발명의 일 실시예에 따른 복합피복 강관 제조방법은, 강관(100)의 표면을 세척하여 이물질을 제거하는 표면 처리 단계(S10)와, 상기 세척된 강관(100)을 가열시키는 가열 단계(S20)와, 상기 가열된 강관(100)의 표면에 방식도료를 도장하여 부식 방지층(110)을 형성하는 부식 방지층 형성 단계(S30)와, 상기 부식 방지층(110)을 건조시켜 경화시키는 경화 단계(S40)와, 상기 경화된 부식 방지층(110)에 열 절연성 부재(120)를 부착시키는 절연성 부재 부착 단계(S50)와, 상기 부식 방지층(110)을 커버부재(130)로 감싸는 금속 피복 단계(S60)를 포함한다.
먼저, 상기 표면 처리 단계(S10)는 상기 강관(100)에 부식 방지층(110)을 형성하기 전, 상기 강관(100)의 표면에 산재된 녹이나 이물질을 제거하는 단계로서, 이를 통해 강관(100)에 대한 방식도료의 물리적 부착 강도를 높여 도장된 방식도료가 박리되는 것을 방지할 수 있다.
이러한 강관(100)의 표면 처리에는 쇼트 블라스트(shot blast), 그릿 블라스트(grit blast), 샌드 블라스트(sand blast) 등의 방법이 사용될 수 있다.
다음으로, 상기 가열 단계(S20)는 표면 처리된 강관(100)에 부식 방지층(110)을 형성하기 전에 수행되는 단계로서, 상기 강관(100)에 부식 방지층(110)을 균일한 두께로 형성하기 위해 강관(100)의 표면을 가열하여 소정의 온도 상태로 유지시킬 수 있다.
상기 가열 단계(S20)에서는 상기 강관(100)의 표면이 150∼300℃ 로 유지되도록 강관(100)을 가열시킬 수 있으며, 특히, 상기 강관(100)의 길이 방향을 기준으로 할 때, 상기 강관(100)의 중심부(101)는 150∼200℃ 로 유지되도록 가열시키는 것이 바람직할 수 있다.
만약, 상기 강관(100)의 중심부(101) 온도가 150℃ 미만인 경우에는, 도장되는 방식도료의 융해가 원활하게 이루어지지 못하여 부식 방지층(110)에 불량이 발생할 수 있으며, 온도가 200℃ 를 초과하는 경우에는 상기 강관(100)의 특성이 변화되고, 도장된 방식도료가 강관(100)으로부터 흘러내릴 수 있다.
다음으로, 상기 부식 방지층 형성 단계(S30)는, 해수에 의해 강관(100)이 부식되는 것을 방지하기 위해 상기 가열된 강관(100)의 표면에 방식도료를 도장하여 부식 방지층(110)을 형성하는 단계이다.
도 4는 본 발명의 일 실시예에 따른 복합피복 강관 제조 과정에서 도장되는 방식도료의 소재별 내구성능을 평가한 사진이다.
상기 내구성능의 평가는 NORSOK-M501 평가법에 의한 것이며, 상기 NORSOK-M501 평가법은 노르웨이 해상산업규격 인증 중 '표면 처리 및 보호 코팅(surface preparation and protective coating)' 에 관한 평가법이다.
상기 평가법은 습윤, 자외선 조사, 염수 분무, 건조 및 습윤 순서의 사이클을 거치게 되는 도장의 내구성 평가법으로, 평판 시험편(20, 30, 40)에 스크래치(21, 31, 41)를 발생시킨 후, 상기 사이클을 거쳐 평판 시험편(20, 30, 40)에서 적청(red rust) 부식이 확산되는 정도(22, 32, 42)를 시간에 따라 관찰하는 시험법이다.
도 4를 참조하면, 첫번째 평판 시험편(20)에 형성된 부식 방지층(20')은 용사(thermal spraying) 코팅 방식에 의해 형성된 것이고, 두번째 평판 시험편(30)의 부식 방지층(30')은 글래스 플레이크(glass flake) 코팅 방식에 의해 형성된 것이며, 세번째 평판 시험편(40)의 부식 방지층(40')은 유기 도장 방식에 의해 형성된 것이다.
이 때, 두번째 부식 방지층(30')에서 부식 크리프(corrosion creep)의 발생 길이(32)가 가장 짧게 나타나는 것을 확인할 수 있는 바, 본 발명의 일 실시예에 따른 강관(100)에 도장되는 방식도료는 글래스 플레이크 형 에폭시계 수지도료일 수 있다.
또한, 상기 부식 방지층(110)은 원통형 구조로 형성된 강관(100)의 중앙부(101)에서 그 둘레를 따라 소정의 폭(L)을 가지며 형성될 수 있다.
다음으로, 상기 경화 단계(S40)는, 강관(100)의 표면에 도장된 부식 방지층(110)을 경화시키기 위해 건조 시키는 단계로서, 상기 강관(100)을 자연 대기 상에 노출시켜 부식 방지층(110)을 경화시킬 수 있다.
다음으로, 상기 절연성 부재 부착 단계(S50)는, 상기 경화된 부식 방지층(110)에 열 절연성 부재(120)를 부착시키는 단계이다.
상기 열 절연성 부재(120)는 상기 강관(100)의 길이 방향에 평행하게 길게 형성되어 상기 부식 방지층(110)에 강관(100)의 길이 방향을 따라 부착시킬 수 있다.
상기 열 절연성 부재(120)는 폭(w)이 10cm 이고, 두께(t)가 2mm 이며, 길이(l)는 상기 부식 방지층(110)의 폭(L)에 대응되는 크기를 갖는 유리섬유 패드(glass fiber pad)일 수 있으며, 상기 부식 방지층(110)에 강관(100)의 길이 방향을 따라 본딩 방식에 의해 부착될 수 있다.
유리섬유는 고온에 잘 견뎌 불에 타지 않는 성질이 있다. 이러한 물질로 이루어지는 상기 열 절연성 부재(120)는, 상기 부식 방지층(110)에 커버부재(130)가 피복되는 과정에서 용접 열에 의해 부식 방지층(110)이 열화되는 것을 방지하기 위해 커버부재(130)의 양단이 용접되는 부위에 대응하는 부식 방지층(110) 상에 부착될 수 있다.
다음으로, 상기 금속 피복 단계(S60)는, 상기 부식 방지층(110)을 커버부재(130)로 피복시키는 단계이다.
상기 커버부재(130)는 0.4mm 내지 0.8mm 의 두께로 형성된 스테인리스강(STS, stainless steel)으로 이루어진 금속 판재로 이루어질 수 있으며, 상기 강관(100)의 외면을 감쌀 수 있도록 만곡된 형상으로 형성될 수 있다.
이와 관련하여, 도 5에는 본 발명의 일 실시예에 따른 복합피복 강관의 평면도가 도시되어 있다.
도 5를 참조하면, 전술한 바와 같은 형상으로 형성된 커버부재(130)는 일단(131)이 열 절연성 부재(120) 상에 위치되고, 타단(132)은 상기 일단(131)과 마주보도록 강관(100)의 둘레를 따라 부식 방지층(110)을 감싼 상태에서 상기 일단(131)과 용접 연결되는 방식으로 강관(100)을 피복시킬 수 있다.
즉, 상기 커버부재(130)는 열 절연성 부재(120) 상에서 용접 연결되므로 용접 연결 과정에서 상기 부식 방지층(110)이 용접 열에 의해 열화되는 것을 방지할 수 있다.
종래에는 부식 방지층이 형성되지 않은 강관에 커버부재를 감싼 상태에서 강관과 커버부재가 용접에 의해 접합되고, 접합된 부위를 중심으로 이종 금속, 예를 들어, 탄소 강관과 스테인리스강 커버부재 간에 갈바닉 부식(galvanic corrosion)이 빈번하게 발생하였고, 이에 따라 국부적으로 발생하는 부식의 한 형태인 공식(pitting corrosion)으로 인해 피복 강관이 국부적으로 취약한 문제점이 존재하였다.
또한, 강관에 도장층을 형성한 후에 커버부재를 용접시키는 경우에는 용접 열에 의해 도장층이 열화되는 문제점이 존재하였다.
그러나, 본 발명의 일 실시예에 따른 복합피복 강관의 제조방법은, 상기 강관(100)의 표면에 부식 방지층(110)을 형성하고, 상기 부식 방지층(110)에 열 절연성 부재(120)를 부착시킨 상태에서 커버부재(130)로 피복하게 되므로, 상기 강관(100)과 커버부재(130) 사이에 발생하는 갈바닉 부식을 방지할 수 있고, 상기 열 절연성 부재(120)는 커버부재(130)의 용접 열에 의해 부식 방지층(110)이 열화되는 것을 방지할 수 있다.
또한, 상기 부식 방지층(110)을 통해 강관(100)을 1차적으로 피복하고, 상기 커버부재(130)를 통해 2차적으로 피복함으로써 각 구성들의 방식 효과가 결합되어 부식되는 것을 이중으로 방지할 수 있으므로 내구 수명이 향상된 복합피복 강관을 제조할 수 있다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.
- 부호의 설명 -
100: 강관
110: 부식 방지층
120: 열 절연성 부재
130: 커버부재

Claims (12)

  1. (a) 강관(steel pipe)의 표면에 방식도료(corrosion-protective paint)를 도장하여 부식 방지층을 형성하는 단계;
    (b) 상기 부식 방지층의 적어도 일부에 상기 강관의 길이 방향을 따라 열 절연성 부재를 부착시키는 단계;
    (c) 상기 부식 방지층을 커버부재로 감싸서 상기 열 절연성 부재 상에서 상기 커버부재를 용접 연결시키는 단계;
    를 포함하는 복합피복 강관 제조방법.
  2. 제 1 항에 있어서,
    상기 단계(a)는,
    상기 부식 방지층을 형성하기 전에
    상기 강관의 표면을 쇼트 블라스트(shot blast) 방법에 의해 이물질을 제거하는 것을 포함하는 복합피복 강관 제조방법.
  3. 제 1 항에 있어서,
    상기 단계(a)에서,
    상기 강관을 150도 내지 300도의 온도로 가열시킨 후,
    상기 가열된 강관을 회전시키면서 표면에 방식도료를 도장시켜 부식 방지층을 형성시키는 복합피복 강관 제조방법.
  4. 제 1 항에 있어서,
    상기 단계(a)는,
    상기 부식 방지층이 형성된 후에
    상기 부식 방지층을 건조시켜 경화시키는 것을 포함하는 복합피복 강관 제조방법.
  5. 제 1 항에 있어서,
    상기 단계(a)에서,
    상기 부식 방지층을 상기 강관의 둘레를 따라 소정의 폭을 가지도록 형성시키는 복합피복 강관 제조방법.
  6. 제 1 항에 있어서,
    상기 단계(c)에서,
    상기 커버부재는 금속판재로 형성되어
    일단을 상기 열 절연성 부재 상에 위치시키고, 타단은 상기 일단과 마주보도록 상기 부식 방지층을 감싼 상태에서 상기 일단과 용접 연결시키는 복합피복 강관 제조방법.
  7. 제 1 항에 있어서,
    상기 방식도료는 에폭시계 수지도료 또는 폴리우레탄계 수지도료인 복합피복 강관 제조방법.
  8. 제 1 항에 있어서,
    상기 부식 방지층은,
    50μm 내지 100μm 의 두께로 형성되는 복합피복 강관 제조방법.
  9. 제 1 항에 있어서,
    상기 커버부재는,
    0.4mm 내지 0.8mm 의 두께로 형성된 스테인리스강(STS, stainless steel)으로 이루어지는 복합피복 강관 제조방법.
  10. 강관;
    상기 강관의 표면에 방식도료가 도장되어 형성된 부식 방지층;
    상기 부식 방지층에 상기 강관의 길이 방향을 따라 부착된 열 절연성 부재; 및
    상기 부식 방지층을 감싸는 커버부재;
    를 포함하는 복합피복 강관.
  11. 제 10 항에 있어서,
    상기 강관은 원통형 구조로 형성되고,
    상기 부식 방지층은 상기 강관의 둘레를 따라 소정의 폭을 가지는 복합피복 강관.
  12. 제 10 항에 있어서,
    상기 커버부재는 금속판재로 형성되어
    일단이 상기 열 절연성 부재 상에 위치되고,
    타단은 상기 일단과 마주보도록 상기 부식 방지층을 감싼 상태에서 상기 일단과 용접 연결되는 복합피복 강관.
PCT/KR2018/007550 2017-12-26 2018-07-04 복합피복 강관 제조방법 및 이에 의해 제조된 복합피복 강관 WO2019132143A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0180232 2017-12-26
KR1020170180232A KR102126740B1 (ko) 2017-12-26 2017-12-26 복합피복 강관 제조방법 및 이에 의해 제조된 복합피복 강관

Publications (1)

Publication Number Publication Date
WO2019132143A1 true WO2019132143A1 (ko) 2019-07-04

Family

ID=67063916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007550 WO2019132143A1 (ko) 2017-12-26 2018-07-04 복합피복 강관 제조방법 및 이에 의해 제조된 복합피복 강관

Country Status (2)

Country Link
KR (1) KR102126740B1 (ko)
WO (1) WO2019132143A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980081698A (ko) * 1997-04-25 1998-11-25 우수이유타로 다층 금속 파이프 및 이 금속 파이프의 피복 방법
JP2002054766A (ja) * 2000-08-09 2002-02-20 Nittetsu Corrosion Prevention Co Ltd 高耐食性金属被覆鋼管およびその製造方法
KR100968810B1 (ko) * 2010-01-18 2010-07-08 (주)그린폴리머 강관의 코팅장치와 코팅층이 형성된 강관
KR101569184B1 (ko) * 2014-09-04 2015-11-13 한국종합철관(주) 부동태 피막형 기초용 강관말뚝
KR20160134010A (ko) * 2015-05-14 2016-11-23 한국주철관공업주식회사 방식 처리된 철관의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980081698A (ko) * 1997-04-25 1998-11-25 우수이유타로 다층 금속 파이프 및 이 금속 파이프의 피복 방법
JP2002054766A (ja) * 2000-08-09 2002-02-20 Nittetsu Corrosion Prevention Co Ltd 高耐食性金属被覆鋼管およびその製造方法
KR100968810B1 (ko) * 2010-01-18 2010-07-08 (주)그린폴리머 강관의 코팅장치와 코팅층이 형성된 강관
KR101569184B1 (ko) * 2014-09-04 2015-11-13 한국종합철관(주) 부동태 피막형 기초용 강관말뚝
KR20160134010A (ko) * 2015-05-14 2016-11-23 한국주철관공업주식회사 방식 처리된 철관의 제조방법

Also Published As

Publication number Publication date
KR20190078364A (ko) 2019-07-04
KR102126740B1 (ko) 2020-06-25

Similar Documents

Publication Publication Date Title
US8293378B2 (en) Anti-corrosive coating for metal surfaces
US8697251B2 (en) Protective coating for metal surfaces
EP0177197B1 (en) Tendon of a tension leg platform and electrical corrosion protecting method of the same
CN103422095B (zh) 用于潮间带金属结构物的阴极保护方法
WO2019132143A1 (ko) 복합피복 강관 제조방법 및 이에 의해 제조된 복합피복 강관
US3992272A (en) Submerged offshore platform joint protection
CN113279330A (zh) 一种气相防蚀索体及气相防蚀钢绞线拉索
GB2203781A (en) Method for constructing inspectable welded joints which are resistant to marine biofouling and welded joints formed thereby
Thomason Offshore corrosion protection with thermal-sprayed aluminum
Ryen et al. Cathodic protection by distributed sacrificial anodes–Performance at Elevated Temperature and in Mud
CN211395651U (zh) 矿脂材料复层包覆护甲结构
CN216267993U (zh) 一种耐高温效果好的保温网
US20070141379A1 (en) Powder-coated spinning wire and fabrication method thereof
JP7333240B2 (ja) 鋼構築物の防食構造とその施工方法
CN216813187U (zh) 一种燃气穿墙管包覆防腐装置
CN109653239A (zh) 复合材料包覆隔离防腐的海工钢结构
US10913861B2 (en) Pipe and pipe support protection process and composition therefor
DE2839085A1 (de) Korrosionsschutzummantelung fuer erdverlegte stahlrohre
JPH0367411A (ja) 波付鋼管がい装ケーブル
JPS6164594A (ja) 耐久性及び敷設性の優れたテンシヨンレグプラツトフオ−ム脚管
GB2107422A (en) Reinforced pipes
Berendsen et al. The Protection of Different Parts of Offshore Structures under Construction
Cleland et al. Failure of vitreous enamelled coatings
Suzuki et al. Study of Corrosion-Protection Technologies in Splash and Tidal Zones Establishment of Corrosion-Protection Technologies to Provide Long-Term Durability at Low Cost for Offshore Steel Structures by Use of Methods for Wrapping of Highly Corrosion-Resistant Metallic Materials
KR20190136229A (ko) Grp 박리 방지를 위한 유체 통과용 구조물 내부 라이닝 방법 및 grp 라이너가 적용된 유체 통과용 구조물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897460

Country of ref document: EP

Kind code of ref document: A1