WO2019131706A1 - ポンプ - Google Patents

ポンプ Download PDF

Info

Publication number
WO2019131706A1
WO2019131706A1 PCT/JP2018/047729 JP2018047729W WO2019131706A1 WO 2019131706 A1 WO2019131706 A1 WO 2019131706A1 JP 2018047729 W JP2018047729 W JP 2018047729W WO 2019131706 A1 WO2019131706 A1 WO 2019131706A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
flat plate
pump
main surface
support member
Prior art date
Application number
PCT/JP2018/047729
Other languages
English (en)
French (fr)
Inventor
宏志 浅野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2019131706A1 publication Critical patent/WO2019131706A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/08Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having peristaltic action
    • F04B45/10Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having peristaltic action having plate-like flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/12Machines, pumps, or pumping installations having flexible working members having peristaltic action
    • F04B43/14Machines, pumps, or pumping installations having flexible working members having peristaltic action having plate-like flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive

Definitions

  • the present invention relates to a pump for transporting a fluid using bending vibration.
  • Patent Document 1 there is a pump having a structure shown in Patent Document 1.
  • the pump shown to patent document 1 is provided with the housing
  • the actuator is flat and is disposed in the inner space of the housing so as to face one wall of the housing.
  • the wall to which the actuator faces has a thin central portion and functions as a passive diaphragm.
  • An intake port is provided at the center of the passive diaphragm.
  • the outer edge of the actuator has an opening, which serves as an exhaust port.
  • an object of the present invention is to provide a pump capable of achieving higher flow rate and higher pressure than conventional configurations.
  • a pump according to the present invention includes a first piezoelectric element, a first diaphragm, a second diaphragm, a first support member, a side wall member, a pump chamber, a second support member, and a holding plate.
  • the first piezoelectric element is disposed on one main surface.
  • the second diaphragm is disposed to be opposed to and separated from the one main surface or the other main surface of the first diaphragm.
  • One end of the first support member vibratably supports the outer edge of the first diaphragm in the main surface direction of the first diaphragm.
  • the side wall member holds the other end of the first support member.
  • the pump chamber is formed by the first diaphragm, the second diaphragm, and the side wall member.
  • the second support member is installed on one main surface of the second diaphragm, and supports the second diaphragm in a region excluding the outer edge of the one main surface of the second diaphragm.
  • the holding plate holds the side wall member and the second support member.
  • the vibration of the first diaphragm and the vibration of the second diaphragm are substantially reverse in a wide region in the radial direction (direction from the center to the outer edge) of the first diaphragm and the second diaphragm in plan view. It becomes a phase. This generates a wide range of forces that cause fluid flow from the center to the outer edge of the pump chamber or from the outer edge to the center of the pump chamber, thereby improving the flow rate and pressure.
  • the pump according to the present invention comprises a first vent formed in the first support member and a second vent provided in the center of the second diaphragm.
  • a pump having the center of the second diaphragm as the suction port and the outer edge of the first diaphragm as the discharge port, or the outer edge of the first diaphragm as the suction port, and the center of the second diaphragm as the discharge port
  • the pump can be realized. And, high flow rate and high pressure can be realized in this pump.
  • the distance between the main surface of the first diaphragm in the central portion and the opening surface on the first diaphragm side of the second vent is the main surface of the first diaphragm in portions other than the central portion. It is preferable that the distance between the second diaphragm and the surface of the second diaphragm opposite to the main surface of the first diaphragm is larger than the distance between the second diaphragm and the surface of the second diaphragm facing the main surface of the first diaphragm.
  • the volume per unit area in the central portion of the pump chamber is larger than the volume per unit area in the portion other than the central portion of the pump chamber.
  • the second piezoelectric element has an opening in plan view from the first diaphragm to the second diaphragm.
  • the second piezoelectric element does not overlap the central portion of the second diaphragm in a plan view from the first diaphragm to the second diaphragm.
  • the second support member has a resilience smaller than that of the second diaphragm.
  • the second support member preferably has a mass equal to or greater than that of the second diaphragm.
  • the mass of the second support member is twice or more the mass of the second diaphragm.
  • the second support member has an opening at a position overlapping the second vent in plan view from the first diaphragm to the second diaphragm.
  • the opening area of the second vent is substantially increased. This smoothens the flow of gas at the second vent.
  • the first diaphragm has a recess at the central portion of the main surface facing the second diaphragm.
  • the volume per unit area in the central portion of the pump chamber is larger than the volume per unit area in the portion other than the central portion of the pump chamber.
  • the second piezoelectric element be disposed on one main surface or the other main surface of the second diaphragm.
  • the vibration of the first diaphragm and the vibration of the second diaphragm can be individually controlled, and the phase difference of these vibrations can be controlled.
  • a vibration adjusting portion disposed at least one of the outer edge portion of the first diaphragm and the outer edge portion of the second diaphragm.
  • the positions of the antinodes and nodes of the vibration (displacement) of the first diaphragm or the second diaphragm can be adjusted.
  • the vibration adjustment unit is, for example, a mass disposed on at least one of the outer edge portion of the first diaphragm and the outer edge portion of the second diaphragm.
  • the vibration adjusting portion is, for example, a recess formed in at least one of the outer edge portion of the first diaphragm and the outer edge portion of the second diaphragm.
  • the node of the vibration of the first diaphragm or the second diaphragm can be moved to the center side as compared with the aspect in which the vibration adjustment unit is not provided.
  • the fixed plate and the filter are provided.
  • the fixing plate is disposed apart from the other main surface of the holding plate on the other main surface of the holding plate that holds the front second support member on the one main surface.
  • the filter is disposed between the fixing plate and the holding plate and is breathable.
  • n the following structure in the pump of this invention. Assuming that m and n are positive odd numbers, m ⁇ n, the first diaphragm vibrates at m-order resonance, and the second diaphragm vibrates at n-order resonance.
  • n is preferably 3.
  • the first diaphragm and the second diaphragm have a circular outer shape, and the center of the first diaphragm and the center of the second diaphragm coincide with each other.
  • the fluid can be uniformly transported in the circumferential direction, and the efficiency of the pump is improved.
  • FIG. 1 is a side cross-sectional view showing the configuration of a pump 10 according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing the configuration of the pump 10 according to the first embodiment of the present invention.
  • FIG. 3 is a side cross-sectional view for explaining the operation principle of the pump 10 according to the first embodiment of the present invention.
  • FIG. 4 is a side sectional view showing the configuration of a pump 10A according to a second embodiment of the present invention.
  • FIG. 5 is a side sectional view showing the configuration of a pump 10B according to a third embodiment of the present invention.
  • FIG. 6 is a side cross-sectional view showing a configuration of a pump 10C according to a fourth embodiment of the present invention.
  • FIG. 1 is a side cross-sectional view showing the configuration of a pump 10 according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing the configuration of the pump 10 according to the first embodiment of the present invention.
  • FIG. 7 is a side cross-sectional view showing a configuration of a pump 10D according to a fifth embodiment of the present invention.
  • FIG. 8 is a side cross-sectional view showing a configuration of a pump 10E according to a sixth embodiment of the present invention.
  • FIG. 9 is a side cross-sectional view showing a configuration of a pump 10F according to a seventh embodiment of the present invention.
  • FIG. 1 is a side cross-sectional view showing a configuration of a pump 10 according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing the configuration of the pump 10 according to the first embodiment of the present invention.
  • the pump 10 includes a flat plate 20, a flat plate 30, a piezoelectric element 41, a second support member 50, a holding plate 60, a vibration adjusting member 70, a fixing plate 81, a side wall member 82, and a side wall member 83. , A side wall member 84, and a support member 201.
  • the flat plate 20 is a disk made of a predetermined material, thickness, and diameter. The material, thickness, and diameter are set based on the resonance frequency when the flat plate 20 vibrates by the piezoelectric element 41.
  • the flat plate 20 corresponds to the "first diaphragm" of the present invention
  • the piezoelectric element 41 corresponds to the "first piezoelectric element” of the present invention.
  • the flat plate 20 is not limited to a circular shape, but may be a substantially circular shape or a substantially regular polygon shape including a regular polygon shape. As a result, since the vibrations in the flat plate 20 are transmitted in a central axis symmetry, the energy loss of fluid transportation can be reduced. In particular, when the flat plate 20 is circular, the energy loss of fluid transportation can be reduced most effectively.
  • the piezoelectric element 41 is disposed on one main surface of the flat plate 20.
  • the piezoelectric element 41 is a disk.
  • the piezoelectric element 41 is composed of a cylindrical piezoelectric body and a pair of driving electrodes.
  • One of the pair of drive electrodes is disposed on one main surface of the piezoelectric body, and the other of the pair of drive electrodes is disposed on the other main surface of the piezoelectric body.
  • the center of the piezoelectric element 41 and the center of the flat plate 20 substantially coincide with each other.
  • the flat plate 30 is a disk made of a predetermined material, thickness, and diameter. The material, thickness, and diameter are set based on the resonant frequency of the passive vibration of the flat plate 20 where the flat plate 30 vibrates by the piezoelectric element 41.
  • the flat plate 30 corresponds to the "second diaphragm" of the present invention.
  • the thickness of the flat plate 30 is thinner than the thickness of the flat plate 20. Furthermore, it is preferable that the planar area of the flat plate 30 be larger than the planar area of the flat plate 20.
  • the flat plate 30 is not limited to a circular shape, and may be a substantially circular shape or a substantially regular polygon shape including a regular polygon shape. As a result, the vibrations in the flat plate 30 are transmitted symmetrically about the central axis, and the energy loss of fluid transportation can be reduced. In particular, when the flat plate 30 is circular, the energy loss of fluid transportation can be reduced most effectively.
  • a through hole 310 is formed at the center of the flat plate 30 from the one main surface side to the other main surface side.
  • the through hole 310 is cylindrical, and the central axis of the through hole 310 passes through the center of the flat plate 30.
  • the through hole 310 is not limited to a cylindrical shape, and may have another shape.
  • the flat plate 30 is opposed to the other main surface on the opposite side to the arrangement surface (one main surface) of the piezoelectric element 41 in the flat plate 20.
  • the flat plate 30 and the flat plate 20 are separated by a predetermined distance in the direction orthogonal to the flat plate surface.
  • An area where the flat plate 20 and the flat plate 30 face each other at a distance functions as a substantial pump chamber 100 of the pump 10.
  • the center of the flat surface of the flat plate 30 substantially coincides with the center of the flat surface of the flat plate 20, and the center substantially coincides with the center PO of the pump chamber 100.
  • the second support member 50 includes a first column 51 and a second column 52.
  • the first column 51 and the second column 52 are cylindrical, and the diameter of the second column 52 is shorter than the diameter of the first column 51.
  • the first column 51 and the second column 52 are stacked. That is, the second support member 50 is formed of a cylinder whose diameter is different halfway along the height direction.
  • the first column 51 and the second column 52 may be separately formed and joined, or may be integrally formed.
  • the second support member 50 has a resilience smaller than that of the flat plate 30.
  • the mass of the second support member 50 is equal to or greater than the mass of the flat plate 30, and is preferably twice or more.
  • a through hole 510 is formed which penetrates from the flat plate surface on the first pillar 51 side of the second support member 50 to the flat plate surface on the second pillar 52 side.
  • the through hole 510 is cylindrical, and the central axis of the through hole 510 passes through the center of the second support member 50 in plan view.
  • the second support member 50 is connected to the other main surface (a surface opposite to the surface facing the flat plate 20) of the flat plate 30. At this time, the flat surface on the second column 52 side is in contact with the other main surface of the flat plate 30. Further, in the plan view, the through hole 510 of the second support member 50 overlaps the through hole 310 of the flat plate 30. That is, the through holes 310 and the through holes 510 communicate with each other. Furthermore, the central axis of the through hole 510 and the central axis of the through hole 310 substantially coincide with each other.
  • the bonding area between the second support member 50 and the flat plate 30 is preferably large, but the outer periphery of the bonding surface is preferably about 1/3 or less of the diameter of the flat plate 20 in plan view.
  • the diameter of the through hole 510 is preferably smaller than the diameter of the through hole 310.
  • the holding plate 60 is made of a material having a predetermined elasticity (spring property).
  • a through hole 610 is formed at the center of the holding plate 60.
  • the holding plate 60 is connected to the flat surface of the second support member 50 on the side of the first column 51. At this time, an end (inner peripheral end) on the through hole 610 side of the holding plate 60 is in contact with the second support member 50.
  • the through holes 610 of the holding plate 60 overlap the through holes 310 of the flat plate 30 and the through holes 510 of the second support member 50. That is, the through hole 310, the through hole 510, and the through hole 610 communicate with each other. Furthermore, the central axis of the through hole 610, the central axis of the through hole 510, and the central axis of the through hole 310 substantially coincide with each other.
  • the through holes 310, the through holes 510, and the holes communicating with the through holes 610 correspond to the "second vent" of the present invention.
  • the vibration adjusting member 70 is annular and has a predetermined mass.
  • the vibration adjusting member 70 is disposed on the other main surface (a surface opposite to the surface facing the flat plate 20) of the flat plate 30.
  • the vibration adjusting member 70 is disposed near the outer edge OE 30 of the flat plate 30.
  • the fixing plate 81 is made of a material having high rigidity.
  • the fixing plate 81 is disposed on the opposite side to the second support member 50 with reference to the holding plate 60.
  • the fixing plate 81 faces the holding plate 60, and the fixing plate 81 and the holding plate 60 are separated by a predetermined distance.
  • the fixing plate 81 is formed with a plurality of through holes 810 penetrating from one main surface to the other main surface.
  • the plurality of through holes 810 are formed so as to be symmetrical with respect to the central axis of the fixing plate 81 in plan view.
  • the opening area of each of the plurality of through holes 810 is preferably smaller than the smallest opening area of the through holes 310, the through holes 510, and the through holes 610.
  • the sum of the open areas of the plurality of through holes 810 be larger than the smallest open area of the through holes 310, the through holes 510, and the through holes 610. Thereby, the fall of the flow rate by having a plurality of penetration holes 810 can be controlled.
  • Side wall member 82 and side wall member 83 are made of a material having high rigidity.
  • the side wall member 82 and the side wall member 83 are annular.
  • the side wall member 82 is disposed between the fixing plate 81 and the holding plate 60.
  • the side wall member 82 is joined to the outer edge portion of the fixing plate 81 and the outer edge portion of the holding plate 60.
  • a space 820 surrounded by the holding plate 60, the fixing plate 81, and the side wall member 82 is formed.
  • the side wall member 83 is disposed on the side of the holding plate 60 opposite to the side on which the side wall member 82 is disposed.
  • the side wall member 83 is joined to the outer edge portion of the holding plate 60.
  • the flat plate 30, the second support member 50, and the vibration adjustment member 70 are disposed in the central space 830 of the side wall member 83.
  • Side wall member 84 is annular.
  • the side wall member 84 is in contact with and joined to a surface of the side wall member 83 opposite to the surface in contact with the holding plate 60.
  • the inner peripheral end of the side wall member 84 is connected to the outer edge OE 20 of the flat plate 20 via the support member 201.
  • the side wall member 82, the outer edge portion of the holding plate 60, and the side wall member 83 are side surfaces
  • the fixing plate 81 is one main surface
  • the flat plate 20 is one main surface
  • the support member 201, and the side wall member 84 are the other main surface.
  • the support member 201 has a shape having a predetermined elasticity, for example, a shape having a spring property.
  • the support member 201 is formed substantially uniformly over the entire circumference of the outer edge OE 20 of the flat plate 20. By this configuration, the flat plate 20 is supported by the housing with the outer edge OE 20 being a free end of vibration.
  • the support member 201 corresponds to the "first support member" in the present invention.
  • the flat plate 20, the support member 201, and the side wall member 84 are integrally formed.
  • an opening is provided in one flat plate member by laser processing or the like so as to form the support member 201.
  • the flat plate 20, the support member 201, and the side wall member 84 are easily integrally formed.
  • the flat plate 20 can be easily arrange
  • the openings formed at the locations of the support member 201 become a plurality of through holes 210.
  • the through hole 210 corresponds to the "first vent" of the present invention.
  • the pump chamber 100 communicates with the outside through the through hole 210 provided on the outer side of the outer edge OE 20 of the flat plate 20 on the flat plate 20 side.
  • the pump chamber 100 communicates with the outside through the through hole 310, the through hole 510, the through hole 610, the space 820, and the through hole 810 on the flat plate 30 side.
  • FIG. 3 is a side cross-sectional view for explaining the operating principle of the pump 10 according to the first embodiment of the present invention.
  • FIG. 3 is a diagram in which the vibrations of the flat plate 20 and the flat plate 30 are added by thick broken lines and the flow of fluid is added by arrows with respect to FIG.
  • a drive circuit (not shown) drives the piezoelectric element 41.
  • the flat plate 20 As the piezoelectric element 41 is driven at a predetermined resonance frequency, the flat plate 20 generates bending vibration according to the resonance frequency.
  • the flat plate 30 causes bending vibration at the resonant frequency of the passive vibration of the flat plate 20.
  • the bending vibration is a vibration displaced in a direction orthogonal to the main surface of the flat plate 20.
  • the resonant frequency of the vibration of the flat plate 20 and the resonant frequency of the vibration of the flat plate 30 are set to be substantially the same.
  • the shape, material, etc. of the flat plate 20 are determined so that the center of the flat plate 20 becomes an antinode of the vibration and the flat plate 20 becomes a vibration of primary resonance in the radial direction.
  • the shape, material, etc. of the flat plate 30 are determined so that the center of the flat plate 30 becomes an antinode of vibration and the flat plate 30 becomes a vibration of tertiary resonance in the radial direction. .
  • the vibration of the flat plate 30 is a passive vibration of the vibration of the flat plate 20, and the temporal phase of the vibration of the flat plate 30 is delayed by ⁇ / 2 from the temporal phase of the vibration of the flat plate 20.
  • the flat plate 30 generates a bending vibration with respect to the flat plate 20 having a spatial and temporal phase difference of ⁇ / 2. Therefore, the difference in amplitude between the flat plate 20 and the flat plate 30 is a traveling wave in the direction (radial direction) from the center PO to the outer edges OE 20 and OE 30. Therefore, in the pump chamber 100, a force is generated to move the fluid from the center toward the outer edge, and the fluid flows from the center PO of the flat plate 20 and the flat plate 30 toward the outer edges OE20, OE30. That is, as shown by the arrows in FIG.
  • the pump 10 sucks in fluid from the outside through the through hole 810, and the pump chamber 100 through the space 820, the through hole 610, the through hole 510, and the through hole 310. Inhale fluid inside. Then, the pump 10 conveys the fluid sucked into the pump chamber 100 from the center of the pump chamber 100 to the outer edge, and discharges the fluid from the through hole 210 to the outside.
  • the region where the force for moving the fluid is generated can be wider than in the conventional configuration, so the pump effect is improved as compared with the conventional configuration, and high flow rate and high pressure can be realized.
  • the vibration FW32 on the outer edge side of the flat plate 30 can be increased. Thereby, the pump 10 can realize higher diversion and higher pressure.
  • the flat plate 20 is supported by the support member 201 having a spring property, and the flat plate 30 is supported by the holding plate 60 having the spring property via the second support member 50.
  • the vibration of the flat plate 20 and the vibration energy of the flat plate 30 are prevented from leaking to the housing. Therefore, the pump 10 can realize high efficiency and can suppress the destabilization of the characteristics due to the vibration leaking into the housing.
  • the stress concerning the junction part of the flat plate 30 and the 2nd support member 50 can be reduced by using the holding plate 60 which has spring property. Therefore, breakage of the joint can be suppressed, and the reliability of the pump 10 is improved.
  • the pump 10 can be miniaturized.
  • the outer edge of the second support member 50 is preferably in a region corresponding to 1/3 or less of the diameter of the flat plate 20 in the flat plate 30.
  • the fluid flows into the through holes 610, the through holes 510, and the through holes 310 through the plurality of through holes 810 and the spaces 820. Therefore, even if the opening areas of the through holes 610, the through holes 510, and the through holes 310 are increased, the inflow of foreign matter into the pump chamber 100 can be suppressed. This increases the reliability of the pump 10.
  • the pump 10 is drawn from the center of the pump chamber 100 and discharged from the outer edge.
  • the relationship of the phase delay of the vibration of the flat plate 20 and the flat plate 30 is made reverse to the above relationship, the pump 10 sucks in from the outer edge of the pump chamber 100 and discharges it from the center.
  • FIG. 4 is a side sectional view showing the configuration of a pump 10A according to a second embodiment of the present invention.
  • the pump 10A according to the second embodiment is different from the pump 10 according to the first embodiment in the height of the side wall member 83, and the side wall member 85 and the side wall member 86 are added. It differs in the point which was done.
  • the other configuration of the pump 10A is the same as that of the pump 10, and the description of the same portions will be omitted.
  • the height of the side wall member 83 is substantially the same as the height of the second support member 50.
  • Side wall member 85 is annular.
  • the side wall member 85 abuts on and is joined to a surface of the side wall member 83 opposite to the surface that abuts on the holding plate 60.
  • the height (thickness) of the side wall member 82 is substantially the same as the thickness of the flat plate 30.
  • the inner peripheral end of the side wall member 85 is connected to the outer edge OE 30 of the flat plate 30 via the support member 301.
  • the support member 301 has a shape having a predetermined elasticity, for example, a shape having a spring property.
  • the support member 301 is formed substantially uniformly over the entire circumference of the outer edge OE 30 of the flat plate 30. By this configuration, the flat plate 30 is supported by the housing with the outer edge OE 30 being a free end of vibration.
  • the support member 301 is a third support member different from the second support member of the present invention.
  • Side wall member 86 is annular.
  • the side wall member 86 is disposed between the side wall member 85 and the side wall member 84 and joined to each other.
  • the height of the side wall member 86 is substantially the same as the height of the pump chamber 100, that is, the distance between the flat plate 20 and the flat plate 30.
  • the flat plate 30 can be accurately disposed on the casing by the side wall member 85 and the support member 301 in a state where the outer edge OE 30 is a free end of vibration. Further, the default height of the pump chamber 100 (the distance between the flat plate 20 and the flat plate 30 when the flat plate 20 and the flat plate 30 are not vibrating) can be realized with high accuracy by the side wall member 86.
  • FIG. 5 is a side cross-sectional view showing a configuration of a pump 10B according to a third embodiment of the present invention.
  • the pump 10B according to the third embodiment is different from the pump 10 according to the first embodiment in the configurations of the flat plate 20B, the flat plate 30B, and the second support member 50B.
  • the other configuration of the pump 10B is the same as that of the pump 10, and the description of the same parts will be omitted.
  • the flat plate 20 B has a recess 23.
  • the recess 23 has a shape in which the surface (the other main surface) opposite to the flat plate 30B in the flat plate 20B is recessed.
  • the recess 23 is formed in a predetermined area including the center of the flat plate 20B.
  • the second support member 50 ⁇ / b> B has a recess 53 in the first column 51.
  • the recess 53 has a shape that is recessed from the surface of the first column 51 opposite to the side connected to the second column 52.
  • the recess 53 is formed in a predetermined area including the center of the second support member 50B.
  • the recess 53 of the second support member 50B faces the recess 23 of the flat plate 20B.
  • a through hole 510 is formed at the bottom of the recess 53.
  • the flat plate 30 B has a recess 33.
  • the recess 33 is realized by bending the flat plate 30B from the one main surface opposite to the flat plate 20B in the flat plate 30B toward the other main surface.
  • the recess 33 of the flat plate 30B covers the surface of the recess 53 of the second support member 50B, and is opposed to the recess 23 of the flat plate 20B.
  • the volume of the through hole 310B that forms the central vent of the pump chamber 100 can be increased.
  • the distance between the flat plate 20B and the flat plate 30B in the central region of the flat plate 20B and the flat plate 30B is increased. Thereby, the coupling between the vibration of the flat plate 20B and the vibration of the flat plate 30B can be further suppressed.
  • the bonding area between the flat plate 30B and the second support member 50B can be increased, and the bonding surface has a three-dimensional shape instead of a two-dimensional shape. Thereby, the joint strength between the flat plate 30B and the second support member 50B is improved, and the reliability of the pump 10B is improved.
  • the fitting of these becomes easy because the recessed part 33 of the flat plate 30B is a shape which covers the surface of the recessed part 53 of the 2nd support member 50B. This facilitates alignment between the flat plate 30B and the second support member 50B at the time of assembly of the pump 10B.
  • each recess has a tapered shape
  • the wall surface forming the flow path becomes smooth, and the loss of pressure can be reduced.
  • At least one of the recess 23 of the flat plate 20B and the recess 33 of the flat plate 30B and the recess 53 of the second support member 50B may be formed, and it is more preferable that both are formed.
  • FIG. 6 is a side cross-sectional view showing a configuration of a pump 10C according to a fourth embodiment of the present invention.
  • a pump 10C according to the fourth embodiment is different from the pump 10 according to the first embodiment in that a piezoelectric element 42 is added.
  • the other configuration of the pump 10C is the same as that of the pump 10, and the description of the same parts will be omitted.
  • the piezoelectric element 42 is disposed on the other main surface of the flat plate 30.
  • the piezoelectric element 42 has an annular shape.
  • the central opening of the piezoelectric element 42 overlaps the through hole 310 of the flat plate 30.
  • the through hole 310 of the flat plate 30 is located in the central opening of the piezoelectric element 42.
  • the piezoelectric element 42 is composed of a cylindrical piezoelectric body and a pair of driving electrodes.
  • One of the pair of drive electrodes is disposed on one main surface of the piezoelectric body, and the other of the pair of drive electrodes is disposed on the other main surface of the piezoelectric body.
  • the center of the piezoelectric element 42 and the center of the flat plate 30 substantially coincide with each other.
  • the flat plate 30 As the piezoelectric element 42 is driven at a predetermined resonant frequency, the flat plate 30 generates bending vibration according to the resonant frequency. At this time, the temporal phase of the sinusoidal drive signal provided to the piezoelectric element 42 by the drive circuit is ⁇ / 2 behind the temporal phase of the sinusoidal drive signal provided to the piezoelectric element 41.
  • the aspect in which the piezoelectric element 42 is disposed on the surface of the flat plate 30 opposite to the surface facing the flat plate 20 is shown.
  • the piezoelectric element 42 can be disposed on the surface of the flat plate 30 facing the flat plate 20.
  • the volume of the pump chamber 100 can be increased by disposing the piezoelectric element 42 on the surface of the flat plate 30 opposite to the surface facing the flat plate 20, and the flat plate 20, the flat plate 30, and the piezoelectric element 42 Contact can be suppressed.
  • FIG. 7 is a side sectional view showing the configuration of a pump 10D according to a fifth embodiment of the present invention.
  • a pump 10D according to the fifth embodiment differs from the pump 10 according to the first embodiment in that a vibration adjusting member 72 is added.
  • the other configuration of the pump 10D is the same as that of the pump 10, and the description of the same portions will be omitted.
  • the vibration adjusting member 72 is annular and has a predetermined mass.
  • the vibration adjusting member 72 is disposed on one main surface (a surface opposite to the surface facing the flat plate 30) of the flat plate 20.
  • the vibration adjusting member 72 is disposed in the vicinity of the outer edge OE 20 of the flat plate 20.
  • the antinodes and nodes of the flat plate 20 and the antinodes and nodes of the flat plate 30 can be adjusted, and the antinodes of the flat plate 20 and the nodes of the flat plate 30 in the radial direction coincide with each other with high accuracy.
  • the belly of the plate 30 can be matched with high accuracy. Therefore, the pump 10D can realize high flow rate and high pressure more reliably.
  • FIG. 8 is a side cross-sectional view showing a configuration of a pump 10E according to a sixth embodiment of the present invention.
  • a pump 10E according to the sixth embodiment differs from the pump 10 according to the first embodiment in that a thin portion 220 is formed on the flat plate 20.
  • the other configuration of the pump 10E is the same as that of the pump 10, and the description of the same portions will be omitted.
  • the thin portion 220 is annular.
  • the thin portion 220 is formed in the vicinity of the outer edge OE 20 of the flat plate 20.
  • the radial position of the antinode and node excluding the center antinode in the vibration generated in the flat plate 20 can be adjusted.
  • the node in the vibration of the flat plate 20 is made closer to the center of the flat plate 20, as compared with an embodiment in which the thin portion 220 is not formed. It can be moved. Then, by adjusting the thickness of the thin portion 220, the movement amount of the node can be adjusted.
  • the thin portion 220 corresponds to the "vibration adjusting portion" in the present invention.
  • the antinodes and nodes of the flat plate 20 and the antinodes and nodes of the flat plate 30 can be adjusted, and the antinodes of the flat plate 20 and the nodes of the flat plate 30 in the radial direction coincide with each other with high accuracy.
  • the belly of the plate 30 can be matched with high accuracy. Therefore, the pump 10E can realize high flow rate and high pressure more reliably.
  • FIG. 9 is a side sectional view showing a configuration of a pump 10F according to a seventh embodiment of the present invention.
  • a pump 10F according to the seventh embodiment is different from the pump 10 according to the first embodiment in that a filter 90 is added.
  • the other configuration of the pump 10F is the same as that of the pump 10, and the description of the same portions will be omitted.
  • the filter 90 is flat and is realized by a lightweight porous material such as felt, sponge or the like having desired air permeability.
  • the filter 90 is disposed in the space 820.
  • the filter 90 preferably overlaps at least the through hole 610 and also overlaps the plurality of through holes 810.
  • the foreign matter flowing from the through hole 810 is captured by the filter 90.
  • foreign matter can be prevented from flowing into the pump chamber 100 through the through hole 610, the through hole 510, and the through hole 310. Therefore, the reliability of the pump 10F is enhanced. Further, it is possible to suppress the generation of abnormal noise due to air vibration when air is propagated through the space 820.
  • the flat plate 20 vibrates at the primary resonance and the flat plate 30 vibrates at the third resonance.
  • m and n may be positive odd numbers, and m ⁇ n
  • the flat plate 20 may have m-order resonance
  • the flat plate 30 may have n-order resonance.
  • the flat plate 20 may be resonated n-th and the flat plate 30 may be resonated m-th.
  • the region of the reverse phase can be widened, which is more effective.
  • the flat plate 30 side communicates with the outside at the center of the pump chamber 100, and the flat plate 20 side communicates with the outside at the outer edge of the pump chamber 100.
  • the flat plate 30 side may communicate with the outside at the outer edge of the pump chamber 100, and the flat plate 20 side may communicate with the outside at the center of the pump chamber 100.
  • positions the piezoelectric element 41 in the surface on the opposite side to the surface facing the flat plate 30 in the flat plate 20 was shown.
  • the piezoelectric element 41 can be disposed on the surface of the flat plate 20 facing the flat plate 30.
  • the volume of the pump chamber 100 can be increased by arranging the piezoelectric element 41 on the side opposite to the side facing the flat plate 30 in the flat plate 20, and the flat plate 20, the piezoelectric element 41, and the flat plate 30 by vibration. Contact can be suppressed.
  • the vibration adjusting member is formed to have the same thickness and the same width over the entire circumference, but the thickness and the width may be partially different. In addition, it may be a shape in which a part on the circumference is divided. However, the vibration adjusting member preferably has the same shape over the entire circumference. The same applies to the recess for vibration adjustment.
  • the flat plate 20 has a diameter of 11.3 mm and a thickness of 0.3 mm.
  • the piezoelectric element 41 has a diameter of 10.8 mm and a thickness of 0.1 mm.
  • the flat plate 30 has an outer diameter (diameter) of 13.0 mm and a thickness of 0.08 mm.
  • the piezoelectric element 42 has an outer diameter (diameter) of 10.8 mm, an inner diameter (diameter) of 5.0 mm, and a thickness of 0.08 mm.
  • the outer diameter of the case is about 20 mm. Note that these dimensions are merely examples, and other dimensions may be used as long as the above-described relationship between the shapes of the flat plate 20 and the flat plate 30, the relationship of resonance, and the like can be realized.
  • the pump which concerns on each above-mentioned embodiment is applicable to a sphygmomanometer, a breast pump, a negative pressure closing therapy apparatus etc., for example.
  • the device performance of a sphygmomanometer, a breast pump, a negative pressure closing therapy apparatus etc. improves by using the pump which concerns on the above-mentioned each embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

ポンプ(10)は、平板(20)、平板(30)、圧電素子(41)、支持部材(201)、側壁部材(82、83、84、85、86)、ポンプ室(100)、第2支持部材(50)、および、保持板(60)を備える。平板(20)は、圧電素子(41)が配置されている。平板(30)は、平板(20)に対向して離間して、配置されている。ポンプ室(100)は、平板(20)と平板(30)との間に形成されている。第2支持部材(50)は、平板(30)に設置され、平板(30)を保持する。支持板(60)は、第2支持部材(50)を保持する。

Description

ポンプ
 この発明は、屈曲振動を用いて流体を搬送するポンプに関する。
 従来、例えば、特許文献1に示す構造を有するポンプがある。特許文献1に示すポンプは、内部空間を有する筐体と、アクチュエータとを備える。
 アクチュエータは、平板状であり、筐体の内部空間に、筐体の1つの壁に対向して配置されている。アクチュエータが対向する壁は、中央部の厚みが薄く、受動振動板として機能する。受動振動板の中央には、吸気口が設けられている。また、アクチュエータの外縁には開口があり、排気口となっている。
 アクチュエータが振動すると、アクチュエータと受動振動板との間のポンプ室の圧力変化によって、受動振動板が振動する。吸気と排気は、これらアクチュエータの振動と受動振動板の振動との組合せによって実現される。
特許第5177331号明細書
 しかしながら、特許文献1に示すようなポンプでは、受動振動板の外縁が筐体に固定されている等の理由によって、高い流量や高い圧力を得難い。
 したがって、本発明の目的は、従来構成よりも高い流量と高い圧力を実現可能なポンプを提供することにある。
 この発明のポンプは、第1圧電素子、第1振動板、第2振動板、第1支持部材、側壁部材、ポンプ室、第2支持部材、保持板を備える。第1振動板は、第1圧電素子が一方主面に配置されている。第2振動板は、第1振動板の一方主面または他方主面に対向して離間して配置されている。第1支持部材は、一端が第1振動板の外縁を第1振動板の主面方向に振動可能に支持する。側壁部材は、第1支持部材の他端を保持する。ポンプ室は、第1振動板と第2振動板と側壁部材により形成されている。第2支持部材は、第2振動板の一方主面に設置され、第2振動板の一方主面の外縁を除く領域で第2振動板を支持する。保持板は、側壁部材と第2支持部材とを保持する。
 この構成では、平面視において、第1振動板および第2振動板の放射方向(中心から外縁に向かう方向)の広い領域で、第1振動板の振動と第2振動板の振動とが略逆相になる。これにより、ポンプ室の中心から外縁に向かう流体の流れ、または、ポンプ室の外縁から中心に向かう流体の流れを生じさせる力が広範囲で生じ、流量および圧力が向上する。
 また、この発明のポンプは、第1支持部材に形成された第1通気口と、第2振動板の中央部に設けられた第2通気口とを備えることが好ましい。
 この構成では、第2振動板の中央を吸入口とし、第1振動板の外縁を吐出口とするポンプ、または、第1振動板の外縁を吸入口とし、第2振動板の中央を吐出口とするポンプを実現できる。そして、このポンプにおいて、高流量および高圧力を実現できる。
 また、この発明のポンプでは、中央部における第1振動板の主面と第2通気口の第1振動板側の開口面との距離は、中央部以外の部分における第1振動板の主面と第2振動板における第1振動板の主面に対向する面との距離よりも大きいことが好ましい。
 この構成では、ポンプ室の中央部における単位面積当たりの体積がポンプ室の中央部以外の部分における単位面積当たりの体積よりも大きくなる。これにより、第2通気口付近の流量の低下を抑制でき、流量を更に高くできる。
 また、この発明のポンプでは、第1振動板から第2振動板に向けて平面視して、第2圧電素子は、開口を有していることが好ましい。
 この構成では、第2振動板を振動させながら、第2通気口を第2振動板の中央部に有する構成が実現される。
 また、この発明のポンプでは、第2圧電素子は、前記第1振動板から前記第2振動板に向けて平面視して、前記第2振動板の中央部に重ならないことが好ましい。
 この構成では、第2振動板を振動させながら、第2通気口を第2振動板の中央部に有する構成が実現される。
 また、この発明のポンプでは、第2支持部材は、反発弾性が第2振動板よりも小さいことが好ましい。
 この構成では、第2振動板の中央部の振動が効果的に抑制できる。
 また、この発明のポンプでは、第2支持部材は、第2振動板と同等以上の質量を有することが好ましい。
 この構成では、第2振動板の中央部の振動を効果的に抑制できる。
 また、この発明のポンプでは、第2支持部材の質量は、第2振動板の質量の2倍以上であることが好ましい。
 この構成では、第2振動板の中央部の振動をさらに効果的に抑制できる。
 また、この発明のポンプでは、第2支持部材は、第1振動板から第2振動板に向けて平面視して、第2通気口と重なる位置に開口を有していることが好ましい。
 この構成では、第2通気口の開口面積が実質的に大きくなる。これにより、第2通気口における気体の流動が滑らかになる。
 また、この発明のポンプでは、第1振動板は、第2振動板と対向する主面の中央部に凹部を有することが好ましい。
 この構成では、ポンプ室の中央部における単位面積当たりの体積がポンプ室の中央部以外の部分における単位面積当たりの体積よりも大きくなる。これにより、第2通気口付近の流量の低下を抑制でき、流量を更に高くできる。
 また、この発明のポンプでは、第2振動板の一方主面または他方主面に第2圧電素子が配置されていることが好ましい。
 この構成では、第1振動板の振動と第2振動板の振動とを個別に制御でき、これらの振動の位相差を制御できる。
 また、この発明のポンプでは、第1振動板の外縁部および第2振動板の外縁部の少なくとも一方に配置された振動調整部を備えることが好ましい。
 この構成では、第1振動板または第2振動板の振動(変位)の腹、節の位置を調整できる。
 また、この発明のポンプでは、振動調整部は、例えば、第1振動板の外縁部および第2振動板の外縁部の少なくとも一方に設置された質量である。
 この構成では、振動調整部が備えられていない態様と比較して、第1振動板または第2振動板の振動の節を外縁側に移動できる。
 また、この発明のポンプでは、振動調整部は、例えば、第1振動板の外縁部および第2振動板の外縁部の少なくとも一方に形成された凹部である。
 この構成では、振動調整部が備えられていない態様と比較して、第1振動板または第2振動板の振動の節を中心側に移動できる。
 また、この発明のポンプでは、固定板とフィルタとを備える。固定板は、一方主面で前第2支持部材を保持する保持板の他方主面において、保持板の他方主面から離間して配置されている。フィルタは、固定板と保持板との間に配置され、通気性を有する。
 この構成では、ポンプ室内への異物の混入がフィルタによって抑制される。
 また、この発明のポンプでは、次の構成であることが好ましい。m、nを正の奇数として、m<nであって、第1振動板は、m次共振で振動し、第2振動板は、n次共振で振動する。
 この構成では、上述の第1振動板と第2振動板との略逆相の振動を確実に実現できる。
 また、この発明のポンプでは、mは1であり、nは3であることが好ましい。
 この構成では、略逆相で振幅の大きな領域を広くでき、流量および圧力が高くなる。
 また、この発明のポンプでは、第1振動板と第2振動板は、外形が円形であり、第1振動板の中心と第2振動板の中心は、一致していることが好ましい。
 この構成では、流体を全周方向に均一に搬送でき、ポンプとしての効率が向上する。
 この発明によれば、従来構成よりも高い流量と高い圧力とを実現できる。
図1は本発明の第1の実施形態に係るポンプ10の構成を示す側面断面図である。 図2は本発明の第1の実施形態に係るポンプ10の構成を示す分解斜視図である。 図3は本発明の第1の実施形態に係るポンプ10の動作原理を説明する側面断面図である。 図4は本発明の第2の実施形態に係るポンプ10Aの構成を示す側面の断面図である。 図5は本発明の第3の実施形態に係るポンプ10Bの構成を示す側面の断面図である。 図6は本発明の第4の実施形態に係るポンプ10Cの構成を示す側面の断面図である。 図7は本発明の第5の実施形態に係るポンプ10Dの構成を示す側面の断面図である。 図8は本発明の第6の実施形態に係るポンプ10Eの構成を示す側面の断面図である。 図9は本発明の第7の実施形態に係るポンプ10Fの構成を示す側面の断面図である。
 本発明の第1の実施形態に係るポンプについて、図を参照して説明する。図1は、本発明の第1の実施形態に係るポンプ10の構成を示す側面の断面図である。図2は、本発明の第1の実施形態に係るポンプ10の構成を示す分解斜視図である。
 図1、図2に示すように、ポンプ10は、平板20、平板30、圧電素子41、第2支持部材50、保持板60、振動調整部材70、固定板81、側壁部材82、側壁部材83、側壁部材84、および、支持部材201を備える。
 平板20は、所定の材料、厚み、および、径からなる円板である。材料、厚み、および、径は、平板20が圧電素子41によって振動する際の共振周波数に基づいて設定されている。平板20が、本発明の「第1振動板」に対応し、圧電素子41が、本発明の「第1圧電素子」に対応する。
 なお、平板20は、円形に限らず、略円形、正多角形を含む略正多角形であってもよい。これにより、平板20における振動が中心軸対称に伝わるため、流体搬送のエネルギー損失を小さくできる。特に、平板20が円形の場合、最も効果的に流体搬送のエネルギー損失を小さくできる。
 圧電素子41は、平板20の一方主面に配置されている。圧電素子41は、円板である。図示を省略しているが、圧電素子41は、円柱形の圧電体と、一対の駆動用電極とからなる。一対の駆動用電極の一方は、圧電体の一方主面に配置され、一対の駆動用電極の他方は、圧電体の他方主面に配置されている。この際、平面視において、圧電素子41の中心と平板20の中心とは略一致している。
 平板30は、所定の材料、厚み、および、径からなる円板である。材料、厚み、および、径は、平板30が圧電素子41によって振動する平板20の受動振動の共振周波数に基づいて設定されている。平板30が、本発明の「第2振動板」に対応する。平板30の厚みは、平板20の厚みよりも薄い。さらに、平板30の平面面積は、平板20の平面面積よりも大きいことが好ましい。
 なお、平板30は、円形に限らず、略円形、正多角形を含む略正多角形であってもよい。これにより、平板30における振動が中心軸対称に伝わるため、流体搬送のエネルギー損失を小さくできる。特に、平板30が円形の場合、最も効果的に流体搬送のエネルギー損失を小さくできる。
 平板30の中心には、平板30を一方主面側から他方主面側に貫通孔310が形成されている。貫通孔310は、円筒形であり、貫通孔310の中心軸は、平板30の中心を通る。なお、貫通孔310は円筒形に限るものではなく、他の形状であってもよい。
 平板30は、平板20における圧電素子41の配置面(一方主面)と反対側の他方主面に対向している。平板30と平板20とは、それぞれの平板面に直交する方向に所定の距離で離間している。これらの平板20と平板30とが距離をおいて対向する領域が、ポンプ10の実質的なポンプ室100として機能する。平板30の平板面の中心と、平板20の平板面の中心とは、略一致しており、この中心は、ポンプ室100の中心POに略一致する。
 第2支持部材50は、第1柱部51と第2柱部52とからなる。第1柱部51と第2柱部52とは、円柱形であり、第2柱部52の直径は、第1柱部51の直径よりも短い。第1柱部51と第2柱部52とは、積み重ねられている。すなわち、第2支持部材50は、高さ方向において途中で直径が異なる円柱からなる。第1柱部51と第2柱部52とは、別体で形成して接合してもよく、一体形成してもよい。第2支持部材50は、反発弾性が平板30よりも小さい。第2支持部材50の質量は、平板30の質量と同等以上であり、2倍以上であることが好ましい。
 第2支持部材50には、第2支持部材50における第1柱部51側の平板面から第2柱部52側の平板面に貫通する貫通孔510が形成されている。貫通孔510は、円筒形であり、貫通孔510の中心軸は、第2支持部材50を平面視した中心を通る。
 第2支持部材50は、平板30の他方主面(平板20に対向する面と反対側の面)に接続されている。この際、第2柱部52側の平板面が平板30の他方主面に当接している。また、平面視において、第2支持部材50の貫通孔510は、平板30の貫通孔310に重なっている。すなわち、貫通孔310と貫通孔510とは、連通している。さらに、貫通孔510の中心軸と貫通孔310の中心軸とは、略一致している。
 第2支持部材50と平板30との接合面積は、大きい方が好ましいが、接合面の外周は、平面視において、平板20の直径の約1/3以下であることが好ましい。
 また、貫通孔510の直径は、貫通孔310の直径よりも小さいことが好ましい。これにより、第2支持部材50と平板30との接合強度を向上でき、ポンプ10の信頼性は向上する。
 保持板60は、所定の弾性(バネ性)を有する材料からなる。保持板60の中央には、貫通孔610が形成されている。保持板60は、第2支持部材50における第1柱部51側の平板面に接続されている。この際、保持板60における貫通孔610側の端部(内周端部)が、第2支持部材50に当接している。
 また、平面視において、保持板60の貫通孔610は、平板30の貫通孔310および第2支持部材50の貫通孔510に重なっている。すなわち、貫通孔310、貫通孔510、および、貫通孔610は、連通している。さらに、貫通孔610の中心軸、貫通孔510の中心軸、および、貫通孔310の中心軸は、略一致している。これら貫通孔310、貫通孔510、および、貫通孔610が連通する孔が、本発明の「第2通気口」に対応する。
 振動調整部材70は環状であり、所定の質量を有する。振動調整部材70は、平板30における他方主面(平板20に対向する面と反対側の面)に配置されている。振動調整部材70は、平板30の外縁OE30の付近に配置されている。振動調整部材70を平板30に取り付けることによって、平板30に生じる振動における中心の腹を除く腹および節の放射方向の位置を調整できる。そして、振動調整部材70の質量を調整することによって、腹の位置および節の位置の移動量を調整できる。
 固定板81は、高い剛性を有する材料からなる。固定板81は、保持板60を基準にして、第2支持部材50とは反対側に配置されている。固定板81は、保持板60に対向しており、固定板81と保持板60とは、所定距離離間している。固定板81には、一方主面から他方主面に貫通する複数の貫通孔810が形成されている。複数の貫通孔810は、平面視において、固定板81の中心軸を基準に中心軸対象で形成されている。複数の貫通孔810のそれぞれの開口面積は、貫通孔310、貫通孔510、および貫通孔610のうち最も小さい開口面積よりも小さいことが好ましい。
 また、複数の貫通孔810の開口面積の合計は、貫通孔310、貫通孔510、および貫通孔610のうち最も小さい開口面積よりも大きいことが好ましい。これにより、複数の貫通孔810を備えることによる流量の低下を抑制できる。
 側壁部材82および側壁部材83は、高い剛性を有する材料からなる。側壁部材82および側壁部材83は、環状である。
 側壁部材82は、固定板81と保持板60との間に配置されている。側壁部材82は、固定板81の外縁部と保持板60の外縁部とに接合している。これにより、保持板60、固定板81、および、側壁部材82によって囲まれる空間820が形成される。
 側壁部材83は、保持板60における側壁部材82が配置される面と反対側の面に配置されている。側壁部材83は、保持板60の外縁部に接合されている。側壁部材83による中央空間830内に、平板30、第2支持部材50、および、振動調整部材70が配置されている。
 側壁部材84は、環状である。側壁部材84は、側壁部材83における保持板60に当接する面と反対側の面に当接し、接合されている。側壁部材84の内周端は、支持部材201を介して、平板20の外縁OE20に接続されている。
 このような構成により、側壁部材82、保持板60の外縁部、側壁部材83を側面とし、固定板81を一方主面とし、平板20、支持部材201、および、側壁部材84を他方主面とする筐体が構成される。
 支持部材201は、所定の弾性を有する形状、例えばバネ性を有する形状からなる。支持部材201は、平板20の外縁OE20の全周に亘って、略均等に形成されている。この構成によって、平板20は、外縁OE20が振動の自由端となる状態で筐体に支持される。支持部材201が、本発明の「第1支持部材」に対応する。
 なお、平板20、支持部材201、および、側壁部材84は、一体形成されていることが好ましい。例えば、1つの平板部材に、支持部材201を形成するように、レーザ加工等によって開口を設ける。これにより、平板20、支持部材201、および、側壁部材84は、容易に一体形成される。そして、この一体形成された形状によって、平板20を、ポンプ10の筐体における所望位置に容易に配置でき、ポンプ室の高さ精度を得やすい。また、この支持部材201の箇所の形成される開口は、複数の貫通孔210となる。この貫通孔210は、本発明の「第1通気口」に対応する。
 このような構成により、ポンプ室100は、平板20側において、平板20の外縁OE20の外側に設けられた貫通孔210によって外部に連通する。また、ポンプ室100は、平板30側において、貫通孔310、貫通孔510、貫通孔610、空間820、および、貫通孔810を介して外部に連通する。
 この構成からなるポンプ10では、図3に示すような振動を生じ、ポンプとして機能する。図3は、本発明の第1の実施形態に係るポンプ10の動作原理を説明する側面断面図である。図3は、図1に対して、平板20および平板30の振動を太い破線で追加し、流体の流れを矢印で追加したものである。
 図示を省略している駆動回路は、圧電素子41を駆動する。圧電素子41が所定の共振周波数で駆動されることによって、平板20は、この共振周波数に応じたベンディング振動を生じる。また、平板30は、平板20の受動振動の共振周波数でベンディング振動を生じる。ベンディング振動とは、平板20の主面に直交する方向に変位する振動である。
 ここで、平板20の振動の共振周波数と、平板30の振動の共振周波数とを略同じに設定する。また、図3の破線の振動FW20に示すように、平板20の中心が振動の腹となり、平板20が放射方向に1次共振の振動となるように、平板20の形状、材料等を決定する。さらに、図3の破線の振動FW30に示すように、平板30の中心が振動の腹となり、平板30が放射方向に3次共振の振動となるように、平板30の形状、材料等を決定する。これにより、図3に示すように、平板20の中心POから直径の1/3の位置r1から外縁OE20の位置r3までの領域(r1≦R≦r3の領域)では、平板20の振動と平板30の振動との空間的な位相差はπ/2となる。
 また、平板30の振動は、平板20の振動の受動振動であり、平板30の振動の時間的な位相は、平板20の振動の時間的な位相よりもπ/2遅れる。
 これにより、平板30は、平板20に対して、空間的および時間的にπ/2の位相差を有するベンディング振動を生じる。したがって、平板20と平板30との振幅差は、中心POから外縁OE20、OE30に向かう方向(放射方向)の進行波となる。このため、ポンプ室100内では、流体を中心から外縁に向けて移動させる力が生じ、流体は、平板20および平板30の中心POから外縁OE20、OE30に向かって流れる。すなわち、図3の矢印に示すように、ポンプ10は、貫通孔810を介して外部から流体を吸入し、空間820、貫通孔610、貫通孔510、および、貫通孔310を介してポンプ室100内に流体を吸入する。そして、ポンプ10は、ポンプ室100内に吸入された流体を、ポンプ室100の中心から外縁に搬送し、貫通孔210から外部に吐出する。
 そして、この構成を備えることによって、この流体を移動させる力が生じる領域を、従来の構成よりも広く取れるので、従来の構成よりもポンプ効果が向上し、高い流量および高い圧力を実現できる。
 また、第2支持部材50によって中央の振動FW31を抑制することで、平板30の外縁側の振動FW32の振動を大きくできる。これにより、ポンプ10は、さらに高い流用、および、さらに高い圧力を実現できる。
 また、ポンプ10では、平板20は、バネ性を有する支持部材201によって支持され、平板30は、第2支持部材50を介して、バネ性を有する保持板60によって支持される。これにより、平板20の振動および平板30の振動エネルギーが筐体に漏洩することが抑制される。したがって、ポンプ10は、高効率を実現でき、振動が筐体に漏れることによる特性の不安定化を抑制できる。
 また、バネ性を有する保持板60を用いることによって、平板30と第2支持部材50との接合部に係る応力を軽減できる。したがって、この接合部の破断を抑制でき、ポンプ10の信頼性は向上する。
 また、ポンプ10では、振動調整部材70を用いることによって、平板30の平面面積を小さくできる。これにより、ポンプ10を小型化できる。
 また、第2支持部材50の外縁は、平板30における平板20の直径の1/3以下に対応する領域内にあることが好ましい。この構成により、平板30の中央部の振動FW31を効果的に抑制しながら、平板30の中央部よりも外縁側の振動FW32が減衰することを抑制できる。
 また、ポンプ10では、複数の貫通孔810、空間820を介して、貫通孔610、貫通孔510、および、貫通孔310に流体が流入する。したがって、貫通孔610、貫通孔510、および、貫通孔310の開口面積を大きくしても、ポンプ室100内への異物の流入を抑制できる。これにより、ポンプ10の信頼性は、高くなる。
 なお、上述の説明では、ポンプ10は、ポンプ室100の中央から吸入して、外縁から吐出する態様を示した。しかしながら、平板20と平板30の振動の位相遅れの関係を、上述の関係と逆にすれば、ポンプ10は、ポンプ室100の外縁から吸入して、中央から吐出する。
 次に、本発明の第2の実施形態に係るポンプについて、図を参照して説明する。図4は、本発明の第2の実施形態に係るポンプ10Aの構成を示す側面の断面図である。
 図4に示すように、第2の実施形態に係るポンプ10Aは、第1の実施形態に係るポンプ10に対して、側壁部材83の高さが異なり、側壁部材85、および側壁部材86を追加した点で異なる。ポンプ10Aの他の構成は、ポンプ10と同様であり、同様の箇所の説明は省略する。
 側壁部材83の高さは、第2支持部材50の高さと略同じである。
 側壁部材85は、環状である。側壁部材85は、側壁部材83における保持板60に当接する面と反対側の面に当接し、接合されている。側壁部材82の高さ(厚み)は、平板30の厚みと略同じである。側壁部材85の内周端は、支持部材301を介して、平板30の外縁OE30に接続されている。
 支持部材301は、所定の弾性を有する形状、例えばバネ性を有する形状からなる。支持部材301は、平板30の外縁OE30の全周に亘って、略均等に形成されている。この構成によって、平板30は、外縁OE30が振動の自由端となる状態で筐体に支持される。支持部材301は、本発明の第2支持部材と異なる第3支持部材である。
 側壁部材86は、環状である。側壁部材86は、側壁部材85と側壁部材84との間に配置されており、それぞれに接合されている。側壁部材86の高さは、ポンプ室100の高さ、すなわち、平板20と平板30との距離と略同じである。
 このような構成により、側壁部材85と支持部材301とによって、平板30を、外縁OE30が振動の自由端となる状態で筐体に精度良く配置できる。また、側壁部材86によって、ポンプ室100のデフォルトの高さ(平板20および平板30が振動していない状態での平板20と平板30との距離)を高精度に実現できる。
 次に、本発明の第3の実施形態に係るポンプについて、図を参照して説明する。図5は、本発明の第3の実施形態に係るポンプ10Bの構成を示す側面の断面図である。
 図5に示すように、第3の実施形態に係るポンプ10Bは、第1の実施形態に係るポンプ10に対して、平板20B、平板30B、および、第2支持部材50Bの構成において異なる。ポンプ10Bの他の構成は、ポンプ10と同様であり、同様の箇所の説明は省略する。
 平板20Bは、凹部23を有する。凹部23は、平板20Bにおける平板30Bに対向する面(他方主面)が凹む形状である。凹部23は、平板20Bの中心を含む所定の面積で形成されている。
 第2支持部材50Bは、第1柱部51に凹部53を有する。凹部53は、第1柱部51における第2柱部52に接続する側と反対側の面から凹む形状である。凹部53は、第2支持部材50Bの中心を含む所定面積で形成されている。第2支持部材50Bの凹部53は、平板20Bの凹部23に対向している。凹部53の底には、貫通孔510が形成されている。
 平板30Bは、凹部33を有する。凹部33は、平板30Bにおける平板20Bに対向する一方主面から他方主面に向けて平板30Bが屈曲することによって実現される。平板30Bの凹部33は、第2支持部材50Bの凹部53の表面を覆っており、平板20Bの凹部23に対向している。
 このような構成では、ポンプ室100の中央の通気口を形成する貫通孔310Bの体積を大きくできる。これにより、ポンプ室100の中央の通気口付近の流量の低下を抑制でき、流量を更に高くできる。
 また、平板20Bおよび平板30Bの中央領域での平板20Bと平板30Bとの距離が大きくなる。これにより、平板20Bの振動と平板30Bの振動との結合を、さらに抑制できる。
 また、平板30Bと第2支持部材50Bとの接合面積を大きくでき、接合面が2次元でなく3次元の形状となる。これにより、平板30Bと第2支持部材50Bとの接合強度が向上し、ポンプ10Bの信頼性は向上する。
 また、平板30Bの凹部33が第2支持部材50Bの凹部53の表面を覆う形状であることによって、これらの嵌め合わせが容易になる。これによって、ポンプ10Bの組み立て時の平板30Bと第2支持部材50Bとの位置合わせが容易になる。
 また、図5に示すように、各凹部がテーパ形状を有することにより、流路を形成する壁面が滑らかになり、圧力の損失を低減できる。
 なお、平板20Bの凹部23と、平板30Bの凹部33および第2支持部材50Bの凹部53とは、少なくともいずれか一方が形成されていればよく、両方が形成されるとよりよい。
 次に、本発明の第4の実施形態に係るポンプについて、図を参照して説明する。図6は、本発明の第4の実施形態に係るポンプ10Cの構成を示す側面の断面図である。
 図6に示すように、第4の実施形態に係るポンプ10Cは、第1の実施形態に係るポンプ10に対して、圧電素子42を追加した点において異なる。ポンプ10Cの他の構成は、ポンプ10と同様であり、同様の箇所の説明は省略する。
 図6に示すように、圧電素子42は、平板30の他方主面に配置されている。圧電素子42は、円環形状である。圧電素子42の中央開口は、平板30の貫通孔310に重なっている。言い換えれば、平板30の貫通孔310は、圧電素子42の中央開口内に位置している。図示を省略しているが、圧電素子42は、円柱形の圧電体と、一対の駆動用電極とからなる。一対の駆動用電極の一方は、圧電体の一方主面に配置され、一対の駆動用電極の他方は、圧電体の他方主面に配置されている。この際、平面視において、圧電素子42の中心と平板30の中心とは略一致している。
 圧電素子42が所定の共振周波数で駆動されることによって、平板30は、この共振周波数に応じたベンディング振動を生じる。この際、駆動回路によって圧電素子42に与える正弦波の駆動信号の時間的な位相は、圧電素子41に与える正弦波の駆動信号の時間的な位相よりもπ/2遅れている。
 このような構成によって、平板20と平板30とを個別に駆動できるため、平板20の振動と平板30の振動の位相差とを制御することができる。
 なお、この実施形態では、平板30における平板20に対向する面と反対側の面に圧電素子42を配置する態様を示した。しかしながら、平板30における平板20に対向する面に圧電素子42を配置することが可能になる。しかしながら、平板30における平板20に対向する面と反対側の面に圧電素子42を配置する態様とすることで、ポンプ室100の体積を大きくでき、振動による平板20と平板30および圧電素子42との接触を抑制できる。
 次に、本発明の第5の実施形態に係るポンプについて、図を参照して説明する。図7は、本発明の第5の実施形態に係るポンプ10Dの構成を示す側面の断面図である。
 図7に示すように、第5の実施形態に係るポンプ10Dは、第1の実施形態に係るポンプ10に対して、振動調整部材72を追加した点において異なる。ポンプ10Dの他の構成は、ポンプ10と同様であり、同様の箇所の説明は省略する。
 振動調整部材72は環状であり、所定の質量を有する。振動調整部材72は、平板20における一方主面(平板30に対向する面と反対側の面)に配置されている。振動調整部材72は、平板20の外縁OE20の付近に配置されている。振動調整部材72を平板20に取り付けることによって、平板20に生じる振動における中心の腹を除く腹および節の放射方向の位置を調整できる。このような振動調整部材72を配置することによって、振動調整部材72を配置しない態様を比較して、平板20の振動における節を、平板20の外周側に移動させることができる。そして、振動調整部材72の質量を調整することによって、節の移動量を調整できる。この振動調整部材72は、本発明の「振動調整部」に対応する。
 これにより、平板20の振動の腹および節と平板30の振動の腹および節とを調整でき、放射方向における平板20の腹と平板30の節とを高精度に一致させ、平板20の節と平板30の腹とを高精度に一致させることができる。したがって、ポンプ10Dは、高い流量と高い圧力を、より確実に実現できる。
 次に、本発明の第6の実施形態に係るポンプについて、図を参照して説明する。図8は、本発明の第6の実施形態に係るポンプ10Eの構成を示す側面の断面図である。
 図8に示すように、第6の実施形態に係るポンプ10Eは、第1の実施形態に係るポンプ10に対して、平板20に薄厚部220を形成した点において異なる。ポンプ10Eの他の構成は、ポンプ10と同様であり、同様の箇所の説明は省略する。
 薄厚部220は環状である。薄厚部220は、平板20の外縁OE20の付近に形成されている。薄厚部220を平板20に形成することによって、平板20に生じる振動における中心の腹を除く腹および節の放射方向の位置を調整できる。このような薄厚部220を形成することによって、言い換えれば、負の質量を追加することによって、薄厚部220を形成しない態様を比較して、平板20の振動における節を、平板20の中心側に移動させることができる。そして、薄厚部220の厚みを調整することによって、節の移動量を調整できる。この薄厚部220は、本発明の「振動調整部」に対応する。
 これにより、平板20の振動の腹および節と平板30の振動の腹および節とを調整でき、放射方向における平板20の腹と平板30の節とを高精度に一致させ、平板20の節と平板30の腹とを高精度に一致させることができる。したがって、ポンプ10Eは、高い流量と高い圧力を、より確実に実現できる。
 次に、本発明の第7の実施形態に係るポンプについて、図を参照して説明する。図9は、本発明の第7の実施形態に係るポンプ10Fの構成を示す側面の断面図である。
 図9に示すように、第7の実施形態に係るポンプ10Fは、第1の実施形態に係るポンプ10に対して、フィルタ90を追加した点で異なる。ポンプ10Fの他の構成は、ポンプ10と同様であり、同様の箇所の説明は省略する。
 フィルタ90は、平板状であり、所望の通気性を有するフェルト、スポンジ等の軽量多孔質材によって実現される。フィルタ90は、空間820内に配置されている。フィルタ90は、少なくとも貫通孔610に重なっており、複数の貫通孔810とも重なっていることが好ましい。
 このような構成では、貫通孔810から流入した異物は、フィルタ90で捕捉される。これにより、貫通孔610、貫通孔510、および、貫通孔310を介してポンプ室100内に、異物が流入することを抑制できる。したがって、ポンプ10Fの信頼性は高くなる。また、空間820を空気が伝搬する際の空気振動による異音の発生を抑制できる。
 なお、上述の各実施形態では、平板20が1次共振で振動し、平板30が3次共振で振動する態様を示した。しかしながら、m、nを正の奇数とし、m<nとして、平板20をm次共振させ、平板30をn次共振させてもよい。また、平板20をn次共振させ、平板30をm次共振させてもよい。ただし、平板20が1次共振で振動し、平板30が3次共振で振動する態様とすることで、逆相の領域を広くでき、より有効である。
 また、上述の説明では、平板30側がポンプ室100の中央で外部に連通しており、平板20側がポンプ室100の外縁で外部に連通する態様を示した。しかしながら、平板30側がポンプ室100の外縁で外部に連通しており、平板20側がポンプ室100の中央で外部に連通する構成とすることも可能である。
 また、上述の各実施形態では、平板20における平板30に対向する面と反対側の面に圧電素子41を配置する態様を示した。しかしながら、平板20における平板30に対向する面に圧電素子41を配置することが可能になる。しかしながら、平板20における平板30に対向する面と反対側の面に圧電素子41を配置する態様とすることで、ポンプ室100の体積を大きくでき、振動による平板20および圧電素子41と平板30との接触を抑制できる。
 また、上述の各実施形態において、振動調整部材は、全周に亘って同じ厚み、同じ幅で形成しているが、厚み、幅を部分的に異ならせてもよい。また、周上の一部が分断された形状であってもよい。但し、振動調整部材は、全周に亘って同じ形状であることが好ましい。また、振動調整の凹部についても同様である。
 また、上述の各実施形態では、各構成の寸法の詳細を記載していないが、例えば、次の寸法によって実現される。平板20は、直径11.3mm、厚み0.3mmである。圧電素子41は、直径10.8mmであり、厚み0.1mmである。平板30は、外径(直径)13.0mmであり、厚み0.08mmである。圧電素子42は、外径(直径)が10.8mmであり、内径(直径)が5.0mmであり、厚み0.08mmである。また、ケースの外径は約20mmである。なお、これらの寸法は一例に過ぎず、上述の平板20と平板30との形状の関係、共振の関係等を実現するものであれば、他の寸法であってもよい。
 また、上述の各実施形態に係るポンプは、例えば、血圧計、搾乳器、陰圧閉鎖療法装置等に利用可能である。そして、上述の各実施形態に係るポンプを用いることによって、血圧計、搾乳器、陰圧閉鎖療法装置等の装置性能は向上する。
10、10A、10B、10C、10D、10E、10F:ポンプ
20、20B:平板
23:凹部
30、30B:平板
33:凹部
41、42:圧電素子
50、50B:第2支持部材
51:第1柱部
52:第2柱部
53:凹部
60:保持板
70、72:振動調整部材
81:固定板
82、83、84、85、86:側壁部材
90:フィルタ
100:ポンプ室
201:支持部材
210:貫通孔
220:薄厚部
301:支持部材
310、310B、510、610、810:貫通孔
820:空間
830:中央空間

Claims (18)

  1.  第1圧電素子と、
     前記第1圧電素子が一方主面に配置された第1振動板と、
     前記第1振動板の一方主面または他方主面に対向して離間して配置された第2振動板と、
     一端が前記第1振動板の外縁を前記第1振動板の主面方向に振動可能に支持する第1支持部材と、
     前記第1支持部材の他端を保持する側壁部材と、
     前記第1振動板と前記第2振動板と前記側壁部材により形成されたポンプ室と、
     前記第2振動板の一方主面に設置され、前記第2振動板の一方主面の外縁を除く領域で前記第2振動板を支持する第2支持部材と、
     前記側壁部材と前記第2支持部材とを保持する保持板と、
     を備える、ポンプ。
  2.  前記第1支持部材に形成された第1通気口と、
     前記第2振動板の中央部に設けられた第2通気口と、
     を備える、請求項1に記載のポンプ。
  3.  前記中央部における前記第1振動板の主面と前記第2通気口の前記第1振動板側の開口面との距離は、前記中央部以外の部分における前記第1振動板の主面と前記第2振動板における前記第1振動板の主面に対向する面との距離よりも大きい、
     請求項2に記載のポンプ。
  4.  前記第1振動板から前記第2振動板に向けて平面視して、前記第2圧電素子は、開口を有している、
     請求項1乃至請求項3のいずれかに記載のポンプ。
  5.  前記第2圧電素子は、前記第1振動板から前記第2振動板に向けて平面視して、前記第2振動板の中央部に重ならない、
     請求項4に記載のポンプ。
  6.  前記第2支持部材は、反発弾性が前記第2振動板よりも小さい、
     請求項1乃至請求項5のいずれかに記載のポンプ。
  7.  前記第2支持部材は、前記第2振動板と同等以上の質量を有する、
     請求項1乃至請求項6のいずれかに記載のポンプ。
  8.  前記第2支持部材の質量は、前記第2振動板の質量の2倍以上である、
     請求項7に記載のポンプ。
  9.  前記第2支持部材は、前記第1振動板から前記第2振動板に向けて平面視して、前記第2通気口と重なる位置に開口を有している、
     請求項2に記載のポンプ。
  10.  前記第1振動板は、前記第2振動板と対向する主面の中央部に凹部を有する、
     請求項3に記載のポンプ。
  11.  前記第2振動板の一方主面または他方主面に第2圧電素子が配置されている、
     請求項1乃至請求項10のいずれかに記載のポンプ。
  12.  前記第1振動板の外縁部および前記第2振動板の外縁部の少なくとも一方に配置された振動調整部を、備える、
     請求項1乃至請求項11のいずれかに記載のポンプ。
  13.  前記振動調整部は、前記第1振動板の外縁部および前記第2振動板の外縁部の少なくとも一方に設置された質量である、
     請求項12に記載のポンプ。
  14.  前記振動調整部は、前記第1振動板の外縁部および前記第2振動板の外縁部の少なくとも一方に形成された凹部である、
     請求項12に記載のポンプ。
  15.  一方主面で前記第2支持部材を保持する前記保持板の他方主面において、前記保持板の他方主面から離間して配置された固定板と、
     前記固定板と前記保持板との間に配置され、通気性を有するフィルタと、
     を備えた、請求項1に記載のポンプ。
  16.  m、nを正の奇数として、m<nであって、
     前記第1振動板は、m次共振で振動し、
     前記第2振動板は、n次共振で振動する、
     請求項1乃至請求項15のいずれかに記載のポンプ。
  17.  前記mは1であり、前記nは3である、
     請求項16に記載のポンプ。
  18.  前記第1振動板と前記第2振動板は、外形が円形であり、
     前記第1振動板の中心と前記第2振動板の中心は、一致している、
     請求項1乃至請求項17のいずれかに記載のポンプ。
PCT/JP2018/047729 2017-12-28 2018-12-26 ポンプ WO2019131706A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-252761 2017-12-28
JP2017252761 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131706A1 true WO2019131706A1 (ja) 2019-07-04

Family

ID=67063662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047729 WO2019131706A1 (ja) 2017-12-28 2018-12-26 ポンプ

Country Status (1)

Country Link
WO (1) WO2019131706A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124688A1 (ja) * 2019-12-17 2021-06-24 ミネベアミツミ株式会社 気体吸引排出装置、気体情報取得装置
CN114382683A (zh) * 2022-01-24 2022-04-22 枣庄学院 双谐振压电泵
WO2022230678A1 (ja) * 2021-04-27 2022-11-03 株式会社村田製作所 ポンプ装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175185A1 (ja) * 2015-04-27 2016-11-03 株式会社村田製作所 ポンプ
TWI606936B (zh) * 2016-09-05 2017-12-01 研能科技股份有限公司 流體控制裝置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175185A1 (ja) * 2015-04-27 2016-11-03 株式会社村田製作所 ポンプ
TWI606936B (zh) * 2016-09-05 2017-12-01 研能科技股份有限公司 流體控制裝置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124688A1 (ja) * 2019-12-17 2021-06-24 ミネベアミツミ株式会社 気体吸引排出装置、気体情報取得装置
WO2022230678A1 (ja) * 2021-04-27 2022-11-03 株式会社村田製作所 ポンプ装置
CN114382683A (zh) * 2022-01-24 2022-04-22 枣庄学院 双谐振压电泵
CN114382683B (zh) * 2022-01-24 2023-06-13 枣庄学院 双谐振压电泵

Similar Documents

Publication Publication Date Title
JP6052475B2 (ja) 流体制御装置
JP6528849B2 (ja) ブロア
JP6617821B2 (ja) 流体制御装置
CN108317093B (zh) 鼓风机
JP6183862B2 (ja) 改良アクチュエータを備えるディスクポンプ
WO2019131706A1 (ja) ポンプ
CN109477478B (zh) 阀、气体控制装置
WO2019124060A1 (ja) ポンプ
US10125760B2 (en) Pump
JP6904436B2 (ja) ポンプおよび流体制御装置
JP6575634B2 (ja) ブロア
JP6741176B2 (ja) ポンプおよび流体制御装置
JP2016211442A (ja) ブロア
JP2019031946A (ja) 流体制御装置、血圧計、搾乳器、および、陰圧閉鎖療法装置
WO2019073739A1 (ja) ポンプ、流体制御装置
WO2019111922A1 (ja) ポンプ
JP6536770B1 (ja) 流体制御装置
JP2020041500A (ja) ポンプ
WO2019111982A1 (ja) ポンプ
JP2019190343A (ja) ポンプ
CN112752906B (zh)
WO2019130853A1 (ja) ポンプおよび流体制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP