WO2019131608A1 - データ処理装置、データ処理方法及びプログラム - Google Patents
データ処理装置、データ処理方法及びプログラム Download PDFInfo
- Publication number
- WO2019131608A1 WO2019131608A1 PCT/JP2018/047519 JP2018047519W WO2019131608A1 WO 2019131608 A1 WO2019131608 A1 WO 2019131608A1 JP 2018047519 W JP2018047519 W JP 2018047519W WO 2019131608 A1 WO2019131608 A1 WO 2019131608A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- feature space
- group
- proxel
- semiconductor manufacturing
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/28—Databases characterised by their database models, e.g. relational or object models
- G06F16/284—Relational databases
- G06F16/285—Clustering or classification
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/22—Indexing; Data structures therefor; Storage structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/248—Presentation of query results
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/28—Databases characterised by their database models, e.g. relational or object models
- G06F16/284—Relational databases
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/906—Clustering; Classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/10—Pre-processing; Data cleansing
- G06F18/15—Statistical pre-processing, e.g. techniques for normalisation or restoring missing data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/2163—Partitioning the feature space
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/231—Hierarchical techniques, i.e. dividing or merging pattern sets so as to obtain a dendrogram
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/24765—Rule-based classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/24—Character recognition characterised by the processing or recognition method
- G06V30/242—Division of the character sequences into groups prior to recognition; Selection of dictionaries
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45031—Manufacturing semiconductor wafers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/02—Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/18—Manufacturability analysis or optimisation for manufacturability
Definitions
- the present invention relates to a data processing device, a data processing method, and a program.
- data processing apparatuses which collect data used or measured in various manufacturing processes (for example, semiconductor manufacturing processes) and perform various analyzes. By analyzing the collected data using the data processing apparatus, modeling of the manufacturing process, execution of simulation processing, and the like can be performed, and optimization of the manufacturing process and improvement of the product quality can be achieved.
- modeling the manufacturing process is time consuming and costly. Moreover, in order to improve simulation accuracy, it is necessary to build a model individually for each manufacturing facility, and even if the manufacturing process is the same type, if the manufacturing facilities are different, it is necessary to reconstruct the model. is there. As described above, data processing performed by a conventional data processing apparatus on data collected in a manufacturing process is time-consuming and costly, but has a problem of lack of versatility.
- the present invention aims to realize versatile data processing on data collected in a manufacturing process.
- the data processing device Calculation means for collecting a data group associated with a predetermined step in the process and calculating an effect in the predetermined step for each data group; A division unit that divides the feature space so that the distribution in the feature space of each of a plurality of data groups associated with the predetermined step is classified according to the calculated effects; And output means for outputting specific data for specifying each region of the divided feature space.
- FIG. 1 is a diagram showing an example of the entire configuration of a data processing system.
- FIG. 2 is a diagram showing a specific example of a data group handled by each business establishment.
- FIG. 3 is a diagram for explaining an outline of analysis result data stored in the analysis result storage unit.
- FIG. 4 is a diagram showing an example of the hardware configuration of the data processing apparatus.
- FIG. 5 is a diagram illustrating an example of a functional configuration of the data analysis unit.
- FIG. 6 is a diagram illustrating a specific example of processing of the effect calculation unit.
- FIG. 7 is a diagram showing an example of a data group stored in the data storage unit.
- FIG. 8 is a diagram illustrating a specific example of processing of the classification unit.
- FIG. 1 is a diagram showing an example of the entire configuration of a data processing system.
- FIG. 2 is a diagram showing a specific example of a data group handled by each business establishment.
- FIG. 3 is a diagram for explaining an outline of analysis result data stored in the
- FIG. 9 is a diagram showing an example of Proxel calculated by the Proxel calculation unit.
- FIG. 10 is a first flowchart showing a flow of Proxel calculation processing by the classification unit and the Proxel calculation unit.
- FIG. 11 is a first diagram for explaining the advantage of calculating Proxel.
- FIG. 12 is a second diagram for explaining the advantage of calculating Proxel.
- FIG. 13 is a third diagram for explaining the advantage of calculating Proxel.
- FIG. 14 is a second flowchart showing the flow of the Proxel calculation process by the classification unit and the Proxel calculation unit.
- FIG. 1 is a diagram showing an example of the entire configuration of a data processing system.
- the data processing apparatus 110 and the terminals 121, 131, 141 in the business establishments 120, 130, 140 are communicably connected via the network 150.
- a data analysis program is installed in the data processing apparatus 110, and the data processing apparatus 110 functions as a data analysis unit 111 by executing the data analysis program.
- the data analysis unit 111 is a group of data from the terminals 121, 131, 141 in each business office 120, 130, 140 (in the example of FIG. 1, initial data, setting data, output data, measurement data, experimental data, target data) Are collected via the network 150.
- the data analysis unit 111 stores the collected data group in the data storage unit 112.
- the method of collecting the data group is not limited to this.
- the administrator of the data processing apparatus 110 acquires the recording medium in which the data group is recorded from each business office 120, 130, 140, and the recording medium
- the data group may be collected by reading out the data group from.
- the data analysis unit 111 analyzes the data group stored in the data storage unit 112, and stores analysis result data in the analysis result storage unit 113.
- a measuring device that measures measurement data in the semiconductor manufacturing process
- an experimental value measuring device that measures experimental data on the product (semiconductor or intermediate product) manufactured in the semiconductor manufacturing process. included.
- a terminal 121 configuring the data processing system 100 and a database storing a data group are included.
- the semiconductor manufacturing apparatus executes a semiconductor manufacturing process based on the initial data, setting data, and target data input from the terminal 121.
- the semiconductor manufacturing apparatus stores output data obtained by executing a semiconductor manufacturing process in a database in association with initial data, setting data, and target data.
- the measuring device measures measurement data during execution of a semiconductor manufacturing process by the semiconductor manufacturing apparatus and stores the measurement data in a database.
- the experimental value measuring device measures experimental data on the product (semiconductor or intermediate product) manufactured in the semiconductor manufacturing process, and stores it in the database.
- the terminal 121 inputs initial data, setting data, and target data used when the semiconductor manufacturing apparatus executes a semiconductor manufacturing process, and sets the data in the semiconductor manufacturing apparatus. Also, the terminal 121 transmits the data group (initial data collected in the semiconductor manufacturing process, setting data, output data, measurement data, experimental data, target data) stored in the database to the data processing apparatus 110.
- the business establishment 130 does not include the experimental value measuring device.
- the business site 140 does not include a measuring device and an experimental value measuring device.
- the item of the information of the data group transmitted to the data processing apparatus 110 from each of the terminals 121, 131, and 141 in each business office 120, 130, 140 is also It is different.
- the data group transmitted from the terminal 131 in the business establishment 130 does not include experimental data (or part thereof).
- the data group transmitted from the terminal 141 of the business office 140 does not include measurement data and experimental data (or part of them).
- FIG. 2 is a diagram showing a specific example of a data group handled by each business establishment.
- the data group handled by the business establishment 120 will be described.
- step refers to the smallest processing unit that changes the state (attribute of the processing object, the state of the semiconductor manufacturing apparatus, the atmosphere in the semiconductor manufacturing apparatus, etc.) in the semiconductor manufacturing process. . Therefore, when the state changes with the passage of time, in this embodiment, it is regarded as separate steps before and after the passage of time.
- the data group 201 includes “initial data (I)”, “setting data (R)”, “output data (E)”, “measurement data (Pl)”, “items of information” as items of information.
- the “initial data (I)” includes initial data input from the terminal 121 in the business office 120.
- initial data is ⁇ Initial CD (critical dimensions) (critical dimension) ⁇ Material (material) ⁇ Thickness (Thickness) ⁇ Aspect ratio (aspect ratio) ⁇ Mask coverage (mask coverage) Etc. are included.
- the “setting data (R)” includes setting data input from the terminal 121 in the business office 120 and set in the semiconductor manufacturing apparatus.
- the setting data set in the semiconductor manufacturing apparatus is data depending on the characteristics of the semiconductor manufacturing apparatus. In the case of a semiconductor manufacturing process, the setting data is ⁇ Pressure (pressure in the chamber) ⁇ Power (power of high frequency power supply) ⁇ Gas (gas flow rate) Temperature (temperature in the chamber or the temperature of the substrate surface) Etc. are included.
- the output data output from the semiconductor manufacturing apparatus is data dependent on the characteristics of the semiconductor manufacturing apparatus.
- the output data is ⁇ Vpp (potential difference) ⁇ Vdc (DC self bias voltage) ⁇ OES (emission intensity by emission spectroscopy) ⁇ Reflect (reflected wave power) ⁇ Top DCS current (detected value by Doppler velocimeter) Etc. are included.
- the experimental data measured by the experimental value measuring device is data which does not depend on the characteristics of the semiconductor manufacturing apparatus.
- experimental data ⁇ Etching rate ⁇ Deposition rate ⁇ XY position (XY coordinates) ⁇ Film type (thin film type) ⁇ Vertical / Lateral (vertical / horizontal division) Etc. are included.
- the “target data (Pf)” includes the target data input from the terminal 121 in the business office 120.
- the target data is ⁇ CD (limit dimension) ⁇ Depth -Taper (taper angle) ⁇ Tilting (tilt angle) ⁇ Bowing (Bowing) Etc. are included.
- the data group shown in FIG. 2 is an example, and the types of data included in the items of each information are not limited to those illustrated.
- the data group includes items of information different for each business office, each process, each step, and different types of data.
- FIG. 3 is a diagram for explaining an outline of analysis result data stored in the analysis result storage unit.
- step name “STEP 1”
- a data group associated with the step is included.
- the data processing apparatus 110 analyzes a plurality of data groups of the same process and the same step, and groups data groups that can obtain the same effect.
- the semiconductor manufacturing apparatus even when the same process and the same step are performed, different results may be obtained because the data included in the data group is different. Therefore, by grouping data groups that can obtain the same effect and calculating specific data that specifies each group, the range of each data included in the data group that is permitted to obtain the same effect is calculated. can do.
- groups 311 to 314 are groups obtained by grouping data groups that can obtain the same effect among the data groups 301.
- the specific data (range of each data) specified by the same process, the same step, and the same effect can be said to be the smallest data unit giving the same change in "state" in the semiconductor manufacturing process. it can. That is, the specific data (the range of each data) specified by the group can be said to be the smallest data unit in the microfabrication in the semiconductor manufacturing process.
- Process Element the smallest data unit (Process Element) in microfabrication in the semiconductor manufacturing process is referred to as "Proxel” in the first embodiment. It is the same name as calling the smallest unit of an image (Picture Element) “Pixel” and the smallest unit of a volume (Volume Element) "voxel”.
- the data analysis unit 111 analyzes “Proxel” by analyzing the collected data group, and stores “Proxel” in the analysis result storage unit 113 as analysis result data.
- FIG. 4 is a diagram showing an example of the hardware configuration of the data processing apparatus.
- the data processing apparatus 110 includes a central processing unit (CPU) 401, a read only memory (ROM) 402, and a random access memory (RAM) 403.
- the CPU 401, the ROM 402, and the RAM 403 form a so-called computer.
- the data processing device 110 includes an auxiliary storage device 404, an operation device 405, a display device 406, an I / F (Interface) device 407, and a drive device 408.
- the hardware units of the data processing unit 110 are connected to one another via a bus 409.
- the CPU 401 executes various programs (for example, data analysis program etc.) installed in the auxiliary storage device 404.
- the ROM 402 is a non-volatile memory and functions as a main storage device.
- the ROM 402 stores various programs, data, and the like necessary for the CPU 401 to execute various programs installed in the auxiliary storage device 404.
- the ROM 402 stores a boot program such as BIOS (Basic Input / Output System) or EFI (Extensible Firmware Interface).
- the RAM 403 is a volatile memory such as a dynamic random access memory (DRAM) or a static random access memory (SRAM), and functions as a main storage device.
- the RAM 403 provides a work area which is expanded when the various programs installed in the auxiliary storage device 404 are executed by the CPU 401.
- the auxiliary storage device 404 stores various programs, a data group collected when the various programs are executed by the CPU 401, and analysis result data calculated.
- the data storage unit 112 and the analysis result storage unit 113 are realized by the auxiliary storage device 404.
- the operation device 405 is an input device used when an administrator of the data processing device 110 inputs various instructions to the data processing device 110.
- the display device 406 is a display device that displays internal information of the data processing device 110.
- the I / F device 407 is a connection device for connecting to the network 150 and communicating with the terminals 121, 131, 141 in the respective business establishments 120, 130, 140.
- the drive device 408 is a device for setting the recording medium 410.
- the recording medium 410 includes a medium for optically, electrically or magnetically recording information, such as a CD-ROM, a flexible disk, a magneto-optical disk or the like.
- the recording medium 410 may also include a semiconductor memory or the like that electrically records information, such as a ROM, a flash memory, or the like.
- the various programs installed in the auxiliary storage device 404 are installed by, for example, the distributed recording medium 410 being set in the drive device 408 and the various programs recorded in the recording medium 410 being read by the drive device 408 Be done.
- various programs installed in the auxiliary storage device 404 may be installed by being downloaded via the network 150.
- FIG. 5 is a diagram illustrating an example of a functional configuration of the data analysis unit.
- the data analysis unit 111 includes a collection unit 510, an effect calculation unit 520, a classification unit 530, and a Proxel calculation unit 540.
- the collection unit 510 collects the data group 301 (for example, the data group 201 or the like) from the terminals 121, 131, and 141 in the business establishments 120, 130, and 140 via the network 150.
- the data group 301 for example, the data group 201 or the like
- the effect calculation unit 520 is an example of calculation means, and calculates an effect for each collected data group. It is assumed that the effect calculating unit 520 has acquired, for each of the collected data groups, data indicating a corresponding process, a state before the corresponding step is performed, and data indicating a state after the corresponding step. Use data to calculate changes in the state before and after execution as an effect. In addition, the effect calculation unit 520 stores the calculated effect in the data storage unit 112 as a data group together with setting data, output data, measurement data, and experimental data.
- the classification unit 530 is an example of a division unit, reads out each of the plurality of data groups stored in the data storage unit 112, and analyzes the distribution in the feature space. If the type of data included in each data group is K types, the classification unit 530 analyzes the distribution of the data group in the K-dimensional feature space.
- the classification unit 530 groups data groups that can obtain the same effect for the plurality of read data groups. Further, the classification unit 530 divides the K-dimensional feature space such that data groups distributed in the feature space are classified by group.
- the Proxel calculating unit 540 is an example of an output unit.
- the Proxel calculation unit 540 calculates Proxel by calculating the range (specific data specified by a group) of K types of data of each region of the K-dimensional feature space divided by the classification unit 530, and the analysis result The data is stored in the analysis result storage unit 113 as data.
- FIG. 6 is a diagram illustrating a specific example of processing of the effect calculation unit.
- process name “process I”
- step name “STEP1”
- the semiconductor manufacturing apparatus in which the setting data is set executes a predetermined step of a predetermined semiconductor manufacturing process
- the state before execution attributetes of the processing object before execution, the state of the semiconductor manufacturing apparatus, the inside of the semiconductor manufacturing apparatus
- the atmosphere of any changes after the run can be specified by output data, measurement data, and experimental data.
- the effect at a predetermined step of a predetermined semiconductor manufacturing process is Data indicating a state before execution (first data), Data indicating a state after execution (second data), Can be represented by the difference of
- the effect calculation unit 520 acquires data indicating a state before execution and data indicating a state after execution, corresponding to each data group for each process and each step. For example, data groups respectively included in output data, measurement data, and experimental data are divided into data changed by execution of a predetermined step and others, and data changed is data indicating a state before execution. And is acquired as data indicating the state after execution. Also, other data is acquired as data specifying the execution status.
- the effect calculation unit 520 stores the calculated effect in the data storage unit 112 as a data group in association with the setting data, the output data, the measurement data, and the experimental data.
- FIG. 7 is a view showing an example of a data group stored in the data storage unit.
- the data group stored in the data storage unit 112 by the effect calculation unit 520 includes “data group identifier”, “setting data (R)”, and “output data (E)” as items of information. “,” Measurement data (Pl) “,” experimental data (Pr) “,” effect "are included.
- the “data group identifier” is an identifier for identifying each data group.
- the items of each information from “setting data (R)” to “experimental data (Pr)” are initial data (I) among data groups collected from each business establishment 120, 130, 140 (see FIG. 2). And the target data (Pf) are stored.
- the “effect” stores the effect calculated by the effect calculation unit 520.
- FIG. 8 is a diagram illustrating a specific example of processing of the classification unit.
- the classification unit 530 reads out a plurality of data groups stored in the data storage unit 112 for each process and for each step, and plots them in the feature space 800.
- solid-line circles in which numbers are described indicate one of a plurality of read data groups, and numbers in the solid-line circles indicate data group identifiers of the data groups. ing.
- the feature space 800 is two-dimensional in order to simplify the description (that is, two types of data (data type p, data type q) included in the data group are plotted). It shows the situation).
- the solid line circles in which these data group identifiers are described are distributed close to each other in the feature space 800, but they do not overlap completely. That is, although the data groups identified by the respective data group identifiers are similar to one another, they are not completely identical.
- the plurality of data groups grouped by the dotted circle 801 in the feature space 800 are data groups for which the effect ⁇ 1> can be obtained even if the process I or STEP 1 is executed under any data group. .
- the data group identified by the data group identifier described in each solid line circle included in the dotted line circle 802 is any of the processes I and STEP 1 executed under each data group It is a data group from which an effect ⁇ 2> is obtained.
- the data group identified by the data group identifier described in the solid line circle included in the dotted line circle 803 is effective when the process I and STEP 1 are executed under the data group ⁇ 2>. Is a group of data that can be obtained.
- the classification unit 530 divides the feature space such that each data group distributed in the feature space is classified by group.
- the classification unit 530 divides the feature space, for example, by performing a clustering process on each data group distributed in the K-dimensional feature space using the “effect” as an index.
- the Proxel calculation unit 540 calculates Proxel by calculating the range of each data of each area of the feature space divided by the classification unit 530 (specific data specified by a group).
- FIG. 9 is a diagram showing an example of Proxel calculated by the Proxel calculation unit.
- the Proxel calculating unit 540 calculates the minimum value and the maximum value for each data included in each data group grouped into the same group by the classification unit 530, to obtain each region of the feature space. Calculate the range of each data.
- the range of each data represented by the dotted line 900 is none other than Proxel (specific data specified by the group 311) described in FIG.
- FIG. 10 is a first flowchart showing a flow of Proxel calculation processing by the classification unit and the Proxel calculation unit.
- step S1001 the classification unit 530 reads, from the data storage unit 112, the data group associated with the process to be processed and the step.
- step S1002 the classification unit 530 divides the feature space by performing clustering processing such that data groups having similar effects are classified into the same group for each data group.
- step S1003 the Proxel calculation unit 540 calculates Proxel by calculating the range of each data of each area of the feature space divided by the classification unit 530 (specific data specifying each group). Further, the Proxel calculating unit 540 stores the calculated Proxel in the analysis result storage unit 113 as analysis result data.
- FIG. 11 is a first diagram for explaining the advantage of calculating Proxel.
- a plurality of data groups 1100 are each an example of data groups collected from the business establishments 120, 130, and 140, and all of them are assumed to be data groups from which the same effect can be obtained.
- the kind of data contained in each data group is five types for simplification of description.
- Proxel 1110 is an example of Proxel calculated by the Proxel calculation unit 540 based on a plurality of data groups 1100.
- FIG. 12 is a second diagram for explaining the advantage of calculating Proxel.
- the horizontal axis represents data type P (here, “HF power”)
- the vertical axis represents data type Q (here, “LF power”).
- FIG. 13 is a third diagram for explaining the advantage of calculating Proxel. As shown in FIG. 13, since Proxel (specific data specified by the group 311) is associated with the effect of the step, the product 1311 of the step is estimated when the initial data 1301 is input. be able to. Similarly, it is possible to estimate the product 1312 of the step when the initial data 1302 is input.
- ⁇ Summary> Collect data groups for each process and step, and calculate effects for each collected data group.
- the feature space is divided such that data groups that can obtain the same effect are classified into the same group.
- Proxel is calculated by calculating the range of each data of each area of the divided feature space, and stored as analysis result data.
- the ease of handling the collected data group is improved, the density of the distribution of the collected data group in the feature space can be made uniform, and the model is formed to obtain the result of the step. It is possible to obtain advantages such as that things can be estimated.
- each data included in the data group is described as being handled equally.
- the data group includes data with high contribution to effects and low data. Therefore, in the second embodiment, clustering processing is performed after weighting data according to the degree of contribution to the effect.
- each area is generated by dividing the feature space by clustering processing, and Proxel is calculated.
- Proxel is calculated by integrating the other regions with a region with a low degree of contribution to the effect. Do.
- FIG. 14 is a second flowchart showing the flow of the Proxel calculation process by the classification unit and the Proxel calculation unit. The differences from the Proxel calculation processing described with reference to FIG. 10 in the first embodiment are steps S1401 to S1404.
- step S ⁇ b> 1401 the classification unit 530 determines the contribution degree to the effect for each data included in the data group stored in the data storage unit 112.
- step S1402 the classification unit 530 performs clustering processing after weighting each data according to the degree of contribution so that data groups that can obtain the same effect are classified into the same group for each data group. , Divide the feature space. As a result, data having a high degree of contribution is finely divided in the feature space, and data having a low degree of contribution is roughly divided in the feature space.
- step S1403 the Proxel calculating unit 540 integrates, with each other, an area having a low degree of contribution to the effect among the areas of the feature space divided by the classifying unit 530.
- step S 1404 the Proxel calculating unit 540 calculates Proxel by calculating the range of each data of each area after integration, and stores the result as analysis result data in the analysis result storage unit 113.
- the number of Proxels can be reduced, and it is possible to calculate Proxels according to the degree of contribution.
- the range of each data of each area of the divided feature space is calculated to calculate Proxel.
- the calculation method of Proxel is not limited to this.
- the range of each data of each region of the divided feature space is calculated to calculate Proxel, and the Proxel is stored as analysis result data in the analysis result storage unit 113. It was set up.
- the analysis result data stored in the analysis result storage unit 113 is not limited to Proxel.
- representative data specific data specifying each group representing each region of the divided feature space may be stored as analysis result data.
- the data analysis program is installed in the data processing apparatus 110 and the data analysis unit 111 is realized in the data processing apparatus 110.
- the data analysis program is installed, for example, on the terminals 121, 131, 141 in each business office 120, 130, 140, and the data analysis unit 111 in the terminals 121, 131, 141 in each business office 120, 130, 140. May be realized.
- the data group for calculating Proxel is the data collected in the semiconductor manufacturing process It is not limited to groups. Even in manufacturing processes other than semiconductor manufacturing processes, for example, manufacturing processes including apparatuses using plasma generally complicate setting data. For this reason, even when Proxel is calculated for the data group collected in the manufacturing process including the device, the above-described advantage can be obtained.
- data processing system 110 data processing device 111: data analysis unit 201: data group 311 to 314: group 510: collection unit 520: effect calculation unit 530: classification unit 540: Proxel calculation unit 800: feature space 900: Proxel
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geometry (AREA)
- Multimedia (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Probability & Statistics with Applications (AREA)
- Computational Linguistics (AREA)
- Automation & Control Theory (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- General Factory Administration (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Communication Control (AREA)
Abstract
Description
プロセス内の所定のステップと対応付けられたデータ群を収集し、それぞれのデータ群について該所定のステップにおける効果を算出する算出手段と、
前記所定のステップと対応付けられた複数のデータ群それぞれの特徴空間における分布が、算出された前記効果ごとに分類されるよう、該特徴空間を分割する分割手段と、
分割した前記特徴空間の各領域を特定する特定データを出力する出力手段とを有する。
<データ処理システムの全体構成>
はじめに、データ処理システムの全体構成について説明する。図1は、データ処理システムの全体構成の一例を示す図である。図1に示すように、データ処理システム100は、データ処理装置110と、各事業所120、130、140(事業所名=“事業所A”、“事業所B”、“事業所C”)内の端末121、131、141とを有する。データ処理装置110と、各事業所120、130、140内の端末121、131、141とは、ネットワーク150を介して、通信可能に接続される。
次に、各事業所120、130、140で取り扱われるデータ群について説明する。図2は、各事業所で取り扱われるデータ群の具体例を示す図である。ここでは、事業所120で取り扱われるデータ群について説明する。
・事業所120の半導体製造装置が実行する複数の半導体製造プロセスのうち、プロセス名=“プロセスI”の半導体製造プロセスであって、
・該半導体製造プロセスに含まれる複数のステップのうち、ステップ名=“STEP1”のステップ、
と対応付けられたデータ群である。
・Initial CD(critical dimensions)(限界寸法)
・Material(材料)
・Thickness(厚さ)
・Aspect ratio(アスペクト比)
・Mask coverage(マスク被覆性)
等が含まれる。
・Pressure(チャンバ内の圧力)
・Power(高周波電源の電力)
・Gas(ガス流量)
・Temperature(チャンバ内の温度または基板表面の温度)
等が含まれる。
・Vpp(電位差)
・Vdc(直流自己バイアス電圧)
・OES(発光分光分析による発光強度)
・Reflect(反射波電力)
・Top DCS current(ドップラ流速計による検出値)
等が含まれる。
・Plasma density(プラズマ密度)
・Ion energy(イオンエネルギ)
・Ion flux(イオン流量)
等が含まれる。
・Etching rate(エッチング速度)
・Deposition rate(成膜速度)
・XY position(XY座標)
・Film type(薄膜の種類)
・Vertical/Lateral(縦型/横型の区分)
等が含まれる。
・CD(限界寸法)
・Depth(深さ)
・Taper(テーパ角)
・Tilting(チルト角)
・Bowing(ボーイング)
等が含まれる。
次に、各事業所120、130、140から収集したデータ群を、データ処理装置110のデータ解析部111が解析することで、解析結果格納部113に格納される解析結果データの概要について説明する。図3は、解析結果格納部に格納される解析結果データの概要を説明するための図である。
次に、データ処理装置110のハードウェア構成について説明する。図4は、データ処理装置のハードウェア構成の一例を示す図である。
次に、データ処理装置110のデータ解析部111の機能構成について説明する。図5は、データ解析部の機能構成の一例を示す図である。図5に示すように、データ解析部111は、収集部510、効果算出部520、分類部530、Proxel算出部540を有する。
次に、データ解析部111の各部(収集部510、効果算出部520、分類部530、Proxel算出部540)のうち、効果算出部520、分類部530、Proxel算出部540の処理の具体例について説明する。
はじめに、効果算出部520の処理の具体例について説明する。図6は、効果算出部の処理の具体例を示す図である。
・実行前の状態を示すデータ(第1のデータ)と、
・実行後の状態を示すデータ(第2のデータ)と、
の差分により表すことができる。
次に、分類部530の処理の具体例について説明する。図8は、分類部の処理の具体例を示す図である。
次に、Proxel算出部540の処理の具体例について説明する。上述したとおり、Proxel算出部540は、分類部530により分割された特徴空間の各領域の各データの範囲(グループにより特定される特定データ)を算出することで、Proxelを算出する。図9は、Proxel算出部により算出されたProxelの一例を示す図である。
・最小値=“Pressure_1”
・最大値=“Pressure_4”
であったことを示している。
次に、Proxel算出部540がProxelを算出する利点について説明する。
Proxel算出部540がProxelを算出する利点の1つとして、各事業所120、130、140から収集した複数のデータ群の取り扱い易さが向上すること、が挙げられる。
Proxel算出部540がProxelを算出する利点の1つとして、各事業所120、130、140から収集した複数のデータ群の密度のばらつきの影響を受けにくくなること、が挙げられる。つまり、特徴空間におけるデータ群の密度を均一化できること、が挙げられる。
Proxel算出部540がProxelを算出する利点の1つとして、Proxelにより代表モデルを形成し、対応するステップの結果物を推定することができること、が挙げられる。
以上の説明から明らかなように、第1の実施形態に係るデータ処理装置110では、
・プロセスごと、ステップごとに、データ群を収集し、収集したデータ群ごとに効果を算出する。
・データ群それぞれの特徴空間における分布において、同程度の効果が得られるデータ群同士が同じグループに分類されるよう、特徴空間を分割する。
・分割した特徴空間の各領域の各データの範囲を算出することでProxelを算出し、解析結果データとして格納する。
上記第1の実施形態では、データ群に含まれる各データを均等に取り扱うものとして説明した。しかしながら、データ群には、効果に対する寄与度が高いデータと低いデータとが含まれる。そこで、第2の実施形態では、効果に対する寄与度に応じてデータに重み付けを行ったうえで、クラスタリング処理を実行する。
図14は、分類部及びProxel算出部によるProxel算出処理の流れを示す第2のフローチャートである。第1の実施形態において図10を用いて説明したProxel算出処理との相違点は、ステップS1401~S1404である。
以上の説明から明らかなように、第2の実施形態に係るデータ処理装置110では、上記第1の実施形態に加え、
・特徴空間を分割する際、データ群に含まれる各データの効果に対する寄与度を加味する。
・分割した特徴空間の各領域のうち、効果に対する寄与度が低い領域を、他の領域と統合する。
上記第1及び第2の実施形態では、分割された特徴空間の各領域の各データの範囲を算出することで、Proxelを算出した。しかしながら、Proxelの算出方法はこれに限定されない。
110 :データ処理装置
111 :データ解析部
201 :データ群
311~314 :グループ
510 :収集部
520 :効果算出部
530 :分類部
540 :Proxel算出部
800 :特徴空間
900 :Proxel
Claims (8)
- プロセス内の所定のステップと対応付けられたデータ群を収集し、それぞれのデータ群について該所定のステップにおける効果を算出する算出手段と、
前記所定のステップと対応付けられた複数のデータ群それぞれの特徴空間における分布が、算出された前記効果ごとに分類されるよう、該特徴空間を分割する分割手段と、
分割した前記特徴空間の各領域を特定する特定データを出力する出力手段と
を有するデータ処理装置。 - 前記算出手段は、
前記プロセス内の所定のステップが実行される前の状態を示す第1のデータと、前記プロセス内の所定のステップが実行された後の状態を示す第2のデータとの差分に基づき、それぞれのデータ群について前記効果を算出する、請求項1に記載のデータ処理装置。 - 前記分割手段は、
算出された前記効果が同程度となるデータ群同士が、同じグループに分類されるように、前記特徴空間を分割する、請求項1に記載のデータ処理装置。 - 前記分割手段は、
前記データ群に含まれる各データの前記効果に対する寄与度に基づいて、前記データ群に含まれる各データを重み付けし、重み付けした各データを含むデータ群を用いて、前記特徴空間を分割する、請求項3に記載のデータ処理装置。 - 前記分割手段は、
分割した前記特徴空間の各領域を、互いに重なり合うことがないように変形する、請求項1に記載のデータ処理装置。 - 前記プロセスは、半導体製造プロセスであり、
前記ステップは、前記半導体製造プロセスにおいて状態を変化させる最小の処理単位であり、
前記状態には、少なくとも、前記半導体製造プロセスにおける処理対象物の属性が含まれる、請求項1に記載のデータ処理装置。 - プロセス内の所定のステップと対応付けられたデータ群を収集し、それぞれのデータ群について該所定のステップにおける効果を算出する算出工程と、
前記所定のステップと対応付けられた複数のデータ群それぞれの特徴空間における分布が、算出された前記効果ごとに分類されるよう、該特徴空間を分割する分割工程と、
分割した前記特徴空間の各領域を特定する特定データを出力する出力工程と
を有するデータ処理方法。 - コンピュータに、
プロセス内の所定のステップと対応付けられたデータ群を収集し、それぞれのデータ群について該所定のステップにおける効果を算出する算出工程と、
前記所定のステップと対応付けられた複数のデータ群それぞれの特徴空間における分布が、算出された前記効果ごとに分類されるよう、該特徴空間を分割する分割工程と、
分割した前記特徴空間の各領域を特定する特定データを出力する出力工程と
を実行させるためのプログラム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207021044A KR20200100784A (ko) | 2017-12-28 | 2018-12-25 | 데이터 처리 장치, 데이터 처리 방법 및 프로그램 |
JP2019561703A JP6956806B2 (ja) | 2017-12-28 | 2018-12-25 | データ処理装置、データ処理方法及びプログラム |
CN201880083796.8A CN111527486A (zh) | 2017-12-28 | 2018-12-25 | 数据处理装置、数据处理方法以及程序 |
US16/957,958 US11789981B2 (en) | 2017-12-28 | 2018-12-25 | Data processing device, data processing method, and non-transitory computer-readable recording medium |
EP18893557.1A EP3734467B1 (en) | 2017-12-28 | 2018-12-25 | Data processing device, data processing method, and recording medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-253694 | 2017-12-28 | ||
JP2017253694 | 2017-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019131608A1 true WO2019131608A1 (ja) | 2019-07-04 |
Family
ID=67063748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/047519 WO2019131608A1 (ja) | 2017-12-28 | 2018-12-25 | データ処理装置、データ処理方法及びプログラム |
Country Status (7)
Country | Link |
---|---|
US (1) | US11789981B2 (ja) |
EP (1) | EP3734467B1 (ja) |
JP (1) | JP6956806B2 (ja) |
KR (1) | KR20200100784A (ja) |
CN (1) | CN111527486A (ja) |
TW (1) | TWI798314B (ja) |
WO (1) | WO2019131608A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230158403A (ko) | 2022-05-11 | 2023-11-20 | 도쿄엘렉트론가부시키가이샤 | 에칭 처리 장치, 에칭 처리 시스템, 해석 장치, 에칭 처리 방법 및 기록 매체 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022003969A1 (ja) * | 2020-07-03 | 2022-01-06 | 三菱電機株式会社 | データ処理装置及びデータ処理方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001256480A (ja) * | 2000-03-09 | 2001-09-21 | Hitachi Ltd | 画像自動分類方法及び装置 |
JP2009152269A (ja) | 2007-12-19 | 2009-07-09 | Sony Corp | ドライエッチング装置および半導体装置の製造方法 |
WO2012016594A1 (en) * | 2010-08-05 | 2012-02-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. | Apparatus and method for analyzing bulky data |
US20150211122A1 (en) | 2009-02-13 | 2015-07-30 | Taiwan Semiconductor Manufacturing Co., Ltd. | Multi-zone temperature control for semiconductor wafer |
JP2016206784A (ja) * | 2015-04-17 | 2016-12-08 | 株式会社Ihi | データ分析装置及びデータ分析方法 |
US20170177997A1 (en) | 2015-12-22 | 2017-06-22 | Applied Materials Israel Ltd. | Method of deep learining-based examination of a semiconductor specimen and system thereof |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006048183A (ja) * | 2004-07-30 | 2006-02-16 | Sharp Corp | データ分析装置およびデータ分析プログラム |
JP4653547B2 (ja) * | 2004-11-05 | 2011-03-16 | 新日本製鐵株式会社 | 製造プロセスにおける操業と品質の関連解析装置、方法、コンピュータプログラム、及びコンピュータ読み取り可能な記録媒体 |
US20090122979A1 (en) * | 2007-10-30 | 2009-05-14 | Electronics And Telecommunications Research Institute | Method and apparatus for protecting pattern recognition data |
JP2009129276A (ja) * | 2007-11-26 | 2009-06-11 | Fujitsu Ltd | カテゴリ命名装置、カテゴリ命名方法およびカテゴリ命名プログラム |
JP2009230807A (ja) * | 2008-03-24 | 2009-10-08 | Fujitsu Ltd | 磁気記録装置および磁気記録方法 |
JP5210416B2 (ja) * | 2011-06-13 | 2013-06-12 | シャープ株式会社 | 立体画像生成装置、立体画像生成方法、プログラム、および記録媒体 |
JP6274114B2 (ja) * | 2013-01-10 | 2018-02-07 | 富士通株式会社 | 制御方法、制御プログラム、および制御装置 |
CN104318241A (zh) * | 2014-09-25 | 2015-01-28 | 东莞电子科技大学电子信息工程研究院 | 基于Self-tuning的局部密度谱聚类相似度量算法 |
US20160096318A1 (en) * | 2014-10-03 | 2016-04-07 | Disney Enterprises, Inc. | Three dimensional (3d) printer system and method for printing 3d objects with user-defined material parameters |
US20160357840A1 (en) * | 2015-06-03 | 2016-12-08 | Fujitsu Limited | Apparatus and method for clustering data in streaming clustering without reducing precision |
EP3317823A4 (en) * | 2015-06-30 | 2019-03-13 | Arizona Board of Regents on behalf of Arizona State University | METHOD AND DEVICE FOR MACHINERY LEARNING IN A LARGE SCALE |
WO2017044082A1 (en) * | 2015-09-09 | 2017-03-16 | Intel Corporation | Separated application security management |
CN105956628B (zh) * | 2016-05-13 | 2021-01-26 | 北京京东尚科信息技术有限公司 | 数据分类方法和用于数据分类的装置 |
JP6784062B2 (ja) * | 2016-06-01 | 2020-11-11 | 株式会社リコー | 情報処理装置、情報処理方法およびプログラム |
CN106096052A (zh) * | 2016-06-25 | 2016-11-09 | 浙江中烟工业有限责任公司 | 一种面向微信营销的消费者聚类方法 |
CN106991430A (zh) * | 2017-02-28 | 2017-07-28 | 浙江工业大学 | 一种基于临近点法的聚类个数自动确定谱聚类方法 |
US10234848B2 (en) * | 2017-05-24 | 2019-03-19 | Relativity Space, Inc. | Real-time adaptive control of additive manufacturing processes using machine learning |
JP6890632B2 (ja) * | 2019-06-27 | 2021-06-18 | 東京エレクトロン株式会社 | データ処理装置、データ処理方法及びプログラム |
-
2018
- 2018-12-18 TW TW107145628A patent/TWI798314B/zh active
- 2018-12-25 KR KR1020207021044A patent/KR20200100784A/ko not_active Application Discontinuation
- 2018-12-25 JP JP2019561703A patent/JP6956806B2/ja active Active
- 2018-12-25 US US16/957,958 patent/US11789981B2/en active Active
- 2018-12-25 WO PCT/JP2018/047519 patent/WO2019131608A1/ja unknown
- 2018-12-25 EP EP18893557.1A patent/EP3734467B1/en active Active
- 2018-12-25 CN CN201880083796.8A patent/CN111527486A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001256480A (ja) * | 2000-03-09 | 2001-09-21 | Hitachi Ltd | 画像自動分類方法及び装置 |
JP2009152269A (ja) | 2007-12-19 | 2009-07-09 | Sony Corp | ドライエッチング装置および半導体装置の製造方法 |
US20150211122A1 (en) | 2009-02-13 | 2015-07-30 | Taiwan Semiconductor Manufacturing Co., Ltd. | Multi-zone temperature control for semiconductor wafer |
WO2012016594A1 (en) * | 2010-08-05 | 2012-02-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. | Apparatus and method for analyzing bulky data |
JP2016206784A (ja) * | 2015-04-17 | 2016-12-08 | 株式会社Ihi | データ分析装置及びデータ分析方法 |
US20170177997A1 (en) | 2015-12-22 | 2017-06-22 | Applied Materials Israel Ltd. | Method of deep learining-based examination of a semiconductor specimen and system thereof |
Non-Patent Citations (2)
Title |
---|
KAORU SAKAI AND SHUNJI MAEDA: "LSI wafer inspection method using recursive splitting of feature space", IPSJ SIG TECHNICAL REPORTS, vol. 2006, no. 93, 9 September 2006 (2006-09-09), pages 65 - 72, XP009521997, ISSN: 0913-5685 * |
SAKATA ET AL: "Successive Pattern Learning based on Test Feature Classifier and its application to time-series recognition problem", DOCUMENTS OF RESEARCH GROUP OF THE INSTITUTE OF ELECTRICAL OF JAPAN, 11 August 2006 (2006-08-11), pages 1 - 6, XP055624047 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230158403A (ko) | 2022-05-11 | 2023-11-20 | 도쿄엘렉트론가부시키가이샤 | 에칭 처리 장치, 에칭 처리 시스템, 해석 장치, 에칭 처리 방법 및 기록 매체 |
Also Published As
Publication number | Publication date |
---|---|
KR20200100784A (ko) | 2020-08-26 |
EP3734467B1 (en) | 2024-05-01 |
US20200372303A1 (en) | 2020-11-26 |
CN111527486A (zh) | 2020-08-11 |
EP3734467A1 (en) | 2020-11-04 |
EP3734467A4 (en) | 2021-09-22 |
TWI798314B (zh) | 2023-04-11 |
JPWO2019131608A1 (ja) | 2020-12-24 |
JP6956806B2 (ja) | 2021-11-02 |
TW201931466A (zh) | 2019-08-01 |
US11789981B2 (en) | 2023-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10627788B2 (en) | Retrieval apparatus and retrieval method for semiconductor device processing | |
TWI803690B (zh) | 推估方法、推估裝置、模型之產生方法及學習裝置 | |
TWI846887B (zh) | 資料處理裝置、資料處理方法及資料處理程式 | |
TWI614721B (zh) | 在半導體製造中用於檢測之雜訊中所內嵌之缺陷之偵測 | |
TWI627397B (zh) | 用於晶圓檢測之方法、晶圓檢測工具及非暫態電腦可讀媒體 | |
US20180218492A1 (en) | Method And System For Identifying Defects Of Integrated Circuits | |
CN112840205B (zh) | 基于设计及噪声的关注区域 | |
US9262821B2 (en) | Inspection recipe setup from reference image variation | |
TW201627655A (zh) | 自動化圖案保真度量測計劃生成 | |
JPWO2020111258A1 (ja) | 仮想測定装置、仮想測定方法及び仮想測定プログラム | |
WO2022145225A1 (ja) | パラメータ導出装置、パラメータ導出方法及びパラメータ導出プログラム | |
WO2015109035A1 (en) | Semiconductor device models including re-usable sub-structures | |
JP2013062508A (ja) | 製造ツールのレシピを生成する方法及びそのシステム | |
JP6956806B2 (ja) | データ処理装置、データ処理方法及びプログラム | |
US11237544B2 (en) | Information processing device, program, process treatment executing device, and information processing system | |
CN114503155A (zh) | 控制样本检验的工艺 | |
KR101855010B1 (ko) | 군집 지역 별 세계측지계 좌표 변환 장치 및 방법 | |
JP2011054804A (ja) | 半導体製造装置の管理方法およびシステム | |
KR102073362B1 (ko) | 웨이퍼 맵을 불량 패턴에 따라 분류하는 방법 및 컴퓨터 프로그램 | |
US12057336B2 (en) | Estimating heights of defects in a wafer by scaling a 3D model using an artificial neural network | |
US20230369032A1 (en) | Etching processing apparatus, etching processing system, analysis apparatus, etching processing method, and storage medium | |
TW202316317A (zh) | 使用圖案模型的圖案檢測方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18893557 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019561703 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20207021044 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018893557 Country of ref document: EP Effective date: 20200728 |