WO2019130901A1 - Feeder and glass article manufacturing method - Google Patents

Feeder and glass article manufacturing method Download PDF

Info

Publication number
WO2019130901A1
WO2019130901A1 PCT/JP2018/042618 JP2018042618W WO2019130901A1 WO 2019130901 A1 WO2019130901 A1 WO 2019130901A1 JP 2018042618 W JP2018042618 W JP 2018042618W WO 2019130901 A1 WO2019130901 A1 WO 2019130901A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten glass
electric heating
feeder
heating element
space
Prior art date
Application number
PCT/JP2018/042618
Other languages
French (fr)
Japanese (ja)
Inventor
大介 百々
典生 岸
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2019562843A priority Critical patent/JPWO2019130901A1/en
Publication of WO2019130901A1 publication Critical patent/WO2019130901A1/en
Priority to JP2022167549A priority patent/JP7396430B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/08Bushings, e.g. construction, bushing reinforcement means; Spinnerettes; Nozzles; Nozzle plates
    • C03B37/085Feeding devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • C03B7/06Means for thermal conditioning or controlling the temperature of the glass
    • C03B7/07Electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/14Charging or discharging liquid or molten material

Definitions

  • the present invention relates to a feeder for flowing molten glass inside and a method of manufacturing a glass article using the same.
  • the environmental load substance contained in the molten glass for example, boron oxide (B 2 O 3 ) is easily volatilized by the heat of the burner, (2) combustion of the burner Depending on the state, the redox atmosphere in the internal space is likely to fluctuate, and it is easy to generate reboil bubbles in the molten glass, (3) Glass produced from molten glass when dust contained in combustion exhaust gas is mixed in the molten glass There is a risk that defects such as defects (foreign matter) may occur in the article.
  • defects such as defects (foreign matter)
  • Patent Document 2 discloses a method in which an electric heating element is disposed in the inner space of the feeder instead of the burner, and the molten glass is heated by the heat. Specifically, in order to equalize the temperature distribution of the molten glass flowing through the inside of the feeder, the document discloses that the heat propagation from the electric heating element to the surface of the molten glass is part of the direct path to the molten glass. It is disclosed to provide a restriction that limits the heat transfer of the As a result, the heat transfer from the electric heating element to the molten glass is limited, and the heat transfer path leading to the surface of the molten glass, bypassing the restriction, and the heat from the electric heating element heat the restriction. After that, the heat from the electric heating element is transferred to the molten glass by the two heat transfer paths leading to the surface of the molten glass as the heat from the restriction portion.
  • the space in which the electric heating element is disposed is in direct communication with the space in which the molten glass is disposed in the heat transfer path which bypasses the restriction portion and reaches the surface of the molten glass. . Therefore, when a part of the electric heating element is lost due to a defect or the like, there is a possibility that the lost part may be mixed in the molten glass via the communicating part of both spaces. In particular, when a part of the electric heating element is broken due to sparks, the broken part is likely to scatter around due to a shock at the time of sparking and be mixed into the molten glass. The inclusion of such a defect in the molten glass causes defects in the manufactured glass article.
  • An object of the present invention is to reliably prevent the occurrence of defects in a glass article.
  • the present invention invented to solve the above problems is a feeder for circulating molten glass inside, wherein an electric heating element for heating the molten glass, a first space in which the molten glass is arranged, and the electric heating element are arranged And a partition member completely separating the second space from the second space.
  • the spaces become independent of each other. Therefore, even if a part of the electric heating element is broken due to sparks or the like, the portion which has been chipped remains in the second space without being mixed into the molten glass of the first space.
  • the partition member is heated by the heat from the electric heating element and the heat from the second space heated by the electric heating element, the molten glass is heated by the heat from the partition member. That is, the molten glass is indirectly heated through the partition member.
  • the electric heating element be disposed directly above the molten glass. In this case, the heat of the electric heating element is easily transmitted to the molten glass, so that the heating efficiency of the molten glass is improved.
  • the electric heating element be disposed laterally in the second space. In this way, the volume of the second space that accommodates the electric heating element can be reduced, so the heat loss in the second space is reduced. Therefore, the molten glass can be efficiently heated while suppressing the electric energy input to the electric heating element.
  • the electric heating element preferably extends along the width direction orthogonal to the flow direction of the molten glass.
  • the electric heating element can be replaced using the side space of the feeder.
  • the side space of the feeder is lower in temperature than the space above it, and often there is a space allowance. Therefore, the replacement work of the electric heating element is simplified as compared with the case where the replacement work of the electric heating element is performed using the space above the feeder. In the case where the electric heating element extends along the flow direction or the up-down direction of the molten glass, it is often necessary to carry out the replacement work of the electric heating element utilizing the space above the feeder.
  • the second space is continuous in the width direction orthogonal to the flow direction of the molten glass so as to cover the entire width of the molten glass.
  • the second space is a heating space heated by the heat of the electric heating element. Therefore, when the second space is continuous so as to cover the entire width of the molten glass, it is easy to uniformly heat the entire width of the molten glass by the heat from the partition member provided at the position corresponding to the second space. As a result, since the temperature distribution of the molten glass which distribute
  • the electric heating element be disposed immediately above the both widthwise end portions of the molten glass and immediately above the widthwise central portion of the molten glass. In this case, since the partition member is heated more quickly and uniformly in the width direction, the heat from the partition member can more easily heat the entire width of the molten glass more uniformly.
  • the second space may be divided into a plurality in the flow direction of the molten glass. In this way, since the temperature distribution in the flow direction of the molten glass can be managed in a plurality of zones, the molten state of the molten glass can be precisely controlled.
  • a partition member is formed with alumina quality electrocast brick.
  • Alumina-based electroformed brick is suitable as a partition member because it conducts heat well and is not easily thermally deteriorated.
  • the bottom of the feeder is preferably provided with a bushing for forming molten glass into glass fiber.
  • the present invention invented to solve the above problems is a method of manufacturing a glass article including a step of circulating molten glass inside a feeder, wherein the feeder is provided with an electric heating element for heating the molten glass, and the melting is performed.
  • a partition member is provided which completely partitions the first space in which the glass is disposed and the second space in which the electric heating element is disposed. According to such a configuration, it is possible to obtain the same effects as the corresponding configuration described above.
  • the present invention it is possible to reliably prevent the occurrence of defects in the glass article due to the loss of the heating element inside the feeder.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG. It is a top view for demonstrating the support form of an electric heat generating body.
  • It is CC sectional drawing of FIG. 4A.
  • It is a longitudinal front view showing a feeder concerning a second embodiment of the present invention. It is a vertical front view which shows the feeder which concerns on 3rd embodiment of this invention. It is a vertical front view which shows the feeder which concerns on 4th embodiment of this invention. It is a vertical front view which shows the feeder which concerns on 5th embodiment of this invention.
  • the manufacturing method of the glass article which concerns on 1st embodiment manufactures the glass fiber Gf as a glass article using the manufacturing apparatus 1 of a glass article.
  • the glass article manufacturing apparatus 1 includes a melting furnace 2 for melting the glass raw material Gr to form a molten glass Gm, and a feeder 3 connected to the downstream side of the melting furnace 2 for circulating the molten glass Gm therein. There is.
  • the wall portion that partitions and forms the melting space of the melting furnace 2 and the flow space of the feeder 3 is formed of a refractory material such as brick.
  • a charging port 2a for charging a glass material Gr mixed with silica sand, limestone, soda ash, cullet and the like into the furnace is provided.
  • Raw material supply means (illustration omitted), such as a screw feeder, is arrange
  • the melting furnace 2 is further provided with heating means (not shown).
  • a heating means for example, an electric heating means such as a gas burner, an electric heater, or an electrode immersed in the molten glass Gm disposed above the molten glass Gm can be used.
  • the molten glass Gm is continuously formed by melting the glass raw material Gr charged from the inlet 2a by heating by the heating means.
  • the molten glass Gm flows into the feeder 3 from the downstream end of the melting furnace 2.
  • the melting furnace 2 may melt the glass raw material Gr only by gas combustion or only by electric heating, or may melt the gas raw material and electric heating in combination.
  • the bottom portion 3a of the feeder 3 is provided with a plurality of bushings 4 formed of platinum or platinum alloy at intervals in the flow direction X of the molten glass Gm.
  • Each bushing 4 is provided with a plurality of bushing nozzles (not shown).
  • Each nozzle flows down the molten glass Gm to form a glass fiber Gf.
  • the molten glass Gm which flowed down from each nozzle is shape
  • the feeder 3 is provided with an electric heating element 5 for heating and maintaining the molten glass Gm, and a first space S1 in which the molten glass Gm is provided, and an electric heating element 5. It further has a partition plate 6 which is a partition member that completely partitions the two spaces S2.
  • the molten glass Gm is indirectly heated via the partition plate 6. In detail, after the partition plate 6 is heated by the heat from the electric heating element 5 and the heat from the second space S2 heated by the electric heating element 5, the molten glass Gm is heated by the heat from the partition board 6 Ru.
  • the partition member is not limited to a plate shape, and can divide the first space S1 and the second space S2, and can indirectly heat the molten glass Gm by the heat of the electric heating element 5, etc. If there is, it is possible to select an arbitrary shape. For example, it may be block-like.
  • the first space S1 and the second space S2 are independent spaces not having a communication portion, a part of the electric heating element 5 is broken by a spark or the like. Also, the missing part surely stays in the second space S2. Therefore, the defective portion does not intrude into the first space S1 and mix in the molten glass Gm at the time of defect or replacement of the electric heating element 5, so that high quality glass fiber Gf with few defects can be formed. .
  • the second space S2 is a divided member extending in the width direction Y so as to cover the entire width of the molten glass Gm in the width direction Y orthogonal to the flow direction X of the molten glass Gm. It is divided into multiple parts by 3b.
  • each second space S2 one or more (two in the illustrated example) electric heating elements 5 are accommodated sideways.
  • the heating temperature of the electric heating element 5 can be adjusted individually, and the temperature distribution in the flow direction X of the molten glass Gm is managed in a plurality of zones corresponding to the second space S2. It is supposed to be.
  • the second space S2 may be divided into a plurality of parts in the width direction Y or may not be divided into a plurality in the flow direction X.
  • the electric heating element 5 is a resistance heating element which is made of, for example, silicon carbide (SiC) or the like, and generates heat by energization.
  • the electric heating element 5 is a U-shaped member having a bent portion 5a and two straight portions 5b arranged in parallel via the bent portion 5a (see FIGS. 4A and 4B). It is. Two straight portions 5 b of the electric heating element 5 are supported by a support block 3 c disposed on one side wall portion of the feeder 3. In this state, the two straight portions 5 b extend along the width direction Y so as to face each other in the flow direction X. That is, the U-shaped electric heating element 5 is disposed laterally along the width direction.
  • the thickness in the vertical direction of the electric heating element 5 can be suppressed thin, the heat loss in the second space S2 can be suppressed by reducing the volume of the second space S2.
  • the end of the electric heating element 5 (the end of the linear portion 5b) faces the side space of the feeder 3, the work of replacing the electric heating element 5 using the side space of the feeder 3 (extraction work etc.) Can be implemented easily.
  • the two straight portions 5b may extend along the width direction Y so as to face each other in the vertical direction.
  • the length in the width direction Y of the electric heating element 5 in the second space S2 is set to a length that can cover substantially the entire width of the molten glass Gm.
  • the electric heating element 5 is disposed immediately above the widthwise end portions of the molten glass Gm and directly above the widthwise central portion of the molten glass Gm. Therefore, the full width of molten glass Gm can be heated uniformly, and the variation in the temperature distribution of molten glass Gm can be suppressed.
  • the length of the width direction Y of the electric heating element 5 in 2nd space S2 can be suitably adjusted according to the heat amount required for heat retention of molten glass Gm.
  • the magnitude of the current supplied to the electric heating element 5 the amount of heat given to the molten glass Gm can be adjusted.
  • the partition plate 6 is continuous so as to cover the entire width of the molten glass Gm in the width direction Y so as to correspond to the second space S2, and is divided into a plurality in the flow direction X. By dividing the partition plate 6 into a plurality of parts in the flow direction X, the area and weight per sheet are reduced, so the partition plate 6 becomes difficult to bend.
  • the partition plate 6 is preferably made of alumina-based electroformed brick. In this way, the heat conduction of the partition plate 6 is improved, so that the partition plate 6 is efficiently heated. As a result, the heat from the partition plate 6 makes it easy to heat the molten glass Gm. Further, since the partition plate 6 is less likely to be thermally deteriorated, the durability of the partition plate 6 is improved.
  • the material of the partition plate 6 is not limited to the alumina electrocast brick, For example, a baking brick etc. may be sufficient.
  • the thickness of the partition plate 6 is preferably 5 to 100 mm.
  • the electric heating element 5 is supported in the second space S2 in a state of being separated upward from the partition plate 6.
  • the electric heating element 5 is supported from below by a plurality of supports 7 spaced on the partition plate 6.
  • the support mode of the electric heating element 5 is not limited to this.
  • the shape of the support body 7 is not specifically limited, For example, polygonal columns, such as a square pole, a cylinder, etc. may be sufficient.
  • the support 7 may not be divided into a plurality of pieces, and may be, for example, a single plate-like body.
  • the material of the support 7 is not particularly limited as long as it is a refractory, and is formed of, for example, a firebrick or a ceramic.
  • the feeder 3 according to the second embodiment differs from the feeder according to the first embodiment in that the electric heating elements 5 disposed in the second space S2 are spaced in the width direction. A plurality of (two in the illustrated example) points are provided.
  • the electric heating elements 5 are arranged in pairs along the flow direction X of the molten glass Gm, with one pair of electric heating elements 5 present on both sides symmetrical with respect to the center. It is arranged at equal intervals. Further, each of the electric heating elements 5 has a U-shape and is attached to the upper portion of the inner peripheral wall of the feeder 3. Each of the U-shaped electric heating elements 5 is disposed laterally along the width direction.
  • the feeder 3 according to the third to fifth embodiments is the feeder according to the second embodiment in which the direction and the attachment position of the U-shaped electric heating element 5 are changed. is there.
  • the electric heating elements 5 are arranged vertically along the width direction.
  • the attachment position of the electric heating element 5 is changed from the side portion 3 d to the upper portion in the inner peripheral wall of the feeder 3 and the electric heating element 5 is along the width direction Are arranged vertically.
  • the mounting position of the electric heating element 5 is changed from the side portion 3 d to the upper portion in the inner peripheral wall of the feeder 3 and the electric heating element 5 is along the flow direction Are arranged vertically.
  • the direction and mounting position of the electric heating element 5 are not particularly limited, but from the viewpoint of increasing the heating efficiency of the electric heating element 5 by reducing the volume of the second space S2, the electric heating element 5 is It is preferable to arrange in a lateral direction (preferably on a horizontal surface).
  • the difference between the feeder 3 according to the sixth embodiment and the feeder according to the first embodiment is that the bank portion 3 e is formed on the side portion 3 d of the inner peripheral wall of the feeder 3. It is a point and the point in which the recessed part C for accommodating the electric heating element 5 above the bank part 3e is formed.
  • the partition plate 6 is provided so as to straddle between upper end portions of the respective bank portions 3 e on both sides in the width direction.
  • the dimension in which the bank portion 3e is extended is set to be longer than the widthwise dimension of the electric heating element 5, and the electric heating element 5 is configured to be completely accommodated in the recess C.
  • the U-shaped electric heating element 5 is attached to the upper portion of the inner peripheral wall of the feeder 3 and is disposed vertically along the width direction.
  • the feeder 3 according to the seventh embodiment differs from the feeder according to the first embodiment in that the passage P is between the upper portion of the inner peripheral wall of the feeder 3 and the side portion 3d. It is a point formed, and an expanded space Sa formed by expanding the second space S2 to the outside of the side portion 3d in the width direction via the passage P.
  • the partition plate 6 is provided so as to straddle between the upper end portions of the side portions 3 d on both sides in the width direction.
  • the expansion space Sa is formed along the flow direction of the molten glass G, and the electric heating element 5 is accommodated in the upper part thereof.
  • the U-shaped electric heating element 5 is attached to the upper portion of the inner peripheral wall of the feeder 3 and is disposed vertically along the width direction.
  • the electric heating element 5 may be disposed at a position away from immediately above the molten glass Gm as long as the molten glass Gm can be heated.
  • the feeder 3 according to the eighth embodiment is the feeder according to the seventh embodiment, in which the number of electric heating elements and the attachment position thereof are changed.
  • the mounting position of the electric heating element 5 is changed from the upper portion of the inner peripheral wall of the feeder 3 to a side wall surrounding the expansion space Sa.
  • the number of electric heating elements is changed from one pair (two) to three pairs (six), and three pairs of electric heating elements 5 are vertically paired in the expansion space Sa. Are arranged at equal intervals.
  • the feeder 3 according to the ninth embodiment differs from the feeder according to the first embodiment in that the number of electric heating elements 5 is only one, and this The periphery (downward and both sides) of the electric heating element 5 is a point surrounded by the partition plate 6.
  • the electric heating elements 5 are attached to the upper part of the inner peripheral wall of the feeder 3 at the center in the width direction, and a plurality of the electric heating elements 5 are arranged at equal intervals along the flow direction of the molten glass G.
  • the partition plate 6 includes a first portion extending in the horizontal direction below the electric heating element 5 and a second portion extending in the vertical direction on both sides in the width direction of the electric heating element 5.
  • the second space S2 is partitioned.
  • the feeder 3 according to the tenth embodiment is the feeder according to the first embodiment, in which the U-shaped electric heating element is changed to a rod-shaped electric heating element.
  • the electric heating element 5 is continuous in the width direction from one side 3 d to the other side 3 d of the inner peripheral wall of the feeder 3.
  • a feeder serves as a mode which supplies molten glass to bushing for forming glass fiber, it is not limited to this.
  • the feeder may be in a mode of supplying molten glass to a formed body for forming a glass article such as tube glass or sheet glass (including a glass roll).
  • the electric heating element is U-shaped or rod-like (linear)
  • the shape of the electric heating element is not limited to this.
  • any shape such as a U-shape (a shape in which the ends of heating elements having the same length extending in parallel are connected by a heating element extending vertically and the angle of the connecting portion is 90 °) or a serpentine shape
  • the shape which can be planarly heated is preferable.
  • the entire width of the molten glass may be heated by a plurality of electric heating elements.
  • a pair of electric heating elements may be extended symmetrically from both sides in the width direction with reference to the center in the width direction to heat the entire width of the molten glass.
  • an electric heating element other than at least one of the pair of electric heating elements or the pair of electric heating elements be disposed immediately above the widthwise central portion of the molten glass .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Furnace Details (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

This feeder 3 is designed to allow molten glass Gm to flow therein, and is provided with: an electrical heating element 5 for heating the molten glass Gm; and a partition plate 6 for completely partitioning a first space S1 in which the molten glass Gm is placed and a second space S2 in which the electrical heating element 5 is placed. The molten glass Gm is heated by heat from the partition plate 6 heated by the electrical heating element 5.

Description

フィーダー及びガラス物品の製造方法Feeder and method of manufacturing glass article
 本発明は、溶融ガラスを内部に流通させるフィーダー及びこれを用いたガラス物品の製造方法に関する。 The present invention relates to a feeder for flowing molten glass inside and a method of manufacturing a glass article using the same.
 例えば、ガラス繊維を成形するためのブッシングや、板ガラスを成形するための成形体等に溶融ガラスを供給する際には、フィーダーの内部を流通する溶融ガラスを保温し、過度の温度低下を防止する必要がある。そのための方法としては、フィーダーの内部空間に、天然ガス等の燃料と空気(酸素)とを混合して燃焼させるバーナーを配置し、その熱によって溶融ガラスを加熱する方法が広く採用されるに至っている(特許文献1参照)。 For example, when supplying molten glass to a bushing for forming glass fibers, a formed body for forming plate glass, etc., the molten glass flowing through the inside of the feeder is kept warm to prevent an excessive temperature drop. There is a need. As a method for that purpose, a burner for mixing and burning fuel such as natural gas and air (oxygen) in the inner space of the feeder is disposed, and the method of heating the molten glass by the heat is widely adopted. (See Patent Document 1).
 ところで、バーナーを用いて加熱する方法の場合、(1)バーナーの熱により、溶融ガラスに含まれる環境負荷物質、例えば酸化ホウ素(B23)が揮発しやすいこと、(2)バーナーの燃焼状態によって内部空間における酸化還元雰囲気が変動しやすく、溶融ガラスにリボイル泡が発生しやすいこと、(3)燃焼排ガス中に含まれたダストが溶融ガラス中に混入すると、溶融ガラスから製造されるガラス物品に欠陥(異物)が生じる原因となること、などの不具合が生じるおそれがある。 By the way, in the case of the method of heating using a burner, (1) the environmental load substance contained in the molten glass, for example, boron oxide (B 2 O 3 ) is easily volatilized by the heat of the burner, (2) combustion of the burner Depending on the state, the redox atmosphere in the internal space is likely to fluctuate, and it is easy to generate reboil bubbles in the molten glass, (3) Glass produced from molten glass when dust contained in combustion exhaust gas is mixed in the molten glass There is a risk that defects such as defects (foreign matter) may occur in the article.
 そこで、例えば特許文献2には、フィーダーの内部空間に、バーナーに代えて電気発熱体を配置し、その熱により溶融ガラスを加熱する方法が開示されている。詳細には、同文献には、フィーダーの内部を流通する溶融ガラスの温度分布を均一化するために、電気発熱体から溶融ガラスの表面に至る熱の伝搬経路の一部に、溶融ガラスに対する直接の伝熱を制限する制限部を設けることが開示されている。これにより、電気発熱体から溶融ガラスへの直接の伝熱を制限すると共に、制限部を迂回して溶融ガラスの表面に至る伝熱経路、及び電気発熱体からの熱で制限部が加熱された後、制限部からの熱として溶融ガラスの表面に至る伝熱経路の二つの経路によって、電気発熱体からの熱を溶融ガラスに伝えている。 Therefore, for example, Patent Document 2 discloses a method in which an electric heating element is disposed in the inner space of the feeder instead of the burner, and the molten glass is heated by the heat. Specifically, in order to equalize the temperature distribution of the molten glass flowing through the inside of the feeder, the document discloses that the heat propagation from the electric heating element to the surface of the molten glass is part of the direct path to the molten glass. It is disclosed to provide a restriction that limits the heat transfer of the As a result, the heat transfer from the electric heating element to the molten glass is limited, and the heat transfer path leading to the surface of the molten glass, bypassing the restriction, and the heat from the electric heating element heat the restriction. After that, the heat from the electric heating element is transferred to the molten glass by the two heat transfer paths leading to the surface of the molten glass as the heat from the restriction portion.
特表2010-513183号公報JP-A-2010-513183 国際公開第2014/185132号International Publication No. 2014/185132
 特許文献2に開示の構成では、制限部を迂回して溶融ガラスの表面に至る伝熱経路において、電気発熱体が配置された空間と溶融ガラスが配置された空間とが、直接連通している。そのため、電気発熱体の一部が不具合等によって欠損した場合、欠損した部位が、両空間の連通部を経由して溶融ガラス中に混入するおそれがある。特に、電気発熱体の一部がスパークにより欠損した場合、欠損した部位が、スパーク時の衝撃により周囲に飛び散って溶融ガラス中に混入しやすくなる。このように欠損した部位が溶融ガラス中に混入すると、製造されるガラス物品に欠陥が生じる原因となる。 In the configuration disclosed in Patent Document 2, the space in which the electric heating element is disposed is in direct communication with the space in which the molten glass is disposed in the heat transfer path which bypasses the restriction portion and reaches the surface of the molten glass. . Therefore, when a part of the electric heating element is lost due to a defect or the like, there is a possibility that the lost part may be mixed in the molten glass via the communicating part of both spaces. In particular, when a part of the electric heating element is broken due to sparks, the broken part is likely to scatter around due to a shock at the time of sparking and be mixed into the molten glass. The inclusion of such a defect in the molten glass causes defects in the manufactured glass article.
 本発明は、ガラス物品に欠陥が生じるという事態を確実に防止することを課題とする。 An object of the present invention is to reliably prevent the occurrence of defects in a glass article.
 上記の課題を解決するために創案された本発明は、溶融ガラスを内部に流通させるフィーダーにおいて、溶融ガラスを加熱する電気発熱体と、溶融ガラスが配置された第一空間と電気発熱体が配置された第二空間とを完全に仕切る仕切り部材とを備えていることを特徴とする。このような構成によれば、溶融ガラスが配置された第一空間と、電気発熱体が配置された第二空間とが、仕切り部材によって完全に仕切られるため、それぞれ独立した空間となる。従って、電気発熱体の一部がスパーク等で欠損した場合であっても、欠損した部位は、第二空間内に確実にとどまり、第一空間の溶融ガラス中に混入することがない。ここで、電気発熱体からの熱及び電気発熱体によって加熱された第二空間からの熱によって仕切り部材が加熱された後、仕切り部材からの熱によって溶融ガラスが加熱される。すなわち、溶融ガラスは、仕切り部材を介して間接的に加熱される。 The present invention invented to solve the above problems is a feeder for circulating molten glass inside, wherein an electric heating element for heating the molten glass, a first space in which the molten glass is arranged, and the electric heating element are arranged And a partition member completely separating the second space from the second space. According to such a configuration, since the first space in which the molten glass is disposed and the second space in which the electric heating element is disposed are completely separated by the partition member, the spaces become independent of each other. Therefore, even if a part of the electric heating element is broken due to sparks or the like, the portion which has been chipped remains in the second space without being mixed into the molten glass of the first space. Here, after the partition member is heated by the heat from the electric heating element and the heat from the second space heated by the electric heating element, the molten glass is heated by the heat from the partition member. That is, the molten glass is indirectly heated through the partition member.
 上記の構成において、電気発熱体の少なくとも一部が、溶融ガラスの直上に配置されていることが好ましい。このようにすれば、電気発熱体の熱が溶融ガラスに伝わりやすくなるため、溶融ガラスの加熱効率がよくなる。 In the above configuration, it is preferable that at least a part of the electric heating element be disposed directly above the molten glass. In this case, the heat of the electric heating element is easily transmitted to the molten glass, so that the heating efficiency of the molten glass is improved.
 上記の構成において、電気発熱体が、第二空間に横向きで配置されていることが好ましい。このようにすれば、電気発熱体を収容する第二空間の体積を小さくできるため、第二空間における熱損失が少なくなる。従って、電気発熱体に入力する電気エネルギーを抑えつつ、溶融ガラスを効率よく加熱できる。 In the above configuration, it is preferable that the electric heating element be disposed laterally in the second space. In this way, the volume of the second space that accommodates the electric heating element can be reduced, so the heat loss in the second space is reduced. Therefore, the molten glass can be efficiently heated while suppressing the electric energy input to the electric heating element.
 上記の構成において、電気発熱体が、溶融ガラスの流れ方向と直交する幅方向に沿って延びていることが好ましい。このようにすれば、電気発熱体の端部がフィーダーの側方空間を向くため、フィーダーの側方空間を利用して電気発熱体の交換作業を実施できる。フィーダーの側方空間は、その上方空間に比べて温度が低く、またスペース的な余裕がある場合が多い。従って、フィーダーの上方空間を利用して電気発熱体の交換作業を実施する場合に比べて、電気発熱体の交換作業が簡単になる。なお、電気発熱体が溶融ガラスの流れ方向や上下方向に沿って延びている場合は、フィーダーの上方空間を利用して電気発熱体の交換作業を実施しなければならない場合が多い。 In the above configuration, the electric heating element preferably extends along the width direction orthogonal to the flow direction of the molten glass. In this way, since the end of the electric heating element faces the side space of the feeder, the electric heating element can be replaced using the side space of the feeder. The side space of the feeder is lower in temperature than the space above it, and often there is a space allowance. Therefore, the replacement work of the electric heating element is simplified as compared with the case where the replacement work of the electric heating element is performed using the space above the feeder. In the case where the electric heating element extends along the flow direction or the up-down direction of the molten glass, it is often necessary to carry out the replacement work of the electric heating element utilizing the space above the feeder.
 上記の構成において、第二空間が、溶融ガラスの流れ方向と直交する幅方向で、溶融ガラスの全幅を覆うように連続していることが好ましい。第二空間は、電気発熱体の熱で加熱される加熱空間である。従って、第二空間が溶融ガラスの全幅を覆うように連続していると、第二空間に対応する位置に設けられる仕切り部材からの熱で溶融ガラスの全幅を均一に加熱しやすくなる。その結果、フィーダーの内部を流通する溶融ガラスの温度分布が均一化されるため、溶融ガラスから高品質なガラス物品を製造できる。 In the above configuration, it is preferable that the second space is continuous in the width direction orthogonal to the flow direction of the molten glass so as to cover the entire width of the molten glass. The second space is a heating space heated by the heat of the electric heating element. Therefore, when the second space is continuous so as to cover the entire width of the molten glass, it is easy to uniformly heat the entire width of the molten glass by the heat from the partition member provided at the position corresponding to the second space. As a result, since the temperature distribution of the molten glass which distribute | circulates the inside of a feeder is equalized, a high quality glass article can be manufactured from a molten glass.
 この場合、電気発熱体が、溶融ガラスの幅方向両端部の直上と、溶融ガラスの幅方向中央部の直上に配置されていることが好ましい。このようにすれば、仕切り部材が幅方向でより素早く均一に加熱されるため、仕切り部材からの熱で溶融ガラスの全幅をより均一に加熱しやすくなる。 In this case, it is preferable that the electric heating element be disposed immediately above the both widthwise end portions of the molten glass and immediately above the widthwise central portion of the molten glass. In this case, since the partition member is heated more quickly and uniformly in the width direction, the heat from the partition member can more easily heat the entire width of the molten glass more uniformly.
 上記の構成において、第二空間が、溶融ガラスの流れ方向で複数に分割されていてもよい。このようにすれば、溶融ガラスの流れ方向の温度分布を複数のゾーンで管理できるため、溶融ガラスの溶融状態を緻密に制御できる。 In the above configuration, the second space may be divided into a plurality in the flow direction of the molten glass. In this way, since the temperature distribution in the flow direction of the molten glass can be managed in a plurality of zones, the molten state of the molten glass can be precisely controlled.
 上記の構成において、仕切り部材が、アルミナ質電鋳煉瓦で形成されていることが好ましい。アルミナ質電鋳煉瓦は、熱伝導がよく熱劣化しにくいため、仕切り部材として好適である。 In the above-mentioned composition, it is preferred that a partition member is formed with alumina quality electrocast brick. Alumina-based electroformed brick is suitable as a partition member because it conducts heat well and is not easily thermally deteriorated.
 上記の構成において、フィーダーの底部に、溶融ガラスをガラス繊維に成形するためのブッシングを備えていることが好ましい。 In the above configuration, the bottom of the feeder is preferably provided with a bushing for forming molten glass into glass fiber.
 上記の課題を解決するために創案された本発明は、フィーダーの内部に溶融ガラスを流通させる工程を備えたガラス物品の製造方法において、フィーダーに溶融ガラスを加熱する電気発熱体を設けると共に、溶融ガラスが配置された第一空間と電気発熱体が配置された第二空間とを完全に仕切る仕切り部材を設けたことを特徴とする。このような構成によれば、上述の対応する構成と同様の作用効果を得ることができる。 The present invention invented to solve the above problems is a method of manufacturing a glass article including a step of circulating molten glass inside a feeder, wherein the feeder is provided with an electric heating element for heating the molten glass, and the melting is performed. A partition member is provided which completely partitions the first space in which the glass is disposed and the second space in which the electric heating element is disposed. According to such a configuration, it is possible to obtain the same effects as the corresponding configuration described above.
 本発明によれば、フィーダー内部において発熱体が欠損することによってガラス物品に欠陥が生じるという事態を確実に防止できる。 According to the present invention, it is possible to reliably prevent the occurrence of defects in the glass article due to the loss of the heating element inside the feeder.
本発明の第一実施形態に係るフィーダーを備えたガラス物品の製造装置を示す縦断側面図である。It is a longitudinal side view which shows the manufacturing apparatus of the glass article provided with the feeder which concerns on 1st embodiment of this invention. 図1におけるA-A断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 図2におけるB-B断面図である。FIG. 3 is a cross-sectional view taken along the line BB in FIG. 電気発熱体の支持形態を説明するための平面図である。It is a top view for demonstrating the support form of an electric heat generating body. 図4AのC-C断面図である。It is CC sectional drawing of FIG. 4A. 本発明の第二実施形態に係るフィーダーを示す縦断正面図である。It is a longitudinal front view showing a feeder concerning a second embodiment of the present invention. 本発明の第三実施形態に係るフィーダーを示す縦断正面図である。It is a vertical front view which shows the feeder which concerns on 3rd embodiment of this invention. 本発明の第四実施形態に係るフィーダーを示す縦断正面図である。It is a vertical front view which shows the feeder which concerns on 4th embodiment of this invention. 本発明の第五実施形態に係るフィーダーを示す縦断正面図である。It is a vertical front view which shows the feeder which concerns on 5th embodiment of this invention. 本発明の第六実施形態に係るフィーダーを示す縦断正面図である。It is a longitudinal front view showing a feeder concerning a 6th embodiment of the present invention. 本発明の第七実施形態に係るフィーダーを示す縦断正面図である。It is a vertical front view which shows the feeder which concerns on 7th embodiment of this invention. 本発明の第八実施形態に係るフィーダーを示す縦断正面図である。It is a longitudinal front view which shows the feeder which concerns on 8th embodiment of this invention. 本発明の第九実施形態に係るフィーダーを示す縦断正面図である。It is a longitudinal front view showing a feeder concerning a ninth embodiment of the present invention. 本発明の第十実施形態に係るフィーダーを示す縦断正面図である。It is a longitudinal front view showing a feeder concerning a 10th embodiment of the present invention.
 以下、本発明の実施形態について添付の図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings.
(第一実施形態)
 図1に示すように、第一実施形態に係るガラス物品の製造方法は、ガラス物品の製造装置1を用いて、ガラス物品としてのガラス繊維Gfを製造するものである。ガラス物品の製造装置1は、ガラス原料Grを溶融して溶融ガラスGmを形成する溶融炉2と、溶融炉2の下流側に接続され、内部に溶融ガラスGmを流通させるフィーダー3とを備えている。溶融炉2の溶融空間やフィーダー3の流通空間を区画形成する壁部は、煉瓦等の耐火物で形成されている。
First Embodiment
As shown in FIG. 1, the manufacturing method of the glass article which concerns on 1st embodiment manufactures the glass fiber Gf as a glass article using the manufacturing apparatus 1 of a glass article. The glass article manufacturing apparatus 1 includes a melting furnace 2 for melting the glass raw material Gr to form a molten glass Gm, and a feeder 3 connected to the downstream side of the melting furnace 2 for circulating the molten glass Gm therein. There is. The wall portion that partitions and forms the melting space of the melting furnace 2 and the flow space of the feeder 3 is formed of a refractory material such as brick.
 溶融炉2の上流側の端部には、珪砂、石灰石、ソーダ灰、カレット等を混合したガラス原料Grを炉内に投入するための投入口2aが設けられている。投入口2aには、スクリューフィーダー等の原料供給手段(図示省略)が配置されている。 At the upstream end of the melting furnace 2, a charging port 2a for charging a glass material Gr mixed with silica sand, limestone, soda ash, cullet and the like into the furnace is provided. Raw material supply means (illustration omitted), such as a screw feeder, is arrange | positioned at the insertion port 2a.
 溶融炉2には、図示省略の加熱手段が更に設けられている。加熱手段としては、例えば、溶融ガラスGmの上部に配置されたガスバーナー、電気ヒーターや、溶融ガラスGm中に浸漬された電極等の電気加熱手段が使用できる。加熱手段による加熱によって投入口2aから投入されたガラス原料Grを溶融することで、溶融ガラスGmが連続的に形成される。溶融ガラスGmは、溶融炉2の下流側の端部からフィーダー3内へと流入する。なお、溶融炉2は、ガラス原料Grをガス燃焼のみ、もしくは電気加熱のみで溶融してもよいし、ガス燃焼と電気加熱を併用して溶融してもよい。 The melting furnace 2 is further provided with heating means (not shown). As a heating means, for example, an electric heating means such as a gas burner, an electric heater, or an electrode immersed in the molten glass Gm disposed above the molten glass Gm can be used. The molten glass Gm is continuously formed by melting the glass raw material Gr charged from the inlet 2a by heating by the heating means. The molten glass Gm flows into the feeder 3 from the downstream end of the melting furnace 2. The melting furnace 2 may melt the glass raw material Gr only by gas combustion or only by electric heating, or may melt the gas raw material and electric heating in combination.
 フィーダー3の底部3aには、溶融ガラスGmの流れ方向Xに間隔をおいて、白金又は白金合金で形成された複数のブッシング4が設けられている。各ブッシング4には、複数のブッシングノズル(図示省略)が設けられている。各ノズルは、溶融ガラスGmを流下してガラス繊維Gfを成形する。なお、各ノズルから流下した溶融ガラスGmは下方に延伸されつつ所定径のガラス繊維Gf(ガラスフィラメント)に成形される。その後、ガラス繊維Gfは集束剤を塗布されることで複数本が集束されてガラスストランドとなる。 The bottom portion 3a of the feeder 3 is provided with a plurality of bushings 4 formed of platinum or platinum alloy at intervals in the flow direction X of the molten glass Gm. Each bushing 4 is provided with a plurality of bushing nozzles (not shown). Each nozzle flows down the molten glass Gm to form a glass fiber Gf. In addition, the molten glass Gm which flowed down from each nozzle is shape | molded into the glass fiber Gf (glass filament) of a predetermined diameter, extending | stretching below. Thereafter, a plurality of glass fibers Gf are converged by applying a bundling agent to become glass strands.
 すなわち、本実施形態に係るガラス物品の製造方法は、溶融炉2でガラス原料Grを溶融して溶融ガラスGmを形成する溶融工程と、溶融ガラスGmをフィーダー3の内部に流通させて、フィーダー3の底部3aに設けられたブッシング4に供給する供給工程と、ブッシング4に設けられたブッシングノズルから溶融ガラスGmを流下してガラス繊維Gfを成形する成形工程とを備えている。 That is, in the method of manufacturing a glass article according to the present embodiment, the melting step of melting the glass raw material Gr in the melting furnace 2 to form the molten glass Gm, and flowing the molten glass Gm inside the feeder 3 And a forming step of forming the glass fiber Gf by flowing down the molten glass Gm from the bushing nozzle provided in the bushing 4.
 図2及び図3に示すように、フィーダー3は、溶融ガラスGmを加熱して保温する電気発熱体5と、溶融ガラスGmが配置された第一空間S1と電気発熱体5が配置された第二空間S2とを完全に仕切る仕切り部材である仕切り板6とを更に備えている。溶融ガラスGmは、仕切り板6を介して間接的に加熱される。詳細には、電気発熱体5からの熱及び電気発熱体5によって加熱された第二空間S2からの熱によって仕切り板6が加熱された後、仕切り板6からの熱で溶融ガラスGmが加熱される。なお、仕切り部材は、板状に限定されるものではなく、第一空間S1と第二空間S2を仕切ることができ、電気発熱体5の熱等により溶融ガラスGmを間接的に加熱できるものであれば、任意の形状を選択できる。例えば、ブロック状などであってもよい。 As shown in FIGS. 2 and 3, the feeder 3 is provided with an electric heating element 5 for heating and maintaining the molten glass Gm, and a first space S1 in which the molten glass Gm is provided, and an electric heating element 5. It further has a partition plate 6 which is a partition member that completely partitions the two spaces S2. The molten glass Gm is indirectly heated via the partition plate 6. In detail, after the partition plate 6 is heated by the heat from the electric heating element 5 and the heat from the second space S2 heated by the electric heating element 5, the molten glass Gm is heated by the heat from the partition board 6 Ru. The partition member is not limited to a plate shape, and can divide the first space S1 and the second space S2, and can indirectly heat the molten glass Gm by the heat of the electric heating element 5, etc. If there is, it is possible to select an arbitrary shape. For example, it may be block-like.
 このような構成によれば、第一空間S1と第二空間S2とが互いに連通部を有さない独立した空間となるため、電気発熱体5の一部がスパーク等で欠損した場合であっても、欠損した部位は第二空間S2内に確実にとどまる。従って、欠損した部位が、電気発熱体5の欠損時や交換時に、第一空間S1に侵入して溶融ガラスGm中に混入することがないため、欠陥の少ない高品質なガラス繊維Gfを成形できる。 According to such a configuration, since the first space S1 and the second space S2 are independent spaces not having a communication portion, a part of the electric heating element 5 is broken by a spark or the like. Also, the missing part surely stays in the second space S2. Therefore, the defective portion does not intrude into the first space S1 and mix in the molten glass Gm at the time of defect or replacement of the electric heating element 5, so that high quality glass fiber Gf with few defects can be formed. .
 第二空間S2は、溶融ガラスGmの流れ方向Xと直交する幅方向Yでは、溶融ガラスGmの全幅を覆うように連続し、流れ方向Xでは、幅方向Yに沿って延びる分割部材である梁3bによって複数に分割されている。各第二空間S2には、一つ又は複数(図示例では二つ)の電気発熱体5が横向きで収容される。各第二空間S2では、電気発熱体5の加熱温度が個別に調整可能となっており、溶融ガラスGmの流れ方向Xの温度分布が、第二空間S2に対応した複数のゾーンで管理されるようになっている。なお、第二空間S2は、幅方向Yで複数に分割されていてもよいし、流れ方向Xで複数に分割されていなくてもよい。 The second space S2 is a divided member extending in the width direction Y so as to cover the entire width of the molten glass Gm in the width direction Y orthogonal to the flow direction X of the molten glass Gm. It is divided into multiple parts by 3b. In each second space S2, one or more (two in the illustrated example) electric heating elements 5 are accommodated sideways. In each second space S2, the heating temperature of the electric heating element 5 can be adjusted individually, and the temperature distribution in the flow direction X of the molten glass Gm is managed in a plurality of zones corresponding to the second space S2. It is supposed to be. The second space S2 may be divided into a plurality of parts in the width direction Y or may not be divided into a plurality in the flow direction X.
 電気発熱体5は、例えば炭化珪素(SiC)等からなり、通電により発熱する抵抗発熱体である。本実施形態では、電気発熱体5は、折り曲げ部5aと、折り曲げ部5aを介して並列に配列された二本の直線部5bとを有するU字状の部材(図4A及び図4Bを参照)である。電気発熱体5のうち二本の直線部5bは、フィーダー3の一方の側壁部に配置された支持ブロック3cによって支持されている。この状態で、二本の直線部5bは、流れ方向Xで互いに対向するように幅方向Yに沿って延びている。すなわち、U次状の電気発熱体5は、幅方向に沿って横向きに配置されている。従って、電気発熱体5の上下方向の厚みは薄く抑えられるため、第二空間S2の体積を小さくして、第二空間S2における熱損失を抑制できる。また、電気発熱体5の端部(直線部5bの端部)がフィーダー3の側方空間を向くため、フィーダー3の側方空間を利用して電気発熱体5の交換作業(引き抜き作業等)を簡単に実施できる。なお、二本の直線部5bは、上下方向で互いに対向するように幅方向Yに沿って延びていてもよい。 The electric heating element 5 is a resistance heating element which is made of, for example, silicon carbide (SiC) or the like, and generates heat by energization. In the present embodiment, the electric heating element 5 is a U-shaped member having a bent portion 5a and two straight portions 5b arranged in parallel via the bent portion 5a (see FIGS. 4A and 4B). It is. Two straight portions 5 b of the electric heating element 5 are supported by a support block 3 c disposed on one side wall portion of the feeder 3. In this state, the two straight portions 5 b extend along the width direction Y so as to face each other in the flow direction X. That is, the U-shaped electric heating element 5 is disposed laterally along the width direction. Therefore, since the thickness in the vertical direction of the electric heating element 5 can be suppressed thin, the heat loss in the second space S2 can be suppressed by reducing the volume of the second space S2. In addition, since the end of the electric heating element 5 (the end of the linear portion 5b) faces the side space of the feeder 3, the work of replacing the electric heating element 5 using the side space of the feeder 3 (extraction work etc.) Can be implemented easily. The two straight portions 5b may extend along the width direction Y so as to face each other in the vertical direction.
 第二空間S2内における電気発熱体5の幅方向Yの長さは、溶融ガラスGmの略全幅をカバーできる長さに設定されている。これにより、電気発熱体5が、溶融ガラスGmの幅方向両端部の直上と、溶融ガラスGmの幅方向中央部の直上とに配置された状態となっている。従って、溶融ガラスGmの全幅を均一に加熱でき、溶融ガラスGmの温度分布のばらつきを抑制できる。なお、第二空間S2内における電気発熱体5の幅方向Yの長さは、溶融ガラスGmの保温に必要な熱量に応じて適宜調整できる。もちろん、電気発熱体5に供給する電流の大きさを調整することでも、溶融ガラスGmに与える熱量は調整できる。 The length in the width direction Y of the electric heating element 5 in the second space S2 is set to a length that can cover substantially the entire width of the molten glass Gm. As a result, the electric heating element 5 is disposed immediately above the widthwise end portions of the molten glass Gm and directly above the widthwise central portion of the molten glass Gm. Therefore, the full width of molten glass Gm can be heated uniformly, and the variation in the temperature distribution of molten glass Gm can be suppressed. In addition, the length of the width direction Y of the electric heating element 5 in 2nd space S2 can be suitably adjusted according to the heat amount required for heat retention of molten glass Gm. Of course, also by adjusting the magnitude of the current supplied to the electric heating element 5, the amount of heat given to the molten glass Gm can be adjusted.
 仕切り板6は、第二空間S2に対応するように、幅方向Yでは溶融ガラスGmの全幅を覆うように連続し、流れ方向Xでは複数に分割されている。仕切り板6を流れ方向Xで複数に分割することで、一枚当たりの面積及び重量が小さくなるため、仕切り板6が撓みにくくなる。 The partition plate 6 is continuous so as to cover the entire width of the molten glass Gm in the width direction Y so as to correspond to the second space S2, and is divided into a plurality in the flow direction X. By dividing the partition plate 6 into a plurality of parts in the flow direction X, the area and weight per sheet are reduced, so the partition plate 6 becomes difficult to bend.
 仕切り板6は、アルミナ質電鋳煉瓦で形成されていることが好ましい。このようにすれば、仕切り板6の熱伝導がよくなるため、仕切り板6が効率よく加熱される。その結果、仕切り板6からの熱で溶融ガラスGmを加熱しやすくなる。また、仕切り板6が熱劣化しにくくなるため、仕切り板6の耐久性が向上する。なお、仕切り板6の材質はアルミナ質電鋳煉瓦に限定されず、例えば焼成煉瓦等であってもよい。仕切り板6の厚みは、5~100mmが好適である。 The partition plate 6 is preferably made of alumina-based electroformed brick. In this way, the heat conduction of the partition plate 6 is improved, so that the partition plate 6 is efficiently heated. As a result, the heat from the partition plate 6 makes it easy to heat the molten glass Gm. Further, since the partition plate 6 is less likely to be thermally deteriorated, the durability of the partition plate 6 is improved. In addition, the material of the partition plate 6 is not limited to the alumina electrocast brick, For example, a baking brick etc. may be sufficient. The thickness of the partition plate 6 is preferably 5 to 100 mm.
 図4A及び図4Bに示すように、電気発熱体5は、第二空間S2内において、仕切り板6から上方に離間した状態で支持されている。詳細には、電気発熱体5は、仕切り板6上に間隔を置いて配置された複数の支持体7によって下方から支持されている。もちろん、電気発熱体5の支持態様はこれに限定されない。なお、支持体7の形状は特に限定されるものではなく、例えば、四角柱などの多角柱や円柱などであってもよい。あるいは、支持体7は、複数に分割されたものではなく、例えば、一枚の板状体などであってもよい。支持体7の材質は耐火物であれば特に限定されるものではないが、例えば、耐火煉瓦、セラミックス等で形成される。 As shown in FIGS. 4A and 4B, the electric heating element 5 is supported in the second space S2 in a state of being separated upward from the partition plate 6. In detail, the electric heating element 5 is supported from below by a plurality of supports 7 spaced on the partition plate 6. Of course, the support mode of the electric heating element 5 is not limited to this. In addition, the shape of the support body 7 is not specifically limited, For example, polygonal columns, such as a square pole, a cylinder, etc. may be sufficient. Alternatively, the support 7 may not be divided into a plurality of pieces, and may be, for example, a single plate-like body. The material of the support 7 is not particularly limited as long as it is a refractory, and is formed of, for example, a firebrick or a ceramic.
 以下、本発明の他の実施形態に係るフィーダーについて説明する。なお、他の実施形態に係るフィーダーでは、第一空間と第二空間との間が仕切り板によって完全に仕切られていることは共通するが、その構造などが一部変更されている。他の実施形態に係るフィーダーにおいて、上記の第一実施形態に係るフィーダーと同一の機能、又は形状を有する構成要素については、各実施形態について説明するための図面に、同一の符号を付すことにより重複する説明を省略している。 Hereinafter, a feeder according to another embodiment of the present invention will be described. In addition, in the feeder which concerns on other embodiment, although it is in common that between 1st space and 2nd space is completely divided by the partition plate, the structure etc. are partially changed. In the feeder which concerns on other embodiment, about the component which has the same function as the feeder which concerns on said 1st embodiment, or a shape, it attaches | subjects the code | symbol same in the drawing for describing each embodiment. Duplicate descriptions are omitted.
(第二実施形態)
 図5に示すように、第二実施形態に係るフィーダー3が、第一実施形態に係るフィーダーと相違している点は、第二空間S2に配置された電気発熱体5が幅方向に間隔を置いて複数(図示例は2つ)設けられている点である。
Second Embodiment
As shown in FIG. 5, the feeder 3 according to the second embodiment differs from the feeder according to the first embodiment in that the electric heating elements 5 disposed in the second space S2 are spaced in the width direction. A plurality of (two in the illustrated example) points are provided.
 電気発熱体5は、第二空間S2の幅方向において、中央を基準に、対称な両側方に存する一対の電気発熱体5を一組として、複数組が溶融ガラスGmの流れ方向Xに沿って等間隔で配置されている。また、電気発熱体5の各々は、U字状をなすと共に、フィーダー3の内周壁における上部に取り付けられている。なお、それぞれのU字状の電気発熱体5は、幅方向に沿って横向きに配置されている。 In the width direction of the second space S2, the electric heating elements 5 are arranged in pairs along the flow direction X of the molten glass Gm, with one pair of electric heating elements 5 present on both sides symmetrical with respect to the center. It is arranged at equal intervals. Further, each of the electric heating elements 5 has a U-shape and is attached to the upper portion of the inner peripheral wall of the feeder 3. Each of the U-shaped electric heating elements 5 is disposed laterally along the width direction.
(第三~第五実施形態)
 図6~図8に示すように、第三~第五実施形態に係るフィーダー3は、第二実施形態に係るフィーダーにおいて、U字状の電気発熱体5の向きや取り付け位置を変更したものである。
(Third to fifth embodiments)
As shown in FIG. 6 to FIG. 8, the feeder 3 according to the third to fifth embodiments is the feeder according to the second embodiment in which the direction and the attachment position of the U-shaped electric heating element 5 are changed. is there.
 図6に示す第三実施形態に係るフィーダー3では、電気発熱体5が幅方向に沿って縦向きに配置されている。図7に示す第四実施形態に係るフィーダー3では、電気発熱体5の取り付け位置が、フィーダー3の内周壁における側部3dから上部へと変更されると共に、電気発熱体5が幅方向に沿って縦向きに配置されている。図8に示す第五実施形態に係るフィーダー3では、電気発熱体5の取り付け位置が、フィーダー3の内周壁における側部3dから上部へと変更されると共に、電気発熱体5が流れ方向に沿って縦向きに配置されている。 In the feeder 3 according to the third embodiment shown in FIG. 6, the electric heating elements 5 are arranged vertically along the width direction. In the feeder 3 according to the fourth embodiment shown in FIG. 7, the attachment position of the electric heating element 5 is changed from the side portion 3 d to the upper portion in the inner peripheral wall of the feeder 3 and the electric heating element 5 is along the width direction Are arranged vertically. In the feeder 3 according to the fifth embodiment shown in FIG. 8, the mounting position of the electric heating element 5 is changed from the side portion 3 d to the upper portion in the inner peripheral wall of the feeder 3 and the electric heating element 5 is along the flow direction Are arranged vertically.
 なお、本発明において、電気発熱体5の向きや取り付け位置は特に限定されないが、第二空間S2の体積を小さくして、電気発熱体5による加熱効率を上げる観点からは、電気発熱体5は横向き(好ましくは水平面上)に配置されることが好ましい。 In the present invention, the direction and mounting position of the electric heating element 5 are not particularly limited, but from the viewpoint of increasing the heating efficiency of the electric heating element 5 by reducing the volume of the second space S2, the electric heating element 5 is It is preferable to arrange in a lateral direction (preferably on a horizontal surface).
(第六実施形態)
 図9に示すように、第六実施形態に係るフィーダー3が、第一実施形態に係るフィーダーと相違している点は、フィーダー3の内周壁における側部3dに土手部3eが形成されている点と、土手部3eの上方に電気発熱体5を収容するための凹部Cが形成されている点である。
Sixth Embodiment
As shown in FIG. 9, the difference between the feeder 3 according to the sixth embodiment and the feeder according to the first embodiment is that the bank portion 3 e is formed on the side portion 3 d of the inner peripheral wall of the feeder 3. It is a point and the point in which the recessed part C for accommodating the electric heating element 5 above the bank part 3e is formed.
 内周壁の側部3dは、その一部が幅方向の中央に向かって張り出しており、この張り出した部位が土手部3eを形成している。仕切り板6は、幅方向両側のそれぞれの土手部3eの上端部の間に跨るように設けられている。土手部3eが張り出した寸法は、電気発熱体5の幅方向寸法よりも長くなるように設定されており、電気発熱体5が凹部Cに完全に収容されるように構成されている。なお、本実施形態では、U字状の電気発熱体5は、フィーダー3の内周壁の上部に取り付けられ、幅方向に沿って縦向きに配置されている。 A portion of the side portion 3d of the inner peripheral wall protrudes toward the center in the width direction, and the protruding portion forms the bank portion 3e. The partition plate 6 is provided so as to straddle between upper end portions of the respective bank portions 3 e on both sides in the width direction. The dimension in which the bank portion 3e is extended is set to be longer than the widthwise dimension of the electric heating element 5, and the electric heating element 5 is configured to be completely accommodated in the recess C. In the present embodiment, the U-shaped electric heating element 5 is attached to the upper portion of the inner peripheral wall of the feeder 3 and is disposed vertically along the width direction.
(第七実施形態)
 図10に示すように、第七実施形態に係るフィーダー3が、第一実施形態に係るフィーダーと相違している点は、フィーダー3の内周壁における上部と側部3dとの間に通路Pが形成されている点と、通路Pを介して、第二空間S2を幅方向における側部3dの外方まで拡張した拡張空間Saが形成されている点である。
Seventh Embodiment
As shown in FIG. 10, the feeder 3 according to the seventh embodiment differs from the feeder according to the first embodiment in that the passage P is between the upper portion of the inner peripheral wall of the feeder 3 and the side portion 3d. It is a point formed, and an expanded space Sa formed by expanding the second space S2 to the outside of the side portion 3d in the width direction via the passage P.
 仕切り板6は、幅方向両側のそれぞれの側部3dの上端部の間に跨るように設けられている。拡張空間Saは、溶融ガラスGの流れ方向に沿って形成されており、その上部には電気発熱体5が収容されている。なお、本実施形態では、U字状の電気発熱体5は、フィーダー3の内周壁の上部に取り付けられ、幅方向に沿って縦向きに配置されている。 The partition plate 6 is provided so as to straddle between the upper end portions of the side portions 3 d on both sides in the width direction. The expansion space Sa is formed along the flow direction of the molten glass G, and the electric heating element 5 is accommodated in the upper part thereof. In the present embodiment, the U-shaped electric heating element 5 is attached to the upper portion of the inner peripheral wall of the feeder 3 and is disposed vertically along the width direction.
 なお、第七実施形態で説明したように、本発明では、溶融ガラスGmを加熱できる範囲であれば、電気発熱体5を溶融ガラスGmの直上から外れた位置に配置してもよい。 As described in the seventh embodiment, in the present invention, the electric heating element 5 may be disposed at a position away from immediately above the molten glass Gm as long as the molten glass Gm can be heated.
(第八実施形態)
 図11に示すように、第八実施形態に係るフィーダー3は、第七実施形態に係るフィーダーにおいて、電気発熱体の数、及び、その取り付け位置を変更したものである。
Eighth Embodiment
As shown in FIG. 11, the feeder 3 according to the eighth embodiment is the feeder according to the seventh embodiment, in which the number of electric heating elements and the attachment position thereof are changed.
 第八実施形態に係るフィーダー3では、電気発熱体5の取り付け位置が、フィーダー3の内周壁における上部から、拡張空間Saを囲う側壁に変更されている。また、電気発熱体の数が、一対(2つ)から三対(6つ)に変更されると共に、一対の電気発熱体5を一組とした三組が、拡張空間Sa内において、上下方向に等間隔で配置されている。 In the feeder 3 according to the eighth embodiment, the mounting position of the electric heating element 5 is changed from the upper portion of the inner peripheral wall of the feeder 3 to a side wall surrounding the expansion space Sa. In addition, the number of electric heating elements is changed from one pair (two) to three pairs (six), and three pairs of electric heating elements 5 are vertically paired in the expansion space Sa. Are arranged at equal intervals.
(第九実施形態)
 図12に示すように、第九実施形態に係るフィーダー3が、第一実施形態に係るフィーダーと相違している点は、電気発熱体5の数が1つのみとされている点と、この電気発熱体5の周囲(下方及び両側方)が仕切り板6により囲われている点である。
(9th embodiment)
As shown in FIG. 12, the feeder 3 according to the ninth embodiment differs from the feeder according to the first embodiment in that the number of electric heating elements 5 is only one, and this The periphery (downward and both sides) of the electric heating element 5 is a point surrounded by the partition plate 6.
 電気発熱体5は、幅方向の中央において、フィーダー3の内周壁における上部に取り付けられる共に、溶融ガラスGの流れ方向に沿って複数が等間隔で配置されている。仕切り板6は、電気発熱体5の下方で水平方向に沿って延びる第一部分と、電気発熱体5の幅方向両側方で鉛直方向に沿って延びる第二部分とを備えており、これらの部分で第二空間S2を区画形成している。 The electric heating elements 5 are attached to the upper part of the inner peripheral wall of the feeder 3 at the center in the width direction, and a plurality of the electric heating elements 5 are arranged at equal intervals along the flow direction of the molten glass G. The partition plate 6 includes a first portion extending in the horizontal direction below the electric heating element 5 and a second portion extending in the vertical direction on both sides in the width direction of the electric heating element 5. The second space S2 is partitioned.
(第十実施形態)
 図13に示すように、第十実施形態に係るフィーダー3は、第一実施形態に係るフィーダーにおいて、U字状の電気発熱体から棒状の電気発熱体に変更したものである。
(10th embodiment)
As shown in FIG. 13, the feeder 3 according to the tenth embodiment is the feeder according to the first embodiment, in which the U-shaped electric heating element is changed to a rod-shaped electric heating element.
 電気発熱体5は、フィーダー3の内周壁における一方の側部3dから他方の側部3dまで幅方向に連続している。 The electric heating element 5 is continuous in the width direction from one side 3 d to the other side 3 d of the inner peripheral wall of the feeder 3.
 なお、本発明は、上記の実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 In addition, this invention is not limited to the structure of said embodiment, It is not limited to an effect mentioned above. The present invention can be variously modified without departing from the scope of the present invention.
 上記の実施形態において、フィーダーは、ガラス繊維を成形するためのブッシングに溶融ガラスを供給する態様となっているが、これに限定されない。例えば、フィーダーは、管ガラスや板ガラス(ガラスロールを含む)等のガラス物品を成形するための成形体に溶融ガラスを供給する態様であってもよい。 In the above-mentioned embodiment, although a feeder serves as a mode which supplies molten glass to bushing for forming glass fiber, it is not limited to this. For example, the feeder may be in a mode of supplying molten glass to a formed body for forming a glass article such as tube glass or sheet glass (including a glass roll).
 上記の実施形態において、電気発熱体がU字状や棒状(直線状)をなす場合を説明したが、電気発熱体の形状はこれに限定されない。例えば、コの字状(平行に延びる長さが等しい発熱体の端部どうしを、垂直に延びる発熱体により接続され、接続部の角度が90°となる形状)や蛇行状などの任意の形状を採用し得るが、面状加熱できる形状が好ましい。 In the above embodiment, the case where the electric heating element is U-shaped or rod-like (linear) has been described, but the shape of the electric heating element is not limited to this. For example, any shape such as a U-shape (a shape in which the ends of heating elements having the same length extending in parallel are connected by a heating element extending vertically and the angle of the connecting portion is 90 °) or a serpentine shape Although the shape which can be planarly heated is preferable.
 上記の実施形態において、フィーダーの一方側の側壁部から幅方向に沿って延びる一つの電気発熱体で溶融ガラスの全幅を加熱する場合を説明したが、電気発熱体の配置態様はこれに限定されない。例えば、複数の電気発熱体で、溶融ガラスの全幅を加熱するようにしてもよい。詳細には、幅方向の両側から、幅方向の中央を基準に対称的に一対の電気発熱体を延ばして、溶融ガラスの全幅を加熱するようにしてもよい。ただし、この場合であっても、一対の電気発熱体の少なくとも一方、又は一対の電気発熱体とは別の電気発熱体が、溶融ガラスの幅方向中央部の直上に配置されていることが好ましい。 In the above embodiment, the case of heating the entire width of the molten glass with one electric heating element extending along the width direction from the side wall of one side of the feeder has been described, but the arrangement of the electric heating elements is not limited thereto. . For example, the entire width of the molten glass may be heated by a plurality of electric heating elements. In detail, a pair of electric heating elements may be extended symmetrically from both sides in the width direction with reference to the center in the width direction to heat the entire width of the molten glass. However, even in this case, it is preferable that an electric heating element other than at least one of the pair of electric heating elements or the pair of electric heating elements be disposed immediately above the widthwise central portion of the molten glass .
1   ガラス物品の製造装置
2   溶融炉
3   フィーダー
4   ブッシング
5   電気発熱体
6   仕切り板(仕切り部材)
Gr  ガラス原料
Gm  溶融ガラス
Gf  ガラス繊維
S1  第一空間
S2  第二空間
X   流れ方向
Y   幅方向
1 Production apparatus for glass articles 2 Melting furnace 3 Feeder 4 Bushing 5 Electric heating element 6 Partition plate (partition member)
Gr glass raw material Gm molten glass Gf glass fiber S1 first space S2 second space X flow direction Y width direction

Claims (10)

  1.  溶融ガラスを内部に流通させるフィーダーにおいて、
     前記溶融ガラスを加熱する電気発熱体と、前記溶融ガラスが配置された第一空間と前記電気発熱体が配置された第二空間とを完全に仕切る仕切り部材とを備えていることを特徴とするフィーダー。
    In the feeder which distributes the molten glass inside,
    An electric heating element for heating the molten glass, and a partition member for completely dividing a first space in which the molten glass is disposed and a second space in which the electric heating element is disposed are characterized. Feeder.
  2.  前記電気発熱体の少なくとも一部が、前記溶融ガラスの直上に配置されていることを特徴とする請求項1に記載のフィーダー。 The feeder according to claim 1, wherein at least a part of the electric heating element is disposed immediately above the molten glass.
  3.  前記電気発熱体が、前記第二空間に横向きで配置されていることを特徴とする請求項2に記載のフィーダー。 The feeder according to claim 2, wherein the electric heating element is disposed laterally in the second space.
  4.  前記電気発熱体が、前記溶融ガラスの流れ方向と直交する幅方向に沿って延びていることを特徴とする請求項3に記載のフィーダー。 The feeder according to claim 3, wherein the electric heating element extends along a width direction orthogonal to the flow direction of the molten glass.
  5.  前記第二空間が、前記溶融ガラスの流れ方向と直交する幅方向で、前記溶融ガラスの全幅を覆うように連続していることを特徴とする請求項1~4のいずれか1項に記載のフィーダー。 The said 2nd space is continuous in the width direction orthogonal to the flow direction of the said molten glass so that the full width of the said molten glass may be covered, It is characterized by the above-mentioned. Feeder.
  6.  前記電気発熱体が、前記溶融ガラスの幅方向両端部の直上と、前記溶融ガラスの幅方向中央部の直上に配置されていることを特徴とする請求項5に記載のフィーダー。 The feeder according to claim 5, wherein the electric heating element is disposed immediately above the both widthwise end portions of the molten glass and immediately above the widthwise central portion of the molten glass.
  7.  前記第二空間が、前記溶融ガラスの流れ方向で複数に分割されていることを特徴とする請求項1~6のいずれか1項に記載のフィーダー。 The feeder according to any one of claims 1 to 6, wherein the second space is divided into a plurality of parts in the flow direction of the molten glass.
  8.  前記仕切り部材が、アルミナ質電鋳煉瓦で形成されていることを特徴とする請求項1~7のいずれか1項に記載のフィーダー。 The feeder according to any one of claims 1 to 7, wherein the partition member is formed of alumina electrocast brick.
  9.  前記フィーダーの底部に、前記溶融ガラスをガラス繊維に成形するためのブッシングを備えていることを特徴とする請求項1~8のいずれか1項に記載のフィーダー。 The feeder according to any one of claims 1 to 8, further comprising a bushing for forming the molten glass into glass fibers at the bottom of the feeder.
  10.  フィーダーの内部に溶融ガラスを流通させる工程を備えたガラス物品の製造方法において、
     前記フィーダーに前記溶融ガラスを加熱する電気発熱体を設けると共に、前記溶融ガラスが配置された第一空間と前記電気発熱体が配置された第二空間とを完全に仕切る仕切り部材を設けたことを特徴とするガラス物品の製造方法。
    In a method of producing a glass article comprising the step of circulating molten glass inside a feeder,
    The feeder is provided with an electric heating element for heating the molten glass, and a partition member is provided for completely separating the first space in which the molten glass is disposed and the second space in which the electric heating element is disposed. The manufacturing method of the glass article characterized by the above.
PCT/JP2018/042618 2017-12-26 2018-11-19 Feeder and glass article manufacturing method WO2019130901A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019562843A JPWO2019130901A1 (en) 2017-12-26 2018-11-19 How to manufacture feeders and glass articles
JP2022167549A JP7396430B2 (en) 2017-12-26 2022-10-19 Feeder and glass article manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017249234 2017-12-26
JP2017-249234 2017-12-26

Publications (1)

Publication Number Publication Date
WO2019130901A1 true WO2019130901A1 (en) 2019-07-04

Family

ID=67063410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042618 WO2019130901A1 (en) 2017-12-26 2018-11-19 Feeder and glass article manufacturing method

Country Status (2)

Country Link
JP (2) JPWO2019130901A1 (en)
WO (1) WO2019130901A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130825A (en) * 1979-03-30 1980-10-11 Hoya Corp Forehearth for producing glass
JPS63500937A (en) * 1985-09-16 1988-04-07 エムハート・グラス・マシーナリー・インベストメンツ・インコーポレーテッド Forefurnace for transporting molten glass
JPH04124034A (en) * 1990-09-13 1992-04-24 Toshiba Monofrax Co Ltd Refractory segment for heat storage chamber
JP2005008454A (en) * 2003-06-17 2005-01-13 Koa Glass Kk Refractory for molten glass and method for producing the same
WO2014185132A1 (en) * 2013-05-14 2014-11-20 日本電気硝子株式会社 Feeder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130825A (en) * 1979-03-30 1980-10-11 Hoya Corp Forehearth for producing glass
JPS63500937A (en) * 1985-09-16 1988-04-07 エムハート・グラス・マシーナリー・インベストメンツ・インコーポレーテッド Forefurnace for transporting molten glass
JPH04124034A (en) * 1990-09-13 1992-04-24 Toshiba Monofrax Co Ltd Refractory segment for heat storage chamber
JP2005008454A (en) * 2003-06-17 2005-01-13 Koa Glass Kk Refractory for molten glass and method for producing the same
WO2014185132A1 (en) * 2013-05-14 2014-11-20 日本電気硝子株式会社 Feeder

Also Published As

Publication number Publication date
JP2023011679A (en) 2023-01-24
JP7396430B2 (en) 2023-12-12
JPWO2019130901A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
US20100126223A1 (en) Apparatus for making glass and methods
JP5122855B2 (en) Glass fiber production equipment
US11512015B2 (en) Method and apparatus for glass ribbon thermal control
JP7457278B2 (en) Manufacturing method of glass substrate for display
WO2019130901A1 (en) Feeder and glass article manufacturing method
US11530152B2 (en) Method for manufacturing glass article, and melting furnace
TWI833713B (en) Glass melting furnace and manufacturing method of glass articles
JP7174360B2 (en) Glass article manufacturing method, melting furnace and glass article manufacturing apparatus
CN110950522A (en) Glass melting furnace, glass melting method and glass manufacturing method
WO2014091814A1 (en) Plate glass production method and plate glass production device
JP6792825B2 (en) Manufacturing method of glass articles and melting furnace
JP6011451B2 (en) Feeder
US11028001B2 (en) High temperature glass melting vessel
JP2020528394A (en) Methods and equipment for adjustable heat transfer with glass ribbon
JP7374186B2 (en) Apparatus and method for mitigating electrochemical attack of precious metal components in glass making processes
JPH11100214A (en) Glass melting furnace
JP6975401B2 (en) Manufacturing method of glass articles
JP2016204257A (en) Glass melting plant
KR20100108558A (en) Device for shaping melts made of inorganic oxides or minerals having improved heating unit
JP7172221B2 (en) Method for adjusting temperature of heating element and method for manufacturing glass article
JP2965031B1 (en) Optical fiber drawing furnace and optical fiber drawing method
WO2024084985A1 (en) Manufacturing method and manufacturing device of glass article
JP6673076B2 (en) How to supply molten glass
TW202421590A (en) Glass melting device and glass manufacturing method
KR200228950Y1 (en) Feeder for glass furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562843

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895529

Country of ref document: EP

Kind code of ref document: A1