WO2019130883A1 - Material container and magnetic heat pump device - Google Patents

Material container and magnetic heat pump device Download PDF

Info

Publication number
WO2019130883A1
WO2019130883A1 PCT/JP2018/042251 JP2018042251W WO2019130883A1 WO 2019130883 A1 WO2019130883 A1 WO 2019130883A1 JP 2018042251 W JP2018042251 W JP 2018042251W WO 2019130883 A1 WO2019130883 A1 WO 2019130883A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
cylindrical portion
diameter side
magnetic
side cylindrical
Prior art date
Application number
PCT/JP2018/042251
Other languages
French (fr)
Japanese (ja)
Inventor
巌 内門
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Publication of WO2019130883A1 publication Critical patent/WO2019130883A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a technology relating to a magnetic heat pump apparatus, and more particularly to a technology relating to a material container that contains a magnetic material that exerts a magnetocaloric effect.
  • a plurality of working chambers 2 are arranged along the circumferential direction on the outer peripheral side of the permanent magnet 3 fixed to the rotating shaft P, and a magnetic material is used in each working chamber 2 6 is stored (see FIGS. 1 and 2).
  • a valve is provided to flow the working fluid (heat exchange medium) into and out of the magnetic material 6 in the working chamber 2 in synchronization with the rotation of the permanent magnet 3.
  • reference numeral 7 denotes a yoke.
  • the opening of the axial end of each working chamber 2 is closed by the communication hole plate 1 shown in, for example, Patent Document 1 and FIG.
  • the communication holes 1a and 1b constitute, for example, an outflow communication hole on the outer peripheral side and an inflow communication hole on the inner peripheral side.
  • FIG. 1 the case where the rotary disk 4 of the rotary valve which rotates with the rotation of the permanent magnet 3 is provided on the front side of the communication hole plate 1 is illustrated.
  • slit-like notches 4a and 4b extending in the circumferential direction are opened as ports of the valve, and supply control of working fluid is performed via the notches 4a and 4b.
  • the outer peripheral side is for outflow and the inner peripheral side is for inflow.
  • the valve applied to the magnetic heat pump device to which the present invention is applied may not be a rotary valve.
  • the material container accommodating the above-mentioned conventional magnetic material has dimensions such as an outer diameter of 150 mm and an axial length of 150 mm, for example. That is, although the thickness of the cylindrical portion is as thin as about 2 to 3 mm, the material container is long in the axial direction, and a plurality of partition portions for forming a plurality of working chambers by partitioning the space along the circumferential direction. Have.
  • each working chamber In order to increase the heat exchange efficiency in the magnetic heat pump apparatus, plural kinds of magnetic materials having different Curie temperatures are axially arranged in each working chamber so that predetermined temperature spans are formed at both axial ends of the working chamber. It is possible to carry out stepwise loading and loading different types of magnetic materials in cascade (serial). At this time, it is necessary to fill each working chamber with the full length by repeating filling the space of each working chamber with a predetermined amount of magnetic material in the order of Curie temperature.
  • the filling order may be incorrect or the amount of each magnetic material may be mistaken. In this case, variations in the amount of each magnetic material are likely to occur. Furthermore, after assembly, it is difficult to correct the quantity.
  • the present invention focuses on the above-described points, and an object of the present invention is to provide a material container that can be filled easily, reliably, and more precisely even when filling multiple types of magnetic materials.
  • one aspect of the present invention is a permanent magnet rotatable around a central axis, and a material container disposed annularly on the outer peripheral side of the permanent magnet and housing a magnetic material therein.
  • the material container in a magnetic heat pump apparatus comprising: an inner diameter side cylindrical portion and an outer diameter side cylindrical portion arranged concentrically; and formed between the inner diameter side cylindrical portion and the outer diameter side cylindrical portion A cylindrical space is provided at preset intervals in the circumferential direction, and a plurality of partition walls are respectively integrated with the outer diameter surface of the inner diameter side cylindrical portion and the inner diameter surface of the outer diameter side cylindrical portion
  • the container divisions are made of resin, and the plurality of container divisions are coaxially connected in series. It is preferable that a partition part in which a working fluid can pass and an opening through which the magnetic material can not pass is formed between the adjacent container divisions.
  • the same type of magnetic material can be filled in each container.
  • the variation in the amount of each magnetic material among the working chambers is suppressed, and it becomes possible to fill the plurality of types of magnetic materials simply, reliably, and more accurately.
  • each container division body made of resin processing is easy and cost is low, and weight reduction is achieved.
  • the basic configuration of the magnetic heat pump device of the present embodiment is the same as the conventional configuration shown in FIG. 1, but the structure of the material container having the work chambers arranged in the circumferential direction is different. Therefore, the material container of the present embodiment will be described below.
  • the material container 10 of the present embodiment is configured by coaxially connecting a plurality of container divisions 11 in series.
  • each of the container divisions 11 is disposed between the inner diameter side cylindrical portion 11a and the outer diameter side cylindrical portion 11b arranged concentrically, and between the inner diameter side cylindrical portion 11a and the outer diameter side cylindrical portion 11b.
  • the cylindrical spaces to be formed are provided at preset intervals in the circumferential direction, and each is integrated with the outer diameter surface of the inner diameter side cylindrical portion 11a and the inner diameter surface of the outer diameter side cylindrical portion 11b.
  • a plurality of partition walls 11c are provided each space divided by the partition becomes a part of work room 12, respectively.
  • the material container 10 is a member having a long axis such as an axial length of 150 mm, for example, a complex process is required to integrally form it with a resin.
  • the present embodiment by dividing the material container 10 into a plurality of container divided bodies 11, it becomes possible to integrally mold each container divided body 11 with a resin.
  • the material container 10 is constituted by a plurality of container divisions 11 divided in the axial direction
  • the material is divided into molds in the axial direction.
  • the length of each container division body 11 may differ.
  • the resin material used for the container division body 11 is not particularly limited as long as the glass transition temperature or the melting point is higher than the upper limit value of the heating temperature generated by the magnetic heat pump device.
  • partition parts 20 in which an opening through which the working fluid can pass and the magnetic material M can not pass is formed.
  • the partition part 20 is made of, for example, a mesh material.
  • the partition part 20 may be only one of the container divisions 11 in the axial direction. At this time, it is preferable to fill the chambers of the container division 11 with the same type of magnetic material M. For example, after the bulkhead part 20 is attached to one side of the container division body 11, it is placed horizontally with the open side up. And the partition part 20 is attached also to the other edge part side as needed.
  • the plurality of container divisions 11 are connected in series in order of Curie temperature of the filled magnetic materials M
  • the material container 10 as shown in FIG. 3 is configured.
  • reference numeral 10A is a marking for positioning, and by connecting so that the markings 10A are aligned, it is possible to easily prevent a circumferential displacement between the container divisions 11.
  • the Curie temperature of the magnetic material M can be increased in multiple stages as the axial dimension of the container divided body 11 is reduced.
  • FIG. 6 shows an example of a cascade (series) state of a plurality of magnetic materials M in one working chamber 12, but in a case where 21 container divisions 11 are connected in series to form a material container 10 It is an example.
  • the limit is to put at most about four types of magnetic materials M in layers in order to accurately stack them.
  • the material container 10 of this embodiment is used, even if it is lamination
  • the number of container divisions 11 connected in series may be set according to the number of stacks, and is, for example, 5 to 30, preferably 10 to 20.
  • connection structure between the container divisions 11 will be described.
  • the connecting projection 14 projecting in the axial direction is formed with respect to one end face in the axial direction, and the connecting projection 14 is formed on the other end face in the axial direction.
  • a fitting connection recess 15 is formed. It is preferable that the connecting hole 14 be configured so as to have a slight interference fit in the connecting hole recess. Since the connection protrusion 14 and the connection recess 15 are made of resin, they are fitted with a predetermined elasticity.
  • reference numeral 16 denotes a positioning projection.
  • the positioning projection 16 is formed on at least one location on the outer peripheral surface of the coupling projection 14 and protrudes in the outer diameter direction.
  • reference numeral 17 denotes a positioning recess corresponding to the positioning protrusion 16.
  • the material container 10 of the present embodiment when used, it is possible to fill the same type of magnetic material M for each container by configuring the plurality of container division bodies 11 connected in series. Become. As a result, the variation in the amount of each magnetic material M among the working chambers 12 is suppressed, and it becomes possible to fill the plurality of types of magnetic materials M easily, reliably, and more accurately.
  • a plurality of magnetic materials M having different Curie temperatures can be set in multiple stages as compared with the conventional case, and even in such a case, the magnetic materials M can be accurately set in a stacked state. In addition, it is necessary to divide only the wrong part and assemble it again after being assembled.
  • each container division body 11 into resin makes it easy to process and inexpensive, and contributes to weight reduction.
  • the partition part 20 is interposed between the container divisions 11, but the partition part 20 may be omitted. Even when the partition wall part 20 is omitted, by filling the magnetic material M corresponding to each time the container divisions 11 are stacked, it is possible to set a plurality of magnetic materials M having different Curie temperatures in more stages. Even in such a case, it is possible to set each magnetic material M in a stacked state with high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

[Problem] To provide a material container capable of being filled easily, reliably, and more precisely even when being filled with multiple types of magnetic materials M. [Solution] A material container 10 is for a magnetic heat pump device that comprises a permanent magnet capable of rotating about a central shaft and the material container 10 disposed in an annular shape on the outer circumference of the permanent magnet and housing magnetic material M therein. The container has a plurality of container segmentation bodies 11 comprising an inner diameter side cylindrical portion 11a and an outer diameter side cylindrical portion 11b that are concentrically disposed, and a plurality of partition portions 11c dividing a cylindrical space formed between the inner diameter side cylindrical portion 11a and the outer diameter side cylindrical portion 11b. Each container segmentation body 11 is made of resin. The material container 10 is configured by connecting the plurality of container segmentation bodies 11 coaxially in series.

Description

材料容器及び磁気ヒートポンプ装置Material container and magnetic heat pump device
 本発明は、磁気ヒートポンプ装置に関する技術に関し、特に磁気熱量効果を奏する磁性材料を収容する材料容器に関する技術である。 The present invention relates to a technology relating to a magnetic heat pump apparatus, and more particularly to a technology relating to a material container that contains a magnetic material that exerts a magnetocaloric effect.
 磁気ヒートポンプ装置は、特許文献1に記載のように、回転軸Pに固定された永久磁石3の外周側に円周方向に沿って複数の作業室2が配列し、各作業室2に磁性材料6が収納されている(図1,図2参照)。また、永久磁石3の回転に同期して、作業室2内の磁性材料6に対する作業流体(熱交換媒体)の流入・流出を行う弁を備える。図2中、符号7はヨークを示す。
 各作業室2の装置軸方向端部の開口部は、例えば特許文献1や図1に示す、連通孔プレート1で閉塞され、その連通孔プレート1(バルブプレート)に各作業室2への連通孔1a、1bが形成されている。連通孔1a、1bは、例えば外周側の流出用連通孔と内周側の流入用連通孔を構成する。
As described in Patent Document 1, in the magnetic heat pump device, a plurality of working chambers 2 are arranged along the circumferential direction on the outer peripheral side of the permanent magnet 3 fixed to the rotating shaft P, and a magnetic material is used in each working chamber 2 6 is stored (see FIGS. 1 and 2). In addition, a valve is provided to flow the working fluid (heat exchange medium) into and out of the magnetic material 6 in the working chamber 2 in synchronization with the rotation of the permanent magnet 3. In FIG. 2, reference numeral 7 denotes a yoke.
The opening of the axial end of each working chamber 2 is closed by the communication hole plate 1 shown in, for example, Patent Document 1 and FIG. 1, and the communication hole plate 1 (valve plate) communicates with each working chamber 2 Holes 1a and 1b are formed. The communication holes 1a and 1b constitute, for example, an outflow communication hole on the outer peripheral side and an inflow communication hole on the inner peripheral side.
 図1では、その連通孔プレート1の前側には、永久磁石3の回転と共に回転するロータリー弁の回転ディスク4を備える場合が例示されている。回転ディスク4には、円周方向に延びるスリット状の切欠き4a、4bが弁のポートとして開口し、その切欠き4a、4bを介して作業流体の供給制御が行われる。ここで例えば切欠き4a、4bのうち、外周側が流出用であり、内周側が流入用である。
 ここで、本発明が適用される磁気ヒートポンプ装置に適用される弁は、ロータリー弁でなくても良い。
In FIG. 1, the case where the rotary disk 4 of the rotary valve which rotates with the rotation of the permanent magnet 3 is provided on the front side of the communication hole plate 1 is illustrated. In the rotary disk 4, slit- like notches 4a and 4b extending in the circumferential direction are opened as ports of the valve, and supply control of working fluid is performed via the notches 4a and 4b. Here, for example, among the notches 4a and 4b, the outer peripheral side is for outflow and the inner peripheral side is for inflow.
Here, the valve applied to the magnetic heat pump device to which the present invention is applied may not be a rotary valve.
 上記従来の磁性材料を収容する材料容器は、例えば外径150mm、軸方向長さが150mmなどの寸法となっている。すなわち材料容器は、円筒部の厚さが2~3mm程度と薄いにも関わらず軸方向に長く、且つ周方向に沿って空間を隔壁して複数の作業室を形成するための複数の隔壁部を有する。 The material container accommodating the above-mentioned conventional magnetic material has dimensions such as an outer diameter of 150 mm and an axial length of 150 mm, for example. That is, although the thickness of the cylindrical portion is as thin as about 2 to 3 mm, the material container is long in the axial direction, and a plurality of partition portions for forming a plurality of working chambers by partitioning the space along the circumferential direction. Have.
特許第5488580号公報Patent No. 5488580
 磁気ヒートポンプ装置での熱交換効率を高めるために、作業室の軸方向両端部に所定温度スパンが形成されるように、各作業室毎に、キュリー温度の異なる複数種類の磁性材料を軸方向に段階的に充填して、種類の異なる磁性材料をカスケード状(直列)に充填することが行われる場合がある。
 このとき、各作業室の空間にそれぞれ、キュリー温度順に磁性材料を所定量ずつ充填することを繰り返すことで、それぞれの作業室に対し全長分の充填を行う必要がある。しかし、上記のように作業室は軸方向長さが長く、また12カ所など作業室分の充填箇所があるため、充填順を間違えたり、各磁性材料の分量を間違えやすく、また各作業室間で各磁性材料の分量のばらつきが生じやすい。さらに、組み立て後に、分量の修正が困難となる。
In order to increase the heat exchange efficiency in the magnetic heat pump apparatus, plural kinds of magnetic materials having different Curie temperatures are axially arranged in each working chamber so that predetermined temperature spans are formed at both axial ends of the working chamber. It is possible to carry out stepwise loading and loading different types of magnetic materials in cascade (serial).
At this time, it is necessary to fill each working chamber with the full length by repeating filling the space of each working chamber with a predetermined amount of magnetic material in the order of Curie temperature. However, as described above, since the working chamber has a long axial length, and there are 12 filling locations for the working chamber, etc., the filling order may be incorrect or the amount of each magnetic material may be mistaken. In this case, variations in the amount of each magnetic material are likely to occur. Furthermore, after assembly, it is difficult to correct the quantity.
 本発明は、上記のような点に着目したもので、複数種類の磁性材料を充填する場合でも、簡易且つ確実に、しかもより精度よく充填可能な材料容器を提供することを目的とする。 The present invention focuses on the above-described points, and an object of the present invention is to provide a material container that can be filled easily, reliably, and more precisely even when filling multiple types of magnetic materials.
 課題を解決するために、本発明の一態様は、中心軸周りに回転可能な永久磁石と、上記永久磁石の外周側に円環状に配置されると共に内部に磁性材料を収容した材料容器と、を備える磁気ヒートポンプ装置における上記材料容器であって、同心状に配置される内径側円筒部及び外径側円筒部と、上記内径側円筒部と上記外径側円筒部との間に形成される円筒状の空間を、円周方向に予め設定した間隔を開けて設けられそれぞれが上記内径側円筒部の外径面及び上記外径側円筒部の内径面と一体になった複数の隔壁部と、を備える複数の容器分割体を有し、上記各容器分割体は樹脂製であり、上記複数の容器分割体を同軸且つ直列に連結して構成されることを要旨とする。
 隣り合う上記容器分割体間に、作業流体が通過可能で且つ上記磁性材料が通過不能な開口が形成された隔壁部品が介装されることが好ましい。
In order to solve the problem, one aspect of the present invention is a permanent magnet rotatable around a central axis, and a material container disposed annularly on the outer peripheral side of the permanent magnet and housing a magnetic material therein. The material container in a magnetic heat pump apparatus, comprising: an inner diameter side cylindrical portion and an outer diameter side cylindrical portion arranged concentrically; and formed between the inner diameter side cylindrical portion and the outer diameter side cylindrical portion A cylindrical space is provided at preset intervals in the circumferential direction, and a plurality of partition walls are respectively integrated with the outer diameter surface of the inner diameter side cylindrical portion and the inner diameter surface of the outer diameter side cylindrical portion The container divisions are made of resin, and the plurality of container divisions are coaxially connected in series.
It is preferable that a partition part in which a working fluid can pass and an opening through which the magnetic material can not pass is formed between the adjacent container divisions.
 本発明の一態様によれば、直列に接続する複数の容器分割体から構成することで、各容器毎に同一種類の磁性材料を充填することが可能となる。この結果、各作業室間で各磁性材料の分量のばらつきが抑制され、簡易且つ確実に、しかもより精度よく複数種類の磁性材料を充填可能となる。
 また、組み立て後であって、間違った部分だけを分割して再度組み付ければよい。
 また、各容器分割体を樹脂製とすることで、加工も容易且つコストも安価となると共に軽量化に寄与する。
According to one aspect of the present invention, by forming the plurality of container divisions connected in series, the same type of magnetic material can be filled in each container. As a result, the variation in the amount of each magnetic material among the working chambers is suppressed, and it becomes possible to fill the plurality of types of magnetic materials simply, reliably, and more accurately.
In addition, it is necessary to divide only the wrong part and assemble it again after being assembled.
In addition, by making each container division body made of resin, processing is easy and cost is low, and weight reduction is achieved.
磁気ヒートポンプ装置の構成を説明する概略分解図である。It is a schematic exploded view explaining the composition of a magnetic heat pump device. 従来の材料容器(作業室)の構成を示す正面図である。It is a front view which shows the structure of the conventional material container (working chamber). 本発明に基づく実施形態に係る材料容器を示す斜視図である。It is a perspective view showing the material container concerning the embodiment based on the present invention. 本発明に基づく実施形態に係る容器分割体を示す斜視図である。It is a perspective view showing the container division object concerning the embodiment based on the present invention. 容器分割体の並びの例を示す斜視図である。It is a perspective view which shows the example of arrangement | positioning of a container division body. 一つの作業室での磁性材料の並びの例を示す図である。It is a figure which shows the example of the arrangement | sequence of the magnetic material in one working chamber. 容器分割体間の連結構造の例を示す図である。It is a figure which shows the example of the connection structure between container divisions.
 次に本発明に実施形態について図面を参照して説明する。
 (構成)
 本実施形態の磁気ヒートポンプ装置の基本構成は、図1に示す従来構成と同様であるが、周方向に配列した作業室を有する材料容器の構造が異なる。このため以下、本実施形態の材料容器について説明する。
 本実施形態の材料容器10は、図3に示すように、複数の容器分割体11を同軸且つ直列に連結して構成される。
Next, embodiments of the present invention will be described with reference to the drawings.
(Constitution)
The basic configuration of the magnetic heat pump device of the present embodiment is the same as the conventional configuration shown in FIG. 1, but the structure of the material container having the work chambers arranged in the circumferential direction is different. Therefore, the material container of the present embodiment will be described below.
As shown in FIG. 3, the material container 10 of the present embodiment is configured by coaxially connecting a plurality of container divisions 11 in series.
 各容器分割体11は、図4に示すように、同心状に配置される内径側円筒部11a及び外径側円筒部11bと、内径側円筒部11aと外径側円筒部11bとの間に形成される円筒状の空間を、円周方向に予め設定した間隔を開けて設けられそれぞれが上記内径側円筒部11aの外径面及び上記外径側円筒部11bの内径面と一体になった複数の隔壁部11cと、を備えた構造となっている。そして、隔壁で区切られた各空間が、それぞれ作業室12の一部となる。
 ここで、材料容器10は、例えば軸方向長さが150mmなどと長軸の部材であることから、樹脂で一体成形するのは複雑な工程が要求される。これに対し、本実施形態では、材料容器10は、複数の容器分割体11に分割することで、各容器分割体11を樹脂で一体成形することが可能となる。
As shown in FIG. 4, each of the container divisions 11 is disposed between the inner diameter side cylindrical portion 11a and the outer diameter side cylindrical portion 11b arranged concentrically, and between the inner diameter side cylindrical portion 11a and the outer diameter side cylindrical portion 11b. The cylindrical spaces to be formed are provided at preset intervals in the circumferential direction, and each is integrated with the outer diameter surface of the inner diameter side cylindrical portion 11a and the inner diameter surface of the outer diameter side cylindrical portion 11b. And a plurality of partition walls 11c. And each space divided by the partition becomes a part of work room 12, respectively.
Here, since the material container 10 is a member having a long axis such as an axial length of 150 mm, for example, a complex process is required to integrally form it with a resin. On the other hand, in the present embodiment, by dividing the material container 10 into a plurality of container divided bodies 11, it becomes possible to integrally mold each container divided body 11 with a resin.
 材料容器10を軸方向に分割した複数の容器分割体11から構成する場合には、例えば軸方向に型分割して成形される。このとき、抜きテーパの寸法が影響しない範囲の軸長で分割して各容器分割体11を作製することが好ましい。このため、各容器分割体11の軸方向の長さを、例えば10mm以上30mm以下の範囲とすることが好ましい。なお、各容器分割体11の長さは異なっていても良い。
 容器分割体11に使用する樹脂材料は、ガラス転移温度若しくは融点が、磁気ヒートポンプ装置で発生させる加熱温度の上限値よりも高いものであれば特に限定されない。
In the case where the material container 10 is constituted by a plurality of container divisions 11 divided in the axial direction, for example, the material is divided into molds in the axial direction. At this time, it is preferable to produce each container division body 11 by dividing | segmenting by the axial length of the range which the dimension of a drawing taper does not influence. For this reason, it is preferable to make the length of the axial direction of each container division body 11 into the range of 10 mm or more and 30 mm or less, for example. In addition, the length of each container division body 11 may differ.
The resin material used for the container division body 11 is not particularly limited as long as the glass transition temperature or the melting point is higher than the upper limit value of the heating temperature generated by the magnetic heat pump device.
 更に、容器分割体11の軸方向両側には、作業流体が通過可能で且つ上記磁性材料Mが通過不能な開口が形成された隔壁部品20を取り付ける。隔壁部品20は、例えばメッシュ材から構成する。隔壁部品20は、容器分割体11の軸方向の一方だけでも良い。
 このとき、容器分割体11の各室に、同一種類の磁性材料Mを充填することが好ましい。例えば、容器分割体11の片側に隔壁部品20を取り付けた後に、開放側を上にして横置きする。そして、必要に応じて他方の端部側にも隔壁部品20を取り付ける。
Furthermore, on both sides in the axial direction of the container division body 11, there are attached partition parts 20 in which an opening through which the working fluid can pass and the magnetic material M can not pass is formed. The partition part 20 is made of, for example, a mesh material. The partition part 20 may be only one of the container divisions 11 in the axial direction.
At this time, it is preferable to fill the chambers of the container division 11 with the same type of magnetic material M. For example, after the bulkhead part 20 is attached to one side of the container division body 11, it is placed horizontally with the open side up. And the partition part 20 is attached also to the other edge part side as needed.
 上記のようにして異なる磁性材料Mを充填した複数の容器分割体11を作製した後、図5のように、その複数の容器分割体11を、充填した磁性材料Mのキュリー温度順に直列に連結して、図3のような、材料容器10を構成する。容器分割体11の片側にだけ隔壁部品20を設ける場合には、順次積み重ねるようにして連結させればよい。
 図3中、符号10Aは位置決め用のマーキングであり、このマーキング10Aが揃うように連結することで、容器分割体11間の円周方向のズレを簡易に防止できる。
 本実施形態では、容器分割体11の軸方向寸法を小さくするほど、磁性材料Mのキュリー温度を多段階とすることが可能となる。
After preparing the plurality of container divisions 11 filled with different magnetic materials M as described above, as shown in FIG. 5, the plurality of container divisions 11 are connected in series in order of Curie temperature of the filled magnetic materials M Then, the material container 10 as shown in FIG. 3 is configured. When providing the partition part 20 only in one side of the container division body 11, it may be made to connect so that it may pile up one by one.
In FIG. 3, reference numeral 10A is a marking for positioning, and by connecting so that the markings 10A are aligned, it is possible to easily prevent a circumferential displacement between the container divisions 11.
In the present embodiment, the Curie temperature of the magnetic material M can be increased in multiple stages as the axial dimension of the container divided body 11 is reduced.
 図6は一つの作業室12での、複数の磁性材料Mのカスケード(直列)状態の例を示しているが、21個の容器分割体11を直列に連結して材料容器10とした場合の例である。上記の従来の場合では、精度よく積層させるためには、せいぜい4種類程度の磁性材料Mを層状に入れることが限界と推定される。これに対し、本実施形態の材料容器10を使用すれば、5段階以上の積層であっても、精度よく且つ簡易に設定することが可能である。
 直列に連結する容器分割体11の数は、積層の数に応じて設定すればよいが、例えば5個~30個、好ましくは10個~20個である。
FIG. 6 shows an example of a cascade (series) state of a plurality of magnetic materials M in one working chamber 12, but in a case where 21 container divisions 11 are connected in series to form a material container 10 It is an example. In the above-mentioned conventional case, it is estimated that the limit is to put at most about four types of magnetic materials M in layers in order to accurately stack them. On the other hand, if the material container 10 of this embodiment is used, even if it is lamination | stacking of 5 steps or more, it is possible to set accurately and simply.
The number of container divisions 11 connected in series may be set according to the number of stacks, and is, for example, 5 to 30, preferably 10 to 20.
 次に、容器分割体11間の連結構造について説明する。
 図7に示すように、容器分割体11における、軸方向の一方の端面に対し軸方向に突出した連結用突起部14を形成すると共に、軸方向の他方の端面に、連結用突起部14を嵌合可能な連結用凹部15が形成されている。なお、連結用突起部14に対し連結用穴部凹部に若干のしまりばめを有するように構成しておくことが好ましい。連結用突起部14及び連結用凹部15は樹脂製であるため、所定の弾性をもって嵌合する。
Next, the connection structure between the container divisions 11 will be described.
As shown in FIG. 7, in the container division body 11, the connecting projection 14 projecting in the axial direction is formed with respect to one end face in the axial direction, and the connecting projection 14 is formed on the other end face in the axial direction. A fitting connection recess 15 is formed. It is preferable that the connecting hole 14 be configured so as to have a slight interference fit in the connecting hole recess. Since the connection protrusion 14 and the connection recess 15 are made of resin, they are fitted with a predetermined elasticity.
 図7中、符号16は、位置決め用突起部である。位置決め用突起部16は、連結用突起部14の外周面の少なくとも一カ所に形成され、外径方向に突出している。図7中符号17は、位置決め用突起部16に対応した位置決め用凹部である。位置決め用突起部16を位置決め用凹部17に嵌合するように連結することで、円周方向のズレを防止することができる。
 図7では、連結用凹部15に隔壁部品20としてのメッシュ材とシール部品13とをこの順に配置した例を示している。
 なお、図7に各壁部の位置の例を併せて図示している。
In FIG. 7, reference numeral 16 denotes a positioning projection. The positioning projection 16 is formed on at least one location on the outer peripheral surface of the coupling projection 14 and protrudes in the outer diameter direction. In FIG. 7, reference numeral 17 denotes a positioning recess corresponding to the positioning protrusion 16. By connecting the positioning protrusions 16 so as to fit in the positioning recesses 17, it is possible to prevent circumferential displacement.
FIG. 7 shows an example in which the mesh material as the partition wall component 20 and the seal component 13 are arranged in the connection concave portion 15 in this order.
In addition, the example of the position of each wall part is collectively shown in figure in FIG.
 以上のように、本実施形態の材料容器10を用いた場合、直列に接続する複数の容器分割体11から構成することで、各容器毎に同一種類の磁性材料Mを充填することが可能となる。この結果、各作業室12間で各磁性材料Mの分量のばらつきが抑制され、簡易且つ確実に、しかもより精度よく複数種類の磁性材料Mを充填可能となる。しかも、従来に比べて、キュリー温度が異なる複数の磁性材料Mをより多段階に設定でき、その場合であっても、精度よく各磁性材料Mを積層した状態に設定することが可能となる。
 また、組み立て後であって、間違った部分だけを分割して再度組み付ければよい。
As described above, when the material container 10 of the present embodiment is used, it is possible to fill the same type of magnetic material M for each container by configuring the plurality of container division bodies 11 connected in series. Become. As a result, the variation in the amount of each magnetic material M among the working chambers 12 is suppressed, and it becomes possible to fill the plurality of types of magnetic materials M easily, reliably, and more accurately. In addition, a plurality of magnetic materials M having different Curie temperatures can be set in multiple stages as compared with the conventional case, and even in such a case, the magnetic materials M can be accurately set in a stacked state.
In addition, it is necessary to divide only the wrong part and assemble it again after being assembled.
 また、各容器分割体11を樹脂製とすることで、加工も容易且つコストも安価となると共に軽量化に寄与する。
 ここで、上記説明では、各容器分割体11の間に隔壁部品20を介装させる構成で説明したが、隔壁部品20を省略してもよい。
 隔壁部品20を省略した場合であっても、容器分割体11を積層するたびに対応した磁性材料Mを充填していくことで、キュリー温度が異なる複数の磁性材料Mをより多段階に設定でき、その場合であっても、精度よく各磁性材料Mを積層した状態に設定することが可能となる。
Moreover, making each container division body 11 into resin makes it easy to process and inexpensive, and contributes to weight reduction.
Here, in the above description, the partition part 20 is interposed between the container divisions 11, but the partition part 20 may be omitted.
Even when the partition wall part 20 is omitted, by filling the magnetic material M corresponding to each time the container divisions 11 are stacked, it is possible to set a plurality of magnetic materials M having different Curie temperatures in more stages. Even in such a case, it is possible to set each magnetic material M in a stacked state with high accuracy.
10   材料容器
11   容器分割体
11a 内径側円筒部
11b 外径側円筒部
11c 隔壁部
12   作業室
13   シール部品
14   連結用突起部
15   連結用凹部
16   位置決め用突起部
17   位置決め用凹部
20   隔壁部品
M     磁性材料
DESCRIPTION OF SYMBOLS 10 Material container 11 Container division body 11a Inner diameter side cylinder part 11b Outer diameter side cylinder part 11c Partition wall part 12 Work room 13 Seal parts 14 Connection projection part 15 Connection recess part 16 Positioning projection part 17 Positioning recess part 20 Partition part product M Magnetic material

Claims (4)

  1.  中心軸周りに回転可能な永久磁石と、上記永久磁石の外周側に円環状に配置されると共に内部に磁性材料を収容した材料容器と、を備える磁気ヒートポンプ装置における上記材料容器であって、
     同心状に配置される内径側円筒部及び外径側円筒部と、上記内径側円筒部と上記外径側円筒部との間に形成される円筒状の空間を、円周方向に予め設定した間隔を開けて設けられそれぞれが上記内径側円筒部の外径面及び上記外径側円筒部の内径面と一体になった複数の隔壁部と、を備える複数の容器分割体を有し、
     上記各容器分割体は樹脂製であり、
     上記複数の容器分割体を同軸且つ直列に連結して構成されることを特徴とする磁気ヒートポンプ装置用の材料容器。
    The material container in a magnetic heat pump device, comprising: a permanent magnet rotatable around a central axis; and a material container disposed in an annular shape on the outer peripheral side of the permanent magnet and containing a magnetic material therein.
    The cylindrical space formed between the inner diameter side cylindrical portion and the outer diameter side cylindrical portion arranged concentrically and the inner diameter side cylindrical portion and the outer diameter side cylindrical portion is preset in the circumferential direction. A plurality of container divisions provided at intervals and having a plurality of partition portions each integrally formed with the outer diameter surface of the inner diameter side cylindrical portion and the inner diameter surface of the outer diameter side cylindrical portion;
    Each container division body is made of resin,
    What is claimed is: 1. A material container for a magnetic heat pump device, wherein the plurality of divided container portions are coaxially connected in series.
  2.  隣り合う上記容器分割体間に、作業流体が通過可能で且つ上記磁性材料が通過不能な開口が形成された隔壁部品が介装されることを特徴とする請求項1に記載した磁気ヒートポンプ装置用の材料容器。 The magnetic heat pump device according to claim 1, characterized in that a partition part is formed between the adjacent container divisions in which an opening through which the working fluid can pass and the magnetic material can not pass is formed. Material container.
  3.  隣り合う上記容器分割体同士を連結する連結構造を有することを特徴とする請求項1又は請求項2に記載した磁気ヒートポンプ装置用の材料容器。 The material container for the magnetic heat pump device according to claim 1 or 2, further comprising a connection structure for connecting the adjacent container divided bodies.
  4.  請求項1~請求項3のいずれか1項に記載した材料容器を備え、各容器分割体に異なる種類の磁性材料を収容したことを特徴とする磁気ヒートポンプ装置。 A magnetic heat pump apparatus comprising the material container according to any one of claims 1 to 3, wherein different types of magnetic materials are accommodated in each container division body.
PCT/JP2018/042251 2017-12-28 2018-11-15 Material container and magnetic heat pump device WO2019130883A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017253581A JP2019120426A (en) 2017-12-28 2017-12-28 Material container and magnetic heat pump device
JP2017-253581 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019130883A1 true WO2019130883A1 (en) 2019-07-04

Family

ID=67067112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042251 WO2019130883A1 (en) 2017-12-28 2018-11-15 Material container and magnetic heat pump device

Country Status (2)

Country Link
JP (1) JP2019120426A (en)
WO (1) WO2019130883A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332135A (en) * 1981-01-27 1982-06-01 The United States Of America As Respresented By The United States Department Of Energy Active magnetic regenerator
JP2003313544A (en) * 2002-04-26 2003-11-06 Sumitomo Special Metals Co Ltd Working substance for magnetic refrigeration, heat regenerator and magnetic refrigeration apparatus
WO2012056577A1 (en) * 2010-10-29 2012-05-03 株式会社 東芝 Heat exchanger and magnetic refrigeration system
JP2013064588A (en) * 2011-08-30 2013-04-11 Denso Corp Heat exchanger, heat exchanger unit, and method of mounting heat exchanger
US20150362224A1 (en) * 2014-06-17 2015-12-17 General Electric Company Heat pump with restorative operation for magneto caloric material
JP2017044421A (en) * 2015-08-27 2017-03-02 株式会社デンソー Thermomagnetic cycle device
JP2017513990A (en) * 2014-04-17 2017-06-01 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Epoxy resin for use in molded bodies

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332135A (en) * 1981-01-27 1982-06-01 The United States Of America As Respresented By The United States Department Of Energy Active magnetic regenerator
JP2003313544A (en) * 2002-04-26 2003-11-06 Sumitomo Special Metals Co Ltd Working substance for magnetic refrigeration, heat regenerator and magnetic refrigeration apparatus
WO2012056577A1 (en) * 2010-10-29 2012-05-03 株式会社 東芝 Heat exchanger and magnetic refrigeration system
JP2013064588A (en) * 2011-08-30 2013-04-11 Denso Corp Heat exchanger, heat exchanger unit, and method of mounting heat exchanger
JP2017513990A (en) * 2014-04-17 2017-06-01 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Epoxy resin for use in molded bodies
US20150362224A1 (en) * 2014-06-17 2015-12-17 General Electric Company Heat pump with restorative operation for magneto caloric material
JP2017044421A (en) * 2015-08-27 2017-03-02 株式会社デンソー Thermomagnetic cycle device

Also Published As

Publication number Publication date
JP2019120426A (en) 2019-07-22

Similar Documents

Publication Publication Date Title
JP7034189B2 (en) Assembly of module motor and magnetic bearing, and its manufacturing method
US20030042817A1 (en) Stator structure for rotary electric machine
KR101475369B1 (en) Rotary machine
JP6137121B2 (en) Rotor structure and rotor manufacturing method
JP5602938B2 (en) Rotor
US9954415B2 (en) Rotor for brushless motor
JP2015511303A (en) Monolithic electro-hydraulic valve
WO2017043444A1 (en) Electric pump and method for producing same
WO2019130883A1 (en) Material container and magnetic heat pump device
CN105317624B (en) Distribution sleeve device for hydraulic machine
JP5388636B2 (en) Rotating electric machine
US20110198524A1 (en) Actuator, valve and method
CN109494934B (en) Electrical machine having at least one coolant channel
JP6151668B2 (en) Rotor for rotating electrical machines
WO2019130884A1 (en) Material container and magnetic heat pump device
JP2017005940A (en) Rotor structure of axial gap type rotary electric machine
JP7193664B2 (en) liquid pumping device
WO2019130882A1 (en) Material container and magnetic heat pump device
EP2076696B1 (en) Pressure-resistant 3-way stopcock
JP2017115839A (en) Vane pump device
JP6621327B2 (en) Vane pump device
JP2018057256A (en) Electric motor
WO2010007864A1 (en) Vane pump
WO2024080082A1 (en) Rotary multi-way valve
JP5097041B2 (en) Vane pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897808

Country of ref document: EP

Kind code of ref document: A1