WO2019130705A1 - Vibration actuator - Google Patents

Vibration actuator Download PDF

Info

Publication number
WO2019130705A1
WO2019130705A1 PCT/JP2018/036661 JP2018036661W WO2019130705A1 WO 2019130705 A1 WO2019130705 A1 WO 2019130705A1 JP 2018036661 W JP2018036661 W JP 2018036661W WO 2019130705 A1 WO2019130705 A1 WO 2019130705A1
Authority
WO
WIPO (PCT)
Prior art keywords
damper
arm
stress concentration
stress
case
Prior art date
Application number
PCT/JP2018/036661
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 千葉
Original Assignee
フォスター電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フォスター電機株式会社 filed Critical フォスター電機株式会社
Publication of WO2019130705A1 publication Critical patent/WO2019130705A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs

Definitions

  • the present invention relates to a vibration actuator, and more particularly to a vibration actuator having a heavy mover.
  • a vibration actuator having a moveable magnet type or moveable coil type mover
  • a plurality of leaf springs are used to support the mover that reciprocates.
  • a weight may be added to the mover.
  • the mass of the mover may be heavy, and the leaf spring may not be able to support the mover.
  • the mover supported by the plate spring is lowered downward in the vertical direction and contacts the case to generate noise or damage the case or the mover.
  • the mover may be provided with a shaft extending in the direction along the vibration axis, and the shaft may be supported by bearings (see, for example, Patent Document 1).
  • Patent No. 4567409 gazette
  • the vibration actuator using the above-described bearing has the following problems. (1) When the mover vibrates, sliding noise (noise) between the bearing and the shaft is generated. (2) The bearing structure is required, and the structure is complicated and expensive.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a low-cost vibration actuator which is less likely to generate abnormal noise, has a simple structure, and the like.
  • a vibration actuator according to claim 1 of the present invention for solving the problem comprises a cylindrical case, an electromagnetic drive unit provided inside the case, and a movable that vibrates along the vibration axis of the case by the electromagnetic drive unit. And a support portion disposed on one side and the other side across the mover, to which the mover is attached, an annular portion attached to the inner surface of the case, the support portion, and the annular portion
  • a first plate spring consisting of a plurality of spiral arms connecting the second plate spring and a second plate spring, and the spiral directions of the spiral arms of the first and second plate springs are reversed
  • the first and second leaf springs are disposed, and the plurality of arms of the first and second leaf springs have a stress concentration portion where stress is locally increased when a force is applied,
  • the stress concentration portion of each arm is located on a plurality of straight lines orthogonal to the vibration axis And wherein the Rukoto.
  • the mover is arranged by arranging the first and second plate springs such that the spiral directions of the spiral arm portions of the first and second plate springs are reversed. Is not rotated even if it is displaced in the vibration axial direction because it receives torque in the opposite direction from both leaf springs.
  • the plurality of arms of the first and second plate springs have stress concentration portions where stress is locally increased when a force is applied, and the stress concentration portions of the respective arms are the vibration It is located on a plurality of straight lines orthogonal to the axis.
  • the generated stress is a low stress portion smaller than the stress concentration portion, and this low stress portion is different from the same straight line where the stress concentration portion is located And at a plurality of straight lines perpendicular to the vibration axis. Therefore, the mover is supported by the low stress portions positioned on a plurality of straight lines orthogonal to the vibration axis, and does not tilt relative to the vibration axis even if the mover is displaced in the vibration axis direction.
  • FIG. 7 is a cross-sectional view taken along line VII-VII of FIG. 2; It is a figure explaining the method to attach a division
  • FIG. 1 is an exploded perspective view for explaining an embodiment of a vibration actuator according to the present invention
  • FIG. 2 is a plan view when FIG. 1 is assembled
  • FIG. 3 is a front view of FIG. 2
  • FIG. 4 is a rear view of FIG. 5 is a bottom view of FIG. 2
  • FIG. 6 is a left side view of FIG. 3
  • FIG. 7 is a cross-sectional view taken along the line VII-VII of FIG.
  • Fig. 10 illustrates a method of attaching a coil to a case to which a split yoke is attached
  • Fig. 10 illustrates a case to which a split yoke and a coil are attached
  • Fig. 18 illustrates the operation of the vibration actuator shown in Fig. 1
  • FIG. 19 is a view for explaining the operation of the vibration actuator according to another embodiment. (overall structure) The entire configuration of the vibration actuator will be described with reference to FIGS.
  • An electromagnetic drive unit is provided inside the case 1 made of resin such as ABS having a cylindrical shape having openings at both ends.
  • the electromagnetic drive unit according to the present embodiment includes a yoke 11 made of a cylindrical soft magnetic material, and a coil 21 provided on the inner peripheral surface of the yoke 11 and electrically insulated from the yoke 11.
  • a cylindrical first cover case 31 made of resin such as ABS is disposed on the end face on one opening side of the case 1.
  • a cylindrical second cover case 41 made of resin such as ABS is disposed on the other open end of the case 1.
  • a first damper which is a leaf spring made of a stainless steel thin plate processed on the end face on the opening side opposite to the case 1 of the first cover case 31, is flexible along the vibration axis O of the case 1 (first One plate spring 51 is disposed.
  • a second damper (a second spring that is a leaf spring that is formed by processing a thin plate of stainless steel on the end face on the opposite side to the case 1 of the second cover case 41 and is flexible along the vibration axis O of the case 1
  • a two leaf spring 61 is disposed.
  • the first damper cover 71 is disposed so as to sandwich the first damper 51 in cooperation with the first cover case 31.
  • the second damper cover 81 is disposed so as to sandwich the second damper 61 in cooperation with the second cover case 41.
  • Three through holes 71 a are formed along the edge of the first damper cover 71 at a pitch of 120 °.
  • the first cover case 31 is formed with three through holes 31 a facing the holes 71 a of the first damper cover 71.
  • Three female screw holes 1 a facing the three holes 31 a of the first cover case 31 are formed in an end face on one opening side of the case 1.
  • the peripheral portion of the first damper 51 is the first by the three screws 91 inserted through the hole 71 a of the first damper cover 71 and the hole 31 a of the first cover case 31 and screwed into the female screw hole 1 a of the case 1.
  • the first damper cover 71, the first damper 51, and the first cover case 31 are attached to one opening side of the case 1 in a state of being held between the first damper cover 71 and the first cover case 31. That is, the first damper 51 is attached to one end face of the case 1.
  • the second cover case 41 is formed with three through holes 41 a facing the holes 81 a of the second damper cover 81.
  • Three female screw holes (not shown) facing the three holes 41 a of the second cover case 41 are formed on the other open end of the case 1.
  • the third damper 101 is inserted through the hole 81a of the second damper cover 81 and the hole 41a of the second cover case 41, and is formed on the other open end face of the case 1 and thus screwed into the screw hole.
  • the second damper cover 81, the second damper 61, and the second cover case 41 are disposed on the other opening side of the case 1 while the second damper 61 is held between the second damper cover 81 and the second cover case 41. It is attached. That is, the second damper 61 is attached to the other end face of the case 1.
  • the mover 111 includes a disk-shaped magnet 113, and disk-shaped first pole pieces 115 and second pole pieces 117 disposed so as to sandwich the magnet 113, magnets 113, first pole pieces 115, and second It consists of a first mass (weight) 119 and a second mass (weight) 121 disposed so as to sandwich the pole piece 117.
  • the magnetizing direction of the magnet 113 is the vibration axis O direction.
  • the first pole piece 115 and the second pole piece 117 are made of a hardly magnetic material, and are attached to the magnet 113 by the magnetic attraction force of the magnet 113, an adhesive agent, and the like.
  • the first mass 119 and the second mass 121 are nonmagnetic materials, and are attached to the first pole piece 115 and the second pole piece 117 by an adhesive or the like. Therefore, the magnet 113 constituting the mover 111, the first pole piece 115, the second pole piece 117, the first mass 119, and the second mass 121 are integrated.
  • a hole 119a penetrating along the central axis and a hole 121a penetrating are formed. Further, at the center of the first damper 51, a hole 51a which is opposed to and penetrates the hole 119a of the first mass 119 is formed. Similarly, in the center of the second damper 61, a hole 61a which is opposed to and penetrates the hole 121a of the second mass 121 is formed.
  • the pin 131 is inserted through the hole 51 a of the first damper 51 and press-fit into the hole 119 a of the first mass 119, and the pin 141 is inserted through the hole 61 a of the second damper 61 and press-fitted into the hole 121 a of the second mass 121
  • the mover 111 is vibratably supported along the oscillation axis O of the case 1.
  • a lead wire is connected to the outer peripheral surface of the case 1 and a terminal 3 for supplying a current to the coil 21 is formed.
  • the yoke 11 of the present embodiment is constituted by a plurality of (in the present embodiment,) divided yokes 13 in a strip shape, in which cylinders are cut along different generating lines.
  • the coil 21 of the present embodiment is disposed along the vibration axis O, and includes a first coil 23 and a second coil 25. The first coil 23 and the second coil 25 are wound along the inner circumferential surface of the yoke 11.
  • ribs 5 which protrude radially inward and extend in the direction of the vibration axis O are formed at equal intervals.
  • a divided yoke contact surface 5a with which the end surface along the generatrix of the divided yoke 13 abuts is formed.
  • the rib 5 since the rib 5 is made of resin, it has elasticity. Thus, the two end faces along the generatrix of the split yoke 13 abut.
  • a protrusion 7 is formed which protrudes in the direction of the mover 111 (inward in the radial direction).
  • a first coil contact surface 7a is formed with which the other open end of the first coil 23 abuts.
  • a second coil contact surface 7b is formed, with which an end on one opening side of the second coil 25 abuts.
  • the other open end of the first coil 23 is in contact with the first coil contact surface 7 a of the projection 7 of the rib 5, and the first coil 23 is positioned in the direction of the vibration axis O of the case 1.
  • the first coil 23 is attached to the yoke 11 using an adhesive or the like.
  • the second coil 25 is attached to the yoke 11 using an adhesive or the like.
  • the first damper 51 and the second damper 61 of the present embodiment will be described in more detail with reference to FIG.
  • the first damper 51 and the second damper 61 have the same shape and only differ in the way of attachment. Therefore, the first damper 51 will be described here, and the description of the second damper 61 will be omitted.
  • the same parts as those of the first damper 51 of the second damper 61 will be described with reference numerals obtained by adding 10 to the reference numerals of the respective parts of the first damper 51. For example, when the first arm of the first damper 51 is the code 53, the code of the first arm of the second damper 61 is 63.
  • a support portion 51b attached to the mover 111 using a pin 131 inserted through the hole 51a is formed.
  • the annular portion 51 c of the first damper 51 held by the first damper cover 71 and the first cover case 31 and attached to one end face of the case 1 has three notches in order to prevent interference with the screw 91.
  • 51 d is formed.
  • the support portion 51 b and the annular portion 51 c are connected by three identical spiral first arm portions 53, second arm portions 55, and third arm portions 57.
  • the first arm 53, the second arm 55, and the third arm 57 are provided at a pitch of 120 ° around the vibration axis O.
  • the first arm portion 53 has a curvature larger than that of the other portions (front and rear portions), and the first stress concentration portion 53a, the second stress concentration portion 53b, and the second increase stress locally when a force is applied.
  • 3 has a stress concentration portion 53c.
  • the second arm 55 has a curvature larger than that of other portions (front and rear portions), and a first stress concentration portion 55a and a second stress concentration portion where stress is locally increased when a force is applied.
  • the third arm portion 57 has a curvature larger than that of the other portions, and a first stress concentration portion 57a where the stress locally increases when a force is applied, the third stress concentration portion 57a
  • a stress concentration portion 57b and a third stress concentration portion 57c are provided.
  • the first stress concentration portion 53a of the first arm portion 53, the second stress concentration portion 57b of the third arm portion 57, and the third stress concentration portion 55c of the second arm portion 55 are orthogonal to the vibration axis O.
  • the first straight line L1 the first stress concentration portion 55a of the second arm portion 55, the second stress concentration portion 53b of the first arm portion 53, and the third stress concentration portion 57c of the third arm portion 57 are orthogonal to the vibration axis O
  • the first stress concentration portion 57a of the third arm portion 57, the second stress concentration portion 55b of the second arm portion 55, and the third stress concentration portion 53c of the first arm portion 53 are orthogonal to the vibration axis O.
  • the first straight line L1, the second straight line L2, and the third straight line L3 are located at a pitch of 120 ° around the vibration axis O.
  • This configuration also has a second damper 61.
  • the spiral direction of the 1st arm 53 of the 1st damper 51, the 2nd arm 55, the 3rd arm 57, the 1st arm 63 of the 2nd damper 61, the 2nd arm The first damper 51 and the second damper 61 are disposed such that the spiral direction of the portion 65 and the third arm 67 is opposite to each other.
  • An alternating current is supplied to the first coil 23 and the second coil 25 in a direction to generate magnetic fields of opposite polarity alternately. That is, the same pole is generated at adjacent portions of the first coil 23 and the second coil 25.
  • a downward thrust (direction of arrow A) is generated in the mover 111, and the current flowing to the first coil 23 and the second coil 25 is reversed. Thrust in the direction of arrow B) is generated.
  • the movable element 111 receives the urging force from the both sides by the case 1, the first damper 51, and the second damper 61. Vibrate along.
  • the thrust generated in the mover 111 is basically based on the thrust given based on Fleming's left-hand rule.
  • the first coil 23 and the second coil 25 are fixed, a thrust as a reaction force of the force generated in the first coil 23 and the second coil 25 is generated in the mover 111.
  • the yoke 11 is to increase the horizontal component of the magnetic flux of the magnet 113. According to the above configuration, the following effects can be obtained. (1) The spiral direction of the first arm 53, the second arm 55, and the third arm 57 of the first damper 51, and the first arm 63, the second arm 65, and the third arm of the second damper 61 When the spiral direction of the portion 67 is arranged to be the same, the support portion 51b of the first damper 51 and the support portion 61b of the second damper 61 rotate in the plane as the displacement in the thickness direction. try to. For this reason, the mover 111 rotates in accordance with the displacement in the direction of the vibration axis O.
  • the spiral direction of the first arm 53, the second arm 55, and the third arm 57 of the first damper 51, and the first arm 63, the second arm 65, and the second of the second damper 61 are disposed so that the spiral direction of the three arm portion 67 is opposite to that of the first damper 51 and the second damper 61, so that the torque in the opposite direction from the first damper 51 and the second damper 61 It does not rotate even if it is displaced in the direction of the vibration axis O in order to receive the
  • the first arm 53 has a curvature larger than that of other portions, and the first stress concentration portion 53a, the second stress concentration portion 53b, and the third stress concentration where stress is locally increased when a force is applied. It has a portion 53c.
  • the second arm 55 has a curvature larger than that of the other portions, and the first stress concentration portion 55a, the second stress concentration portion 55b, and the third stress in which stress locally increases when a force is applied.
  • the third arm portion 57 has a concentrated portion 55c, the curvature of which is larger than that of the other portions, and the first stress concentrated portion 57a and the second stress concentrated portion 57b in which stress locally increases when a force is applied.
  • a third stress concentration portion 57c is
  • the first stress concentration portion 53a of the first arm portion 53, the second stress concentration portion 57b of the third arm portion 57, and the third stress concentration portion 55c of the second arm portion 55 are orthogonal to the vibration axis O. Located on the first straight line L1.
  • the first stress concentration portion 55a of the second arm portion 55, the second stress concentration portion 53b of the first arm portion 53, and the third stress concentration portion 57c of the third arm portion 57 are orthogonal to the vibration axis O are located on the second straight line L2.
  • the first stress concentration portion 57a of the third arm portion 57, the second stress concentration portion 55b of the second arm portion 55, and the third stress concentration portion 53c of the first arm portion 53 are orthogonal to the vibration axis O. Located on the third straight line L3.
  • the generated stress becomes a low stress portion smaller than the stress concentration portion.
  • the low stress portions are different from the same straight lines L1, L2 and L3 in which the stress concentration portions are located, and orthogonal to the vibration axis O, and a plurality of straight lines L4 positioned around the vibration axis O at a pitch of 120 °, It is located on L5 and L6 (see straight lines L4, L5 and L6 indicated by broken lines in FIG. 11).
  • the mover 111 is stably supported by the low stress portions located on the straight lines L4, L5, L6 orthogonal to the vibration axis O, and even if the mover 111 is displaced in the vibration axis O direction, the vibration axis O Do not lean against.
  • the present invention is not limited to the above embodiment.
  • the stress concentration part was formed by making curvature of an arm larger than another part, it does not limit to curvature. For example, even if a hole or a notch is provided in the arm, the stress concentration portion can be formed.
  • three stress concentration parts were formed in each arm, it does not limit to three and may be plural, ie, 2 or 4 or more.
  • the example in which the coil 21 is composed of the first coil 23 and the second coil 25 has been described, but as shown in FIG. 19, one coil 221 may be used.
  • the magnet of the mover 311 is magnetized in the radial direction (radial direction).
  • the applicant analyzed the displacement and stress when a load was applied to the first damper 51 and the second damper 61 using the finite element method in order to confirm the effect of the present invention.
  • the first damper 51 and the second damper 61 were made of a material of SUS 304, a thickness of 0.3 mm, and a weight of 100 g, and analysis was performed using shell elements.
  • FIG. 12 is a plan view showing the distribution of stress generated in each part when a load is applied only to the first damper
  • FIG. 13 is a distribution of stress generated in each part when a load is applied only to the first damper and It is a perspective view which shows a displacement.
  • the stress distribution indicates that the higher the black density, the higher the stress.
  • the part in which the mesh is not cut has shown the initial state (unloaded state).
  • the second stress concentration portion 53b and the third stress concentration portion 53c of the first arm portion 53 of the first damper 51, the second stress concentration portion 55b of the second arm portion 55, and the third stress concentration portion 55c it can be seen that the second stress concentration portion 57b and the third stress concentration portion 57c of the third arm portion 57 are dark and high stress is generated.
  • the portion adjacent to the stress concentration portion of each arm portion is light in color, and the generated stress is a small low stress portion compared to the stress concentration portion.
  • the displacement of the support portion 51 b is the largest. Furthermore, as shown in FIGS. 12 and 13, when a load is applied, the support portion 51b of the first damper 51, the first arm 53, the second arm 55, and the third arm 57 have a fixed circle. It can be seen that the ring portion 51c is displaced from the no-load state.
  • FIG. 14 shows a distribution of stress generated in each portion when a load is applied to the first and second dampers arranged such that the spiral directions of the spiral arm portions of the first and second dampers become the same.
  • FIG. 15 shows distribution of stress generated in each part when load is applied to the first and second dampers arranged so that the spiral direction of the spiral arms of the first and second dampers become the same.
  • a perspective view showing displacement of each part.
  • the stress distribution indicates that the higher the black density, the higher the stress.
  • the part in which the mesh is not cut has shown the initial state (unloaded state).
  • the vibration axes O of the first damper 51 and the second damper 61 are arranged horizontally along the horizontal line, and the mass of the mover 111 located between the first damper 51 and the second damper 61 is 100 g.
  • the gravity of the analysis space was set to 1G. Also, the gravity was set to be parallel to the vertical line perpendicular to the horizontal line. Then, a load of 4.4 N was applied to the support portion 51 b of the first damper 51 in the horizontal direction (the vibration axis O direction). Then, the maximum displacement of the first damper 51 and the second damper 61 in the horizontal direction (the vibration axis O direction) was 1.988 mm, and the maximum stress was 329 MPa.
  • the second stress concentration portion 53b and the third stress concentration portion 53c of the first arm portion 53 of the first damper 51, the second stress concentration portion 55b of the second arm portion 55, and the third stress concentration portion 55c it can be seen that the second stress concentration portion 57b and the third stress concentration portion 57c of the third arm portion 57 are dark and high stress is generated.
  • the second stress concentration portion 67 b and the third stress concentration portion 67 c of the arm portion 67 are dark and high stress is generated.
  • the portion adjacent to the stress concentration portion of each arm portion is light in color, and the generated stress is a small low stress portion compared to the stress concentration portion.
  • the displacement of the support part 51b and the support part 61b is the largest.
  • the side portions of the first arm 53, the second arm 55, and the third arm 57 in no load, and the first arm 53, second arm 55, in load, Between the side portions of the third arm portion 57, a gap S1 having no parallel portion is generated.
  • the gap S1 is generated by the low stressed portions of the respective arms moving toward the support portion 51b (center) when a load is applied to the first damper 51.
  • the support portion 51b, the first arm portion 53, the second arm portion 55, and the third arm portion 57 are rotated with respect to the fixed annular portion 51c, the gap S1 having no parallel portion It becomes.
  • the support portion 51b, the first arm 53, the second arm 55, and the third arm 57 rotate with respect to the fixed annular portion 51c.
  • the supporting portion 61b of the second damper 61, the first arm 63, the second arm 65, and the third arm 67 are also rotated from a no-load state with respect to the fixed annular portion 61c. I understand.
  • FIG. 16 is a plane showing the distribution of stress generated in each portion when a load is applied to the first and second dampers arranged so that the spiral direction of the spiral arm of the first and second dampers is reversed.
  • FIG. 17 shows the distribution of stress generated in each portion when a load is applied to the first and second dampers arranged so that the spiral direction of the spiral arm of the first and second dampers is reversed. It is a perspective view which shows the displacement of each part.
  • the stress distribution indicates that the higher the black density, the higher the stress.
  • the part in which the mesh is not cut has shown the initial state (unloaded state).
  • the vibration axes O of the first damper 51 and the second damper 61 are arranged horizontally along the horizontal line, and the mass of the mover 111 located between the first damper 51 and the second damper 61 is 100 g,
  • the gravity of the analysis space was set to 1G. Also, gravity was installed parallel to the vertical line perpendicular to the horizontal line. Then, a load of 4.7 N was applied to the support portion 51 b of the first damper 51 in the horizontal direction (the vibration axis O direction). Then, the maximum displacement of the first damper 51 and the second damper 61 in the horizontal direction (the vibration axis O direction) was 1.985 mm, and the maximum stress was 444 MPa.
  • the second stress concentration portion 53b and the third stress concentration portion 53c of the first arm portion 53 of the first damper 51, and the second stress concentration portion 55b of the second arm portion 55 and the third stress concentration portion 55c it can be seen that the second stress concentration portion 57b and the third stress concentration portion 57c of the third arm portion 57 are dark and high stress is generated.
  • the second stress concentration portion 67 b and the third stress concentration portion 67 c of the arm portion 67 are dark and high stress is generated.
  • the portion adjacent to the stress concentration portion of each arm portion is light in color, and the generated stress is a small low stress portion compared to the stress concentration portion.
  • the displacement of the support portion 51 b and the support portion 61 b is the largest.
  • the side portions of the first arm 53, the second arm 55, and the third arm 57 in no load, and the first arm 53, the second arm 55, in the load, Between the side portions of the third arm portion 57, a gap S2 having a portion substantially parallel to the middle portion is generated.
  • the gap S2 is generated by the low stressed portions of the respective arms moving toward the support portion 51b (center) when a load is applied to the first damper 51.
  • the support portion 51b, the first arm portion 53, the second arm portion 55, and the third arm portion 57 do not rotate with respect to the fixed annular portion 51c, they have portions substantially parallel to the intermediate portion. It becomes gap S2.
  • the support portion 51b, the first arm 53, the second arm 55, and the third arm 57 do not rotate with respect to the fixed annular portion 51c.
  • the support portion 61b, the first arm 63, the second arm 65, and the third arm 67 of the second damper 61 do not rotate from a no-load state with respect to the fixed annular portion 61c. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

[Problem] To provide a low-cost vibration actuator which has a simple structure and which is less likely to cause an abnormal sound. [Solution] First and second dampers 51, 61 are disposed so that spiral arm sections 53, 55, 57 of the first damper (leaf spring) 55 and spiral arm sections 63, 65, 67 of the second damper (leaf spring) 61 have opposite spiral directions. The arm sections 53, 55, 57 of the first damper 55 and the arm sections 63, 65, 67 of the second damper 61 include stress concentration portions where stress increases locally at the time of force loading thereon. The stress concentration portions of the arm sections are located on a plurality of straight lines orthogonal to a vibration axis line O.

Description

振動アクチュエータVibration actuator
 本発明は、振動アクチュエータに関し、更に詳しくは、可動子が重い振動アクチュエータに関する。 The present invention relates to a vibration actuator, and more particularly to a vibration actuator having a heavy mover.
 可動磁石型や可動コイル型の可動子を有した振動アクチュエータでは、往復運動をする可動子を支持するのに複数の板ばねが用いられている。
 また、振動力を大きくするために、可動子に錘を付加する場合がある。この場合、可動子の質量が重く、板ばねだけでは、可動子を支持できない場合がある。特に、可動子が水平方向に振動する場合、板ばねで支持された可動子は垂直方向下側に下がり、ケースと接触し、異音が発生したり、ケースや可動子が破損したりする。
In a vibration actuator having a moveable magnet type or moveable coil type mover, a plurality of leaf springs are used to support the mover that reciprocates.
Also, in order to increase the vibration force, a weight may be added to the mover. In this case, the mass of the mover may be heavy, and the leaf spring may not be able to support the mover. In particular, when the mover vibrates in the horizontal direction, the mover supported by the plate spring is lowered downward in the vertical direction and contacts the case to generate noise or damage the case or the mover.
 このような場合、可動子に振動軸線に沿った方向に延出する軸を設け、この軸を軸受けで支持する場合もある(例えば、特許文献1参照) In such a case, the mover may be provided with a shaft extending in the direction along the vibration axis, and the shaft may be supported by bearings (see, for example, Patent Document 1).
特許第4567409号公報Patent No. 4567409 gazette
 しかし、上述した軸受けを用いた振動アクチュエータにおいて、以下のような問題点がある。
(1) 可動子が振動すると、軸受けと軸との摺動音(異音)が発生する。
(2) 軸受けの構造が必要となり、構造が複雑で、コストもかかる。
However, the vibration actuator using the above-described bearing has the following problems.
(1) When the mover vibrates, sliding noise (noise) between the bearing and the shaft is generated.
(2) The bearing structure is required, and the structure is complicated and expensive.
 本発明は、上記問題点に鑑みてなされたもので、その課題は、異音が発生しにくく、構造が簡単で、低コストの振動アクチュエータを提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a low-cost vibration actuator which is less likely to generate abnormal noise, has a simple structure, and the like.
 課題を解決する請求項1に係る発明の振動アクチュエータは、筒状のケースと、該ケースの内部に設けられた電磁駆動部と、該電磁駆動部により前記ケースの振動軸線に沿って振動する可動子と、前記可動子を挟んで一方の側と他方の側とに配置され、前記可動子が取り付けられる支持部、前記ケースの内面に取り付けられる円環部、前記支持部と前記円環部とを接続する複数の渦巻き状の腕部とからなる第1板ばね、第2板ばねと、を有し、前記第1及び第2板ばねの渦巻き状の腕部の渦巻き方向が逆になるように、前記第1及び第2板ばねは配置され、前記第1及び第2板ばねの複数の腕部は、力が負荷されると局所的に応力が増大する応力集中部を有し、前記各腕部の応力集中部は、前記振動軸線と直交する複数の直線上に位置していることを特徴とする。 A vibration actuator according to claim 1 of the present invention for solving the problem comprises a cylindrical case, an electromagnetic drive unit provided inside the case, and a movable that vibrates along the vibration axis of the case by the electromagnetic drive unit. And a support portion disposed on one side and the other side across the mover, to which the mover is attached, an annular portion attached to the inner surface of the case, the support portion, and the annular portion A first plate spring consisting of a plurality of spiral arms connecting the second plate spring and a second plate spring, and the spiral directions of the spiral arms of the first and second plate springs are reversed The first and second leaf springs are disposed, and the plurality of arms of the first and second leaf springs have a stress concentration portion where stress is locally increased when a force is applied, The stress concentration portion of each arm is located on a plurality of straight lines orthogonal to the vibration axis And wherein the Rukoto.
 本発明の他の特徴は、以下に述べる発明を実施するための形態並びに添付の図面から一層明らかになるであろう。 Other features of the present invention will become more apparent from the modes for carrying out the invention described below and the accompanying drawings.
 第1及び第2板ばねを、渦巻き状の腕部の渦巻き方向が同一となるように配置して用いる場合、板ばねの支持部は、板厚方向の変位につれて、その平面内で回転しようとする。このため、可動子は、振動軸線方向の変位に応じて回転する。
 本発明の振動アクチュエータによれば、前記第1及び第2板ばねの渦巻き状の腕部の渦巻き方向が逆になるように、前記第1及び第2板ばねは配置されることにより、可動子は双方の板ばねから逆方向のトルクを受けることになるために、振動軸線方向に変位しても回転しない。
When the first and second leaf springs are used so that the spiral direction of the spiral arms is the same, the support portion of the leaf spring rotates within the plane as the thickness direction is displaced. Do. For this reason, the mover rotates in accordance with the displacement in the vibration axis direction.
According to the vibration actuator of the present invention, the mover is arranged by arranging the first and second plate springs such that the spiral directions of the spiral arm portions of the first and second plate springs are reversed. Is not rotated even if it is displaced in the vibration axial direction because it receives torque in the opposite direction from both leaf springs.
 次に、前記第1及び第2板ばねの複数の腕部は、力が負荷されると局所的に応力が増大する応力集中部を有し、前記各腕部の応力集中部は、前記振動軸線と直交する複数の直線上に位置している。一方、各腕部の応力集中部と隣接する部分は、発生する応力が応力集中部に比べて小さな低応力部となり、この低応力部は、応力集中部が位置する同一直線とは別であり、かつ振動軸線と直交する複数の直線上に位置している。よって、可動子は、振動軸線と直交する複数の直線上に位置する低応力部により支持され、可動子が振動軸線方向に変位しても、振動軸線に対して傾かない。 Next, the plurality of arms of the first and second plate springs have stress concentration portions where stress is locally increased when a force is applied, and the stress concentration portions of the respective arms are the vibration It is located on a plurality of straight lines orthogonal to the axis. On the other hand, in the portion adjacent to the stress concentration portion of each arm, the generated stress is a low stress portion smaller than the stress concentration portion, and this low stress portion is different from the same straight line where the stress concentration portion is located And at a plurality of straight lines perpendicular to the vibration axis. Therefore, the mover is supported by the low stress portions positioned on a plurality of straight lines orthogonal to the vibration axis, and does not tilt relative to the vibration axis even if the mover is displaced in the vibration axis direction.
 よって、可動子が振動軸線方向に変位しても、回転せず、振動軸線に対して傾かないので、異音が発生しにくく、構造が簡単で、低コストの振動アクチュエータを実現できる。
 本発明の他の効果は、以下に述べる発明を実施するための形態並びに添付の図面から一層明らかになるであろう。
Therefore, even if the mover is displaced in the vibration axis direction, it does not rotate and does not tilt relative to the vibration axis, so abnormal noise is unlikely to be generated, and a vibration actuator with a simple structure and low cost can be realized.
Other effects of the present invention will become more apparent from the modes for carrying out the invention described below and the attached drawings.
本発明の振動アクチュエータの実施形態を説明する分解斜視図である。It is an exploded perspective view explaining an embodiment of a vibration actuator of the present invention. 図1を組み付けた際の平面図である。It is a top view at the time of assembling | attaching FIG. 図2の正面図である。It is a front view of FIG. 図2の背面図である。It is a rear view of FIG. 図2の下面図である。It is a bottom view of FIG. 図3の左側面図である。It is a left view of FIG. 図2の切断線VII-VIIにおける断面図である。FIG. 7 is a cross-sectional view taken along line VII-VII of FIG. 2; ケースに分割ヨークを取り付ける方法を説明する図である。It is a figure explaining the method to attach a division | segmentation yoke to a case. 分割ヨークが取り付けられたケースにコイルを取り付ける方法を説明する図である。It is a figure explaining how to attach a coil to the case where division yoke was attached. 分割ヨークとコイルとが取り付けられたケースを説明する図である。It is a figure explaining the case where the division | segmentation yoke and the coil were attached. 図1の第1ダンパの平面図である。It is a top view of the 1st damper of FIG. 第1ダンパのみに荷重を加えた際、各部に発生する応力の分布を示す平面図である。When a load is applied only to a 1st damper, it is a top view which shows distribution of the stress which generate | occur | produces in each part. 第1ダンパのみに荷重を加えた際、各部に発生する応力の分布と各部の変位を示す斜視図である。When a load is applied only to a 1st damper, it is a perspective view which shows distribution of the stress which generate | occur | produces in each part, and the displacement of each part. 第1及び第2ダンパの渦巻き状の腕部の渦巻き方向が同じになるように配置された第1及び第2ダンパに荷重を加えた際、各部に発生する応力の分布を示す平面図である。When a load is applied to the 1st and 2nd damper arranged so that the spiral direction of the spiral arm of the 1st and 2nd dampers may become the same, it is a top view showing distribution of stress which occurs in each part . 第1及び第2ダンパの渦巻き状の腕部の渦巻き方向が同じになるように配置された第1及び第2ダンパに荷重を加えた際、各部に発生する応力の分布と各部の変位を示す斜視図である。When load is applied to the first and second dampers arranged so that the spiral direction of the spiral arm of the first and second dampers becomes the same, the distribution of the stress generated in each portion and the displacement of each portion are shown. It is a perspective view. 第1及び第2ダンパの渦巻き状の腕部の渦巻き方向が逆になるように配置された第1及び第2ダンパに荷重を加えた際、各部に発生する応力の分布を示す平面図である。When a load is applied to the 1st and 2nd dampers arrange | positioned so that the spiral direction of the spiral arm of a 1st and 2nd damper may become reverse, it is a top view which shows distribution of the stress which generate | occur | produces in each part . 第1及び第2ダンパの渦巻き状の腕部の渦巻き方向が逆になるように配置された第1及び第2ダンパに荷重を加えた際、各部に発生する応力の分布と各部の変位を示す斜視図である。Indicates the distribution of stress generated in each part and the displacement of each part when a load is applied to the first and second dampers arranged so that the spiral directions of the spiral arms of the first and second dampers are opposite. It is a perspective view. 図1に示す振動アクチュエータの作動を説明する図である。It is a figure explaining the action | operation of the vibration actuator shown in FIG. 他の実施形態の振動アクチュエータの作動を説明する図である。It is a figure explaining the operation | movement of the vibration actuator of other embodiment.
 図を用いて実施形態を説明する。図1は本発明の振動アクチュエータの実施形態を説明する分解斜視図、図2は図1を組み付けた際の平面図、図3は図2の正面図、図4は図2の背面図、図5は図2の下面図、図6は図3の左側面図、図7は図2の切断線VII-VIIにおける断面図、図8はケースに分割ヨークを取り付ける方法を説明する図、図9は分割ヨークが取り付けられたケースにコイルを取り付ける方法を説明する図、図10は分割ヨークとコイルとが取り付けられたケースを説明する図、図18は図1に示す振動アクチュエータの作動を説明する図、図19は他の実施形態の振動アクチュエータの作動を説明する図である。
(全体構成)
 図1-図7を用いて振動アクチュエータの全体構成を説明する。
Embodiments will be described using the drawings. 1 is an exploded perspective view for explaining an embodiment of a vibration actuator according to the present invention, FIG. 2 is a plan view when FIG. 1 is assembled, FIG. 3 is a front view of FIG. 2 and FIG. 4 is a rear view of FIG. 5 is a bottom view of FIG. 2, FIG. 6 is a left side view of FIG. 3, FIG. 7 is a cross-sectional view taken along the line VII-VII of FIG. Fig. 10 illustrates a method of attaching a coil to a case to which a split yoke is attached, Fig. 10 illustrates a case to which a split yoke and a coil are attached, and Fig. 18 illustrates the operation of the vibration actuator shown in Fig. 1 FIG. 19 is a view for explaining the operation of the vibration actuator according to another embodiment.
(overall structure)
The entire configuration of the vibration actuator will be described with reference to FIGS.
 両端に開口を有する円筒状でABS等の樹脂でなるケース1の内部には、電磁駆動部が設けられる。本実施形態の電磁駆動部は、円筒状の軟磁性材料でなるヨーク11と、ヨーク11の内周面に設けられ、ヨーク11と電気的に絶縁された状態で設けられるコイル21とからなっている。ケース1の一方の開口側の端面には、ABS等の樹脂でなる円筒状の第1カバーケース31が配置される。ケース1の他方の開口側の端面には、ABS等の樹脂でなる円筒状の第2カバーケース41が配置されている。 An electromagnetic drive unit is provided inside the case 1 made of resin such as ABS having a cylindrical shape having openings at both ends. The electromagnetic drive unit according to the present embodiment includes a yoke 11 made of a cylindrical soft magnetic material, and a coil 21 provided on the inner peripheral surface of the yoke 11 and electrically insulated from the yoke 11. There is. A cylindrical first cover case 31 made of resin such as ABS is disposed on the end face on one opening side of the case 1. A cylindrical second cover case 41 made of resin such as ABS is disposed on the other open end of the case 1.
 第1カバーケース31のケース1と反対側の開口側の端面には、ステンレスの薄板を加工してなり、ケース1の振動軸線Oに沿って可撓可能な板ばねである第1ダンパ(第1板ばね)51が配置されている。第2カバーケース41のケース1と反対側の開口側の端面には、ステンレスの薄板を加工してなり、ケース1の振動軸線Oに沿って可撓可能な板ばねである第2ダンパ(第2板ばね)61が配置されている。 A first damper, which is a leaf spring made of a stainless steel thin plate processed on the end face on the opening side opposite to the case 1 of the first cover case 31, is flexible along the vibration axis O of the case 1 (first One plate spring 51 is disposed. A second damper (a second spring that is a leaf spring that is formed by processing a thin plate of stainless steel on the end face on the opposite side to the case 1 of the second cover case 41 and is flexible along the vibration axis O of the case 1 A two leaf spring 61 is disposed.
 第1カバーケース31と協働して第1ダンパ51を挟むように第1ダンパカバー71が配置されている。第2カバーケース41と協働して第2ダンパ61を挟むように第2ダンパカバー81が配置されている。
 第1ダンパカバー71の縁部に沿って120°ピッチで3つの貫通した穴71aが形成されている。第1カバーケース31には、第1ダンパカバー71の穴71aに対向する3つの貫通した穴31aが形成されている。ケース1の一方の開口側の端面には、第1カバーケース31の3つの穴31aに対向する3つのめねじ穴1aが形成されている。
The first damper cover 71 is disposed so as to sandwich the first damper 51 in cooperation with the first cover case 31. The second damper cover 81 is disposed so as to sandwich the second damper 61 in cooperation with the second cover case 41.
Three through holes 71 a are formed along the edge of the first damper cover 71 at a pitch of 120 °. The first cover case 31 is formed with three through holes 31 a facing the holes 71 a of the first damper cover 71. Three female screw holes 1 a facing the three holes 31 a of the first cover case 31 are formed in an end face on one opening side of the case 1.
 そして、第1ダンパカバー71の穴71a、第1カバーケース31の穴31aを挿通し、ケース1のめねじ穴1aに螺合する3本のねじ91により、第1ダンパ51の周縁部が第1ダンパカバー71と第1カバーケース31とに挟持された状態で、第1ダンパカバー71、第1ダンパ51、第1カバーケース31は、ケース1の一方の開口側に取り付けられている。即ち、第1ダンパ51は、ケース1の一方の端面に取り付けられている。 Then, the peripheral portion of the first damper 51 is the first by the three screws 91 inserted through the hole 71 a of the first damper cover 71 and the hole 31 a of the first cover case 31 and screwed into the female screw hole 1 a of the case 1. The first damper cover 71, the first damper 51, and the first cover case 31 are attached to one opening side of the case 1 in a state of being held between the first damper cover 71 and the first cover case 31. That is, the first damper 51 is attached to one end face of the case 1.
 第2ダンパカバー81の縁部に沿って120°ピッチで3つの貫通した穴81aが形成されている。第2カバーケース41には、第2ダンパカバー81の穴81aに対向する3つの貫通した穴41aが形成されている。ケース1の他方の開口側の端面には、第2カバーケース41の3つの穴41aに対向する3つのめねじ穴(図示せず)が形成されている。 Three through holes 81 a are formed along the edge of the second damper cover 81 at a pitch of 120 °. The second cover case 41 is formed with three through holes 41 a facing the holes 81 a of the second damper cover 81. Three female screw holes (not shown) facing the three holes 41 a of the second cover case 41 are formed on the other open end of the case 1.
 そして、第2ダンパカバー81の穴81a、第2カバーケース41の穴41aを挿通し、ケース1の他方の開口側の端面に形成されためねじ穴に螺合する3本のねじ101により、第2ダンパ61は、第2ダンパカバー81と第2カバーケース41とに挟持された状態で、第2ダンパカバー81、第2ダンパ61、第2カバーケース41は、ケース1の他方の開口側に取り付けられている。即ち、第2ダンパ61は、ケース1の他方の端面に取り付けられている。 Then, the third damper 101 is inserted through the hole 81a of the second damper cover 81 and the hole 41a of the second cover case 41, and is formed on the other open end face of the case 1 and thus screwed into the screw hole. The second damper cover 81, the second damper 61, and the second cover case 41 are disposed on the other opening side of the case 1 while the second damper 61 is held between the second damper cover 81 and the second cover case 41. It is attached. That is, the second damper 61 is attached to the other end face of the case 1.
 第1ダンパ51と第2ダンパ61との間には、コイル21に包囲され、振動軸線Oに沿って振動する可動子111が配置される。可動子111は、円板状のマグネット113と、マグネット113を挟むように配置された円板状の第1ポールピース115、第2ポールピース117と、マグネット113、第1ポールピース115、第2ポールピース117を挟むように配置される第1マス(錘)119、第2マス(錘)121からなっている。 Between the first damper 51 and the second damper 61, a mover 111 which is surrounded by the coil 21 and vibrates along the vibration axis O is disposed. The mover 111 includes a disk-shaped magnet 113, and disk-shaped first pole pieces 115 and second pole pieces 117 disposed so as to sandwich the magnet 113, magnets 113, first pole pieces 115, and second It consists of a first mass (weight) 119 and a second mass (weight) 121 disposed so as to sandwich the pole piece 117.
 マグネット113は着磁方向が振動軸線O方向である。第1ポールピース115、第2ポールピース117は、難磁性材料でなり、マグネット113の磁気吸着力及び接着剤等により、マグネット113に取り付けられている。第1マス119、第2マス121は、非磁性体でなり、接着剤等により、第1ポールピース115、第2ポールピース117に取り付けられている。このため、可動子111を構成するマグネット113、第1ポールピース115、第2ポールピース117、第1マス119、第2マス121は一体化されている。 The magnetizing direction of the magnet 113 is the vibration axis O direction. The first pole piece 115 and the second pole piece 117 are made of a hardly magnetic material, and are attached to the magnet 113 by the magnetic attraction force of the magnet 113, an adhesive agent, and the like. The first mass 119 and the second mass 121 are nonmagnetic materials, and are attached to the first pole piece 115 and the second pole piece 117 by an adhesive or the like. Therefore, the magnet 113 constituting the mover 111, the first pole piece 115, the second pole piece 117, the first mass 119, and the second mass 121 are integrated.
 第1マス119、第2マス121には、中心軸に沿って貫通した穴119a、貫通した穴121aが形成されている。また、第1ダンパ51の中心には、第1マス119の穴119aに対向し、貫通した穴51aが形成されている。同様に、第2ダンパ61の中心には、第2マス121の穴121aに対向し、貫通した穴61aが形成されている。 In the first mass 119 and the second mass 121, a hole 119a penetrating along the central axis and a hole 121a penetrating are formed. Further, at the center of the first damper 51, a hole 51a which is opposed to and penetrates the hole 119a of the first mass 119 is formed. Similarly, in the center of the second damper 61, a hole 61a which is opposed to and penetrates the hole 121a of the second mass 121 is formed.
 そして、ピン131が第1ダンパ51の穴51aを挿通し、第1マス119の穴119aに圧入され、ピン141が第2ダンパ61の穴61aを挿通し、第2マス121の穴121aに圧入されることにより、可動子111はケース1の振動軸線Oに沿って振動可能に支持されている。 Then, the pin 131 is inserted through the hole 51 a of the first damper 51 and press-fit into the hole 119 a of the first mass 119, and the pin 141 is inserted through the hole 61 a of the second damper 61 and press-fitted into the hole 121 a of the second mass 121 As a result, the mover 111 is vibratably supported along the oscillation axis O of the case 1.
 ケース1の外周面には、リード線が接続され、コイル21に電流を供給するターミナル3が形成されている。 A lead wire is connected to the outer peripheral surface of the case 1 and a terminal 3 for supplying a current to the coil 21 is formed.
(ケース1、ヨーク11、コイル21)
 図8-図10を用いて説明する。
(Case 1, yoke 11, coil 21)
This will be described using FIG. 8 to FIG.
 本実施形態のヨーク11は、円筒を異なる母線に沿って切断された短冊状の複数(本実施形態では3つ)の分割ヨーク13で構成されている。
 また、本実施形態のコイル21は、振動軸線Oに沿って配置され、第1コイル23、第2コイル25からなっている。第1コイル23、第2コイル25は、ヨーク11の内周面に沿って巻回されている。
The yoke 11 of the present embodiment is constituted by a plurality of (in the present embodiment,) divided yokes 13 in a strip shape, in which cylinders are cut along different generating lines.
In addition, the coil 21 of the present embodiment is disposed along the vibration axis O, and includes a first coil 23 and a second coil 25. The first coil 23 and the second coil 25 are wound along the inner circumferential surface of the yoke 11.
 ケース1の内周面には、径方向内方に突出し、振動軸線O方向に延びるリブ5が等間隔で3か所形成されている。
 各リブ5の振動軸線O方向に沿った周方向の2つの端面には、分割ヨーク13の母線に沿った端面が当接する分割ヨーク当接面5aが形成されている。本実施形態では、リブ5は樹脂でなっているので、弾性を有している。よって、分割ヨーク13の母線に沿った2つの端面が当接する。
On the inner peripheral surface of the case 1, three ribs 5 which protrude radially inward and extend in the direction of the vibration axis O are formed at equal intervals.
At the two end surfaces in the circumferential direction along the vibration axis O direction of each rib 5, a divided yoke contact surface 5a with which the end surface along the generatrix of the divided yoke 13 abuts is formed. In the present embodiment, since the rib 5 is made of resin, it has elasticity. Thus, the two end faces along the generatrix of the split yoke 13 abut.
 分割ヨーク13の母線に沿った端面が、リブ5の分割ヨーク当接面5aに当接することで、分割ヨーク13のケース1の周方向の位置決めが成される。
 また、各リブ5の可動子111のマグネット113と対向する面5bには可動子111方向(径方向内方)に突出する突起7が形成されている。突起7のケース1の一方の開口側には、第1コイル23の他方の開口側の端部が当接する第1コイル当接面7aが形成されている。突起7のケース1の他方の開口側には、第2コイル25の一方の開口側の端部が当接する第2コイル当接面7bが形成されている。
The end surface of the split yoke 13 along the generatrix abuts against the split yoke contact surface 5 a of the rib 5, whereby positioning of the split yoke 13 in the circumferential direction of the case 1 is achieved.
Further, on the surface 5b of the mover 111 of each rib 5 facing the magnet 113, a protrusion 7 is formed which protrudes in the direction of the mover 111 (inward in the radial direction). On one opening side of the case 1 of the protrusion 7, a first coil contact surface 7a is formed with which the other open end of the first coil 23 abuts. On the other opening side of the case 1 of the projection 7, a second coil contact surface 7b is formed, with which an end on one opening side of the second coil 25 abuts.
 第1コイル23の他方の開口側の端部が、リブ5の突起7の第1コイル当接面7aに当接し、第1コイル23はケース1の振動軸線O方向の位置決めがなされた状態で、接着剤等を用いて第1コイル23のヨーク11への取り付けがなされる。第2コイル25の一方の開口側の端部が、リブ5の突起7の第2コイル当接面7bに当接し、第2コイル25はケース1の振動軸線O方向の位置決めがなされた状態で、接着剤等を用いて第2コイル25のヨーク11への取り付けがなされる。 The other open end of the first coil 23 is in contact with the first coil contact surface 7 a of the projection 7 of the rib 5, and the first coil 23 is positioned in the direction of the vibration axis O of the case 1. The first coil 23 is attached to the yoke 11 using an adhesive or the like. In the state where the end on one opening side of the second coil 25 abuts on the second coil contact surface 7 b of the protrusion 7 of the rib 5 and the second coil 25 is positioned in the direction of the vibration axis O of the case 1 The second coil 25 is attached to the yoke 11 using an adhesive or the like.
(第1ダンパ51、第2ダンパ61)
 図11を用いて、本実施形態の第1ダンパ51、第2ダンパ61について、更に詳しく説明する。尚、第1ダンパ51と第2ダンパ61とは同一形状で、取り付け方が異なるだけであるので、ここでは第1ダンパ51で説明を行い、第2ダンパ61の説明は省略する。そして、第2ダンパ61の第1ダンパ51と同一部分には、第1ダンパ51の各部分の符号に10加えた符号で説明を行う。例えば、第1ダンパ51の第1腕部が符号53である場合、第2ダンパ61の第1腕部の符号は63である。
(First damper 51, second damper 61)
The first damper 51 and the second damper 61 of the present embodiment will be described in more detail with reference to FIG. The first damper 51 and the second damper 61 have the same shape and only differ in the way of attachment. Therefore, the first damper 51 will be described here, and the description of the second damper 61 will be omitted. The same parts as those of the first damper 51 of the second damper 61 will be described with reference numerals obtained by adding 10 to the reference numerals of the respective parts of the first damper 51. For example, when the first arm of the first damper 51 is the code 53, the code of the first arm of the second damper 61 is 63.
 第1ダンパ51の中央部には、穴51aを挿通するピン131を用いて可動子111に取り付けられる支持部51bが形成されている。
 第1ダンパカバー71と第1カバーケース31とに挟持され、ケース1の一方の端面に取り付けられる第1ダンパ51の円環部51cには、ねじ91との干渉を防ぐために、3つの切り欠き51dが形成されている。
At a central portion of the first damper 51, a support portion 51b attached to the mover 111 using a pin 131 inserted through the hole 51a is formed.
The annular portion 51 c of the first damper 51 held by the first damper cover 71 and the first cover case 31 and attached to one end face of the case 1 has three notches in order to prevent interference with the screw 91. 51 d is formed.
 そして、支持部51bと円環部51cとは、3つの同一形状の渦巻き状の第1腕部53、第2腕部55、第3腕部57で接続されている。第1腕部53、第2腕部55、第3腕部57は振動軸線Oの回りに120°ピッチで設けられている。
 第1腕部53は、他の部分(前後の部分)に比べて曲率が大きく、力が負荷されると局所的に応力が増大する第1応力集中部53a、第2応力集中部53b、第3応力集中部53cを有している。同様に、第2腕部55は、他の部分(前後の部分)に比べて曲率が大きく、力が負荷されると局所的に応力が増大する第1応力集中部55a、第2応力集中部55b、第3応力集中部55cを有し、第3腕部57は、他の部分に比べて曲率が大きく、力が負荷されると局所的に応力が増大する第1応力集中部57a、第2応力集中部57b、第3応力集中部57cを有している。
The support portion 51 b and the annular portion 51 c are connected by three identical spiral first arm portions 53, second arm portions 55, and third arm portions 57. The first arm 53, the second arm 55, and the third arm 57 are provided at a pitch of 120 ° around the vibration axis O.
The first arm portion 53 has a curvature larger than that of the other portions (front and rear portions), and the first stress concentration portion 53a, the second stress concentration portion 53b, and the second increase stress locally when a force is applied. 3 has a stress concentration portion 53c. Similarly, the second arm 55 has a curvature larger than that of other portions (front and rear portions), and a first stress concentration portion 55a and a second stress concentration portion where stress is locally increased when a force is applied. 55b, a third stress concentration portion 55c, the third arm portion 57 has a curvature larger than that of the other portions, and a first stress concentration portion 57a where the stress locally increases when a force is applied, the third stress concentration portion 57a A stress concentration portion 57b and a third stress concentration portion 57c are provided.
 そして、第1腕部53の第1応力集中部53aと、第3腕部57の第2応力集中部57bと、第2腕部55の第3応力集中部55cとは、振動軸線Oと直交する第1直線L1上に位置している。また、第2腕部55の第1応力集中部55aと、第1腕部53の第2応力集中部53bと、第3腕部57の第3応力集中部57cとは、振動軸線Oと直交する第2直線L2上に位置している。更に、第3腕部57の第1応力集中部57aと、第2腕部55の第2応力集中部55bと、第1腕部53の第3応力集中部53cとは、振動軸線Oと直交する第3直線L3上に位置している。尚、第1直線L1、第2直線L2、第3直線L3は、振動軸線Oの回りに120°ピッチで位置している。 The first stress concentration portion 53a of the first arm portion 53, the second stress concentration portion 57b of the third arm portion 57, and the third stress concentration portion 55c of the second arm portion 55 are orthogonal to the vibration axis O. Located on the first straight line L1. In addition, the first stress concentration portion 55a of the second arm portion 55, the second stress concentration portion 53b of the first arm portion 53, and the third stress concentration portion 57c of the third arm portion 57 are orthogonal to the vibration axis O Are located on the second straight line L2. Furthermore, the first stress concentration portion 57a of the third arm portion 57, the second stress concentration portion 55b of the second arm portion 55, and the third stress concentration portion 53c of the first arm portion 53 are orthogonal to the vibration axis O. Located on the third straight line L3. The first straight line L1, the second straight line L2, and the third straight line L3 are located at a pitch of 120 ° around the vibration axis O.
 この構成は、第2ダンパ61も有している。
 そして、図1に示すように、第1ダンパ51の第1腕部53、第2腕部55、第3腕部57の渦巻き方向と、第2ダンパ61の第1腕部63、第2腕部65、第3腕部67の渦巻き方向とが、逆になるように第1ダンパ51と第2ダンパ61とは配置されている。
This configuration also has a second damper 61.
And as shown in FIG. 1, the spiral direction of the 1st arm 53 of the 1st damper 51, the 2nd arm 55, the 3rd arm 57, the 1st arm 63 of the 2nd damper 61, the 2nd arm The first damper 51 and the second damper 61 are disposed such that the spiral direction of the portion 65 and the third arm 67 is opposite to each other.
 (作動)
 図18を用いて、本実施形態の振動アクチュエータの作動を説明する。
 第1コイル23、第2コイル25に通電していない状態では、第1ダンパ51、第2ダンパ61で支持される可動子111は、コイル21の中央に位置している。
(Operation)
The operation of the vibration actuator of the present embodiment will be described with reference to FIG.
When the first coil 23 and the second coil 25 are not energized, the mover 111 supported by the first damper 51 and the second damper 61 is located at the center of the coil 21.
 第1コイル23、第2コイル25には、交互に逆極性の磁界を発生する向きに交流を通電させる。即ち、第1コイル23、第2コイル25の隣り合う部分に同極が発生するようになっている。
 図18の極性では、可動子111には下方(矢印A方向)への推力が発生し、第1コイル23、第2コイル25へ流す電流を反転させれば、可動子111には上方向(矢印B方向)への推力が発生する。
An alternating current is supplied to the first coil 23 and the second coil 25 in a direction to generate magnetic fields of opposite polarity alternately. That is, the same pole is generated at adjacent portions of the first coil 23 and the second coil 25.
In the polarity of FIG. 18, a downward thrust (direction of arrow A) is generated in the mover 111, and the current flowing to the first coil 23 and the second coil 25 is reversed. Thrust in the direction of arrow B) is generated.
 このように、第1コイル23、第2コイル25に交流を通電させれば、可動子111はケース1、第1ダンパ51、第2ダンパ61よる付勢力を両側から受けながら、振動軸線Oに沿って振動する。
 ところで、可動子111に発生する推力は、基本的にはフレミングの左手の法則に基づいて与えられる推力に準じられる。本実施形態では、第1コイル23、第2コイル25が固定されているので、可動子111に第1コイル23、第2コイル25に発生する力の反力としての推力が発生する。
As described above, when alternating current is supplied to the first coil 23 and the second coil 25, the movable element 111 receives the urging force from the both sides by the case 1, the first damper 51, and the second damper 61. Vibrate along.
By the way, the thrust generated in the mover 111 is basically based on the thrust given based on Fleming's left-hand rule. In the present embodiment, since the first coil 23 and the second coil 25 are fixed, a thrust as a reaction force of the force generated in the first coil 23 and the second coil 25 is generated in the mover 111.
 よって、推力に寄与するのは、可動子111のマグネット113の磁束の水平成分(マグネット113の軸方向に直交する成分)である。そして、ヨーク11はマグネット113の磁束の水平成分を増大するものである。
 上記構成によれば、以下のような効果が得られる。
(1) 第1ダンパ51の第1腕部53、第2腕部55、第3腕部57の渦巻き方向と、第2ダンパ61の第1腕部63、第2腕部65、第3腕部67の渦巻き方向とが、同一となるように配置して用いる場合、第1ダンパ51の支持部51b、第2ダンパ61の支持部61bは、板厚方向の変位につれて、その平面内で回転しようとする。このため、可動子111は、振動軸線O方向の変位に応じて回転する。
Thus, it is the horizontal component of the magnetic flux of the magnet 113 of the mover 111 (component orthogonal to the axial direction of the magnet 113) that contributes to the thrust. The yoke 11 is to increase the horizontal component of the magnetic flux of the magnet 113.
According to the above configuration, the following effects can be obtained.
(1) The spiral direction of the first arm 53, the second arm 55, and the third arm 57 of the first damper 51, and the first arm 63, the second arm 65, and the third arm of the second damper 61 When the spiral direction of the portion 67 is arranged to be the same, the support portion 51b of the first damper 51 and the support portion 61b of the second damper 61 rotate in the plane as the displacement in the thickness direction. try to. For this reason, the mover 111 rotates in accordance with the displacement in the direction of the vibration axis O.
 本実施形態では、第1ダンパ51の第1腕部53、第2腕部55、第3腕部57の渦巻き方向と、第2ダンパ61の第1腕部63、第2腕部65、第3腕部67の渦巻き方向とが、逆になるように第1ダンパ51と第2ダンパ61とは配置されているので、可動子111は第1ダンパ51、第2ダンパ61から逆方向のトルクを受けることになるために、振動軸線O方向に変位しても回転しない。 In the present embodiment, the spiral direction of the first arm 53, the second arm 55, and the third arm 57 of the first damper 51, and the first arm 63, the second arm 65, and the second of the second damper 61. The first damper 51 and the second damper 61 are disposed so that the spiral direction of the three arm portion 67 is opposite to that of the first damper 51 and the second damper 61, so that the torque in the opposite direction from the first damper 51 and the second damper 61 It does not rotate even if it is displaced in the direction of the vibration axis O in order to receive the
 また、第1腕部53は、他の部分に比べて曲率が大きく、力が負荷されると局所的に応力が増大する第1応力集中部53a、第2応力集中部53b、第3応力集中部53cを有している。同様に、第2腕部55は、他の部分に比べて曲率が大きく、力が負荷されると局所的に応力が増大する第1応力集中部55a、第2応力集中部55b、第3応力集中部55cを有し、第3腕部57は、他の部分に比べて曲率が大きく、力が負荷されると局所的に応力が増大する第1応力集中部57a、第2応力集中部57b、第3応力集中部57cを有している。 In addition, the first arm 53 has a curvature larger than that of other portions, and the first stress concentration portion 53a, the second stress concentration portion 53b, and the third stress concentration where stress is locally increased when a force is applied. It has a portion 53c. Similarly, the second arm 55 has a curvature larger than that of the other portions, and the first stress concentration portion 55a, the second stress concentration portion 55b, and the third stress in which stress locally increases when a force is applied. The third arm portion 57 has a concentrated portion 55c, the curvature of which is larger than that of the other portions, and the first stress concentrated portion 57a and the second stress concentrated portion 57b in which stress locally increases when a force is applied. , And a third stress concentration portion 57c.
 そして、第1腕部53の第1応力集中部53aと、第3腕部57の第2応力集中部57bと、第2腕部55の第3応力集中部55cとは、振動軸線Oと直交する第1直線L1上に位置している。また、第2腕部55の第1応力集中部55aと、第1腕部53の第2応力集中部53bと、第3腕部57の第3応力集中部57cとは、振動軸線Oと直交する第2直線L2上に位置している。更に、第3腕部57の第1応力集中部57aと、第2腕部55の第2応力集中部55bと、第1腕部53の第3応力集中部53cとは、振動軸線Oと直交する第3直線L3上に位置している。 The first stress concentration portion 53a of the first arm portion 53, the second stress concentration portion 57b of the third arm portion 57, and the third stress concentration portion 55c of the second arm portion 55 are orthogonal to the vibration axis O. Located on the first straight line L1. In addition, the first stress concentration portion 55a of the second arm portion 55, the second stress concentration portion 53b of the first arm portion 53, and the third stress concentration portion 57c of the third arm portion 57 are orthogonal to the vibration axis O Are located on the second straight line L2. Furthermore, the first stress concentration portion 57a of the third arm portion 57, the second stress concentration portion 55b of the second arm portion 55, and the third stress concentration portion 53c of the first arm portion 53 are orthogonal to the vibration axis O. Located on the third straight line L3.
 一方、各腕部の応力集中部と隣接する部分は、発生する応力が応力集中部に比べて小さな低応力部となる。この低応力部は、応力集中部が位置する同一直線L1、L2、L3とは別であり、かつ振動軸線Oと直交し、振動軸線Oの回りに120°ピッチで位置する複数の直線L4、L5、L6上に位置している(図11の破線で示す直線L4、L5、L6参照)。よって、可動子111は、振動軸線Oと直交する直線L4、L5、L6上に位置する低応力部により安定して支持され、可動子111が振動軸線O方向に変位しても、振動軸線Oに対して傾かない。 On the other hand, in the portion adjacent to the stress concentration portion of each arm, the generated stress becomes a low stress portion smaller than the stress concentration portion. The low stress portions are different from the same straight lines L1, L2 and L3 in which the stress concentration portions are located, and orthogonal to the vibration axis O, and a plurality of straight lines L4 positioned around the vibration axis O at a pitch of 120 °, It is located on L5 and L6 (see straight lines L4, L5 and L6 indicated by broken lines in FIG. 11). Therefore, the mover 111 is stably supported by the low stress portions located on the straight lines L4, L5, L6 orthogonal to the vibration axis O, and even if the mover 111 is displaced in the vibration axis O direction, the vibration axis O Do not lean against.
 よって、可動子111が振動軸線O方向に変位しても、可動子111は回転せず、振動軸線Oに対して傾かないので、異音が発生しにくく、構造が簡単で、低コストの振動アクチュエータを実現できる。
 尚、本発明は上記実施形態に限定するものではない。
Therefore, even if the mover 111 is displaced in the direction of the vibration axis O, the mover 111 does not rotate and does not tilt relative to the vibration axis O, so abnormal noise hardly occurs, and the structure is simple and the cost is low. An actuator can be realized.
The present invention is not limited to the above embodiment.
 上記実施形態では、応力集中部を腕部の曲率を他の部分より大きくすることで形成したが、曲率に限定するものではない。例えば、腕部に孔や切り欠きを設けても応力集中部を形成できる。
 また、上記実施形態では、各腕に3つの応力集中部を形成したが、3つに限定するものではなく、複数、即ち2または4つ以上であってもよい。
In the said embodiment, although the stress concentration part was formed by making curvature of an arm larger than another part, it does not limit to curvature. For example, even if a hole or a notch is provided in the arm, the stress concentration portion can be formed.
Moreover, in the said embodiment, although three stress concentration parts were formed in each arm, it does not limit to three and may be plural, ie, 2 or 4 or more.
 更に、上記実施形態では、コイル21は第1コイル23、第2コイル25の2つからなった例で説明をしたが、図19に示すように、1つのコイル221でもよい。この場合、可動子311のマグネットはラジアル方向(径方向)に着磁されている。 Furthermore, in the above-described embodiment, the example in which the coil 21 is composed of the first coil 23 and the second coil 25 has been described, but as shown in FIG. 19, one coil 221 may be used. In this case, the magnet of the mover 311 is magnetized in the radial direction (radial direction).
 出願人は、本願発明の効果を確認するために、第1ダンパ51、第2ダンパ61に荷重を加えたときの変位、応力を有限要素法を用いて解析を行った。
 尚、第1ダンパ51、第2ダンパ61を材質SUS304、厚さは0.3mm、重さ100gとし、シェル要素で解析を行った。
The applicant analyzed the displacement and stress when a load was applied to the first damper 51 and the second damper 61 using the finite element method in order to confirm the effect of the present invention.
The first damper 51 and the second damper 61 were made of a material of SUS 304, a thickness of 0.3 mm, and a weight of 100 g, and analysis was performed using shell elements.
(1) 第1ダンパ51のみに荷重を加えた際の解析
 2.1Nの荷重を第1ダンパ51の支持部51b加えた場合、最大変位が1.981mm 、最大応力が318MPaであった。
(1) Analysis when load was applied only to the first damper 51 When a load of 2.1 N was applied to the support portion 51b of the first damper 51, the maximum displacement was 1.981 mm and the maximum stress was 318 MPa.
 解析結果を図12、図13に示す。図12は第1ダンパのみに荷重を加えた際、各部に発生する応力の分布を示す平面図、図13は第1ダンパのみに荷重を加えた際、各部に発生する応力の分布と各部の変位を示す斜視図である。
 尚、応力分布は、黒の濃度が高い箇所ほど、応力が高いことを示している。また、メッシュが切られていない部分は、初期の状態(無荷重状態)を示している。
The analysis results are shown in FIG. 12 and FIG. FIG. 12 is a plan view showing the distribution of stress generated in each part when a load is applied only to the first damper, and FIG. 13 is a distribution of stress generated in each part when a load is applied only to the first damper and It is a perspective view which shows a displacement.
The stress distribution indicates that the higher the black density, the higher the stress. Moreover, the part in which the mesh is not cut has shown the initial state (unloaded state).
 図12に示すように、第1ダンパ51の第1腕部53の第2応力集中部53b、第3応力集中部53c、第2腕部55の第2応力集中部55b、第3応力集中部55c、第3腕部57の第2応力集中部57b、第3応力集中部57cは、濃い色で、高い応力が発生していることが分かる。一方、各腕部の応力集中部と隣接する部分は、色が薄く、発生する応力が応力集中部に比べて小さな低応力部となっていることが分かる。 As shown in FIG. 12, the second stress concentration portion 53b and the third stress concentration portion 53c of the first arm portion 53 of the first damper 51, the second stress concentration portion 55b of the second arm portion 55, and the third stress concentration portion 55c, it can be seen that the second stress concentration portion 57b and the third stress concentration portion 57c of the third arm portion 57 are dark and high stress is generated. On the other hand, it is understood that the portion adjacent to the stress concentration portion of each arm portion is light in color, and the generated stress is a small low stress portion compared to the stress concentration portion.
 また、図13に示すように、支持部51bの変位が一番大きいことがわかる。
 更に、図12、図13に示すように、荷重が加えられると、第1ダンパ51の支持部51b、第1腕部53、第2腕部55、第3腕部57は、固定された円環部51cに対して無荷重状態から変位していることが分かる。
Further, as shown in FIG. 13, it can be seen that the displacement of the support portion 51 b is the largest.
Furthermore, as shown in FIGS. 12 and 13, when a load is applied, the support portion 51b of the first damper 51, the first arm 53, the second arm 55, and the third arm 57 have a fixed circle. It can be seen that the ring portion 51c is displaced from the no-load state.
(2) 第1及び第2ダンパの渦巻き状の腕部の渦巻き方向が同じになるように配置された第1及び第2ダンパに荷重を加えた際の解析
 解析結果を図14,図15を用いて説明する。図14は、第1及び第2ダンパの渦巻き状の腕部の渦巻き方向が同じになるように配置された第1及び第2ダンパに荷重を加えた際、各部に発生する応力の分布を示す平面図、図15は第1及び第2ダンパの渦巻き状の腕部の渦巻き方向が同じになるように配置された第1及び第2ダンパに荷重を加えた際、各部に発生する応力の分布と各部の変位を示す斜視図である。
(2) Analysis when load is applied to the first and second dampers arranged so that the spiral directions of the spiral arms of the first and second dampers become the same It demonstrates using. FIG. 14 shows a distribution of stress generated in each portion when a load is applied to the first and second dampers arranged such that the spiral directions of the spiral arm portions of the first and second dampers become the same. Top view, FIG. 15 shows distribution of stress generated in each part when load is applied to the first and second dampers arranged so that the spiral direction of the spiral arms of the first and second dampers become the same. And a perspective view showing displacement of each part.
 尚、応力分布は、黒の濃度が高い箇所ほど、応力が高いことを示している。また、メッシュが切られていない部分は、初期の状態(無荷重状態)を示している。
 本解析では、第1ダンパ51、第2ダンパ61の振動軸線Oを水平線に沿って水平に配置し、第1ダンパ51と第2ダンパ61との間に位置する可動子111の質量を100g、解析空間の重力を1Gと設定した。また、重力は、水平線に直行する垂直線と平行にかかるように設定した。そして、水平方向(振動軸線O方向)に4.4Nの荷重を第1ダンパ51の支持部51bに加えた。すると、第1ダンパ51、第2ダンパ61の水平方向(振動軸線O方向)の最大変位が1.988mm、最大応力が329MPaであった。
The stress distribution indicates that the higher the black density, the higher the stress. Moreover, the part in which the mesh is not cut has shown the initial state (unloaded state).
In this analysis, the vibration axes O of the first damper 51 and the second damper 61 are arranged horizontally along the horizontal line, and the mass of the mover 111 located between the first damper 51 and the second damper 61 is 100 g, The gravity of the analysis space was set to 1G. Also, the gravity was set to be parallel to the vertical line perpendicular to the horizontal line. Then, a load of 4.4 N was applied to the support portion 51 b of the first damper 51 in the horizontal direction (the vibration axis O direction). Then, the maximum displacement of the first damper 51 and the second damper 61 in the horizontal direction (the vibration axis O direction) was 1.988 mm, and the maximum stress was 329 MPa.
 図14に示すように、第1ダンパ51の第1腕部53の第2応力集中部53b、第3応力集中部53c、第2腕部55の第2応力集中部55b、第3応力集中部55c、第3腕部57の第2応力集中部57b、第3応力集中部57cは、濃い色で、高い応力が発生していることが分かる。同様に、第2ダンパ61の第1腕部63の第2応力集中部63b、第3応力集中部63c、第2腕部65の第2応力集中部65b、第3応力集中部65c、第3腕部67の第2応力集中部67b、第3応力集中部67cは、濃い色で、高い応力が発生していることが分かる。一方、各腕部の応力集中部と隣接する部分は、色が薄く、発生する応力が応力集中部に比べて小さな低応力部となっていることが分かる。 As shown in FIG. 14, the second stress concentration portion 53b and the third stress concentration portion 53c of the first arm portion 53 of the first damper 51, the second stress concentration portion 55b of the second arm portion 55, and the third stress concentration portion 55c, it can be seen that the second stress concentration portion 57b and the third stress concentration portion 57c of the third arm portion 57 are dark and high stress is generated. Similarly, the second stress concentration portion 63b and the third stress concentration portion 63c of the first arm portion 63 of the second damper 61, and the second stress concentration portion 65b and the third stress concentration portion 65c of the second arm portion 65. It can be seen that the second stress concentration portion 67 b and the third stress concentration portion 67 c of the arm portion 67 are dark and high stress is generated. On the other hand, it is understood that the portion adjacent to the stress concentration portion of each arm portion is light in color, and the generated stress is a small low stress portion compared to the stress concentration portion.
 また、図15に示すように、支持部51b、支持部61bの変位が一番大きいことがわかる。
 更に、図14に示すように、無荷重時の第1腕部53、第2腕部55、第3腕部57の側部と、荷重時の第1腕部53、第2腕部55、第3腕部57の側部との間には、平行な部分がない隙間S1が発生している。この隙間S1は、第1ダンパ51に荷重を加えると、各腕部の低応力部が支持部51b(中心)に向かって移動することにより発生する。その際、支持部51b、第1腕部53、第2腕部55、第3腕部57が、固定された円環部51cに対して、回転しているので、平行な部分がない隙間S1となる。
Moreover, as shown in FIG. 15, it turns out that the displacement of the support part 51b and the support part 61b is the largest.
Furthermore, as shown in FIG. 14, the side portions of the first arm 53, the second arm 55, and the third arm 57 in no load, and the first arm 53, second arm 55, in load, Between the side portions of the third arm portion 57, a gap S1 having no parallel portion is generated. The gap S1 is generated by the low stressed portions of the respective arms moving toward the support portion 51b (center) when a load is applied to the first damper 51. At that time, since the support portion 51b, the first arm portion 53, the second arm portion 55, and the third arm portion 57 are rotated with respect to the fixed annular portion 51c, the gap S1 having no parallel portion It becomes.
 即ち、第1ダンパ51に荷重を加えると、支持部51b、第1腕部53、第2腕部55、第3腕部57は、固定された円環部51cに対して、回転していることが分かる。
 同様に、第2ダンパ61の支持部61b、第1腕部63、第2腕部65、第3腕部67も、固定された円環部61cに対して無荷重状態から回転していることが分かる。
That is, when a load is applied to the first damper 51, the support portion 51b, the first arm 53, the second arm 55, and the third arm 57 rotate with respect to the fixed annular portion 51c. I understand that.
Similarly, the supporting portion 61b of the second damper 61, the first arm 63, the second arm 65, and the third arm 67 are also rotated from a no-load state with respect to the fixed annular portion 61c. I understand.
(3) 第1及び第2ダンパの渦巻き状の腕部の渦巻き方向が逆になるように配置された第1及び第2ダンパに荷重を加えた際の解析(実施形態に相当する)
 解析結果を図16,図17を用いて説明する。図16は第1及び第2ダンパの渦巻き状の腕部の渦巻き方向が逆になるように配置された第1及び第2ダンパに荷重を加えた際、各部に発生する応力の分布を示す平面図、図17は第1及び第2ダンパの渦巻き状の腕部の渦巻き方向が逆になるように配置された第1及び第2ダンパに荷重を加えた際、各部に発生する応力の分布と各部の変位を示す斜視図である。
(3) Analysis when a load is applied to the first and second dampers arranged such that the spiral direction of the spiral arm of the first and second dampers is opposite (corresponding to the embodiment)
The analysis result is described with reference to FIGS. FIG. 16 is a plane showing the distribution of stress generated in each portion when a load is applied to the first and second dampers arranged so that the spiral direction of the spiral arm of the first and second dampers is reversed. FIG. 17 shows the distribution of stress generated in each portion when a load is applied to the first and second dampers arranged so that the spiral direction of the spiral arm of the first and second dampers is reversed. It is a perspective view which shows the displacement of each part.
 尚、応力分布は、黒の濃度が高い箇所ほど、応力が高いことを示している。また、メッシュが切られていない部分は、初期の状態(無荷重状態)を示している。
 本解析では、第1ダンパ51、第2ダンパ61の振動軸線Oを水平線に沿って水平に配置し、第1ダンパ51と第2ダンパ61との間に位置する可動子111の質量を100g、解析空間の重力を1Gと設定した。また、重力は水平線に直交する垂直線と平行にかかるように設置した。そして、水平方向(振動軸線O方向)に4.7Nの荷重を第1ダンパ51の支持部51bに加えた。すると、第1ダンパ51、第2ダンパ61の水平方向(振動軸線O方向)の最大変位が1.985mm、最大応力が444MPaであった。
The stress distribution indicates that the higher the black density, the higher the stress. Moreover, the part in which the mesh is not cut has shown the initial state (unloaded state).
In this analysis, the vibration axes O of the first damper 51 and the second damper 61 are arranged horizontally along the horizontal line, and the mass of the mover 111 located between the first damper 51 and the second damper 61 is 100 g, The gravity of the analysis space was set to 1G. Also, gravity was installed parallel to the vertical line perpendicular to the horizontal line. Then, a load of 4.7 N was applied to the support portion 51 b of the first damper 51 in the horizontal direction (the vibration axis O direction). Then, the maximum displacement of the first damper 51 and the second damper 61 in the horizontal direction (the vibration axis O direction) was 1.985 mm, and the maximum stress was 444 MPa.
 図16に示すように、第1ダンパ51の第1腕部53の第2応力集中部53b、第3応力集中部53c、第2腕部55の第2応力集中部55b、第3応力集中部55c、第3腕部57の第2応力集中部57b、第3応力集中部57cは、濃い色で、高い応力が発生していることが分かる。同様に、第2ダンパ61の第1腕部63の第2応力集中部63b、第3応力集中部63c、第2腕部65の第2応力集中部65b、第3応力集中部65c、第3腕部67の第2応力集中部67b、第3応力集中部67cは、濃い色で、高い応力が発生していることが分かる。一方、各腕部の応力集中部と隣接する部分は、色が薄く、発生する応力が応力集中部に比べて小さな低応力部となっていることが分かる。 As shown in FIG. 16, the second stress concentration portion 53b and the third stress concentration portion 53c of the first arm portion 53 of the first damper 51, and the second stress concentration portion 55b of the second arm portion 55 and the third stress concentration portion 55c, it can be seen that the second stress concentration portion 57b and the third stress concentration portion 57c of the third arm portion 57 are dark and high stress is generated. Similarly, the second stress concentration portion 63b and the third stress concentration portion 63c of the first arm portion 63 of the second damper 61, and the second stress concentration portion 65b and the third stress concentration portion 65c of the second arm portion 65. It can be seen that the second stress concentration portion 67 b and the third stress concentration portion 67 c of the arm portion 67 are dark and high stress is generated. On the other hand, it is understood that the portion adjacent to the stress concentration portion of each arm portion is light in color, and the generated stress is a small low stress portion compared to the stress concentration portion.
 また、図17に示すように、支持部51b、支持部61b変位が一番大きいことがわかる。
 更に、図16に示すように、無荷重時の第1腕部53、第2腕部55、第3腕部57の側部と、荷重時の第1腕部53、第2腕部55、第3腕部57の側部との間には、中間部に略平行な部分を有する隙間S2が発生している。この隙間S2は、第1ダンパ51に荷重を加えると、各腕部の低応力部が支持部51b(中心)に向かって移動することにより発生する。その際、支持部51b、第1腕部53、第2腕部55、第3腕部57が、固定された円環部51cに対して、回転しないので、中間部に略平行な部分を有する隙間S2となる。
Further, as shown in FIG. 17, it can be seen that the displacement of the support portion 51 b and the support portion 61 b is the largest.
Furthermore, as shown in FIG. 16, the side portions of the first arm 53, the second arm 55, and the third arm 57 in no load, and the first arm 53, the second arm 55, in the load, Between the side portions of the third arm portion 57, a gap S2 having a portion substantially parallel to the middle portion is generated. The gap S2 is generated by the low stressed portions of the respective arms moving toward the support portion 51b (center) when a load is applied to the first damper 51. At that time, since the support portion 51b, the first arm portion 53, the second arm portion 55, and the third arm portion 57 do not rotate with respect to the fixed annular portion 51c, they have portions substantially parallel to the intermediate portion. It becomes gap S2.
 即ち、第1ダンパ51に荷重を加えると、支持部51b、第1腕部53、第2腕部55、第3腕部57は、固定された円環部51cに対して、回転しないことが分かる。
 同様に、第2ダンパ61の支持部61b、第1腕部63、第2腕部65、第3腕部67も、固定された円環部61cに対して無荷重状態から回転しないことが分かる。
That is, when a load is applied to the first damper 51, the support portion 51b, the first arm 53, the second arm 55, and the third arm 57 do not rotate with respect to the fixed annular portion 51c. I understand.
Similarly, it can be seen that the support portion 61b, the first arm 63, the second arm 65, and the third arm 67 of the second damper 61 do not rotate from a no-load state with respect to the fixed annular portion 61c. .
1 ケース
11 ヨーク
13 分割ヨーク
21 コイル
51 第1ダンパ(板ばね)
53、63 第1腕部
55、65 第2腕部
57、67 第3腕部
61 第2ダンパ(板ばね)
111 可動子
113 マグネット
1 case 11 yoke 13 split yoke 21 coil 51 first damper (leaf spring)
53, 63 first arm 55, 65 second arm 57, 67 third arm 61 second damper (leaf spring)
111 mover 113 magnet

Claims (3)

  1.  筒状のケースと、
     該ケースの内部に設けられた電磁駆動部と、
     該電磁駆動部により前記ケースの振動軸線に沿って振動する可動子と、
     前記可動子を挟んで一方の側と他方の側とに配置され、前記可動子が取り付けられる支持部、前記ケースの内面に取り付けられる円環部、前記支持部と前記円環部とを接続する複数の渦巻き状の腕部とからなる第1板ばね、第2板ばねと、
    を有し、
     前記第1及び第2板ばねの渦巻き状の腕部の渦巻き方向が逆になるように、前記第1及び第2板ばねは配置され、
     前記第1及び第2板ばねの複数の腕部は、力が負荷されると局所的に応力が増大する応力集中部を有し、
     前記各腕部の応力集中部は、前記振動軸線と直交する複数の直線上に位置していることを特徴とする振動アクチュエータ。
    With a cylindrical case,
    An electromagnetic drive unit provided inside the case;
    A mover that vibrates along a vibration axis of the case by the electromagnetic drive unit;
    A supporting portion to which the mover is attached, an annular portion attached to the inner surface of the case, and the supporting portion and the annular portion are disposed on one side and the other side of the mover. A first plate spring consisting of a plurality of spiral arms and a second plate spring;
    Have
    The first and second leaf springs are arranged such that the spiraling direction of the spiral arms of the first and second leaf springs is reversed,
    The plurality of arms of the first and second leaf springs have a stress concentration portion where stress is locally increased when a force is applied,
    The stress concentration portion of each arm is located on a plurality of straight lines orthogonal to the vibration axis.
  2.  前記第1及び第2板ばねの腕部の応力集中部が位置する直線は、前記振動軸線の回りに120°ピッチで3本あることを特徴とする請求項1に記載の振動アクチュエータ。 The vibration actuator according to claim 1, wherein the straight lines on which the stress concentration portions of the arm portions of the first and second plate springs are located are three at a pitch of 120 ° around the vibration axis.
  3.  前記腕部の応力集中部は、前後の部分より曲率が大きいことを特徴とする請求項1または2記載の振動アクチュエータ。 The vibration actuator according to claim 1, wherein the stress concentration portion of the arm portion has a curvature larger than that of the front and rear portions.
PCT/JP2018/036661 2017-12-25 2018-10-01 Vibration actuator WO2019130705A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017247546A JP2019115187A (en) 2017-12-25 2017-12-25 Vibration actuator
JP2017-247546 2017-12-25

Publications (1)

Publication Number Publication Date
WO2019130705A1 true WO2019130705A1 (en) 2019-07-04

Family

ID=67066870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036661 WO2019130705A1 (en) 2017-12-25 2018-10-01 Vibration actuator

Country Status (2)

Country Link
JP (1) JP2019115187A (en)
WO (1) WO2019130705A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733116A1 (en) * 2019-05-02 2020-11-04 Braun GmbH Motor with spring-mounted movable motor part and personal care device comprising such a motor
WO2022102259A1 (en) * 2020-11-10 2022-05-19 フォスター電機株式会社 Oscillatory actuator
US11712326B2 (en) 2019-05-02 2023-08-01 Braun Gmbh Personal care device
US11793619B2 (en) 2019-05-02 2023-10-24 Braun Gmbh Personal hygiene device
EP4112191A4 (en) * 2020-02-27 2024-03-06 Minebea Mitsumi Inc Vibration actuator and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115210006A (en) * 2020-02-27 2022-10-18 美蓓亚三美株式会社 Vibration actuator and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050609A (en) * 1998-07-31 2000-02-18 Fujitsu Ltd Support mechanism for linear mobile section
JP2005013836A (en) * 2003-06-25 2005-01-20 Matsushita Electric Ind Co Ltd Oscillating linear actuator
JP2011153672A (en) * 2010-01-28 2011-08-11 Keihin Corp Active vibration control device
JP2015135124A (en) * 2014-01-16 2015-07-27 住友理工株式会社 Electromagnetic actuator, active vibration control device and fluid-encapsulated active vibration control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078468B (en) * 2012-11-30 2015-02-11 深圳市光控数码光电有限公司 Micro driving motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050609A (en) * 1998-07-31 2000-02-18 Fujitsu Ltd Support mechanism for linear mobile section
JP2005013836A (en) * 2003-06-25 2005-01-20 Matsushita Electric Ind Co Ltd Oscillating linear actuator
JP2011153672A (en) * 2010-01-28 2011-08-11 Keihin Corp Active vibration control device
JP2015135124A (en) * 2014-01-16 2015-07-27 住友理工株式会社 Electromagnetic actuator, active vibration control device and fluid-encapsulated active vibration control device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3733116A1 (en) * 2019-05-02 2020-11-04 Braun GmbH Motor with spring-mounted movable motor part and personal care device comprising such a motor
WO2020222184A1 (en) * 2019-05-02 2020-11-05 Braun Gmbh Motor with spring-mounted movable motor part and personal care device comprising such a motor
US11712326B2 (en) 2019-05-02 2023-08-01 Braun Gmbh Personal care device
US11793619B2 (en) 2019-05-02 2023-10-24 Braun Gmbh Personal hygiene device
US11859687B2 (en) 2019-05-02 2024-01-02 Braun Gmbh Motor with spring-mounted movable motor part and personal care device comprising such a motor
EP4112191A4 (en) * 2020-02-27 2024-03-06 Minebea Mitsumi Inc Vibration actuator and electronic device
WO2022102259A1 (en) * 2020-11-10 2022-05-19 フォスター電機株式会社 Oscillatory actuator
EP4245430A4 (en) * 2020-11-10 2024-04-17 Foster Electric Co Ltd Oscillatory actuator

Also Published As

Publication number Publication date
JP2019115187A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
WO2019130705A1 (en) Vibration actuator
US10641322B2 (en) Bearing assembly unit and motor
WO2017057314A1 (en) Linear vibration motor
JP2019068569A (en) Vibration actuator
JP2007135350A (en) Outer movable linear actuator
CN107847976B (en) Linear vibration motor and mobile electronic device including the same
JP6297447B2 (en) Vibration actuator
WO2022091776A1 (en) Vibration actuator
JP6980876B2 (en) Vibration actuator
JP6980877B2 (en) Vibration actuator
JP7208311B2 (en) vibration actuator
JP7101604B2 (en) Vibration actuator
JP2019030154A (en) Stator and motor
JP2007135351A (en) Outer movable linear actuator
JP2008043055A (en) Axial air-gap type motor
JP2018133948A (en) motor
JP2018107839A (en) Stator core for rotary electric machine, stator and rotary electric machine
JP7311693B2 (en) vibration actuator
JP7189303B2 (en) vibration actuator
JP6980875B2 (en) Vibration actuator
JP2020018036A (en) motor
JP2019205261A (en) motor
JP6923732B2 (en) Vibration actuator
WO2022196147A1 (en) Magnet disposition method, rotor manufacturing method, and magnet disposition tool
JP2005324162A (en) Vibration actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896490

Country of ref document: EP

Kind code of ref document: A1