WO2019130514A1 - Method of reducing powder load of dry vacuum pump and powder load reducer - Google Patents

Method of reducing powder load of dry vacuum pump and powder load reducer Download PDF

Info

Publication number
WO2019130514A1
WO2019130514A1 PCT/JP2017/047083 JP2017047083W WO2019130514A1 WO 2019130514 A1 WO2019130514 A1 WO 2019130514A1 JP 2017047083 W JP2017047083 W JP 2017047083W WO 2019130514 A1 WO2019130514 A1 WO 2019130514A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
powder
vacuum pump
dry vacuum
receiving surface
Prior art date
Application number
PCT/JP2017/047083
Other languages
French (fr)
Japanese (ja)
Inventor
信明 土屋
則光 田中
拓也 榊原
治 武井
Original Assignee
樫山工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 樫山工業株式会社 filed Critical 樫山工業株式会社
Priority to PCT/JP2017/047083 priority Critical patent/WO2019130514A1/en
Priority to JP2019561501A priority patent/JP6895692B2/en
Publication of WO2019130514A1 publication Critical patent/WO2019130514A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to a powder load reducing method and a powder load reducing device for reducing an increase in pump load caused by powder entering into a pump from an intake port of a dry vacuum pump.
  • a dry vacuum pump In a film forming process such as CVD which is a semiconductor manufacturing process, evacuation of a reaction chamber or the like is performed using a dry vacuum pump.
  • the exhaust gas drawn into the dry vacuum pump by vacuum drawing contains a powdery product. Small quantities of such powders do not cause problems in driving the pump even if they are drawn into a dry vacuum pump. However, when a large amount of powder enters the dry vacuum pump at one time, the pump may be overloaded and may not be able to start up.
  • the product deposited on the inner wall of the exhaust gas pipe leading the exhaust gas to the suction port of the dry vacuum pump may react with the air flowing in when the pump is stopped and grow, and may be vacuum dried and separated from the inner wall during pump operation .
  • the exfoliated powder penetrates the dry vacuum pump at one time in the form of lumps. If a large amount of powder enters at one time, the pump will be overloaded and shut down, making it impossible to restart. In order to prevent such an adverse effect, it is general to place an h-type piping or powder trap for capturing and storing powder at the front stage of the dry vacuum pump.
  • Patent Document 1 proposes a dry vacuum pump in which a centrifugal separation cylinder for trapping powder is attached to a pump intake port.
  • the h-type piping and powder trap that are used conventionally capture in front of them so that a large amount of generated powder does not intrude into the pump, it is necessary to periodically take out the powder that has been trapped and accumulated inside. Maintenance is required. For maintenance, it is necessary to stop equipment such as the pump and its upper semiconductor manufacturing apparatus. Field work is required, and costs and man-hours are required. Further, in the case of a process in which a large amount of powder is generated in a short period, the maintenance cycle may be shortened, the operation rate may be reduced, and the operation may be difficult.
  • a cylinder in which powder directed from an external pipe to an intake port of the dry vacuum pump is disposed between the external pipe and the intake port
  • the inside of the container is received from the container inlet formed at the top of the container.
  • the powder received inside the container is dropped onto the powder receiving surface disposed inside the container and temporarily stored in the powder receiving surface.
  • the gas flows from the container inlet into the container interior, flows along the powder receiving surface, and flows out from the container outlet formed at the lower part of the cylindrical container. By this gas flow, the powder collected on the powder receiving surface is sent out from the container outlet which is opened at the downstream end of the flow direction of the gas flow on the powder receiving surface.
  • a gas flow can be used which is generated by vacuuming of a dry vacuum pump and travels from the external piping side to the air inlet via the inside of the container.
  • the powder temporarily accumulated on the powder receiving surface is pumped from the container outlet toward the suction port of the dry vacuum pump by the gas flow.
  • the powder from the external pipe on the upstream side is temporarily received inside the cylindrical container installed at the front stage of the dry vacuum pump.
  • a large amount of powder can enter the dry vacuum pump at one time at the time of restart after pump stop and the like, and occurrence of adverse effects such as unintended pump stop can be prevented.
  • the powder received inside the cylindrical container temporarily accumulates on the powder receiving surface.
  • a gas flow is generated inside the container by evacuation of a dry vacuum pump.
  • the powder collected on the powder receiving surface is carried toward the downstream end of the powder receiving surface by the gas flow.
  • the container outlet is open at the downstream end of the powder receiving surface, so that the powder is sent out from the container outlet together with the gas flow.
  • the powder delivered from the container outlet is drawn into a dry vacuum pump. Since the relative positional relationship between the powder receiving surface and the container outlet is set such that the powder collected on the powder receiving surface is carried to the container outlet by the gas flow, the inside of the container of the cylindrical container is The powder is not stored in the reservoir, it is only stored temporarily. Maintenance for periodically removing the powder stored in the cylindrical container is not necessary.
  • the powder carried by the gas flow from the powder receiving surface is passed through a sieve disposed inside the container, and the powder in the form of lumps is crushed before being led to the container outlet.
  • a sieve disposed inside the container, and the powder in the form of lumps is crushed before being led to the container outlet.
  • the gas flow flowing inside the container is a swirling gas flow from the container inlet to the container outlet along the inner peripheral side surface inside the container, and the powder temporarily accumulated on the powder receiving surface is Preferably, it is carried to the vessel outlet by a swirling gas flow.
  • a swirling gas flow flowing along the inner peripheral side surface inside the narrow container of the cylindrical container the powder accumulated on the powder receiving surface can be efficiently sent out to the container outlet.
  • the swirling gas flow flowing through the first sieve along the powder receiving surface may flow through the second sieve smaller than the first sieve to the container outlet.
  • the agglomerated powder carried by the swirling gas flow is broken up more finely through the second sieve.
  • the powder can be reliably prevented from being sucked into the dry vacuum pump in the form of lumps.
  • the dry vacuum is used by being attached between the external piping and the suction port of the dry vacuum pump.
  • a powder load reducer for the pump With a cylindrical container, A container inlet formed at the top of the cylindrical container and connected to the external piping; A container outlet formed at the lower part of the cylindrical container and connected to the suction port of the dry vacuum pump; A powder receiving surface formed on the bottom of the inside of the cylindrical container and temporarily storing the powder received from the container inlet into the container; Inside the container, a guide member for guiding the gas flow flowing in from the container inlet to the container outlet along the powder receiving surface; The container outlet is open at the downstream end of the flow direction of the gas flow on the powder receiving surface so that the powder collected on the powder receiving surface is delivered from the container outlet by the gas flow.
  • the guide member includes a guide member for guiding the gas flow flowing in from the container inlet so that a swirling gas flow flowing in a direction along the inner circumferential side surface inside the container is formed.
  • the container inlet and the container outlet may be coaxially disposed above and below the cylindrical container.
  • the guide member includes, between the container inlet and the container outlet, an inclined plate for guiding the powder falling from the container inlet obliquely downward along the inner circumferential side to the powder receiving surface.
  • a first sieve through which the powder carried by the swirling gas flow passes
  • a second sieve through which the powder passes through the first sieve and towards the container outlet.
  • a sieve finer than the first sieve is used as the second sieve.
  • the container inlet and the container outlet may be disposed at positions above and below the inside of the container and offset in a direction along the inner circumferential side surface inside the container. In this case, too, it is possible to arrange in the container a first sieve through which the powder carried by the swirling gas flow passes and a second sieve smaller than this.
  • FIG. 2 is an explanatory view showing an exhaust device to which a powder load reducer according to Embodiment 1 is attached.
  • (A), (b), (c) and (d) are respectively a plan view of a powder load reducer, a side view thereof, an arrangement position of its mesh filter, and an explanatory view showing its internal structure .
  • (A) is explanatory drawing which shows the flow of the swirling-like gas flow and powder body which passes a powder load reduction device
  • (b) is explanatory drawing which shows the flow of swirling-like gas flow.
  • (A), (b), (c) and (d) are a plan view showing the powder load reducer according to the second embodiment, a side view thereof, an explanatory view showing an arrangement position of the mesh filter, and It is an explanatory view showing the internal structure.
  • (A) And (b) is explanatory drawing which respectively shows another shape example of a powder load reducing device
  • (c) is explanatory drawing which shows the example of a powder load reducing device at the time of attaching a heat retention material.
  • (A) And (b) is explanatory drawing which shows the example of arrangement
  • FIG. 1 is an explanatory view showing an exhaust device to which a powder load reducer according to Embodiment 1 is attached.
  • the exhaust device 1 includes a two-stage dry vacuum pump 3 disposed inside the device case 2.
  • the mechanical booster pump 4 at the front stage and the screw type vacuum pump 5 at the rear stage are provided.
  • the intake port 6 of the dry vacuum pump 3 opens upward on the top surface of the device case 2.
  • a powder load reducer 10 is attached to the intake port 6.
  • the intake port 6 is connected to an exhaust pipe 7 which is an external pipe on the upstream side via the powder load reducing device 10.
  • the powder load reducing device 10 prevents or suppresses an increase in the driving load of the dry vacuum pump 3 caused by the powdery product (hereinafter referred to as “powder”) entering from the exhaust pipe 7 side. It is to do.
  • the powder load reducer 10 includes a bottomed cylindrical container 11 and a disc-like lid 12 closing the upper end opening.
  • a circular container inlet 13 is opened at a position offset from the center to one side.
  • An intake side connecting pipe 14 extending vertically upward is attached to the container inlet 13.
  • the intake side connecting pipe 14 is connected to the upper exhaust pipe 7.
  • a circular container outlet 16 is formed on the bottom plate 15 of the cylindrical container 11 at a position coaxial with the container inlet 13.
  • An exhaust side connection pipe 17 is connected to the container outlet 16.
  • the exhaust side connection pipe 17 is connected to the suction port 6 of the dry vacuum pump 3.
  • the internal structure of the cylindrical container 11 sealed by the lid plate 12 will be described.
  • the top surface of the bottom plate 15 defining the bottom surface inside the container is a powder receiving surface 18 which is a horizontal flat surface except for the portion where the container outlet 16 is open.
  • an inclined plate 19 is coaxially disposed.
  • the inclined plate 19 is a plate having an elliptical contour, and is inclined downward along the circular inner circumferential surface 20 of the cylindrical container 11 in the tangential direction.
  • a semicylindrical lower vertical guide plate 21 extending to the edge portion of the container outlet 16 is formed at the lower edge portion of the outer peripheral edge of the inclined plate 19.
  • a semi-cylindrical upper vertical guide plate 22 reaching the edge portion of the container inlet 13 is formed at the edge portion on the upper end side of the outer peripheral edge of the inclined plate 19. Therefore, inside the container, the top surface defined by the cover plate 12, the circular inner peripheral surface 20 of the cylindrical container 11, the powder receiving surface 18 of the cylindrical container 11, the upper vertical guide plate 22, and the inclined plate An internal flow path extending from the side of the container inlet 13 in the circumferential direction of the circular inner circumferential surface 20 to the container outlet 16 is formed by the guide member consisting of 19 and the lower vertical guide plate 21.
  • the mesh filter 23 (1st sieve) is arrange
  • the mesh filter 23 comprises a horizontal upper surface portion 23a and a vertical end surface portion 23b.
  • the upper surface portion 23 a is located between the semi-cylindrical lower vertical guide plate 21 and the circular inner circumferential surface 20 opposed thereto at a height position of the middle of the inclined plate 19 above the powder receiving surface 18. It is disposed and covers the powder receiving surface 18 except for the portion of the powder receiving surface 18 on the side of the container outlet 16.
  • the end surface portion 23 b is bent at a right angle from the end of the upper surface portion 23 a on the side of the container outlet 16 and extends to the powder receiving surface 18.
  • a finer mesh filter 24 (second sieve) is attached to the end face portion 23 b of the mesh filter 23.
  • the mesh filter 24 comprises an upper surface portion 24 a having a triangular contour and an end surface portion 24 b bent at a right angle from the edge on the container outlet 16 side and extending to the powder receiving surface 18.
  • the evacuation by the dry vacuum pump 3 forms an exhaust flow drawn from the exhaust pipe 7 through the inside of the container of the powder load reducing device 10 to the intake port 6 of the dry vacuum pump 3.
  • An internal flow path is formed inside the container as described above.
  • the exhaust flow from the container inlet 13 changes along the inclined plate 19 in the direction along the circular inner circumferential surface 20, and flows along the circular inner circumferential surface 20 on the surface of the powder receiving surface 18 to the container. It flows as a swirling gas flow towards the outlet 16.
  • FIG.3 (a) is explanatory drawing which shows the flow of the swirling-like gas flow and the powder which are formed inside the powder load reducing device 10
  • FIG.3 (b) is explanatory drawing which shows the flow of the swirling-like gas flow It is.
  • exhaust air from the side of the exhaust pipe 7 once enters the powder load reducer 10 as shown by the hollow arrow A, and passes through this through the dry vacuum pump 3. It is drawn into the pump from the intake port 6.
  • the powder carried by the exhaust or the lump of the powder carried away by peeling off from the wall surface of the exhaust pipe 7 does not directly enter the pump, and the powder load reducer 10 is It is accepted.
  • a large amount of powder may be discharged in the form of lumps from the side of the exhaust pipe 7.
  • a large amount of powder lump B enters the inside of the container from the container inlet 13 of the powder load reducer 10.
  • the powder that has entered the inside of the container falls on the inclined plate 19 immediately below and is guided by the inclined plate 19 in the direction along the circular inner circumferential surface 20.
  • the powder sliding on the inclined plate 19 falls on the portion of the powder receiving surface 18 covered by the mesh filter 23.
  • the powder that has entered the powder load reducing device 10 from the exhaust pipe 7 temporarily accumulates on the powder receiving surface 18 inside the container. That is, since the powder receiving surface 18 is a horizontal flat surface, the powder dropped onto the powder receiving surface 18 is not accumulated in the powder receiving surface 18 and is self-weighted from the powder receiving surface 18 to the container outlet 16. It does not slide down to the side.
  • the exhaust flow flows as a swirling gas flow along the internal flow path formed inside the container.
  • the swirling gas flow flows along the circular inner circumferential surface 20 on the surface of the powder receiving surface 18 and reaches the container outlet 16 opened at the downstream end of the powder receiving surface 18.
  • the powder accumulated on the powder receiving surface 18 is conveyed through the mesh filter 23 and the mesh filter 24 sequentially by the swirling gas flow.
  • the finely ground powder is conveyed by means of the swirling gas flow towards the container outlet 16 which is open at approximately the same height position.
  • the powder, together with the swirling gas flow is discharged from the opening of the container outlet 16 and fed to the suction port 6 of the dry vacuum pump 3.
  • the powder load reducing device 10 By mounting the powder load reducing device 10, a large amount of powder does not infiltrate into the pump of the dry vacuum pump 3 at one time. It is possible to reliably prevent the pump from being overloaded or unable to start up. Further, when an exhaust flow is formed, the powder temporarily accumulated in the powder load reducing device 10 is discharged by the exhaust flow and fed into the pump of the dry vacuum pump 3. On the dry vacuum pump 3 side, the powder is sucked little by little, so the load does not increase excessively and normal operation is maintained. Furthermore, since the powder accumulated in the powder load reducing device 10 is automatically discharged by the exhaust flow, maintenance such as taking out the accumulated powder is basically unnecessary.
  • Second Embodiment 4 (a), (b), (c) and (d) are plan views showing a powder load reducing device according to Embodiment 2, a side view thereof, and an explanatory view showing the arrangement position of the mesh filter
  • FIG. 7 is an explanatory view showing an internal structure of the same.
  • the powder load reducing device 30 shown in these figures comprises a bottomed cylindrical container 31 and a disc-like cover plate 32 closing the upper end opening.
  • a circular container inlet 33 is opened at a position offset from the center to one side.
  • An intake side connecting pipe 34 extending vertically upward is attached to the container inlet 33.
  • the intake side connection pipe 34 is connected to the upper exhaust pipe 7 (see FIG. 1).
  • a circular container outlet 36 is formed on the bottom plate 35 defining the bottom of the cylindrical container 31.
  • An exhaust side connection pipe 37 is connected to the container outlet 36.
  • the powder load reducing device 30 is disposed at a position where the container inlet 33 and the container outlet 36 are offset.
  • the container inlet 33 and the container outlet 36 are located on both sides of the center of the cylindrical container 31.
  • the container inlet 33 and the container outlet 36 are disposed at positions separated by a predetermined angle in the circumferential direction of the cylindrical container 31, which is 180 degrees in this example.
  • the exhaust pipe 7 and the suction port 6 of the lower dry vacuum pump 3 are generally arranged in coaxial positions. In this case, the aforementioned powder load reducing device 10 is used. When both are at offset positions, the powder load reducer 30 of this example is used.
  • the structure inside the cylindrical container 31 sealed by the cover plate 32 in the powder load reducing device 30 will be described.
  • the bottom surface inside the container is a powder receiving surface 38 which is a horizontal flat surface except for the portion where the container outlet 36 is open.
  • a semi-cylindrical vertical guide plate 41 extends to a height position of the lid plate 32 so as to surround the bottom center portion of the container outlet 36 over an angle of approximately 180 degrees.
  • the top surface defined by the cover plate 32, the circular inner peripheral surface 40 of the cylindrical container 31, the powder receiving surface 38 formed on the bottom of the cylindrical container 31, and the vertical guide plate 41 forms an internal flow path which branches from the side of the container inlet 33 to both sides in the circumferential direction of the circular inner circumferential surface 40 toward the container outlet 36.
  • the powder receiving surface 38 is covered by a mesh filter 43 (first sieve) except for a portion on the container outlet 36 side.
  • the mesh filter 43 includes an upper surface portion 43 a located above the powder receiving surface 38 and an end surface portion 43 b.
  • the upper surface portion 43a has a substantially semicircular outline, and is disposed between the convex side surface of the semicylindrical vertical guide plate 41 and the circular inner circumferential surface 40 of the cylindrical container 31 opposed thereto.
  • the upper surface portion 43 a has a circular opening at a portion located immediately below the container inlet 33.
  • the end surface portion 43b is bent at a right angle from each of both circumferential edges of the top surface portion 43a and extends to the powder receiving surface 38.
  • each mesh filter 44 includes a top surface portion 44a having a triangular profile and an end surface portion 44b bent at a right angle from the edge of the top surface portion 44a and extending to the powder receiving surface 38.
  • the powder or powder lump from the exhaust pipe 7 does not directly intrude into the pump of the dry vacuum pump 3, and once, It is accepted by the powder load reducer 30.
  • a large amount of powder lumps discharged from the side of the exhaust pipe 7 enter the inside of the container from the container inlet 33 of the powder load reducing device 30.
  • the powder that has entered the inside of the container falls to the portion of the powder receiving surface 38 covered by the mesh filter 43, which is located immediately below it.
  • the powder that has entered the powder load reducing device 30 from the exhaust pipe 7 temporarily accumulates on the powder receiving surface 38 inside the container.
  • the exhaust flow flows from the container inlet 33 toward the powder receiving surface 38 below and then bifurcated along the circular inner circumferential surface 40 to form a circular shape. It flows as a swirling gas flow along the inner circumferential surface 40 and the powder receiving surface 38. Each swirling gas stream flows sequentially through mesh filter 43 and mesh filter 44 and merges at vessel outlet 36.
  • the powder (reserved powder) collected here is carried by the swirling gas flow toward the container outlet 36 which is open at substantially the same height position. And is fed into the suction port 6 of the dry vacuum pump 3. That is, the powder accumulated on the lower powder receiving surface 38 of the mesh filter 43 is carried by the swirling gas flow, and the end surface portion 43 b of the mesh filter 43 and the end surface portion 44 b of the mesh filter 44 And finely ground. Then, it is fed into the pump from the intake port 6 of the dry vacuum pump 3 through the container outlet 36.
  • the powder load reducing device 30 By attaching the powder load reducing device 30, a large amount of powder does not infiltrate into the pump of the dry vacuum pump 3 at one time, and it is possible to reliably prevent the pump from falling into an overload state or a non-startable state. Further, when powder is temporarily accumulated in the powder load reducing device 30 and an exhaust flow is formed, the accumulated powder is discharged by the exhaust flow and is fed into the pump of the dry vacuum pump 3. On the side of the dry vacuum pump 3, a small amount of powder is drawn, so the load does not increase excessively and normal operation is maintained. Furthermore, since the powder accumulated in the powder load reducing device 30 is automatically discharged by the exhaust flow, maintenance such as taking out the accumulated powder is basically unnecessary.
  • the powder load reducer 10, 30 described above comprises cylindrical containers 11, 31.
  • the present invention is not limited to a cylindrical container, and may be, for example, a polygonal cylindrical container such as a square or a regular octagon as shown in FIGS. 5 (a) and 5 (b).
  • the outer periphery or the like of the cylindrical container may be covered with a heat insulating material.
  • the outer peripheral surface of the suction side connecting pipe 14 in the powder load reducing device 10 the surface of the cover plate 12 and the outer peripheral surface of the cylindrical container 11 are made of heat insulating materials 51, 52, 53, respectively. cover.
  • the powder receiving surfaces 18, 38 are horizontal planes.
  • the powder receiving surfaces 18 and 38 only have to be able to temporarily store the powder, and may be a curved surface, a convex curved surface, or a slightly inclined inclined surface. It is good that the powder does not slide down toward the container outlet 16 or 36 by its own weight.
  • the mesh filters 43, 44 are shaped to include horizontal upper surface portions 43a, 44a and vertical end surface portions 43b, 44b.
  • the shape of the mesh filters 43 and 44 is not limited to the above example. These shapes may be set so that the powder collected on the powder receiving surfaces 18 and 38 always passes through the mesh filters 43 and 44 before reaching the container outlets 16 and 36. Also, in some cases, only one mesh filter may be arranged.
  • the powder temporarily accumulated on the powder receiving surface is discharged to the side of the dry vacuum pump using the exhaust flow generated by vacuuming of the dry vacuum pump.
  • Another suction mechanism may be attachable to the outlet of the powder load reducer.
  • the connection destination of the container outlet can be switched from the dry vacuum pump to the suction mechanism.
  • the powder may be discharged to the outside by forming a gas flow passing through the powder receiving surface inside the container by the suction mechanism.
  • the exhaust device 1 is a multistage dry vacuum pump 3 disposed inside the device case 2, for example, the mechanical booster pump 4 at the front stage and the rear stage.
  • a screw type vacuum pump 5 is provided.
  • the mechanical booster pump 4 is connected to the side of the semiconductor manufacturing apparatus 100 on the upper floor, and the exhaust pipe 7 which is an external pipe is connected. , And may be connected to a screw type vacuum pump 5 disposed on the lower floor side of the exhaust system 1.
  • the powder load reducer 10 may be connected between the suction port of the screw type vacuum pump 5 and the exhaust pipe 7.
  • each part of the powder load reducing device is not particularly mentioned.
  • a metal material is generally used as a material of each part.
  • An appropriate material may be used depending on the gas flow to be handled and the properties of the powder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

The purpose of the present invention is to receive and then temporarily accumulate a powder from an exhaust pipe (7) into a powder load reducer (10) disposed in a stage preceding a dry vacuum pump (3), thereby making it possible to prevent problems due to the entry of a large amount of powder into the dry vacuum pump (3) at once. The powder received into the powder load reducer (10) is temporarily accumulated on a powder receiving surface (18) at the bottom thereof. The powder accumulated on the powder receiving surface (18) is carried by a rotating gas flow (A) generated internally by vacuuming performed by the dry vacuum pump (3), and is discharged via a container exit (16). The powder is not kept accumulating in the powder load reducer (10). The need for a maintenance work and the like to remove the internally accumulated powder periodically is also eliminated.

Description

ドライ真空ポンプの粉体負荷軽減方法および粉体負荷軽減器Powder load reducing method and powder load reducing device for dry vacuum pump
 本発明は、ドライ真空ポンプの吸気口からポンプ内に侵入する粉体に起因するポンプ負荷の増加を軽減するための粉体負荷軽減方法および粉体負荷軽減器に関する。 BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a powder load reducing method and a powder load reducing device for reducing an increase in pump load caused by powder entering into a pump from an intake port of a dry vacuum pump.
 半導体製造プロセスであるCVD等の成膜工程においては、ドライ真空ポンプを用いて反応室等の真空引きが行われる。真空引きによりドライ真空ポンプに吸引される排ガスには粉体状生成物が含まれている。このような粉体は少量ずつであれば、ドライ真空ポンプに吸入されても、当該ポンプの駆動に問題になることはない。しかし、一度に大量の粉体がドライ真空ポンプに侵入すると、ポンプが過負荷状態に陥り、起動不可になることがある。 In a film forming process such as CVD which is a semiconductor manufacturing process, evacuation of a reaction chamber or the like is performed using a dry vacuum pump. The exhaust gas drawn into the dry vacuum pump by vacuum drawing contains a powdery product. Small quantities of such powders do not cause problems in driving the pump even if they are drawn into a dry vacuum pump. However, when a large amount of powder enters the dry vacuum pump at one time, the pump may be overloaded and may not be able to start up.
 例えば、排ガスをドライ真空ポンプの吸気口に導く排ガス管の内壁に析出する生成物は、ポンプ停止時に流入する大気と反応して成長し、ポンプ運転時に真空乾燥して内壁から剥離することがある。剥離した粉体は、塊の状態のまま、一度に、ドライ真空ポンプに侵入する。一度に多量の粉体が侵入すると、ポンプが過負荷状態に陥って停止し、再起動不可になる。このような弊害を防止するために、ドライ真空ポンプの前段に、粉体を捕捉して溜めるためのh型配管や粉体トラップを設置するのが一般的である。例えば、特許文献1には、粉体をトラップするための遠心分離筒がポンプ吸気口に取り付けられたドライ真空ポンプが提案されている。 For example, the product deposited on the inner wall of the exhaust gas pipe leading the exhaust gas to the suction port of the dry vacuum pump may react with the air flowing in when the pump is stopped and grow, and may be vacuum dried and separated from the inner wall during pump operation . The exfoliated powder penetrates the dry vacuum pump at one time in the form of lumps. If a large amount of powder enters at one time, the pump will be overloaded and shut down, making it impossible to restart. In order to prevent such an adverse effect, it is general to place an h-type piping or powder trap for capturing and storing powder at the front stage of the dry vacuum pump. For example, Patent Document 1 proposes a dry vacuum pump in which a centrifugal separation cylinder for trapping powder is attached to a pump intake port.
特開2007-205287号公報JP 2007-205287 A
 従来において使用されているh型配管、粉体トラップは、大量に発生した粉体がポンプに侵入しないように手前で捕捉するので、捕捉して内部に溜まった粉体を取り出すために、定期的なメンテナンスが必要である。メンテナンスは、ポンプおよびその上位の半導体製造装置等の機器を停止する必要がある。現地作業が必要になり、コスト、工数が掛かる。また、大量の粉体が短期間で発生するプロセスの場合には、メンテナンスの周期が短くなり、稼働率が低下し、運用が困難になる場合もある。 Since the h-type piping and powder trap that are used conventionally capture in front of them so that a large amount of generated powder does not intrude into the pump, it is necessary to periodically take out the powder that has been trapped and accumulated inside. Maintenance is required. For maintenance, it is necessary to stop equipment such as the pump and its upper semiconductor manufacturing apparatus. Field work is required, and costs and man-hours are required. Further, in the case of a process in which a large amount of powder is generated in a short period, the maintenance cycle may be shortened, the operation rate may be reduced, and the operation may be difficult.
 本発明の目的は、このような点に鑑みて、メンテナンスを基本的に必要とせずに、ポンプ内に多量の粉体が侵入することを防止可能なドライ真空ポンプの粉体負荷軽減方法および粉体負荷軽減器を提供することにある。 In view of the foregoing, it is an object of the present invention to provide a powder load reducing method and powder for a dry vacuum pump capable of preventing a large amount of powder from entering the pump without basically requiring maintenance. It is in providing a body relief.
 上記の課題を解決するために、本発明のドライ真空ポンプの粉体負荷軽減方法では、外部配管からドライ真空ポンプの吸気口に向かう粉体を、外部配管と前記吸気口の間に配置した筒状容器の容器内部に、その上部に形成した容器入口から受け入れる。容器内部に受け入れた粉体を、容器内部に配置した粉体受け面に落下させて、当該粉体受け面に一時的に溜める。容器内部に、容器入口から容器内部に流入し、粉体受け面に沿って流れて、筒状容器の下部に形成した容器出口から流出する気体流を形成する。この気体流によって、粉体受け面に溜まった粉体を、粉体受け面における気体流の流れ方向の下流端に開口する容器出口から送り出す。 In order to solve the above problems, in the powder load reducing method of a dry vacuum pump according to the present invention, a cylinder in which powder directed from an external pipe to an intake port of the dry vacuum pump is disposed between the external pipe and the intake port The inside of the container is received from the container inlet formed at the top of the container. The powder received inside the container is dropped onto the powder receiving surface disposed inside the container and temporarily stored in the powder receiving surface. Inside the container, the gas flows from the container inlet into the container interior, flows along the powder receiving surface, and flows out from the container outlet formed at the lower part of the cylindrical container. By this gas flow, the powder collected on the powder receiving surface is sent out from the container outlet which is opened at the downstream end of the flow direction of the gas flow on the powder receiving surface.
 気体流として、ドライ真空ポンプの真空引きによって生じる、外部配管の側から容器内部を経由して吸気口に向かう気体流を利用できる。この場合には、粉体受け面に一時的に溜まった粉体を、気体流によって、容器出口からドライ真空ポンプの吸気口に向けて送り出す。 As the gas flow, a gas flow can be used which is generated by vacuuming of a dry vacuum pump and travels from the external piping side to the air inlet via the inside of the container. In this case, the powder temporarily accumulated on the powder receiving surface is pumped from the container outlet toward the suction port of the dry vacuum pump by the gas flow.
 本発明では、ドライ真空ポンプの前段に設置した筒状容器の容器内部に、上流側の外部配管からの粉体を一旦、受け止める。ポンプ停止後の再起動時等において、多量の粉体が、一度にドライ真空ポンプに侵入し、意図しないポンプ停止などの弊害が発生することを防止できる。 In the present invention, the powder from the external pipe on the upstream side is temporarily received inside the cylindrical container installed at the front stage of the dry vacuum pump. A large amount of powder can enter the dry vacuum pump at one time at the time of restart after pump stop and the like, and occurrence of adverse effects such as unintended pump stop can be prevented.
 筒状容器の容器内部に受け入れた粉体は粉体受け面に一時的に溜まる。容器内部には、ドライ真空ポンプの真空引きによって気体流が発生する。粉体受け面に溜まった粉体は、当該気体流によって、粉体受け面の下流端に向けて運ばれる。粉体受け面の下流端には容器出口が開口しているので、気体流と共に粉体が容器出口から外部に送り出される。容器出口から送り出された粉体は、ドライ真空ポンプに吸入される。粉体受け面と容器出口とは、粉体受け面に溜まる粉体が気体流によって容器出口に運ばれるように、それらの相対的な位置関係が設定されているので、筒状容器の容器内部に粉体が溜め込まれることは無く、一時的に溜められるだけである。筒状容器に溜め込まれた粉体を定期的に取り除くためのメンテナンスが不要になる。 The powder received inside the cylindrical container temporarily accumulates on the powder receiving surface. A gas flow is generated inside the container by evacuation of a dry vacuum pump. The powder collected on the powder receiving surface is carried toward the downstream end of the powder receiving surface by the gas flow. The container outlet is open at the downstream end of the powder receiving surface, so that the powder is sent out from the container outlet together with the gas flow. The powder delivered from the container outlet is drawn into a dry vacuum pump. Since the relative positional relationship between the powder receiving surface and the container outlet is set such that the powder collected on the powder receiving surface is carried to the container outlet by the gas flow, the inside of the container of the cylindrical container is The powder is not stored in the reservoir, it is only stored temporarily. Maintenance for periodically removing the powder stored in the cylindrical container is not necessary.
 本発明において、粉体受け面から気体流によって運ばれる粉体を、容器内部に配置した篩に通し、塊状態の粉体を粉砕した後に、容器出口に導くことが望ましい。篩を通すことで、粉体が大きな塊の状態のまま、気体流に運ばれてドライ真空ポンプに吸入されることを防止できる。 In the present invention, it is desirable that the powder carried by the gas flow from the powder receiving surface is passed through a sieve disposed inside the container, and the powder in the form of lumps is crushed before being led to the container outlet. By passing through the sieve, it is possible to prevent the powder from being carried into the gas flow and being sucked into the dry vacuum pump in the form of a large lump.
 本発明において、容器内部を流れる気体流は、容器内部の内周側面に沿って、容器入口から容器出口に向かう旋回状気体流であり、粉体受け面に一時的に溜まった粉体が、旋回状気体流によって、容器出口に運ばれることが望ましい。筒状容器の狭い容器内部において、その内周側面に沿って流れる旋回状気体流を形成することで、効率良く、粉体受け面に溜まっている粉体を容器出口に送り出せる。 In the present invention, the gas flow flowing inside the container is a swirling gas flow from the container inlet to the container outlet along the inner peripheral side surface inside the container, and the powder temporarily accumulated on the powder receiving surface is Preferably, it is carried to the vessel outlet by a swirling gas flow. By forming a swirling gas flow flowing along the inner peripheral side surface inside the narrow container of the cylindrical container, the powder accumulated on the powder receiving surface can be efficiently sent out to the container outlet.
 この場合、粉体受け面に沿って第1篩を通って流れる旋回状気体流を、第1篩よりも小さな篩目の第2篩を通過させて容器出口に流してもよい。旋回状気体流によって運ばれる塊状の粉体が、第2篩を通って、より細かく粉砕される。粉体が塊状態のままドライ真空ポンプに吸入されることを確実に防止できる。 In this case, the swirling gas flow flowing through the first sieve along the powder receiving surface may flow through the second sieve smaller than the first sieve to the container outlet. The agglomerated powder carried by the swirling gas flow is broken up more finely through the second sieve. The powder can be reliably prevented from being sucked into the dry vacuum pump in the form of lumps.
 次に、本発明は、外部配管から侵入する粉体に起因して生じるドライ真空ポンプの駆動負荷を軽減するために、外部配管とドライ真空ポンプの吸気口との間に取り付けて使用するドライ真空ポンプの粉体負荷軽減器であって、
 筒状容器と、
 筒状容器の上部に形成され、外部配管に接続される容器入口と、
 筒状容器の下部に形成され、ドライ真空ポンプの吸気口に接続される容器出口と、
 筒状容器の容器内部の底面に形成され、容器入口から容器内部に受け入れた粉体を一時的に溜める粉体受け面と、
 容器内部において、容器入口から流入する気体流を、粉体受け面に沿って容器出口に導くガイド部材と
を有しており、
 粉体受け面に溜まる粉体が気体流によって容器出口から送り出されるように、粉体受け面における気体流の流れ方向の下流端に、容器出口が開口していることを特徴としている。
Next, according to the present invention, in order to reduce the driving load of the dry vacuum pump generated due to the powder entering from the external piping, the dry vacuum is used by being attached between the external piping and the suction port of the dry vacuum pump. A powder load reducer for the pump,
With a cylindrical container,
A container inlet formed at the top of the cylindrical container and connected to the external piping;
A container outlet formed at the lower part of the cylindrical container and connected to the suction port of the dry vacuum pump;
A powder receiving surface formed on the bottom of the inside of the cylindrical container and temporarily storing the powder received from the container inlet into the container;
Inside the container, a guide member for guiding the gas flow flowing in from the container inlet to the container outlet along the powder receiving surface;
The container outlet is open at the downstream end of the flow direction of the gas flow on the powder receiving surface so that the powder collected on the powder receiving surface is delivered from the container outlet by the gas flow.
 容器内部には、粉体受け面から気体流によって容器出口に運ばれる粉体の塊を粉砕するための篩を配置しておくことが望ましい。 It is desirable to arrange a sieve inside the container for breaking up a mass of powder carried from the powder receiving surface to the outlet of the container by the gas flow.
 また、ガイド部材は、容器内部の内周側面に沿った方向に流れる旋回状気体流が形成されるように、容器入口から流入する気体流をガイドするガイド部材を備えていることが望ましい。 Preferably, the guide member includes a guide member for guiding the gas flow flowing in from the container inlet so that a swirling gas flow flowing in a direction along the inner circumferential side surface inside the container is formed.
 容器入口と容器出口とが、筒状容器の上下に同軸に配置される場合がある。この場合には、例えば、次の構成が採用される。ガイド部材は、容器入口と容器出口との間に、容器入口から落下する粉体を内周側面に沿って斜め下方に滑り落として粉体受け面に導く傾斜板を備えている。容器内部には、旋回状気体流によって運ばれる粉体が通る第1篩、および当該第1篩を通って容器出口に向かう粉体が通る第2篩が配置される。第2篩の篩目として、第1篩よりも細かい篩を用いる。 The container inlet and the container outlet may be coaxially disposed above and below the cylindrical container. In this case, for example, the following configuration is adopted. The guide member includes, between the container inlet and the container outlet, an inclined plate for guiding the powder falling from the container inlet obliquely downward along the inner circumferential side to the powder receiving surface. Inside the container are arranged a first sieve through which the powder carried by the swirling gas flow passes and a second sieve through which the powder passes through the first sieve and towards the container outlet. A sieve finer than the first sieve is used as the second sieve.
 また、容器入口と容器出口とが、容器内部の上下において、容器内部の内周側面に沿った方向にオフセットした位置に配置される場合がある。この場合においても、容器内部に、旋回状気体流によって運ばれる粉体が通る第1篩、および、これより細かな篩目の第2篩を配置することができる。 In addition, the container inlet and the container outlet may be disposed at positions above and below the inside of the container and offset in a direction along the inner circumferential side surface inside the container. In this case, too, it is possible to arrange in the container a first sieve through which the powder carried by the swirling gas flow passes and a second sieve smaller than this.
実施の形態1に係る粉体負荷軽減器が取り付けられた排気装置を示す説明図である。FIG. 2 is an explanatory view showing an exhaust device to which a powder load reducer according to Embodiment 1 is attached. (a)、(b)、(c)および(d)は、それぞれ、粉体負荷軽減器の平面図、その側面図、そのメッシュフィルタの配置位置、および、その内部構造を示す説明図である。(A), (b), (c) and (d) are respectively a plan view of a powder load reducer, a side view thereof, an arrangement position of its mesh filter, and an explanatory view showing its internal structure . (a)は粉体負荷軽減器を通る旋回状気体流および粉体の流れを示す説明図であり、(b)は旋回状気体流の流れを示す説明図である。(A) is explanatory drawing which shows the flow of the swirling-like gas flow and powder body which passes a powder load reduction device, (b) is explanatory drawing which shows the flow of swirling-like gas flow. (a)、(b)、(c)および(d)は、実施の形態2に係る粉体負荷軽減器を示す平面図、その側面図、そのメッシュフィルタの配置位置を示す説明図、および、その内部構造を示す説明図である。(A), (b), (c) and (d) are a plan view showing the powder load reducer according to the second embodiment, a side view thereof, an explanatory view showing an arrangement position of the mesh filter, and It is an explanatory view showing the internal structure. (a)および(b)はそれぞれ粉体負荷軽減器の別の形状例を示す説明図、(c)は保温材を付けた場合の粉体負荷軽減器の例を示す説明図である。(A) And (b) is explanatory drawing which respectively shows another shape example of a powder load reducing device, (c) is explanatory drawing which shows the example of a powder load reducing device at the time of attaching a heat retention material. (a)および(b)はそれぞれドライ真空ポンプの配置例を示す説明図である。(A) And (b) is explanatory drawing which shows the example of arrangement | positioning of a dry vacuum pump, respectively.
 以下に、図面を参照して、本発明の実施の形態に係るドライ真空ポンプの粉体負荷軽減器を説明する。 Hereinafter, with reference to the drawings, a powder load reducer of a dry vacuum pump according to an embodiment of the present invention will be described.
[実施の形態1]
 図1は、実施の形態1に係る粉体負荷軽減器が取り付けられた排気装置を示す説明図である。排気装置1は、装置ケース2の内部に配置された2段構成のドライ真空ポンプ3を備えている。例えば、前段のメカニカルブースターポンプ4および後段のスクリュー式真空ポンプ5を備えている。ドライ真空ポンプ3の吸気口6は、装置ケース2の上面に、上方に向けて開口している。吸気口6には粉体負荷軽減器10が取り付けられている。吸気口6は、粉体負荷軽減器10を介して、上流側の外部配管である排気管7に接続されている。
First Embodiment
FIG. 1 is an explanatory view showing an exhaust device to which a powder load reducer according to Embodiment 1 is attached. The exhaust device 1 includes a two-stage dry vacuum pump 3 disposed inside the device case 2. For example, the mechanical booster pump 4 at the front stage and the screw type vacuum pump 5 at the rear stage are provided. The intake port 6 of the dry vacuum pump 3 opens upward on the top surface of the device case 2. A powder load reducer 10 is attached to the intake port 6. The intake port 6 is connected to an exhaust pipe 7 which is an external pipe on the upstream side via the powder load reducing device 10.
 図2(a)、(b)、(c)および(d)は、それぞれ、粉体負荷軽減器10の平面図、その側面図、そのメッシュフィルタの配置位置を示す説明図、および、その内部構造を示す説明図である。粉体負荷軽減器10は、排気管7の側から侵入する粉体状生成物(以下、「粉体」と呼ぶ。)に起因して生じるドライ真空ポンプ3の駆動負荷の増加を防止あるいは抑制するためのものである。粉体負荷軽減器10は、底付きの円筒状容器11と、この上端開口を封鎖している円盤状の蓋板12とを備えている。 2 (a), (b), (c) and (d) are respectively a plan view of the powder load reducer 10, a side view thereof, an explanatory view showing the arrangement position of the mesh filter, and the inside thereof It is explanatory drawing which shows a structure. The powder load reducing device 10 prevents or suppresses an increase in the driving load of the dry vacuum pump 3 caused by the powdery product (hereinafter referred to as “powder”) entering from the exhaust pipe 7 side. It is to do. The powder load reducer 10 includes a bottomed cylindrical container 11 and a disc-like lid 12 closing the upper end opening.
 蓋板12には、その中心から一方に片寄った位置に、円形の容器入口13が開口している。容器入口13には、上方に垂直に延びる吸気側接続管14が取り付けられている。吸気側接続管14は上位側の排気管7に接続される。円筒状容器11の底板15には、容器入口13と同軸となる位置に、円形の容器出口16が形成されている。容器出口16には排気側接続管17が接続されている。排気側接続管17はドライ真空ポンプ3の吸気口6に接続される。 In the cover plate 12, a circular container inlet 13 is opened at a position offset from the center to one side. An intake side connecting pipe 14 extending vertically upward is attached to the container inlet 13. The intake side connecting pipe 14 is connected to the upper exhaust pipe 7. A circular container outlet 16 is formed on the bottom plate 15 of the cylindrical container 11 at a position coaxial with the container inlet 13. An exhaust side connection pipe 17 is connected to the container outlet 16. The exhaust side connection pipe 17 is connected to the suction port 6 of the dry vacuum pump 3.
 蓋板12によって封鎖されている円筒状容器11の容器内部の構造を説明する。容器内部の底面を規定している底板15の上面は、容器出口16が開口している部分を除き、水平な平坦面からなる粉体受け面18である。容器入口13と容器出口16との間の高さの位置には、傾斜板19が同軸に配置されている。傾斜板19は楕円状輪郭の板であり、円筒状容器11の円形内周面20に沿って、その接線方向に向けて下方に傾斜している。傾斜板19の外周縁における下端側の縁部分には、容器出口16の縁部分まで延びる半円筒状の下側垂直ガイド板21が形成されている。また、傾斜板19の外周縁における上端側の縁部分には、容器入口13の縁部分に達する半円筒状の上側垂直ガイド板22が形成されている。したがって、容器内部には、蓋板12によって規定される天面と、円筒状容器11の円形内周面20と、円筒状容器11の粉体受け面18と、上側垂直ガイド板22、傾斜板19および下側垂直ガイド板21からなるガイド部材とによって、容器入口13の側から、円形内周面20の周方向に延びて容器出口16に至る内部流路が形成されている。 The internal structure of the cylindrical container 11 sealed by the lid plate 12 will be described. The top surface of the bottom plate 15 defining the bottom surface inside the container is a powder receiving surface 18 which is a horizontal flat surface except for the portion where the container outlet 16 is open. At a position of height between the container inlet 13 and the container outlet 16, an inclined plate 19 is coaxially disposed. The inclined plate 19 is a plate having an elliptical contour, and is inclined downward along the circular inner circumferential surface 20 of the cylindrical container 11 in the tangential direction. A semicylindrical lower vertical guide plate 21 extending to the edge portion of the container outlet 16 is formed at the lower edge portion of the outer peripheral edge of the inclined plate 19. In addition, a semi-cylindrical upper vertical guide plate 22 reaching the edge portion of the container inlet 13 is formed at the edge portion on the upper end side of the outer peripheral edge of the inclined plate 19. Therefore, inside the container, the top surface defined by the cover plate 12, the circular inner peripheral surface 20 of the cylindrical container 11, the powder receiving surface 18 of the cylindrical container 11, the upper vertical guide plate 22, and the inclined plate An internal flow path extending from the side of the container inlet 13 in the circumferential direction of the circular inner circumferential surface 20 to the container outlet 16 is formed by the guide member consisting of 19 and the lower vertical guide plate 21.
 また、容器内部には、メッシュフィルタ23(第1篩)が配置されている。メッシュフィルタ23は水平な上面部分23aと、垂直な端面部分23bとを備えている。上面部分23aは、粉体受け面18の上方における傾斜板19の中程の高さ位置において、半円筒状の下側垂直ガイド板21と、これに対峙する円形内周面20との間に配置されており、粉体受け面18における容器出口16の側の部分を除き、当該粉体受け面18を覆っている。端面部分23bは、上面部分23aにおける容器出口16の側の縁端から直角に折れ曲がって粉体受け面18まで延びている。 Moreover, the mesh filter 23 (1st sieve) is arrange | positioned inside a container. The mesh filter 23 comprises a horizontal upper surface portion 23a and a vertical end surface portion 23b. The upper surface portion 23 a is located between the semi-cylindrical lower vertical guide plate 21 and the circular inner circumferential surface 20 opposed thereto at a height position of the middle of the inclined plate 19 above the powder receiving surface 18. It is disposed and covers the powder receiving surface 18 except for the portion of the powder receiving surface 18 on the side of the container outlet 16. The end surface portion 23 b is bent at a right angle from the end of the upper surface portion 23 a on the side of the container outlet 16 and extends to the powder receiving surface 18.
 メッシュフィルタ23の端面部分23bには、より目の細かいメッシュフィルタ24(第2篩)が取り付けられている。メッシュフィルタ24は、三角形輪郭の上面部分24aと、その容器出口16の側の縁端から直角に折れ曲がって粉体受け面18まで延びる端面部分24bとを備えている。 A finer mesh filter 24 (second sieve) is attached to the end face portion 23 b of the mesh filter 23. The mesh filter 24 comprises an upper surface portion 24 a having a triangular contour and an end surface portion 24 b bent at a right angle from the edge on the container outlet 16 side and extending to the powder receiving surface 18.
 本例では、ドライ真空ポンプ3の真空引きによって、排気管7から粉体負荷軽減器10の容器内部を通って、ドライ真空ポンプ3の吸気口6に吸引される排気流が形成される。容器内部には上記のように内部流路が形成されている。容器入口13から流入する排気流は、傾斜板19に沿って円形内周面20に沿った方向に流れが変わり、円形内周面20に沿って、粉体受け面18の表面を流れて容器出口16に向かう旋回状気体流となって流れる。 In this example, the evacuation by the dry vacuum pump 3 forms an exhaust flow drawn from the exhaust pipe 7 through the inside of the container of the powder load reducing device 10 to the intake port 6 of the dry vacuum pump 3. An internal flow path is formed inside the container as described above. The exhaust flow from the container inlet 13 changes along the inclined plate 19 in the direction along the circular inner circumferential surface 20, and flows along the circular inner circumferential surface 20 on the surface of the powder receiving surface 18 to the container. It flows as a swirling gas flow towards the outlet 16.
 図3(a)は粉体負荷軽減器10の内部に形成される旋回状気体流および粉体の流れを示す説明図であり、図3(b)は旋回状気体流の流れを示す説明図である。ドライ真空ポンプ3の真空引きにより、排気管7の側からの排気は、白抜きの矢印Aで示すように、一旦、粉体負荷軽減器10に入り、ここを通って、ドライ真空ポンプ3の吸気口6からポンプ内に吸入される。排気によって運ばれる粉体、あるいは、排気管7などの壁面から剥がれ落ちて排気によって運ばれる粉体の塊が、直接に、ポンプ内に侵入することはなく、一旦、粉体負荷軽減器10に受け入れられる。 Fig.3 (a) is explanatory drawing which shows the flow of the swirling-like gas flow and the powder which are formed inside the powder load reducing device 10, FIG.3 (b) is explanatory drawing which shows the flow of the swirling-like gas flow It is. By evacuation of the dry vacuum pump 3, exhaust air from the side of the exhaust pipe 7 once enters the powder load reducer 10 as shown by the hollow arrow A, and passes through this through the dry vacuum pump 3. It is drawn into the pump from the intake port 6. The powder carried by the exhaust or the lump of the powder carried away by peeling off from the wall surface of the exhaust pipe 7 does not directly enter the pump, and the powder load reducer 10 is It is accepted.
 ドライ真空ポンプ3の再起動時等において、排気管7の側から大量の粉体が塊の状態で排出される場合がある。この場合、大量の粉体の塊Bは、粉体負荷軽減器10の容器入口13から容器内部に入る。破線の矢印Cで示すように、容器内部に入った粉体は、直下の傾斜板19に落ち、傾斜板19によって円形内周面20に沿った方向に案内される。傾斜板19を滑り落ちる粉体は、メッシュフィルタ23によって覆われている粉体受け面18の部分に落ちる。 When the dry vacuum pump 3 is restarted or the like, a large amount of powder may be discharged in the form of lumps from the side of the exhaust pipe 7. In this case, a large amount of powder lump B enters the inside of the container from the container inlet 13 of the powder load reducer 10. As shown by the broken arrow C, the powder that has entered the inside of the container falls on the inclined plate 19 immediately below and is guided by the inclined plate 19 in the direction along the circular inner circumferential surface 20. The powder sliding on the inclined plate 19 falls on the portion of the powder receiving surface 18 covered by the mesh filter 23.
 ドライ真空ポンプ3による真空引きが行われていない状態では、排気管7の側から粉体負荷軽減器10に入った粉体は、その容器内部の粉体受け面18に一時的に溜まる。すなわち、粉体受け面18は水平な平坦面であるので、粉体受け面18に落下した粉体が、粉体受け面18に溜まることなく、自重により粉体受け面18から容器出口16の側に向けて滑り落ちることはない。 In a state where the vacuum drawing by the dry vacuum pump 3 is not performed, the powder that has entered the powder load reducing device 10 from the exhaust pipe 7 temporarily accumulates on the powder receiving surface 18 inside the container. That is, since the powder receiving surface 18 is a horizontal flat surface, the powder dropped onto the powder receiving surface 18 is not accumulated in the powder receiving surface 18 and is self-weighted from the powder receiving surface 18 to the container outlet 16. It does not slide down to the side.
 ドライ真空ポンプ3によって真空引きが行われて排気流が形成されると、排気流は、容器内部に形成されている内部流路に沿って旋回状気体流となって流れる。旋回状気体流は、円形内周面20に沿って粉体受け面18の表面を流れ、粉体受け面18の下流端に開口する容器出口16に至る。粉体受け面18に溜まっている粉体は、旋回状気体流によって、メッシュフィルタ23およびメッシュフィルタ24を順次に通って運ばれる。細かく粉砕された粉体は、旋回状気体流によって、略同一高さ位置に開口している容器出口16に向けて運ばれる。粉体は、旋回状気体流と共に、容器出口16の開口から排出されて、ドライ真空ポンプ3の吸気口6に送り込まれる。 When evacuation is performed by the dry vacuum pump 3 to form an exhaust flow, the exhaust flow flows as a swirling gas flow along the internal flow path formed inside the container. The swirling gas flow flows along the circular inner circumferential surface 20 on the surface of the powder receiving surface 18 and reaches the container outlet 16 opened at the downstream end of the powder receiving surface 18. The powder accumulated on the powder receiving surface 18 is conveyed through the mesh filter 23 and the mesh filter 24 sequentially by the swirling gas flow. The finely ground powder is conveyed by means of the swirling gas flow towards the container outlet 16 which is open at approximately the same height position. The powder, together with the swirling gas flow, is discharged from the opening of the container outlet 16 and fed to the suction port 6 of the dry vacuum pump 3.
 粉体負荷軽減器10を取り付けることで、ドライ真空ポンプ3のポンプ内に一度に大量の粉体が侵入することがない。ポンプが過負荷状態あるいは起動不可状態に陥ることを確実に防止できる。また、粉体負荷軽減器10に一時的に溜まった粉体は、排気流が形成されると、当該排気流によって、排出されてドライ真空ポンプ3のポンプ内に送り込まれる。ドライ真空ポンプ3の側では、少量ずつ粉体が吸入されるので負荷が過剰に増加することはなく、正常運転が維持される。さらに、粉体負荷軽減器10に溜まった粉体が、排気流によって自動的に排出されるので、溜まった粉体を取り出す等のメンテナンスが基本的に不要になる。 By mounting the powder load reducing device 10, a large amount of powder does not infiltrate into the pump of the dry vacuum pump 3 at one time. It is possible to reliably prevent the pump from being overloaded or unable to start up. Further, when an exhaust flow is formed, the powder temporarily accumulated in the powder load reducing device 10 is discharged by the exhaust flow and fed into the pump of the dry vacuum pump 3. On the dry vacuum pump 3 side, the powder is sucked little by little, so the load does not increase excessively and normal operation is maintained. Furthermore, since the powder accumulated in the powder load reducing device 10 is automatically discharged by the exhaust flow, maintenance such as taking out the accumulated powder is basically unnecessary.
[実施の形態2]
 図4(a)、(b)、(c)および(d)は、実施の形態2に係る粉体負荷軽減器を示す平面図、その側面図、そのメッシュフィルタの配置位置を示す説明図、および、その内部構造を示す説明図である。これらの図に示す粉体負荷軽減器30は、底付きの円筒状容器31と、この上端開口を封鎖している円盤状の蓋板32とを備えている。蓋板32には、その中心から一方に片寄った位置に、円形の容器入口33が開口している。容器入口33には、上方に垂直に延びる吸気側接続管34が取り付けられている。吸気側接続管34は、上位側の排気管7(図1参照)に接続される。円筒状容器31の容器内部の底面を規定している底板35には円形の容器出口36が形成されている。容器出口36には排気側接続管37が接続される。
Second Embodiment
4 (a), (b), (c) and (d) are plan views showing a powder load reducing device according to Embodiment 2, a side view thereof, and an explanatory view showing the arrangement position of the mesh filter, FIG. 7 is an explanatory view showing an internal structure of the same. The powder load reducing device 30 shown in these figures comprises a bottomed cylindrical container 31 and a disc-like cover plate 32 closing the upper end opening. In the cover plate 32, a circular container inlet 33 is opened at a position offset from the center to one side. An intake side connecting pipe 34 extending vertically upward is attached to the container inlet 33. The intake side connection pipe 34 is connected to the upper exhaust pipe 7 (see FIG. 1). A circular container outlet 36 is formed on the bottom plate 35 defining the bottom of the cylindrical container 31. An exhaust side connection pipe 37 is connected to the container outlet 36.
 粉体負荷軽減器30は、容器入口33と容器出口36とがオフセットした位置に配置されている。本例では、容器入口33と容器出口36とは、円筒状容器31の中心の両側に位置している。換言すると、円筒状容器31の円周方向に所定の角度、本例では180度離れた位置に、容器入口33と容器出口36とが配置されている。排気管7と、下側のドライ真空ポンプ3の吸気口6とは一般的に同軸の位置に配置される。この場合には、前述の粉体負荷軽減器10が用いられる。双方がオフセットした位置にある場合には、本例の粉体負荷軽減器30が使用される。 The powder load reducing device 30 is disposed at a position where the container inlet 33 and the container outlet 36 are offset. In the present example, the container inlet 33 and the container outlet 36 are located on both sides of the center of the cylindrical container 31. In other words, the container inlet 33 and the container outlet 36 are disposed at positions separated by a predetermined angle in the circumferential direction of the cylindrical container 31, which is 180 degrees in this example. The exhaust pipe 7 and the suction port 6 of the lower dry vacuum pump 3 are generally arranged in coaxial positions. In this case, the aforementioned powder load reducing device 10 is used. When both are at offset positions, the powder load reducer 30 of this example is used.
 粉体負荷軽減器30において、蓋板32によって封鎖されている円筒状容器31の容器内部の構造を説明する。容器内部の底面は、容器出口36が開口している部分を除き、水平な平坦面からなる粉体受け面38である。容器出口36における底面中心側の部分を、略180度の角度に亘って取り囲む状態で、半円筒状の垂直ガイド板41が蓋板32の高さ位置まで延びている。したがって、容器内部には、蓋板32によって規定される天面と、円筒状容器31の円形内周面40、円筒状容器31の底面に形成した粉体受け面38と、垂直ガイド板41(ガイド部材)とによって、容器入口33の側から、円形内周面40の周方向の両側に分岐して容器出口36に向かう内部流路が形成されている。 The structure inside the cylindrical container 31 sealed by the cover plate 32 in the powder load reducing device 30 will be described. The bottom surface inside the container is a powder receiving surface 38 which is a horizontal flat surface except for the portion where the container outlet 36 is open. A semi-cylindrical vertical guide plate 41 extends to a height position of the lid plate 32 so as to surround the bottom center portion of the container outlet 36 over an angle of approximately 180 degrees. Therefore, inside the container, the top surface defined by the cover plate 32, the circular inner peripheral surface 40 of the cylindrical container 31, the powder receiving surface 38 formed on the bottom of the cylindrical container 31, and the vertical guide plate 41 The guide member) forms an internal flow path which branches from the side of the container inlet 33 to both sides in the circumferential direction of the circular inner circumferential surface 40 toward the container outlet 36.
 粉体受け面38は、容器出口36の側の部分を除き、メッシュフィルタ43(第1篩)によって覆われている。メッシュフィルタ43は、粉体受け面38の上方に位置する上面部分43aと、端面部分43bとを備えている。上面部分43aはほぼ半円形輪郭をしており、半円筒状の垂直ガイド板41における凸側表面と、これに対峙する円筒状容器31の円形内周面40との間に配置されている。上面部分43aは、容器入口33の真下に位置する部分は円形に開口している。端面部分43bは、上面部分43aにおける円周方向の両側の縁端のそれぞれから、直角に折れ曲がって、粉体受け面38まで延びている。 The powder receiving surface 38 is covered by a mesh filter 43 (first sieve) except for a portion on the container outlet 36 side. The mesh filter 43 includes an upper surface portion 43 a located above the powder receiving surface 38 and an end surface portion 43 b. The upper surface portion 43a has a substantially semicircular outline, and is disposed between the convex side surface of the semicylindrical vertical guide plate 41 and the circular inner circumferential surface 40 of the cylindrical container 31 opposed thereto. The upper surface portion 43 a has a circular opening at a portion located immediately below the container inlet 33. The end surface portion 43b is bent at a right angle from each of both circumferential edges of the top surface portion 43a and extends to the powder receiving surface 38.
 粉体受け面38において、メッシュフィルタ43の両側の端面部分43bの容器出口36の側の部分は、それぞれ、メッシュフィルタ44(第2篩)によって覆われている。メッシュフィルタ44はメッシュフィルタ43よりも篩目が細かい。メッシュフィルタ44のそれぞれは、三角形輪郭の上面部分44aと、上面部分44aの縁端から直角に折れ曲がって粉体受け面38まで延びる端面部分44bとを備えている。 In the powder receiving surface 38, the portions on the container outlet 36 side of the end surface portions 43b on both sides of the mesh filter 43 are covered by the mesh filter 44 (second sieve). The mesh filter 44 is finer than the mesh filter 43. Each mesh filter 44 includes a top surface portion 44a having a triangular profile and an end surface portion 44b bent at a right angle from the edge of the top surface portion 44a and extending to the powder receiving surface 38.
 この構成の粉体負荷軽減器30を用いる場合においても、排気管7の側からの粉体あるいは粉体の塊が、直接に、ドライ真空ポンプ3のポンプ内に侵入することはなく、一旦、粉体負荷軽減器30に受け入れられる。例えば、排気管7の側から排出される大量の粉体の塊は、粉体負荷軽減器30の容器入口33から容器内部に入る。容器内部に入った粉体は、その直下に位置する、メッシュフィルタ43によって覆われている粉体受け面38の部分に落ちる。ドライ真空ポンプ3による真空引きが行われていない状態では、排気管7の側から粉体負荷軽減器30に入った粉体は、その容器内部の粉体受け面38に一時的に溜まる。 Even when the powder load reducing device 30 of this configuration is used, the powder or powder lump from the exhaust pipe 7 does not directly intrude into the pump of the dry vacuum pump 3, and once, It is accepted by the powder load reducer 30. For example, a large amount of powder lumps discharged from the side of the exhaust pipe 7 enter the inside of the container from the container inlet 33 of the powder load reducing device 30. The powder that has entered the inside of the container falls to the portion of the powder receiving surface 38 covered by the mesh filter 43, which is located immediately below it. In a state where the vacuum drawing by the dry vacuum pump 3 is not performed, the powder that has entered the powder load reducing device 30 from the exhaust pipe 7 temporarily accumulates on the powder receiving surface 38 inside the container.
 真空引きが行われて排気流が形成されると、排気流は、容器入口33から下方の粉体受け面38に向かって流れた後、円形内周面40に沿って二股に分かれて、円形内周面40および粉体受け面38に沿って旋回状気体流となって流れる。各旋回状気体流は、メッシュフィルタ43およびメッシュフィルタ44を順次に通って流れ、容器出口36で合流する。 When evacuation is performed and an exhaust flow is formed, the exhaust flow flows from the container inlet 33 toward the powder receiving surface 38 below and then bifurcated along the circular inner circumferential surface 40 to form a circular shape. It flows as a swirling gas flow along the inner circumferential surface 40 and the powder receiving surface 38. Each swirling gas stream flows sequentially through mesh filter 43 and mesh filter 44 and merges at vessel outlet 36.
 粉体受け面38は水平面であるので、ここに溜まった粉体(貯留粉体)は、旋回状気体流によって、略同一高さ位置に開口している容器出口36に向けて運ばれ、ここから排出されて、ドライ真空ポンプ3の吸気口6に送り込まれる。すなわち、メッシュフィルタ43の下側の粉体受け面38の部分に溜まっている粉体は、旋回状気体流によって運ばれて、メッシュフィルタ43の端面部分43b、および、メッシュフィルタ44の端面部分44bに通され、細かく粉砕される。そして、容器出口36を通って、ドライ真空ポンプ3の吸気口6からポンプ内に送り込まれる。 Since the powder receiving surface 38 is a horizontal surface, the powder (reserved powder) collected here is carried by the swirling gas flow toward the container outlet 36 which is open at substantially the same height position. And is fed into the suction port 6 of the dry vacuum pump 3. That is, the powder accumulated on the lower powder receiving surface 38 of the mesh filter 43 is carried by the swirling gas flow, and the end surface portion 43 b of the mesh filter 43 and the end surface portion 44 b of the mesh filter 44 And finely ground. Then, it is fed into the pump from the intake port 6 of the dry vacuum pump 3 through the container outlet 36.
 粉体負荷軽減器30を取り付けることで、ドライ真空ポンプ3のポンプ内に一度に大量の粉体が侵入することがなく、ポンプが過負荷状態あるいは起動不可状態に陥ることを確実に防止できる。また、粉体負荷軽減器30には一時的に粉体が溜まり、排気流が形成されると、当該排気流によって、溜まった粉体が排出され、ドライ真空ポンプ3のポンプ内に送り込まれる。ドライ真空ポンプ3の側では、少量ずつの粉体が吸入されるので負荷が過剰に増加することはなく、正常運転が維持される。さらに、粉体負荷軽減器30に溜まった粉体が、排気流によって自動的に排出されるので、溜まった粉体を取り出す等のメンテナンスが基本的に不要になる。 By attaching the powder load reducing device 30, a large amount of powder does not infiltrate into the pump of the dry vacuum pump 3 at one time, and it is possible to reliably prevent the pump from falling into an overload state or a non-startable state. Further, when powder is temporarily accumulated in the powder load reducing device 30 and an exhaust flow is formed, the accumulated powder is discharged by the exhaust flow and is fed into the pump of the dry vacuum pump 3. On the side of the dry vacuum pump 3, a small amount of powder is drawn, so the load does not increase excessively and normal operation is maintained. Furthermore, since the powder accumulated in the powder load reducing device 30 is automatically discharged by the exhaust flow, maintenance such as taking out the accumulated powder is basically unnecessary.
[そのほかの実施の形態]
 上記の粉体負荷軽減器10、30は円筒状容器11、31を備えている。本発明は、円筒状容器に限定されるものではなく、例えば、図5(a)、(b)に示すように、正方形、正八角形などの多角形の筒状容器であってもよい。
[Other Embodiments]
The powder load reducer 10, 30 described above comprises cylindrical containers 11, 31. The present invention is not limited to a cylindrical container, and may be, for example, a polygonal cylindrical container such as a square or a regular octagon as shown in FIGS. 5 (a) and 5 (b).
 また、粉体負荷軽減器10、30の容器内部の内壁に粉体が析出して堆積することを抑制するために、筒状容器の外周等を、保温材によって覆っておいてもよい。例えば、図5(c)に示すように、粉体負荷軽減器10における吸気側接続管14の外周面、蓋板12の表面、円筒状容器11の外周面を保温材51、52、53で覆い隠す。 Further, in order to suppress deposition and deposition of the powder on the inner wall inside the container of the powder load reducing devices 10 and 30, the outer periphery or the like of the cylindrical container may be covered with a heat insulating material. For example, as shown in FIG. 5C, the outer peripheral surface of the suction side connecting pipe 14 in the powder load reducing device 10, the surface of the cover plate 12 and the outer peripheral surface of the cylindrical container 11 are made of heat insulating materials 51, 52, 53, respectively. cover.
 さらに、上記の例では、粉体受け面18、38は水平な平面である。粉体受け面18、38は一時的に粉体を溜めることができればよく、湾曲面、凸曲面、あるいは、僅かに傾斜した傾斜面であってもよい。粉体が自重により容器出口16、36に向けて滑り落ちなければよい。 Furthermore, in the above example, the powder receiving surfaces 18, 38 are horizontal planes. The powder receiving surfaces 18 and 38 only have to be able to temporarily store the powder, and may be a curved surface, a convex curved surface, or a slightly inclined inclined surface. It is good that the powder does not slide down toward the container outlet 16 or 36 by its own weight.
 また、上記の例では、メッシュフィルタ43、44は、水平な上面部分43a、44aと、垂直な端面部分43b、44bとを備えた形状をしている。メッシュフィルタ43、44の形状は上記の例に限定されるものではない。粉体受け面18、38に溜まった粉体が容器出口16、36に至る前で、必ずメッシュフィルタ43、44を通過するように、これらの形状を設定しておけばよい。また、場合によっては、一方のメッシュフィルタのみを配置する場合もある。 Further, in the above example, the mesh filters 43, 44 are shaped to include horizontal upper surface portions 43a, 44a and vertical end surface portions 43b, 44b. The shape of the mesh filters 43 and 44 is not limited to the above example. These shapes may be set so that the powder collected on the powder receiving surfaces 18 and 38 always passes through the mesh filters 43 and 44 before reaching the container outlets 16 and 36. Also, in some cases, only one mesh filter may be arranged.
 一方、上記の各例は、ドライ真空ポンプの真空引きによって生じる排気流を利用して、粉体受け面に一時的に溜めた粉体をドライ真空ポンプの側に排出している。粉体負荷軽減器の容器出口に、別の吸引機構を取り付け可能としておくことができる。あるいは、容器出口の接続先を、ドライ真空ポンプから吸引機構に切り替え可能としておくことも可能である。吸引機構により、容器内部の粉体受け面を経由する気体流を形成して、粉体を外部に排出してもよい。 On the other hand, in each of the above-described examples, the powder temporarily accumulated on the powder receiving surface is discharged to the side of the dry vacuum pump using the exhaust flow generated by vacuuming of the dry vacuum pump. Another suction mechanism may be attachable to the outlet of the powder load reducer. Alternatively, the connection destination of the container outlet can be switched from the dry vacuum pump to the suction mechanism. The powder may be discharged to the outside by forming a gas flow passing through the powder receiving surface inside the container by the suction mechanism.
 また、上記の例では、図6(a)に示すように、排気装置1は、装置ケース2の内部に配置された多段構成のドライ真空ポンプ3、例えば、前段のメカニカルブースターポンプ4および後段のスクリュー式真空ポンプ5を備えている。排気装置1から上方に外部配管である排気管7が延びており、例えば、上の階に設置されている半導体製造装置100からの排気処理を行う。 Further, in the above example, as shown in FIG. 6A, the exhaust device 1 is a multistage dry vacuum pump 3 disposed inside the device case 2, for example, the mechanical booster pump 4 at the front stage and the rear stage. A screw type vacuum pump 5 is provided. An exhaust pipe 7, which is an external pipe, extends upward from the exhaust device 1, and performs, for example, an exhaust process from the semiconductor manufacturing apparatus 100 installed on the upper floor.
 ドライ真空ポンプの配置例としては、例えば、図6(b)に示すように、上の階の半導体製造装置100の側にメカニカルブースターポンプ4を接続し、外部配管である排気管7を介して、下の階の排気装置1の側に配置したスクリュー式真空ポンプ5に接続する場合もある。この場合には、スクリュー式真空ポンプ5の吸気口と排気管7の間に粉体負荷軽減器10を接続すればよい。 As an arrangement example of the dry vacuum pump, for example, as shown in FIG. 6B, the mechanical booster pump 4 is connected to the side of the semiconductor manufacturing apparatus 100 on the upper floor, and the exhaust pipe 7 which is an external pipe is connected. , And may be connected to a screw type vacuum pump 5 disposed on the lower floor side of the exhaust system 1. In this case, the powder load reducer 10 may be connected between the suction port of the screw type vacuum pump 5 and the exhaust pipe 7.
 なお、上記の説明においては、粉体負荷軽減器の各部の素材について特に言及しなかった。各部の素材としては、一般に金属素材が使用される。取り扱う気体流、粉体の性状に応じて、適切な素材を用いればよい。 In the above description, the material of each part of the powder load reducing device is not particularly mentioned. A metal material is generally used as a material of each part. An appropriate material may be used depending on the gas flow to be handled and the properties of the powder.

Claims (10)

  1.  外部配管からドライ真空ポンプの吸気口に向かう粉体を、外部配管と前記吸気口の間に配置した筒状容器の容器内部に、その上部に形成した容器入口から受け入れ、
     前記容器内部に受け入れた前記粉体を、前記容器内部に配置した粉体受け面に落下させて、当該粉体受け面に一時的に溜め、
     前記容器内部に、前記容器入口から前記容器内部に流入し、前記粉体受け面に沿って流れ、前記筒状容器の下部に形成した容器出口から流出する気体流を形成し、
     前記粉体受け面に溜まった前記粉体を、前記気体流によって、前記粉体受け面における前記気体流の流れ方向の下流端に開口する前記容器出口から送り出すドライ真空ポンプの粉体負荷軽減方法。
    The powder directed from the external piping to the suction port of the dry vacuum pump is received from the container inlet formed in the upper portion inside the cylindrical container disposed between the external piping and the suction port,
    The powder received inside the container is dropped onto the powder receiving surface disposed inside the container, and temporarily stored in the powder receiving surface,
    Inside the container, a gas flow which flows from the container inlet into the container interior, flows along the powder receiving surface, and flows out from the container outlet formed at the lower part of the cylindrical container is formed.
    A powder load reducing method of a dry vacuum pump for delivering the powder collected on the powder receiving surface from the outlet of the container opened at the downstream end of the flow direction of the gas flow on the powder receiving surface by the gas flow .
  2.  請求項1において、
     前記気体流は、前記ドライ真空ポンプの真空引きによって生じる、前記外部配管の側から前記容器内部を経由して前記吸気口に向かう気体流であり、
     前記粉体受け面に溜まった前記粉体を、前記気体流によって、前記容器出口から前記ドライ真空ポンプの前記吸気口に向けて送り出すドライ真空ポンプの粉体負荷軽減方法。
    In claim 1,
    The gas flow is a gas flow which is generated by vacuuming of the dry vacuum pump and which is directed from the side of the external piping to the air inlet via the inside of the container.
    A powder load reducing method of a dry vacuum pump, wherein the powder collected on the powder receiving surface is sent out from the container outlet toward the suction port of the dry vacuum pump by the gas flow.
  3.  請求項2において、
     前記粉体受け面に溜まる前記粉体を、前記気体流によって、前記容器内部に配置した篩に通した後に、前記容器出口に導くドライ真空ポンプの粉体負荷軽減方法。
    In claim 2,
    The powder load reducing method for a dry vacuum pump according to claim 1, wherein the powder accumulated on the powder receiving surface is passed through a sieve disposed inside the container by the gas flow, and then introduced to the outlet of the container.
  4.  請求項2において、
     前記容器内部を流れる前記気体流を、前記容器内部の内周側面に沿って、前記容器入口から前記粉体受け面を通って前記容器出口に向かう旋回状気体流として流し、
     前記粉体受け面に溜まった前記粉体を、前記旋回状気体流によって、前記容器出口に導くドライ真空ポンプの粉体負荷軽減方法。
    In claim 2,
    The flow of gas flowing inside the container is made to flow as a swirling gas flow from the container inlet through the powder receiving surface toward the container outlet along the inner circumferential side of the container interior.
    A powder load reducing method for a dry vacuum pump, wherein the powder accumulated on the powder receiving surface is guided to the outlet of the container by the swirling gas flow.
  5.  請求項2において、
     前記容器内部を流れる前記気体流を、前記容器内部の内周側面に沿って、前記容器入口から前記粉体受け面を通って前記容器出口に向かう旋回状気体流として流し、
     前記粉体受け面に溜まった前記粉体を、前記旋回状気体流によって、第1篩および、当該第1篩よりも小さな篩目の第2篩を順次に通した後に、前記容器出口に導くドライ真空ポンプの粉体負荷軽減方法。
    In claim 2,
    The flow of gas flowing inside the container is made to flow as a swirling gas flow from the container inlet through the powder receiving surface toward the container outlet along the inner circumferential side of the container interior.
    The powder collected on the powder receiving surface is guided to the outlet of the container after sequentially passing through the first sieve and the second sieve smaller than the first sieve by the swirling gas flow. Powder load reduction method of dry vacuum pump.
  6.  外部配管とドライ真空ポンプの吸気口との間に取り付けて使用するドライ真空ポンプの粉体負荷軽減器であって、
     筒状容器と、
     前記筒状容器の上部に形成され、前記外部配管に接続される容器入口と、
     前記筒状容器の下部に形成され、前記ドライ真空ポンプの前記吸気口に接続される容器出口と、
     前記筒状容器の容器内部の底面に形成され、前記容器入口から前記容器内部に受け入れた粉体を一時的に溜める粉体受け面と、
     前記容器内部に配置され、前記容器入口から流入する気体流を、前記粉体受け面に沿って、前記容器出口に導くガイド部材と
    を有しており、
     前記粉体受け面に溜まる粉体が前記気体流によって前記容器出口から送り出されるように、前記粉体受け面における前記気体流の流れ方向の下流端に、前記容器出口が開口しているドライ真空ポンプの粉体負荷軽減器。
    A powder vacuum relief device for a dry vacuum pump, which is installed between an external pipe and a dry vacuum pump inlet,
    With a cylindrical container,
    A container inlet formed at an upper portion of the cylindrical container and connected to the external pipe;
    A container outlet formed at a lower portion of the cylindrical container and connected to the suction port of the dry vacuum pump;
    A powder receiving surface formed on the bottom of the inside of the cylindrical container and temporarily storing the powder received from the container inlet into the container;
    A guide member disposed inside the container for guiding a gas flow flowing from the container inlet to the container outlet along the powder receiving surface;
    A dry vacuum in which the container outlet is open at the downstream end of the flow direction of the gas flow on the powder receiving surface so that the powder collected on the powder receiving surface is delivered from the container outlet by the gas flow. Powder load reducer for pumps.
  7.  請求項6おいて、
     前記容器内部には、前記気体流によって前記粉体受け面から前記容器出口に運ばれる前記粉体を通す篩が配置されているドライ真空ポンプの粉体負荷軽減器。
    In claim 6,
    A powder load reducing device for a dry vacuum pump, wherein a sieve is disposed inside the container for passing the powder carried from the powder receiving surface to the container outlet by the gas flow.
  8.  請求項7において、
     前記ガイド部材は、前記容器内部の内周側面に沿った方向に向かう旋回状気体流が形成されるように、容器入口から流入する気体流をガイドするドライ真空ポンプの粉体負荷軽減器。
    In claim 7,
    The powder load reducing device for a dry vacuum pump, wherein the guide member guides a gas flow flowing from a container inlet so that a swirling gas flow is formed in a direction along an inner circumferential side surface inside the container.
  9.  請求項8において、
     前記容器入口と前記容器出口とは、前記筒状容器の上下に同軸に配置され、
     前記ガイド部材は、前記容器入口と前記容器出口との間に、前記内周側面に向けて斜め下方に傾斜している傾斜板を備えており、
     前記容器内部には、前記篩として、第1篩、および、当該第1篩と前記容器出口の間に配置した第2篩が配置されており、
     前記第2篩の篩目は前記第1篩よりも細かいドライ真空ポンプの粉体負荷軽減器。
    In claim 8,
    The container inlet and the container outlet are coaxially disposed above and below the cylindrical container,
    The guide member includes an inclined plate inclined obliquely downward toward the inner peripheral side surface between the container inlet and the container outlet.
    Inside the container, a first sieve and a second sieve disposed between the first sieve and the container outlet are disposed as the sieves,
    The powder load reducer of a dry vacuum pump, wherein the second sieve has a screen mesh finer than the first sieve.
  10.  請求項8において、
     前記容器入口と前記容器出口とは、前記容器内部の上下において、前記容器内部の内周側面に沿った周方向にオフセットした位置に配置され、
     前記容器内部には、前記篩として、第1篩、および、当該第1篩と前記容器出口の間に配置した第2篩が配置されており、
     前記第2篩の篩目は前記第1篩よりも細かいドライ真空ポンプの粉体負荷軽減器。
    In claim 8,
    The container inlet and the container outlet are disposed at upper and lower portions inside the container at circumferentially offset positions along the inner peripheral side surface of the container inside,
    Inside the container, a first sieve and a second sieve disposed between the first sieve and the container outlet are disposed as the sieves,
    The powder load reducer of a dry vacuum pump, wherein the second sieve has a screen mesh finer than the first sieve.
PCT/JP2017/047083 2017-12-27 2017-12-27 Method of reducing powder load of dry vacuum pump and powder load reducer WO2019130514A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/047083 WO2019130514A1 (en) 2017-12-27 2017-12-27 Method of reducing powder load of dry vacuum pump and powder load reducer
JP2019561501A JP6895692B2 (en) 2017-12-27 2017-12-27 Dry vacuum pump powder load reduction method and powder load reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/047083 WO2019130514A1 (en) 2017-12-27 2017-12-27 Method of reducing powder load of dry vacuum pump and powder load reducer

Publications (1)

Publication Number Publication Date
WO2019130514A1 true WO2019130514A1 (en) 2019-07-04

Family

ID=67063400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047083 WO2019130514A1 (en) 2017-12-27 2017-12-27 Method of reducing powder load of dry vacuum pump and powder load reducer

Country Status (2)

Country Link
JP (1) JP6895692B2 (en)
WO (1) WO2019130514A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022018829A1 (en) * 2020-07-21 2022-01-27 樫山工業株式会社 Air intake port joint for dry vacuum pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090292A (en) * 2001-09-17 2003-03-28 Ebara Corp Positive-displacement dry vacuum pump
JP2003201960A (en) * 2002-01-08 2003-07-18 Nec Kansai Ltd Trap for vacuum exhaust system and cvd device using it
JP2007205287A (en) * 2006-02-02 2007-08-16 Toyota Industries Corp Dry vacuum pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090292A (en) * 2001-09-17 2003-03-28 Ebara Corp Positive-displacement dry vacuum pump
JP2003201960A (en) * 2002-01-08 2003-07-18 Nec Kansai Ltd Trap for vacuum exhaust system and cvd device using it
JP2007205287A (en) * 2006-02-02 2007-08-16 Toyota Industries Corp Dry vacuum pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022018829A1 (en) * 2020-07-21 2022-01-27 樫山工業株式会社 Air intake port joint for dry vacuum pump
JPWO2022018829A1 (en) * 2020-07-21 2022-01-27
JP7323239B2 (en) 2020-07-21 2023-08-08 樫山工業株式会社 Dry vacuum pump inlet joint

Also Published As

Publication number Publication date
JP6895692B2 (en) 2021-06-30
JPWO2019130514A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
US20220258114A1 (en) System and method for continuous processing of powder products
WO2019130514A1 (en) Method of reducing powder load of dry vacuum pump and powder load reducer
US20180282081A1 (en) Grain conveying apparatus using air
US20220088615A1 (en) Cyclone separator
IL271620B2 (en) Centrifugal gas separator
TWI353873B (en) Trap device
CN105195296A (en) Integrated dust removal device
JP3767993B2 (en) Method and apparatus for mixing and removing fine particles
CN209681086U (en) A kind of crystallizer gas-slag separation device and slag adding machine
CN210173995U (en) Boiling hopper
JP5905204B2 (en) Powder conveying system
RU2594537C1 (en) Hopper of combine harvester with pneumatic separator
JP5436621B2 (en) Transport device
CN107051710A (en) Sand washer with impeller
CN109499871A (en) Waste separation devices and waste separation device
CN207462834U (en) Liquid separator
CN214651554U (en) Dust collecting structure for granary conveyor
CN211140947U (en) Powder production system
CN211768920U (en) Quantitative positive pressure pneumatic ash handling system
CN213735762U (en) Feed packaging evacuating device
JP7078976B2 (en) Air suction type transfer device
CN216909619U (en) Dust removal equipment for grain transportation
CN208630947U (en) A kind of alloy refining aids pack feeding device automatically
CN214191770U (en) Powder feeding device
CN210150298U (en) Vacuum feeding machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561501

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936226

Country of ref document: EP

Kind code of ref document: A1