WO2019128803A1 - 手术机器人终端 - Google Patents

手术机器人终端 Download PDF

Info

Publication number
WO2019128803A1
WO2019128803A1 PCT/CN2018/122087 CN2018122087W WO2019128803A1 WO 2019128803 A1 WO2019128803 A1 WO 2019128803A1 CN 2018122087 W CN2018122087 W CN 2018122087W WO 2019128803 A1 WO2019128803 A1 WO 2019128803A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
axis
rotation
suspension
coupled
Prior art date
Application number
PCT/CN2018/122087
Other languages
English (en)
French (fr)
Inventor
李涛
何超
张艺家
周彬
Original Assignee
微创(上海)医疗机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 微创(上海)医疗机器人有限公司 filed Critical 微创(上海)医疗机器人有限公司
Priority to JP2020536119A priority Critical patent/JP6991340B2/ja
Priority to EP18896067.8A priority patent/EP3733110B1/en
Publication of WO2019128803A1 publication Critical patent/WO2019128803A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • A61B90/57Accessory clamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/02Adjustable operating tables; Controls therefor
    • A61G13/04Adjustable operating tables; Controls therefor tiltable around transverse or longitudinal axis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/10Parts, details or accessories
    • A61G13/104Adaptations for table mobility, e.g. arrangement of wheels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/067Measuring instruments not otherwise provided for for measuring angles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • A61B2090/506Supports for surgical instruments, e.g. articulated arms using a parallelogram linkage, e.g. panthograph
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • A61B90/57Accessory clamps
    • A61B2090/571Accessory clamps for clamping a support arm to a bed or other supports

Definitions

  • the present invention relates to the field of medical device technology, and in particular to a surgical robot terminal.
  • micro-trauma surgery is constantly replacing traditional open surgery; micro-trauma surgery is the treatment of more and more patients because of its small wounds, rapid recovery, and good surgical results.
  • Program. the development of laparoscopic microtrauma surgery is the most rapid, starting from laparoscopic, laparoscopic microtrauma surgery has been accompanied, and now, laparoscopic microtrauma surgery approaches tend to mature, better The doctors performed surgical operations, laparoscopic microtrauma surgery and robotics combined.
  • the laparoscopic microtrauma surgery robot adopts the master-slave operation mode, that is, the doctor is located at the main console through two robot arms, and the robot terminal contains a plurality of robot arms, and the corresponding surgical instruments are loaded to enter the patient.
  • the lesions undergo corresponding operations, and the position and posture of the robot arm will directly affect the smooth operation of the operation. Therefore, before the robot surgery begins, the surgical robot terminal will be adjusted accordingly to make it suitable for the required surgery.
  • the current surgical robot terminal has the following problems:
  • the adjustment of the mechanical arm is limited; the patent CN104717936A proposes a surgical robot terminal, which can adjust the overall orientation of the mechanical arm through the top suspension plate to make it more suitable for the surgical position, but the patent also proposes The position of the mechanical arm relative to the operating table is limited, preventing the center of gravity from being displaced and causing the tilting. At the same time, the mechanical arm is connected to the directional platform through the rotating joint, and the base joints of the mechanical arm are relatively fixed, and The scope of the adjustment is reduced.
  • Patent CN106456263A proposes a method and apparatus for remote surgical table registration, wherein the surgical table (ie, the bed) has multiple degrees of translational and rotational freedom, and the function of the bed is expanded, but the patent will The bed and the surgical robot are separately set and controlled separately, and no effective correlation mechanism is established between the two, resulting in high registration complexity and low registration reliability.
  • the present invention provides a surgical robot terminal, and the surgical robot terminal includes:
  • each of the mechanical arms including an adjustment arm and a tool arm; the tool arm being coupled to a surgical instrument for urging the surgical instrument about a fixed point; a distal end of the adjustment arm is coupled to the tool arm; the adjustment arm is configured to adjust a spatial position of the fixed point;
  • a bed connected to the base, the bed including a first rotary joint, a second rotary joint, and a third rotary joint, an axis of rotation of the first rotary joint, an axis of rotation of the second rotary joint, and the The rotation axes of the third rotary joint are perpendicular to each other to adjust the posture of the hospital bed relative to the fixed point;
  • the hanging end of the column is suspended above the hospital bed, the column includes a vertical moving joint, and the vertical moving joint is used to adjust the a height of the moving point relative to the base;
  • a suspension structure an upper end of the suspension structure is rotatably coupled to a suspension end of the column, and a lower end of the suspension structure is coupled to the adjustment arm.
  • the rotation axis of the first rotary joint, the rotation axis of the second rotary joint and the rotation axis of the third rotary joint intersect at one point.
  • the column is located on one side of the bed and is fixedly connected to the base.
  • the hospital bed includes a bed body and a fixing frame connected to the bed body, and the fixing frame is fixedly connected to the base;
  • the first rotating joint, the second rotating joint, and the third rotating joint are disposed on the bed.
  • the bed body includes an outer frame and a hook hinge structure located in the outer frame and connected to the outer frame, the first rotating joint and the first Two rotating joints are disposed on the Hooke hinge structure, and the outer frame is coupled to the fixing bracket through the third rotating joint.
  • the bed body includes an outer frame and a hook hinge structure located in the outer frame and connected to the outer frame, the first rotating joint, the first The second rotating joint and the third rotating joint are disposed on the Hook hinge structure, and the outer frame is fixedly coupled to the column and the fixing frame.
  • the surgical robot terminal further includes:
  • a console for controlling the working state of the base, the hospital bed, the column and/or the mechanical arm.
  • the suspension structure comprises:
  • main suspension tray and at least two slave suspension trays
  • An upper end of the main suspension tray is rotatably coupled to a suspension end of the upright;
  • the at least two slave suspension trays are each rotatably coupled to a lower end of the main suspension tray, and the at least two slave suspension trays are coupled to the adjustment arm at a lower end thereof.
  • the suspension structure comprises:
  • At least one suspension tray the upper end of each of the suspension trays is rotatably coupled to the suspension end of the upright, and the lower end of each of the suspension trays is coupled to the adjustment arm.
  • each of the adjustment arms includes a first rotation joint, a first horizontal motion joint, a swing motion joint, and a second rotation joint that are sequentially connected;
  • the axis of motion of the first horizontal joint is perpendicular to the axis of rotation of the first joint
  • the axis of rotation of the oscillating joint is perpendicular to the axis of motion of the first horizontal joint and perpendicular to the axis of rotation of the first joint;
  • the rotation axis of the second rotary joint is configured to be parallel to the rotation axis of the first rotary joint
  • the adjustment arm is coupled to the suspension structure by the first rotary joint, and is rotatably coupled to the tool arm by the second rotary joint.
  • each of the adjustment arms further includes a second horizontal motion joint, and a proximal end of the second horizontal motion joint is connected to the suspension structure, the second level A distal end of the moving joint is coupled to the first rotational joint, and a moving axis of the second horizontal moving joint is perpendicular to an axis of rotation of the first rotating joint.
  • each of the adjustment arms includes a first horizontal motion joint, a first rotation joint, a swing motion joint, and a second rotation joint that are sequentially connected;
  • the axis of motion of the first horizontal joint is perpendicular to the axis of rotation of the first joint
  • the axis of rotation of the oscillating joint is perpendicular to the axis of motion of the first horizontal joint and perpendicular to the axis of rotation of the first joint;
  • An axis of rotation of the second rotating joint is configured to be parallel to an axis of rotation of the first rotating joint
  • the adjustment arm is coupled to the suspension structure by the first horizontal motion joint and is rotatably coupled to the tool arm by the second rotary joint.
  • each of the adjustment arms includes a first rotation joint, a first horizontal motion joint, a swing motion joint, and a second rotation joint that are sequentially connected;
  • the axis of motion of the first horizontal joint is perpendicular to the axis of rotation of the first joint
  • the axis of rotation of the oscillating joint is perpendicular to the axis of motion of the first horizontal joint and perpendicular to the axis of rotation of the first joint;
  • An axis of rotation of the second rotating joint is configured to be parallel to an axis of rotation of the first rotating joint
  • the adjusting arm is connected to the column through the first rotating joint, and is rotatably connected to the tool arm through the second rotating joint.
  • the oscillating motion joint comprises a rotatable first parallelogram structure
  • the first parallelogram structure comprises a first proximal rod and a first distal rod parallel to each other
  • the axis of the first proximal rod is parallel or collinear with the axis of rotation of the first rotational joint
  • the first distal rod is coupled to the second rotational joint
  • the axis of the first distal rod is The axes of rotation of the second rotating joint are parallel or collinear.
  • the adjusting arm further includes a connecting rod rotatably connecting the oscillating motion joint and the second rotating joint, and a measuring rod for measuring the swinging angle of the oscillating motion joint a measuring device and a motor for driving the second rotating joint to swing relative to the connecting rod;
  • the measuring device is communicatively coupled to the motor, the motor driving the second rotating joint to swing according to a swinging angle of the swinging motion joint transmitted by the measuring device, so that the rotation axis of the second rotating joint is maintained It is parallel to the axis of rotation of the first rotating joint.
  • each tool arm comprises: a base joint, a rotatable second parallelogram structure and a telescopic joint;
  • the base joint rotates about a first axis to urge the surgical instrument to rotate about a first axis, and the proximal end of the base joint is coupled to the adjustment arm, and the distal end is coupled to the second parallelogram structure;
  • the second parallelogram structure includes a second proximal rod and a second distal rod that are parallel to each other, the second parallelogram structure for driving the surgical instrument to swing about the second axis;
  • the telescopic joint is coupled to the second distal rod, the movement axis of the telescopic joint is parallel to the axis of the second distal rod, and the telescopic joint is detachably coupled to the surgical instrument to drive the The surgical instrument moves along the axis of movement of the telescopic joint;
  • the fixed point is located at an intersection of the first axis, the second axis, and a movement axis of the telescopic joint.
  • each tool arm comprises: a base joint and a rotatable third parallelogram structure
  • the base joint rotates about a first axis to urge the surgical instrument to rotate about a first axis, and the proximal end of the base joint is coupled to the adjustment arm, and the distal end is coupled to the third parallelogram structure;
  • the third parallelogram structure includes a third proximal rod and a third distal rod that are parallel to each other, an end of the third parallelogram structure is coupled to the surgical instrument, and an axis of the surgical instrument is configured to The axes of the third distal rods are parallel such that the third parallelogram structure drives the surgical instrument to rotate about the second axis;
  • the fixed point is located at an intersection of the first axis and the second axis.
  • the column further comprises a horizontal moving joint, the horizontal moving joint is located at a proximal end of the hanging end of the column, and is used for adjusting the fixed point to move the joint horizontally The position of the moving direction.
  • the invention also provides a surgical robot terminal, the surgical robot terminal comprising:
  • At least one robot arm including an adjustment arm and a tool arm; the tool arm being coupled to a surgical instrument for driving the surgical instrument to move around a fixed point; the adjustment arm a distal end connected to the tool arm, the adjustment arm for adjusting a spatial position of the fixed point;
  • the hospital bed including a first rotary joint, a second rotary joint, and a third rotary joint, an axis of rotation of the first rotary joint, an axis of rotation of the second rotary joint, and an axis of rotation of the third rotary joint
  • the two are perpendicular to each other to adjust the posture of the hospital bed relative to the fixed point;
  • the relative position of the base and the hospital bed is adjustable
  • the base end of the column is fixedly connected to the base, and the hanging end of the column is suspended above the bed, the column includes a vertical moving joint, and the vertical moving joint is used Adjusting a height of the fixed point relative to the base;
  • a proximal end of the adjustment arm is coupled to a suspension end of the column;
  • a suspension structure an upper end of the suspension structure is rotatably coupled to a suspension end of the column, and a lower end of the suspension structure is coupled to the adjustment arm.
  • the surgical robot terminal further includes:
  • a plurality of universal wheels are disposed at the bottom of the base to change the position of the base relative to the hospital bed.
  • the suspension structure connected by the upper end and the suspension end of the column and the lower end connected to the adjustment arm can conveniently and finely adjust the position of the fixed point RC, thereby being better adapted.
  • the posture of the hospital bed relative to the mechanical arm can be adjusted, so that the mechanical arm can obtain a more comfortable operating space, which is beneficial to the mechanical arm to more freely Do not move.
  • the position of the bed relative to the manipulator compensates for the limited range of adjustment of the manipulator.
  • the adjustment of the rotary joints on the bed allows the surgical robot terminal to be adjusted to any working position, simplifying the overall structure of the surgical robot terminal and reducing the surgical robot.
  • the quality of the terminal makes it more suitable for the lightweight and structural simplicity of medical robots.
  • the robot arm of the surgical robot terminal can be closer to the fixed point, so that the robot arm can be adjusted to a more suitable surgical position for the operation.
  • FIG. 1 is a front elevational view of a surgical robot terminal in a first embodiment of the present invention
  • Figure 2 is a schematic view showing the degree of freedom of movement of the hospital bed of Figure 1;
  • FIG. 3 is a schematic structural view of a surgical robot terminal having a suspension tray according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic structural view of a surgical robot terminal having a main suspension tray and two suspension suspension disks according to Embodiment 1 of the present invention
  • Figure 5 is a front elevational view of the surgical robot terminal in the second embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a surgical robot terminal having a main suspension tray and two suspension suspension disks according to a second embodiment of the present invention
  • Fig. 7 is a front elevational view showing the surgical robot terminal in the third embodiment of the present invention.
  • proximal refers to an end relatively close to the column
  • distal refers to an end that is relatively far from the column
  • the surgical robot terminal of the present invention mainly comprises: a base 1 , a column 2 , at least one mechanical arm 3 , and a hospital bed 4 .
  • the surgical robot terminal includes: a base 1, a column 2, four robot arms 3, and a hospital bed 4; wherein each mechanical arm 3 includes an adjustment arm 31 and a tool arm 32;
  • the arm 32 is coupled to a surgical instrument for driving the surgical instrument about a fixed point;
  • the distal end of the adjustment arm 31 is coupled to the tool arm 32, preferably, the adjustment arm
  • the distal end of 31 is rotatably coupled to the tool arm 32;
  • the adjustment arm 31 is for adjusting the spatial position of the fixed point;
  • the hospital bed 4 is coupled to the base 1, and the hospital bed 4 includes a first rotation a joint 410, a second rotary joint 411, and a third rotary joint 420, and the rotation axis of the first rotary joint 410, the rotation axis of the second rotary joint 411, and the rotation axis
  • the patient's patient position (ie, the target position of the fixed point) serves as a reference point for adjusting the working position of the surgical robot terminal, and the present invention can conveniently and finely adjust the fixed point RC to reach the target position (ie, the patient's disease) by the suspension structure.
  • the position is affected, so that it can better adapt to different operating environments, and can effectively prevent interference between the adjustment arms.
  • the adjustment arm can be further adjusted to reach the target position. In order to facilitate the operation of the operation, it is adapted to the requirements of the posture of the robot arm 3 by different operations.
  • the initial orientation of the hospital bed 4 is perpendicular to the horizontal extension of the upright 2 or the horizontally moving joint 22 (which will be detailed below in connection with Figure 3)
  • a surgical instrument is required at this time. It can be inserted in the direction of the patient's head. If it is only achieved by adjusting the robot arm 3, the suspension structure needs to be rotated by 90° to suit the surgical requirements.
  • the hospital bed 4 is an adjustable bed, it can be realized by the rotation cooperation of the suspension structure and the operating bed. If the surgical wound of the patient is located in the lateral direction of the abdomen, not only the suspension structure needs to be rotated by a certain angle, but also the patient needs to perform the operation sideways during the actual operation. At this time, the operation of the surgical instrument can be realized by turning the bed to make the operation.
  • the device has a more comfortable operating space.
  • the column 2 is located on the side of the hospital bed 4 and is fixedly connected to the base 1 .
  • the hospital bed 4 includes a bed body 41 and a fixing frame 42 connected to the bed body 41.
  • the fixing frame 42 is fixedly connected to the base 1.
  • one end of the fixing frame 42 is connected to the bed body 41
  • the other end of the fixing frame 42 is fixed on the base 1 , that is, the carrier carrying the bed 4 and the carrier carrying the column 2 are the same.
  • the first rotating joint 410, the second rotating joint 411, and the third rotating joint 420 are disposed on the bed 41.
  • the bed body 41 includes an outer frame and a hook hinge structure located in the outer frame and connected to the outer frame, and the first rotary joint 410 and the second rotary joint 411 are disposed in the The outer frame is connected to the fixing frame 42 by a third rotating joint 420.
  • the Hooke hinge has a first rotating member located inside the outer frame and a second rotating member located inside the first rotating member, and the second rotating member and the first rotating member are rotated by the second rotating joint 411 The first rotating member and the outer frame are rotatably connected by the first rotating joint 410.
  • the Hook hinge structure realizes the first degree of freedom and the second degree of freedom through the first rotating joint 410 and the second rotating joint 411.
  • the outer frame is rotatably coupled to the fixed frame 42 by the third rotary joint 420 to achieve a third degree of freedom.
  • the bed 41 moves in space by the first rotating joint 410, the second rotating joint 411, and the third rotating joint 420 to adjust the posture with the fixed point.
  • the surgical instrument can reach the lesion, and generally the patient is placed on the side or other surgical posture, which increases the difficulty of surgical adjustment.
  • the bed 41 can be adjusted to an appropriate position to facilitate the operation of the robot, and the sideways movement of the patient can be eliminated, thereby facilitating the operation.
  • the surgical robot terminal of the present invention further includes a plurality of universal wheels 7 disposed at the bottom of the base 1 to change the position of the base 1.
  • the overall shape of the column 2 is an inverted L shape.
  • the upright 2 includes a vertical moving joint 21, a horizontal post, and a vertical post fixedly coupled to the proximal end of the horizontal post.
  • the distal end of the horizontal column is the suspension end 200
  • the vertical moving joint 21 is located on the vertical column (ie, the long side of the L-shape) for adjusting the vertical direction of the mechanical arm 3 position.
  • the post 2 includes a vertical moving joint 21 and a horizontal moving joint 22, a horizontal post and a vertical post fixedly coupled to the proximal end of the horizontal post.
  • the horizontal moving joint 22 is located at the proximal end of the suspended end of the upright. Specifically, the vertical moving joint 21 is located on the vertical column (long side of the L-shape), and the horizontal moving joint 22 is located on the horizontal column (the short side of the L-shape).
  • the vertical moving joint 21 is for supporting the movement of the column 2 in the moving direction of the vertically moving joint, thereby adjusting the position of the fixed point in the moving direction of the vertically moving joint 21; the horizontal moving joint 22 is located at the hanging of the column The hanging end is used to adjust the position of the fixed point in the moving direction of the horizontal moving joint 22.
  • Each of the adjustment arms 31 has a spatial configuration of at least four degrees of freedom, including two degrees of rotational freedom (embodied in the first rotational joint 314, the second rotational joint 313 in the embodiment shown in FIG. 1), a horizontal degree of freedom (embodied in the first horizontal motion joint 311 in the embodiment shown in Fig. 1) and a wobble degree of freedom (embodied in the oscillating joint 312 in the embodiment shown in Fig. 1).
  • two degrees of rotational freedom embodied in the first rotational joint 314, the second rotational joint 313 in the embodiment shown in FIG. 1
  • a horizontal degree of freedom embodied in the first horizontal motion joint 311 in the embodiment shown in Fig. 1
  • a wobble degree of freedom embodied in the oscillating joint 312 in the embodiment shown in Fig.
  • each of the adjustment arms 31 includes: a first rotation joint 314, a first horizontal motion joint 311, an oscillating motion joint 312, and a second rotation joint 313 which are sequentially connected; wherein the first level
  • the axis of motion of the moving joint 311 motion trajectory, telescopic path, which is the direction in which the guide rail extends for the rail slider structure
  • the rotational axis of the oscillating joint 312 Vertical to the axis of motion of the first horizontal motion joint 311 and perpendicular to the axis of rotation of the first rotational joint 314
  • the axis of rotation of the second rotational joint 313 is configured to be opposite the first rotational joint 314
  • the axis of rotation is parallel; the adjustment arm 31 is coupled to the upright 2 by a first pivot joint 314; the adjustment arm 31 is rotationally coupled to the tool arm 32 by a second pivot joint 313.
  • the first rotating joint 314 can drive the entire mechanical arm 3 to rotate about the rotation axis of the first rotating joint 314; the first horizontal moving joint 311 can drive the tool arm 32 to move in a horizontal direction; the oscillating joint 312 The oscillating manner drives the tool arm 32 to move in a vertical plane; the first rotating joint 314 and the second rotating joint 313 are redundant with each other to make the adjustment more precise, and the four adjusting arm joints of the adjusting arm 31 are common
  • the role of the fixed point RC can achieve spatial positional transformation.
  • the adjustment arm further includes a connecting rod, a measuring device and a motor communicatively coupled to the measuring device.
  • a proximal end of the connecting rod is coupled to the oscillating motion joint 312, and a distal end is rotatably coupled to the second rotational joint 313.
  • the angle at which the oscillating joint 312 is swung is measured in real time by the measuring device.
  • the motor for driving the second rotating joint 313 to swing relative to the connecting rod drives the second rotating joint 313 to swing according to an angle at which the swinging joint 312 swings to rotate the second rotating joint 313
  • the axis is always parallel to the axis of rotation of the first rotational joint 314.
  • the oscillating motion joint 312 includes a rotatable first parallelogram structure (eg, the rotatable first parallelogram structure is formed by four hinges), the first parallelogram structure including each other a first first proximal rod and a first distal rod, wherein an axis of the first proximal rod of the first parallelogram structure is parallel or collinear with an axis of rotation of the first rotational joint 314, the a parallelogram shaped first distal rod (parallel to the first proximal rod) coupled to the second rotational joint 313, and an axis of the first distal rod parallel to an axis of rotation of the second rotational joint 313 Or collinear.
  • the rotation axis of the second rotation joint 313 is always parallel to the rotation axis of the first rotation joint 314.
  • the tool arm 32 is a fixed point mechanism capable of driving the surgical instrument connected thereto to move around a fixed point RC (Remote Center).
  • the tool arm 32 has multiple degrees of freedom, such as two degrees of freedom (ie, the tool arm 32 can drive the surgical instrument to swing left and right around the fixed point RC, back and forth), three degrees of freedom (ie, tools)
  • the arm 32 can drive the surgical instrument to swing left and right around the fixed point RC, turning back and forth, moving up and down.
  • the tool arm 32 includes three degrees of freedom, i.e., capable of driving the surgical instrument to rotate about the first axis a, capable of urging the surgical instrument to swing about the second axis c, capable of driving
  • the surgical instrument moves along a movement axis b, and the fixed point RC is located at an intersection of the first axis a, the movement axis b, and the second axis c (indicated by a broken line in the three axis diagrams).
  • the tool arm 32 includes a base joint 321, a rotatable second parallelogram structure (for example, the rotatable second parallelogram structure formed by four hinges), and a telescopic joint 323.
  • the base joint 321 is rotated about a first axis a to urge the surgical instrument to rotate about a first axis a.
  • the proximal end of the base joint 321 is coupled to the adjustment arm 31, and the distal end is coupled to the second parallelogram structure.
  • the second parallelogram structure includes a second proximal rod and a second distal rod that are parallel to each other, an end of the second parallelogram structure is coupled to the surgical instrument via a telescopic joint 323, and the surgical instrument is configured
  • the axis of the surgical instrument is parallel to the axis of the second distal rod such that the second parallelogram structure drives the surgical instrument to swing about the second axis c.
  • the second parallelogram structure includes a first sub-parallelogram structure 322a and a second sub-parallelogram structure 322b connected thereto, forming a double parallelogram structure to drive the surgical instrument around the second axis c swing.
  • the first sub-parallelogram 322a includes a first sub-proximal rod and a first sub-distal rod (not shown) that are parallel to each other.
  • the second sub-parallelogram 322b includes a second sub-proximal rod and a second sub-distal rod (not shown) that are parallel to each other.
  • the axis of the first sub distal rod coincides or is parallel with the second sub proximal rod or the second sub distal rod.
  • the end of the second sub-parallelogram 322b is connected to the telescopic joint 323, and the axis of movement b of the telescopic joint 323 is parallel to the axis of the second sub-distal rod of the second sub-parallelogram 322b, and the telescopic joint
  • the axis of movement of 323 passes through the fixed point.
  • the telescoping joint 323 is detachably coupled to the surgical instrument to drive the surgical instrument to move along a movement axis b of the telescopic joint.
  • the tool arm 32 can also include only two degrees of freedom, that is, can drive the surgical instrument to rotate about the first axis a, and can drive the surgical instrument to swing about the second axis c, and
  • the fixed point RC is located at the intersection of the first axis a and the second axis c.
  • the tool arm 32 includes a base joint 321 and a rotatable third parallelogram structure (for example, the rotatable third parallelogram structure is formed by four hinges), and the third parallelogram structure is
  • the rotatable structure can be formed by a hinge including a third proximal rod and a third distal rod that are parallel to each other.
  • the surgical instrument is detachably coupled to an end of the third parallelogram structure, and an axis of the surgical instrument is configured to be parallel to an axis of a distal rod of the third parallelogram structure.
  • the third parallelogram structure can drive the surgical instrument to swing about the second axis c.
  • the axis of the surgical instrument passes through the fixed point RC.
  • the tool arm may further comprise other structures for driving the surgical instrument to oscillate about a fixed point RC, such as the tool arm including a base joint and a circular arc guide slider structure coupled thereto. .
  • the adjusting arm 31 in this embodiment passes the movement of each joint, so that the fixed point RC of the tool arm 32 is close to the patient's patient part, so as to facilitate the operation and improve the surgical precision.
  • the fixed point RC is adjusted to be close to the patient's patient site by adjusting the movement of each joint of the arm 31 before the surgery, and at the time of surgery, the respective joints of all the adjustment arms 31 are locked so that the fixed point The RC maintains a fixed position while the surgical instrument detachably coupled to the tool arm 32 enters the human body through the surgical wound at the fixed point RC, reaching the patient's site.
  • the surgical instrument is swung and rotated under the drive of the tool arm 32 and moves within a conical working space with the fixed point as the apex. If there is a need to further adjust the position of the fixed point RC during the operation, the adjustment can be achieved by releasing the lock on the corresponding joint of the adjustment arm 31, or by adjusting the posture of the bed 41. Therefore, the position of the fixed point is adjusted by adjusting the adjustment arm 31, so that the surgical instrument mounted on the tool arm 32 reaches the surgical position of the robot arm 3 desired for the surgery; by adjusting the state of each joint of the tool arm 32, the operation is realized. The instrument is adjusted within the motion space defined by the fixed points to achieve a specific surgical procedure.
  • the surgical robot terminal in this embodiment is further provided with a console 5 for controlling the work of the base 1, the column 2, the robot arm 3 and/or the hospital bed 4. status.
  • the console 5 is located on a side of the column 2 facing away from the hospital bed 4, controlling the movement of the base 1 on the ground, so that the robot terminal reaches a suitable surgical position;
  • the console 5 controls The lifting of the column 2 is used to adjust the height position of the robot arm 3 relative to the hospital bed 4, making it more suitable for surgical operation;
  • the console 5 controls the adjustment of the first rotary joint 410, the second rotary joint 411 and / Or the movement state of the third rotary joint 420 to achieve adjustment of the posture of the bed 4 to make it more reasonable with respect to the position of the end of the robot arm, and also to avoid motion interference of the robot arm 3 during the operation;
  • the console 5 controls the movement of the adjustment arm 31 so that the fixed point RC can be brought closer to the target position of the operation before the start of the operation, while each
  • the suspension structure includes at least one suspension tray 8, and the upper end of each suspension tray 8 is rotatably coupled to the suspension end 200 of the column 2, each suspension tray The lower end of 8 is connected to the adjustment arm 31.
  • the suspension plate 8 can not only effectively avoid the motion interference between the different mechanical arms 3, but also can effectively change the spatial position of the adjustment arm 31 based on the rotational movement of the suspension disk 8, thereby facilitating the adjustment of the adjustment arm 31. The location of the point.
  • the suspension tray 8 is connected to the suspension end 200 of the column 2 through a rotary joint, and the overall orientation of the robot arm 3 is changed by the rotation of the suspension tray 8, thereby increasing the range of the operation region;
  • the rotation of the hanging plate 8 and the third rotary joint 420 of the hospital bed 4 can compensate each other, increasing the accuracy of the movement.
  • the number of the suspension trays 8 is one, and the number of the mechanical arms 3 is four, and the suspension tray 8 is connected to four adjustment arms.
  • the suspension trays 8 are two, each suspension tray 8 being coupled to two adjustment arms and two adjustment arms being located on opposite sides of the suspension tray 8.
  • a second horizontal motion joint is added between the adjusting arm 31 and the suspension plate 8.
  • the first rotating joint 314 of the adjusting arm 31 itself passes through the second horizontal joint.
  • the hanging discs 8 are connected, thereby effectively increasing the range of motion of the robot arm 3.
  • the four joint connection sequences in the adjustment arm 31 may also be: a first horizontal motion joint 311, a first rotation joint 314, an oscillating motion joint 312, and a second rotation joint 313.
  • the adjustment arm 31 is connected to the suspension tray 8 through the first horizontal motion joint 311, and the arrangement can fully utilize the space of the suspension end 200 of the column 2 and the suspension tray 8.
  • the suspension structure includes a main suspension tray 9 and at least two slave suspension trays 10, and the upper end of the main suspension tray 9 is rotatably coupled to the suspension end 200 of the column 2 At least two from the suspension tray 10 are rotatably coupled to the lower end of the main suspension tray 9, the at least two from the lower end of the suspension tray 10 being coupled to the adjustment arm 31; the main suspension tray 9 is rotated The movement is to change the spatial position from the suspension tray 10, and the rotary motion is performed from the suspension tray 10 to change the spatial position of the adjustment arm 31 correspondingly connected.
  • the number of the main suspension trays 9 is one, and the number of the suspension trays 10 is two, and each of the upper suspension ends 10 is rotatably connected to the main suspension tray 9 to
  • the slave suspension tray 10 is rotatable relative to the main suspension tray 9, which has a regulating effect on the position of the suspension tray 10, thereby realizing the rotation of the robot arm 3 as a whole in the space.
  • the sling plate 10 has a regulating effect on the adjustment arm 31 connected thereto.
  • each of the lower ends of the suspension tray 10 is connected to the two adjustment arms 31, and the two adjustment arms 31 are distributed on opposite sides of the suspension tray 10, that is, from the suspension tray 10 to separate the two adjustment arms.
  • the role of 31 is to avoid mutual interference between the different adjustment arms 31.
  • the redundant design can realize the movement of the surgical instrument around the fixed point, thereby reaching the target surgical position for the operation operation, and greatly improving the operation precision. degree.
  • a second horizontal joint is added between the adjusting arm 31 and the suspension disc 10, and the first rotating joint 314 of the adjusting arm 31 itself passes through the second horizontal joint It is connected from the suspension tray 10, thereby effectively increasing the range of motion of the robot arm 3.
  • the four joint connection sequences in the adjustment arm 31 may also be: a first horizontal motion joint 311, a first rotation joint 314, an oscillating motion joint 312, and a second rotation joint 313.
  • the adjustment arm 31 is connected to the suspension tray 10 through the first horizontal motion joint 311, and the arrangement can fully utilize the suspension end 200 of the column 2 and the space from the suspension tray 10.
  • the adjustment of the main suspension plate 9 achieves an overall adjustment of the mechanical arm 3, so that the mechanical arm achieves a better surgical position; and at the same time, the adjustment of the hospital bed 4 allows the patient to adjust to the optimal operation.
  • the position adjustment of each of the robot arms is realized by adjusting the suspension disk 10 to prevent the mutual movement of the robot arms during the operation; at the same time, the rotation from the suspension disk 10 and the rotation of the hospital bed 4 are mutually redundant. The best adjustment can be achieved.
  • the surgical robot terminal in the embodiment can adjust the spatial position of the adjustment arm based on the suspension disk 8, and adjust the position of the fixed point based on the adjustment arm 31, and realize the surgical instrument relative to the fixed point based on the tool arm 32.
  • the posture adjustment makes the surgical instrument reach a better surgical position, and at the same time, the adjustment of the bed 4 is combined to adjust the patient to the optimal surgical posture, which meets the requirements of the current clinical situation and improves the precision of the operation.
  • FIG. 5 is a front view of the surgical robot terminal in the embodiment. Comparing the front view of the surgical robot terminal shown in FIG. 5 and FIG. 1, the two figures show two configurations of the surgical robot terminal, and the main difference is reflected in the structure of the column 2. Specifically, in the embodiment shown in FIG. 1 and the embodiment shown in FIG. 5, the columns 2 are kept in a relative position with respect to the hospital bed, but the specific implementation is different.
  • the base of the column 2 is The seat end 201 (ie, the opposite end of the suspension end 200 in the column) is fixedly connected to the base 1; in FIG.
  • the base end 201 of the column 2 (ie, the end of the column except the suspension end 200)
  • the bed 4 is fixedly connected.
  • the bed body 41 includes an outer frame and a hook hinge structure located in the outer frame and connected to the outer frame, but the outer frame is fixedly connected to the fixing frame 42.
  • the column 2 is also fixed to the outer frame.
  • not only the first rotary joint 410 but also the second rotary joint 411 is disposed on the Hooke hinge structure
  • the third rotary joint 420 is also disposed on the Hooke hinge structure.
  • the Hook hinge has a first rotating member located inside the outer frame and a second rotating member located inside the first rotating member, and further includes a third rotating member located inside the second rotating member, the first The three rotating members are rotatable relative to the second rotating member by the third rotating joint 420, and the second rotating member is rotatably connected with the first rotating member by the second rotating joint 411, the first rotating member and the The outer frames are rotatably connected by the first rotary joint 410.
  • the Hooke hinge structure includes a first rotary joint 410, a second rotary joint 411, and a third rotary joint 420 that can be rotated about the rotation axes of the three joints to achieve three degrees of freedom.
  • the horizontally movable joint 22 is further provided at the proximal end of the suspension end 200 of the upright 2 .
  • FIG. 6 based on the embodiment shown in FIG. 5, a schematic structural view of a main suspension disk 9 and two surgical robot terminals from the suspension disk 10 is further provided.
  • the movement of the main suspension tray 9 is controlled by the control operation of the console 5 to initially adjust the spatial position of the suspension tray 10, and then the rotational movement from the suspension tray 10 is controlled to change the adjustment arm 31.
  • the spatial position allows the individual robot arms 3 to reach their respective optimal surgical positions, or to bring the robotic arm 3 to an optimal surgical position by manually pulling the robotic arm 3, the main suspension disk 9, and from the suspension disk 10.
  • the adjustment of the posture of the patient during the operation can be realized, and the operation can be facilitated.
  • FIG. 7 is a front view of the surgical robot terminal in the embodiment.
  • the difference between the third embodiment and the configuration of the first embodiment and the second embodiment is that the vertical position 2 of the first embodiment and the second embodiment remain unchanged relative to the hospital bed 4 (that is, the relative position of the column 2 and the hospital bed 4 cannot be adjusted);
  • the third column of the third embodiment can adjust the relative position of the bed 4 (i.e., the column 2 can move closer to or away from the bed 4).
  • the surgical robot terminal includes at least one mechanical arm 3, a hospital bed 4, a base 1 and a column 2, the mechanical arm 3 includes an adjustment arm 31 and a tool arm 32; the tool arm 32 and a surgical instrument connection, the tool arm 32 is configured to drive the surgical instrument to move around a fixed point RC; the distal end of the adjustment arm 31 is coupled to the tool arm 32, and the adjustment arm 31 is used to adjust the The spatial position of the fixed point RC; the hospital bed 4 includes a first rotating joint 410, a second rotating joint 411, and a third rotating joint 420, and the rotation axis of the first rotating joint 410, the second rotating joint
  • the rotation axis of 411 is perpendicular to the rotation axis of the third rotary joint 420, preferably, the rotation axis of the first rotary joint 410, the rotation axis of the second rotary joint 411, and the third rotary joint 420
  • the axes of rotation are perpendicular to each other and intersect at a point to adjust the attitude
  • the suspension end 200 of the column 2 is suspended above the hospital bed 4.
  • the column 2 includes a vertical moving joint 21, and the vertical moving joint 21 is used.
  • the height of the fixed point relative to the base 1 is adjusted; the proximal end of the adjustment arm 31 is coupled to the suspension end 200 of the upright 2 .
  • the proximal end of the adjustment arm 31 is rotatably coupled to the suspension end 200 of the upright 2 .
  • the surgical robot terminal further includes a plurality of universal wheels 7 disposed at the bottom of the base 1 to change the relative position of the base 1 relative to the hospital bed 4.
  • the pedestal 1 can move freely, and can approach the patient in a more suitable position according to the patient's condition, that is, at the same time, when the robot is started to approach the patient, the approaching operation of the fixed point is also realized, which greatly simplifies the hanging end of the column 2
  • the structure of 200 also reduces the overall structure of the robot terminal and reduces the overall quality, making it more in line with the needs of lightweight and simple structure of medical robots.
  • the horizontally movable joint 22 is further provided at the proximal end of the suspension end 200 of the upright 2 .
  • the suspension structure connected by the upper end and the suspension end of the column and the lower end connected to the adjustment arm can conveniently and finely adjust the position of the fixed point RC, thereby enabling It is good to adapt to different surgical environments, and by designing the bed to include a plurality of rotating joints, the posture of the bed relative to the mechanical arm can be adjusted, so that the mechanical arm can obtain a more comfortable operating space, which is beneficial to the mechanical arm. Freely move around the point.
  • the position of the bed relative to the manipulator compensates for the limited range of adjustment of the manipulator.
  • the adjustment of the rotary joints on the bed allows the surgical robot terminal to be adjusted to any working position, simplifying the overall structure of the surgical robot terminal and reducing the surgical robot.
  • the quality of the terminal makes it more suitable for the lightweight and structural simplicity of medical robots.
  • the robot arm of the surgical robot terminal can be closer to the fixed point, so that the robot arm can be adjusted to a more suitable surgical position for the operation.

Abstract

一种手术机器人终端,包括:基座(1);至少一个包括调整臂(31)和工具臂(32)的机械臂(3),工具臂(32)用于驱使一手术器械绕一不动点(RC)运动;调整臂(31)用于调整不动点(RC)的空间位置;病床(4),包括第一、第二和第三旋转关节(410,411,420),第一至第三旋转关节(410,411,420)的旋转轴线两两相互垂直,以调整病床(4)相对于不动点(RC)的姿态;立柱(2),与病床(4)保持相对位置不变,立柱(2)的悬吊端(200)悬吊于病床(4)的上方,立柱(2)包括用于调整不动点(RC)相对于基座(1)的高度的竖直移动关节(21);以及上端与立柱(2)的悬吊端(200)转动连接、下端与调整臂(31)连接的悬吊结构。

Description

手术机器人终端 技术领域
本发明涉及医疗器械技术领域,特别涉及一种手术机器人终端。
背景技术
机器人技术的全面发展大大的推动了医疗技术的发展,从最早期的伊索持镜机器人,到现在的达芬奇手术机器人,各种不同用途、不同结构的机器人正在慢慢的应用到医疗领域。
作为医疗领域的先进技术,微创伤手术正在不断的取代传统的开放式手术;微创伤手术由于其创口小、恢复快、手术疗效佳等特点,被越来越多的患者作为治疗的首选方案。其中,腹腔镜微创伤手术的发展则最为迅猛,从腹腔镜开始出现,腹腔镜微创伤手术就伴随着出现了,到现在,腹腔镜微创伤的手术方法趋于成熟,为更好的使医生进行手术操作,腹腔镜微创伤手术和机器人技术结合了起来。
目前的腹腔镜微创伤手术机器人多采用主从式操作方式,即医生位于主操作台通过两个机械臂进行控制,而机器人终端则含有多个机械臂,装持相应的手术器械,进入患者病灶进行相应的手术,而机械臂的位置和姿态将直接影响到手术的顺利进行,故在机器人手术开始前,均会对手术机器人终端进行相应的调整,使其适合进行所需的手术。
针对上述的手术机器人终端的调整的功能需求,目前的手术机器人终端还存在着以下问题:
(1)机械臂的调整受限;专利CN104717936A提出了一种手术机器人终端,可通过顶端的悬吊盘来调节机械臂的整体朝向,使其更适合手术位置,但是,该专利中也提出,机械臂相对于手术台车的位置是有限定的,防止其发生重心偏移导致倾倒,同时,机械臂通过旋转关节连接于定向平台上,机械臂的基关节之间是相对固定的,也大大的减小了调整的范围。
(2)病床功能使用不充分;目前国内外利用病床的机器人非常少,一般都是直接将机器人固定在床上或是放在地上,患者则躺在病床上,病床和机器人两者之间并无协同作用,而在手术调整过程中,往往需要病床和机器人共同运 动实现机器人更佳的手术位置。
专利CN106456263A提出了一种用于远程手术工作台配准的方法和设备,其中,手术工作台(即病床)具有多个平移和旋转自由度,对病床的功能进行了扩展,但是该专利中将病床和手术机器人分开设置、分开控制,没有在两者之间建立起有效的关联机制,导致手术工作台配准复杂度高、配准可靠性低。
发明内容
本发明的目的在于提供一种手术机器人终端,以解决现有手术机器人终端存在的问题。
为解决上述技术问题,本发明提供一种手术机器人终端,所述手术机器人终端包括:
基座;
至少一个机械臂,每个所述机械臂包括一调整臂和一工具臂;所述工具臂与一手术器械连接,所述工具臂用于驱使所述手术器械绕一不动点运动;所述调整臂的远端与所述工具臂连接;所述调整臂用于调整所述不动点的空间位置;
病床,与所述基座连接,所述病床包括第一旋转关节、第二旋转关节和第三旋转关节,所述第一旋转关节的旋转轴线、所述第二旋转关节的旋转轴线与所述第三旋转关节的旋转轴线两两相互垂直,以调整所述病床相对于所述不动点的姿态;
立柱,与所述病床保持相对位置不变,所述立柱的悬吊端悬吊于所述病床的上方,所述立柱包括一竖直移动关节,所述竖直移动关节用于调整所述不动点相对于所述基座的高度;
悬吊结构,所述悬吊结构的上端与所述立柱的悬吊端转动连接,所述悬吊结构的下端与所述调整臂连接。
可选的,在所述的手术机器人终端中,所述第一旋转关节的旋转轴线、所述第二旋转关节的旋转轴线与所述第三旋转关节的旋转轴线相交于一点。
可选的,在所述的手术机器人终端中,所述立柱位于所述病床一侧,且与所述基座固定连接。
可选的,在所述的手术机器人终端中,所述病床包括床体和与所述床体连 接的固定架,所述固定架与所述基座固定连接;
其中,所述第一旋转关节、第二旋转关节和第三旋转关节,被配置于所述床体上。
可选的,在所述的手术机器人终端中,所述床体包括外框以及位于所述外框内且与所述外框连接的虎克铰结构,所述第一转动关节和所述第二转动关节被配置于所述虎克铰结构上,所述外框通过所述第三转动关节与所述固定架连接。
可选的,在所述的手术机器人终端中,所述床体包括外框以及位于所述外框内且与所述外框连接的虎克铰结构,所述第一转动关节、所述第二转动关节和所述第三转动关节被配置于所述虎克铰结构上,所述外框与所述立柱以及所述固定架固定连接。
可选的,在所述的手术机器人终端中,所述手术机器人终端还包括:
控制台,用于控制所述基座、所述病床、所述立柱和/或所述机械臂的工作状态。
可选的,在所述的手术机器人终端中,所述悬吊结构包括:
一主悬吊盘和至少两个从悬吊盘;
所述主悬吊盘的上端与所述立柱的悬吊端转动连接;以及
所述至少两个从悬吊盘,均与所述主悬吊盘的下端转动连接,所述至少两个从悬吊盘的下端与所述调整臂连接。
可选的,在所述的手术机器人终端中,所述悬吊结构包括:
至少一个悬吊盘,每个所述悬吊盘的上端与所述立柱的悬吊端转动连接,每个所述悬吊盘的下端与所述调整臂连接。
可选的,在所述的手术机器人终端中,每个所述调整臂包括依次连接的第一转动关节、第一水平运动关节、摆动运动关节以及第二转动关节;
其中,所述第一水平运动关节的运动轴线与所述第一转动关节的旋转轴线相垂直;
所述摆动运动关节的旋转轴线与所述第一水平运动关节的运动轴线垂直,且与所述第一转动关节的旋转轴线相垂直;
所述第二转动关节的旋转轴线被配置为与所述第一转动关节的旋转轴线相 平行;
所述调整臂通过所述第一转动关节与所述悬吊结构连接,通过所述第二转动关节与所述工具臂转动连接。
可选的,在所述的手术机器人终端中,每个所述调整臂还包括第二水平运动关节,所述第二水平运动关节的近端与所述悬吊结构连接,所述第二水平运动关节的远端与所述第一转动关节连接,且所述第二水平运动关节的移动轴线与所述第一转动关节的旋转轴线相互垂直。
可选的,在所述的手术机器人终端中,每个所述调整臂包括依次连接的第一水平运动关节、第一转动关节、摆动运动关节以及第二转动关节;
其中,所述第一水平运动关节的运动轴线与所述第一转动关节的旋转轴线相垂直;
所述摆动运动关节的旋转轴线与所述第一水平运动关节的运动轴线垂直,且与所述第一转动关节的旋转轴线相垂直;
所述第二转动关节的旋转轴线被配置为与所述第一转动关节的旋转轴线相平行;
所述调整臂通过所述第一水平运动关节与所述悬吊结构连接,通过所述第二转动关节与所述工具臂转动连接。
可选的,在所述的手术机器人终端中,每个所述调整臂包括依次连接的第一转动关节、第一水平运动关节、摆动运动关节以及第二转动关节;
其中,所述第一水平运动关节的运动轴线与所述第一转动关节的旋转轴线相垂直;
所述摆动运动关节的旋转轴线与所述第一水平运动关节的运动轴线垂直,且与所述第一转动关节的旋转轴线相垂直;
所述第二转动关节的旋转轴线被配置为与所述第一转动关节的旋转轴线相平行;
所述调整臂通过所述第一转动关节与所述立柱连接,通过所述第二转动关节与所述工具臂转动连接。
可选的,在所述的手术机器人终端中,所述摆动运动关节包括可转动的第一平行四边形结构,所述第一平行四边形结构包括相互平行的第一近端杆和第 一远端杆,所述第一近端杆的轴线与所述第一转动关节的旋转轴线平行或共线,所述第一远端杆与所述第二转动关节连接,且第一远端杆的轴线与所述第二转动关节的旋转轴线平行或共线。
可选的,在所述的手术机器人终端中,所述调整臂还包括一转动连接所述摆动运动关节和所述第二转动关节的连接杆,一用于测量所述摆动运动关节摆动角度的测量装置以及一驱动所述第二转动关节相对于所述连接杆摆动的电机;
所述测量装置与所述电机通讯连接,所述电机根据所述测量装置传输的所述摆动运动关节的摆动角度驱动所述第二转动关节摆动,以使所述第二转动关节的旋转轴线保持为与所述第一转动关节的旋转轴线相平行。
可选的,在所述的手术机器人终端中,每个工具臂包括:一基关节、一可转动的第二平行四边形结构和一伸缩关节;
所述基关节围绕第一轴线转动,以驱使所述手术器械围绕第一轴线转动,并且所述基关节近端与所述调整臂连接,远端与所述第二平行四边形结构连接;
所述第二平行四边形结构包括相互平行的第二近端杆和第二远端杆,所述第二平行四边形结构用于驱动所述手术器械围绕第二轴线摆动;
所述伸缩关节与所述第二远端杆相连接,所述伸缩关节的移动轴线与所述第二远端杆的轴线平行,所述伸缩关节与所述手术器械可拆卸连接,可驱动所述手术器械沿所述伸缩关节的移动轴线移动;
所述不动点位于所述第一轴线、所述第二轴线和所述伸缩关节的移动轴线的交点。
可选的,在所述的手术机器人终端中,每个工具臂包括:一基关节和一可转动的第三平行四边形结构;
所述基关节围绕第一轴线转动,以驱使所述手术器械围绕第一轴线转动,并且所述基关节近端与所述调整臂连接,远端与所述第三平行四边形结构连接;
所述第三平行四边形结构包括相互平行的第三近端杆和第三远端杆,所述第三平行四边形结构的末端与所述手术器械连接,且所述手术器械的轴线被配置为与所述第三远端杆的轴线相平行,以使所述第三平行四边形结构驱动所述手术器械围绕第二轴线转动;
所述不动点位于所述第一轴线和所述第二轴线的交点。
可选的,在所述的手术机器人终端中,所述立柱还包括水平移动关节,所述水平移动关节位于所述立柱的悬吊端的近端,用以调整所述不动点在水平移动关节移动方向的位置。
本发明还提供一种手术机器人终端,所述手术机器人终端包括:
至少一个机械臂,所述机械臂包括一调整臂和一工具臂;所述工具臂与一手术器械连接,所述工具臂用于驱使所述手术器械绕一不动点运动;所述调整臂的远端与所述工具臂连接,所述调整臂用于调整所述不动点的空间位置;
病床,所述病床包括第一旋转关节、第二旋转关节和第三旋转关节,所述第一旋转关节的旋转轴线、所述第二旋转关节的旋转轴线与所述第三旋转关节的旋转轴线两两相互垂直,以调整所述病床相对于所述不动点的姿态;
基座,所述基座与所述病床的相对位置可调整;
立柱,所述立柱的基座端与所述基座固定连接,所述立柱的悬吊端悬吊于所述病床的上方,所述立柱包括一竖直移动关节,所述竖直移动关节用于调整所述不动点相对于所述基座的高度;
所述调整臂的近端与所述立柱的悬吊端连接;
悬吊结构,所述悬吊结构的上端与所述立柱的悬吊端转动连接,所述悬吊结构的下端与所述调整臂连接。
可选的,在所述的手术机器人终端中,所述手术机器人终端还包括:
多个万向轮,设置于所述基座的底部,以改变所述基座相对于所述病床的位置。
在本发明所提供的手术机器人终端中,通过上端与立柱的悬吊端转动连接、下端与调整臂连接的悬吊结构能够方便、精细地调整不动点RC的位置,从而可以更好的适应不同的手术环境,并且,通过将病床设计为包括多个旋转关节,能够调整所述病床相对于机械臂的位姿,以使机械臂获得更加舒适的操作空间,有利于机械臂更自如地绕不动点运动。病床相对于机械臂的位置弥补了机械臂调整受限的范围,通过病床上各个旋转关节配合调节即可以实现手术机器人终端调整于任意工作位置,简化了手术机器人终端的总体结构、减轻了手术机器人终端的质量,使其更加的符合医疗机器人轻量化、结构简洁化的需求。
另一方面,基于立柱与基座的相互配合可以使手术机器人终端的机械臂更加的靠近不动点,以使机械臂调整到更加合适的手术位置,便于手术操作。
另一方面,通过设置悬吊盘实现机械臂的空间位置的调整,较好的避免机械臂之间的运动干涉,更好的实现调整的功能。
附图说明
图1是本发明实施例一中手术机器人终端的主视图;
图2是图1中病床的运动自由度示意图;
图3是本发明实施例一中具有一个悬吊盘的手术机器人终端的结构示意图;
图4是本发明实施例一中具有一个主悬吊盘和两个从悬吊盘的手术机器人终端的结构示意图;
图5是本发明实施例二中手术机器人终端的主视图;
图6是本发明实施例二中具有一个主悬吊盘和两个从悬吊盘的手术机器人终端的结构示意图;
图7是本发明实施例三中手术机器人终端的主视图。
图中:基座-1;立柱-2;竖直移动关节-21;水平移动关节-22;悬吊端-200;基座端-201;机械臂-3;调整臂-31;第一水平运动关节-311;摆动运动关节-312;第二转动关节-313;第一转动关节-314;工具臂-32;基关节-321;平行四边形结构-322;伸缩关节-323;病床-4;床体-41;第一旋转关节-410;第二旋转关节-411;固定架-42;第三旋转关节-420;控制台-5;万向轮-7;悬吊盘-8;主悬吊盘-9;从悬吊盘-10;不动点-RC。
具体实施方式
以下结合附图和具体实施例对本发明提出的手术机器人终端作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
本发明中“近端”是指相对靠近立柱的一端,相应的,“远端”、“末端”是指相对远离立柱的一端。
实施例一
请参考图1,本发明所述手术机器人终端主要包括:基座1、立柱2、至少一个机械臂3以及病床4。如图1所示,所述手术机器人终端包括:基座1、立柱2、四个机械臂3以及病床4;其中,每个机械臂3包括一调整臂31和一工具臂32;所述工具臂32与一手术器械连接,所述工具臂32用于驱使所述手术器械绕一不动点运动;所述调整臂31的远端与所述工具臂32连接,优选的,所述调整臂31的远端与所述工具臂32转动连接;所述调整臂31用于调整所述不动点的空间位置;所述病床4与所述基座1连接,所述病床4包括第一旋转关节410、第二旋转关节411和第三旋转关节420,且所述第一旋转关节410的旋转轴线、所述第二旋转关节411的旋转轴线与所述第三旋转关节420的旋转轴线相互垂直,优选,所述第一旋转关节410的旋转轴线、所述第二旋转关节411的旋转轴线与所述第三旋转关节420的旋转轴线相互垂直且相交于一点,以调整所述病床4相对于所述不动点的姿态;所述立柱2与所述病床4保持相对位置不变,所述立柱2的悬吊端200悬吊于所述病床4的上方,所述立柱2包括一竖直移动关节21,所述竖直移动关节21用于调整所述不动点相对于所述基座1的高度;所述调整臂31的近端与所述立柱2的悬吊端200连接,优选,所述手术机器人终端还包括悬吊结构,所述悬吊结构的上端与所述悬吊端200转动连接,所述悬吊结构的下端与所述调整臂31连接。其中,患者病患位置(即不动点的目标位置)作为调整手术机器人终端调整工作位置的基准点,本发明通过悬吊结构能够方便、精细地调整不动点RC到达目标位置(即患者病患位置),从而可以更好的适应不同的手术环境,并能有效防止调整臂之间产生干涉,此外,通过调整病床4的位姿,能够更进一步配合调整臂调整不动点RC到达目标位置,以便于手术操作,适应不同的手术对机械臂3的姿态的要求。
例如,当病床4的初始设置方向与立柱2的水平延伸部分或者水平移动关节22(将于下文结合图3详述)垂直时,若患者的手术创口位于腹部的正上方,此时要求手术器械能够朝着患者头部方向伸入,如果仅通过调整机械臂3来实现,则悬吊结构需要旋转90°以适应手术要求。而当病床4为可调节病床时,则可以通过悬吊结构和手术床的旋转协作来实现。如患者的手术创口位于腹部的侧方向时,不仅需要悬吊结构旋转一定的角度,还需要患者在实际手术中侧 身进行手术,此时可以通过病床的翻转来实现与手术器械的配合,使手术器械能有更加舒适的操作空间。
请继续参考图1,本实施例中所述立柱2位于所述病床4一侧,且与所述基座1固定连接。
请参考图1及图2,所述病床4包括:床体41和与所述床体41连接的固定架42,所述固定架42与所述基座1固定连接。如图1所示,所述固定架42一端与所述床体41连接,所述固定架42的另一端固定于所述基座1上,即承载病床4的载体和承载立柱2的载体同为基座1。其中,所述第一旋转关节410、第二旋转关节411和第三旋转关节420被布置于所述床体41上。在一个具体实施例中,所述床体41包括外框以及位于外框内且与外框连接的虎克铰结构,所述第一旋转关节410和所述第二旋转关节411被布置于所述虎克铰结构上,所述外框通过第三旋转关节420与所述固定架42连接。例如,所述虎克铰具有位于外框内部的第一转动件与位于第一转动件内部的第二转动件,所述第二转动件与第一转动件之间通过第二旋转关节411转动连接,所述第一转动件与所述外框之间通过第一旋转关节410转动连接。这里,所述虎克铰结构通过第一旋转关节410、第二旋转关节411,来实现第一个自由度和第二个自由度。所述外框通过所述第三旋转关节420与所述固定架42转动连接,来实现第三个自由度。所述床体41在所述第一旋转关节410、所述第二旋转关节411和所述第三旋转关节420的作用下进行空间的运动,以调整与所述不动点之间的姿态。如此,在手术调整过程中,由于部分的手术操作要求机械臂3处于偏置状态,使手术器械可以达到病灶,一般均是使病人处于侧卧或是其他手术姿势,增加了手术调整的难度,采用床体41绕轴转动的方式,可以调整床体41到达适当的位置,便于机械手的操作,同时会消除病人侧身等动作,方便了手术操作。
为了便于调整手术机器人终端的位置,本发明的手术机器人终端还包括设置于所述基座1的底部的多个万向轮7,以改变所述基座1的位置。
进一步,请参考图1及图3,所述立柱2的整体形貌呈倒置的L型。具体而言,如图1所示的实施例中,所述立柱2包括一竖直移动关节21、一水平柱和与水平柱近端固定连接的竖直柱。所述水平柱的远端即为悬吊端200,所述竖直移动关节21位于所述竖直柱(即L型的长边)上,用于调整所述机械臂3在竖 直方向的位置。在如图3所示的另一实施例中,所述立柱2包括一竖直移动关节21和一水平移动关节22、一水平柱和与水平柱近端固定连接的竖直柱。所述水平移动关节22位于所述立柱的悬吊端的近端。具体而言,所述竖直移动关节21位于所述竖直柱(L型的长边)上,所述水平移动关节22位于所述水平柱(L型的短边)。竖直移动关节21用于支持所述立柱2在竖直移动关节移动方向进行运动,从而调整不动点在竖直移动关节21移动方向的位置;所述水平移动关节22位于所述立柱的悬吊端,用以调整所述不动点在水平移动关节22移动方向的位置。
每个调整臂31具有至少四个自由度的空间构型,包括两个旋转自由度(图1所示的实施例中体现于第一转动关节314、第二转动关节313)、一水平自由度(图1所示的实施例中体现于第一水平运动关节311)及一摆动自由度(图1所示的实施例中体现于摆动运动关节312)。在图1所示的实施例,每个调整臂31包括:依次连接的第一转动关节314、第一水平运动关节311、摆动运动关节312以及第二转动关节313;其中,所述第一水平运动关节311的运动轴线(运动轨迹、伸缩路线,对于导轨滑块结构而言即为导轨延伸的方向)与所述第一转动关节314的旋转轴线相垂直;所述摆动运动关节312的旋转轴线与所述第一水平运动关节311的运动轴线垂直,且与所述第一转动关节314的旋转轴线相垂直;所述第二转动关节313的旋转轴线被配置为与所述第一转动关节314的旋转轴线相平行;所述调整臂31通过第一转动关节314与所述立柱2连接;所述调整臂31通过第二转动关节313与所述工具臂32转动连接。所述第一转动关节314可驱动整个机械臂3围绕第一转动关节314的旋转轴线旋转;所述第一水平移动关节311可驱动工具臂32作水平方向的运动;所述摆动运动关节312以摆动的方式驱动工具臂32在竖直平面内运动;所述第一转动关节314和第二转动关节313互为冗余,使调整更为精确,所述调整臂31的四个调整臂关节共同作用,使不动点RC可实现空间上的位置变换。
其中,本实施例对如何具体实现所述第二转动关节313的旋转轴线平行于第一转动关节314的旋转轴线的方法没有特别的限制。在一个优选实施例中,所述调整臂还包括一连接杆、一测量装置和一与所述测量装置通讯连接的电机。所述连接杆的近端与所述摆动运动关节312连接,远端与所述第二转动关节313 转动连接。所述摆动运动关节312摆动的角度被所述测量装置实时测量。用于驱动所述第二转动关节313与连接杆相对摆动的所述电机根据所述摆动运动关节312摆动的角度驱动所述第二转动关节313摆动,以使所述第二转动关节313的旋转轴线始终与所述第一转动关节314的旋转轴线平行。在另外一个优选实施例中,所述摆动运动关节312包括可转动的第一平行四边形结构(例如由四个铰链形成所述可转动第一平行四边形结构),所述第一平行四边形结构包括相互平行的第一近端杆和第一远端杆,其中,所述第一平行四边形结构的第一近端杆的轴线与所述第一转动关节314的旋转轴线平行或共线,所述第一平行四边形的第一远端杆(平行于所述第一近端杆)与所述第二转动关节313连接,且第一远端杆的轴线与所述第二转动关节313的旋转轴线平行或共线。如此所述第二转动关节313的旋转轴线始终与所述第一转动关节314的旋转轴线平行。
所述工具臂32为一不动点机构,能够驱动与之连接的所述手术器械绕一不动点RC(Remote Center)运动。例如,所述工具臂32具有多个自由度,如两个自由度(即工具臂32可以驱使所述手术器械绕所述不动点RC左右摆动,前后转动),三个自由度(即工具臂32可以驱使所述手术器械绕所述不动点RC左右摆动,前后转动,上下移动)。
如图1所示的实施例中,所述工具臂32包括三个自由度,即能够驱使所述手术器械围绕第一轴线a转动,能够驱使所述手术器械围绕第二轴线c摆动,能够驱使所述手术器械沿移动轴线b移动,且所述不动点RC位于所述第一轴线a、移动轴线b以及第二轴线c的交点(三条轴线图中以虚线示意)。具体而言,所述工具臂32包括一基关节321、一可转动的第二平行四边形结构(例如由四个铰链形成所述可转动的第二平行四边形结构)和一伸缩关节323。所述基关节321围绕第一轴线a转动,以驱使所述手术器械围绕第一轴线a转动。所述基关节321近端与所述调整臂31连接,远端与所述第二平行四边形结构连接。所述第二平行四边形结构包括相互平行的第二近端杆和第二远端杆,所述第二平行四边形结构的末端经由伸缩关节323与所述手术器械连接,且所述手术器械被配置为所述手术器械的轴线与所述第二远端杆的轴线相平行,以使所述第二平行四边形结构驱动所述手术器械围绕第二轴线c摆动。在本实施例中所述第二平行四边形结构包括第一子平行四边形结构322a和与之相连的第二子平行四边 形结构322b,形成双平行四边形结构,以驱动所述手术器械围绕第二轴线c摆动。所述第一子平行四边形结构322a包括相互平行的第一子近端杆和第一子远端杆(图中未示出)。所述第二子平行四边形结构322b包括相互平行的第二子近端杆和第二子远端杆(图中未示出)。第一子远端杆的轴线与所述第二子近端杆或第二子远端杆相重合或平行。第二子平行四边形结构322b的末端与所述伸缩关节323连接,所述伸缩关节323的移动轴线b与所述第二子平行四边形结构322b的第二子远端杆的轴线平行,且伸缩关节323的移动轴线经过所述不动点。所述伸缩关节323与所述手术器械可拆卸连接,以驱动所述手术器械沿所述伸缩关节的移动轴线b移动。
在另外一个实施例中,所述工具臂32还可以只包括两个自由度,即能够驱使所述手术器械围绕第一轴线a转动,能够驱使所述手术器械围绕第二轴线c摆动,且所述不动点RC位于所述第一轴线a和第二轴线c的交点。此时,所述工具臂32包括一基关节321和一可转动的第三平行四边形结构(例如由四个铰链形成所述可转动的第三平行四边形结构),所述第三平行四边形结构为可转动结构,可由铰链形成,包括相互平行的第三近端杆和第三远端杆。所述手术器械与所述第三平行四边形结构的末端可拆卸连接,且所述手术器械的轴线被配置为与所述第三平行四边形结构的远端杆的轴线平行。由此,所述第三平行四边形结构可以驱动所述手术器械围绕第二轴线c摆动。此时,所述手术器械的轴线经过所述不动点RC。本领域技术人员应理解所述工具臂还可以包括其他结构来实现驱动所述手术器械围绕一不动点RC摆动,例如所述的工具臂包括基关节以及与之连接的圆弧导轨滑块结构。
在手术准备过程中,本实施例中的调整臂31通过各个关节的运动,从而令工具臂32的不动点RC接近患者病患部位,以便于手术操作,提高手术精准度。通常而言,在手术前通过调整臂31的各个关节的运动,将不动点RC调整至接近患者病患部位,在手术时,锁定所有调整臂31的各个关节,以使所述不动点RC保持一个固定位置,同时与工具臂32可拆卸连接的所述手术器械通过不动点RC处的手术创口进入人体,直达病患部位。所述手术器械在工具臂32的驱动下摆动和转动,在以不动点为顶点的锥形工作空间内运动。如果在手术过程中,存在对不动点RC位置进一步调整的需求,可通过解除对调整臂31相应关 节的锁定来实现调整,亦可通过床体41姿态的调整来实现。因此,通过调整调整臂31调整不动点的位置,进而使得安装于工具臂32上的手术器械到达手术期望的机械臂3的手术位置;通过调节工具臂32各个关节的状态,以实现对手术器械在由不动点限定的运动空间内调整,进而实现具体的手术操作。
为了便于实现手术机器人终端中各个部件的精确控制,本实施例中的手术机器人终端还设置有控制台5,用于控制所述基座1、立柱2、机械臂3和/或病床4的工作状态。例如,所述的控制台5位于所述立柱2背离所述病床4的一侧面上,控制着基座1在地面上的运动,使机器人终端到达合适的手术位置;所述的控制台5控制着立柱2的升降,用以调节机械臂3相对于病床4的高度位置,使其更适合手术操作;所述的控制台5控制调整第一旋转关节410、所述第二旋转关节411和/或所述第三旋转关节420的运动状态,以实现对病床4姿态的调整,使其相对于机械臂末端的位置更加的合理,同时也避免在手术过程中机械臂3的运动干涉;所述的控制台5控制着调整臂31的运动,使其在手术开始前可使不动点RC更加接近手术的目标位置,同时使每条工具臂302处于最佳的位置,方便手术的进行。
如图1及图3所示,所述悬吊结构包括至少一个悬吊盘8,所述每个悬吊盘8的上端与所述立柱2的悬吊端200转动连接,每个悬吊盘8的下端与所述调整臂31连接。基于悬吊盘8不仅可以有效避免不同机械臂3之间的运动干涉,此外,基于悬吊盘8的旋转运动还可以有效改变所述调整臂31的空间位置,从而便于调整臂31调整不动点的位置。具体而言,所述的悬吊盘8通过一旋转关节连接于立柱2的悬吊端200,通过悬吊盘8的旋转改变机械臂3的整体朝向,可增加手术的区域范围;同时,悬吊盘8的旋转与病床4的第三旋转关节420可相互补偿,增大了运动的准确性。
如图3所示的手术机器人终端中,所述悬吊盘8的数量为一个,所述机械臂3的数量为四个,所述悬吊盘8与四个调节臂连接。在另外一个优选实施例中,所述悬吊盘8为两个,每个悬吊盘8与两个调整臂连接且两个调整臂位于所述悬吊盘8的相对的两侧。
在一个优选的实施例中,所述调整臂31与悬吊盘8之间增设一第二水平运动关节,所述调整臂31自身的第一转动关节314通过所述第二水平运动关节与 悬吊盘8连接,从而有效增大了机械臂3的运动范围。
在另外一个优选的实施例中,所述调整臂31中的四个关节连接顺序还可以为:第一水平运动关节311、第一转动关节314、摆动运动关节312以及第二转动关节313。所述调整臂31通过所述第一水平运动关节311与悬吊盘8连接,如此布置可以充分的利用了立柱2的悬吊端200以及悬吊盘8的空间。
在另外一个实施例中,所述悬吊结构包括一主悬吊盘9和至少两个从悬吊盘10,所述主悬吊盘9的上端与所述立柱2的悬吊端200转动连接;至少两个从悬吊盘10均与所述主悬吊盘9的下端转动连接,所述至少两个从悬吊盘10的下端与调整臂31连接;所述主悬吊盘9做旋转运动以改变从悬吊盘10的空间位置,从悬吊盘10做旋转运动以改变对应连接的所述调整臂31的空间位置。
如图4所示的实施例中,主悬吊盘9的数量为一个,从悬吊盘10的数量为两个,每个从悬吊盘10的上端与主悬吊盘9转动连接,以使从悬吊盘10可以相对主悬吊盘9旋转,所述主悬吊盘9对从悬吊盘10的位置具有调节作用,从而实现机械臂3整体在空间中的转动,所述从悬吊盘10对与其连接的调整臂31具有调节作用。进一步,每个从悬吊盘10的下端与两个调整臂31连接,且两个调整臂31分布于从悬吊盘10相对的两侧,即从悬吊盘10起到分离两个调整臂31的作用,以避免后续不同调整臂31之间相互干涉。基于主悬吊盘9、从悬吊盘10与病床4的运动相配合,通过冗余设计可以实现手术器械绕不动点运动,从而到达目标手术位置进行手术操作,较大的提高了手术精准度。
在一个优选的实施例中,所述调整臂31与从悬吊盘10之间增设一第二水平运动关节,所述调整臂31自身的第一转动关节314通过所述第二水平运动关节与从悬吊盘10连接,从而有效增大了机械臂3的运动范围。
在另外一个优选的实施例中,所述调整臂31中的四个关节连接顺序还可以为:第一水平运动关节311、第一转动关节314、摆动运动关节312以及第二转动关节313。所述调整臂31通过所述第一水平运动关节311与从悬吊盘10连接,如此布置可以充分的利用了立柱2的悬吊端200以及从悬吊盘10的空间。
在此构型中,通过对主悬吊盘9的调整实现对机械臂3的整体调整,使机械臂达到更佳的手术位置;同时通过对病床4的调整,使患者调整到最佳的手术状态;通过对从悬吊盘10的调整实现对每条机械臂的位置调整,防止在手术 过程中机械臂的相互干渉;同时,从悬吊盘10旋转和病床4的旋转互为冗余,可以达到最佳的调整效果。
综上可知,本实施例中的手术机器人终端能够基于悬吊盘8实现对调整臂空间位置的调整,基于调整臂31调整不动点的位置,基于工具臂32实现手术器械相对于不动点的姿态调整,从而使手术器械到达更佳的手术位置,同时结合对病床4的调整,使患者调整到最佳的手术姿态,符合当今临床的需求,提高手术的精准度。
实施例二
请参考图1及图5,图5为本实施例中手术机器人终端的主视图。对比图5和图1所示的手术机器人终端的主视图可知,两图展示了手术机器人终端的两种构型,主要区别体现在立柱2的结构。具体而言,虽然图1所示的实施例和图5所示的实施例中,立柱2均与所述病床保持相对位置不变,但是具体实现方式不一样,图1中,立柱2的基座端201(即立柱中悬吊端200相对的一端)与所述基座1固定连接;图5中,立柱2的基座端201(即立柱除悬吊端200之外的一端)与所述病床4固定连接。此外,所述床体41包括外框以及位于外框内且与外框连接的虎克铰结构,但是所述外框与所述固定架42固定连接。同时,所述立柱2也固定于所述外框上。在本具体实施例中,不仅第一旋转关节410,第二旋转关节411布置在所述虎克铰结构上,而且第三旋转关节420也布置在所述虎克铰结构上。例如,所述虎克铰除了具有位于外框内部的第一转动件与位于第一转动件内部的第二转动件,还包括位于所述第二转动件内部的第三转动件,所述第三转动件可以通过第三旋转关节420相对于所述第二转动件转动,所述第二转动件与第一转动件之间通过第二旋转关节411转动连接,所述第一转动件与所述外框之间通过第一旋转关节410转动连接。由此,所述虎克铰结构包括第一旋转关节410,第二旋转关节411和第三旋转关节420,可以围绕上述三个关节的旋转轴线旋转,实现三个自由度。
与上述的实施例类似,为了便于增加机械臂3在水平方向的运动范围,更便于在水平方向调整不动点RC,在所述立柱2悬吊端200的近端还设有水平移动关节22。
请参考图6,在图5所示的实施例基础上,进一步具有一个主悬吊盘9和两个从悬吊盘10的手术机器人终端的结构示意图。在手术准备过程中,通过控制台5的控制操作,控制主悬吊盘9的运动初步调整从悬吊盘10的空间位置,再控制从悬吊盘10做旋转运动以改变所述调整臂31的空间位置使得各个机械臂3到达各自最佳的手术位置,或者通过手动的牵引机械臂3、主悬吊盘9和从悬吊盘10使机械臂3到达最优的手术位置。在手术过程中,通过病床4、立柱2、主悬吊盘9和从悬吊盘10的共同作用,可实现手术过程中对患者姿态的调整,便于手术的进行。
实施例三
请参考图7,其为本实施例中手术机器人终端的主视图。实施例三与实施例一及实施例二的构型的区别在于:实施例一和实施例二中立柱2与病床4保持相对位置不变(即立柱2与病床4的相对位置不能调整);而实施例三中立柱2可调整与所述病床4的相对位置(即立柱2可相对病床4进行靠近或远离的运动)。
如图7所示,所述手术机器人终端包括至少一个机械臂3、病床4、基座1及立柱2,所述机械臂3包括一调整臂31和一工具臂32;所述工具臂32与一手术器械连接,所述工具臂32用于驱使所述手术器械绕一不动点RC运动;所述调整臂31的远端与所述工具臂32连接,所述调整臂31用于调整所述不动点RC的空间位置;所述病床4包括第一旋转关节410、第二旋转关节411和第三旋转关节420,且所述第一旋转关节410的旋转轴线、所述第二旋转关节411的旋转轴线与所述第三旋转关节420的旋转轴线相互垂直,优选,所述第一旋转关节410的旋转轴线、所述第二旋转关节411的旋转轴线与所述第三旋转关节420的旋转轴线相互垂直且相交于一点,以调整所述病床4相对于所述不动点RC的姿态;所述基座1可调整与所述病床4的相对位置;所述立柱2的基座端201与所述基座1固定连接(立柱2可在基座1的带动下实现位置的调整),所述立柱2的悬吊端200悬吊于所述病床4的上方,所述立柱2包括一竖直移动关节21,所述竖直移动关节21用于调整所述不动点相对于所述基座1的高度;所述调整臂31的近端与所述立柱2的悬吊端200连接。优选的,所述调整臂31 的近端与所述立柱2的悬吊端200转动连接。
为了便于基座1移动位置,所述手术机器人终端还包括多个万向轮7,设置于所述基座1的底部,以改变所述基座1相对于所述病床4的相对位置。基座1可以自由移动,可以根据患者的情况以更合适的位置接近患者,即在开始使机器人靠近患者的时候同时也实现了不动点的靠近操作,大大的简化了立柱2的悬吊端200的结构,同时也减化了机器人终端的总体结构并减小了总体质量,使其更加的符合医疗机器人轻量化、结构简洁化的需求。
与上述的实施例类似,为了便于增加机械臂3在水平方向的运动范围,更便于在水平方向调整不动点RC,在所述立柱2悬吊端200的近端还设有水平移动关节22。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
综上,在本发明所提供的手术机器人终端中,通过上端与立柱的悬吊端转动连接、下端与调整臂连接的悬吊结构能够方便、精细地调整不动点RC的位置,从而可以更好的适应不同的手术环境,并且,通过将病床设计为包括多个旋转关节,能够调整所述病床相对于机械臂的位姿,以使机械臂获得更加舒适的操作空间,有利于机械臂更自如地绕不动点运动。病床相对于机械臂的位置弥补了机械臂调整受限的范围,通过病床上各个旋转关节配合调节即可以实现手术机器人终端调整于任意工作位置,简化了手术机器人终端的总体结构、减轻了手术机器人终端的质量,使其更加的符合医疗机器人轻量化、结构简洁化的需求。
另一方面,基于立柱与基座的相互配合可以使手术机器人终端的机械臂更加的靠近不动点,以使机械臂调整到更加合适的手术位置,便于手术操作。
另一方面,通过设置悬吊盘实现机械臂的空间位置的调整,较好避免机械臂之间的运动干涉,更好的实现调整的功能。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (20)

  1. 一种手术机器人终端,其特征在于,包括:
    基座;
    至少一个机械臂,每个所述机械臂包括一调整臂和一工具臂;所述工具臂与一手术器械连接,所述工具臂用于驱使所述手术器械绕一不动点运动;所述调整臂的远端与所述工具臂连接;所述调整臂用于调整所述不动点的空间位置;
    病床,与所述基座连接,所述病床包括第一旋转关节、第二旋转关节和第三旋转关节,所述第一旋转关节的旋转轴线、所述第二旋转关节的旋转轴线与所述第三旋转关节的旋转轴线两两相互垂直,以调整所述病床相对于所述不动点的姿态;
    立柱,与所述病床保持相对位置不变,所述立柱的悬吊端悬吊于所述病床的上方,所述立柱包括一竖直移动关节,所述竖直移动关节用于调整所述不动点相对于所述基座的高度;
    悬吊结构,所述悬吊结构的上端与所述立柱的悬吊端转动连接,所述悬吊结构的下端与所述调整臂连接。
  2. 如权利要求1所述的手术机器人终端,其特征在于,所述第一旋转关节的旋转轴线、所述第二旋转关节的旋转轴线与所述第三旋转关节的旋转轴线相交于一点。
  3. 如权利要求1或2所述的手术机器人终端,其特征在于,所述立柱位于所述病床一侧,且与所述基座固定连接。
  4. 如权利要求1或2所述的手术机器人终端,其特征在于,所述病床包括床体和与所述床体连接的固定架,所述固定架与所述基座固定连接;
    其中,所述第一旋转关节、第二旋转关节和第三旋转关节,被配置于所述床体上。
  5. 如权利要求4所述的手术机器人终端,其特征在于,所述床体包括外框以及位于所述外框内且与所述外框连接的虎克铰结构,所述第一转动关节和所述第二转动关节被配置于所述虎克铰结构上,所述外框通过所述第三转动关节与所述固定架连接。
  6. 如权利要求4所述的手术机器人终端,其特征在于,所述床体包括外框以及位于所述外框内且与所述外框连接的虎克铰结构,所述第一转动关节、所述第二转动关节和所述第三转动关节被配置于所述虎克铰结构上,所述外框与所述立柱以及所述固定架固定连接。
  7. 如权利要求1或2所述的手术机器人终端,其特征在于,所述手术机器人终端还包括:
    控制台,用于控制所述基座、所述病床、所述立柱和/或所述机械臂的工作状态。
  8. 如权利要求1或2所述的手术机器人终端,其特征在于,所述悬吊结构包括:
    一主悬吊盘和至少两个从悬吊盘;
    所述主悬吊盘的上端与所述立柱的悬吊端转动连接;以及
    所述至少两个从悬吊盘,均与所述主悬吊盘的下端转动连接,所述至少两个从悬吊盘的下端与所述调整臂连接。
  9. 如权利要求1或2所述的手术机器人终端,其特征在于,所述悬吊结构包括:
    至少一个悬吊盘,每个所述悬吊盘的上端与所述立柱的悬吊端转动连接,每个所述悬吊盘的下端与所述调整臂连接。
  10. 如权利要求1或2所述的手术机器人终端,其特征在于,每个所述调整臂包括依次连接的第一转动关节、第一水平运动关节、摆动运动关节以及第二转动关节;
    其中,所述第一水平运动关节的运动轴线与所述第一转动关节的旋转轴线相垂直;
    所述摆动运动关节的旋转轴线与所述第一水平运动关节的运动轴线垂直,且与所述第一转动关节的旋转轴线相垂直;
    所述第二转动关节的旋转轴线被配置为与所述第一转动关节的旋转轴线相平行;
    所述调整臂通过所述第一转动关节与所述悬吊结构连接,通过所述第二转动关节与所述工具臂转动连接。
  11. 如权利要求10所述的手术机器人终端,其特征在于,每个所述调整臂还包括第二水平运动关节,所述第二水平运动关节的近端与所述悬吊结构连接,所述第二水平运动关节的远端与所述第一转动关节连接,且所述第二水平运动关节的移动轴线与所述第一转动关节的旋转轴线相互垂直。
  12. 如权利要求1或2所述的手术机器人终端,其特征在于,每个所述调整臂包括依次连接的第一水平运动关节、第一转动关节、摆动运动关节以及第二转动关节;
    其中,所述第一水平运动关节的运动轴线与所述第一转动关节的旋转轴线相垂直;
    所述摆动运动关节的旋转轴线与所述第一水平运动关节的运动轴线垂直,且与所述第一转动关节的旋转轴线相垂直;
    所述第二转动关节的旋转轴线被配置为与所述第一转动关节的旋转轴线相平行;
    所述调整臂通过所述第一水平运动关节与所述悬吊结构连接,通过所述第二转动关节与所述工具臂转动连接。
  13. 如权利要求1或2所述的手术机器人终端,其特征在于,每个所述调整臂包括依次连接的第一转动关节、第一水平运动关节、摆动运动关节以及第二转动关节;
    其中,所述第一水平运动关节的运动轴线与所述第一转动关节的旋转轴线相垂直;
    所述摆动运动关节的旋转轴线与所述第一水平运动关节的运动轴线垂直,且与所述第一转动关节的旋转轴线相垂直;
    所述第二转动关节的旋转轴线被配置为与所述第一转动关节的旋转轴线相平行;
    所述调整臂通过所述第一转动关节与所述立柱连接,通过所述第二转动关节与所述工具臂转动连接。
  14. 如权利要求10、12或13任一项所述的手术机器人终端,其特征在于,所述摆动运动关节包括可转动的第一平行四边形结构,所述第一平行四边形结构包括相互平行的第一近端杆和第一远端杆,所述第一近端杆的轴线与所述第 一转动关节的旋转轴线平行或共线,所述第一远端杆与所述第二转动关节连接,且第一远端杆的轴线与所述第二转动关节的旋转轴线平行或共线。
  15. 如权利要求10、12或13任一项所述的手术机器人终端,其特征在于,所述调整臂还包括一转动连接所述摆动运动关节和所述第二转动关节的连接杆,一用于测量所述摆动运动关节摆动角度的测量装置以及一用于驱动所述第二转动关节相对于所述连接杆摆动的电机;
    所述测量装置与所述电机通讯连接,所述电机根据所述测量装置传输的所述摆动运动关节的摆动角度驱动所述第二转动关节摆动,以使所述第二转动关节的旋转轴线保持为与所述第一转动关节的旋转轴线相平行。
  16. 如权利要求1或2所述的手术机器人终端,其特征在于,每个工具臂包括:一基关节、一可转动的第二平行四边形结构和一伸缩关节;
    所述基关节围绕第一轴线转动,以驱使所述手术器械围绕第一轴线转动,并且所述基关节近端与所述调整臂连接,远端与所述第二平行四边形结构连接;
    所述第二平行四边形结构包括相互平行的第二近端杆和第二远端杆,所述第二平行四边形结构用于驱动所述手术器械围绕第二轴线摆动;
    所述伸缩关节与所述第二远端杆相连接,所述伸缩关节的移动轴线与所述第二远端杆的轴线平行,所述伸缩关节与所述手术器械可拆卸连接,可驱动所述手术器械沿所述伸缩关节的移动轴线移动;
    所述不动点位于所述第一轴线、所述第二轴线和所述伸缩关节的移动轴线的交点。
  17. 如权利要求1或2所述的手术机器人终端,其特征在于,每个工具臂包括:一基关节和一可转动的第三平行四边形结构;
    所述基关节围绕第一轴线转动,以驱使所述手术器械围绕第一轴线转动,并且所述基关节近端与所述调整臂连接,远端与所述第三平行四边形结构连接;
    所述第三平行四边形结构包括相互平行的第三近端杆和第三远端杆,所述第三平行四边形结构的末端与所述手术器械连接,且所述手术器械的轴线被配置为与所述第三远端杆的轴线相平行,以使所述第三平行四边形结构驱动所述手术器械围绕第二轴线转动;
    所述不动点位于所述第一轴线和所述第二轴线的交点。
  18. 如权利要求1或2所述的手术机器人终端,其特征在于,所述立柱还包括水平移动关节,所述水平移动关节位于所述立柱的悬吊端的近端,用以调整所述不动点在水平移动关节移动方向的位置。
  19. 一种手术机器人终端,其特征在于,包括:
    至少一个机械臂,所述机械臂包括一调整臂和一工具臂;所述工具臂与一手术器械连接,所述工具臂用于驱使所述手术器械绕一不动点运动;所述调整臂的远端与所述工具臂连接,所述调整臂用于调整所述不动点的空间位置;
    病床,所述病床包括第一旋转关节、第二旋转关节和第三旋转关节,所述第一旋转关节的旋转轴线、所述第二旋转关节的旋转轴线与所述第三旋转关节的旋转轴线两两相互垂直,以调整所述病床相对于所述不动点的姿态;
    基座,所述基座与所述病床的相对位置可调整;
    立柱,所述立柱的基座端与所述基座固定连接,所述立柱的悬吊端悬吊于所述病床的上方,所述立柱包括一竖直移动关节,所述竖直移动关节用于调整所述不动点相对于所述基座的高度;
    所述调整臂的近端与所述立柱的悬吊端连接;
    悬吊结构,所述悬吊结构的上端与所述立柱的悬吊端转动连接,所述悬吊结构的下端与所述调整臂连接。
  20. 如权利要求19所述的手术机器人终端,其特征在于,所述手术机器人终端还包括:
    多个万向轮,设置于所述基座的底部,以改变所述基座相对于所述病床的位置。
PCT/CN2018/122087 2017-12-27 2018-12-19 手术机器人终端 WO2019128803A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020536119A JP6991340B2 (ja) 2017-12-27 2018-12-19 手術用ロボット端末
EP18896067.8A EP3733110B1 (en) 2017-12-27 2018-12-19 Surgical robot terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711449375.6A CN108186120B (zh) 2017-12-27 2017-12-27 手术机器人终端
CN201711449375.6 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019128803A1 true WO2019128803A1 (zh) 2019-07-04

Family

ID=62584621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122087 WO2019128803A1 (zh) 2017-12-27 2018-12-19 手术机器人终端

Country Status (4)

Country Link
EP (1) EP3733110B1 (zh)
JP (1) JP6991340B2 (zh)
CN (2) CN108186120B (zh)
WO (1) WO2019128803A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111839592A (zh) * 2020-08-13 2020-10-30 厦门市领汇医疗科技有限公司 一种前列腺检测装置
CN113262003A (zh) * 2021-06-07 2021-08-17 四川大学华西医院 一种胸腔镜肋骨骨肿瘤切除术用撑开装置
CN114098984A (zh) * 2021-11-26 2022-03-01 中国人民解放军陆军特色医学中心 一种达芬奇机器人的床旁机械臂系统
WO2022070001A1 (en) * 2020-09-30 2022-04-07 Auris Health, Inc. Guided coordinated bed motion for intra-operative patient positioning in robotic surgery

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108186120B (zh) * 2017-12-27 2020-12-04 微创(上海)医疗机器人有限公司 手术机器人终端
CN108056823B (zh) * 2017-12-27 2020-09-22 微创(上海)医疗机器人有限公司 手术机器人终端
EP3866720A4 (en) * 2018-10-15 2022-07-06 Mazor Robotics Ltd. VERSATILE MULTI-ARM ROBOTIC SURGICAL SYSTEM
US20210386490A1 (en) * 2018-11-07 2021-12-16 Covidien Lp Surgical robotic systems
CN109431611B (zh) * 2018-12-25 2021-08-06 吉林大学 一种柔性三臂式手术机器人
CN114375182A (zh) * 2019-09-10 2022-04-19 奥瑞斯健康公司 用于使用共享机器人自由度进行运动学优化的系统和方法
CN111134724A (zh) * 2020-01-21 2020-05-12 深圳瀚维智能医疗科技有限公司 乳腺超声扫查床
US20210369373A1 (en) * 2020-05-28 2021-12-02 The Chinese University Of Hong Kong Mobile-electromagnetic coil-based magnetic actuation systems
CN114191087A (zh) * 2020-09-18 2022-03-18 上海微创医疗机器人(集团)股份有限公司 悬吊盘摆位机构及手术机器人
CN111920522B (zh) 2020-10-15 2021-01-08 京东方科技集团股份有限公司 手术监控方法及装置
CN112370175A (zh) * 2020-11-12 2021-02-19 山东威高手术机器人有限公司 用于微创手术的患者操作台
CN116801852A (zh) * 2020-12-30 2023-09-22 奥瑞斯健康公司 用于移动医疗平台的挂件
CN112957218B (zh) * 2021-01-20 2024-03-22 诺创智能医疗科技(杭州)有限公司 手术床控制方法、手术床控制系统、电子装置和存储介质
WO2023274000A1 (zh) * 2021-06-29 2023-01-05 武汉联影智融医疗科技有限公司 一种机器人系统及其评价方法、控制方法
CN113509270B (zh) * 2021-07-09 2022-05-24 武汉联影智融医疗科技有限公司 末端工具运动引导方法、系统和手术机器人
EP4134056A1 (en) * 2021-08-13 2023-02-15 TRUMPF Medizin Systeme GmbH + Co. KG Medical robotic arm for use with a moveable surgical table
CN114098954B (zh) * 2021-11-11 2023-06-16 深圳市精锋医疗科技股份有限公司 机械臂、从操作设备、手术机器人
CN114098956A (zh) * 2021-11-11 2022-03-01 深圳市精锋医疗科技股份有限公司 机械臂、从操作设备以及手术机器人
CN114098955A (zh) * 2021-11-11 2022-03-01 深圳市精锋医疗科技股份有限公司 机械臂、从操作设备以及手术机器人
CN114469355A (zh) * 2021-12-29 2022-05-13 深圳市精锋医疗科技股份有限公司 机械臂、从操作设备、手术机器人及保持rc点不变的方法
CN114521967B (zh) * 2022-02-22 2024-01-23 上海微创医疗机器人(集团)股份有限公司 机械臂以及医疗台车
CN114533275B (zh) * 2022-02-22 2024-02-23 上海微创医疗机器人(集团)股份有限公司 末端关节臂、机械臂以及医疗台车

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010068005A2 (en) * 2008-12-12 2010-06-17 Rebo Surgical robot
JP2012005557A (ja) * 2010-06-23 2012-01-12 Terumo Corp 医療用ロボットシステム
CN102973317A (zh) * 2011-09-05 2013-03-20 周宁新 微创手术机器人机械臂布置结构
CN104717936A (zh) 2012-08-15 2015-06-17 直观外科手术操作公司 使用者启动的手术安装平台的断开式离合
CN106456263A (zh) 2014-03-17 2017-02-22 直观外科手术操作公司 用于远程手术工作台配准的方法和设备
CN206151581U (zh) * 2016-08-18 2017-05-10 山东大学齐鲁医院 一种辅助微创外科手术机器人机械臂布置结构
CN107072725A (zh) * 2014-10-27 2017-08-18 直观外科手术操作公司 用于集成手术台的系统和方法
CN108186120A (zh) * 2017-12-27 2018-06-22 微创(上海)医疗机器人有限公司 手术机器人终端

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6788018B1 (en) * 1999-08-03 2004-09-07 Intuitive Surgical, Inc. Ceiling and floor mounted surgical robot set-up arms
US7763015B2 (en) * 2005-01-24 2010-07-27 Intuitive Surgical Operations, Inc. Modular manipulator support for robotic surgery
CN101822558B (zh) * 2010-04-27 2012-06-27 天津理工大学 一种手术机器人系统
US20140249557A1 (en) * 2013-03-01 2014-09-04 Ethicon Endo-Surgery, Inc. Thumbwheel switch arrangements for surgical instruments
EP3119340B1 (en) * 2014-03-17 2019-11-13 Intuitive Surgical Operations, Inc. Methods and devices for table pose tracking using fiducial markers
CN104013471B (zh) * 2014-06-23 2016-08-24 苏州康多机器人有限公司 一种主从一体型外科手术机器人系统
EP3212105A4 (en) * 2014-10-27 2018-07-11 Intuitive Surgical Operations, Inc. System and method for monitoring control points during reactive motion
US10219871B2 (en) * 2015-11-23 2019-03-05 Alireza Mirbagheri Robotic system for tele-surgery
CN106236276B (zh) * 2016-09-28 2019-09-17 微创(上海)医疗机器人有限公司 手术机器人系统
CN106618736B (zh) * 2016-12-16 2019-03-08 微创(上海)医疗机器人有限公司 具有双自由度的机械臂和手术机器人
CN107374736B (zh) * 2017-07-31 2021-09-07 成都博恩思医学机器人有限公司 一种手术台车

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010068005A2 (en) * 2008-12-12 2010-06-17 Rebo Surgical robot
JP2012005557A (ja) * 2010-06-23 2012-01-12 Terumo Corp 医療用ロボットシステム
CN102973317A (zh) * 2011-09-05 2013-03-20 周宁新 微创手术机器人机械臂布置结构
CN104717936A (zh) 2012-08-15 2015-06-17 直观外科手术操作公司 使用者启动的手术安装平台的断开式离合
CN106456263A (zh) 2014-03-17 2017-02-22 直观外科手术操作公司 用于远程手术工作台配准的方法和设备
CN107072725A (zh) * 2014-10-27 2017-08-18 直观外科手术操作公司 用于集成手术台的系统和方法
CN206151581U (zh) * 2016-08-18 2017-05-10 山东大学齐鲁医院 一种辅助微创外科手术机器人机械臂布置结构
CN108186120A (zh) * 2017-12-27 2018-06-22 微创(上海)医疗机器人有限公司 手术机器人终端

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111839592A (zh) * 2020-08-13 2020-10-30 厦门市领汇医疗科技有限公司 一种前列腺检测装置
CN111839592B (zh) * 2020-08-13 2023-12-29 厦门市领汇医疗科技有限公司 一种前列腺检测装置
WO2022070001A1 (en) * 2020-09-30 2022-04-07 Auris Health, Inc. Guided coordinated bed motion for intra-operative patient positioning in robotic surgery
CN113262003A (zh) * 2021-06-07 2021-08-17 四川大学华西医院 一种胸腔镜肋骨骨肿瘤切除术用撑开装置
CN114098984A (zh) * 2021-11-26 2022-03-01 中国人民解放军陆军特色医学中心 一种达芬奇机器人的床旁机械臂系统
CN114098984B (zh) * 2021-11-26 2023-09-19 中国人民解放军陆军特色医学中心 一种达芬奇机器人的床旁机械臂系统

Also Published As

Publication number Publication date
CN108186120A (zh) 2018-06-22
JP2021507779A (ja) 2021-02-25
EP3733110A4 (en) 2021-01-27
CN112315585B (zh) 2022-04-08
EP3733110B1 (en) 2023-08-23
JP6991340B2 (ja) 2022-01-12
CN112315585A (zh) 2021-02-05
CN108186120B (zh) 2020-12-04
EP3733110A1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
WO2019128803A1 (zh) 手术机器人终端
WO2019128494A1 (zh) 手术机器人终端
JP6680862B2 (ja) 外科用アーム
US5931832A (en) Methods for positioning a surgical instrument about a remote spherical center of rotation
US7108688B2 (en) Remote center positioner
WO2018059039A1 (zh) 手术机器人系统
WO2017101149A1 (zh) 立式移动穿刺机器人
JP2014158967A5 (zh)
KR20200113011A (ko) 수술 기구 매니퓰레이터 양태들
CN101112329A (zh) 主被动式内镜操作手术机器人
CN115024825B (zh) 机械臂结构以及手术机器人
CA3013504A1 (en) Robotic surgical system
CN114191087A (zh) 悬吊盘摆位机构及手术机器人
CN110037800B (zh) 一种手术机器人辅助装置
CN210144741U (zh) 一种手术机器人辅助装置
US20210386490A1 (en) Surgical robotic systems
JP2020533054A (ja) 可動外科手術制御コンソール
US20230414431A1 (en) Interface moveably interconnecting surgical table and gantry
US20230147674A1 (en) Robotic system for tele-surgery
US20230363969A1 (en) Surgical table
RU2464004C2 (ru) Медицинский хирургический стол робототехнической системы
JP2021166666A (ja) 医師側操作装置および手術システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020536119

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018896067

Country of ref document: EP

Effective date: 20200727