WO2019128795A1 - 无线通信系统中的装置和方法、计算机可读存储介质 - Google Patents

无线通信系统中的装置和方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2019128795A1
WO2019128795A1 PCT/CN2018/122012 CN2018122012W WO2019128795A1 WO 2019128795 A1 WO2019128795 A1 WO 2019128795A1 CN 2018122012 W CN2018122012 W CN 2018122012W WO 2019128795 A1 WO2019128795 A1 WO 2019128795A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
user equipment
base station
parameter set
information
Prior art date
Application number
PCT/CN2018/122012
Other languages
English (en)
French (fr)
Inventor
侯延昭
陶小峰
刘禹铭
郭欣
彭召琦
朱敏
Original Assignee
索尼公司
侯延昭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 侯延昭 filed Critical 索尼公司
Priority to CN201880057376.2A priority Critical patent/CN111052773B/zh
Priority to JP2020535019A priority patent/JP7306393B2/ja
Priority to KR1020207020306A priority patent/KR20200100115A/ko
Priority to EP18896924.0A priority patent/EP3735004A4/en
Priority to US16/648,243 priority patent/US11394509B2/en
Publication of WO2019128795A1 publication Critical patent/WO2019128795A1/zh
Priority to US17/841,664 priority patent/US11909688B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/005Moving wireless networks

Definitions

  • the present application relates generally to the field of wireless communication technologies, and more particularly to wireless communication for configuring a numerology for sidelink communication in a new radio access technology (New Radio, NR).
  • New Radio New Radio
  • the parameter set for the through link communication (including, for example, the subcarrier spacing, the cyclic prefix type, and the like) is often relatively fixed, and both the transmitting and receiving parties perform the through link communication according to the fixed parameter set.
  • this fixed parameter set cannot meet the straight-through link communication in the new radio access technology with higher requirements on a series of indicators such as delay and reliability.
  • an apparatus in a wireless communication system comprising processing circuitry configured to: based on at least one of a resource set configuration information, physical channel information, and traffic type information Determining configuration information for one or more parameter sets for the through link communication; and controlling the base station to transmit the configuration information to the user equipment such that the user equipment performs the through link communication based on the one or more parameter sets, wherein
  • the parameter set includes at least a subcarrier spacing and a cyclic prefix type.
  • an apparatus in a wireless communication system comprising processing circuitry configured to: acquire one or more parameter sets for through link communication; and control The user equipment performs the through link communication based on one or more parameter sets, wherein the one or more parameter sets are determined based on configuration information from the base station or are pre-configured, and the parameter set includes at least subcarrier spacing and cyclic prefix Types of.
  • a method in a wireless communication system comprising: determining for a pass-through chain based on at least one of a resource set configuration information, physical channel information, and traffic type information Configuration information of one or more parameter sets of the road communication; and controlling the base station to transmit the configuration information to the user equipment such that the user equipment performs the through link communication based on the one or more parameter sets, wherein the parameter set includes at least subcarriers Interval and cyclic prefix types.
  • a method in a wireless communication system comprising: obtaining one or more parameter sets for a through link communication; and controlling a user equipment based on one or more parameter sets Direct link communication is performed, wherein one or more parameter sets are determined based on configuration information from the base station or are pre-configured, and the parameter set includes at least subcarrier spacing and cyclic prefix type.
  • a computer readable storage medium storing executable instructions that, when executed by a computer, cause a computer to perform the method in the wireless communication system described above.
  • the used parameter set is flexibly configured for the through link communication in the NR, thereby improving the communication performance of the through link communication, and satisfying the delay and system stability in the NR scenario. Higher requirements for a range of indicators such as sex.
  • FIG. 1 is a block diagram showing a configuration example of a device on a base station side in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram showing another configuration example of a device on a base station side in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart illustrating an example of a signaling interaction procedure in which a user equipment is configured to report a moving speed by a base station according to an embodiment of the present disclosure
  • FIG. 4 is a block diagram showing a configuration example of a device on the user equipment side in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 5 is a block diagram showing another configuration example of a device on the user equipment side in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 6 is a block diagram showing still another configuration example of a device on the user equipment side in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 7 is a block diagram showing still another configuration example of a device on the user equipment side in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 8 is a flowchart illustrating an example of a signaling interaction procedure of a transmitting and receiving synchronization parameter set configuration according to an embodiment of the present disclosure
  • FIG. 9 is a flowchart illustrating an example of a signaling interaction process according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart illustrating another example of a signaling interaction process according to an embodiment of the present disclosure.
  • FIG. 11 is a flowchart showing still another example of a signaling interaction process according to an embodiment of the present disclosure.
  • FIG. 12 is a flowchart illustrating a process example of a method of a base station side in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 13 is a flowchart illustrating a process example of a method on a user equipment side in a wireless communication system according to an embodiment of the present disclosure
  • V2V inter-vehicle communication
  • 15 is a schematic diagram showing four types of use scenarios of V2X;
  • 16 is a schematic diagram showing an application example in an automatic platooning scenario of V2X according to the techniques of the present disclosure
  • FIG. 17 is a schematic diagram showing an application example in a carrier aggregation communication scenario in accordance with the techniques of the present disclosure
  • FIG. 18 is a schematic diagram showing an application example in a D2D communication scenario in accordance with the techniques of the present disclosure
  • FIG. 19 is a schematic diagram showing an application example in a drone communication scenario in accordance with the techniques of the present disclosure.
  • FIG. 20 is a schematic diagram showing an application example in a V2I scenario in accordance with the techniques of the present disclosure
  • 21 is a block diagram showing an example structure of a personal computer which is an information processing apparatus which can be employed in an embodiment of the present disclosure
  • FIG. 22 is a block diagram showing a first example of a schematic configuration of an evolved node (eNB) to which the technology of the present disclosure may be applied;
  • eNB evolved node
  • FIG. 23 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure may be applied;
  • 24 is a block diagram showing an example of a schematic configuration of a smartphone that can apply the technology of the present disclosure
  • 25 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • V2X Vehicle to Everything
  • D2D Device to Device
  • MTC Machine Type Communication
  • UAV Unmanned Aerial Vehicles
  • CA Carrier Aggregation
  • V2X vehicle networking communications
  • V2V Vehicle to Vehicle
  • V2I Vehicle to Infrastructure
  • V2N Vehicle to Network
  • V2P Vehicles to (Vehicle to Pedestrian, V2P) and so on.
  • the infrastructure in V2I includes not only traditional base stations, but also Roadside Units (RSUs).
  • RSUs Roadside Units
  • scenario of resource scheduling by the base station may correspond to the resource selection mode 1 in the V2X or the resource selection mode 1 in the D2D, and "a scenario in which the resource is selected by the user equipment autonomously. "Can correspond to resource selection mode 4 in V2X or resource selection mode 2 in D2D.
  • Embodiments of the present disclosure will be described in detail below with reference to FIGS. 1 through 25. Hereinafter, the description will be made in the following order. However, it should be noted that, although the embodiments of the present disclosure are described in the following section in order to facilitate the description, such chapter divisions and sequences do not constitute a limitation of the present disclosure. Rather, the embodiments described below can be combined in accordance with the principles of the present disclosure and the actual circumstances in the practice of the present disclosure, unless the embodiments are inconsistent.
  • FIG. 1 is a block diagram showing a configuration example of a device on a base station side in a wireless communication system according to an embodiment of the present disclosure. This embodiment corresponds to a scenario in which the user equipment is within the coverage of the base station (In-Coverage).
  • the apparatus 100 may include a determining unit 102 and a control unit 104.
  • the determining unit 102 can be configured to determine configuration information for one or more parameter sets of the through link communication based on at least one of the resource set configuration information, the physical channel information, and the traffic type information.
  • the parameter set herein refers to a basic parameter configuration for transmission, and may include at least a subcarrier spacing and a cyclic prefix type.
  • the parameter set may further include one or more of the number of time slots in the subframe, the number of Orthogonal Frequency Division Multiplexing (OFDM) symbols in the time slot, and the number of time slots in the frame.
  • the parameter set may further include a series of transmission related parameters, such as the number of OFDM symbols in the subframe that can be correspondingly pushed out, the number of OFDM symbols in the frame, and the like, which are not enumerated here.
  • the configuration of parameters such as the number of slots in the subframe, the number of OFDM symbols in the slot, the number of slots in the frame, and the like may be determined by the configuration of the subcarrier spacing and the cyclic prefix type.
  • the parameters included in a parameter set actually have a one-to-one correspondence with a combination of a pair of determined "subcarrier spacing and cyclic prefix types". In other words, given the subcarrier spacing and cyclic prefix type in one parameter set, other parameters in the parameter set are determined accordingly.
  • the prefix type is used to indicate. Therefore, when configuring the parameter set to be used for the user equipment, only the indication information of the parameter ⁇ and the cyclic prefix type can be notified to the user equipment, so that the signaling overhead and the communication load can be reduced, and the user equipment can be based on the received
  • the value of the parameter ⁇ and the cyclic prefix type are correspondingly obtained for the transmission-related parameters in the parameter set.
  • an example of a configurable parameter set will be represented by giving an example of the value of the parameter ⁇ .
  • the resource set configuration information may include, for example, configuration information of the resource pool (for example, partitioning of the resource pool), configuration information of the carrier, configuration information of a bandwidth block (BWP), and the like, and information related to the configuration of the transmission resource, so that Different resource sets configure the service content carried by them and configure different parameter sets for them.
  • configuration information of the resource pool for example, partitioning of the resource pool
  • configuration information of the carrier for example, partitioning of the resource pool
  • BWP bandwidth block
  • the physical channel information may include at least information indicating a physical channel type, for example.
  • the through link communication includes three types of physical channels, namely, a physical side link control channel (PSCCH), a physical side link shared channel (PSSCH), and a physical through link broadcast.
  • a physical sidelink broadcast channel (PSBCH) can be configured with different parameter sets according to various factors such as a frequency band corresponding to different types of physical channels, a modulation and demodulation method, and the like.
  • a plurality of parameter sets corresponding to the values of -2, -1, 0, 1, 2, 3, 4 may be preferably selected. More preferably, a plurality of parameter sets corresponding to -1, 0, 1, 2 may be selected, and if only a unique parameter set is selected, the parameter ⁇ may be preferred in order to maintain compatibility with legacy LTE services.
  • the ground is set to 0.
  • the parameter ⁇ can preferably be set to zero.
  • the parameter ⁇ may be selected for the PSSCH, it may be preferable to select a plurality of parameter sets corresponding to the values of ⁇ , such as -5, -4, -3, -2, -1, 0, 1, 2, and more preferably, the value of ⁇ may be selected. a plurality of parameter sets corresponding to -3, -2, -1, 0, 1, 2, and if only a unique parameter set is selected, the parameter ⁇ may preferably be set to 0 in order to maintain compatibility with legacy LTE services. .
  • the control unit 104 can be configured to control the base station to transmit configuration information of the determined one or more parameter sets to the user equipment such that the user equipment can communicate based on the one or more parameter sets.
  • control unit 104 may be further configured to include configuration information of one or more parameter sets in higher layer signaling (eg, Radio Resource Control (RRC) layer signaling) for transmission to the user equipment.
  • RRC Radio Resource Control
  • the control unit 104 can also control the base station to configure configuration information and resources of one or more parameter sets.
  • the aggregate configuration information is sent to the user equipment in association for subsequent resource selection and parameter set selection.
  • the resource set configuration information and the configuration information of the parameter set may also be independently transmitted to the user equipment.
  • one or more parameter sets determined and notified to the user equipment herein are merely candidate parameter sets, and depending on whether the resource selection mode is scheduled by the base station or autonomously selected by the user equipment, may be from the base station or user equipment.
  • This candidate parameter set selects the specific parameter set to be used for the through link communication.
  • the configuration example described with reference to FIG. 1 may correspond to a scenario in which a resource is autonomously selected by a user equipment, and an example in a scenario in which resource scheduling by a base station is performed will be described in detail next.
  • FIG. 2 is a block diagram showing another configuration example of a device on the base station side in a wireless communication system according to an embodiment of the present disclosure.
  • the apparatus 200 may include a determining unit 202, a control unit 204, and a selecting unit 206.
  • the functional configuration example of the determining unit 202 is substantially the same as the functional configuration example of the determining unit 102 described above with reference to FIG. 1 , and details are not described herein again.
  • a functional configuration example of the control unit 204 and the selection unit 206 will be described in detail.
  • control unit 204 may control the base station to transmit configuration information of one or more parameter sets determined by the determining unit 202 to the user equipment by, for example, RRC signaling.
  • the selecting unit 206 may be configured to prioritize data traffic based on the moving speed, channel Busy Ratio (CBR), Channel Occupancy Ratio (CR), and through link communication of the at least user equipment from the user equipment.
  • CBR channel Busy Ratio
  • CR Channel Occupancy Ratio
  • One or more related information in the stage selecting a set of parameters for the through link communication from one or more parameter sets.
  • a faster moving speed may cause a large change in channel conditions, and thus the user equipment is required to move the speed (including the instantaneous moving speed, the average movement over a period of time).
  • the speed, etc. is reported to the base station for the base station to select a more appropriate parameter set for the through link communication.
  • the faster the speed the larger the parameter set corresponding to the parameter ⁇ is selected.
  • FIG. 3 is a flowchart illustrating an example of a signaling interaction procedure by a base station configuring a user equipment to report a moving speed, according to an embodiment of the present disclosure.
  • step S301 the base station establishes an initial connection with the user equipment (ie, RRC_CONNECTED), and then the base station may send a measurement configuration to the user equipment in step S302, requesting the user equipment to periodically or in response to the event. Trigger and report its speed information (including instantaneous speed, average speed, etc.).
  • the user equipment may report its speed information to the base station in the measurement report periodically or in response to the event trigger according to the received measurement configuration.
  • the user equipment reports the measured channel busyness rate and/or channel occupancy rate to the base station periodically or in response to an event trigger, so that the base station can make relevant decisions.
  • the selection unit 206 on the base station side can also select an appropriate parameter set based on the channel busy rate and/or channel occupancy rate from the user equipment.
  • the channel busy rate is larger, that is, the busier the channel, the larger the parameter set corresponding to the parameter ⁇ can be selected.
  • the period in which the user equipment reports the speed information, the channel busy rate, and the channel occupancy rate, and the trigger event may be the same or different, and the disclosure does not limit this.
  • the data service priority of the through link communication refers to the priority of the data service to be transmitted through the through link communication, for example, may be indicated by a ProSe Per-Packet Priority (PPPP), and may include In the resource configuration request from the user device.
  • PPPP ProSe Per-Packet Priority
  • the lower the priority of the data traffic of the through link communication that is, the larger the value of the PPPP, the larger the parameter set corresponding to the parameter ⁇ can be selected.
  • the selection unit 206 may select a parameter set to be used according to one or more of the above four factors, and may select which factor to prioritize according to an actual application scenario. For example, in the application scenario of V2X, the moving speed of the user equipment will be taken as the main consideration, followed by the channel busy rate, followed by the channel occupancy rate, and finally the data service priority of the through link communication.
  • the information processing capability of the user equipment is also possible to determine the information processing capability of the user equipment according to the type of the user equipment (for example, vehicles, pedestrians, mobile relays, relay nodes, fleet members, fleet managers, etc.)
  • One or more of other factors such as carrier aggregation, processing capabilities of the receiver, etc., user equipment behavior, beamforming related information, etc., are selected to select the parameter set to use.
  • the following factors may be further considered, including but not limited to: height of the user equipment, altitude, wind speed, air pressure, temperature and humidity, visibility, and the like.
  • the information from the user equipment relating to at least one of the mobile device's mobile speed, channel busy rate, channel occupancy, and data traffic priority of the through link communication may be the original obtained by the user equipment.
  • the information may also be information after the original information is preprocessed on the user equipment side.
  • the user equipment may determine a preferred parameter set selection range according to one or more of the obtained moving speed, CBR, CR, and PPPP, and report information indicating the parameter set selection range to the base station, so that the base station may combine The actual network condition and the parameter set selection range reported by the user equipment are selected for the optimal parameter set.
  • the selection unit 206 can be further configured to select a parameter set to use for each component carrier in the carrier aggregation communication.
  • CA carrier aggregation communication
  • different component carriers may correspond to different service types, and thus are applicable to different parameter set configurations. According to the content and characteristics of the component carrier transmission, the corresponding parameter set configuration is selected, which can effectively improve the efficiency of carrier aggregation transmission. Parameter set configuration and selection for carrier aggregation communication will be described in detail in the application scenario examples below.
  • the control unit 204 can be further configured to control the base station to transmit the set of parameters selected by the selection unit 206 to the user equipment for the through link communication by the user equipment based on the selected set of parameters.
  • control unit 204 may include related information of the selected parameter set in physical layer signaling (specifically, for example, a sidelink grant) to be sent to the user equipment, so that the user equipment may perform signaling on the received physical layer.
  • the parameter set is obtained by decoding, and the parameter set is used for direct link communication.
  • the selected parameter set may also be sent to the user equipment via the sidelink grant in association with the configuration information of the resources allocated by the base station for the user equipment for the through link communication.
  • the apparatus on the base station side described above with reference to FIGS. 1 to 3 may be implemented at the chip level, or may be implemented at the device level by including other external components.
  • the device may also operate as the base station itself and include a communication unit (optionally shown in dashed boxes) for performing communication operations.
  • the communication unit may include one or more communication interfaces, such as a PC5 interface, an X2 interface, an S1 interface, a Uu interface, etc., to support communication with different devices (eg, vehicles in V2I scenarios, other base stations, legacy user devices, etc.) Communication, the implementation form of the communication unit is not specifically limited herein.
  • FIG. 4 is a block diagram showing a configuration example of a device on the user equipment side in a wireless communication system according to an embodiment of the present disclosure.
  • the apparatus 400 may include an acquisition unit 402 and a control unit 404.
  • the obtaining unit 402 can be configured to acquire one or more parameter sets for the through link communication.
  • the one or more parameter sets are determined based on configuration information from the base station or are pre-configured, and the parameter set includes at least subcarrier spacing and cyclic prefix type.
  • one or more parameter sets may be configured for the user equipment in real time by the base station in combination with the actual situation, so that the acquiring unit 402 on the user equipment side may receive the slave base station.
  • High-level signaling eg, RRC layer signaling
  • RRC layer signaling including configuration information for one or more parameter sets is decoded to obtain the one or more parameter sets.
  • the user equipment cannot receive the configuration information from the base station, so that the user equipment can acquire the stored default parameter set or the last time by reading, for example, internal or external memory.
  • the configuration information received from the base station is obtained as one or more parameter sets that are pre-configured.
  • Control unit 404 can be configured to control the user equipment to make a through link communication based on the acquired one or more parameter sets.
  • the configuration example of the user equipment side will be further described in detail below for the scenario in which the resource scheduling by the base station and the scenario in which the user equipment autonomously selects the resource.
  • FIG. 5 is a block diagram showing another configuration example of a device on the user equipment side in a wireless communication system according to an embodiment of the present disclosure.
  • the apparatus 500 may include an acquisition unit 502, a selection unit 504, and a control unit 506.
  • the functional configuration example of the acquisition unit 502 is substantially the same as the functional configuration example of the acquisition unit 402 described above with reference to FIG. 4, and details are not described herein again. Only a functional configuration example of the selection unit 504 and the control unit 506 will be described in detail below.
  • the selection unit 504 can be configured to derive from one or more parameter sets based on information related to at least one of a user equipment's speed of movement, channel busyness, channel occupancy, and data traffic priority of the through link communication. Select the parameter set for the pass-through link communication.
  • the selection unit 504 may further be based on the height of the user equipment, the type of the user equipment (eg, vehicle, pedestrian, mobile relay, relay node, fleet member, fleet manager, etc.), information processing capability of the user equipment. One or more of other factors (whether supporting carrier aggregation, processing capabilities of the receiver, etc.), user equipment behavior, beamforming related information, and the like, select a parameter set to use.
  • the selection unit 504 can also select a parameter set for the through link communication from one or more parameter sets based on related information of other devices involved in the through link communication.
  • the user equipment is the fleet manager to understand the basic information of other team members, so that the user equipment side selection unit 504 as the fleet manager is selected for the through chain.
  • related information of other team members for example, moving speed, type of data to be transmitted/received, resource allocation, information processing capability, etc.
  • the user equipment may also summarize and forward the information to the base station for selection by the base station, which will not be described in detail herein. Parameter set selection in an automatically queued driving scenario will be described in further detail in a subsequent application scenario example.
  • the selection unit 504 may further select each component carrier according to, for example, the content and characteristics of each component carrier transmission for each component carrier in the carrier aggregation communication. Corresponding parameter sets to improve the efficiency of carrier aggregation communication.
  • the selecting unit 504 may be further configured to: based on at least the resource set configuration information, the physical channel information, and the service type information, in a case where the one or more parameter sets acquired by the obtaining unit 502 are pre-configured One or more of the parameter sets selected for the through link communication from one or more parameter sets.
  • the one or more parameter sets acquired by the obtaining unit 502 is a default configuration or a configuration previously received from the base station.
  • the current resource set configuration information, the physical channel information, the service type information, and the like are not considered, so that the selection unit 504 may simultaneously select one of these factors when selecting from one or more parameter sets configured in advance. Multiple considerations are taken to select the best parameter set for the current through link communication.
  • the selection of the parameter set to be used for the through link communication from the one or more parameter sets by the selection unit 504 on the user equipment side is the selection of the parameter set by the selection unit 206 on the base station side described above with reference to FIG.
  • the processing is substantially similar, so the content that is not described in detail herein can be referred to the description of the corresponding position above, and details are not described herein again.
  • Control unit 506 can be configured to control the user equipment to make through link communication based on the set of parameters selected by selection unit 504.
  • FIG. 6 is a block diagram showing still another configuration example of a device on the user equipment side in a wireless communication system according to an embodiment of the present disclosure.
  • the apparatus 600 may include an acquisition unit 602 and a control unit 604.
  • the functional configuration example of the obtaining unit 602 is substantially the same as the functional configuration example of the obtaining unit 402 described above with reference to FIG. 4, and details are not described herein again. Only a functional configuration example of the control unit 604 will be described in detail below.
  • the control unit 604 can be configured to control the user equipment to transmit information related to at least one of a moving speed of the user equipment, a channel busy rate, a channel occupancy rate, and a data traffic priority of the through link communication to the base station, to The set of parameters for the through link communication is selected by the base station from one or more parameter sets based on the information.
  • control unit 604 may adjust the speed related information (including the instantaneous speed and the average speed, etc.) of the user equipment, the measured channel busy rate, and the channel occupancy periodically or in response to the event trigger according to the measurement configuration from the base station.
  • One or more of the rates are reported to the base station.
  • the reporting period of the speed information, the channel busy rate, and the channel occupancy rate and the reporting trigger event may be the same or different, and are not specifically limited herein.
  • control unit 604 also acquires priority information (for example, PPPP) of the communication service to be sent, and may include the priority information in the resource configuration request, for example, to the base station, so that the base station may be based on the actual application scenario, according to the actual application scenario.
  • priority information for example, PPPP
  • An appropriate set of parameters is selected for one or more of the above factors to balance system stability and spectral efficiency.
  • the control unit 604 may control the user equipment to directly transmit the original information of one or more of the moving speed of the user equipment, the channel busy rate, the channel occupancy rate, and the data service priority of the through link communication to the base station, or may also
  • the original information is pre-processed to determine a preferred parameter set selection range of the user equipment, and the control user equipment transmits the indication information of the parameter set selection range to the base station as a parameter set configuration request.
  • control unit 604 may also control to transmit other information related to the user equipment or other information acquired by the user equipment (including but not limited to the foregoing user equipment capability information, user equipment type information, user behavior, etc.).
  • the base station comprehensively considers different application scenarios to select the optimal parameter set. Taking the automatic queuing driving scene in V2X as an example, in the case where the parameter set is selected by the base station side, the control unit 604 of the user equipment as the fleet manager can also send the basic information of the other team members mastered and summarized to The base station, with the base station selecting the best set of parameters suitable for straight-through link communication between fleet members.
  • the obtaining unit 602 may obtain a parameter set selected by the base station by decoding physical layer signaling (for example, a sidelink grant) from the base station, and the control unit 604 may control the user equipment to perform the through link communication based on the acquired parameter set. .
  • physical layer signaling for example, a sidelink grant
  • FIG. 7 is a block diagram showing still another configuration example of a device on the user equipment side in a wireless communication system according to an embodiment of the present disclosure.
  • the apparatus 700 may include an acquisition unit 702, a control unit 704, and an interaction unit 706.
  • the acquisition unit 702 and the control unit 704 described herein respectively have substantially the same functional configuration examples as the acquisition unit and the control unit included in the apparatus described above with reference to FIGS. 5 and 6, according to resource selection by the user equipment or by the base station, I will not repeat them here. Only a functional configuration example of the interaction unit 706 will be described in detail below.
  • the interaction unit 706 can be configured to control the user equipment to transmit the selected parameter set to one or more other devices that communicate with the user equipment for the through link.
  • both the transmitting and receiving parties perform the through link communication based on the fixed parameter set configuration.
  • the parameter set for the through link communication can be dynamically and flexibly configured, and the sender will The selected parameter set is notified to other devices involved in the communication of the through link so that the transceiver can synchronize the parameter set configuration used for the communication.
  • the interaction unit 706 may include the selected parameter set in the Sidelink Control Information (SCI), and send the SCI to the broadcast, unicast, and/or multicast mode.
  • SCI Sidelink Control Information
  • Other devices such as other devices that receive the SCI, can obtain configuration information of the parameter set by decoding signaling, and receive information from the transmitting user equipment based on the parameter set.
  • the interaction unit 706 can also obtain the parameter set of the other device for the through link communication by decoding the through link control information from the other device. And the control unit 704 controls the user equipment to receive information from other devices based on the acquired parameter sets of other devices.
  • FIG. 8 is a flowchart illustrating an example of a signaling interaction procedure of a transmitting and receiving synchronization parameter set configuration according to an embodiment of the present disclosure.
  • the transmitting device selects or determines a parameter set to be used for the through link communication. Specifically, the transmitting device may select a parameter set by performing a selection process performed by the selection unit 504 described above, or may also determine a parameter set selected by the base station by decoding information from the base station.
  • the transmitting device includes the selected/determined parameter set in the SCI signaling for transmission to the receiving device.
  • the receiving device obtains configuration information of a parameter set that the transmitting device will use for information transmission by decoding the received SCI signaling.
  • the parameter set used by the sending device to send the SCI signaling may be pre-agreed by the transmitting and receiving parties, or may be randomly selected, so that the receiving device may receive the SCI signaling or pass the corresponding parameter set according to the pre-configured parameter set. Blind detection to receive SCI signaling.
  • the transmitting device transmits information to the receiving device using the selected/determined parameter set in step S804, and the receiving device receives information from the transmitting device based on the configured information of the decoded parameter set in step S805.
  • the signaling interaction process described herein with reference to FIG. 8 is only for explaining the parameter set configuration synchronization process of both the transmitting and receiving parties, and the description irrelevant to the process is omitted. Further, it should be noted that the synchronization process is described in chronological order with reference to the flowchart shown in FIG. 8 for convenience of explanation, but the chronological order does not constitute a limitation of the present disclosure.
  • the device on the user equipment side described above with reference to FIGS. 4 to 8 may be implemented at the chip level or may be implemented at the device level by including other external components.
  • the device may also operate as the user device itself and include a communication unit (optionally shown in dashed boxes) for performing communication operations.
  • the communication unit may include one or more communication interfaces, such as a PC5 interface, a Uu interface, etc., to support communication with different devices (eg, a vehicle, the Internet, a base station, etc.), and the implementation form of the communication unit is not specifically limited herein.
  • the apparatus may further comprise a memory (optionally shown by a dashed box) for storing a default resource set configuration, a parameter set configuration, and a resource set configuration and a parameter set configuration received last time from the base station, and the like. .
  • a memory for storing a default resource set configuration, a parameter set configuration, and a resource set configuration and a parameter set configuration received last time from the base station, and the like.
  • the respective functional units in the device on the user equipment side described above are only logical modules divided according to the specific functions they implement, and are not intended to limit the specific implementation.
  • the various functional units and modules described above may be implemented as separate physical entities or may be implemented by a single entity (eg, a processor (CPU or DSP, etc.), integrated circuit, etc.).
  • FIG. 9 is a flowchart illustrating an example of a signaling interaction process in accordance with an embodiment of the present disclosure. This example corresponds to a scenario in which the user equipment is located in the coverage of the base station and the base station is configured to perform resource scheduling by the base station.
  • step S901 the base station establishes an initial connection with the user equipment (ie, RRC_CONNECTED), after which the base station configures resource set configuration information and candidate parameter set configuration information (including the base station based on, for example, resource set configuration) in step S902.
  • resource set configuration information and candidate parameter set configuration information are transmitted to the user equipment, for example, in RRC signaling.
  • the resource set configuration information and the candidate parameter set configuration information may be transmitted to the user equipment in association, or may also be transmitted independently of each other.
  • the user equipment acquires information to be transmitted by the through link communication, including the priority of the communication service, in step S903, and the priority information acquired in step S904 is sent to the base station in the resource configuration request,
  • the base station is requested to allocate resources for it.
  • the user equipment reports the measured speed information, the channel busy rate and/or the channel occupancy rate to the base station periodically or in response to the event trigger.
  • the base station may perform resource allocation and parameter set selection based on one or more of the information from the user equipment, and then pass information about the allocated resource and the selected parameter set to, for example, sidelink in step S907.
  • the grant is sent to the user equipment, so that the user equipment can perform the through link communication based on the received resource configuration information and the parameter set configuration information to perform information transmission in step S908.
  • the user equipment may perform integration and pre-processing on the acquired information according to the configuration information of the received candidate parameter set to obtain, for example, indication information of a parameter set selection range. And transmitting the indication information to the base station.
  • the base station may simultaneously perform resource allocation and parameter set selection according to the indication information.
  • FIG. 10 is a flowchart illustrating another example of a signaling interaction procedure according to an embodiment of the present disclosure.
  • This example corresponds to a scenario in which the user equipment is within the coverage of the base station and the base station is configured to autonomously select resources by the user equipment.
  • the configuration of the candidate resource set and parameter set is still performed by the base station, but the specific resource and parameter set selection will be performed on the user equipment side.
  • step S1001 to step S1003 shown in FIG. 10 is substantially the same as the processing in step S901 to step S903 shown in FIG. 9, and details are not described herein again.
  • step S1004 the user equipment selects a resource in a candidate resource set configured by the base station based on the acquired priority of the data service, and in step S1005, the user equipment is based on the speed information, the channel busy rate, the channel occupancy rate, and the data service.
  • the parameter set to be used is selected from the candidate parameter set by one or more of the priority information and the like.
  • step S1006 the user equipment performs a through link communication based on the selected resource and the parameter set to perform information transmission.
  • FIG. 11 is a flowchart illustrating still another example of a signaling interaction process according to an embodiment of the present disclosure.
  • This example corresponds to a scenario in which the user equipment is located outside the coverage of the base station and thus needs to select resources autonomously. Therefore, in this example, there is virtually no signaling interaction process between the base station and the user equipment.
  • the processing in steps S1102 to S1105 performed by the user equipment side is substantially the same as the processing in step S1003 to step S1006 described above with reference to FIG. 10, except that in step S1101,
  • the user equipment may obtain a default resource set configuration and a parameter set configuration or a resource set configuration and a parameter set configuration received last time from the base station as a candidate resource set and a parameter set by, for example, reading the memory, thereby step S1103 and step S1104.
  • the resource resource and the parameter set are selected from the pre-configured candidate resource set and the candidate parameter set, And performing through link communication based on the selected and resource and parameter sets in step S1105.
  • the signaling interaction process shown in FIG. 11 is only an example, and those skilled in the art can also appropriately modify the principles according to the principles and actual conditions of the present disclosure, and such modifications should obviously be considered as falling into Within the scope of the present disclosure.
  • the signaling interaction process may further include the following steps: the user equipment acquires one or more of resource set configuration information, physical channel information, and service type information, and performs resource selection and parameter set selection based on the information.
  • the present disclosure provides the following method embodiments.
  • FIG. 12 is a flowchart illustrating a process example of a method of a base station side in a wireless communication system according to an embodiment of the present disclosure.
  • step S1201 configuration information of one or more parameter sets for the through link communication is determined based on at least one of the resource set configuration information, the physical channel information, and the service type information.
  • the parameter set includes at least a subcarrier spacing and a cyclic prefix type, and preferably further includes one or more of the number of slots in the subframe, the number of OFDM symbols in the slot, and the number of slots in the frame.
  • step S1202 the control base station transmits the determined configuration information of the one or more parameter sets to the user equipment, so that the user equipment performs the through link communication based on the one or more parameter sets.
  • the configuration information may be included in high layer signaling such as RRC signaling and transmitted to the user equipment in association with the resource set configuration information.
  • the method may further comprise the step of: based on information from the user equipment relating to at least one of a moving speed of the user equipment, a channel busy rate, a channel occupancy rate, and a data traffic priority of the through link communication. Selecting a parameter set for the through link communication from the one or more parameter sets; and transmitting the selected parameter set to the user equipment in physical layer signaling such as a sidelink grant.
  • the through link communication is carrier aggregation communication
  • the parameter set is selected from one or more parameter sets for each component carrier in the carrier aggregation communication.
  • FIG. 13 is a flowchart illustrating a process example of a method of a user equipment side in a wireless communication system according to an embodiment of the present disclosure.
  • step S1301 one or more parameter sets for the through link communication are acquired.
  • one or more parameter sets may be obtained by decoding configuration information included in higher layer signaling, such as from a base station.
  • the one or more parameter sets may also be pre-configured.
  • step S1302 the user equipment is controlled to perform through link communication based on one or more parameter sets.
  • the method may further comprise the step of: information relating to at least one of a mobile service speed of the user equipment, a channel busy rate, a channel occupancy rate, and a data traffic priority of the through link communication, and optionally Other information is sent to the base station; the set of parameters selected by the base station based on the information is obtained by decoding, for example, physical layer signaling from the base station; and the through link communication is based on the selected set of parameters.
  • the method may further comprise one or more of the following steps: based on one or more of data service priorities of at least user equipment, such as a moving speed, a channel busy rate, a channel occupancy rate, and a through link communication.
  • Information optionally based on related information of other devices involved in the communication of the through link, selecting a parameter set to be used for the through link communication from one or more parameter sets, and performing the through link communication based on the selected parameter set
  • the selected parameter set is included in, for example, SCI signaling for transmission to other devices; and the parameter set is obtained by decoding SCI signaling from other devices, and information reception is performed based on the acquired parameter set.
  • V2V inter-vehicle communication
  • the vehicle user 1 simultaneously performs through-link communication with a plurality of vehicle users 2, 3, and 4, and is within the coverage of the base station, so that the vehicle user 1 can receive one or more candidate resource sets from the base station. And configuration information of one or more candidate parameter sets.
  • the vehicle user 1 has a need for direct link communication with a plurality of vehicle users, so that the base station or the vehicle user 1 can select and apply according to the above-mentioned information such as data service priority, channel busy rate, channel occupancy rate, moving speed, and the like.
  • the set of parameters for the through link communication between the vehicle user 1 and the vehicle users 2, 3, and 4 are labeled as Parameter Set Configuration 1, Parameter Set Configuration 2, and Parameter Set Configuration 3, respectively, in FIG.
  • the vehicle user 1 can perform V2V communication with the vehicle users 2, 3, and 4, respectively, based on parameter set configuration 1, parameter set configuration 2, and parameter set configuration 3.
  • the parameter set configuration 1, the parameter set configuration 2, and the parameter set configuration 3 herein may be the same parameter set or may be different parameter sets, and may be specifically set according to actual communication conditions, and the disclosure does not do this. limit.
  • the value of the parameter ⁇ corresponding to the parameter set that may be supported in this scenario may include -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, and 6. 7,.
  • the value of the parameter ⁇ may include -3, -2, -1, 0, 1, 2, 3, 4.
  • the value of the parameter ⁇ may include -2, -1, 0, 1, 2.
  • FIG. 15 is a schematic diagram showing four types of use scenarios of V2X.
  • V2X includes four categories of usage scenarios: automatic platooning, remote driving, advanced driving, and extended sensors, each of which is used.
  • the techniques of the present disclosure can be applied to scenarios to support configurable parameter set designs.
  • FIG. 16 is a schematic diagram showing an application example in an automatic platooning scenario of V2X according to the technology of the present disclosure.
  • the head user who is the fleet manager needs to be responsible for the resource application, distribution, and public information broadcasting of the team driving process.
  • the fleet manager simultaneously performs V2V communication with the vehicle users 1, 2 and 3 using the parameter set configuration 4 to the parameter set configuration 6, respectively, which is similar to the application scenario example described above with reference to FIG. 14, and will not be described in detail herein.
  • the front user and the team members share user basic information with each other, including but not limited to the following contents: mobile speed, service type, information processing capability (whether carrier aggregation is supported, receiver processing capability, etc.), to be transmitted Priority of data services, resource allocation, etc.
  • the front user as the fleet manager knows the basic user information of the other team members, and the head user can select the parameter set for the information broadcast between the team members. Alternatively, it is also possible for the head user to forward the information of the other team members as known to the base station and to select the parameter set by the base station.
  • the front-end user informs other fleet members of the selected parameter set configuration through SCI signaling or fleet internal communication.
  • the selected parameter set configuration can be sent to other fleet member users by broadcast, multicast, and/or unicast.
  • the team members obtain the selected parameter set configuration by decoding the relevant signaling.
  • the front-end user uses the selected parameter set configuration for information broadcast, and other fleet members configure the information received by the front-end user based on the decoded parameter set.
  • different parameter sets can be provided for different content in the broadcast communication, which can effectively improve the efficiency of resource usage.
  • parameter set configuration 1 to parameter set configuration 3 shown in FIG. 16 indicates that each fleet member can perform V2V communication with other vehicle users while receiving broadcast content from the vehicle manager.
  • the parameter set configuration 1 to the parameter set configuration 3 respectively indicate the parameter set configuration used by the vehicle manager to perform V2V communication with the queue member 1 to the queue member 3, which may be the same or may be different, and will not be described in detail herein. .
  • FIG. 17 is a schematic diagram showing an application example in a carrier aggregation communication scenario in accordance with the techniques of the present disclosure.
  • the vehicle user 1 and the vehicle user 2 establish basic through link communication (here, V2V) based on the above process, based on the requirements of both parties or according to the indication of the high layer signaling, the vehicle user 1 and The vehicle user 2 is to perform carrier aggregation communication, and needs to perform operations such as measurement, carrier selection, aggregation, etc., and an appropriate parameter set can be configured for each aggregated component carrier.
  • V2V basic through link communication
  • an appropriate parameter set may be separately configured for each component carrier.
  • the specific configuration process is as follows: the vehicle user 1 is configured by the upper layer or through the through link communication with the vehicle user 2 (for example, the basic V2V communication established above), and acquires the service content, carrier selection, resource allocation, etc. required for carrier aggregation transmission. Basic message.
  • Selecting a parameter set configuration used by different component carriers in the communication process based on the service type and communication conditions corresponding to each component carrier.
  • the selection here can be performed by the base station, by the vehicle user 1 alone or by the vehicle user 1 in conjunction with the vehicle user 2, which is not specifically limited in this disclosure.
  • the vehicle user 1 informs the vehicle user 2 of the parameter set configuration selected for each component carrier by one of the component carriers, or the base station can also transmit the parameter set configuration corresponding to each component carrier to the vehicle user 1 and the vehicle user 2, respectively.
  • Vehicle User 1 and Vehicle User 2 perform carrier aggregation communication based on a parameter set configured for each component carrier.
  • the component carrier CC0 and the component carrier CC1 correspond to the parameter set configuration 1
  • the component carrier CC2 and the component carrier CC3 correspond to the parameter set configuration 2
  • the component carrier CC0 to CC3 may correspond to the same or different parameter set configurations based on actual communication conditions.
  • the corresponding parameter set configuration is selected according to factors such as content and communication conditions of each component carrier, which can effectively improve the efficiency of carrier aggregation.
  • the value of the parameter ⁇ corresponding to the parameter set that may be supported in this scenario may include -4, -3, -2, -1, 0, 1, 2, and 3. 4, preferably comprising -4, -3, -2, -1, 0, 1, 2.
  • the value of the parameter ⁇ that is more suitable for the component carrier that performs signaling and control information transmission in the carrier aggregation communication may include 0, 1, 2
  • the value of the parameter ⁇ that is more suitable for the component carrier that performs data service transmission may be Includes -2, -1, 0.
  • FIG. 18 is a schematic diagram showing an application example in a D2D communication scenario according to the technology of the present disclosure.
  • the device 1, the device 2, and the device 3 are all within the coverage of the base station, wherein the device 2 performs device-to-device (D2D) communication with the device 1 and the device 3, respectively.
  • D2D device-to-device
  • the communication content between device 2 and device 1 and the communication content between device 2 and device 3 are not necessarily the same, and thus may be applicable to different parameter set configurations.
  • the parameter set configuration used for device-to-device communication between devices also changes.
  • the possible switching process is as follows:
  • Device 2 communicates with device 1 using parameter set configuration 1 and is indicated by solid arrows in FIG.
  • Device 2 and Device 1 switch to parameter set configuration 3 for device-to-device communication after the expiration of the appointment time, indicated by the dashed arrows in FIG.
  • MTC machine type communication
  • the value of the parameter ⁇ corresponding to the parameter set that may be supported in this scenario may include -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, preferably. It can include -2, -1, 0, 1, 2, 3.
  • FIG. 19 is a schematic diagram showing an application example in a drone communication scenario in accordance with the techniques of the present disclosure.
  • the drone 1 as a head user can assume a function similar to that of the head user.
  • the application example in the UAV communication scenario shown in FIG. 19 is substantially the same as the application example in the V2X automatic queuing driving scenario described above with reference to FIG. 16, and details are not described herein again. The only difference is that, considering the characteristics of the drone communication, when selecting the parameter set, it is necessary to additionally consider factors such as the current height, altitude, wind speed, air pressure, temperature, visibility, humidity, and the like of the user equipment.
  • the parameter ⁇ corresponding to the parameter set that may be supported in this scenario may include -7, -6, --5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8.
  • the value of the parameter ⁇ may preferably include 2, 3, 4, 5; if the validity of the communication is prioritized, the value of the parameter ⁇ may preferably include -6, -5, -4, -3.
  • FIG. 20 is a schematic diagram showing an application example in a V2I scenario according to the technology of the present disclosure.
  • the vehicle user 1 and the vehicle user 2 perform vehicle-to-infrastructure communication (V2I) with the base station and the Roadside Unit (RSU), respectively, so as to be applicable to two different parameter set configurations, that is, Parameter set configuration 1 and parameter set configuration 2.
  • V2I vehicle-to-infrastructure communication
  • RSU Roadside Unit
  • the parameter set configuration to which the communication process applies will also change.
  • the specific parameter set selection is configured by the base station or the roadside unit facility, so that the vehicle user can dynamically adjust the used parameter set during the communication process.
  • the communication parties are vehicle users and a relatively fixed infrastructure
  • the parameter ⁇ corresponding to the parameter set that may be supported in this scenario may include -2, -1, 0, 1, 2 3, 4, 5, preferably may comprise -1, 0, 1, 2.
  • the present disclosure and the application scenario example different from the fixed parameter set configuration in the through link communication in the prior art, for the characteristics of the NR through link communication, it is proposed to comprehensively consider one or more according to the actual application scenario.
  • the parameters are flexibly and reasonably configured to meet the communication performance requirements of each application scenario of the through link communication.
  • an efficient solution for enabling both the transmitting and receiving sides of the through link communication to synchronize the parameter set configuration is also provided.
  • an electronic device which can include a transceiver and one or more processors, the one or more processors can be configured to perform the implementations described above in accordance with the present disclosure
  • the function of the corresponding unit in the method or device in the wireless communication system, and the transceiver can assume the corresponding communication function.
  • machine-executable instructions in the storage medium and the program product according to the embodiments of the present disclosure may also be configured to perform the method corresponding to the apparatus embodiment described above, and thus the content not described in detail herein may refer to the previous corresponding The description of the location will not be repeated here.
  • a storage medium for carrying the above-described program product including machine-executable instructions is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • the series of processes and devices described above can also be implemented in software and/or firmware.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware structure, such as the general-purpose personal computer 2100 shown in FIG. 21, which is installed with various programs.
  • a computer having a dedicated hardware structure such as the general-purpose personal computer 2100 shown in FIG. 21, which is installed with various programs.
  • 21 is a block diagram showing an example structure of a personal computer which is an information processing device which can be employed in the embodiment of the present disclosure.
  • a central processing unit (CPU) 2101 executes various processes in accordance with a program stored in a read only memory (ROM) 2102 or a program loaded from a storage portion 2108 to a random access memory (RAM) 2103.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 2101 executes various processes and the like is also stored as needed.
  • the CPU 2101, the ROM 2102, and the RAM 2103 are connected to each other via a bus 2104.
  • Input/output interface 2105 is also coupled to bus 2104.
  • the following components are connected to the input/output interface 2105: an input portion 2106 including a keyboard, a mouse, etc.; an output portion 2107 including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.; a storage portion 2108 , including a hard disk or the like; and a communication portion 2109 including a network interface card such as a LAN card, a modem, and the like.
  • the communication section 2109 performs communication processing via a network such as the Internet.
  • the drive 2110 is also connected to the input/output interface 2105 as needed.
  • a removable medium 2111 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 2110 as needed, so that the computer program read therefrom is installed into the storage portion 2108 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the detachable medium 2111.
  • a storage medium is not limited to the removable medium 2111 shown in Fig. 21 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the detachable medium 2111 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be the ROM 2102, a hard disk included in the storage portion 2108, and the like, in which programs are stored, and distributed to the user together with the device containing them.
  • the base stations mentioned in the present disclosure may be implemented as a gNodeB (gNB), any type of eNB (such as a macro eNB and a small eNB), a Transmission Receive Point (TRP), an Enterprise Long Term Evolution (eLTE)-eNB, and the like.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a Base Transceiver Station (BTS).
  • BTS Base Transceiver Station
  • the base station may include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (RRHs) disposed at a different location from the body.
  • a body also referred to as a base station device
  • RRHs remote radio heads
  • various types of terminals which will be described below, can operate as a base station by performing base station functions temporarily or semi-persistently.
  • the user equipment mentioned in the present disclosure may be implemented as a vehicle, a mobile terminal such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera. , vehicle terminals (such as car navigation equipment), drones, mobile stations, and so on.
  • vehicle terminals such as car navigation equipment
  • drones such as car navigation equipment
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine to machine (M2M) communication.
  • MTC machine type communication
  • M2M machine to machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • FIG. 22 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1400 includes one or more antennas 1410 and base station devices 1420.
  • the base station device 1420 and each antenna 1410 may be connected to each other via an RF cable.
  • Each of the antennas 1410 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 1420 to transmit and receive wireless signals.
  • the eNB 1400 can include multiple antennas 1410.
  • multiple antennas 1410 can be compatible with multiple frequency bands used by eNB 1400.
  • FIG. 22 illustrates an example in which the eNB 1400 includes multiple antennas 1410, the eNB 1400 may also include a single antenna 1410.
  • the base station device 1420 includes a controller 1421, a memory 1422, a network interface 1423, and a wireless communication interface 1425.
  • the controller 1421 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1420. For example, controller 1421 generates data packets based on data in signals processed by wireless communication interface 1425 and communicates the generated packets via network interface 1423. The controller 1421 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 1421 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1422 includes a RAM and a ROM, and stores programs executed by the controller 1421 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 1423 is a communication interface for connecting base station device 1420 to core network 1424. Controller 1421 can communicate with a core network node or another eNB via network interface 1423. In this case, the eNB 1400 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface.
  • the network interface 1423 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 1423 is a wireless communication interface, network interface 1423 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 1425.
  • the wireless communication interface 1425 supports any cellular communication scheme, such as Long Term Evolution (LTE), LTE-Advanced (LTE-A), and New Radio Access Technology (NR), and is provided via antenna 1410 to a cell located in the eNB 1400.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • NR New Radio Access Technology
  • the wireless connection of the terminal can also be, for example, a PC5 interface to support straight-through link communication (eg, a V2I scenario).
  • Wireless communication interface 1425 may typically include, for example, baseband (BB) processor 1426 and RF circuitry 1427.
  • BB baseband
  • the BB processor 1426 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing. Instead of the controller 1421, the BB processor 1426 may have some or all of the above-described logic functions.
  • the BB processor 1426 may be a memory that stores a communication control program or a module that includes a processor and associated circuitry configured to execute the program. The update program can cause the function of the BB processor 1426 to change.
  • the module can be a card or blade that is inserted into a slot of base station device 1420. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1427 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1410.
  • the wireless communication interface 1425 can include a plurality of BB processors 1426.
  • multiple BB processors 1426 can be compatible with multiple frequency bands used by eNB 1400.
  • the wireless communication interface 1425 can include a plurality of RF circuits 1427.
  • multiple RF circuits 1427 can be compatible with multiple antenna elements.
  • FIG. 22 illustrates an example in which the wireless communication interface 1425 includes a plurality of BB processors 1426 and a plurality of RF circuits 1427, the wireless communication interface 1425 may also include a single BB processor 1426 or a single RF circuit 1427.
  • the eNB 1530 includes one or more antennas 1540, base station equipment 1550, and RRH 1560.
  • the RRH 1560 and each antenna 1540 may be connected to each other via an RF cable.
  • the base station device 1550 and the RRH 1560 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 1540 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1560 to transmit and receive wireless signals.
  • the eNB 1530 can include multiple antennas 1540.
  • multiple antennas 1540 can be compatible with multiple frequency bands used by eNB 1530.
  • FIG. 23 illustrates an example in which the eNB 1530 includes multiple antennas 1540, the eNB 1530 may also include a single antenna 1540.
  • the base station device 1550 includes a controller 1551, a memory 1552, a network interface 1553, a wireless communication interface 1555, and a connection interface 1557.
  • the controller 1551, the memory 1552, and the network interface 1553 are the same as the controller 1421, the memory 1422, and the network interface 1423 described with reference to FIG.
  • the wireless communication interface 1555 supports any cellular communication schemes (such as LTE, LTE-Advanced, and NR), and provides wireless communication to terminals located in sectors corresponding to the RRH 1560 via the RRH 1560 and the antenna 1540.
  • the wireless communication interface 1555 can also be, for example, a PC5 interface to support straight-through link communication (eg, a V2I scenario).
  • Wireless communication interface 1555 can typically include, for example, BB processor 1556.
  • the BB processor 1556 is identical to the BB processor 1426 described with reference to FIG. 22 except that the BB processor 1556 is connected to the RF circuit 1564 of the RRH 1560 via the connection interface 1557. As shown in FIG.
  • the wireless communication interface 1555 can include a plurality of BB processors 1556.
  • multiple BB processors 1556 can be compatible with multiple frequency bands used by eNB 1530.
  • FIG. 23 illustrates an example in which the wireless communication interface 1555 includes a plurality of BB processors 1556, the wireless communication interface 1555 can also include a single BB processor 1556.
  • connection interface 1557 is an interface for connecting the base station device 1550 (wireless communication interface 1555) to the RRH 1560.
  • the connection interface 1557 may also be a communication module for communicating the base station device 1550 (wireless communication interface 1555) to the above-described high speed line of the RRH 1560.
  • the RRH 1560 includes a connection interface 1561 and a wireless communication interface 1563.
  • connection interface 1561 is an interface for connecting the RRH 1560 (wireless communication interface 1563) to the base station device 1550.
  • the connection interface 1561 can also be a communication module for communication in the above high speed line.
  • the wireless communication interface 1563 transmits and receives wireless signals via the antenna 1540.
  • Wireless communication interface 1563 can generally include, for example, RF circuitry 1564.
  • the RF circuit 1564 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1540.
  • the wireless communication interface 1563 can include a plurality of RF circuits 1564.
  • multiple RF circuits 1564 can support multiple antenna elements.
  • FIG. 23 illustrates an example in which the wireless communication interface 1563 includes a plurality of RF circuits 1564, the wireless communication interface 1563 may also include a single RF circuit 1564.
  • the communication unit in the above-described base station side device can be realized by the wireless communication interface 1425 and the wireless communication interface 1555 and/or the wireless communication interface 1563. At least a part of the functions of the apparatus on the base station side described above may also be implemented by the controller 1421 and the controller 1551.
  • FIG. 24 is a block diagram showing an example of a schematic configuration of a smartphone 1600 to which the technology of the present disclosure can be applied.
  • the smart phone 1600 includes a processor 1601, a memory 1602, a storage device 1603, an external connection interface 1604, an imaging device 1606, a sensor 1607, a microphone 1608, an input device 1609, a display device 1610, a speaker 1611, a wireless communication interface 1612, and one or more An antenna switch 1615, one or more antennas 1616, a bus 1617, a battery 1618, and an auxiliary controller 1619.
  • the processor 1601 may be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smartphone 1600.
  • the memory 1602 includes a RAM and a ROM, and stores data and programs executed by the processor 1601.
  • the storage device 1603 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1604 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 1600.
  • the imaging device 1606 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 1607 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1608 converts the sound input to the smartphone 1600 into an audio signal.
  • the input device 1609 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1610, and receives an operation or information input from a user.
  • the display device 1610 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1600.
  • the speaker 1611 converts the audio signal output from the smartphone 1600 into sound.
  • the wireless communication interface 1612 supports any cellular communication scheme (such as LTE, LTE-Advanced and New Radio Access Technology NR) and performs wireless communication. Additionally, the wireless communication interface 1612 can be, for example, a PC5 interface to support various types of through link communications.
  • Wireless communication interface 1612 may typically include, for example, BB processor 1613 and RF circuitry 1614.
  • the BB processor 1613 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • RF circuitry 1614 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 1616.
  • the wireless communication interface 1612 can be a chip module on which the BB processor 1613 and the RF circuit 1614 are integrated. As shown in FIG. 24, the wireless communication interface 1612 can include a plurality of BB processors 1613 and a plurality of RF circuits 1614. Although FIG. 24 illustrates an example in which the wireless communication interface 1612 includes a plurality of BB processors 1613 and a plurality of RF circuits 1614, the wireless communication interface 1612 may also include a single BB processor 1613 or a single RF circuit 1614.
  • wireless communication interface 1612 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1612 can include a BB processor 1613 and RF circuitry 1614 for each wireless communication scheme.
  • Each of the antenna switches 1615 switches the connection destination of the antenna 1616 between a plurality of circuits included in the wireless communication interface 1612, such as circuits for different wireless communication schemes.
  • Each of the antennas 1616 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 1612 to transmit and receive wireless signals.
  • smart phone 1600 can include multiple antennas 1616.
  • FIG. 24 illustrates an example in which smart phone 1600 includes multiple antennas 1616, smart phone 1600 may also include a single antenna 1616.
  • smart phone 1600 can include an antenna 1616 for each wireless communication scheme.
  • the antenna switch 1615 can be omitted from the configuration of the smartphone 1600.
  • the bus 1617 has a processor 1601, a memory 1602, a storage device 1603, an external connection interface 1604, an imaging device 1606, a sensor 1607, a microphone 1608, an input device 1609, a display device 1610, a speaker 1611, a wireless communication interface 1612, and an auxiliary controller 1619. connection.
  • Battery 1618 provides power to various blocks of smart phone 1600 shown in FIG. 24 via feeders, which are partially shown as dashed lines in the figure.
  • the secondary controller 1619 operates the minimum required function of the smartphone 1600, for example, in a sleep mode.
  • the communication unit in the device on the user equipment side described above can be implemented by the wireless communication interface 1612. At least a part of the functions of the device on the user equipment side described above may also be implemented by the processor 1601 or the auxiliary controller 1619.
  • FIG. 25 is a block diagram showing an example of a schematic configuration of a car navigation device 1720 to which the technology of the present disclosure can be applied.
  • the car navigation device 1720 includes a processor 1721, a memory 1722, a global positioning system (GPS) module 1724, a sensor 1725, a data interface 1726, a content player 1727, a storage medium interface 1728, an input device 1729, a display device 1730, a speaker 1731, and a wireless device.
  • the processor 1721 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 1720.
  • the memory 1722 includes a RAM and a ROM, and stores data and programs executed by the processor 1721.
  • the GPS module 1724 measures the position (such as latitude, longitude, and altitude) of the car navigation device 1720 using GPS signals received from GPS satellites.
  • Sensor 1725 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 1726 is connected to, for example, the in-vehicle network 1741 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 1727 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 1728.
  • the input device 1729 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 1730, and receives an operation or information input from a user.
  • the display device 1730 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 1731 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1733 supports any cellular communication scheme (such as LTE, LTE-Advanced and New Radio Access Technology NR) and performs wireless communication.
  • the wireless communication interface 1733 can also be, for example, a PC5 interface to support straight-through link communication (eg, V2X).
  • Wireless communication interface 1733 can generally include, for example, BB processor 1734 and RF circuitry 1735.
  • the BB processor 1734 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 1735 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1737.
  • the wireless communication interface 1733 can also be a chip module on which the BB processor 1734 and the RF circuit 1735 are integrated. As shown in FIG. 25, the wireless communication interface 1733 can include a plurality of BB processors 1734 and a plurality of RF circuits 1735. Although FIG. 25 illustrates an example in which the wireless communication interface 1733 includes a plurality of BB processors 1734 and a plurality of RF circuits 1735, the wireless communication interface 1733 may also include a single BB processor 1734 or a single RF circuit 1735.
  • wireless communication interface 1733 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless LAN schemes.
  • the wireless communication interface 1733 can include a BB processor 1734 and an RF circuit 1735 for each wireless communication scheme.
  • Each of the antenna switches 1736 switches the connection destination of the antenna 1737 between a plurality of circuits included in the wireless communication interface 1733, such as circuits for different wireless communication schemes.
  • Each of the antennas 1737 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 1733 to transmit and receive wireless signals.
  • car navigation device 1720 can include a plurality of antennas 1737.
  • FIG. 25 shows an example in which the car navigation device 1720 includes a plurality of antennas 1737, the car navigation device 1720 may also include a single antenna 1737.
  • car navigation device 1720 can include an antenna 1737 for each wireless communication scheme.
  • the antenna switch 1736 can be omitted from the configuration of the car navigation device 1720.
  • Battery 1738 provides power to various blocks of car navigation device 1720 shown in FIG. 25 via a feeder, which is partially shown as a dashed line in the figure. Battery 1738 accumulates power supplied from the vehicle.
  • the communication unit in the device on the user device side described above can be realized by the communication interface 1733. At least a portion of the functions of the device on the user equipment side described above may also be implemented by the processor 1721.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1740 including one or more of the car navigation device 1720, the in-vehicle network 1741, and the vehicle module 1742.
  • vehicle module 1742 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 1741.
  • a plurality of functions included in one unit in the above embodiment may be implemented by separate devices.
  • a plurality of functions implemented by a plurality of units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by a plurality of units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processes performed in time series in the stated order, but also processes performed in parallel or individually rather than necessarily in time series. Further, even in the step of processing in time series, it is needless to say that the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信系统中的装置和方法、计算机可读存储介质。该方法包括:基于至少资源集合配置信息、物理信道信息和业务类型信息中的一个或多个,确定用于直通链路通信的一个或多个参数集的配置信息(S1201);以及控制基站将所确定的一个或多个参数集的配置信息发送至用户设备(S1202),以使得用户设备基于一个或多个参数集进行直通链路通信,其中,参数集包括至少子载波间隔和循环前缀类型。该方法针对NR中的直通链路通信灵活地配置所使用的参数集,从而提高了直通链路通信的通信性能,能够满足NR场景下对时延、系统稳定性等一系列指标的更高要求。

Description

无线通信系统中的装置和方法、计算机可读存储介质
本申请要求于2017年12月26日提交中国专利局、申请号为201711433214.8、发明名称为“无线通信系统中的装置和方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请一般地涉及无线通信技术领域,更具体地,涉及在新无线接入技术(New Radio,NR)中对用于直通链路通信(sidelink communication)的参数集(numerology)进行配置的无线通信系统中的装置和方法、计算机可读存储介质。
背景技术
在传统的无线通信技术中,用于直通链路通信的参数集(包括例如子载波间隔、循环前缀类型等等)往往是相对固定的,收发双方均按照该固定参数集执行直通链路通信。但是,这种固定的参数集无法满足对时延、可靠性等一系列指标均具有更高要求的新无线接入技术中的直通链路通信。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的某些方面的基本理解。但是,应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图用来确定本公开的关键性部分或重要部分,也不是意图用来限定本公开的范围。其目的仅仅是以简化的形式给出关于本公开的某些概念,以此作为稍后给出的更详细描述的前序。
鉴于以上问题,本公开的至少一方面的目的是提供一种能够对用于直通链路通信的参数集进行配置的无线通信系统中的装置和方法、计算机可读存储介质。
根据本公开的一方面,提供了一种无线通信系统中的装置,该装置包括处理电路,该处理电路被配置成:基于至少资源集合配置信息、物理信道信息和业务类型信息中的一个或多个,确定用于直通链路通信的一个或多个参数集的 配置信息;以及控制基站将该配置信息发送至用户设备,以使得用户设备基于一个或多个参数集进行直通链路通信,其中,参数集包括至少子载波间隔和循环前缀类型。
根据本公开的另一方面,还提供了一种无线通信系统中的装置,该装置包括处理电路,该处理电路被配置成:获取用于直通链路通信的一个或多个参数集;以及控制用户设备基于一个或多个参数集进行直通链路通信,其中,一个或多个参数集是基于来自基站的配置信息而确定的或者是预先配置的,并且参数集包括至少子载波间隔和循环前缀类型。
根据本公开的另一方面,还提供了一种无线通信系统中的方法,该方法包括:基于至少资源集合配置信息、物理信道信息和业务类型信息中的一个或多个,确定用于直通链路通信的一个或多个参数集的配置信息;以及控制基站将该配置信息发送至用户设备,以使得用户设备基于一个或多个参数集进行直通链路通信,其中,参数集包括至少子载波间隔和循环前缀类型。
根据本公开的另一方面,还提供了一种无线通信系统中的方法,该方法包括:获取用于直通链路通信的一个或多个参数集;以及控制用户设备基于一个或多个参数集进行直通链路通信,其中,一个或多个参数集是基于来自基站的配置信息而确定的或者是预先配置的,并且参数集包括至少子载波间隔和循环前缀类型。
根据本公开的另一方面,还提供了一种存储有可执行指令的计算机可读存储介质,该可执行指令当由计算机执行时,使得计算机执行上述无线通信系统中的方法。
根据本公开的其它方面,还提供了用于实现上述根据本公开的方法的计算机程序代码和计算机程序产品。
根据本公开的实施例的至少一方面,针对NR中的直通链路通信灵活地配置所使用的参数集,从而提高了直通链路通信的通信性能,能够满足NR场景下对时延、系统稳定性等一系列指标的更高要求。
在下面的说明书部分中给出本公开实施例的其它方面,其中,详细说明用于充分地公开本公开实施例的优选实施例,而不对其施加限定。
附图说明
本公开可以通过参考下文中结合附图所给出的详细描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的部件。所述附图连同下面的详细说明一起包含在本说明书中并形成说明书的一部分,用来进一步举例说明本公开的优选实施例和解释本公开的原理和优点。其中:
图1是示出根据本公开的实施例的无线通信系统中的基站侧的装置的配置示例的框图;
图2是示出根据本公开的实施例的无线通信系统中的基站侧的装置的另一配置示例的框图;
图3是示出根据本公开的实施例的由基站配置用户设备上报移动速度的信令交互过程的示例的流程图;
图4是示出根据本公开的实施例的无线通信系统中的用户设备侧的装置的配置示例的框图;
图5是示出根据本公开的实施例的无线通信系统中的用户设备侧的装置的另一配置示例的框图;
图6是示出根据本公开的实施例的无线通信系统中的用户设备侧的装置的又一配置示例的框图;
图7是示出根据本公开的实施例的无线通信系统中的用户设备侧的装置的再一配置示例的框图;
图8是示出根据本公开的实施例的收发双方同步参数集配置的信令交互过程示例的流程图;
图9是示出根据本公开的实施例的信令交互过程的示例的流程图;
图10是示出根据本公开的实施例的信令交互过程的另一示例的流程图;
图11是示出根据本公开的实施例的信令交互过程的又一示例的流程图;
图12是示出根据本公开的实施例的无线通信系统中的基站侧的方法的过程示例的流程图;
图13是示出根据本公开的实施例的无线通信系统中的用户设备侧的方法的过程示例的流程图;
图14是示出根据本公开的技术在车辆间通信(V2V)场景中的应用示例的示意图;
图15是示出V2X的四大类使用场景的示意图;
图16是示出根据本公开的技术在V2X的自动排队驾驶(platooning)场景中的应用示例的示意图;
图17是示出根据本公开的技术在载波聚合通信场景中的应用示例的示意图;
图18是示出根据本公开的技术在D2D通信场景中的应用示例的示意图;
图19是示出根据本公开的技术在无人机通信场景中的应用示例的示意图;
图20是示出根据本公开的技术在V2I场景中的应用示例的示意图;
图21是示出作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图;
图22是示出可以应用本公开的技术的演进型节点(eNB)的示意性配置的第一示例的框图;
图23是示出可以应用本公开的技术的eNB的示意性配置的第二示例的框图;
图24是示出可以应用本公开的技术的智能电话的示意性配置的示例的框图;以及
图25是示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与根据本公开的方案密切相关的设备结构和/或处理步 骤,而省略了与本公开关系不大的其它细节。
在具体描述本公开的实施例之前,应指出,本文中所提及的“直通链路通信”一般是指经由PC5接口进行的通信,并且包括至少车联网通信(Vehicle to Everything,V2X)、设备到设备通信(Device to Device,D2D)、机器类通信(Machine Type Communication,MTC)、无人机(Unmanned Aerial Vehicles,UAV)通信和载波聚合通信(Carrier Aggregation,CA)等中的一种或多种。还应指出,车联网通信(V2X)可以包括车辆间通信(Vehicle to Vehicle,V2V)、车辆到基础设施通信(Vehicle to Infrastructure,V2I)、车辆到网络通信(Vehicle to Network,V2N)和车辆到行人(Vehicle to Pedestrian,V2P)等等。特别地,V2I中的基础设施不仅包括传统的基站,还包括路边单元(Roadside Unit,RSU)。
另外,还应指出,本文中所提及的“由基站进行资源调度的场景”可以对应于V2X中的资源选择模式3或D2D中的资源选择模式1,并且“由用户设备自主选择资源的场景”可对应于V2X中的资源选择模式4或D2D中的资源选择模式2。
下面将参照图1至图25详细描述本公开的实施例。在下文中,将按照以下顺序进行描述。然而,应指出,尽管为了便于描述而按照以下章节顺序分别描述本公开的实施例,但是这样的章节划分和顺序并不构成对本公开的限制。相反,在实际实施本公开的技术时,本领域技术人员可以根据本公开的原理和实际情况而对下述实施例进行组合,除非这些实施例是相互抵触的。
1.根据本公开的基站侧的装置的配置示例
1-1.由用户设备自主选择资源的场景中的示例
1-2.由基站进行资源调度的场景中的示例
2.根据本公开的用户设备侧的装置的配置示例
2-1.由用户设备自主选择资源的场景中的示例
2-2.由基站进行资源调度的场景中的示例
2-3.与其他设备交互参数集配置信息的示例
3.用以实施本公开的技术的信令交互过程的示例
3-1.由基站进行资源调度的场景中的示例
3-2.基站覆盖范围内且由用户设备自主选择资源的场景中的示例
3-3.基站覆盖范围外的场景中的示例
4.根据本公开的方法实施例
5.根据本公开的技术的应用场景的示例
5-1.NR V2V场景中的示例
5-2.NR V2X自动排队驾驶场景中的示例
5-3.NR直通链路载波聚合通信场景中的示例
5-4.NR D2D场景中的示例
5-5.NR无人机通信场景中的示例
5-6.NR V2I场景中的示例
6.用以实施本公开的装置和方法的实施例的计算设备
7.本公开的技术的应用示例
7-1.关于基站的应用示例
7-2.关于用户设备的应用示例
<1.根据本公开的基站侧的装置的配置示例>
[1-1.由用户设备自主选择资源的场景中的示例]
图1是示出根据本公开的实施例的无线通信系统中的基站侧的装置的配置示例的框图。该实施例对应于用户设备在基站的覆盖范围内(In-Coverage)的场景。
如图1所示,根据本实施例的装置100可包括确定单元102和控制单元104。
确定单元102可被配置成基于至少资源集合配置信息、物理信道信息和业务类型信息中的一个或多个,确定用于直通链路通信的一个或多个参数集的配置信息。
这里的参数集是指用于传输的基本参数配置,并且可以包括至少子载波间隔和循环前缀类型。优选地,参数集还可以包括子帧中的时隙数量、时隙中的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号数量和帧中的时隙数量中的一个或多个。此外,参数集还可以包括可以相应推出的子帧中的OFDM符号数量、帧中的OFDM符号数量等一系列传输相关参数,在此不再一一列举。
应指出,参数集中所包括的例如子帧中的时隙数量、时隙中的OFDM符号数量、帧中的时隙数量等参数的配置都可以由子载波间隔和循环前缀类型的配置共同决定,因此,一个参数集中所包括的参数实际上与一对确定的“子载波间隔和循环前缀类型”的组合存在一一对应关系。换言之,在给定了一个参数集中的子载波间隔和循环前缀类型的情况下,也即相应地确定了该参数集中的其他参数。子载波间隔可以表示为Δf=2 μ·15[kHz],μ为整数,循环前缀类型可以包括常规型(normal)和扩展型(extended),从而参数集中的其他参数也可以由参数μ和循环前缀类型来表示。因此,在对用户设备配置要使用的参数集时,可以仅将参数μ和循环前缀类型的指示信息通知给用户设备,从而可以减少信令开销和通信负荷,并且用户设备可以根据所接收到的参数μ的值和循环前缀类型相应地得到参数集中的传输相关参数。在以下描述参数集的配置示例时,为了便于说明,将通过给出参数μ的取值示例来表示可配置的参数集的示例。
资源集合配置信息可以包括例如资源池的配置信息(例如,资源池的划分情况)、载波的配置信息、带宽块(Bandwidth Part,BWP)的配置信息等与传输资源配置相关的信息,从而可以根据不同的资源集合配置所承载的业务内容而为其配置不同的参数集。
物理信道信息可以至少包括例如指示物理信道类型的信息。直通链路通信中包括三种类型的物理信道,即,物理直通链路控制信道(Physical Sidelink Control Channel,PSCCH)、物理直通链路共享信道(Physical Sidelink Shared Channel,PSSCH)和物理直通链路广播信道(Physical Sidelink Broadcast Channel,PSBCH),从而可以根据不同类型的物理信道所对应的频段、调制解调方式等多种因素为其配置不同的参数集。
作为示例而非限制,在NR的直通链路通信中,对于PBSCH,可以优选地选择μ的取值为-2、-1、0、1、2、3、4所对应的多个参数集,更优选地可以选择μ的取值为-1、0、1、2所对应的多个参数集,并且如果只选择唯一的参数集,则为了保持与传统LTE业务的兼容性,参数μ可以优选地设置为0。对于PSCCH,可以优选地选择μ的取值为0、1、2、3所对应的多个参数集,更优选地可以选择μ的取值为0、2所对应的多个参数集,并且如果只选择唯一的参数集,则为了保持与传统LTE业务的兼容性,参数μ可以优选地设置 为0。对于PSSCH,可以优选地选择μ的取值为-5、-4、-3、-2、-1、0、1、2所对应的多个参数集,更优选地可以选择μ的取值为-3、-2、-1、0、1、2所对应的多个参数集,并且如果只选择唯一的参数集,则为了保持与传统LTE业务的兼容性,参数μ可以优选地设置为0。
业务类型信息可以至少包括例如指示直通链路通信承载的业务是LTE业务还是NR业务的信息,从而可以根据LTE业务以及NR业务对通信性能的不同要求而配置不同的参数集。例如,在业务类型信息指示LTE业务的情况下,可以确定一个固定的参数集(例如,子载波间隔固定为15kHz,即,参数μ=0),而在业务类型信息指示NR业务的情况下,可以进一步结合其他因素来确定适合当前业务的多个参数集。这样,可以实现与传统LTE中的直通链路通信的兼容性。另外,在业务类型信息指示LTE业务和NR业务并存的情况下,为了保证兼容性,也可以考虑配置参数μ=0(即,子载波间隔固定为15kHz)所对应的参数集。
应指出,尽管以上描述了基于资源集合配置信息、物理信道信息和业务类型信息中的一个或多个来确定一个或多个参数集,但是在资源集合配置与参数集配置彼此相关联的情况下,这种确定也可以理解为建立多个参数集与资源集合配置信息、物理信道信息和业务类型信息中的一个或多个之间的对应关系。换言之,在实际操作中,也可以基于所配置的参数集来确定资源集合配置信息、物理信道信息和业务类型信息中的一个或多个。
控制单元104可被配置成控制基站将所确定的一个或多个参数集的配置信息发送至用户设备,以使得用户设备可以基于这一个或多个参数集进行通信。
优选地,控制单元104可以进一步被配置成将一个或多个参数集的配置信息包括在高层信令(例如,无线资源控制(Radio Resource Control,RRC)层信令)中以便发送给用户设备。进一步优选地,如上所述,由于确定单元102可以建立资源集合配置信息与参数集的配置信息之间的对应关系,因此控制单元104也可以控制基站将一个或多个参数集的配置信息与资源集合配置信息相关联地发送至用户设备,以进行后续的资源选择和参数集选择。替选地,资源集合配置信息和参数集的配置信息也可以独立地发送至用户设备。
应指出,这里所确定并通知给用户设备的一个或多个参数集仅仅是作为候 选参数集,并且取决于资源选择模式是由基站进行调度还是由用户设备自主选择,可以由基站或用户设备从该候选参数集中选择直通链路通信要使用的具体参数集。
参照图1所描述的配置示例可以对应于由用户设备自主选择资源的场景,接下来将详细描述由基站进行资源调度的场景中的示例。
[1-2.由基站进行资源调度的场景中的示例]
图2是示出根据本公开的实施例的无线通信系统中的基站侧的装置的另一配置示例的框图。
如图2所示,根据该示例的装置200可以包括确定单元202、控制单元204和选择单元206。其中,确定单元202的功能配置示例与以上参照图1描述的确定单元102的功能配置示例基本上相同,在此不再赘述。接下来,将详细描述控制单元204和选择单元206的功能配置示例。
与以上参照图1描述的控制单元104类似地,控制单元204可以控制基站将确定单元202所确定的一个或多个参数集的配置信息通过例如RRC信令发送至用户设备。
选择单元206可以被配置成基于来自用户设备的与至少用户设备的移动速度、信道繁忙率(Channel Busy Ratio,CBR)、信道占用率(Channel Occupancy Ratio,CR)和直通链路通信的数据业务优先级中的一个或多个有关的信息,从一个或多个参数集中选择用于直通链路通信的参数集。
具体地,在用户设备可能处于高速移动的V2X场景中,较快的移动速度可能会导致信道条件的变化较大,因此需要用户设备将其移动速度(包括瞬时移动速度、一段时间内的平均移动速度等)上报给基站,以供基站为其选择更加合适的参数集用于直通链路通信。作为示例,速度越快,则选择越大的参数μ所对应的参数集。
作为示例,将参照图3描述简要描述由基站配置用户设备上报移动速度的信令交互过程。图3是示出根据本公开的实施例的由基站配置用户设备上报移动速度的信令交互过程的示例的流程图。
如图3所示,在步骤S301中,基站与用户设备建立初始连接(即,RRC_CONNECTED),之后,基站可以在步骤S302中向用户设备下发测量配 置,要求用户设备周期性地或者响应于事件触发而上报其速度信息(包括瞬时速度、平均速度等)。
接下来,在步骤S303中,用户设备可以根据所接收到的测量配置,周期性地或者响应于事件触发而将其速度信息包括在测量报告中上报给基站。
返回参照图2,根据现有的测量配置,用户设备会将所测得的信道繁忙率和/或信道占用率周期性地或响应于事件触发而上报给基站,以供基站进行相关决策,从而基站侧的选择单元206还可以基于来自用户设备的信道繁忙率和/或信道占用率来选择适当的参数集。作为示例,信道繁忙率越大,即,信道越繁忙,则可以选择越大的参数μ所对应的参数集。信道占用率越大,即,信道占用程度越高,则可以选择越大的参数μ所对应的参数集。应指出,用户设备上报速度信息、信道繁忙率和信道占用率的周期以及触发事件可以相同或者也可以不同,本公开对此不做限制。
直通链路通信的数据业务优先级是指将通过该直通链路通信传输的数据业务的优先级,例如,可以由直通数据包优先级(ProSe Per-Packet Priority,PPPP)来指示,并且可以包括在来自用户设备的资源配置请求中。作为示例,直通链路通信的数据业务优先级越低,即,PPPP的值越大,则可以选择越大的参数μ所对应的参数集。
这里,应指出,选择单元206可以依据上述四个因素中的一个或多个来选择要使用的参数集,并且可以根据实际的应用场景而选择优先考虑哪个因素。例如,在V2X的应用场景中,用户设备的移动速度将作为主要考虑因素,其次是信道繁忙率,再其次是信道占用率,最后是直通链路通信的数据业务优先级。
此外,取代上述因素或者与上述因素一起,还可以根据用户设备的类型(例如,车辆、行人、移动中继、中继节点、车队成员、车队管理者等)、用户设备的信息处理能力(是否支持载波聚合、接收机的处理能力等等)、用户设备的行为、波束赋形相关信息等其他因素中的一个或多个来选择要使用的参数集。特别地,在无人机通信场景中,还可以进一步将以下因素纳入考虑,包括但不限于:用户设备的高度、海拔高度、风速、气压、温湿度、能见度等等。本领域技术人员可以根据本公开的原理和具体的应用场景来确定选择要使用的参数集时应考虑的因素,这里不再一一列举。
还应指出,上述来自用户设备的与至少用户设备的移动速度、信道繁忙率、信道占用率和直通链路通信的数据业务优先级中的一个或多个有关的信息可以是用户设备获得的原始信息,或者也可以是在用户设备侧对原始信息进行了预处理之后的信息。例如,用户设备可以根据所获得的移动速度、CBR、CR和PPPP中的一个或多个而确定优选的参数集选择范围,并将指示该参数集选择范围的信息上报给基站,从而基站可以结合实际的网络状况以及用户设备上报的参数集选择范围而为其选择最佳的参数集。
此外,优选地,在载波聚合通信(CA)的场景下,选择单元206可以进一步被配置成针对载波聚合通信中的每个成员载波来选择要使用的参数集。这是由于在CA场景中,不同的成员载波可能对应不同的业务类型,从而适用于不同的参数集配置。根据成员载波传输的内容及特点来选择对应的参数集配置,可以有效地提高载波聚合传输的效率。将在下文的应用场景示例中详细描述针对载波聚合通信的参数集配置和选择。
控制单元204可以进一步被配置成控制基站将选择单元206选择的参数集发送至用户设备,以由用户设备基于所选择的参数集而进行直通链路通信。
优选地,控制单元204可以将选择的参数集的相关信息包括在物理层信令中(具体地,例如sidelink grant)以发送至用户设备,从而用户设备可以通过对所接收到的物理层信令进行解码而获得该参数集,并利用该参数集进行直通链路通信。优选地,所选择的参数集也可以与基站为用户设备分配的用于直通链路通信的资源的配置信息相关联地通过sidelink grant被发送至用户设备。
应指出,以上参照图1至图3描述的基站侧的装置可以以芯片级来实现,或者也可以通过包括其它外部部件而以设备级来实现。例如,装置还可以工作为基站本身,并且包括通信单元(可选的,以虚线框示出)用于执行通信操作。通信单元可以包括一个或多个通信接口,例如PC5接口、X2接口、S1接口、Uu接口等等,以支持与不同设备(例如,V2I场景中的车辆、其他基站、传统用户设备等等)间的通信,这里不具体限制通信单元的实现形式。
此外,还应指出,以上所描述的基站侧的装置中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。在实际实现时,上述各个功能单元和模块可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。
与上述基站侧的配置示例相对应的,下面将描述根据本公开的实施例的无线通信系统中的用户设备侧的配置示例。
<2.根据本公开的用户设备侧的配置示例>
图4是示出根据本公开的实施例的无线通信系统中的用户设备侧的装置的配置示例的框图。
如图4所示,根据该示例的装置400可以包括获取单元402和控制单元404。
获取单元402可以被配置成获取用于直通链路通信的一个或多个参数集。这一个或多个参数集是基于来自基站的配置信息而确定的或者是预先配置的,并且参数集包括至少子载波间隔和循环前缀类型。
具体来说,在用户设备处于基站覆盖范围内的情况下,可以由基站结合实际情况而实时地为用户设备配置一个或多个参数集,从而用户设备侧的获取单元402可以通过对从基站接收的包括一个或多个参数集的配置信息的高层信令(例如,RRC层信令)进行解码来获取这一个或多个参数集。由基站确定一个或多个参数集的具体过程可参见以上关于基站侧的实施例的描述,在此不再赘述。
另一方面,在用户设备处于基站覆盖范围外的情况下,用户设备无法接收到来自基站的配置信息,从而用户设备可以通过读取例如内部或外部的存储器获取所存储的默认参数集或上一次从基站接收到的配置信息获作为预先配置的一个或多个参数集。
控制单元404可以被配置成控制用户设备基于所获取的一个或多个参数集进行直通链路通信。
与上述基站侧的配置示例相对应的,下面也将分别针对由基站进行资源调度的场景和由用户设备自主选择资源的场景来进一步详细地描述用户设备侧的配置示例。
[2-1.由用户设备自主选择资源的场景中的示例]
图5是示出根据本公开的实施例的无线通信系统中的用户设备侧的装置的另一配置示例的框图。
如图5所示,根据该示例的装置500可以包括获取单元502、选择单元504和控制单元506。获取单元502的功能配置示例与以上参照图4描述的获取单元402的功能配置示例基本上相同,在此不再赘述。下面将仅详细描述选择单元504和控制单元506的功能配置示例。
选择单元504可被配置成基于与至少用户设备的移动速度、信道繁忙率、信道占用率和直通链路通信的数据业务优先级中的一个或多个有关的信息,从一个或多个参数集中选择用于直通链路通信的参数集。
优选地,选择单元504还可以进一步基于与用户设备的高度、用户设备的类型(例如,车辆、行人、移动中继、中继节点、车队成员、车队管理者等)、用户设备的信息处理能力(是否支持载波聚合、接收机的处理能力等等)、用户设备的行为、波束赋形相关信息等等其他因素中的一个或多个来选择要使用的参数集。
此外,优选地,选择单元504还可以基于涉及直通链路通信的其他设备的相关信息,从一个或多个参数集中选择用于直通链路通信的参数集。
作为示例,在V2X的自动排队驾驶(platooning)场景中,假设用户设备是车队管理者从而了解其他车队成员的基本信息,从而作为车队管理者的用户设备侧的选择单元504在选择用于直通链路通信的参数集时,还可以同时考虑其他车队成员的相关信息(例如,移动速度、待传输/接收数据业务类型、资源分配情况、信息处理能力等等),以便选择适当的参数集。替选地,在上述由基站进行参数集选择的实施例中,用户设备也可以将这些信息汇总并转发至基站以由基站进行选择,在此不再详细描述。将在随后的应用场景示例中进一步详细描述自动排队驾驶场景中的参数集选择。
特别地,在直通链路通信是载波聚合通信的情况下,选择单元504可以进一步针对载波聚合通信中的每个成员载波,根据例如每个成员载波传输的内容和特点来选择每个成员载波所对应的参数集,以便提高载波聚合通信的效率。
此外,优选地,选择单元504可以进一步被配置成:在获取单元502所获取的一个或多个参数集为预先配置的情况下,还基于至少资源集合配置信息、物理信道信息和业务类型信息中的一个或多个,从一个或多个参数集中选择用于直通链路通信的参数集。
具体来说,在用户设备处于基站的覆盖范围之外从而无法接收到基站的实 时配置信息的场景中,获取单元502所获取的一个或多个参数集是默认的配置或先前从基站接收的配置,并未考虑当前的资源集合配置信息、物理信道信息和业务类型信息等等,从而选择单元504在从预先配置的一个或多个参数集中进行选择时,还可以同时将这些因素中的一个或多个纳入考虑,以选择适用于当前的直通链路通信的最佳参数集。
应指出,这里由用户设备侧的选择单元504从一个或多个参数集中选择要用于直通链路通信的参数集的处理与以上参照图2描述的由基站侧的选择单元206选择参数集的处理是基本上类似的,因此在此未详细描述的内容可参见以上相应位置的描述,在此不再赘述。
控制单元506可被配置成控制用户设备基于选择单元504所选择的参数集进行直通链路通信。
[2-2.由基站进行资源调度的场景中的示例]
图6是示出根据本公开的实施例的无线通信系统中的用户设备侧的装置的又一配置示例的框图。
如图6所示,根据该示例的装置600可以包括获取单元602和控制单元604。其中,获取单元602的功能配置示例与以上参照图4描述的获取单元402的功能配置示例基本上相同,在此不再赘述。下面将仅详细描述控制单元604的功能配置示例。
控制单元604可被配置成控制用户设备将与至少用户设备的移动速度、信道繁忙率、信道占用率和直通链路通信的数据业务优先级中的一个或多个有关的信息发送至基站,以由基站基于该信息从一个或多个参数集中选择用于直通链路通信的参数集。
具体地,控制单元604可以根据来自基站的测量配置而周期性地或响应于事件触发而将用户设备的速度相关信息(包括瞬时速度和平均速度等等)、测量得到的信道繁忙率和信道占用率中的一个或多个上报给基站。速度信息、信道繁忙率和信道占用率的上报周期和上报触发事件可以相同或者也可以不同,这里不做具体限定。
此外,控制单元604还获取待发送的通信业务的优先级信息(例如,PPPP),并且可以将该优先级信息包括在例如资源配置请求中以上报给基站,从而基站 可以基于实际应用场景、根据上述因素中的一个或多个而选择适当的参数集,以兼顾系统稳定性和频谱效率。
控制单元604可以控制用户设备将用户设备的移动速度、信道繁忙率、信道占用率和直通链路通信的数据业务优先级中的一个或多个的原始信息直接发送至基站,或者也可以对这些原始信息进行预处理以确定用户设备的优选参数集选择范围,并且控制用户设备将该参数集选择范围的指示信息作为参数集配置请求而发送至基站。
除了上述因素之外,控制单元604还可以控制将与用户设备有关的其他信息或者用户设备获取到的其他信息(包括但不限于上述用户设备能力信息、用户设备类型信息、用户行为等等)发送至基站,以由基站针对不同的应用场景进行综合考虑以选择最佳的参数集。以V2X中的自动排队驾驶场景为例,在由基站侧来选择参数集的情况下,作为车队管理者的用户设备的控制单元604还可以将所掌握和汇总的其他车队成员的基本信息发送至基站,以由基站选择适合于车队成员间的直通链路通信的最佳参数集。
获取单元602可以通过对来自基站的物理层信令(例如,sidelink grant)进行解码来获取基站所选择的参数集,并且控制单元604可以控制用户设备基于所获取的参数集而进行直通链路通信。
应指出,这里参照图6描述的用户设备侧的装置的配置示例是与以上参照图2描述的基站侧的配置示例相对应的,因此在此未详细描述的内容可参见以上相应位置的描述,在此不再赘述。
[2-3.与其他设备交互参数集配置信息的示例]
图7是示出根据本公开的实施例的无线通信系统中的用户设备侧的装置的再一配置示例的框图。
如图7所示,根据该示例的装置700可以包括获取单元702、控制单元704和交互单元706。根据由用户设备还是由基站进行资源选择,这里描述的获取单元702和控制单元704分别具有与上述参照图5和图6描述的装置中包括的获取单元和控制单元基本上相同的功能配置示例,在此不再赘述。下面将仅详细描述交互单元706的功能配置示例。
交互单元706可以被配置成控制用户设备将所选择的参数集发送至与该 用户设备进行直通链路通信的一个或多个其他设备。
区别于现有技术中收发双方均基于固定的参数集配置进行直通链路通信,在本公开的实施例中,用于直通链路通信的参数集是可以动态灵活配置的,并且发送方将所选择的参数集通知给涉及直通链路通信的其他设备,以便收发双方可以同步通信所使用的参数集配置。
作为一种实现示例,交互单元706可以将所选择的参数集包括在直通链路控制信息(Sidelink Control Information,SCI)中,并以广播、单播和/或组播的方式将该SCI发送给其他设备,从而接收到SCI的其他设备可以通过解码信令而获得参数集的配置信息,并基于该参数集接收来自发送用户设备的信息。
类似地,在装置700所在的用户设备工作为接收设备的情况下,交互单元706也可以通过对来自其他设备的直通链路控制信息进行解码,获取其他设备用于直通链路通信的参数集,并由控制单元704基于所获取的其他设备的参数集而控制用户设备接收来自其他设备的信息。
图8是示出根据本公开的实施例的收发双方同步参数集配置的信令交互过程示例的流程图。
如图8所示,在步骤S801中,发送设备选择或确定直通链路通信要使用的参数集。具体地,发送设备可以通过执行上述选择单元504执行的选择处理来选择参数集,或者也可以通过解码来自基站的信息而确定基站选择的参数集。
接下来,在步骤S802中,发送设备将所选择/确定的参数集包括在SCI信令中以发送给接收设备。在步骤S803中,接收设备通过解码所接收到的SCI信令而获得发送设备将用于信息发送的参数集的配置信息。应指出,发送设备发送SCI信令所使用的参数集可以是收发双方预先约定配置的,或者也可以是随机选择的,从而接收设备可以相应地基于预先配置的参数集来接收SCI信令或者通过盲检测来接收SCI信令。
接下来,发送设备在步骤S804中使用所选择/确定的参数集对接收设备进行信息发送,并且接收设备在步骤S805中基于所解码的参数集的配置信息而接收来自发送设备的信息。
这里,应指出,这里参照图8描述的信令交互过程仅是为了说明收发双方的参数集配置同步过程,并且省略了与该过程无关的描述。此外,还应指出, 为了便于说明而参照图8所示的流程图以时间顺序描述了该同步过程,但是该时间顺序并不构成对本公开的限制。
还应指出,上述参照图4至图8描述的用户设备侧的装置可以以芯片级来实现,或者也可通过包括其它外部部件而以设备级来实现。例如,装置还可以工作为用户设备本身,并且包括通信单元(可选的,以虚线框示出)用于执行通信操作。通信单元可以包括一个或多个通信接口,例如PC5接口、Uu接口等等,以支持与不同设备(例如,车辆、互联网、基站等等)间的通信,这里不具体限制通信单元的实现形式。优选地,该装置还可以包括存储器(可选的,以虚线框示出),用以存储默认的资源集合配置、参数集配置以及上一次从基站接收到的资源集合配置和参数集配置等等。
此外,还应指出,以上所描述的用户设备侧的装置中的各个功能单元仅是根据其所实现的具体功能而划分的逻辑模块,而不是用于限制具体的实现方式。在实际实现时,上述各个功能单元和模块可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。
还应指出,虽然以上参照附图所示的框图描述了本公开的装置实施例,但是这仅是示例而非限制。本领域技术人员可以根据本公开的原理对所示出的功能配置示例进行修改,例如,对其中的各个功能模块进行添加、删除、修改、组合等,并且所有这样的变型应认为均落入本公开的范围内。
另外,还应指出,尽管以上为了描述的清楚性而分开描述了在各个场景下的装置配置示例,但是这并不意味着各个实施例之间是互斥的。在实际实现时,可以根据本公开的原理而对各个实施例进行结合,并且这种结合当然应认为落入本公开的范围内。
为了有利于进一步理解本公开的技术,下面将参照图9至图11来描述用以实施本公开的技术的信令交互过程。
<3.用以实施本公开的技术的信令交互过程>
[3-1.由基站进行资源调度的场景中的示例]
图9是示出根据本公开的实施例的信令交互过程的示例的流程图。该示例对应于用户设备位于基站覆盖范围内且基站配置由基站进行资源调度的场景。
如图9所示,在步骤S901中,基站与用户设备建立初始连接(即, RRC_CONNECTED),之后,基站在步骤S902中将资源集合配置信息和候选参数集配置信息(包括基站基于例如资源集合配置信息、物理信道信息和业务类型信息中的一个或多个而确定的一个或多个参数集)包括在例如RRC信令中发送至用户设备。应指出,在步骤S902中,资源集合配置信息和候选参数集配置信息可以相关联地发送至用户设备,或者也可以彼此独立地进行发送。
接下来,用户设备在步骤S903中获取将要通过直通链路通信进行传输的信息,包括该通信业务的优先级,并且在步骤S904中所获取的优先级信息包括在资源配置请求中发送给基站,以请求基站为其分配资源。在步骤S905中,用户设备周期性地或响应于事件触发将所测量的速度信息、信道繁忙率和/或信道占用率上报给基站。在步骤S906中,基站可以基于来自用户设备的信息中的一个或多个来进行资源分配和参数集选择,然后在步骤S907中将关于所分配的资源和所选择的参数集的信息通过例如sidelink grant下发给用户设备,从而用户设备可以在步骤S908中基于所接收到的资源配置信息和参数集配置信息进行直通链路通信以进行信息发送。
应指出,图9所示的信令交互过程仅是示例,本领域技术人员也可以根据本公开的原理和实际情况而对其进行适当的修改,并且这样的修改显然应认为落入本公开的范围内。例如,取代执行上述步骤S904和步骤S905,用户设备也可以根据所接收到的候选参数集的配置信息,对所获取的这些信息进行整合和预处理,以得到例如参数集选择范围的指示信息,并且将该指示信息发送给基站。在已确定了资源集合配置信息与候选参数集配置信息的对应关系的情况下,基站可以根据该指示信息同时进行资源分配和参数集选择。
[3-2.基站覆盖范围内且由用户设备自主选择资源的场景中的示例]
图10是示出根据本公开的实施例的信令交互过程的另一示例的流程图。
该示例对应于用户设备处于基站的覆盖范围内且基站配置由用户设备自主选择资源的场景。在该示例中,仍由基站进行候选的资源集合和参数集的配置,但是具体的资源和参数集选择将在用户设备侧执行。
图10所示的步骤S1001至步骤S1003中的处理与图9所示的步骤S901至步骤S903中的处理基本上相同,在此不再赘述。在步骤S1004中,用户设备基于所获取的数据业务的优先级而在基站配置的候选资源集合中选择资源, 并且在步骤S1005中,用户设备基于速度信息、信道繁忙率、信道占用率以及数据业务优先级等信息中的一个或多个而从候选参数集中选择要使用的参数集。接下来,在步骤S1006中,用户设备基于所选择的资源和参数集进行直通链路通信以进行信息发送。
同样地,应指出,图10所示的信令交互过程仅是示例,本领域技术人员也可以根据本公开的原理和实际情况而对其进行适当的修改,并且这样的修改显然应认为落入本公开的范围内。例如,在资源配置与参数集配置彼此相关联的情况下,上述步骤S1004和步骤S1005也可以通过一个步骤来实现,以同时实现资源选择和参数集选择。
[3-3.基站覆盖范围外的场景中的示例]
图11是示出根据本公开的实施例的信令交互过程的又一示例的流程图。
该示例对应于用户设备位于基站的覆盖范围外从而需要自主选择资源的场景。因此,在该示例中,实际上不存在基站与用户设备间的信令交互过程。
在图11所示的示例中,用户设备侧所执行的步骤S1102至S1105中的处理与以上参照图10描述的步骤S1003至步骤S1006中的处理基本上相同,区别仅在于,在步骤S1101中,用户设备可以通过例如读取存储器而获取默认的资源集合配置和参数集配置或者上一次从基站接收到的资源集合配置和参数集配置作为候选的资源集合和参数集,从而在步骤S1103和步骤S1104中,不同于步骤S1004和步骤S1005中分别从基站通过RRC信令实时配置的候选资源集合和候选参数集中进行选择,而是从预先配置的候选资源集合和候选参数集中进行资源和参数集选择,并在步骤S1105中基于所选择和资源和参数集进行直通链路通信。
同样地,应指出,图11所示的信令交互过程仅是示例,本领域技术人员也可以根据本公开的原理和实际情况而对其进行适当的修改,并且这样的修改显然应认为落入本公开的范围内。例如,该信令交互过程还可以包括以下步骤:用户设备获取资源集合配置信息、物理信道信息和业务类型信息中的一个或多个,并且基于这些信息而进行资源选择和参数集选择。
此外,还应指出,尽管在图9至图11中为了便于描述而以时间序列对各个步骤进行了编号,但是这些编号并不表示这些步骤执行的先后顺序。实际上, 一些步骤可以是并行执行的,或者顺序是可以相互调换的,等等。
<4.根据本公开的方法实施例>
与上述装置实施例相对应的,本公开提供了以下方法实施例。
图12是示出根据本公开的实施例的无线通信系统中的基站侧的方法的过程示例的流程图。
如图12所示,根据该实施例的方法开始于步骤S1201。在步骤S1201中,基于至少资源集合配置信息、物理信道信息和业务类型信息中的一个或多个,确定用于直通链路通信的一个或多个参数集的配置信息。参数集包括至少子载波间隔和循环前缀类型,并且优选地还包括子帧中的时隙数量、时隙中的OFDM符号数量和帧中的时隙数量中的一个或多个。
接下来,该方法进行到步骤S1202。在步骤S1202中,控制基站将所确定的一个或多个参数集的配置信息发送至用户设备,以使得用户设备基于一个或多个参数集进行直通链路通信。优选地,可以将该配置信息包括在例如RRC信令的高层信令中、并且与资源集合配置信息相关联地发送给用户设备。
优选地,该方法还可以包括如下步骤:基于来自用户设备的与至少用户设备的移动速度、信道繁忙率、信道占用率和直通链路通信的数据业务优先级中的一个或多个有关的信息,从一个或多个参数集中选择用于直通链路通信的参数集;以及将所选择的参数集包括在例如sidelink grant的物理层信令中发送给用户设备。此外,优选地,在直通链路通信是载波聚合通信的情况下,针对载波聚合通信中的每个成员载波而从一个或多个参数集中选择参数集。
应指出,这里参照图12描述的基站侧的方法实施例是与以上描述的基站侧的装置实施例相对应的,因此在此未详细描述的内容可参见以上相应位置的描述,在此不再赘述。
图13是示出根据本公开的实施例的无线通信系统中的用户设备侧的方法的过程示例的流程图。
如图13所示,根据该实施例的方法开始于步骤S1301。在步骤S1301中,获取用于直通链路通信的一个或多个参数集。优选地,可以通过对包括在例如来自基站的高层信令中的配置信息进行解码来获取一个或多个参数集。替选地,这一个或多个参数集也可以是预先配置的。
接下来,该方法进行到步骤S1302。在步骤S1302中,控制用户设备基于一个或多个参数集进行直通链路通信。
优选地,该方法还可以包括以下步骤:将与至少用户设备的移动速度、信道繁忙率、信道占用率和直通链路通信的数据业务优先级中的一个或多个有关的信息以及可选的其他信息发送至基站;通过对例如来自基站的物理层信令进行解码而获取基站基于这些信息选择的参数集;以及基于所选择的参数集进行直通链路通信。
优选地,该方法还可以包括以下步骤中的一个或多个:基于与至少用户设备的移动速度、信道繁忙率、信道占用率和直通链路通信的数据业务优先级中的一个或多个有关的信息,可选地基于涉及直通链路通信的其他设备的相关信息,从一个或多个参数集中选择要用于直通链路通信的参数集,并基于所选择的参数集进行直通链路通信;将所选择的参数集包括在例如SCI信令中以发送给其他设备;以及通过对来自其他设备的SCI信令进行解码来获取参数集,并基于所获取的参数集进行信息接收。
应指出,这里参照图13描述的用户设备侧的方法实施例是与以上描述的用户设备侧的装置实施例相对应的,因此在此未详细描述的内容可参见以上相应位置的描述,在此不再赘述。
还应指出,尽管以上描述了根据本公开的实施例的无线通信系统中的方法的过程示例,但是这仅是示例而非限制,并且本领域技术人员可根据本公开的原理对以上实施例进行修改,例如可对各个实施例中的步骤进行添加、删除或者组合等,并且这样的修改均落入本公开的范围内。
此外,还应指出,尽管在附图中和以上描述中以流程图的顺序描述了根据本公开的实施例的无线通信系统中的方法的过程示例,但是根据本公开的方法的执行顺序并不限于此,而是这些处理也可并行地执行或者根据需要来执行。
<5.根据本公开的技术的应用场景示例>
下面将结合具体的场景示例来描述根据本公开的技术的应用,并给出了适合于各个应用场景示例的参数集的优选配置。应指出,在针对各个应用场景示例的描述中,将仅详细描述在该应用场景中的特定配置,而省略了以上描述的在各种应用场景下的共同配置的详细描述。
[5-1.NR V2V场景中的示例]
图14是示出根据本公开的技术在车辆间通信(V2V)场景中的应用示例的示意图。
如图14所示,车辆用户1同时与多个车辆用户2、3和4进行直通链路通信,并且处于基站的覆盖范围之内,从而车辆用户1可以从基站接收一个或多个候选资源集合和一个或多个候选参数集的配置信息。
车辆用户1具有与多个车辆用户进行直通链路通信的需求,从而可以由基站或车辆用户1根据上述诸如数据业务优先级、信道繁忙率、信道占用率、移动速度等的信息,选择分别适用于车辆用户1与车辆用户2、3和4间的直通链路通信的参数集,在图14中分别被标记为参数集配置1、参数集配置2和参数集配置3。在完成了资源分配和参数集选择之后,车辆用户1可以基于参数集配置1、参数集配置2和参数集配置3分别与车辆用户2、3和4进行V2V通信。应指出,这里的参数集配置1、参数集配置2和参数集配置3可以是相同的参数集或者也可以是不同的参数集,可以根据实际的通信状况来具体设置,本公开对此不做限制。
在该示例中,通过基于业务类型、信道状况、移动速度、接收方特性等等因素而选择适当的参数集,可以保证不同车辆间的V2V通信对时延、可靠性等性能指标的要求。
考虑到V2V业务的特点,即,既有对时延要求较高的安全类业务,又有对吞吐量、频谱利用率要求较高的数据类业务,此外考虑到NR V2V与LTE V2V在未来通信场景中可能长期共存,因此在该场景下可能支持的参数集对应的参数μ的取值可以包括-4、-3、-2、-1、0、1、2、3、4、5、6、7。优选地,参数μ的取值可以包括-3、-2、-1、0、1、2、3、4。进一步优选地,参数μ的取值可以包括--2、-1、0、1、2。若只能选择配置一个固定的参数集作为V2V的唯一使用范围,考虑到NR V2V和LTE V2V的共存问题,应选用μ=0,即子载波间隔为15kHz的参数集配置。
[5-2.NR V2X自动排队驾驶场景中的示例]
图15是示出V2X的四大类使用场景的示意图。
如图15所示,V2X包括四大类使用场景,分别是自动排队驾驶(platooning)、远程驾驶(remote driving)、增强驾驶(advanced driving)以及支持扩展传感器(extended sensors),其中,每个使用场景均可应用本公开的技术,以支持可配置的参数集设计。
下面将作为示例进一步详细地描述自动排队驾驶场景中的示例。图16是示出根据本公开的技术在V2X的自动排队驾驶(platooning)场景中的应用示例的示意图。
如图16所示,在自动排队驾驶场景中,作为车队管理者的车头用户需要负责车队驾驶过程的资源申请、分配以及公共信息广播。车队管理者同时分别利用参数集配置4至参数集配置6与车辆用户1、2和3进行V2V通信,这与以上参照图14描述的应用场景示例类似,在此不再详细描述。
这里将以广播通信为例,描述在该场景中由车队管理者负责申请用于车队成员间的广播通信的参数集的示例。具体描述如下:车头用户和车队成员彼此之间共享用户基本信息,包含但不限于下列内容:移动速度、业务类型、信息处理能力(是否支持载波聚合,接收机的处理的能力等)、待传输数据业务的优先级、资源分配情况等。
车头用户作为车队管理者了解其他车队成员的用户基本信息,可以由车头用户选择用于车队成员间的信息广播的参数集。替选地,也可以由车头用户将所了解的其他车队成员的信息转发至基站并由基站来选择参数集。
车头用户通过SCI信令或车队内部通信等方式告知其他车队成员用户所选定的参数集配置。该选定的参数集配置可以通过广播、组播和/或单播的方式被发送至其他车队成员用户。
车队成员通过解码相关信令获取所选取的参数集配置。
车头用户利用所选取的参数集配置进行信息广播,其他车队成员基于解码得到的参数集配置接收车头用户广播的信息。
在该场景示例中,针对广播通信中的不同内容,可以提供不同的参数集,这样可以有效提高资源的使用效率。
另外,应指出,图16中所示出的参数集配置1至参数集配置3表示各个车队成员可以在接收来自车辆管理者的广播内容的同时与其他车辆用户进行V2V通信。参数集配置1至参数集配置3分别表示车辆管理者与队列成员1 至队列成员3进行V2V通信时所使用的参数集配置,它们可以是相同的或者可以是不同的,在此不再详述。
考虑到platooning场景的特点,即,由车头作为车辆管理者进行车队成员管理以及资源申请,车队成员之间频繁进行通信,一方面可能需要共享大数据量的信息如摄像头信息等,另一方面可能还需要及时共享安全信息等,在该场景下可能支持的参数集对应的参数μ的取值可以包括-4、-3、-2、-1、0、1、2、3、4,优选地包括-2、-1、0、1、2。若只能选择配置一个固定的参数集,考虑到NR V2X和LTE V2X的共存问题,应选用μ=0,即子载波间隔为15kHz的参数集配置。
[5-3.NR直通链路载波聚合通信场景中的示例]
图17是示出根据本公开的技术在载波聚合通信场景中的应用示例的示意图。
如图17所示,假设车辆用户1与车辆用户2在基于上述过程建立了基本的直通链路通信(这里为V2V)之后,基于通信双方的需求或者根据高层信令的指示,车辆用户1与车辆用户2要进行载波聚合通信,需要执行诸如测量、载波选择、聚合等操作,则可以针对每个聚合的成员载波配置适当的参数集。在图17所示的示例中,假设车辆用户1作为发送者,车辆用户2作为接收者,聚合了四个成员载波,分别是成员载波CC0、成员载波CC1、成员载波CC2和成员载波CC3。
针对各个成员载波所承载的业务类型、各个载波的通信条件等等,可以针对每个成员载波分别配置适当的参数集。具体配置过程如下:车辆用户1由高层配置或通过与车辆用户2进行直通链路通信(例如,上述建立的基本V2V通信),获取载波聚合所需传输的业务内容、载波选择情况、资源分配等基本消息。
●基于各个成员载波所对应的业务类型、通信条件等选择不同成员载波在通信过程中使用的参数集配置。这里的选择可以由基站来执行、由车辆用户1单独选择或者由车辆用户1联合车辆用户2进行选择,本公开对此不做具体限制。
●车辆用户1通过成员载波之一告知车辆用户2针对各个成员载波选定的 参数集配置,或者也可以由基站分别向车辆用户1和车辆用户2发送各个成员载波所对应的参数集配置。
●车辆用户1和车辆用户2基于针对各个成员载波所配置的参数集而进行载波聚合通信。
在图17所示出的示例中,成员载波CC0和成员载波CC1对应于参数集配置1,并且成员载波CC2和成员载波CC3对应于参数集配置2,但是这仅是示例而非限制,成员载波CC0至CC3可以基于实际的通信状况而对应于相同或不同的参数集配置。
在载波聚合通信场景中,根据各个成员载波传输的内容、通信条件等因素而选择对应的参数集配置,可以有效地提高载波聚合的效率。
考虑到载波聚合的特点,即,通信双方可以使用多个成员载波同时或者不同时进行通信。例如,不同成员载波可以传输不同类型的通信业务,在该场景下可能支持的参数集对应的参数μ的取值可以包括-4、-3、-2、-1、0、1、2、3、4,优选地包括-4、-3、-2、-1、0、1、2。特别地,载波聚合通信中进行信令和控制信息传输的成员载波更适用的参数μ的取值可以包括0、1、2,而进行数据业务传输的成员载波更适用的参数μ的取值可以包括-2、-1、0。
[5-4.NR D2D场景中的示例]
图18是示出根据本公开的技术在D2D通信场景中的应用示例的示意图。
如图18所示,设备1、设备2和设备3都在基站的覆盖范围之内,其中,设备2分别与设备1和设备3进行设备到设备(D2D)通信。设备2与设备1之间的通信内容与设备2与设备3之间的通信内容不一定相同,从而可能适用于不同的参数集配置。此外,随着传输内容和要求的改变,设备之间进行设备到设备通信所使用的参数集配置也会发生改变。可能的切换过程如下:
●设备2与设备1使用参数集配置1进行设备到设备通信,在图18中以实线箭头表示。
●设备2与设备1进行设备到设备通信的业务内容和要求、通信条件等发生改变,通信过程不再适用参数集配置1,而适用于参数集配置3。
●设备2和设备1在约定时间期满之后切换至参数集配置3进行设备到设备通信,在图18中以虚线箭头表示。
在D2D场景中,可以根据不同的通信需求切换不同的参数集配置,从而可以有效地应对场景变化带来的影响。
类似地,在机器类通信(MTC)场景以及其它直通链路通信场景中,也可以根据通信需求的变化而灵活地选择配置更优的参数集。
考虑设备到设备通信的特点,在该场景下可能支持的参数集对应的参数μ的取值可以包括-2、-1、0、1、2、3、4、5、6、7,优选地可以包括-2、-1、0、1、2、3。
[5-5.NR无人机通信场景中的示例]
图19是示出根据本公开的技术在无人机通信场景中的应用示例的示意图。
在图19所示的示例中,无人机1作为排头用户,可以承担与车头用户类似的功能。图19所示的无人机通信场景中的应用示例与以上参照图16描述的V2X自动排队驾驶场景中的应用示例基本上相同,在此不再赘述。区别仅在于,考虑到无人机通信的特点,在进行参数集选择时,还需要另外考虑诸如用户设备的当前高度、海拔高度、风速、气压、温度、能见度、湿度等更多的因素。
考虑到无人机通信场景的特点,即,比V2X场景更高的时延要求以及数据量要求,在该场景下可能支持的参数集对应的参数μ的取值可以包括-7、-6、--5、-4、-3、-2、-1、0、1、2、3、4、5、6、7、8。如果优先考虑通信的可靠性,则参数μ的取值可以优选地包括2、3、4、5;如果优先考虑通信的有效性,则参数μ的取值可以优选地包括-6、-5、-4、-3。
[5-6.NR V2I场景中的示例]
图20是示出根据本公开的技术在V2I场景中的应用示例的示意图。
如图20所示,车辆用户1和车辆用户2分别与基站和路边单元(Roadside Unit,RSU)进行车辆到基础设施通信(V2I),从而分别适用于两种不同的参数集配置,即,参数集配置1和参数集配置2。随着车辆到基础设施通信(V2I)内容和要求的改变,通信过程适用的参数集配置也会改变。具体的参数集选择由基站或者路边单元设施进行下发配置,从而车辆用户可以在通信过程中动态 地调整所用参数集。
考虑到V2I场景的通信特点,通信双方为车辆用户和相对固定的基础设施,在该场景下可能支持的参数集对应的参数μ的取值可以包括-2、-1、0、1、2、3、4、5,优选地可以包括-1、0、1、2。
应指出,尽管以上针对各个应用场景的特点而给出了各个应用场景下的参数集配置的可能选择范围,但是根据实际情况,在各个应用场景下也可能选择不同于上述示例选择范围的参数集,这些不同的参数集选择同样应认为落入本公开的保护范围内。
还应指出,尽管以上参照图14至图20描述了根据本公开的技术的应用场景的示例,但是应理解,这仅是示例而非限制,并且本领域技术人员也可以根据本公开的原理、结合应用场景的特点而对本公开的技术进行适当的修改以适用于除上述示例场景之外的任何直通链路通信场景。
根据上述本公开的实施例以及应用场景示例,不同于现有技术中直通链路通信中的固定参数集配置,针对NR直通链路通信的特点,提出了根据实际应用场景而综合考虑一个或多个因素对参数集进行灵活且合理的配置,以便满足直通链路通信的各个应用场景下的通信性能需求。此外,针对所提出的可配置的参数集,还提供了使得直通链路通信的收发双方能够同步参数集配置的有效解决方案。
应指出,取代以上优点或者与上述优点一起,其他优点和效果在本领域技术人员阅读了本公开的技术内容之后也将是显然的,这里不再一一列举。
还应指出,尽管以上分别针对由基站进行参数集选择和由用户设备进行参数集的情况描述了本公开的实施例,但是这仅是为了便于描述和清楚性而不构成任何限制,在实际应用本公开的技术时,可以对上述实施例进行适当的组合。另外,应指出,无论是由基站还是用户设备选择最终用于直通链路通信的参数集,都需要结合实际的应用场景具体考虑上述各个选择因素,以便兼顾系统稳定性和频谱效率。
此外,根据本公开的实施例,还提供了一种电子设备,该电子设备可包括收发机和一个或多个处理器,这一个或多个处理器可被配置成执行上述根据本公开的实施例的无线通信系统中的方法或装置中的相应单元的功能,并且收发机可以承担相应的通信功能。
应理解,根据本公开的实施例的存储介质和程序产品中的机器可执行的指令还可以被配置成执行与上述装置实施例相对应的方法,因此在此未详细描述的内容可参考先前相应位置的描述,在此不再重复进行描述。
相应地,用于承载上述包括机器可执行的指令的程序产品的存储介质也包括在本发明的公开中。该存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
<6.用以实施本公开的装置和方法的实施例的计算设备>
另外,还应该指出的是,上述系列处理和装置也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图21所示的通用个人计算机2100安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。图21是示出作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图。
在图21中,中央处理单元(CPU)2101根据只读存储器(ROM)2102中存储的程序或从存储部分2108加载到随机存取存储器(RAM)2103的程序执行各种处理。在RAM 2103中,也根据需要存储当CPU 2101执行各种处理等时所需的数据。
CPU 2101、ROM 2102和RAM 2103经由总线2104彼此连接。输入/输出接口2105也连接到总线2104。
下述部件连接到输入/输出接口2105:输入部分2106,包括键盘、鼠标等;输出部分2107,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分2108,包括硬盘等;和通信部分2109,包括网络接口卡比如LAN卡、调制解调器等。通信部分2109经由网络比如因特网执行通信处理。
根据需要,驱动器2110也连接到输入/输出接口2105。可拆卸介质2111比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器2110上,使得从中读出的计算机程序根据需要被安装到存储部分2108中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质2111安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图21所示的其中存 储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质2111。可拆卸介质2111的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 2102、存储部分2108中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
[7.本公开的技术的应用示例]
本公开的技术能够应用于各种产品。例如,本公开中提到的基站可以被实现为gNodeB(gNB)、任何类型的eNB(诸如宏eNB和小eNB)、传输接收点(TRP)、企业长期演进(eLTE)-eNB等等。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的用户设备可以被实现为车辆、移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)、车载终端(诸如汽车导航设备)、无人机、移动台等等。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
以下将参照图22至图25描述根据本公开的应用示例。
<7-1.关于基站的应用示例>
(第一应用示例)
图22是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 1400包括一个或多个天线1410以及基站设备1420。基站设备1420和每个天线1410可以经由RF线缆彼此连接。
天线1410中的每一个均包括单个或多个天线元件(诸如包括在多输入多 输出(MIMO)天线中的多个天线元件),并且用于基站设备1420发送和接收无线信号。如图22所示,eNB 1400可以包括多个天线1410。例如,多个天线1410可以与eNB 1400使用的多个频段兼容。虽然图22示出其中eNB 1400包括多个天线1410的示例,但是eNB 1400也可以包括单个天线1410。
基站设备1420包括控制器1421、存储器1422、网络接口1423以及无线通信接口1425。
控制器1421可以为例如CPU或DSP,并且操作基站设备1420的较高层的各种功能。例如,控制器1421根据由无线通信接口1425处理的信号中的数据来生成数据分组,并经由网络接口1423来传递所生成的分组。控制器1421可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1421可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1422包括RAM和ROM,并且存储由控制器1421执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1423为用于将基站设备1420连接至核心网1424的通信接口。控制器1421可以经由网络接口1423而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1400与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1423还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1423为无线通信接口,则与由无线通信接口1425使用的频段相比,网络接口1423可以使用较高频段用于无线通信。
无线通信接口1425支持任何蜂窝通信方案(诸如长期演进(LTE)、LTE-先进(LTE-A)和新无线接入技术(NR)),并且经由天线1410来提供到位于eNB 1400的小区中的终端的无线连接。此外,无线通信接口1425还可以为例如PC5接口,以支持直通链路通信(例如,V2I场景)。无线通信接口1425通常可以包括例如基带(BB)处理器1426和RF电路1427。BB处理器1426可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1421,BB处理器1426可以具有上述逻 辑功能的一部分或全部。BB处理器1426可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1426的功能改变。该模块可以为插入到基站设备1420的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1427可以包括例如混频器、滤波器和放大器,并且经由天线1410来传送和接收无线信号。
如图22所示,无线通信接口1425可以包括多个BB处理器1426。例如,多个BB处理器1426可以与eNB 1400使用的多个频段兼容。如图22所示,无线通信接口1425可以包括多个RF电路1427。例如,多个RF电路1427可以与多个天线元件兼容。虽然图22示出其中无线通信接口1425包括多个BB处理器1426和多个RF电路1427的示例,但是无线通信接口1425也可以包括单个BB处理器1426或单个RF电路1427。
(第二应用示例)
图23是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 1530包括一个或多个天线1540、基站设备1550和RRH 1560。RRH 1560和每个天线1540可以经由RF线缆而彼此连接。基站设备1550和RRH 1560可以经由诸如光纤线缆的高速线路而彼此连接。
天线1540中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1560发送和接收无线信号。如图23所示,eNB 1530可以包括多个天线1540。例如,多个天线1540可以与eNB1530使用的多个频段兼容。虽然图23示出其中eNB 1530包括多个天线1540的示例,但是eNB 1530也可以包括单个天线1540。
基站设备1550包括控制器1551、存储器1552、网络接口1553、无线通信接口1555以及连接接口1557。控制器1551、存储器1552和网络接口1553与参照图22描述的控制器1421、存储器1422和网络接口1423相同。
无线通信接口1555支持任何蜂窝通信方案(诸如LTE、LTE-先进和NR),并且经由RRH 1560和天线1540来提供到位于与RRH 1560对应的扇区中的终端的无线通信。此外,无线通信接口1555还可以为例如PC5接口,以支持直通链路通信(例如,V2I场景)。无线通信接口1555通常可以包括例如BB处 理器1556。除了BB处理器1556经由连接接口1557连接到RRH 1560的RF电路1564之外,BB处理器1556与参照图22描述的BB处理器1426相同。如图23所示,无线通信接口1555可以包括多个BB处理器1556。例如,多个BB处理器1556可以与eNB 1530使用的多个频段兼容。虽然图23示出其中无线通信接口1555包括多个BB处理器1556的示例,但是无线通信接口1555也可以包括单个BB处理器1556。
连接接口1557为用于将基站设备1550(无线通信接口1555)连接至RRH1560的接口。连接接口1557还可以为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的上述高速线路中的通信的通信模块。
RRH 1560包括连接接口1561和无线通信接口1563。
连接接口1561为用于将RRH 1560(无线通信接口1563)连接至基站设备1550的接口。连接接口1561还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1563经由天线1540来传送和接收无线信号。无线通信接口1563通常可以包括例如RF电路1564。RF电路1564可以包括例如混频器、滤波器和放大器,并且经由天线1540来传送和接收无线信号。如图23所示,无线通信接口1563可以包括多个RF电路1564。例如,多个RF电路1564可以支持多个天线元件。虽然图23示出其中无线通信接口1563包括多个RF电路1564的示例,但是无线通信接口1563也可以包括单个RF电路1564。
在图22和图23所示的eNB 1400和eNB 1530中,上述基站侧的装置中的通信单元可以由无线通信接口1425以及无线通信接口1555和/或无线通信接口1563实现。上述基站侧的装置的功能的至少一部分也可以由控制器1421和控制器1551实现。
<7-2.关于用户设备的应用示例>
(第一应用示例)
图24是示出可以应用本公开内容的技术的智能电话1600的示意性配置的示例的框图。智能电话1600包括处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612、一个或多个天线开 关1615、一个或多个天线1616、总线1617、电池1618以及辅助控制器1619。
处理器1601可以为例如CPU或片上系统(SoC),并且控制智能电话1600的应用层和另外层的功能。存储器1602包括RAM和ROM,并且存储数据和由处理器1601执行的程序。存储装置1603可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1604为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1600的接口。
摄像装置1606包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1607可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1608将输入到智能电话1600的声音转换为音频信号。输入装置1609包括例如被配置为检测显示装置1610的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1610包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1600的输出图像。扬声器1611将从智能电话1600输出的音频信号转换为声音。
无线通信接口1612支持任何蜂窝通信方案(诸如LTE、LTE-先进和新无线接入技术NR),并且执行无线通信。此外,无线通信接口1612可以为例如PC5接口,以支持各种类型的直通链路通信。无线通信接口1612通常可以包括例如BB处理器1613和RF电路1614。BB处理器1613可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1614可以包括例如混频器、滤波器和放大器,并且经由天线1616来传送和接收无线信号。无线通信接口1612可以为其上集成有BB处理器1613和RF电路1614的一个芯片模块。如图24所示,无线通信接口1612可以包括多个BB处理器1613和多个RF电路1614。虽然图24示出其中无线通信接口1612包括多个BB处理器1613和多个RF电路1614的示例,但是无线通信接口1612也可以包括单个BB处理器1613或单个RF电路1614。
此外,除了蜂窝通信方案之外,无线通信接口1612可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1612可以包括针对每种无线通信方案的BB处理器1613和RF电路1614。
天线开关1615中的每一个在包括在无线通信接口1612中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1616的连接目的地。
天线1616中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1612传送和接收无线信号。如图24所示,智能电话1600可以包括多个天线1616。虽然图24示出其中智能电话1600包括多个天线1616的示例,但是智能电话1600也可以包括单个天线1616。
此外,智能电话1600可以包括针对每种无线通信方案的天线1616。在此情况下,天线开关1615可以从智能电话1600的配置中省略。
总线1617将处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612以及辅助控制器1619彼此连接。电池1618经由馈线向图24所示的智能电话1600的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1619例如在睡眠模式下操作智能电话1600的最小必需功能。
在图24所示的智能电话1600中,上述用户设备侧的装置中的通信单元可以由无线通信接口1612实现。上述用户设备侧的装置的功能的至少一部分也可以由处理器1601或辅助控制器1619实现。
(第二应用示例)
图25是示出可以应用本公开内容的技术的汽车导航设备1720的示意性配置的示例的框图。汽车导航设备1720包括处理器1721、存储器1722、全球定位系统(GPS)模块1724、传感器1725、数据接口1726、内容播放器1727、存储介质接口1728、输入装置1729、显示装置1730、扬声器1731、无线通信接口1733、一个或多个天线开关1736、一个或多个天线1737以及电池1738。
处理器1721可以为例如CPU或SoC,并且控制汽车导航设备1720的导航功能和另外的功能。存储器1722包括RAM和ROM,并且存储数据和由处理器1721执行的程序。
GPS模块1724使用从GPS卫星接收的GPS信号来测量汽车导航设备1720的位置(诸如纬度、经度和高度)。传感器1725可以包括一组传感器,诸如陀 螺仪传感器、地磁传感器和空气压力传感器。数据接口1726经由未示出的终端而连接到例如车载网络1741,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1727再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1728中。输入装置1729包括例如被配置为检测显示装置1730的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1730包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1731输出导航功能的声音或再现的内容。
无线通信接口1733支持任何蜂窝通信方案(诸如LTE、LTE-先进和新无线接入技术NR),并且执行无线通信。此外,无线通信接口1733还可以为例如PC5接口,以支持直通链路通信(例如,V2X)。无线通信接口1733通常可以包括例如BB处理器1734和RF电路1735。BB处理器1734可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1735可以包括例如混频器、滤波器和放大器,并且经由天线1737来传送和接收无线信号。无线通信接口1733还可以为其上集成有BB处理器1734和RF电路1735的一个芯片模块。如图25示,无线通信接口1733可以包括多个BB处理器1734和多个RF电路1735。虽然图25示出其中无线通信接口1733包括多个BB处理器1734和多个RF电路1735的示例,但是无线通信接口1733也可以包括单个BB处理器1734或单个RF电路1735。
此外,除了蜂窝通信方案之外,无线通信接口1733可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1733可以包括BB处理器1734和RF电路1735。
天线开关1736中的每一个在包括在无线通信接口1733中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1737的连接目的地。
天线1737中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1733传送和接收无线信号。如图25所示,汽车导航设备1720可以包括多个天线1737。虽然图25出其中汽车导航设备1720包括多个天线1737的示例,但是汽车导航设备1720也可以 包括单个天线1737。
此外,汽车导航设备1720可以包括针对每种无线通信方案的天线1737。在此情况下,天线开关1736可以从汽车导航设备1720的配置中省略。
电池1738经由馈线向图25示的汽车导航设备1720的各个块提供电力,馈线在图中被部分地示为虚线。电池1738累积从车辆提供的电力。
在图25出的汽车导航设备1720中,上述用户设备侧的装置中的通信单元可以由通信接口1733实现。上述用户设备侧的装置的功能的至少一部分也可以由处理器1721实现。
本公开内容的技术也可以被实现为包括汽车导航设备1720、车载网络1741以及车辆模块1742中的一个或多个块的车载系统(或车辆)1740。车辆模块1742生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1741。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (26)

  1. 一种无线通信系统中的装置,所述装置包括处理电路,所述处理电路被配置成:
    基于至少资源集合配置信息、物理信道信息和业务类型信息中的一个或多个,确定用于直通链路通信的一个或多个参数集的配置信息;以及
    控制基站将所述配置信息发送至用户设备,以使得所述用户设备基于所述一个或多个参数集进行所述直通链路通信,
    其中,参数集包括至少子载波间隔和循环前缀类型。
  2. 根据权利要求1所述的装置,其中,所述处理电路进一步被配置成:将所述配置信息包括在高层信令中,以控制所述基站将所述配置信息发送至所述用户设备。
  3. 根据权利要求1所述的装置,其中,所述处理电路进一步被配置成:控制所述基站将所述配置信息与所述资源集合配置信息相关联地发送至所述用户设备。
  4. 根据权利要求1所述的装置,其中,所述处理电路进一步被配置成:
    基于来自所述用户设备的与至少所述用户设备的移动速度、信道繁忙率、信道占用率和所述直通链路通信的数据业务优先级中的一个或多个有关的信息,从所述一个或多个参数集中选择用于所述直通链路通信的参数集;以及
    控制所述基站将所选择的参数集发送至所述用户设备,以由所述用户设备基于所选择的参数集进行所述直通链路通信。
  5. 根据权利要求4所述的装置,其中,所述处理电路进一步被配置成:将所选择的参数集包括在物理层信令中,以控制所述基站将所选择的参数集发送至所述用户设备。
  6. 根据权利要求4所述的装置,其中,与所述直通链路通信的数据业务优先级有关的信息包括在来自所述用户设备的资源配置请求中。
  7. 根据权利要求4所述的装置,其中,所述处理电路进一步被配置成:在所述直通链路通信是载波聚合通信的情况下,针对所述载波聚合通信中的每个成员载波而从所述一个或多个参数集中选择参数集。
  8. 根据权利要求1所述的装置,其中,所述直通链路通信包括至少车联 网通信、设备到设备通信、机器类通信、无人机通信和载波聚合通信。
  9. 根据权利要求1所述的装置,其中,参数集还包括子帧中的时隙数量、时隙中的OFDM符号数量和帧中的时隙数量中的一个或多个。
  10. 根据权利要求1至9中任一项所述的装置,其中,所述装置工作为所述基站,并且所述装置还包括:通信单元,被配置成执行通信操作。
  11. 一种无线通信系统中的装置,所述装置包括处理电路,所述处理电路被配置成:
    获取用于直通链路通信的一个或多个参数集;以及
    控制用户设备基于所述一个或多个参数集进行所述直通链路通信,
    其中,所述一个或多个参数集是基于来自基站的配置信息而确定的或者是预先配置的,并且参数集包括至少子载波间隔和循环前缀类型。
  12. 根据权利要求11所述的装置,其中,所述处理电路进一步被配置成:通过对来自所述基站的包括所述配置信息的高层信令进行解码来获取所述一个或多个参数集,
    其中,所述一个或多个参数集是所述基站基于至少资源集合配置信息、物理信道信息和业务类型信息中的一个或多个而确定的。
  13. 根据权利要求12所述的装置,其中,所述处理电路进一步被配置成:
    控制所述用户设备将与至少所述用户设备的移动速度、信道繁忙率、信道占用率和所述直通链路通信的数据业务优先级中的一个或多个有关的信息发送至所述基站,以由所述基站基于该信息从所述一个或多个参数集中选择用于所述直通链路通信的参数集;以及
    控制所述用户设备基于所述基站选择的参数集进行所述直通链路通信。
  14. 根据权利要求13所述的装置,其中,所述处理电路进一步被配置成:通过对来自所述基站的物理层信令进行解码来获取所述基站选择的参数集。
  15. 根据权利要求11或12所述的装置,其中,所述处理电路进一步被配置成:
    基于与至少所述用户设备的移动速度、信道繁忙率、信道占用率和所述直通链路通信的数据业务优先级中的一个或多个有关的信息,从所述一个或多个参数集中选择用于所述直通链路通信的参数集;以及
    控制所述用户设备基于所选择的参数集进行所述直通链路通信。
  16. 根据权利要求15所述的装置,其中,所述处理电路进一步被配置成:在所述一个或多个参数集为预先配置的情况下,还基于至少资源集合配置信息、物理信道信息和业务类型信息中的一个或多个,从所述一个或多个参数集中选择用于所述直通链路通信的参数集。
  17. 根据权利要求15所述的装置,其中,所述处理电路进一步被配置成:还基于涉及所述直通链路通信的其他设备的相关信息,从所述一个或多个参数集中选择用于所述直通链路通信的所述参数集。
  18. 根据权利要求15所述的装置,其中,所述处理电路进一步被配置成:在所述直通链路通信是载波聚合通信的情况下,针对所述载波聚合通信中的每个成员载波而从所述一个或多个参数集中选择参数集。
  19. 根据权利要求13至18中任一项所述的装置,其中,所述处理电路进一步被配置成:将所选择的参数集包括在直通链路控制信息中,以控制所述用户设备将所述直通链路控制信息发送至其他设备。
  20. 根据权利要求11所述的装置,其中,所述处理电路进一步被配置成:
    通过对来自其他设备的直通链路控制信息进行解码,获取其他设备用于直通链路通信的参数集;以及
    基于所获取的所述其他设备的参数集,控制所述用户设备接收来自所述其他设备的信息。
  21. 根据权利要求11所述的装置,其中,所述直通链路通信包括至少车联网通信、设备到设备通信、机器类通信、无人机通信和载波聚合通信。
  22. 根据权利要求11所述的装置,其中,参数集还包括子帧中的时隙数量、时隙中的OFDM符号数量和帧中的时隙数量中的一个或多个。
  23. 根据权利要求11所述的装置,其中,所述装置工作为所述用户设备,并且所述装置还包括:通信单元,被配置成执行通信操作。
  24. 一种无线通信系统中的方法,所述方法包括:
    基于至少资源集合配置信息、物理信道信息和业务类型信息中的一个或多个,确定用于直通链路通信的一个或多个参数集的配置信息;以及
    控制基站将所述配置信息发送至用户设备,以使得所述用户设备基于所述一个或多个参数集进行所述直通链路通信,
    其中,参数集包括至少子载波间隔和循环前缀类型。
  25. 一种无线通信系统中的方法,所述方法包括:
    获取用于直通链路通信的一个或多个参数集;以及
    控制用户设备基于所述一个或多个参数集进行所述直通链路通信,
    其中,所述一个或多个参数集是基于来自基站的配置信息而确定的或者是预先配置的,并且参数集包括至少子载波间隔和循环前缀类型。
  26. 一种存储有可执行指令的计算机可读存储介质,所述可执行指令当由计算机执行时,使得所述计算机执行根据权利要求24或25所述的方法。
PCT/CN2018/122012 2017-12-26 2018-12-19 无线通信系统中的装置和方法、计算机可读存储介质 WO2019128795A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880057376.2A CN111052773B (zh) 2017-12-26 2018-12-19 无线通信系统中的装置和方法、计算机可读存储介质
JP2020535019A JP7306393B2 (ja) 2017-12-26 2018-12-19 無線通信システムにおける装置及び方法
KR1020207020306A KR20200100115A (ko) 2017-12-26 2018-12-19 무선 통신 시스템에서의 장치 및 방법, 및 컴퓨터-판독가능 저장 매체
EP18896924.0A EP3735004A4 (en) 2017-12-26 2018-12-19 APPARATUS AND METHOD IN A WIRELESS COMMUNICATION SYSTEM AND COMPUTER READABLE MEMORY SUPPORT
US16/648,243 US11394509B2 (en) 2017-12-26 2018-12-19 Apparatus and method in wireless communication system, and computer-readable storage medium
US17/841,664 US11909688B2 (en) 2017-12-26 2022-06-16 Apparatus and method in wireless communication system, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711433214.8 2017-12-26
CN201711433214.8A CN109963265A (zh) 2017-12-26 2017-12-26 无线通信系统中的装置和方法、计算机可读存储介质

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/648,243 A-371-Of-International US11394509B2 (en) 2017-12-26 2018-12-19 Apparatus and method in wireless communication system, and computer-readable storage medium
US17/841,664 Continuation US11909688B2 (en) 2017-12-26 2022-06-16 Apparatus and method in wireless communication system, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2019128795A1 true WO2019128795A1 (zh) 2019-07-04

Family

ID=67022184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122012 WO2019128795A1 (zh) 2017-12-26 2018-12-19 无线通信系统中的装置和方法、计算机可读存储介质

Country Status (6)

Country Link
US (2) US11394509B2 (zh)
EP (1) EP3735004A4 (zh)
JP (1) JP7306393B2 (zh)
KR (1) KR20200100115A (zh)
CN (2) CN109963265A (zh)
WO (1) WO2019128795A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109963265A (zh) * 2017-12-26 2019-07-02 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质
US10862613B2 (en) * 2018-02-01 2020-12-08 T-Mobile Usa, Inc. Dynamic numerology based on services
CN110234094B (zh) * 2018-03-05 2024-03-01 华为技术有限公司 一种资源配置方法、第一通信设备、第二通信设备及系统
CN110536430B (zh) * 2018-09-05 2023-04-07 中兴通讯股份有限公司 通信及资源配置方法、装置、基站、终端及存储介质
EP3654719A1 (en) * 2018-11-14 2020-05-20 Samsung Electronics Co., Ltd. Method and apparatus for configuring parameters in vehicle-to-everything system
GB2581492B (en) * 2019-02-18 2022-04-06 Samsung Electronics Co Ltd Improvements in and relating to mobility states in connected user equipment group mobility
WO2020191785A1 (zh) * 2019-03-28 2020-10-01 Oppo广东移动通信有限公司 一种车联网系统中的通信方法及终端设备、网络设备
US20220191809A1 (en) * 2019-04-02 2022-06-16 Apple Inc. Systems and methods for enhanced nr-v2x synchronization procedure
US11277250B2 (en) * 2019-04-10 2022-03-15 Hyundai Motor Company Method and apparatus for reconfiguring bandwidth part for groupcase in sidelink communication
CN111865478B (zh) * 2019-04-26 2022-02-11 华为技术有限公司 侧行链路控制信息的发送方法及设备
US11729744B2 (en) * 2019-07-03 2023-08-15 Qualcomm Incorporated Determining numerology for sidelink communication
CN110366136B (zh) * 2019-07-17 2022-08-02 西安高新兴物联软件有限公司 V2X SideLink通信的调度以及参数配置方法、装置及存储介质
CN111800238B (zh) * 2019-07-22 2023-06-09 维沃移动通信有限公司 载波聚合参数配置方法、设备及系统
CN112584447A (zh) * 2019-09-29 2021-03-30 索尼公司 无线通信系统中的电子设备和方法
CN114980018A (zh) * 2019-09-30 2022-08-30 华为技术有限公司 通信方法及相关产品
US10959074B1 (en) * 2019-11-07 2021-03-23 Qualcomm Incorporated Selection and use of backup communication mode for vehicle-to-vehicle messaging
KR20220103724A (ko) * 2019-11-20 2022-07-22 엘지전자 주식회사 Nr v2x에서 혼잡 제어를 수행하는 방법 및 장치
CN113055858B (zh) * 2019-12-27 2023-03-31 成都鼎桥通信技术有限公司 一种无人机的数据传输方法和装置
WO2021196043A1 (zh) * 2020-03-31 2021-10-07 华为技术有限公司 一种安全通信的方法及装置
WO2022047741A1 (en) * 2020-09-04 2022-03-10 Qualcomm Incorporated Congestion control for sidelink communication with multi-trp
US11528757B2 (en) * 2020-10-30 2022-12-13 Qualcomm Incorporated Dynamic cyclic prefix selection
CN112859910A (zh) * 2021-01-08 2021-05-28 山东大学 考虑隐私保护的无人机编队事件触发一致性控制方法及系统
US11979903B2 (en) * 2021-04-15 2024-05-07 Qualcomm Incorporated Channel occupancy ratio calculation
US20220369288A1 (en) * 2021-05-11 2022-11-17 Qualcomm Incorporated Inter user equipment coordination for resource pools
WO2023135770A1 (ja) * 2022-01-14 2023-07-20 株式会社Nttドコモ 端末及び通信方法
CN114679362A (zh) * 2022-04-08 2022-06-28 中山大学 一种通信系统多载波波形参数的自适应调节方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162513A (zh) * 2015-04-09 2016-11-23 上海贝尔股份有限公司 支持优先级的接近业务直接通信的方法和装置
CN106304351A (zh) * 2015-05-27 2017-01-04 中兴通讯股份有限公司 一种资源分配的方法和装置
CN107040864A (zh) * 2016-02-04 2017-08-11 中兴通讯股份有限公司 设备到设备d2d资源的配置方法及装置
US20170289733A1 (en) * 2016-03-31 2017-10-05 Samsung Electronics Co., Ltd Method and apparatus for transmission of control and data in vehicle to vehicle communication

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4040843A1 (en) * 2014-10-31 2022-08-10 Mitsubishi Electric Corporation Radio communication system, base station and communication terminal
WO2016112966A1 (en) * 2015-01-14 2016-07-21 Nokia Solutions And Networks Oy Method, apparatus and system
WO2016126184A1 (en) * 2015-02-05 2016-08-11 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless device, and methods performed thereby for determining an adapted set of at least one parameter
CN105992364B (zh) * 2015-03-02 2019-06-11 中兴通讯股份有限公司 资源处理方法及装置
US10064217B2 (en) * 2015-10-16 2018-08-28 Samsung Electronics Co., Ltd. Method and apparatus for enabling flexible numerology in multi-user MIMO system
WO2017156224A1 (en) 2016-03-10 2017-09-14 Idac Holdings, Inc. Determination of a signal structure in a wireless system
CN107295673A (zh) * 2016-04-01 2017-10-24 索尼公司 无线通信系统中的电子设备和通信方法
CN109076532A (zh) * 2016-04-15 2018-12-21 株式会社Ntt都科摩 无线基站、用户终端以及无线通信方法
WO2017196067A1 (ko) * 2016-05-10 2017-11-16 엘지전자 주식회사 무선 통신 시스템에서의 데이터 수신 방법 및 이를 위한 장치
JP6805541B2 (ja) 2016-05-11 2020-12-23 ソニー株式会社 端末装置、通信方法
JP7006586B2 (ja) * 2016-05-12 2022-01-24 ソニーグループ株式会社 基地局装置、端末装置、方法及び記憶媒体
WO2017204285A1 (ja) * 2016-05-27 2017-11-30 株式会社Nttドコモ ユーザ端末及び無線通信方法
US10880032B2 (en) * 2016-06-12 2020-12-29 Lg Electronics Inc. Method for receiving signals and wireless device thereof
EP3536083B1 (en) * 2016-11-03 2021-03-03 Telefonaktiebolaget LM Ericsson (publ) Method and wireless terminal device for sidelink wireless communications
US11201718B2 (en) * 2017-11-28 2021-12-14 Telefonaktiebolaget Lm Ericsson (Publ) Numerology indication for radio access networks
CN109963265A (zh) * 2017-12-26 2019-07-02 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质
US10834704B2 (en) * 2019-03-22 2020-11-10 Asustek Computer Inc. Method and apparatus for resource selection in sidelink transmission in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162513A (zh) * 2015-04-09 2016-11-23 上海贝尔股份有限公司 支持优先级的接近业务直接通信的方法和装置
CN106304351A (zh) * 2015-05-27 2017-01-04 中兴通讯股份有限公司 一种资源分配的方法和装置
CN107040864A (zh) * 2016-02-04 2017-08-11 中兴通讯股份有限公司 设备到设备d2d资源的配置方法及装置
US20170289733A1 (en) * 2016-03-31 2017-10-05 Samsung Electronics Co., Ltd Method and apparatus for transmission of control and data in vehicle to vehicle communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3735004A4

Also Published As

Publication number Publication date
US11909688B2 (en) 2024-02-20
JP7306393B2 (ja) 2023-07-11
CN111052773B (zh) 2024-09-06
CN111052773A (zh) 2020-04-21
EP3735004A4 (en) 2021-02-17
KR20200100115A (ko) 2020-08-25
JP2021508967A (ja) 2021-03-11
US20200235887A1 (en) 2020-07-23
US20220385430A1 (en) 2022-12-01
CN109963265A (zh) 2019-07-02
US11394509B2 (en) 2022-07-19
EP3735004A1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
WO2019128795A1 (zh) 无线通信系统中的装置和方法、计算机可读存储介质
CN110603876B (zh) 用于无线通信的电子设备和方法、存储介质
US12063579B2 (en) Procedure enabling configuration of PC5 communication parameters for advanced vehicle to everything (V2X) services
CN106452705B (zh) 无线通信系统中的电子设备和无线通信方法
US20210392547A1 (en) Communication apparatus and control apparatus
US20210314930A1 (en) Communication device
US10425881B2 (en) User terminal, network apparatus, and processor
WO2020066583A1 (ja) 通信装置、制御装置及び通信システム
WO2019011168A1 (zh) 电子装置和无线通信方法
WO2021057938A1 (zh) 无线通信系统中的电子设备和方法
CN116326139A (zh) 用于无线通信的电子设备、方法和存储介质
WO2016002332A1 (ja) 装置、方法及びプログラム
EP4319416A1 (en) Electronic device, communication method, and computer-readable storage medium
WO2022183636A1 (zh) 用户设备、电子设备、无线通信方法和存储介质
CN118413863A (zh) 电子设备、通信方法和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535019

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207020306

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018896924

Country of ref document: EP

Effective date: 20200727