WO2019128738A1 - 用于轨道交通的直流牵引供电系统及其控制方法 - Google Patents

用于轨道交通的直流牵引供电系统及其控制方法 Download PDF

Info

Publication number
WO2019128738A1
WO2019128738A1 PCT/CN2018/121212 CN2018121212W WO2019128738A1 WO 2019128738 A1 WO2019128738 A1 WO 2019128738A1 CN 2018121212 W CN2018121212 W CN 2018121212W WO 2019128738 A1 WO2019128738 A1 WO 2019128738A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
traction
voltage
storage component
module
Prior art date
Application number
PCT/CN2018/121212
Other languages
English (en)
French (fr)
Inventor
景剑飞
孙嘉品
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to BR112020012860-0A priority Critical patent/BR112020012860A2/pt
Publication of WO2019128738A1 publication Critical patent/WO2019128738A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/12Dynamic electric regenerative braking for vehicles propelled by dc motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Definitions

  • the present application relates to the field of rail transit power supply technology, and in particular to a DC traction power supply system for rail transit and a control method for a DC traction power supply system for rail transit.
  • the 750V/1500V DC contact network is generally used to supply power to the track.
  • the resistor In the brake feedback phase, the resistor is generally used for energy consumption, but it will cause great energy waste; or an AC feedback device can be added to convert the energy into AC power to the AC grid during the braking phase, but due to the instability of the AC grid, The stability of the DC grid can be significantly affected during the feedback process.
  • a hybrid traction power supply device that integrates uncontrolled rectification, grid feedback, and energy storage functions is also disclosed in the related art.
  • the feedback energy storage hybrid power supply device can ensure the voltage stability of the direct contact network because the feedback branch and the energy storage branch work together, and the power supply device cannot meet the power supply requirement when any of the feedback converter or the energy storage branch fails. As a result, the voltage fluctuation of the DC contact network is large, and the power supply quality is lowered; and the topology of the topology system is complicated.
  • an object of the present application aims to solve at least one of the technical problems in the related art to some extent.
  • an object of the present application is to provide a control method for a DC traction power supply system for rail transit to prevent voltage fluctuations of a DC traction network through an energy storage component and a rectification source, thereby improving power supply quality.
  • the second aspect of the present application proposes a DC traction power supply system for rail transit.
  • the first aspect of the present application provides a control method for a DC traction power supply system for rail transit, where the DC traction power supply system for rail transit includes a rectification source and an energy storage component, wherein The rectification source is configured to provide a reference voltage of the DC traction net and provide traction energy to the train through the DC traction network, and the energy storage component is configured to absorb the train brake by the DC traction network Retrieving energy and releasing energy to the DC traction net when the train is towed, the control method comprising the steps of: acquiring a current operating condition of the train, and acquiring a reference voltage of the DC traction network and the DC traction a voltage of the network; if the train is currently in a traction state, controlling the energy storage component to release energy to the DC traction network according to the reference voltage and the voltage of the DC traction network to suppress the DC traction network a drop in voltage; if the train is currently in a braking state, based on the reference voltage and the voltage
  • the voltage fluctuation of the DC traction network can be prevented by the energy storage component and the rectification source, Improve the quality of power supply, and do not need to rely on the communication between the train and the power supply system, improving the reliability of power supply.
  • the second aspect of the present application provides a DC traction power supply system for rail transit, comprising: a rectification source, an AC end of the rectification source is connected to an AC power grid, and a DC end of the rectification source Connecting to a DC traction network, the rectification source is configured to rectify an alternating current provided by the alternating current grid to provide traction energy to the train through the direct current traction network and to provide a reference voltage of the direct current traction network; an energy storage component, The energy storage component is coupled to the DC traction net, and the energy storage component is configured to absorb feedback energy of the train brake through the DC traction net to suppress an increase in voltage of the DC traction network, and The train releases energy to the DC traction net to support a traction voltage provided by the DC traction network to the train; wherein the energy storage component is provided with a control unit, and the control unit is configured to execute The control method of the above embodiment controls charging and discharging of the energy storage component.
  • the DC traction power supply system for rail transit in the embodiment of the present application can prevent the fluctuation of the DC traction network voltage through the energy storage component and the rectification source, improve the power supply quality, and does not need to rely on the communication between the train and the power supply system, thereby improving the reliability of the power supply. Sex.
  • FIG. 1 is a block diagram showing the structure of a DC traction power supply system for rail transit according to an embodiment of the present application
  • FIG. 2 is a structural block diagram of a DC traction power supply system for rail transit according to an example of the present application
  • FIG. 3 is a structural block diagram of a DC traction power supply system for rail transit according to another example of the present application.
  • FIG. 4 is a flow chart of a control method of a DC traction power supply system for rail transit according to an embodiment of the present application
  • FIG. 5 is a flowchart of a control method of a DC traction power supply system for rail transit according to an example of the present application
  • FIG. 6 is a flow chart of a control method of a DC traction power supply system for rail transit according to another example of the present application.
  • the power supply system 100 includes a rectification source 10 and an energy storage component 20 .
  • the alternating current end of the rectifying source 10 is connected to the alternating current grid, and the direct current end of the rectifying source 10 is connected to the direct current traction net.
  • the rectifying source 10 is used for rectifying the alternating current provided by the alternating current grid to provide a reference voltage of the direct current traction net and through the direct current.
  • the traction network provides traction energy to the train.
  • the reference voltage may be that when the train is not running, the control unit provided in the energy storage component 20 obtains the voltage of the sampled DC traction network, or may be preset according to the configuration of the power supply system.
  • the energy storage component 20 is connected to the DC traction network, and the energy storage component 20 is configured to absorb the feedback energy of the train brake through the DC traction network to suppress the rise of the DC traction network voltage and release the energy to the DC traction network when the train is towed. To support the traction voltage provided by the DC traction network to the train.
  • the rectification source 10 can be an uncontrolled rectified power supply whose output voltage is determined only by the voltage of the DC traction network.
  • the energy storage component 20 includes a plurality of energy storage modules 21 and a plurality of DC/DC conversion modules 22.
  • N is an integer greater than one.
  • the plurality of energy storage modules 21 can be one of a rechargeable battery such as a lithium battery, a vanadium battery, or a lead acid battery.
  • the output end of the energy storage module 21 is connected to the input end of the DC/DC conversion module 22, and the output end of the DC/DC conversion module 22 is connected to the DC traction network, and the energy storage module 21 can be By absorbing the feedback energy during train braking by the DC traction net, it is possible to suppress the rise of the DC traction network voltage and release energy to the DC traction net during train traction, thereby being able to support the traction voltage supplied by the DC traction network to the train.
  • the energy storage modules 21 are four, which are respectively recorded as the first energy storage module 211 to the fourth energy storage module 214, and the DC/DC conversion module 22 is four, which are respectively recorded as A DC/DC conversion module 221 to a fourth DC/DC conversion module 224, and four energy storage modules 21 are disposed in one-to-one correspondence with the four DC/DC conversion modules 22.
  • each of the storage modules 21 is connected in series with a corresponding DC/DC conversion module 22, and the first DC terminal a1 of the first DC/DC conversion module 221 and the first DC/DC conversion module 222 are directly connected.
  • the flow end a1 is connected to the positive pole of the DC traction network
  • the second DC end a2 of the first DC/DC conversion module 221 is connected to the second DC end a2 of the second DC/DC conversion module 222, and is respectively connected to the The first DC terminal a1 of the three DC/DC conversion module 223 and the first DC terminal a1 of the fourth DC/DC conversion module 224, and the second DC terminal a2 and the fourth DC/DC of the third DC/DC conversion module
  • the second DC terminal a2 of the conversion module is connected and connected to the negative pole of the DC traction network.
  • the first DC/DC conversion module 221 operates in a constant voltage mode
  • the second DC/DC conversion module 222, the third DC/DC conversion module 223, and the fourth DC/DC conversion module 224
  • each energy storage module 21 is provided corresponding to two DC/DC conversion modules 22.
  • the first DC terminal a1 of the first DC/DC conversion module 221 is connected to the first DC terminal a1 of the second DC/DC conversion module 222, and is connected to the positive pole of the DC traction network
  • the first DC/ The second DC terminal a2 of the DC conversion module 221 is connected to the second DC terminal a2 of the second DC/DC conversion module 222, and is respectively connected to the first DC terminal a1 and the fourth DC of the third DC/DC conversion module 223.
  • the first DC terminal a1 of the /DC conversion module 224, the second DC terminal a2 of the third DC/DC converter module is connected to the second DC terminal a2 of the fourth DC/DC converter module, and is connected to the cathode of the DC traction network.
  • the third DC terminal a3 of the first DC/DC conversion module 221 is connected to the third DC terminal a3 of the second DC/DC conversion module 222, and is connected to the first end b1 of the first energy storage module 211, the first DC.
  • the fourth DC terminal a4 of the /DC conversion module 221 is connected to the fourth DC terminal a4 of the second DC/DC conversion module 222, and is connected to the second terminal b2 of the first energy storage module 211, and the third DC/DC conversion module
  • the third DC terminal a3 of the 223 is connected to the third DC terminal a3 of the fourth DC/DC conversion module 224, and is connected to the first end b1 of the second energy storage module 222, and the third DC/DC conversion module 2
  • the fourth DC terminal a4 of the second DC/DC converter module 224 is connected to the fourth DC terminal a4 of the fourth DC/DC converter module 224 and is connected to the second terminal b2 of the second energy storage module 222.
  • the number of energy storage modules in the energy storage assembly 20 can be configured according to the capacity requirements of the train. For example, if the total braking power of the train is P, the amount can be configured in consideration of the overload factor such that the total power of the energy storage assembly 20 is greater than or equal to 2P.
  • the DC traction power supply system for rail transit in the embodiment of the present application adopts a DC/DC series-parallel topology to reduce the withstand voltage of a single switch tube, reduce the risk of damage of the switch tube, and through a modular structure, even a single module is abnormal.
  • the other modules can still operate normally, and the implementation does not need to rely on the communication between the train and the power supply system, thereby improving the reliability of the power supply.
  • a control unit may be further disposed in the energy storage component 20, and the control unit is configured to perform the following Control Method:
  • control method includes the following steps:
  • the reference voltage of the DC traction network provided by the rectification source may be the voltage of the DC traction network when the train is not running.
  • the voltage of the DC traction network can be obtained by a voltage sampling module.
  • the control unit in the energy storage component acquires the voltage of the sampled DC traction network, that is, the reference voltage; when the train is in the traction state, the control unit obtains the voltage of the sampled DC traction network in real time. If the voltage of the DC traction network is less than a certain value (such as m* reference voltage, m can be in the range of 0.7 ⁇ m ⁇ 1), then the energy storage component is controlled to discharge with a certain power (can be set as needed). That is, the energy is released to the DC traction net to support the traction voltage provided by the DC traction network to the train. When the voltage of the DC traction network is greater than a certain value (such as n* reference voltage, n can be valued within the range of 1 ⁇ n ⁇ 1.3), the energy storage component is controlled to stop discharging.
  • a certain value such as m* reference voltage, n can be valued within the range of 1 ⁇ n ⁇ 1.3
  • control unit in the energy storage component can be used to control the DC/DC conversion module.
  • the control unit in the energy storage component acquires the voltage of the sampled DC traction network, that is, the reference voltage; when the train is in the traction state, the control unit obtains the voltage of the sampled DC traction network in real time.
  • the target charging power of the energy storage component is calculated by the following formula (1):
  • Pdcobj is the target charging power of the energy storage component
  • -Pstd is the charging rated power
  • the charging power of the control energy storage component is increased at the first rate Pr_DC until the charging power of the energy storage component reaches the target charging power, and the energy storage component is charged for the first preset time t1 according to the target charging power.
  • t1 can be set according to the longest constant power braking time under the actual braking operation condition of the train.
  • the energy storage component in controlling the charging power of the energy storage component in the second rate decreasing process, if the voltage of the DC traction network is greater than the second voltage threshold and less than the first voltage threshold, ie, Ulow1 ⁇ Udc ⁇ Uhigh1, the energy storage component is controlled to The current charging power is charged.
  • the voltage of the DC traction network is again less than the second voltage threshold, the charging power of the energy storage component is controlled to decrease at the second rate, and the process is repeated.
  • the energy storage component is controlled to exit the charging state.
  • the first target charging power of the energy storage component is calculated by the following formula (2), and according to the first Target charging power control energy storage component charging:
  • Pdcobj1 is the first target charging power
  • k is a constant and positive value
  • Udc is the voltage of the DC traction network
  • Uhigh1 is the first voltage threshold
  • -Pstd is the charging rated power
  • k can be set according to the actual running state (such as the current speed). The larger the speed, the larger the k value can be set.
  • the charging power of the control energy storage component is gradually increased until Pdcobj1.
  • the braking power increases at the beginning, the constant power braking is maintained after the maximum power is reached, and the DC voltage rises.
  • the train speed decreases to a certain value, the braking power begins to decrease until the train is completely completed. stop.
  • the charging power of the energy storage component is less than the braking power, the voltage of the DC traction network will continue to increase.
  • the absorbed power (ie, charging power) of the energy storage component is greater than the braking power, the voltage of the DC traction network may decrease.
  • Second target charging power when the voltage of the DC traction network is greater than or equal to the third voltage threshold, that is, Udc ⁇ Uhigh2, the energy storage component is calculated by the following formula (3).
  • Pdcobj2 is the second target charging power
  • -Pstd is the charging rated power
  • the control energy storage component is charged at the charging rated power for a second preset time t2.
  • t2 is not fixed, and can be determined according to the voltage variation of the DC traction network. If the voltage variation amplitude is large, the value of t2 is smaller. If the voltage Udc of the DC traction network is higher than the second voltage threshold Ulow1, indicating that the train braking power is in the maintenance phase, Pdcobj remains unchanged.
  • the control is stored.
  • the charging power of the energy component is decremented at a third rate Pr2.
  • the third rate is less than the first rate.
  • the energy storage component in the process of controlling the charging power of the energy storage component to decrease at the third rate Pr2, if there is a voltage of the DC traction network greater than the fourth voltage threshold and less than the first voltage threshold, then the energy storage component is controlled to be current The charging power is charged for the target charging power.
  • the energy storage component is controlled to exit the charging state.
  • the reference voltage of the DC traction network is provided by the rectification source, the rectification source is converted into direct current by the diode rectification, and the reference voltage Udc_std of the DC traction network is under the initial condition that the train is not running. 1.414*Uac.
  • the AC grid voltage Uac can be detected in real time to calculate the reference voltage of the current DC traction network.
  • the train brakes the energy flows into the DC traction network, and the voltage Udc of the DC traction network rises.
  • the first DC/DC conversion module operates in a constant voltage mode, that is, the low voltage terminal voltage of the first DC/DC conversion module (ie, the voltage between the a1 and a2 terminals of the first DC/DC conversion module in FIG. 3) is
  • the second DC/DC conversion module, the third DC/DC conversion module, and the fourth DC/DC conversion module operate in a constant current mode.
  • the output currents of the four DC/DC conversion modules are equal, that is, the second DC/DC conversion module, the third DC/DC conversion module, and the fourth DC/DC conversion module operate in a constant current mode, so that The heating conditions of each DC/DC converter module are equivalent, and the expected life is basically the same.
  • the power supply system as a whole is embodied as a current source characteristic, and actively outputs or absorbs energy according to a target value of charge and discharge. Therefore, under the above two topologies (topologies shown in Fig. 2 and Fig. 3), how to accurately and quickly calculate the energy that the power supply system needs to absorb or release at each stage of the train operation, that is, the DC/DC constant current target value Idcobj becomes The energy storage component absorbs braking energy and supplements traction energy to stabilize the DC traction network voltage.
  • Idcobj Pobj/UDC/DC (UDC/DC is the DC voltage of the DC/DC converter module, which is approximately equal to 0.5*Udc), thereby accurately and quickly calculating the energy storage components that need to be absorbed or released at each stage of the train operation. The energy problem translates into how to get the target power Pobj.
  • the train braking condition is divided into three phases:
  • Constant power braking section constant power deceleration braking when the train speed is fast
  • Constant torque braking section After the train speed is reduced to a certain extent, the constant torque decelerates braking. At this time, the braking power is gradually reduced until the train stops completely.
  • the voltage of the DC traction network can be used to judge the running condition of the train, that is, the stage of the braking condition.
  • the power direction flowing into the DC traction network is - (ie, the energy storage component is charged), and the power direction flowing out of the DC traction network is + (ie, the energy storage component releases energy).
  • the voltage Udc of the DC traction network continues to rise because the energy of the rectification source flows in one direction and cannot absorb the energy flowing into the DC traction network.
  • the voltage Udc rising speed of the DC traction net is positively correlated with the energy flowing into the DC traction net, that is, the greater the braking power change rate, the faster the Udc rising speed is. It can be understood that the DC voltage of the train starts to rise first, and at the same time, the voltage drop of the DC voltage of the power supply system is slightly smaller than the DC voltage of the train due to the voltage drop generated by the line impedance.
  • the charging power is greater than or equal to the braking power, that is, the energy is changed from flowing into the DC traction network to flowing out of the DC traction network.
  • the braking state is converted into a similar traction state, and the Udc can be turned from a rising to a falling.
  • the magnitude of Udc reduction is inversely proportional to the output power Pz of the rectified original, that is, the larger the Pz, the lower the Udc.
  • the charging power of the DC conversion module is greater than or equal to the braking power, and the excess power (Pr_DC-Pr_train) is provided by the rectifying source.
  • the following control strategy can be used to charge the energy storage component:
  • Charging rise phase When it is detected that the voltage of the DC traction network exceeds the starting charging threshold, that is, Udc>Uhigh1, the energy storage component is controlled to enter the charging state.
  • the energy storage component is charged at the rated power Pstd for a period of time t1, and t1 can be set based on the longest constant power braking time under the actual braking operation condition of the train.
  • Charging reduction phase Re-determine the voltage Udc of the DC traction network. If the Udc is lower than the allowable charging power reduction limit voltage Ulow1, it indicates that the charging power of the energy storage component is greater than the train braking power, and the energy flows from the DC traction network to the power supply. In the system, the target charging power Pdcobj starts to slowly decrement to zero at the rate Pr1. Wherein, if the DC voltage satisfies Ulow1 ⁇ Udc ⁇ Uhigh1 during the power decrementing process, it indicates that the charging power Pdc of the current energy storage component is equal to the current train braking power Pcar, and the current target power is maintained.
  • the above control strategy can effectively suppress the rise of the DC traction network voltage at the braking moment, and the DC voltage stability is better in the entire braking phase, and the charging capacity of the energy storage module is more.
  • the following control strategy can be used to charge the energy storage components:
  • Charging rise phase When it is detected that the voltage of the DC traction network exceeds the starting charging threshold, that is, Udc>Uhigh1, the energy storage component is controlled to enter the charging state.
  • Set the full power charging DC voltage limit Uhigh2. When Udc ⁇ Uhigh2, set Pdcobj -Pstd.
  • Charging maintenance phase After the train starts constant power braking, the voltage of the DC traction network does not continue to rise, and the charging power of the energy storage component maintains the current value for a period of time t2; the time of t2 is not fixed, as determined according to the change of the voltage Udc, If the voltage Udc is higher than the allowable charging power reduction limit voltage Ulow1, indicating that the train braking power is in the maintenance phase, Pdcobj remains unchanged.
  • Charging reduction phase Re-determine the voltage Udc of the DC traction network. If Udc is lower than the allowable charging power reduction limit voltage Ulow1 and the rate of change of Udc (Udc–Udcbak, Udcbak is the DC voltage of the previous period) UdcK ⁇ 0, ie Udc presents a downward trend, indicating that the charging power of the energy storage component is greater than the train braking power, and the train begins to enter the charging power declining phase. At this time, the energy absorption of the power supply system should be reduced to balance the inflow and outflow energy of the DC traction network. The target charging power Pdcobj is decremented from the current value to 0 at the rate Pr2; otherwise, the current power target is maintained unchanged.
  • the control method of the DC traction power supply system for rail transit when the DC traction power supply system for rail transit of the above embodiment is controlled, there is no need to rely on communication between the train and the power supply system, and the control is improved.
  • the reliability of the power supply system power supply and can fully utilize the train feedback braking energy, and effectively control the voltage fluctuation of the DC traction network, improve the power supply quality, that is, suppress the rise of the DC traction network voltage during train braking, and the on-going train When the power is supplied, the voltage drop of the DC traction network is suppressed.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless otherwise explicitly stated and defined. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present application can be understood on a case-by-case basis.
  • the first feature "on” or “below” the second feature may be the direct contact of the first and second features, or the first and second features are indirectly through the intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Abstract

一种用于轨道交通的直流牵引供电系统及其控制方法,其中,供电系统包括整流源(10)和储能组件(20),供电系统的控制方法包括:获取列车的当前运行工况,并获取直流牵引网的基准电压和直流牵引网的电压;如果列车当前处于牵引状态,则根据基准电压和直流牵引网的电压,控制储能组件(20)向直流牵引网释放能量,以抑制直流牵引网电压的下降;如果列车当前处于制动状态,则根据基准电压和直流牵引网的电压,控制储能组件(20)通过直流牵引网吸收列车制动时的回馈能量,以抑制直流牵引网电压的上升。

Description

用于轨道交通的直流牵引供电系统及其控制方法
相关申请的交叉引用
本申请基于申请号为201711446474.9,申请日为2017年12月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及轨道交通供电技术领域,尤其涉及一种用于轨道交通的直流牵引供电系统和一种用于轨道交通的直流牵引供电系统的控制方法。
背景技术
在相关的轨道供电方式中,一般采用750V/1500V直流接触网为轨道供电。在制动回馈阶段一般采用电阻进行能量消耗,但是会造成极大的能源浪费;或者增设交流回馈装置,在制动阶段将能量转化为交流电回馈到交流电网,但是由于交流电网的不稳定性,在回馈过程中会显著影响直流电网的稳定性。相关技术中还公开了一种集合不控整流、电网回馈和储能功能的混合型牵引供电装置。该回馈储能混合型供电装置,由于是回馈支路和储能支路共同作用才能保障直接接触网的电压稳定,回馈变流器或储能支路任一故障时供电装置即无法满足供电需求,导致直流接触网的电压波动较大,供电质量降低;同时此拓扑系统结构复杂。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的一个目的在于提出一种用于轨道交通的直流牵引供电系统的控制方法,以通过储能组件和整流源防止直流牵引网的电压波动,提高供电质量。
本申请第二方面实施例提出了一种用于轨道交通的直流牵引供电系统。
为达到上述目的,本申请第一方面实施例提出了一种用于轨道交通的直流牵引供电系统的控制方法,所述用于轨道交通的直流牵引供电系统包括整流源和储能组件,其中,所述整流源用于提供所述直流牵引网的基准电压并通过所述直流牵引网向列车提供牵引能量和,所述储能组件用于通过所述直流牵引网吸收所述列车制动时的回馈能量,以及在所述列车牵引时向所述直流牵引网释放能量,所述控制方法包括以下步骤:获取列车的当前运行工况,并获取所述直流牵引网的基准电压和所述直流牵引网的电压;如果所述列车当前处于牵引状态,则根据所述基准电压和所述直流牵引网的电压,控制所述储能组件向所述直流牵引网释放能量,以抑制所述直流牵引网电压的下降;如果所述列车当前处于制动状 态,则根据所述基准电压和所述直流牵引网的电压,控制所述储能组件通过所述直流牵引网吸收所述列车制动时的回馈能量,以抑制所述直流牵引网电压的上升。。
根据本申请实施例的用于轨道交通的直流牵引供电系统的控制方法,在对用于轨道交通的直流牵引供电系统进行控制时,能够通过储能组件和整流源防止直流牵引网电压的波动,提高供电质量,且不需要依赖列车与供电系统的通讯,提高了供电可靠性。
为达到上述目的,本申请第二方面实施例提出了一种用于轨道交通的直流牵引供电系统,包括:整流源,所述整流源的交流端连接到交流电网,所述整流源的直流端连接到直流牵引网,所述整流源用于对所述交流电网提供的交流电进行整流,以通过所述直流牵引网向列车提供牵引能量和提供所述直流牵引网的基准电压;储能组件,所述储能组件连接到所述直流牵引网,所述储能组件用于通过所述直流牵引网吸收所述列车制动时的回馈能量,以抑制所述直流牵引网电压的上升,以及在所述列车牵引时向所述直流牵引网释放能量,以支撑所述直流牵引网向所述列车提供的牵引电压;其中,所述储能组件中设置有控制单元,所述控制单元用于执行上述实施例的控制方法以对所述储能组件进行充放电控制。
本申请实施例的用于轨道交通的直流牵引供电系统,能够通过储能组件和整流源防止直流牵引网电压的波动,提高供电质量,且不需要依赖列车与供电系统的通讯,提高了供电可靠性。
附图说明
图1是根据本申请实施例的用于轨道交通的直流牵引供电系统的结构框图;
图2是根据本申请一个示例的用于轨道交通的直流牵引供电系统的结构框图;
图3是根据本申请另一个示例的用于轨道交通的直流牵引供电系统的结构框图;
图4是根据本申请实施例的用于轨道交通的直流牵引供电系统的控制方法的流程图;
图5是根据本申请一个示例的用于轨道交通的直流牵引供电系统的控制方法的流程图;
图6是根据本申请另一个示例的用于轨道交通的直流牵引供电系统的控制方法的流程图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的用于轨道交通的直流牵引供电系统及其控制方法。
图1是本申请实施例提出的一种用于轨道交通的直流牵引供电系统的结构框图。如图1所示,该供电系统100包括:整流源10和储能组件20。
其中,整流源10的交流端连接到交流电网,整流源10的直流端连接到直流牵引网, 整流源10用于对交流电网提供的交流电进行整流,以提供直流牵引网的基准电压并通过直流牵引网向列车提供牵引能量。
可选地,基准电压可以是列车未运行时,储能组件20中设置的控制单元获取采样得到的直流牵引网的电压,也可以是根据供电系统的配置事先设定的。
储能组件20连接到直流牵引网,储能组件20用于通过直流牵引网吸收列车制动时的回馈能量,以抑制直流牵引网电压的上升,以及在列车牵引时向直流牵引网释放能量,以支撑直流牵引网向列车提供的牵引电压。
在该实施例中,整流源10可为不控整流电源,其输出电压仅由直流牵引网的电压决定。
在本申请的一个实施例中,储能组件20包括多个储能模块21和多个DC/DC变换模块22。
其中,若DC/DC变换模块22的个数为N,则N个DC/DC变换模块22中的一个以恒压模式进行工作,剩余(N-1)个DC/DC变换模块以恒流模式进行工作,N为大于1的整数。
可选地,多个储能模块21均可为锂电池、钒电池、铅酸电池等可重复充电电池中的一种。
具体地,如图2、图3所示,储能模块21输出端与DC/DC变换模块22的输入端相连,DC/DC变换模块22的输出端与直流牵引网相连,储能模块21可通过直流牵引网吸收列车制动时的回馈能量,由此能够抑制直流牵引网电压的上升,并在列车牵引时向直流牵引网释放能量,由此能够支撑直流牵引网向列车提供的牵引电压。
在一个示例中,如图2所示,储能模块21为四个,分别记为第一储能模块211~第四储能模块214,DC/DC变换模块22为四个,分别记为第一DC/DC变换模块221~第四DC/DC变换模块224,且四个储能模块21与四个DC/DC变换模块22一一对应设置。
参见图2,每个储能模21与对应的DC/DC变换模块22串联连接,第一DC/DC变换模块221的第一直流端a1与第二DC/DC变换模块222的第一直流端a1相连,并连接到直流牵引网的正极,第一DC/DC变换模块221的第二直流端a2与第二DC/DC变换模块222的第二直流端a2相连,并分别连接到第三DC/DC变换模块223的第一直流端a1和第四DC/DC变换模块224的第一直流端a1,第三DC/DC变换模块的第二直流端a2与第四DC/DC变换模块的第二直流端a2相连,并连接到直流牵引网的负极。其中,第一DC/DC变换模块221以恒压模式进行工作,第二DC/DC变换模块222、第三DC/DC变换模块223、第四DC/DC变换模块224以恒流模式进行工作。
在另一个示例中,如图3所示,储能模块21为两个,分别记为第一储能模块211~第二储能模块212,DC/DC变换模块为四个,分别记为第一DC/DC变换模块221~第四DC/DC变换模块224,且每个储能模块21对应两个DC/DC变换模块22设置。
参见图3,第一DC/DC变换模块221的第一直流端a1与第二DC/DC变换模块222的第 一直流端a1相连,并连接到直流牵引网的正极,第一DC/DC变换模块221的第二直流端a2与第二DC/DC变换模块222的第二直流端a2相连,并分别连接到第三DC/DC变换模块223的第一直流端a1和第四DC/DC变换模块224的第一直流端a1,第三DC/DC变换模块的第二直流端a2与第四DC/DC变换模块的第二直流端a2相连,并连接到直流牵引网的负极,第一DC/DC变换模块221的第三直流端a3与第二DC/DC变换模块222的第三直流端a3相连,并连接到第一储能模块211的第一端b1,第一DC/DC变换模块221的第四直流端a4与第二DC/DC变换模块222的第四直流端a4相连,并连接到第一储能模块211的第二端b2,第三DC/DC变换模块223的第三直流端a3与第四DC/DC变换模块224的第三直流端a3相连,并连接到第二储能模块222的第一端b1,第三DC/DC变换模块223的第四直流端a4与第四DC/DC变换模块224的第四直流端a4相连,并连接到第二储能模块222的第二端b2。其中,第一DC/DC变换模块221以恒压模式进行工作,第二DC/DC变换模块222、第三DC/DC变换模块223、第四DC/DC变换模块224以恒流模式进行工作。
在本申请的实施例中,可根据列车的容量需求配置储能组件20中储能模块的数量。例如,如果列车的总制动功率为P,则考虑过载因素可配置该数量,以使储能组件20的总功率大于或者等于2P。
本申请实施例的用于轨道交通的直流牵引供电系统,采用DC/DC串并联拓扑,降低了单个开关管承受电压,减小了开关管的损坏风险,且通过模块化结构,即使单模块异常,其他模块仍然能够正常运行,且其实现不需要依赖列车与供电系统的通讯,提高了供电可靠性。
进一步地,在本申请的一个实施例中,为了通过储能组件和整流源防止直流牵引网的电压波动,提高供电质量,储能组件20中还可设置控制单元,该控制单元用于执行如下控制方法:
图4是根据本申请实施例的用于轨道交通的直流牵引供电系统的控制方法的流程图。如图4所示,该控制方法包括以下步骤:
S101,获取列车的当前运行工况,并获取直流牵引网的基准电压和直流牵引网的电压。
其中,整流源提供的直流牵引网的基准电压可以是列车未运行时,直流牵引网的电压。可选地,直流牵引网的电压可通过电压采样模块进行获取。
S102,如果列车当前处于牵引状态,则根据基准电压和直流牵引网的电压控制储能组件向直流牵引网释放能量,以抑制所述直流牵引网电压的下降。
具体地,列车未运行时,储能组件中的控制单元获取采样得到的直流牵引网的电压即基准电压;在列车处于牵引状态时,控制单元实时获取采样得到的直流牵引网的电压。如果直流牵引网的电压小于一定值(如m*基准电压,m可以在0.7<m<1范围内取值),则控制储能组件以一定的功率(可根据需要进行设定)进行放电,即向直流牵引网释放能量,以支撑直流牵引网向列车提供的牵引电压。当直流牵引网的电压大于一定值(如n*基准电 压,n可以在1<n<1.3范围内取值),则控制储能组件停止放电。
S103,如果列车当前处于制动状态,则根据基准电压和直流牵引网的电压控制储能组件通过直流牵引网吸收列车制动时的回馈能量,以抑制直流牵引网电压的上升。
其中,储能组件中的控制单元可用于对DC/DC变换模块进行控制。
具体地,列车未运行时,储能组件中的控制单元获取采样得到的直流牵引网的电压即基准电压;在列车处于牵引状态时,控制单元实时获取采样得到的直流牵引网的电压。
在一个示例中,参照图5,列车制动后,当直流牵引网的电压大于第一电压阈值,即Udc>Uhigh1时,通过如下公式(1)计算储能组件的目标充电功率:
Pdcobj=-Pstd         (1)
其中,Pdcobj为储能组件的目标充电功率,-Pstd为充电额定功率,第一电压阈值可根据基准电压生成,如第一电压阈值=c1*基准电压,c1大于1。
进一步地,控制储能组件的充电功率以第一速率Pr_DC增加,直至储能组件的充电功率达到上述目标充电功率,并根据上述目标充电功率控制储能组件充电第一预设时间t1。其中,t1可根据列车的实际制动运行工况下最长恒功率制动时间进行设定。
可以理解,在储能组件的充电功率逐渐增加至制动功率时,直流牵引网的电压达到最大,随着储能组件的充电功率的持续增加,直流牵引网电压逐渐降低。
进一步地,在控制储能组件充电第一预设时间t1之后,如果直流牵引网的电压小于第二电压阈值,则控制储能组件的充电功率以第二速率Pr1递减,其中,第二速率小于第一速率,第二电压阈值可根据基准电压生成,如第二电压阈值=c2*基准电压,c2大于1,且c2<c1。
可以理解,在储能组件的充电功率逐渐递减至制动功率时,直流牵引网的电压达到最小,随着储能组件的充电功率的持续递减,直流牵引网电压逐渐增大。
其中,在控制储能组件的充电功率以第二速率递减过程中,如果存在直流牵引网的电压大于第二电压阈值且小于第一电压阈值,即Ulow1<Udc<Uhigh1,则控制储能组件以当前的充电功率进行充电。当直流牵引网的电压再次小于第二电压阈值时,控制储能组件的充电功率再以第二速率递减,重复该过程。
更进一步地,当储能组件的充电功率减小至0时,控制储能组件退出充电状态。
在另一个示例中,参照图6,当直流牵引网的电压大于第一电压阈值,即Udc>Uhigh1时,通过如下公式(2)计算储能组件的第一目标充电功率,并根据该第一目标充电功率控制储能组件充电:
Pdcobj1=-k(Udc-Uhigh1),且Pdcobj≤-Pstd       (2)
其中,Pdcobj1为第一目标充电功率,k为常数且为正值,Udc为直流牵引网的电压,Uhigh1为第一电压阈值,-Pstd为充电额定功率,第一电压阈值可根据基准电压生成,如第一电压阈值=c1*基准电压,c1大于1。k可以根据实际运行状态(如当前车速)进行设 定,车速越大可以设置k值越大。
需要说明的是,在计算得到Pdcobj1后,控制储能组件的充电功率逐渐增大直至Pdcobj1。可以理解,列车制动过程中,一开始制动功率增大,达到最大功率后维持恒功率制动,直流电压上升,当列车速度减小到一定值后制动功率开始减小,直到列车完全停止。在此过程中,当储能组件的充电功率小于制动功率时,直流牵引网的电压会继续增大。当储能组件的吸收功率(即充电功率)大于制动功率时,直流牵引网的电压会下降。
进一步地,在根据该第一目标充电功率控制储能组件充电过程中,当直流牵引网的电压大于或者等于第三电压阈值,即Udc≥Uhigh2时,通过如下公式(3)计算储能组件的第二目标充电功率:
Pdcobj2=-Pstd        (3)
其中,Pdcobj2为第二目标充电功率,-Pstd为充电额定功率,第三电压阈值可根据基准电压生成,如第三电压阈值=c3*基准电压,c3>c1;
并且,控制储能组件以充电额定功率充电第二预设时间t2。其中,t2不固定,其可根据直流牵引网的电压变化情况进行确定,如电压变化幅度较大,则t2的取值越小。若直流牵引网的电压Udc高于第二电压阈值Ulow1,说明列车制动功率处于维持阶段,则Pdcobj维持不变。
进一步地,当直流牵引网的电压小于第二电压阈值即Udc<Ulow1,且直流牵引网的电压的变化率小于0,即Udc–Udcbak<0(Udcbak为前一时段直流电压)时,控制储能组件的充电功率以第三速率Pr2递减。其中,第二电压阈值可根据基准电压生成,如第二电压阈值=c2*基准电压,c2大于1,且c2<c1。
可选地,第三速率小于第一速率。
在该实施例中,在控制储能组件的充电功率以第三速率Pr2递减的过程中,如果存在直流牵引网的电压大于第四电压阈值且小于第一电压阈值,则控制储能组件以当前的充电功率为目标充电功率进行充电。其中,第四电压阈值可根据基准电压生成,如第四电压阈值=c4*基准电压,c2<c4<c1。
更进一步地,当储能组件的充电功率减小至0时,控制储能组件退出充电状态。
具体而言,在对上述供电系统进行控制时,由整流源提供直流牵引网的基准电压,整流源通过二极管整流将交流电变为直流电,列车不运行的初始条件下直流牵引网的基准电压Udc_std=1.414*Uac。
当交流电网不稳定时,经过整流源整流得到的直流电压也是波动的,因此可通过实时检测交流电网电压Uac,以计算出当前直流牵引网的基准电压。初始状况下Udc=Udc_std,当列车牵引时能量流出直流牵引网,直流牵引网的电压Udc降低,当列车制动时能量流入直流牵引网,直流牵引网的电压Udc上升。
第一DC/DC变换模块工作在恒压模式,即,第一DC/DC变换模块的低压端电压(即图3 中的第一DC/DC变换模块的a1、a2端之间的电压)为直流牵引网电压一半,第一DC/DC变换模块的输出电流跟随直流牵引网的电压变化而变化,低压端电压,即Udcobj=0.5*Udc。第二DC/DC变换模块、第三DC/DC变换模块、第四DC/DC变换模块工作在恒流模式。由于第一DC/DC变换模块\第二DC/DC变换模块和第三DC/DC变换模块\第四DC/DC变换模块是串联关系,两组DC/DC变换模块输出电流相同,即可得到式1:Idc1+Idc2=Idc3+Idc4。将3台恒流工作DC/DC变换模块的输出电流目标值Idcobj设为相同,调节后可得到式2:Idc2=Idc3=Idc4,则恒压工作的DC/DC变换模块被动输出电流Idc1与其他3台DC/DC变换模块相等。由此,即可实现了4个DC/DC变换模块的输出电流相等,即第二DC/DC变换模块、第三DC/DC变换模块、第四DC/DC变换模块工作在恒流模式,使各DC/DC变换模块的发热情况相当,预期寿命基本一致。
供电系统作为一个整体对外体现为电流源特性,根据充放电目标值主动输出或者吸收能量。因此上述两种拓扑结构(图2、图3所示的拓扑结构)下,如何在列车运行各阶段准确快速地计算出供电系统需要吸收或者释放的能量,即DC/DC恒流目标值Idcobj成为了储能组件吸收制动能量、补充牵引能量以稳定直流牵引网电压的关键。又Idcobj=Pobj/UDC/DC(UDC/DC为DC/DC变换模块的直流电压,约等于0.5*Udc),由此,在列车运行各阶段准确快速地计算出储能组件需要吸收或者释放的能量问题,转化为如何获取目标功率Pobj。
用于轨道交通的直流牵引供电系统在列车制动工况的各阶段中,目标功率Pobj的获取方法如下:
具体地,列车制动工况分为三个阶段:
1)切换到制动阶段:列车由牵引切换为开始制动,列车从直流牵引网吸收能量变为向直流牵引网释放能量,制动功率逐渐大,目标功率Pobj快速由负变正;
2)恒功率制动段:列车速度较快时恒定功率减速制动;
3)恒扭矩制动段:列车速度降低到一定程度后恒定扭矩减速制动,此时制动功率逐渐减小直至列车完全停止。
由于不能直接获取流入直流牵引网的制动功率,可以通过直流牵引网的电压来判断列车运行工况,即制动工况的阶段。以下描述中取流入直流牵引网的功率方向为-(即储能组件充电),流出直流牵引网的功率方向为+(即储能组件释放能量)。
能量由列车流向直流牵引网时,由于整流源的能量单向流动,不能吸收流入直流牵引网的能量,因此直流牵引网的电压Udc持续抬升。制动时,直流牵引网的电压Udc上升速度与流入直流牵引网的能量正相关,即制动功率变化率越大Udc上升速度越快。可以理解的是,列车直流侧电压首先开始升高,同时由于线路阻抗产生压降,供电系统侧直流电压Udc上升幅度略小于列车直流电压。
在本申请的实施例中,当检测到Udc上升大于开始充电阈值Uhigh1(即第一电压阈值) 后,充电功率大于或者等于制动功率,即能量由流入直流牵引网变为流出直流牵引网,也就将制动状态转化为类似牵引状态,Udc才能由抬升转为下降。Udc降低的幅度与整流原的输出功率Pz成反比,即Pz越大则Udc越低。
需要说明的是,假设列车制动时最大制动功率变化率Pr_train为Pmax\s,则必须使DC/DC变换模块吸收功率速率Pr_DC>=Pr_train,以确保列车在任意工况制动时DC/DC变换模块充电功率均大于或者等于制动功率,多余功率(Pr_DC-Pr_train)由整流源提供。
由此,根据列车的制动工况,参照图5,可采用如下控制策略对储能组件进行充电控制:
充电上升阶段:当检测到直流牵引网的电压超过开始充电阈值,即Udc>Uhigh1后,控制储能组件进入充电状态。设定目标充电功率为额定功率即Pdcobj=-Pstd,储能组件的充电功率Pdc以第一速率Pr_DC增大,直至Pdc=Pdcobj。
充电维持阶段:储能组件以额定功率Pstd充电维持一段时间t1,t1可以列车实际制动运行工况下最长恒功率制动时间为依据进行设定。
充电减小阶段:再判断直流牵引网的电压Udc,若Udc低于允许充电功率减小限值电压Ulow1,说明此时储能组件的充电功率大于列车制动功率,能量从直流牵引网流向供电系统,则目标充电功率Pdcobj以速率Pr1开始向0缓慢递减。其中,功率递减过程中若直流电压满足Ulow1<Udc<Uhigh1,则表明当前储能组件的充电功率Pdc与当前列车制动功率Pcar相当,维持当前目标功率不变。
充电退出阶段:当Udc<Uhigh1后,目标充电功率Pdcobj继续以速率Pr1开始向0缓慢递减,直至充电功率减为0,退出充电状态。
上述控制策略能够有效的抑制制动时刻直流牵引网电压的上升,整个制动阶段直流电压稳定度较好、储能模块的充电电量较多。而若考虑储能模块的充放电平衡、容量成本等因素,在满足将制动阶段牵引网电压抑制在合理范围前提下,还需尽量减少制动阶段储能模块充电能量,此时,参照图6,可采用如下控制策略对储能组件进行充电控制:
充电上升阶段:当检测到直流牵引网的电压超过开始充电阈值,即Udc>Uhigh1后,控制储能组件进入充电状态。根据直流牵引网的电压Udc上升幅度确定充电功率大小,设定目标充电功率与直流牵引网的电压成比例关系,即Pdcobj=-k(Udc-Uhigh1)。由于列车制动前速度可能不同,因此每次制动时最大功率不同,因此满足Pdcobj≤-Pstd。设置满功率充电直流电压限值Uhigh2,当Udc≥Uhigh2,设置Pdcobj=-Pstd。
充电维持阶段:列车开始恒功率制动后,直流牵引网的电压不再继续上升,储能组件的充电功率维持当前值一段时间t2;t2时间不固定,如可根据电压Udc的变化情况确定,若电压Udc高于允许充电功率减小限值电压Ulow1,说明列车制动功率处于维持阶段,则Pdcobj维持不变。
充电减小阶段:再判断直流牵引网的电压Udc,若Udc低于允许充电功率减小限值电压Ulow1且Udc的变化率(Udc–Udcbak,Udcbak为前一时段直流电压)UdcK<0,即Udc呈 现下降趋势,说明此时储能组件的充电功率大于列车制动功率,列车开始进入充电功率递减阶段,则此时应该减少供电系统的能量吸收,以使直流牵引网流入流出能量均衡,将目标充电功率Pdcobj以速率Pr2从当前值开始向0递减;否则继续维持当前功率目标不变。
充电退出阶段:当Udc≤Ulow2后,目标充电功率Pdcobj继续以速率Pr2开始向0递减,直至充电功率减为0,退出充电状态。
需要说明的是,在功率递减过程中,若电压Udc满足Ulow2<Udc<Uhigh1且Udc变化率UdcK>0,表明当前储能组件的充电功率Pdc与当前列车制动功率Pcar相当,则维持当前目标功率不变。
根据本申请实施例的用于轨道交通的直流牵引供电系统的控制方法,在对上述实施例的用于轨道交通的直流牵引供电系统进行控制时,不需要依赖列车与供电系统的通讯,提高了供电系统供电的可靠性,且能够充分利用列车回馈制动能量,以及有效控制直流牵引网的电压波动、提高供电质量,即在列车制动时,抑制直流牵引网电压的上升,以及在向列车供电时,抑制直流牵引网电压的下降。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种用于轨道交通的直流牵引供电系统的控制方法,其特征在于,所述用于轨道交通的直流牵引供电系统包括整流源和储能组件,其中,所述整流源用于提供所述直流牵引网的基准电压并通过所述直流牵引网向列车提供牵引能量,所述储能组件用于通过所述直流牵引网吸收所述列车制动时的回馈能量,以及在所述列车牵引时向所述直流牵引网释放能量,所述控制方法包括以下步骤:
    获取列车的当前运行工况,并获取所述直流牵引网的基准电压和所述直流牵引网的电压;
    如果所述列车当前处于牵引状态,则根据所述基准电压和所述直流牵引网的电压,控制所述储能组件向所述直流牵引网释放能量,以抑制所述直流牵引网电压的下降;
    如果所述列车当前处于制动状态,则根据所述基准电压和所述直流牵引网的电压,控制所述储能组件通过所述直流牵引网吸收所述列车制动时的回馈能量,以抑制所述直流牵引网电压的上升。
  2. 如权利要求1所述的用于轨道交通的直流牵引供电系统的控制方法,其特征在于,所述根据所述基准电压和所述直流牵引网的电压,控制所述储能组件通过所述直流牵引网吸收所述列车制动时的回馈能量,包括:
    当所述直流牵引网的电压大于所述第一电压阈值时,通过如下公式计算所述储能组件的目标充电功率:
    Pdcobj=-Pstd,
    其中,Pdcobj为所述目标充电功率,-Pstd为充电额定功率,所述第一电压阈值大于所述基准电压;
    控制所述储能组件的充电功率以第一速率增加,直至所述储能组件的充电功率达到所述目标充电功率时,根据所述目标充电功率控制所述储能组件充电第一预设时间。
  3. 如权利要求2所述的用于轨道交通的直流牵引供电系统的控制方法,其特征在于,在控制所述储能组件充电所述第一预设时间之后,如果所述直流牵引网的电压小于所述第二电压阈值,则控制所述储能组件的充电功率以第二速率递减,直至所述储能组件的充电功率减小至0时,控制所述储能组件退出充电状态,其中,所述第二速率小于所述第一速率,所述第二电压阈值大于所述基准电压且小于所述第一电压阈值。
  4. 如权利要求3所述的用于轨道交通的直流牵引供电系统的控制方法,其特征在于,在控制所述储能组件的充电功率以第二速率递减过程中,如果存在所述直流牵引网的电压大于所述第二电压阈值且小于所述第一电压阈值,则控制所述储能组件以当前的充电功率进行充电。
  5. 如权利要求1所述的用于轨道交通的直流牵引供电系统的控制方法,其特征在于, 所述根据所述基准电压和所述直流牵引网的电压,控制所述储能组件通过所述直流牵引网吸收所述列车制动时的回馈能量,包括:
    当所述直流牵引网的电压大于第一电压阈值时,通过如下公式计算所述储能组件的第一目标充电功率:
    Pdcobj1=-k(Udc-Uhigh1),且Pdcobj≤-Pstd,
    其中,Pdcobj1为所述第一目标充电功率,k为常数,Udc为直流牵引网的电压,Uhigh1为所述第一电压阈值,-Pstd为充电额定功率,所述第一电压阈值大于所述基准电压;
    根据所述第一目标充电功率控制所述储能组件充电,并在所述直流牵引网的电压大于或者等于第三电压阈值时,通过如下公式计算所述储能组件的第二目标充电功率:
    Pdcobj2=-Pstd,
    其中,Pdcobj2为所述第二目标充电功率,-Pstd为充电额定功率,所述第三电压阈值大于所述第一电压阈值;
    控制所述储能组件的充电功率以第一速率增加,直至所述储能组件的充电功率达到所述第二目标充电功率时,根据所述第二目标充电功率控制所述储能组件充电第二预设时间。
  6. 如权利要求5所述的用于轨道交通的直流牵引供电系统的控制方法,其特征在于,在控制所述储能组件充电第二预设时间之后,如果所述直流牵引网的电压小于第二电压阈值,且所述直流牵引网的电压变化率小于0,则控制所述储能组件的充电功率以第三速率递减,直至所述储能组件的充电功率减小至0时,控制所述储能组件退出充电状态,其中,所述第二电压阈值大于所述基准电压且小于所述第一电压阈值。
  7. 如权利要求6所述的用于轨道交通的直流牵引供电系统的控制方法,其特征在于,在控制所述储能组件的充电功率以所述第三速率递减的过程中,如果存在所述直流牵引网的电压大于所述第四电压阈值且小于所述第一电压阈值,则控制所述储能组件以当前的充电功率进行充电,其中,所述第四电压阈值大于所述第二电压阈值。
  8. 一种用于轨道交通的直流牵引供电系统,其特征在于,包括:
    整流源,所述整流源的交流端连接到交流电网,所述整流源的直流端连接到直流牵引网,所述整流源用于对所述交流电网提供的交流电进行整流,以提供所述直流牵引网的基准电压并通过所述直流牵引网向列车提供牵引能量;
    储能组件,所述储能组件连接到所述直流牵引网,所述储能组件用于在列车制动时通过所述直流牵引网吸收所述列车的回馈能量,以及在列车牵引时向所述直流牵引网释放能量;
    其中,所述储能组件中设置有控制单元,所述控制单元用于执行如权利要求1-5中任一项所述的控制方法以对所述储能组件进行充放电控制。
  9. 如权利要求8所述的用于轨道交通的直流牵引供电系统,其特征在于,所述储能组件包括多个储能模块和多个DC/DC变换模块。
  10. 如权利要求9所述的用于轨道交通的直流牵引供电系统,其特征在于,所述储能组件包括四个储能模块和四个DC/DC变换模块,分别记为第一储能模块~第四储能模块、第一DC/DC变换模块~第四DC/DC变换模块,且所述四个储能模块与所述四个DC/DC变换模块一一对应设置,其中,每个所述储能模块与对应的DC/DC变换模块串联连接,所述第一DC/DC变换模块的第一直流端与所述第二DC/DC变换模块的第一直流端相连,并连接到所述直流牵引网的正极,所述第一DC/DC变换模块的第二直流端与所述第二DC/DC变换模块的第二直流端相连,并分别连接到所述第三DC/DC变换模块的第一直流端和所述第四DC/DC变换模块的第一直流端,所述第三DC/DC变换模块的第二直流端与所述第四DC/DC变换模块的第二直流端相连,并连接到所述直流牵引网的负极。
  11. 如权利要求9所述的用于轨道交通的直流牵引供电系统,其特征在于,所述储能组件包括两个储能模块和四个DC/DC变换模块,分别记为第一储能模块~第二储能模块、第一DC/DC变换模块~第四DC/DC变换模块,且每个储能模块对应两个DC/DC变换模块设置,其中,所述第一DC/DC变换模块的第一直流端与所述第二DC/DC变换模块的第一直流端相连,并连接到所述直流牵引网的正极,所述第一DC/DC变换模块的第二直流端与所述第二DC/DC变换模块的第二直流端相连,并分别连接到所述第三DC/DC变换模块的第一直流端和所述第四DC/DC变换模块的第一直流端,所述第三DC/DC变换模块的第二直流端与所述第四DC/DC变换模块的第二直流端相连,并连接到所述直流牵引网的负极,所述第一DC/DC变换模块的第三直流端与第二DC/DC变换模块的第三直流端相连,并连接到所述第一储能模块的第一端,所述第一DC/DC变换模块的第四直流端与所述第二DC/DC变换模块的第四直流端相连,并连接到所述第一储能模块的第二端,所述第三DC/DC变换模块的第三直流端与所述第四DC/DC变换模块的第三直流端相连,并连接到所述第二储能模块的第一端,所述第三DC/DC变换模块的第四直流端与所述第四DC/DC变换模块的第四直流端相连,并连接到第二储能模块的第二端。
  12. 如权利要求10或11所述的用于轨道交通的直流牵引供电系统,其特征在于,四个所述DC/DC变换模块中的一个以恒压模式进行工作,剩余三个以恒流模式进行工作。
  13. 如权利要求8-12中任一项所述的用于轨道交通的直流牵引供电系统,其特征在于,所述储能模块为锂电池、钒电池、铅酸电池中的一种。
PCT/CN2018/121212 2017-12-27 2018-12-14 用于轨道交通的直流牵引供电系统及其控制方法 WO2019128738A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112020012860-0A BR112020012860A2 (pt) 2017-12-27 2018-12-14 Sistema de suprimento de potência de tração de corrente contínua de trânsito ferroviário e método de controle para o mesmo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711446474.9A CN109968991B (zh) 2017-12-27 2017-12-27 用于轨道交通的直流牵引供电系统及其控制方法
CN201711446474.9 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019128738A1 true WO2019128738A1 (zh) 2019-07-04

Family

ID=67066514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121212 WO2019128738A1 (zh) 2017-12-27 2018-12-14 用于轨道交通的直流牵引供电系统及其控制方法

Country Status (3)

Country Link
CN (1) CN109968991B (zh)
BR (1) BR112020012860A2 (zh)
WO (1) WO2019128738A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111668863A (zh) * 2020-05-29 2020-09-15 西安许继电力电子技术有限公司 一种城轨供电系统储能装置及其控制方法
CN115642625A (zh) * 2021-07-19 2023-01-24 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) 飞轮储能系统、控制方法、控制装置和可读存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864756A (zh) * 2020-06-24 2020-10-30 中铁第一勘察设计院集团有限公司 电气化铁路牵引网压升高抑制处理系统及其方法
CN112636564B (zh) * 2020-11-30 2022-02-22 珠海格力电器股份有限公司 变流器的控制方法及装置、变流器、电子设备、存储介质
CN114336584A (zh) * 2021-12-23 2022-04-12 核工业理化工程研究院 一种用于地铁再生能量吸收利用的控制系统及其控制方法
CN114336871B (zh) * 2021-12-31 2024-04-12 江苏国传电气有限公司 一种提升机应急供电减速制动控制方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148531A (ja) * 2006-12-13 2008-06-26 Toshiba Corp 電気鉄道システム
CN101376344A (zh) * 2008-09-28 2009-03-04 东南大学 地铁供电系统的多目标综合控制节能方法
CN103311950A (zh) * 2013-05-15 2013-09-18 华中科技大学 城市轨道列车再生制动能量吸收利用系统及方法
CN103840477A (zh) * 2014-01-03 2014-06-04 南车株洲电力机车研究所有限公司 电气化铁路牵引供电储能装置及其方法
CN105226790A (zh) * 2015-10-14 2016-01-06 北京交通大学 城轨超级电容储能系统能量控制方法
CN206031089U (zh) * 2016-08-26 2017-03-22 比亚迪股份有限公司 用于牵引列车的再生能量吸收储能装置
CN106549403A (zh) * 2015-09-23 2017-03-29 中车大连电力牵引研发中心有限公司 地铁地面能量吸收及应急系统
CN106809060A (zh) * 2016-09-21 2017-06-09 比亚迪股份有限公司 轨道交通系统的牵引电源系统及其控制方法
CN108667002A (zh) * 2017-03-30 2018-10-16 比亚迪股份有限公司 轨道交通牵引系统及其的能量回馈系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101249802B (zh) * 2008-03-27 2010-08-18 上海工程技术大学 城市轨道交通车辆制动能量回收系统
CN202046214U (zh) * 2011-05-09 2011-11-23 株洲变流技术国家工程研究中心有限公司 一种能馈型牵引供电装置
CN204517696U (zh) * 2015-02-13 2015-07-29 江苏明伟万盛科技有限公司 基于igbt的轨道交通再生制动能量回馈双向变流电路
CN205509628U (zh) * 2016-04-13 2016-08-24 西安道齐电气科技有限公司 一种轨道交通超级电容储能系统
CN205632170U (zh) * 2016-05-13 2016-10-12 国网天津市电力公司 一种含储能的低压逆变回馈式牵引供电系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148531A (ja) * 2006-12-13 2008-06-26 Toshiba Corp 電気鉄道システム
CN101376344A (zh) * 2008-09-28 2009-03-04 东南大学 地铁供电系统的多目标综合控制节能方法
CN103311950A (zh) * 2013-05-15 2013-09-18 华中科技大学 城市轨道列车再生制动能量吸收利用系统及方法
CN103840477A (zh) * 2014-01-03 2014-06-04 南车株洲电力机车研究所有限公司 电气化铁路牵引供电储能装置及其方法
CN106549403A (zh) * 2015-09-23 2017-03-29 中车大连电力牵引研发中心有限公司 地铁地面能量吸收及应急系统
CN105226790A (zh) * 2015-10-14 2016-01-06 北京交通大学 城轨超级电容储能系统能量控制方法
CN206031089U (zh) * 2016-08-26 2017-03-22 比亚迪股份有限公司 用于牵引列车的再生能量吸收储能装置
CN106809060A (zh) * 2016-09-21 2017-06-09 比亚迪股份有限公司 轨道交通系统的牵引电源系统及其控制方法
CN108667002A (zh) * 2017-03-30 2018-10-16 比亚迪股份有限公司 轨道交通牵引系统及其的能量回馈系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111668863A (zh) * 2020-05-29 2020-09-15 西安许继电力电子技术有限公司 一种城轨供电系统储能装置及其控制方法
CN115642625A (zh) * 2021-07-19 2023-01-24 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) 飞轮储能系统、控制方法、控制装置和可读存储介质
CN115642625B (zh) * 2021-07-19 2023-12-05 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) 飞轮储能系统、控制方法、控制装置和可读存储介质

Also Published As

Publication number Publication date
BR112020012860A2 (pt) 2020-12-29
CN109968991A (zh) 2019-07-05
CN109968991B (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2019128739A1 (zh) 用于轨道交通的直流牵引供电系统及其控制方法
WO2019128738A1 (zh) 用于轨道交通的直流牵引供电系统及其控制方法
EP2994973B1 (en) Hybrid energy sourced battery or super-capacitor fed drive topologies
CN107591870B (zh) 电梯用储能系统
RU2493090C2 (ru) Управление общим током и аккумулированием энергии в приводе лифта
CN212588110U (zh) 充放电系统
US9365175B2 (en) Power supply system for vehicle
TW200410471A (en) Uninterruptible power system
CN102377192A (zh) 一种直驱型海浪发电储能装置及控制方法
JP5318004B2 (ja) 車両用電源システム
CN106961150B (zh) 复合储能电池的控制方法及系统
JP2008131736A (ja) 分散型電源システムと昇降圧チョッパ装置
TW201225473A (en) Hybrid power generator
CN102694388A (zh) 一种双向变流器控制装置
CN102969730A (zh) 一种双级链式储能变流器控制方法
CN102946113A (zh) 一种基于电池与超级电容的超级电容端电压控制方法
CN102224673A (zh) 结合在电驱动的飞行控制执行机构之内或附近的电能存储装置
CN110838728A (zh) 基于v2g变换器的配电网调频调压系统及方法
JP6293467B2 (ja) 直流電力供給システム
JP5509442B2 (ja) 電力変換装置及び電気鉄道システム
CN113708359B (zh) 一种双向dcdc变流器控制方法、系统及相关组件
CN112769330A (zh) 一种港口吊机储能型再生制动能量回收结构及控制方法
CN111654197A (zh) 双向隔离型能量变换系统及其控制方法
CN106451750B (zh) 一种直流不间断电源
CN214337803U (zh) 一种港口吊机储能型再生制动能量回收结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020012860

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020012860

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200624

122 Ep: pct application non-entry in european phase

Ref document number: 18896778

Country of ref document: EP

Kind code of ref document: A1