WO2019128582A1 - 心脏瓣膜假体和输送器 - Google Patents

心脏瓣膜假体和输送器 Download PDF

Info

Publication number
WO2019128582A1
WO2019128582A1 PCT/CN2018/117162 CN2018117162W WO2019128582A1 WO 2019128582 A1 WO2019128582 A1 WO 2019128582A1 CN 2018117162 W CN2018117162 W CN 2018117162W WO 2019128582 A1 WO2019128582 A1 WO 2019128582A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular
heart valve
valve prosthesis
support
stent
Prior art date
Application number
PCT/CN2018/117162
Other languages
English (en)
French (fr)
Inventor
侍行坤
阳明
陈国明
李�雨
Original Assignee
上海微创心通医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创心通医疗科技有限公司 filed Critical 上海微创心通医疗科技有限公司
Publication of WO2019128582A1 publication Critical patent/WO2019128582A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2466Delivery devices therefor

Definitions

  • the present invention relates to the field of medical device technology, and in particular, to a heart valve prosthesis and a conveyor.
  • aortic stenosis The main cause of aortic stenosis is mainly the sequela of rheumatic fever, congenital aortic valve dysplasia or senile aortic valve calcification, which can lead to symptoms such as dyspnea, angina, dizziness or syncope. Severe aortic stenosis can even lead to sudden death.
  • transcatheter aortic valve replacement Transcatheter Aortic Valve
  • Implantation for the treatment of aortic stenosis, placing a valved prosthetic transcatheter delivery system at the aortic root to use the prosthesis to expand the calcified plaque at the native valve leaflet and the leaflet or annulus
  • the block allows the artificial leaflet to work in place of the native leaflet.
  • a heart valve prosthesis can include:
  • a prosthetic valve is disposed on the annular support
  • An expandable support structure coupled to the annular stent and expanding as the annular stent expands, contracting as the annular stent contracts; wherein the support structure is for Ring branch ⁇ 0 2019/128582 ⁇ (:1' 2018/117162
  • the annular bracket When the two frames are in the unfolded state, the annular bracket is provided with a supporting force in the radial direction of the annular bracket.
  • the annular stent is a stent prepared using a shape memory alloy.
  • the annular support is a mesh structure having an upper end and a lower end opposite to the upper end, the artificial valve including interconnected leaflets and skirts, the skirt Provided at the lower end, and the support structure is disposed at the upper end.
  • the support structure is located at one-fifth to one-half of the annular bracket at the opening of the upper end, the skirt being located at a distance from the lower end One-sixth to one-third of the annular bracket at the opening.
  • the support structure includes a sleeve and a plurality of support rods, the sleeve is disposed coaxially with the annular bracket, and two ends of each of the support rods are respectively Connecting the sleeve to the annular bracket;
  • the plurality of support rods are evenly distributed along a circumferential direction of the annular support for providing a support force equalized in a radial direction to the annular support;
  • the plurality of support rods and the annular support are integrally formed by cutting the same pipe.
  • the support rod includes a fixing portion, a folding portion and a supporting portion which are sequentially connected
  • the fixing portion is for fixing on the sleeve
  • the supporting portion is for connecting with the annular bracket
  • the folding portion is for holding the fixing portion and the supporting portion There is a support angle between them.
  • the support angle ranges from 60° to 120°.
  • the support angle is 90°.
  • the support angle is 180°.
  • a plurality of strip grooves are formed on the outer surface of the sleeve
  • strip-shaped groove extends in a direction parallel to the axial direction of the sleeve, and the fixing portions of the support rod are embedded and fixed in the strip-shaped grooves in a one-to-one correspondence.
  • the sleeve is a hollow column structure; the strip groove is along the sleeve ⁇ 0 2019/128582 ⁇ (:1' 2018/117162
  • a plurality of first through holes are defined in the axial direction; a plurality of second through holes are defined in the fixing portion corresponding to the first through holes;
  • the heart valve prosthesis described above may further include:
  • a plurality of lugs are uniformly fixed circumferentially at an opening of the upper end of the annular stent for loading of the heart valve prosthesis.
  • the lower end of the annular bracket is provided with a vacancy
  • the vacancy is from the opening of the lower end of the annular bracket, along the axial direction of the annular bracket, in the ring
  • a local grid formed in the circumferential direction of the stent is missing.
  • the number of the vacancies is one, two or more; a conveyor, which may include:
  • the distal end of the inner tube is integrally connected with the fixing head, and the proximal end is connected with the control handle;
  • the inner core is located inside the inner tube, the distal end of the inner core is connected to the conical head through the fixing head, and the proximal end is connected with the control handle;
  • the inner tube is located inside the sheath tube, and an annular chamber is disposed between the sheath tube and the inner tube for accommodating the heart valve falseness according to any one of the above-mentioned ones in a contracted state. a further annular chamber between the inner tube and the inner core for receiving a support structure in a contracted state.
  • the tapered head is in contact with the sheath for preventing the sheath from injuring the vessel wall.
  • the tapered head surface is coated with a polymer material, and the tapered head is woven from a material of a shape memory alloy.
  • the conveyor further includes a horn segment, the proximal end of the horn segment is integrally connected with the sheath tube, and the distal end is in contact with the tapered head.
  • the horn segment is used to prevent the sheath from injuring the vessel wall.
  • the horn segment is in a flared state, and the unfolded state is a hollow cylinder having the same diameter as the sheath. ⁇ 0 2019/128582 ⁇ (:17 ⁇ 18/117162
  • the horn section is coated with a polymer material, and the horn section is woven from a material of a shape memory alloy.
  • the fixing head has a tubular structure with a groove on the surface that can cooperate with the mounting ear.
  • FIG. 1 is a schematic structural view of a heart valve prosthesis in an embodiment
  • FIG. 2 is a schematic view of the support structure shown in FIG. 1;
  • FIG. 3 is a schematic view showing the connection between the support rod and the sleeve when in a contracted state
  • Figure 4 is a side elevational view of the annular stent shown in Figure 1;
  • Figure 5 is a perspective view of the ring bracket shown in Figure 1;
  • FIG. 6 is a schematic structural view of a conveyor in a contracted state in one embodiment
  • FIG. 7 is a schematic structural view of a conveyor in a contracted state in another embodiment.
  • a heart valve prosthesis can include an expandable annular stent 100, a prosthetic valve 101, and an expandable support structure 10; the annular stent 100 can be a diamond prepared using a shape memory alloy such as Nitinol.
  • the mesh structure is configured to contract the shape of the ring bracket 100 by an external force to contract it. When the external force disappears, the ring bracket 100 gradually expands to its original shape.
  • the prosthetic valve 101 is disposed on the annular stent 100 for replacing the native valve leaflets to achieve a corresponding physiological function when the annular stent 100 is used to distract calcified plaques such as the native valve leaflets and the leaflets or annulus; 10 is coupled to the annular stent 100 and expands as the annular stent 100 expands, shrinks as the annular stent contracts, for use in the annular stent 100 ⁇ 0 2019/128582 ⁇ (:1' 2018/117162
  • the annular bracket 100 When in the unfolded state, the annular bracket 100 is provided with additional supporting force in the radial direction of the annular bracket 100, thereby effectively lifting the supporting force of the entire heart valve prosthesis 101, thereby enabling the annular bracket 100 to be effectively opened.
  • the valvular plaque at the primary leaflet and the leaflet or annulus, and thereafter can effectively maintain the opening size of the prosthetic valve 101.
  • the annular stent 100 has an upper end 201 and a lower end 202 opposite the upper end 201, and blood flows into the heart valve prosthesis through the lower end 202 and flows out through the upper end 201.
  • the support structure 10 is disposed at the upper end 201, preferably at one-fifth to one-half of the annular stent 100 at the opening from the upper end 201;
  • the prosthetic valve 101 includes at least three leaflets (eg, three petals) Leaves) interconnected leaflets (e.g., three leaflets) and a skirt 103, the skirt 103 being disposed with the lower end 202, preferably, one-sixth of the annular stent 100 disposed at an opening from the lower end to One third, and one end of each leaflet (not shown) is connected to the skirt, and the other end of the leaflet is fixed to the annular bracket 100 with a connection structure such as a sewing ring 102.
  • a plurality of lugs 104 are further disposed at the opening of the upper end 201 of the annular bracket 100, and the plurality of lugs 1 ⁇ 4 are evenly distributed along the circumferential direction of the annular bracket 1 ⁇ to facilitate loading of the heart valve prosthesis.
  • the support structure 10 may include a sleeve 110 and a plurality of support rods 105.
  • the sleeve 110 is disposed coaxially with the annular support 100, and each support rod 105 is One end can be coupled to the sleeve 110 and the other end can be coupled to the bracket node 109 of the annular bracket 100 (shown in Figure 4), which is the intersection of two adjacent diamond-shaped grids on the annular bracket 100;
  • the plurality of support rods 105 are uniformly or non-uniformly distributed along the circumferential direction of the sleeve 110 for providing the annular support 100 along the annular support 100 with the sleeve 110 as a fulcrum when the annular support 100 is in the deployed state. Supporting force in the radial direction.
  • FIG. 3 is a schematic view of the support rod in a contracted state.
  • the above-mentioned support rod 105 may be a structure prepared using a shape memory alloy such as a nickel-titanium alloy, a copper-nickel alloy, a copper-aluminum alloy, a copper-zinc alloy, or an iron-based alloy.
  • a shape memory alloy such as a nickel-titanium alloy, a copper-nickel alloy, a copper-aluminum alloy, a copper-zinc alloy, or an iron-based alloy.
  • the support rod 105 is compatible with the collapsible annular support 100. That is, when the annular stent 100 is in the contracted state, the support rod 105 can remain parallel to the axial direction of the sleeve 110 (as shown in FIGS. 3 and 6) to facilitate loading of the heart valve prosthesis; and the annular stent 100 is in an unfolded state.
  • the support rod 105 has a shape memory function ⁇ 0 2019
  • the support rod 105 can restore the preset bending shape to have a preset angle with the sleeve 110 and the ring bracket 100 (as shown in Figures 2 and 4), thereby lifting the annular bracket 100. Radial support force.
  • the same tube can be used to prepare the annular bracket 100 and the support rod 105, that is, the annular bracket 100 and the support rod 105 are integrally formed.
  • a nickel-titanium pipe having an outer diameter of 5 to 15: ⁇ 1111 can be used, and the diameter of the shaped shape is cut according to actual needs, and then heat-treated and shaped to form a ring-shaped bracket having a diameter of 20 to 4 ⁇ 111111 (in an unfolded state)
  • the support rod 105 described above can be formed by folding the bracket inwardly by, for example, cutting, heat treatment, or the like.
  • the above-mentioned annular bracket 100 and the support rod 105 can also be independent of each other, and they can be connected together by, for example, welding, and providing a rotatable connection structure.
  • the preset angle between the support rod 105 and the annular bracket 100 is in the range of 60° to 120°, for example, 60°, 80°, 100° or 120°, etc. Ensuring that the support rod 105 can provide sufficient radial support force to the annular support 100; in order to provide the support rod 105 with maximum support force to the annular support 100, the support rod 105 can be kept perpendicular to the annular support when the annular support 100 is in the deployed state.
  • the outer contour of 100 that is, the support rod 105 and the annular bracket 100 have an angle of 90°; the preset angle between the support rod 105 and the sleeve 110 is also in the range of 60° to 120°, for example, 60°. 70°, 90°, 110° or 120°, etc., to ensure that the support rod 105 can obtain the radial supporting force of the sleeve 110; in order to provide the support rod 105 with the maximum supporting force to the annular bracket 100, the annular bracket 100 can be In the unfolded state, the support rod 105 is perpendicular to the outer contour of the sleeve 110, that is, the support rod 105 and the sleeve 110 have an angle of 90°.
  • each of the support bars 105 may include a fixing portion 105, a folding portion 105: 8 and a supporting portion 105 (:; fixed) which are sequentially connected.
  • the portion 105 can be used for fixing to the sleeve 110, and the folding portion 105: 8 can be used to maintain a supporting angle between the fixing portion 105 and the supporting portion 1050 when the annular bracket 100 is in the unfolded state, and the supporting portion 105 can be used for
  • the annular bracket 100 is coupled to provide a radial support force to the annular bracket 100.
  • the folded portion 1056 may be a structure prepared using a shape memory alloy such as a nickel-titanium alloy, that is, the folded portion 1 ⁇ 5:8 has a shape memory function to be in a contracted state when the annular stent 100 is in a contracted state , maintaining a straight strip shape (shown in Figures 3 and 6) to facilitate loading of the heart valve prosthesis; and when the annular stent 100 is in the unfolded state, the fold portion 1 ⁇ 5:8 can restore the bent shape to
  • the support portion 105 (with a predetermined support angle between the fixed portion 105 (as shown in FIGS. 2 and 4) is such that the support portion 105 can be used with the sleeve 110 ⁇ 0 2019/128582 ⁇ (:1' 2018/117162
  • the 7 fulcrum provides the annular bracket 100 with a supporting force in the radial direction of the annular bracket 100.
  • the preset support angle ranges from 60° to 120°, such as 60°, 75°, 90°, 105°, or 120°, to ensure the support portion 105 (: can be obtained along the sleeve a sufficient supporting force in the radial direction of the cylinder 110; in order to maximize the support of the support rod 105 to the annular bracket 100, the support portion 105 may be made when the annular bracket 100 is in the unfolded state (: perpendicular to the fixed portion 105, That is, the supporting portion 105 (the supporting angle with the fixing portion 10 5 is 90°).
  • the outer surface of the sleeve 110 is provided with a plurality of strip-shaped grooves 111, and each of the strip-shaped grooves 111 extends in the same direction.
  • the axial direction of the cylinder 100 is parallel, and the fixing portions 105 are embedded and fixed in the strip grooves correspondingly, so that each of the support rods 105 is fixedly connected with the sleeve 110.
  • the strips are fixed.
  • the shape of the groove matches the shape of the fixing portion 1 ⁇ 5 so that the fixing portion 105 can be more stably fixed in the corresponding strip groove 111.
  • the sleeve 110 may be a hollow column structure (ie, a hollow cylindrical structure) and along the sleeve 110 in the strip groove 111.
  • a plurality of first through holes are defined in the axial direction, and a plurality of second through holes 112 are also formed in the fixing portion 105 corresponding to the first through holes, so as to utilize a connecting structure such as a suture. And sequentially passing through the first through hole and the second through hole 112 overlapping the first through hole to fix the fixing portion 105 in the corresponding strip groove 111.
  • FIG. 4 is a side view of the ring holder shown in FIG. 1
  • FIG. 5 is a perspective view of the ring holder shown in FIG. 1.
  • the lower end 202 of the annular bracket 100 is provided with a vacancy 108
  • the vacancy 108 is from the opening of the lower end of the annular bracket along the annular bracket 100.
  • a partial mesh formation formed on the circumference of the annular support 100 that is, an opening near the lower end of the annular support, is arranged in a first row of diamond meshes circumferentially along the annular support 100 At least two diamond meshes are separated by a gap 108, which may be a triangle, and in FIG.
  • any two diamond grids in a first row of diamond grids arranged circumferentially along the annular stent 100 They are all separated by a gap 108.
  • vacancies 108 are used for implantation of a heart valve prosthesis at a low level in a patient, adjustments are made such that the vacancies 108 are aligned with the right coronary sinus side to avoid squeezing to the conductive beam.
  • the above-mentioned vacancies 108 may be evenly or non-uniformly distributed along the circumferential direction of the annular stent 100 in order to adjust the direction of implantation of the heart valve prosthesis.
  • a plurality of spike structures 106 are further disposed on the outer contour of the central region adjacent to the annular stent 100 to implant the patient in the heart valve prosthesis.
  • a calcified native valve leaflet or annulus is inserted into the body to assist in positioning the annular stent 100 to prevent the valve from swaying toward the aorta.
  • the plurality of spike structures 106 can be evenly distributed along the circumferential direction of the annular bracket 100 to improve the stability of the fixed positioning.
  • the spike structure 106 and the annular bracket 100 are an integral structure cut by the same pipe to further reduce the process difficulty and the production cost.
  • the material of the spike structure 106 may also be a shape memory alloy to be attached to the annular bracket 100 when the annular bracket 100 is in the contracted state, and protruded to the annular bracket when the annular bracket 100 is in the unfolded state, so that Loading and transporting the heart valve prosthesis, and maintaining an angle of 60° to 120° with the outer contour surface of the annular stent 100 when the annular stent 100 is in the deployed state, for example, having 60°, 85° An angle of 90°, 115° or 120° to ensure that the spiked structure 106 can penetrate into a predetermined position.
  • the support structure is capable of providing the annular support by the support structure disposed on the annular support when the annular support is in an expanded state (ie, the heart valve prosthesis is implanted in the patient) Additional radial support force to effectively increase the tension at the position of the heart valve prosthesis, ensuring that the valve of the entire heart valve prosthesis has a predetermined effective opening area; and, because of the vacancy at the lower end of the annular stent, Adjusting the orientation of the implanted valve so that the vacancy at the lower end can be aligned with the right sinus side to effectively avoid the conduction block complications caused by the annular stent squeezing the conduction beam, and because there is a vacancy on the annular stent
  • the annular bracket is expanded, the supporting force of the annular bracket itself is insufficient, and the additional supporting force provided by the supporting structure effectively solves this problem.
  • the support rod distributed along the circumferential direction of the annular stent and the spiked structure disposed on the annular stent can effectively increase the effective height range of the heart valve prosthesis, so that the heart valve prosthesis can appear even when implanted. Dislocations (such as high or low implants) ensure that the annular stent can expand the native tissue.
  • FIG. 6 is a schematic structural view of a conveyor in a contracted state in one embodiment.
  • a conveyor can include a conical head 301, an inner tube 305, a control handle (not shown), a horn section 302, a sheath 303, and a fixed head 304.
  • the distal end of the sheath 303 is coupled to the horn section 302.
  • the proximal end of the tube 303 is coupled to a control handle
  • the distal end of the inner tube 305 is coupled to the fixed head 304
  • the proximal end is coupled to the control handle.
  • the surface of the horn segment 302 is coated with a polymer material, and can be woven by a shape memory alloy such as a nickel-titanium alloy, a copper-nickel alloy, a copper-aluminum alloy, a copper-zinc alloy, or an iron-based alloy. , capable of contracting and expanding (ie, unfolding) under relatively small pressure conditions, and having a trumpet shape when in a contracted state and a hollow cylinder having the same diameter as the sheath tube 303 when in an expanded state.
  • a shape memory alloy such as a nickel-titanium alloy, a copper-nickel alloy, a copper-aluminum alloy, a copper-zinc alloy, or an iron-based alloy.
  • the opening of the upper end of the annular stent 100 is provided with a mounting lug 104 - a corresponding fixing on the fixing head 304 to load the heart valve prosthesis into a predetermined position in the patient's body,
  • the prosthetic valve that causes the lesion is replaced by a prosthetic valve.
  • a guide wire 307 is inserted in the inner core 306, and both ends of the guide wire pass through the conical head 301 and the control handle, wherein the control handle can be used to control the sheath 303, the inner tube 305 and the inner core 306. Go forward and back.
  • the tapered head 301 is in contact with the sheath 303, and the surface of the tapered head 301 is coated with a polymer material, such as by using, for example.
  • a shape memory alloy such as a nickel-titanium alloy, a copper-nickel alloy, a copper-aluminum alloy, a copper-zinc alloy, or an iron-based alloy is woven, and can be shrunk and expanded (ie, expanded or expanded) under a small pressure condition. .
  • the heart valve prosthesis is loaded into a sheath sheath as shown in FIG. 6 in a low temperature environment such as an in vitro ice water bath.
  • the horn segment 302 and the sheath 303 may be detached one after another to fix The head 304 is exposed; wherein, when retracting to the portion of the fixed head 304, the horn segment 302 can be expanded by an external force into a hollow cylinder of the same diameter as the sheath 303.
  • the lug 104 on the ring bracket 100 is snapped into the corresponding slot of the fixing head 304, and the inner core 306 is connected to the conical head 301 through the sleeve 110 of the ring bracket 100.
  • the horn segment 302 and the sheath 303 are advanced, and the annular stent 100 loaded with the prosthetic valve and compressed is loaded into the sheath 303, and the external force applied to the horn segment 302 is removed to restore the original state, and The horn segment 3 ⁇ 2 is fitted to the tapered head 301 to complete the loading operation of the heart valve prosthesis.
  • the conveyor is passed through the guide wire 307, the femoral artery is arched to the position of the aortic valve of the lesion, the horn segment 302 and the sheath 303 are retracted, and the horn segment 302 is expanded to completely expose the fixed head 304.
  • the lug 104 is detached from the fixed head 304, and the annular stent 100 is mated with the native annulus to gradually release the heart valve prosthesis, at which point the sleeve 110 has not been detached from the inner core 306; wherein, the heart valve prosthesis is released During the process, the annular stent 100 can distract the calcified plaque at the native valve leaflet and the leaflet or annulus, and the horn segment 302 expands. ⁇ 0 2019/128582 ⁇ (:1' 2018/117162
  • the inner tube 305 is withdrawn, so that the sleeve 110 passes through the fixed head 304, and the inner core 306 is withdrawn until the conical head 301 is withdrawn from the conveyor through the sleeve 110.
  • the cartridge 110 is completely disengaged from the inner core 306, and the horn segment 302 is rapidly retracted to its original state, thereby loading the heart valve prosthesis to a predetermined position.
  • the size of the tapered head 301 is smaller than the inner diameter of the sleeve 110, so that after the annular bracket 100 is released, the tapered head 301 can pass through the sleeve 110;
  • the size of the head 301 is much smaller than the diameter of the sheath 303, so that a horn section 302 is provided between the tapered head 301 and the sheath 303 for connection and smoothing, thereby preventing the sheath 303 from being implanted in the human body.
  • the wall scratches the blood vessels.
  • the horn segment 302 is prepared by using a shape memory alloy material, so that the horn segment 302 is in a state of expansion (ie, in an unfolded state), and is a hollow cylinder having the same diameter at both ends, so that the ring bracket 100 can be worn during loading and release.
  • the horn segment 302 is passed.
  • the heart valve prosthesis is loaded into the sheath of the conveyor in a low temperature environment such as an external ice water bath, specifically, as shown in FIG. 7
  • the sleeve 303 can be removed from the sleeve 304 to expose the fixing head 304.
  • the mounting ears 104 on the ring bracket 100 are snapped into the corresponding slots of the fixing head 304.
  • the tapered head 301 is at the sleeve 110.
  • Deformation occurs under extrusion, driving the inner core 306 connected thereto through the sleeve 110, and then advancing the sheath tube 303, and loading the annular stent 100 loaded with the artificial valve and in a compressed state into the sheath tube 303 to complete Loading operation of a heart valve prosthesis.
  • the conveyor is passed through the guide wire 307, the femoral artery is arched to the position of the aortic valve of the lesion, and the sheath tube 303 is withdrawn, and the lug 104 is detached from the fixed head 304, and the annular stent 100 is
  • the native annulus is matched to gradually release the heart valve prosthesis, at which point the sleeve 110 has not been detached from the inner core 306; wherein, during release of the heart valve prosthesis, the annular stent 100 can distract the native valve leaflets and petals Calcified plaque at the leaf or annulus; then, the inner tube 305 is withdrawn, so that the sleeve 110 passes through the fixed head 304, and the inner core 306 is withdrawn until the tapered head 301 is deformed and then withdrawn through the sleeve 110. At this point, the sleeve 110 is completely disengaged from the inner core 306 and the heart valve prosthesis is loaded to a predetermined position.
  • the implantable heart valve prosthesis and the conveyor described in the embodiments of the present invention are provided with a support structure disposed at a position of the stent flap so that when the annular stent is in an unfolded state,
  • the support structure can provide additional radial support force to the annular stent to effectively increase the tension at the position of the heart valve prosthesis valve, and ensure that the valve of the entire heart valve prosthesis has a predetermined effective opening area; ⁇ 0 2019/128582 ⁇ (:1' 2018/117162
  • the conveyor designed based on the above-mentioned heart valve prosthesis can be connected and smoothed by a special horn section or a special conical head, thereby preventing the sheath from scratching the blood vessel when the sheath is implanted into the human body.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

本发明涉及医疗器械技术领域,尤其涉及一种可扩张的环形支架,可包括:人工瓣膜,设置于所述环形支架上;可扩张的支撑结构,与所述环形支架相连接并且随着所述环形支架的扩张而扩张,随着所述环形支架的收缩而收缩;其中,所述支撑结构用于在所述环形支架处于扩张状态时,向该环形支架提供沿所述环形支架径向方向的支撑力。上述的心脏瓣膜假体,通过支撑结构向环形支架沿径向提供额外的支撑力,能够有效的提升整个心脏瓣膜假体的支撑力,从而使得利用支架能够有效撑开原生瓣叶与瓣叶或瓣环处的钙化斑块,并在之后能够维持人工瓣膜的有效开口。

Description

发明名称:心脏瓣膜假体和输送器
技术领域
[0001] 本发明涉及医疗器械技术领域, 特别是涉及一种心脏瓣膜假体和输送器。
背景技术
[0002] 主动脉瓣狭窄主要的病因主要是风湿热的后遗症、 先天性主动脉瓣结构异常或 老年性主动脉瓣钙化等, 其会导致患者出现诸如呼吸困难、 心绞痛、 眩晕或晕 厥等不适症状, 重度主动脉瓣狭窄甚至会导致患者突然死亡。
[0003] 目前, 一般是采用经导管主动脉瓣膜置换术 (Transcatheter Aortic Valve
Implantation, 简称 TAVI) 进行主动脉瓣狭窄的治疗, 即将一个带瓣膜的假体经 导管输送系统放置于主动脉根部, 以利用该假体撑开原生瓣叶与瓣叶或瓣环处 的钙化斑块, 使得人造瓣叶代替原生瓣叶工作。
发明概述
技术问题
[0004] 但是, 当前瓣膜假体的支架支撑力不足, 会导致瓣膜的有效开口面积较小, 从 而使得疗效无法达到预期; 尤其针对重度主动脉瓣狭窄患者, 由于支架支撑力 有限, 甚至会无法有效撑开钙化斑块。 因此, 如何提升支架的支撑力已经成为 当前业界亟待解决的一个难题。
问题的解决方案
技术解决方案
[0005] 基于此, 有必要针对上述技术问题提供一种心脏瓣膜假体和输送器, 通过提升 支架的支撑力, 来提高主动脉瓣狭窄的疗效。
[0006] 一种心脏瓣膜假体, 可包括:
[0007] 可扩张的环形支架;
[0008] 人工瓣膜, 设置于所述环形支架上;
[0009] 可扩张的支撑结构, 与所述环形支架相连接并且随着所述环形支架的扩张而扩 张, 随着所述环形支架的收缩而收缩; 其中, 所述支撑结构用于在所述环形支 \¥0 2019/128582 卩(:1' 2018/117162
2 架处于展开状态时, 向该环形支架提供沿所述环形支架径向方向的支撑力。
[0010] 在一个可选的实施例中, 所述环形支架为采用形状记忆合金所制备的支架。
[0011] 在一个可选的实施例中, 所述环形支架为网状结构, 具有上端及与所述上端相 对的下端, 所述人工瓣膜包括相互连接的瓣叶和裙边, 所述裙边设置于所述下 端, 而所述支撑结构设置于所述上端。
[0012] 在一个可选的实施例中, 所述支撑结构位于距离所述上端的开口处的所述环形 支架的五分之一至二分之一处, 所述裙边位于距离所述下端的开口处的所述环 形支架的六分之一至三分之一处。
[0013] 在一个可选的实施例中, 所述支撑结构包括套筒和多根支撑杆, 所述套筒与所 述环形支架同轴设置, 每根所述支撑杆的两端分别与所述套筒和所述环形支架 连接;
[0014] 其中, 所述多个支撑杆沿所述环形支架的周向方向均匀分布, 用于向所述环形 支架提供沿径向方向均衡的支撑力; 。
[0015] 在一个可选的实施例中, 所述多个支撑杆与所述环形支架为采用同一根管材切 割而成的一体结构。
[0016] 在一个可选的实施例中, 所述支撑杆包括依次连接的固定部、 翻折部和支撑部
[0017] 其中, 所述固定部用于固定在所述套筒上, 所述支撑部用于与所述环形支架连 接, 所述翻折部用于保持所述固定部与所述支撑部之间具有一支撑角度。
[0018] 在一个可选的实施例中, 所述环形支架处于扩张状态时, 所述支撑角度的取值 范围为 60°~120°。
[0019] 在一个可选的实施例中, 所述支撑角度为 90°。
[0020] 在一个可选的实施例中, 所述环形支架处于收缩状态时, 所述支撑角度为 180°
[0021] 在一个可选的实施例中, 所述套筒的外表面上开设多个条形槽;
[0022] 其中, 所述条形槽的延伸方向与所述套筒的轴向方向平行, 所述支撑杆的所述 固定部一一对应地嵌入固定在所述条形槽中。
[0023] 在一个可选的实施例中, 所述套筒为空心柱结构; 所述条形槽中沿所述套筒的 \¥0 2019/128582 卩(:1' 2018/117162
3 轴向方向开设有多个第一通孔; 所述固定部上对应所述第一通孔开设有多个第 二通孔;
[0024] 其中, 通过缝合线依次穿过所述第一通孔和与该第一通孔对应的第二通孔将所 述固定部固定在所述条形槽中。
[0025] 在一个可选的实施例中, 上述的心脏瓣膜假体还可包括:
[0026] 多个挂耳, 沿周向均匀固定设置在所述环形支架的所述上端的开口处, 用于所 述心脏瓣膜假体的装载。
[0027] 在一个可选的实施例中, 所述环形支架的下端开设有空缺, 所述空缺为从所述 环形支架下端的开口处起, 沿所述环形支架轴向方向, 在所述环形支架的周向 方向上形成的局部的网格缺失。
[0028] 在一个可选的实施例中, 所述空缺的数量为一个, 两个或多个; 一种输送器, 可包括:
[0029] 锥形头、 鞘管、 内芯、 固定头、 内管和控制手柄;
[0030] 所述内管的远端与所述固定头连为一体, 近端与所述控制手柄连接;
[0031] 所述内芯位于所述内管之内, 所述内芯的远端穿过所述固定头与所述锥形头连 接, 近端与所述控制手柄连接;
[0032] 所述内管位于所述鞘管之内, 所述鞘管与所述内管之间具有一环形腔室, 用于 容置处于收缩状态的上述任意一项所述的心脏瓣膜假体; 所述内管与所述内芯 之间具有另一环形腔室, 用于容置处于收缩状态的支撑结构。
[0033] 在一个可选的实施例中, 所述锥形头与所述鞘管接触, 用于防止所述鞘管戳伤 血管壁。
[0034] 在一个可选的实施例中, 所述锥形头表面包覆高分子材料, 所述锥形头由形状 记忆合金的材料编织而成。
[0035] 在一个可选的实施例中, 上述的输送器还包括可一喇叭段, 所述喇叭段的近端 与所述鞘管连成一体, 远端与所述锥形头接触, 所述喇叭段用于防止所述鞘管 戳伤血管壁。
[0036] 在一个可选的实施例中, 所述喇叭段收缩状态为喇叭状, 展开状态为与所述鞘 管同径的空心圆柱体。 \¥0 2019/128582 卩(:17 謂18/117162
4
[0037] 在一个可选的实施例中, 所述喇叭段表面包覆高分子材料, 所述喇叭段由形状 记忆合金的材料编织而成。
[0038] 在一个可选的实施例中, 所述固定头为管状结构, 表面有可与挂耳配合的凹槽
发明的有益效果
对附图的简要说明
附图说明
[0039] 图 1是一个实施例中心脏瓣膜假体的结构示意图;
[0040] 图 2是图 1中所示支撑结构的示意图;
[0041] 图 3是处于收缩状态时支撑杆与套筒之间的连接示意图;
[0042] 图 4是图 1中所示环形支架的侧视图;
[0043] 图 5是图 1中所示环形支架的立体图;
[0044] 图 6是一个实施例中处于收缩状态的输送器的结构示意图;
[0045] 图 7是另一个实施例中处于收缩状态的输送器的结构示意图。
发明实施例
本发明的实施方式
[0046] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0047] 图 1是一个实施例中心脏瓣膜假体的结构示意图。 如图 1所示, 一种心脏瓣膜假 体可包括可扩张的环形支架 100、 人工瓣膜 101和可扩张的支撑结构 10; 环形支 架 100可为采用诸如镍钛合金等形状记忆合金所制备的菱形网状结构, 以通过外 力对环形支架 100对其形状进行约束, 来使其收缩, 当外力消失后, 环形支架 10 0又逐渐扩张为其原来的形状。 人工瓣膜 101设置在环形支架 100上, 以用于在利 用该环形支架 100撑开诸如原生瓣叶与瓣叶或瓣环处的钙化斑块时, 替换原生瓣 叶实现相应的生理功能; 支撑结构 10与所述环形支架 100相连接并且随着环形支 架 100的扩张而扩张, 随着所述环形支架的收缩而收缩, 以用于在环形支架 100 \¥0 2019/128582 卩(:1' 2018/117162
5 处于展开状态时, 向该环形支架 100提供沿该环形支架 100的径向方向额外的支 撑力, 进而能够有效的提升整个心脏瓣膜假体 101的支撑力, 从而使得环形支架 100能够有效撑开原生瓣叶与瓣叶或瓣环处的钙化斑块, 并在之后还能够有效的 维持人工瓣膜 101的开口大小。
[0048] 具体地, 环形支架 100具有上端 201以及相对于上端 201的下端 202, 血液经下端 202流入心脏瓣膜假体内, 并经上端 201流出。 支撑结构 10设置于上端 201处, 优 选地, 设置于距离上端 201的开口处的环形支架 100的五分之一至二分之一处; 人工瓣膜 101包括至少三个瓣叶 (如三个瓣叶) 相互连接的瓣叶 (如三个瓣叶) 和裙边 103 , 裙边 103设置与下端 202处, 优选地, 设置于距离所述下端的开口处 的环形支架 100的六分之一至三分之一处, 且每个瓣叶 (图中未示出) 的一端与 裙边连接, 而该瓣叶的另一端则与诸如缝合环 102等连接结构固定在环形支架 10 0上。 同时, 在环形支架 100的上端 201的开口处还设置有多个挂耳 104, 该多个 挂耳 1〇4沿环形支架 1〇〇的周向方向均匀分布, 以便于心脏瓣膜假体的装载植入
[0049]
[0050] 图 2是图 1中处于扩张状态的支撑结构的示意图。 如图 2所示, 在一个可选的实 施例中, 上述的支撑结构 10可包括套筒 110和多根支撑杆 105, 套筒 110与环形支 架 100同轴设置, 而每根支撑杆 105的一端可与套筒 110连接, 另一端则可连接至 环形支架 100的支架节点 109 (如图 4所示) 上, 支架节点 109是环形支架 100上两 个相邻的菱形网格的交点; 其中, 上述的多根支撑杆 105沿套筒 110的周向方向 均匀或非均匀分布, 以用于在环形支架 100处于展开状态时, 以套筒 110作为支 点向环形支架 100提供沿该环形支架 100径向方向的支撑力。
[0051] 图 3是处于收缩状态时支撑杆的示意图。 如图 2~3所示, 上述的支撑杆 105的可 为采用诸如镍钛系合金、 铜镍系合金、 铜铝系合金、 铜锌系合金、 铁系合金等 形状记忆合金所制备的结构, 以使得该支撑杆 105能够具有形状记忆功能, 进而 与可收缩的环形支架 100相兼容。 即在环形支架 100处于收缩状态时, 支撑杆 105 能够保持与套筒 110的轴向平行 (如图 3、 6所示) , 以便于心脏瓣膜假体的装载 ; 而在环形支架 100处于展开状态时, 由于支撑杆 105采用的具有形状记忆功能 \¥0 2019/128582 卩(:1' 2018/117162
6 的合金, 因此支撑杆 105能够恢复预设的弯折形状, 以与套筒 110及环形支架 100 之间具有预设的夹角 (如图 2、 4所示) , 进而提升环形支架 100的径向支撑力。
[0052] 另外, 为了提升心脏瓣膜假体一体化性能, 降低制备工艺难度和制造成本, 可 采用同一根管材来制备环形支架 100和支撑杆 105, 即环形支架 100与支撑杆 105 为一体成型的结构, 例如可采用外径为 5~15:〇1111的镍钛管材, 根据实际需求切割 选取定型后的直径尺寸后, 进行热处理定型, 形成直径为 20~4〇111111的环形支架 (处于展开状态) , 如可通过诸如切割、 热处理定型等使得支架向内部翻折形 成上述的支撑杆 105。 当然, 上述的环形支架 100与支撑杆 105也可相互独立的两 个部件, 并通过诸如焊接方式、 设置可转动的连接结构将其连接在一起。 同 时, 在环形支架 100处于展开状态时, 支撑杆 105与环形支架 100之间的预设夹角 在 60°~120°的范围内, 例如 60°、 80°、 100°或 120°等, 以确保支撑杆 105能够向环 形支架 100提供足够的径向支撑力; 为了使得支撑杆 105对环形支架 100提供最大 的支撑力, 可使得在环形支架 100处于展开状态时保持支撑杆 105垂直于环形支 架 100的外轮廓, 即支撑杆 105与环形支架 100之间具有 90°的夹角; 支撑杆 105与 套筒 110之间的预设夹角也在 60°~120°的范围内, 例如 60°、 70°、 90°、 110°或 120 °等, 以确保支撑杆 105能够获得套筒 110的径向支撑力; 为了使得支撑杆 105对环 形支架 100提供最大的支撑力, 可在环形支架 100处于展开状态时使得支撑杆 105 垂直于套筒 110的外轮廓, 即支撑杆 105与套筒 110之间具有 90°的夹角。
[0053] 在一个可选的实施例中, 如图 2~3所示, 每根支撑杆 105均可包括依次连接的固 定部 105八、 翻折部 105:8和支撑部 105(:; 固定部 105八可用于固定在套筒 110, 翻 折部 105:8可用于在环形支架 100处于展开状态时保持固定部 105 与支撑部 1050 之间具有一支撑角度, 支撑部 105(:可用于与环形支架 100连接以向环形支架 100 提供径向的支撑力。
[0054] 其中, 翻折部 1056可为采用诸如镍钛系合金等形状记忆合金所制备的结构, 即 该翻折部 1〇5:8具有形状记忆功能, 以在环形支架 100处于收缩状态时, 保持直条 形状 (¾卩图3、 6所示) , 以便于心脏瓣膜假体的装载; 而在环形支架 100处于展 开状态时, 翻折部 1〇5:8能够恢复弯折形状, 以使得支撑部 105(:与固定部 105八之 间具有预设的支撑角度 (如图 2、 4所示) , 以使得支撑部 105(:能够以套筒 110为 \¥0 2019/128582 卩(:1' 2018/117162
7 支点向环形支架 100提供沿该环形支架 100径向方向的支撑力。
[0055] 另外, 上述预设的支撑角度的取值范围为 60°~120°, 例如 60°、 75°、 90°、 105° 或 120°等, 以确保支撑部 105(:能够获得沿套筒 110的径向方向足够的支撑力; 为 了最大程度使得支撑杆 105对环形支架 100提供最大的支撑力, 可在环形支架 100 处于展开状态时使得支撑部 105(:垂直于固定部 105八, 即支撑部 105(:与固定部 10 5八之间的支撑角度为 90°。
[0056] 在另一个可选的实施例中, 如图 2~3所示, 套筒 110的外表面上开设有多个条形 槽 111, 且每个条形槽 111的延伸方向均与套筒 100的轴向方向平行, 上述的固定 部 105八一一对应地嵌入固定在条形槽中, 以使得每根支撑杆 105均与套筒 110固 定连接; 另外, 为了提升固定的效果, 条形槽的形状与固定部 1〇5 的形状匹配 , 以使得固定部 105八能够更加稳固地固定在对应的条形槽 111中。 其中, 套筒 11 而翻折部 1056的
Figure imgf000009_0001
[0057] 在另一个可选的实施例中, 如图 2~3所示, 套筒 110可为空心柱结构 (即中空的 圆柱形结构) , 且在条形槽 111中沿套筒 110的轴向方向开设有多个第一通孔 ( 图中未示出) , 而固定部 105八上对应第一通孔也开设有多个第二通孔 112, 以便 于利用诸如缝合线等连接结构, 依次穿过第一通孔和与该第一通孔叠置的第二 通孔 112, 以将固定部 105 固定在对应的条形槽 111中。
[0058] 图 4是图 1中所示环形支架的侧视图, 图 5是图 1中所示环形支架的立体图。 如图 1、 4~5所述, 在一个可选的实施例中, 环形支架 100的下端 202开设有空缺 108, 空缺 108为从所述环形支架下端的开口处起, 沿所述环形支架 100轴向方向, 在 所述环形支架 100圆周上形成的局部的网格缺失, 也即, 靠近所述环形支架下端 的开口, 沿着所述环形支架 100周向排列的第一排菱形网格中至少有两个菱形网 格由一个空缺 108间隔开, 该空缺 108可以为三角形, 在图 1中, 沿着所述环形支 架 100周向排列的第一排菱形网格中任意两个菱形网格皆由一个空缺 108间隔开 。 由空缺 108以用于在心脏瓣膜假体低位植入患者体内时, 通过调整使得空缺 10 8与右冠窦侧对齐进而避免挤压到传导束。 其中, 上述的空缺 108可沿环形支架 1 00的周向方向均匀或非均匀分布, 以便于调整心脏瓣膜假体植入的方向。 \¥0 2019/128582 卩(:1' 2018/117162
8
[0059] 如图 4所示, 在一个可选的实施例中, 在邻近环形支架 100的中部区域的外轮廓 面上还设置有多个尖刺结构 106 , 以在心脏瓣膜假体植入患者体内时刺入钙化的 原生瓣叶或瓣环, 用于辅助将环形支架 100予以固定定位, 避免瓣膜向主动脉方 向窜动。 其中, 上述的多个尖刺结构 106可沿环形支架 100的周向方向均匀分布 , 以提升其固定定位的稳固性。
[0060] 同时, 尖刺结构 106与环形支架 100为采用同一根管材切割而成的一体结构, 以 进一步的降低工艺难度和生产成本。 另外, 尖刺结构 106的材质也可为形状记忆 合金, 以在环形支架 100处于收缩状态时与环形支架 100贴附在一起, 而在环形 支架 100处于展开状态时凸起于该环形支架, 以便于心脏瓣膜假体的装载及输送 , 且在环形支架 100处于展开状态时, 保持与环形支架 100的外轮廓面之间具有 6 0°~120°的夹角, 例如具有诸如 60°、 85°、 90°、 115°或 120°等角度的夹角, 以确 保尖刺结构 106能够刺入预定的位置处。
[0061] 上述心脏瓣膜假体实施例中, 通过设置在环形支架上的支撑结构, 以在环形支 架处于扩张状态 (即心脏瓣膜假体植入患者体内) 时, 该支撑结构能够向环形 支架提供额外的径向支撑力, 以有效提升心脏瓣膜假体瓣口位置处的张力, 保 证整个心脏瓣膜假体的瓣膜具有预定的有效开口面积; 同时, 由于在环形支架 的下端处设置空缺, 可通过调整植入的瓣膜的朝向, 使得下端处的空缺能够与 右冠窦侧对准, 以有效避免因环形支架挤压传导束而造成的传导阻滞并发症, 并且由于环形支架上开设有空缺会使得环形支架扩张时, 环形支架本身的支撑 力不足, 而支撑结构所提供的额外的支撑力有效地解决了这一问题。 另外, 沿 环形支架周向方向分布的支撑杆及设置在环形支架上的尖刺结构还能有效增大 心脏瓣膜假体植入时的有效高度范围, 使得心脏瓣膜假体在植入时即使出现错 位 (如高位或低位植入) 时均能确保环形支架能够撑开原生组织。
[0062] 图 6是一个实施例中处于收缩状态的输送器的结构示意图。 一种输送器可包括 锥形头 301、 内管 305、 控制手柄 (图中未标示) 喇叭段 302、 鞘管 303和固定头 3 04, 鞘管 303的远端与喇叭段 302连接, 该鞘管 303的近端则连接至控制手柄, 内 管 305的远端连接至固定头 304, 近端则连接至控制手柄。 鞘管 303与内管 305之 间具有一环形腔室, 上述任意一个实施例中的心脏瓣膜假体 (处于压缩状态) \¥0 2019/128582 卩(:1' 2018/117162
9 容置在鞘管 303的腔室中, 以便于将该心脏瓣膜假体装载至患者的体内, 用于置 换发生病变的主动脉瓣。 其中, 该喇叭段 302表面包覆有高分子材料, 可为采用 诸如镍钛系合金、 铜镍系合金、 铜铝系合金、 铜锌系合金、 铁系合金等形状记 忆合金编织而成的结构, 能够在较小的压力条件下收缩和膨胀 (即展开) , 并 在处于收缩状态时呈现喇叭状, 而处于展开状态时为与鞘管 303同径的空心圆柱 体。
[0063] 如图 1-4所示, 环形支架 100的上端的开口处设置有挂耳 104—一对应的固定在 固定头 304上, 以将心脏瓣膜假体装载至患者体内预定的位置处, 进而利用人工 瓣膜来置换发生病变的主动脉瓣。 如图 6所示, 内芯 306中贯穿一导丝 307 , 导丝 的两端从锥形头 301和控制手柄穿出, 其中, 控制手柄可用于控制鞘管 303、 内 管 305和内芯 306进行前进和后退。
[0064] 与上述实施例不同的是, 在另一实施例中, 如图 7所示, 锥形头 301与鞘管 303 接触, 锥形头 301表面包覆有高分子材料, 采用诸如用诸如镍钛系合金、 铜镍系 合金、 铜铝系合金、 铜锌系合金、 铁系合金等形状记忆合金编织而成的结构, 能够在较小的压力条件下收缩和膨胀 (即展开或扩张) 。
[0065] 在实际的应用中, 在体外冰水浴等低温环境中装载心脏瓣膜假体到如图 6所示 的输送器鞘管内, 具体地, 可先后撤喇叭段 302和鞘管 303 , 使固定头 304暴露; 其中, 在后撤到固定头 304部分时, 可利用外力将喇叭段 302扩张为与鞘管 303同 径的空心圆柱体。 其次, 把环形支架 100上的挂耳 104卡接到固定头 304对应的卡 槽内, 且使得内芯 306穿过环形支架 100的套筒 110连接至锥形头 301。 然后, 向 前推进喇叭段 302和鞘管 303 , 使装载有人工瓣膜且处于压缩状态的环形支架 100 装进鞘管 303内, 撤去对喇叭段 302施加的外力, 使其恢复原状态, 并使得该喇 叭段 3〇2与锥形头 301贴合, 以完成心脏瓣膜假体的装载操作。
[0066] 之后, 将输送器穿过导丝 307 , 沿股动脉过弓到达病变的主动脉瓣位置, 后撤 喇叭段 302和鞘管 303 , 喇叭段 302扩张至完全露出固定头 304, 此时挂耳 104从固 定头 304上脱落, 且环形支架 100与原生瓣环匹配, 以逐渐释放心脏瓣膜假体, 此时套筒 110还未从内芯 306上脱离; 其中, 在心脏瓣膜假体释放的过程中, 环 形支架 100可以撑开原生瓣叶与瓣叶或瓣环处的钙化斑块, 且喇叭段 302会膨胀 \¥0 2019/128582 卩(:1' 2018/117162
10 为与鞘管 303同径的空心圆柱体。 最后, 待心脏瓣膜假体完全释放后, 后撤内管 305 , 使得套筒 110穿过固定头 304, 后撤内芯 306 , 直至锥形头 301经过套筒 110 撤出输送器, 此时套筒 110从内芯 306上完全脱离, 喇叭段 302迅速回缩至原状态 , 进而使得心脏瓣膜假体装载至预定的位置处。
[0067] 上述输送器的实施例中, 锥形头 301的尺寸小于套筒 110的内径, 以在环形支架 100释放后, 该锥形头 301能够从套筒 110中穿出; 同时, 由于锥形头 301的尺寸 远小于鞘管 303的直径, 所以在锥形头 301与鞘管 303之间设置喇叭段 302, 以起 到连接及平滑的作用, 进而避免鞘管 303在植入人体时管壁刮伤血管。 另外, 采 用形状记忆合金材料制备喇叭段 302, 可使得该喇叭段 302处于膨胀状态 (即展 开状态) 时为两端同径的空心圆柱体, 以便于在装载和释放时, 环形支架 100能 够穿过该喇叭段 302。
[0068] 与上述实施例不同的是, 在另一实施例中, 如图 7所示, 在体外冰水浴等低温 环境中装载心脏瓣膜假体到输送器鞘管内, 具体地, 如图 7所示, 可先后撤鞘管 303 , 使固定头 304暴露; 其次, 把环形支架 100上的挂耳 104卡接到固定头 304对 应的卡槽内, 此时, 锥形头 301在套筒 110的挤压下发生形变, 带动与其相连接 的内芯 306穿过套筒 110, 然后向前推进鞘管 303 , 使装载有人工瓣膜且处于压缩 状态的环形支架 100装进鞘管 303内, 以完成心脏瓣膜假体的装载操作。
[0069] 之后, 将输送器穿过导丝 307 , 沿股动脉过弓到达病变的主动脉瓣位置, 后撤 鞘管 303 , 此时挂耳 104从固定头 304上脱落, 且环形支架 100与原生瓣环匹配, 以逐渐释放心脏瓣膜假体, 此时套筒 110还未从内芯 306上脱离; 其中, 在心脏 瓣膜假体释放的过程中, 环形支架 100可以撑开原生瓣叶与瓣叶或瓣环处的钙化 斑块; 然后, 后撤内管 305 , 使得套筒 110穿过固定头 304, 后撤内芯 306 , 直至 锥形头 301发生形变后经过套筒 110撤出输送器, 此时套筒 110从内芯 306上完全 脱离, 心脏瓣膜假体装载至预定的位置处。
[0070] 综上所述, 在本发明的实施例中所记载的植入式心脏瓣膜假体及输送器, 通过 设置在支架瓣口位置处的支撑结构, 以在环形支架处于展开状态时, 该支撑结 构能够向环形支架提供额外的径向支撑力, 以有效提升心脏瓣膜假体瓣口位置 处的张力, 保证整个心脏瓣膜假体的瓣膜具有预定的有效开口面积; 同时, 由 \¥0 2019/128582 卩(:1' 2018/117162
11 于在环形支架的下端处设置空缺, 可通过调整植入的瓣膜的朝向, 使得流入道 处的空缺能够与右冠窦侧对准, 以有效避免因环形支架挤压传道束而造成的传 导阻滞并发症, 并且由于环形支架上开设有空缺会使得环形支架扩张时, 环形 支架本身的支撑力不足, 而支撑结构所提供的额外的支撑力有效地解决了这一 问题。 另外, 沿环形支架周向方向分布的支撑杆及设置在环形支架上的尖刺结 构还能有效增大心脏瓣膜假体植入时的有效高度范围, 使得心脏瓣膜假体注在 植入时即使出现错位时均能确保环形支架能够撑开原生组织。 另外, 基于上述 的心脏瓣膜假体所设计的输送器, 通过特制的喇叭段或者特制的锥形头能够起 到连接及平滑的作用, 进而避免鞘管在植入人体时管壁刮伤血管。
[0071] 以上所述实施例的各技术特征可以进行任意的组合, 为使描述简洁, 未对上述 实施例中的各个技术特征所有可能的组合都进行描述, 然而, 只要这些技术特 征的组合不存在矛盾, 都应当认为是本说明书记载的范围。
[0072] 以上所述实施例仅表达了本发明的几种实施方式, 其描述较为具体和详细, 但 并不能因此而理解为对发明专利范围的限制。 应当指出的是, 对于本领域的普 通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干变形和改进 , 这些都属于本发明的保护范围。 因此, 本发明专利的保护范围应以所附权利 要求为准。

Claims

\¥0 2019/128582 卩(:1' 2018/117162 12 权利要求书
[权利要求 1] 一种心脏瓣膜假体, 其特征在于, 包括:
可扩张的环形支架;
人工瓣膜, 设置于所述环形支架上;
可扩张的支撑结构, 与所述环形支架相连接并且随着所述环形支架的 扩张而扩张, 随着所述环形支架的收缩而收缩; 其中, 所述支撑结构用于在所述环形支架处于扩张状态时, 向该环形 支架提供沿所述环形支架径向方向的支撑力。
[权利要求 2] 根据权利要求 1所述的心脏瓣膜假体, 其特征在于, 所述环形支架为 采用形状记忆合金所制备的支架。
[权利要求 3] 根据权利要求 1所述的心脏瓣膜假体, 其特征在于, 所述环形支架为 网状结构, 具有上端及与所述上端相对的下端, 所述人工瓣膜包括相 互连接的瓣叶和裙边, 所述裙边设置于所述下端, 而所述支撑结构设 置于所述上端。
[权利要求 4] 根据权利要求 3所述的心脏瓣膜假体, 其特征在于, 所述支撑结构位 于距离所述上端的开口处的所述环形支架的五分之一至二分之一处, 所述裙边位于距离所述下端的开口处的所述环形支架的六分之一至三 分之一处。
[权利要求 5] 根据权利要求 1所述的心脏瓣膜假体, 其特征在于, 所述支撑结构包 括套筒和多根支撑杆, 所述套筒与所述环形支架同轴设置, 每根所述 支撑杆的两端分别与所述套筒和所述环形支架连接。
[权利要求 6] 根据权利要求 5所述的心脏瓣膜假体, 其特征在于, 所述多个支撑杆 沿所述环形支架的周向方向分布, 用于向所述环形支架提供沿径向方 向的支撑力。
[权利要求 7] 根据权利要求 5所述的心脏瓣膜假体, 其特征在于, 所述多个支撑杆 与所述环形支架为采用同一根管材切割而成的一体结构。
[权利要求 8] 根据权利要求 5所述的心脏瓣膜假体, 其特征在于, 所述支撑杆包括 依次连接的固定部、 翻折部和支撑部; \¥0 2019/128582 卩(:1' 2018/117162
13 其中, 所述固定部用于固定在所述套筒上, 所述支撑部用于与所述环 形支架连接, 所述翻折部用于保持所述固定部与所述支撑部之间具有 一支撑角度。
[权利要求 9] 根据权利要求 8所述的心脏瓣膜假体, 其特征在于, 所述环形支架处 于扩张状态时, 所述支撑角度的取值范围为 60°~120°。
[权利要求 10] 根据权利要求 9所述的心脏瓣膜假体, 其特征在于, 所述支撑角度为 9
0〇。
[权利要求 11] 根据权利要求 8所述的心脏瓣膜假体, 其特征在于, 所述环形支架处 于收缩状态时, 所述支撑角度为 180°。
[权利要求 12] 根据权利要求 8所述的心脏瓣膜假体, 其特征在于, 所述套筒的外表 面上开设多个条形槽;
其中, 所述条形槽的延伸方向与所述套筒的轴向方向平行, 所述支撑 杆的所述固定部一一对应地嵌入固定在所述条形槽中。
[权利要求 13] 根据权利要求 8所述的心脏瓣膜假体, 其特征在于, 所述套筒为空心 柱结构; 所述条形槽中沿所述套筒的轴向方向开设有多个第一通孔; 所述固定部上对应所述第一通孔开设有多个第二通孔;
其中, 通过缝合线依次穿过所述第一通孔和与该第一通孔对应的第二 通孔将所述固定部固定在所述条形槽中。
[权利要求 14] 根据权利要求 3所述的心脏瓣膜假体, 其特征在于, 还包括:
多个挂耳, 沿周向均匀固定设置在所述环形支架的所述上端的开口处 , 用于所述心脏瓣膜假体的装载。
[权利要求 15] 根据权利要求 3所述的心脏瓣膜假体, 其特征在于, 所述环形支架的 下端开设有空缺, 所述空缺为从所述环形支架下端的开口处起, 沿所 述环形支架轴向方向, 在所述环形支架的周向方向上形成的局部的网 格缺失。
[权利要求 16] 根据权利要求 15所述的心脏瓣膜假体, 其特征在于, 所述空缺的数量 为一个, 两个或多个。
[权利要求 17] 一种输送器, 其特征在于, 包括: \¥0 2019/128582 卩(:1' 2018/117162
14 锥形头、 鞘管、 内芯、 固定头、 内管和控制手柄; 所述内管的远端与所述固定头连为一体, 近端与所述控制手柄连接; 所述内芯位于所述内管之内, 所述内芯的远端穿过所述固定头与所述 锥形头连接, 近端与所述控制手柄连接;
所述内管位于所述鞘管之内, 所述鞘管与所述内管之间具有一环形腔 室, 用于容置处于收缩状态的如权利要求 1~16中任意一项所述的心脏 瓣膜假体; 所述内管与所述内芯之间具有另一环形腔室, 用于容置处 于收缩状态的支撑结构。
[权利要求 18] 根据权利要求 17所述的输送器, 其特征在于, 所述锥形头与所述鞘管 接触, 用于防止所述鞘管戳伤血管壁。
[权利要求 19] 根据权利要求 18所述的输送器, 其特征在于, 所述锥形头表面包覆高 分子材料, 所述锥形头由形状记忆合金的材料编织而成。
[权利要求 20] 根据权利要求 17所述的输送器, 其特征在于, 还包括一喇叭段, 所述 喇叭段的近端与所述鞘管连成一体, 远端与所述锥形头接触, 所述喇 叭段用于防止所述鞘管戳伤血管壁。
[权利要求 21] 根据权利要求 20所述的输送器, 其特征在于, 所述喇叭段收缩状态为 喇叭状, 展开状态为与所述鞘管同径的空心圆柱体。
[权利要求 22] 根据权利要求 20所述的输送器, 其特征在于, 所述喇叭段表面包覆高 分子材料, 所述喇叭段由形状记忆合金的材料编织而成。
[权利要求 23] 根据权利要求 17所述的输送器, 其特征在于, 所述固定头为管状结构 , 表面有可与挂耳配合的凹槽。
PCT/CN2018/117162 2017-12-30 2018-11-23 心脏瓣膜假体和输送器 WO2019128582A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711487720.5 2017-12-30
CN201711487720.5A CN109984868A (zh) 2017-12-30 2017-12-30 心脏瓣膜假体和输送器

Publications (1)

Publication Number Publication Date
WO2019128582A1 true WO2019128582A1 (zh) 2019-07-04

Family

ID=67063120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117162 WO2019128582A1 (zh) 2017-12-30 2018-11-23 心脏瓣膜假体和输送器

Country Status (2)

Country Link
CN (1) CN109984868A (zh)
WO (1) WO2019128582A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113893074A (zh) * 2020-07-06 2022-01-07 杭州启明医疗器械股份有限公司 用于输送介入器械的鞘管远端结构和鞘管
CN113977593B (zh) * 2021-09-26 2023-03-31 浙江大学 一种机器蛙人及仿人机械臂与无极弯扭用驱动机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100043197A1 (en) * 2008-08-01 2010-02-25 Abbate Anthony J Methods and devices for crimping self-expanding devices
CN102258403A (zh) * 2011-05-04 2011-11-30 上海理工大学 肌肉力比例调速假手控制系统及方法
KR20120100180A (ko) * 2011-03-03 2012-09-12 부산대학교 산학협력단 인공심장판막, 인공심장판막의 제조방법 및 인공판막도관
CN103002833A (zh) * 2010-05-25 2013-03-27 耶拿阀门科技公司 人工心脏瓣及包括人工心脏瓣和支架的经导管输送的内假体
CN107496055A (zh) * 2017-08-10 2017-12-22 上海微创心通医疗科技有限公司 心脏瓣膜输送导管及输送系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8313525B2 (en) * 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
ES2922283T3 (es) * 2010-03-05 2022-09-12 Edwards Lifesciences Corp Mecanismos de retención para válvulas protésicas
US8512401B2 (en) * 2010-04-12 2013-08-20 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with funnel recapturing feature and method
US9039759B2 (en) * 2010-08-24 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Repositioning of prosthetic heart valve and deployment
CN203280540U (zh) * 2013-02-25 2013-11-13 上海微创医疗器械(集团)有限公司 心脏瓣膜假体及用于其的支架
US20140358224A1 (en) * 2013-05-30 2014-12-04 Tendyne Holdlings, Inc. Six cell inner stent device for prosthetic mitral valves
ES2711663T3 (es) * 2014-03-18 2019-05-06 Nvt Ag Implante de válvula cardiaca
CN107735051B (zh) * 2015-07-02 2020-07-31 爱德华兹生命科学公司 适于植入后膨胀的混合心脏瓣膜
CN106420114B (zh) * 2016-10-24 2018-06-08 宁波健世生物科技有限公司 一种心脏瓣膜假体
CN107088112A (zh) * 2017-05-18 2017-08-25 金仕生物科技(常熟)有限公司 一种经导管主动脉瓣膜
CN208625924U (zh) * 2017-12-30 2019-03-22 上海微创心通医疗科技有限公司 心脏瓣膜假体和输送器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100043197A1 (en) * 2008-08-01 2010-02-25 Abbate Anthony J Methods and devices for crimping self-expanding devices
CN103002833A (zh) * 2010-05-25 2013-03-27 耶拿阀门科技公司 人工心脏瓣及包括人工心脏瓣和支架的经导管输送的内假体
KR20120100180A (ko) * 2011-03-03 2012-09-12 부산대학교 산학협력단 인공심장판막, 인공심장판막의 제조방법 및 인공판막도관
CN102258403A (zh) * 2011-05-04 2011-11-30 上海理工大学 肌肉力比例调速假手控制系统及方法
CN107496055A (zh) * 2017-08-10 2017-12-22 上海微创心通医疗科技有限公司 心脏瓣膜输送导管及输送系统

Also Published As

Publication number Publication date
CN109984868A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
US11351026B2 (en) Rotation-based anchoring of an implant
US10842620B2 (en) Systems and methods for anchoring and sealing a prosthetic heart valve
JP7170819B2 (ja) 人工心臓弁を送達するための装置
US11633278B2 (en) Replacement mitral valves
JP6600028B2 (ja) 経カテーテル弁置換術
US9687341B2 (en) Self-actuating sealing portions for paravalvular leak protection
CN107690323B (zh) 用于置换二尖瓣的小外形人工心脏瓣膜
US10265169B2 (en) Apparatus for controlled heart valve delivery
CN108495602B (zh) 用于再定位完全部署的瓣膜组件的系统
EP3021792B1 (en) System for cardiac valve repair and replacement
US9072604B1 (en) Modular transcatheter heart valve and implantation method
US20170112620A1 (en) Systems and methods of sealing a deployed valve component
EP3484411A1 (en) Apparatus and methods for trans-septal retrieval of prosthetic heart valves
CN110621260A (zh) 置换的二尖瓣
US20230414350A1 (en) Methods for controlled heart valve delivery
EP4046604A1 (en) Transcatheter valve replacement delivery device with engageable capsule portions
WO2019128582A1 (zh) 心脏瓣膜假体和输送器
CN208625924U (zh) 心脏瓣膜假体和输送器
US20150057747A1 (en) Stent with alternative cell shapes
WO2021195645A2 (en) Prosthetic heart valve and delivery system
WO2022226150A1 (en) Prosthetic heart valves with ratcheting lock mechanisms, and methods for fabrication and use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897206

Country of ref document: EP

Kind code of ref document: A1