WO2019128557A1 - 解决微米级液滴撞击球形表面冷冻涂覆的系统与方法 - Google Patents
解决微米级液滴撞击球形表面冷冻涂覆的系统与方法 Download PDFInfo
- Publication number
- WO2019128557A1 WO2019128557A1 PCT/CN2018/116697 CN2018116697W WO2019128557A1 WO 2019128557 A1 WO2019128557 A1 WO 2019128557A1 CN 2018116697 W CN2018116697 W CN 2018116697W WO 2019128557 A1 WO2019128557 A1 WO 2019128557A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- low temperature
- temperature control
- distribution plate
- control system
- particle
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 29
- 239000011248 coating agent Substances 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000007710 freezing Methods 0.000 title abstract description 9
- 230000008014 freezing Effects 0.000 title abstract description 9
- 239000002245 particle Substances 0.000 claims abstract description 51
- 239000012798 spherical particle Substances 0.000 claims abstract description 29
- 238000012800 visualization Methods 0.000 claims abstract description 26
- 238000012360 testing method Methods 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims description 20
- 238000001816 cooling Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 9
- 239000007921 spray Substances 0.000 claims description 6
- 230000007480 spreading Effects 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 238000000889 atomisation Methods 0.000 claims description 2
- 238000009413 insulation Methods 0.000 claims description 2
- 230000000877 morphologic effect Effects 0.000 claims description 2
- 238000009863 impact test Methods 0.000 abstract 2
- 239000007787 solid Substances 0.000 abstract 1
- 229910000831 Steel Inorganic materials 0.000 description 12
- 239000010959 steel Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 5
- 230000006399 behavior Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000004108 freeze drying Methods 0.000 description 3
- 230000003116 impacting effect Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000004660 morphological change Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229920001218 Pullulan Polymers 0.000 description 2
- 239000004373 Pullulan Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 235000019423 pullulan Nutrition 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
Definitions
- the invention belongs to the technical field of spray freeze drying, relates to a microscopic dynamic observation technology for morphological change when a micron-sized liquid droplet impacts a surface of a spherical particle, and in particular, a system for solving the microscopic liquid droplet impact on a spherical surface freeze coating system. And method for analyzing the dynamic change of micron-sized droplets impinging on cryo-spherical surface freeze coating.
- the study of single droplet impact on the surface of spherical particles has attracted more and more researchers' attention in recent years.
- the collision problem of droplets mainly involves the solution of industrial freeze-drying technology and natural disasters in real life.
- the spray freeze-drying technology is used to improve the quality of the powder product, and the powder particles having a porous structure are prepared by studying the coating phenomenon of the droplets on the carrier particles to improve the rapid solubility and dimensional uniformity of the powder;
- the droplets freeze on the conveyor wires, and the icing mechanism is studied to prevent the conveyor wires from collapsing due to icing problems.
- In order to deeply study the freezing mechanism of the atomized droplets impinging on the carrier particles it is necessary to experimentally study the freezing behavior of the droplets during the impact of the droplets on the spherical particles.
- the method solves the dynamic behavior of studying the surface freezing process of micron-sized droplets colliding with spherical particles, and has an image processing method of the visualization system.
- the object of the present invention is to overcome the deficiencies of the prior art and to provide a visualization system and method for solving the cryo-coating of micro-scale droplets against a spherical surface, which is a microscopic observation method for studying the impact of atomized droplets on particles.
- a series of dynamic behaviors and freezing mechanisms provide a reliable method of research.
- the invention relates to a system for solving micro-scale droplet impact on a spherical surface freeze coating, comprising: a droplet collision test bench and an image acquisition visualization system, wherein the droplet collision test bench comprises a low temperature control system and an electrostatic atomizer
- the particle distribution plate and the lifting platform are composed;
- the electrostatic atomizer is placed at the upper end of the low temperature control system, the spherical particles are arranged on the particle distribution plate, the particle distribution plate is placed at the upper end of the lifting platform and the nozzles placed inside the low temperature control system are the same vertical Position;
- the image acquisition visualization system is composed of a high speed camera, an LED light source, and a PC;
- the PC is connected to the high speed camera port, and the high speed camera and the LED light source are symmetrically placed at both ends of the lifting platform, and the lens and the light source are adjusted to The position is equal to the spherical center of the spherical particle.
- cryogenic control system can artificially set the temperature and open a droplet entry hole and a hand hole for adjusting the particle distribution plate on the low temperature control system.
- the electrostatic atomizer generates micron-sized droplets by electrostatic atomization, and can adjust flow rate, electrostatic pressure, and frequency, and can mount nozzles of different sizes.
- the particle distribution plate is a strip-shaped aluminum plate having a row of hemispherical grooves on the surface.
- the high-speed camera is supported by a tripod, and the data output port is connected to the PC through a data line, and the high-speed camera body is provided with an insulation layer outside the body.
- the upper end of the lifting platform is provided with a rectangular pipe for placing the particle distribution plate, and the center of the pipe is provided with a rectangular notch.
- a method for solving the cryo-coating of a micron-sized droplet impacting a spherical surface comprising: the following steps:
- the spherical particles are arranged and placed on the particle distribution plate, the distribution plate is placed on the upper end of the lifting platform, and the lifting platform is placed inside the low temperature control system, and the spherical particle center is aligned with the center of the droplet entering the hole, and the low temperature is set.
- Control system temperature is -30 ° C, pre-cooling;
- Image processing grayscale processing the image, extracting the boundary between the liquid film and the spherical particle in the image, and then fitting the contour of the particle to obtain the morphological image of the liquid film.
- the diameter of the particle is a fixed value, and we use the particle as a reference object. The calibration was awakened, and finally it was scanned to obtain parameters such as the thickness of the liquid film and the spreading length.
- a visualization system and method for solving the cryo-coating of micro-scale droplets impinging on a spherical surface by the invention can add different spray liquids, set different feed flows, and can install different nozzles to generate micron-scale Droplets (80 ⁇ 2000 ⁇ m), suitable for a variety of experimental studies.
- a visualization system and method for solving the cryo-coating of micro-scale droplets impinging on a spherical surface the high-speed camera and the LED light source are placed on both sides of the particle, and the LED light source adopts parallel light and is photographed by backlight, thereby greatly improving Image clarity.
- a visualization system and method for solving the cryo-coating of micro-scale droplets impinging on a spherical surface the particle distribution plate has a column of hemispherical grooves, which can place a plurality of spherical particles of different sizes, thereby greatly improving the use of the visualization system. Continuity, avoid switching the low temperature control system multiple times, saving energy.
- a visualization system and method for solving the cryo-coating of micro-scale droplets impinging on a spherical surface the lifting platform can adjust different heights, and a rectangular pipe is arranged at the upper end of the lifting platform for placing the particle distribution plate, and the pipe has a rectangular shape.
- the groove avoids the influence of droplets on other particles on the distribution plate and improves the accuracy of the experiment.
- a visualization system and method for solving the cryo-coating of a micron-sized droplet impacting a spherical surface according to the present invention.
- the image processing visualization system used in the method can obtain a dynamic change of a droplet and obtain a droplet liquid film by programming. Parameters such as thickness and spreading length provide sufficient data for mechanistic studies.
- FIG. 1 is a schematic structural view of a visualization system of the present invention
- Figure 2 is a left side elevational view of the lifting platform of the visualization system of the present invention.
- Figure 3 is a plan view of a particle distribution plate of the visualization system of the present invention.
- Figure 4 is a schematic view showing the morphological change of the liquid film during the droplet impact process of the present invention.
- Figure 5 is a schematic diagram of an image processing process.
- 1-Cryogenic Control System 2-High Speed Camera, 3-Rectangular Pipe, 4-PC Machine, 5-Hand Hole, 6-Electrostatic Nebulizer, 7-Syringe, 8-Nozzle, 9-Drop Access Hole, 10-spherical particles, 11-particle distribution plate, 12-LED light source, 13-lift table.
- a visualization system and method for solving micron-level droplet impact on spherical surface freeze coating characterized by comprising a droplet collision test bench and an image acquisition visualization system
- the droplet collision test bench comprises a low temperature control system 1 and an electrostatic atomizer 6.
- Particle distribution plate 11 and lifting platform 13 The spherical particles 10 are arranged on the particle distribution plate 11, and the particle distribution plate 11 is inserted into the rectangular pipe 3, and the lifting table 13 is placed inside the low temperature control system 1, so that the spherical particles 10 are kept in the same vertical direction as the liquid droplet entering the hole 9.
- the electrostatic atomizer 6 is placed at the upper end of the low temperature control system 1 so that the nozzle 7 maintains the same vertical position as the spherical particles 10.
- the image acquisition visualization system includes a high speed camera 2, a PC 4, and an LED light source 12.
- the high speed camera 2 and the LED light source 12 are placed on both sides of the lifting platform 13, so that the spherical particles 10 are secured to the same horizontal position as the high speed camera 2 and the LED light source 12.
- the low temperature environment is provided by the low temperature control system 1 and is provided with a hand hole 5 and a liquid droplet inlet hole 9 on the low temperature control system.
- the hand hole 5 is used to move the particle distribution plate 11 to improve the experimental repetition rate and reduce the low temperature control system 1 switch. frequency.
- the droplet generation visualization system produces micron-sized droplets from the electrostatic atomizer 6, and the injector 7 and nozzle 8 are mounted on the electrostatic atomizer 6, setting a specific flow rate, electrostatic pressure, and frequency to produce micron-sized droplets.
- a visualization system and method for solving micro-scale droplet impact on spherical surface freeze coating, using 10% pullulan solution as spray droplet material, steel ball (5mm) as spherical particles, cold storage temperature of -30 ° C For example, the following steps are included:
- Steel ball pre-cooling the steel balls are arranged in the particle distribution plate, the distribution plate is placed on the upper end of the lifting platform, and the lifting platform is placed inside the low temperature control system, and the steel ball center is aligned with the droplet entering the center of the hole, and is set.
- the temperature of the low temperature control system is -30 ° C, and pre-cooling is performed;
- Image processing firstly, grayscale processing is performed on the image, and the boundary between the liquid film and the steel ball in the image is extracted, and then the contour of the steel ball is fitted to obtain a shape image of the liquid film, and the diameter of the steel ball is a fixed value (5 mm).
- the droplets impinge on the morphological changes of the liquid film during the process (experimental conditions: temperature -30 ° C, droplet diameter 600 ⁇ m, steel sphere diameter 5 mm);
- Fig. 5 is an image processing procedure.
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
一种解决微米级液滴撞击球形表面冷冻涂覆的系统及方法,包括液滴碰撞实验台和图像采集可视化系统,液滴碰撞实验台由低温控制系统(1)、静电式雾化器(6)、颗粒分布板(11)、升降台(13)组成;静电式雾化器(6)放置在低温控制系统(1)上端,球形颗粒(10)排列在颗粒分布板(11)上,颗粒分布板(11)置于升降台(13)肋板上并放置在低温控制系统(1)内部与喷嘴(8)同一竖直位置;图像采集可视化系统由高速摄像机(2)、LED光源(12)、PC机(4)组成;将PC机(4)与高速摄像机(2)端口连接,高速摄像机(2)与LED光源(12)对称放置于升降台(13)两端,镜头和光源与球形颗粒(10)球心等高位置。实验工况为低温条件,能够清晰采集液滴撞击球形颗粒(10)冷冻涂覆的图像,适用于液滴撞击固体表面涂覆冷冻的研究。
Description
本发明属于喷雾冷冻干燥技术领域,它涉及一种微米级液滴撞击球形颗粒表面冷冻涂覆时的形态变化微观动态观测技术,特别是一种解决微米级液滴撞击球形表面冷冻涂覆的系统与方法,用以分析微米级液滴撞击低温球形表面冷冻涂覆时的动态变化。
单液滴撞击球形颗粒表面的研究在近年来越来越引起广大研究者的关注,液滴的碰撞问题主要涉及工业中喷雾冷冻干燥技术和现实生活中的自然灾害问题的解决。如,在干燥行业利用喷雾冷冻干燥技术提高粉体产品的质量,通过研究液滴在载体颗粒的涂覆现象制备表面具有多孔结构的粉体颗粒提高粉体的速溶性和尺寸均匀性;研究冬季雾滴在输送电线结冰现象,通过研究其结冰机理预防输送电线因结冰问题而出现坍塌。为了深入研究雾化液滴撞击载体颗粒后的冻结机理,因此需要通过实验研究液滴撞击球形颗粒过程中液滴的冻结行为。
以往的研究来看,液滴与壁面的撞击现象多涉及平面,很少涉及曲面的碰撞现象,而且多数的实验研究常温下液滴铺展及破碎等物理变化。对于液滴碰撞过程中的冻结行为的研究多数涉及毫米级大尺寸的液滴。
因此本方法解决了研究微米级液滴碰撞球形颗粒表面冷冻涂覆过程的动态行为,并有可视化系统的图像处理方法。
发明内容
本发明的目的在于克服现有技术的不足,提供一种解决微米级液滴撞击球形表面冷冻涂覆的可视化系统与方法,是一种微观观测方法,为研究雾化液滴撞击颗粒后的一系列动态行为及冻结机理提供可靠的研究方法。
本发明解决其技术问题是通过以下技术方案实现的:
一种解决微米级液滴撞击球形表面冷冻涂覆的系统,其特征在于:包括液滴碰撞实验台和图像采集可视化系统,所述的液滴碰撞实验台由低温控制系统、静电式雾化器、颗粒分布板、升降台组成;静电式雾化器放置在低温控制系统上端,球形颗粒排列在颗粒分布板上,颗粒分布板置于升降台上端并放置在低温控制系统内部的喷嘴同一竖直位置;所述的图像采 集可视化系统由高速摄像机、LED光源、PC机组成;将PC机与高速摄像机端口连接,高速摄像机与LED灯源对称放置于升降台两端,并将镜头与光源调节到与球形颗粒球心等高位置。
而且,所述低温控制系统可人为设定温度,并在低温控制系统上盖开设液滴进入孔以及调节颗粒分布板的的手孔。
而且,所述静电式雾化器通过静电雾化产生微米级液滴,并且可调节流量、静电压力和频率,且可安装不同尺寸喷嘴。
而且,所述的颗粒分布板为条状铝板,表面有一列半球形凹槽。
而且,所述的高速摄像机使用三脚架支撑,并将数据输出端口通过数据线连接PC机,高速摄像机机体外设有保温层。
而且,所述的升降台上端设有矩形管道,用于放置颗粒分布板,管道中心开有矩形槽口。
一种解决微米级液滴撞击球形表面冷冻涂覆的方法,其特征在于:包括如下步骤:
1)颗粒预冷:将球形颗粒排列放置与颗粒分布板,将分布板置于升降台上端,并将升降台放置于低温控制系统内部,球形颗粒球心与液滴进入孔圆心对齐,设置低温控制系统温度为-30℃,进行预冷;
2)设置图像采集可视化系统:预冷完成后,将高速摄像机与LED灯源对称放置于球形颗粒两侧,并将镜头与光源调节到与球形颗粒球心等高位置,将PC机与高速摄像机连接,将拍摄速度定位5000帧/秒,拍摄时采用图像像素为1024*512,并调节光源强度,直至PC机采集到清晰的颗粒图象,关闭低温控制系统,再次短暂预冷;
3)设置静电式雾化器:使用注射器吸入喷淋液体50ml,将注射器安装在静电式雾化器顶端,调节流量以及静电压力频率,并将静电式雾化器放置在低温控制系统上盖,将喷嘴与液滴进入孔圆心、颗粒球心保持三点一线;
4)液滴撞击:同时开启图像采集软件与静电式雾化器,对液滴撞击球形颗粒冷冻涂覆过程进行拍摄,图像采集完毕后,通过低温控制系统手孔移动颗粒分布板,对其他球形颗粒进行实验,重复以上操作直至所有颗粒实验完毕;
5)图像处理:对图片进行灰度处理,提取图像中液膜与球形颗粒边界,然后对颗粒轮廓进行拟合进而得到液膜的形态图像,颗粒的直径是定值,我们依颗粒为参照物惊醒标定,最后对其进行扫描得出液膜的厚度和铺展长度等参数。
本发明的优点和有益效果为:
1、本发明的一种解决微米级液滴撞击球形表面冷冻涂覆的可视化系统与方法,静电式雾化器可以添加不同喷淋液体,设置不同进料流量,可以安装不同喷嘴,产生微米级液滴(80~2000μm),适应多种实验研究。
2、本发明的一种解决微米级液滴撞击球形表面冷冻涂覆的可视化系统与方法,高速摄像机与LED灯源放置于颗粒两侧,LED灯源采用平行光,并采用背光拍摄,大大提高图像清晰度。
3、本发明的一种解决微米级液滴撞击球形表面冷冻涂覆的可视化系统与方法,颗粒分布版有一列半球形凹槽,可以放置多颗不同尺寸的球形颗粒,大大提高可视化系统的使用连续性,避免多次开关低温控制系统,节约能耗。
4、本发明的一种解决微米级液滴撞击球形表面冷冻涂覆的可视化系统与方法,升降台可以调节不同高度,并在升降台上端设有矩形管道用于放置颗粒分布板,管道有矩形槽,避免液滴对分布板上其他颗粒的影响,提高实验准确性。
5、本发明的一种解决微米级液滴撞击球形表面冷冻涂覆的可视化系统与方法,本方法所用图像处理可视化系统,可以得到液滴的动态变化,并通过编程处理后得到液滴液膜的厚度和铺展长度等参数,为机理研究提供充足的数据。
图1为本发明可视化系统的结构示意图;
图2为本发明可视化系统的升降台的左视图;
图3为本发明可视化系统的颗粒分布板的俯视图;
图4为本发明液滴撞击过程液膜的形态变化示意图;
图5为图像处理过程示意图。
附图说明
1-低温控制系统、2-高速摄像机、3-矩形管道、4-PC机、5-手孔、6-静电式雾化器、7-注射器、8-喷嘴、9-液滴通入孔、10-球形颗粒、11-颗粒分布板、12-LED光源、13-升降台。
下面通过具体实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。
一种解决微米级液滴撞击球形表面冷冻涂覆的可视化系统与方法,其特征在于包括液滴碰撞实验台和图像采集可视化系统,液滴碰撞实验台包括低温控制系统1、静电式雾化器6、颗粒分布板11、升降台13。球形颗粒10排列摆放在颗粒分布板11上,再将颗粒分布板11插入矩形管道3中,将升降台13置于低温控制系统1内部,使球形颗粒10与液滴进入孔9保持同一竖直位置,将静电式雾化器6置于低温控制系统1上端,使喷嘴7与球形颗粒10保持同一竖直位置。图像采集可视化系统包括高速摄像机2、PC机4、LED灯源12。将高速摄像机2和LED灯源12放置在升降台13两侧,使球形颗粒10与高速摄像机2、LED光源12保证同一水平位置。
低温环境由低温控制系统1提供,并在低温控制系统上盖开设有手孔5和液滴进入孔9,手孔5用于移动颗粒分布板11,提高实验重复率,减少低温控制系统1开关次数。
液滴发生可视化系统由静电式雾化器6产生微米级液滴,注射器7和喷嘴8安装在静电式雾化器6上,设置特定流量、静电压力和频率,产生微米级微小液滴。
一种解决微米级液滴撞击球形表面冷冻涂覆的可视化系统与方法,以10%普鲁兰多糖溶液为喷淋液滴物料,钢球(5mm)为球形颗粒,冷库温度为-30℃为例,包括如下步骤:
1)钢球预冷:将钢球排列放置于颗粒分布板,将分布板置于升降台上端,并将升降台放置于低温控制系统内部,钢球球心与液滴进入孔圆心对齐,设置低温控制系统温度为-30℃,进行预冷;
2)设置图像采集可视化系统:预冷完成后,打开低温控制系统,将高速摄像机与LED灯源对称放置于球形颗粒两侧,并将镜头与光源调节到与球形颗粒球心等高位置,将PC机与高速摄像机连接,将拍摄速度定位5000帧/秒,拍摄时采用图像像素为1024*512,并调节光源强度,直至PC机采集到清晰的颗粒图象,关闭低温控制系统,再次短暂预冷;
3)设置静电式雾化器:使用注射器吸入10%普鲁兰多糖溶液50ml,将喷嘴(240、400、600μm)与注射器安装在静电式雾化器顶端,调节流量以及静电压力频率,并将静电式雾化器放置在低温控制系统上盖,将喷嘴与液滴进入孔圆心、钢球球心三者保持三点一线;
4)液滴撞击:同时开启图像采集软件与静电式雾化器,对液滴撞击球形颗粒冷冻涂覆过程进行拍摄,图像采集完毕后,通过低温控制系统手孔移动颗粒分布板,对其他钢球进行实验,重复以上操作直至所有钢球实验完毕;
5)图像处理:首先对图片进行灰度处理,提取图像中液膜与钢球边界,然后对钢球轮廓进行拟合进而得到液膜的形态图像,钢球的直径是定值(5mm),我们依钢球为参照物惊醒标 定,最后对其进行扫描得出液膜的厚度和铺展长度等参数。如图4中所示,液滴撞击过程液膜的形态变化(实验条件:温度-30℃,液滴直径600μm,钢球直径5mm);图5为图像处理过程。
实验结论:从图4可以看出,采用本专利所设计的微米级液滴撞击球形表面冷冻涂覆观测方法得到的图像清晰,并且能够采集到液滴整个过程的动态变化,从图5可以看出,采用本专利所设计的图像处理方法,能够精确得到膜的厚度及铺展长度,这说明本方法显著提高了液滴撞击球形颗粒表面研究的可行性,并且得到的图像与数据准确可靠。
尽管为说明目的公开的本发明的实施例和附图,但是本领域的技术人员可以理解,在不脱离本发明及所附权利要求的精神和范围内,各种替换、变化和修改都是可能的,因此本发明的范围不局限于实施例和附图所公开的内容。
Claims (8)
- 一种解决微米级液滴撞击球形表面冷冻涂覆的系统,其特征在于:包括液滴碰撞实验台和图像采集可视化系统,所述的液滴碰撞实验台由低温控制系统、静电式雾化器、颗粒分布板、升降台组成;静电式雾化器放置在低温控制系统上端,球形颗粒排列在颗粒分布板上,颗粒分布板置于升降台上端并放置在低温控制系统内部的喷嘴同一竖直位置;所述的图像采集可视化系统由高速摄像机、LED光源、PC机组成;将PC机与高速摄像机端口连接,高速摄像机与LED灯源对称放置于升降台两端,并将镜头与光源调节到与球形颗粒球心等高位置。
- 根据权利要求1所述的解决微米级液滴撞击球形表面冷冻涂覆的系统,其特征在于:所述低温控制系统可人为设定温度,并在低温控制系统上盖开设液滴进入孔以及调节颗粒分布板的的手孔。
- 根据权利要求1所述的解决微米级液滴撞击球形表面冷冻涂覆的系统,其特征在于:所述静电式雾化器通过静电雾化产生微米级液滴,并且可调节流量、静电压力和频率,且可安装不同尺寸喷嘴。
- 根据权利要求1所述的解决微米级液滴撞击球形表面冷冻涂覆的系统,其特征在于:所述的颗粒分布板为条状铝板,表面有一列半球形凹槽。
- 根据权利要求1所述的解决微米级液滴撞击球形表面冷冻涂覆的系统,其特征在于:所述的高速摄像机使用三脚架支撑,并将数据输出端口通过数据线连接PC机,高速摄像机机体外设有保温层。
- 根据权利要求1所述的解决微米级液滴撞击球形表面冷冻涂覆的系统,其特征在于:所述的升降台上端设有矩形管道,用于放置颗粒分布板,管道中心开有矩形槽口。
- 根据权利要求1所述的解决微米级液滴撞击球形表面冷冻涂覆的系统,其特征在于:所述的LED灯源为平行光源,功率为60W,可调节光强度。
- 一种权利要求1-7任意一项所述的可解决微米级液滴撞击球形表面冷冻涂覆的方法,其特征在于:包括如下步骤:1)颗粒预冷:将球形颗粒排列放置于颗粒分布板,将分布板置于升降台上端,并将升降台放置于低温控制系统内部,颗粒球心与液滴进入孔圆心对齐,设置低温控制系统温度为-50~0℃;2)设置图像采集可视化系统:预冷完成后,打开低温控制系统,将高速摄像机与LED灯源对称放置于球形颗粒两侧,并将镜头与光源调节到与颗粒分布板等高位置,将PC机与 高速摄像机连接,将拍摄速度定位5000帧/秒,拍摄时采用图像像素为1024*512,并调节光源强度,直至PC机采集到清晰的颗粒图象,关闭低温控制系统;3)设置静电式雾化器:使用注射器吸入喷淋液体50ml,将注射器安装在静电式雾化器顶端,调节流量以及静电压力频率,并将静电式雾化器放置在低温控制系统上盖,将喷嘴与液滴进入孔圆心对齐;4)液滴撞击:同时开启图像采集软件与静电式雾化器,对液滴撞击球形颗粒冷冻涂覆过程进行拍摄,图像采集完毕后,通过低温控制系统手孔移动颗粒分布板,对其他球形颗粒进行实验,重复以上操作直至所有颗粒实验完毕;5)图像处理:对图片进行灰度处理,提取图像中液膜与球形颗粒边界,然后对颗粒轮廓进行拟合进而得到液膜的形态图像,颗粒的直径是定值,我们依颗粒为参照物惊醒标定,最后对其进行扫描得出液膜的厚度和铺展长度等参数。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2020100794A AU2020100794A4 (en) | 2017-12-27 | 2020-05-20 | System and method for use in freezing and coating after impact of micron-sized droplets onto spherical surfaces |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711446132.7A CN108225987A (zh) | 2017-12-27 | 2017-12-27 | 解决微米级液滴撞击球形表面冷冻涂覆的系统与方法 |
CN201711446132.7 | 2017-12-27 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2020100794A Division AU2020100794A4 (en) | 2017-12-27 | 2020-05-20 | System and method for use in freezing and coating after impact of micron-sized droplets onto spherical surfaces |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019128557A1 true WO2019128557A1 (zh) | 2019-07-04 |
Family
ID=62649190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/116697 WO2019128557A1 (zh) | 2017-12-27 | 2018-11-21 | 解决微米级液滴撞击球形表面冷冻涂覆的系统与方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108225987A (zh) |
WO (1) | WO2019128557A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111665170A (zh) * | 2020-06-16 | 2020-09-15 | 中国石油大学(华东) | 一种通气定量控制柔性基底变形和张力的液滴冲击实验装置 |
CN111999033A (zh) * | 2020-08-28 | 2020-11-27 | 河南农业大学 | 一种通过弹性悬臂梁控制液滴撞后运动轨迹的方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108225987A (zh) * | 2017-12-27 | 2018-06-29 | 天津科技大学 | 解决微米级液滴撞击球形表面冷冻涂覆的系统与方法 |
CN109668714B (zh) * | 2019-01-16 | 2023-11-07 | 南京航空航天大学 | 低温液滴撞击刚性壁面实验装置及方法 |
CN110006792B (zh) * | 2019-03-12 | 2020-04-14 | 中国矿业大学 | 一种用于液滴-颗粒碰撞凝并测试的实验系统及方法 |
CN110570391A (zh) * | 2019-07-24 | 2019-12-13 | 天津科技大学 | 一种基于Image J的喷雾冷冻涂覆效果的图像分析方法 |
CN110547969A (zh) * | 2019-09-03 | 2019-12-10 | 杭州诺泰澳赛诺医药技术开发有限公司 | 一种高比表面积纳米级缓释微粉的生产工艺及设备 |
CN111006971A (zh) * | 2019-12-26 | 2020-04-14 | 中南大学 | 一种研究液滴与矿尘表面接触碰撞行为的试验装置及方法 |
CN111579208A (zh) * | 2020-05-16 | 2020-08-25 | 大连理工大学 | 一种压力可调微米级颗粒与不同表面碰撞的实验装置 |
CN117804937A (zh) * | 2023-12-29 | 2024-04-02 | 中国科学院力学研究所 | 一种纤维的微弹道冲击实验装置及方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5477321B2 (ja) * | 2011-03-30 | 2014-04-23 | トヨタ自動車株式会社 | 噴霧検査装置 |
CN107121264A (zh) * | 2017-06-20 | 2017-09-01 | 大连理工大学 | 一种温湿度可控的微米级颗粒与不同表面碰撞的实验系统及实验方法 |
CN108225987A (zh) * | 2017-12-27 | 2018-06-29 | 天津科技大学 | 解决微米级液滴撞击球形表面冷冻涂覆的系统与方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0514000D0 (en) * | 2005-07-08 | 2005-08-17 | Scion Sprays Ltd | Electrostatic atomiser |
CN102226629B (zh) * | 2011-04-22 | 2013-08-07 | 天津科技大学 | 一种惰性粒子喷雾冷冻干燥设备及方法 |
CN103092233B (zh) * | 2012-12-31 | 2014-11-26 | 邓彬伟 | 基于二级制冷方式的材料样品结冰状况实时采集控制系统 |
CN106228875B (zh) * | 2016-09-29 | 2019-01-22 | 河海大学常州校区 | 一种液滴撞击液膜可视化实验平台及其使用方法 |
CN106989933A (zh) * | 2017-06-02 | 2017-07-28 | 北京理工大学 | 一种液滴碰壁实验装置及方法 |
-
2017
- 2017-12-27 CN CN201711446132.7A patent/CN108225987A/zh active Pending
-
2018
- 2018-11-21 WO PCT/CN2018/116697 patent/WO2019128557A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5477321B2 (ja) * | 2011-03-30 | 2014-04-23 | トヨタ自動車株式会社 | 噴霧検査装置 |
CN107121264A (zh) * | 2017-06-20 | 2017-09-01 | 大连理工大学 | 一种温湿度可控的微米级颗粒与不同表面碰撞的实验系统及实验方法 |
CN108225987A (zh) * | 2017-12-27 | 2018-06-29 | 天津科技大学 | 解决微米级液滴撞击球形表面冷冻涂覆的系统与方法 |
Non-Patent Citations (2)
Title |
---|
SUBHASISH MITRA ET AL.: "Droplet impactdynamicsonasphericalparticle", CHEMICALENGINEERINGSCIENCE, 25 January 2013 (2013-01-25) * |
XU QING ET AL.: "Experiments and Simulation of A Single Droplet Impacting on Cold Surfaces", CIESC JOURNAL, vol. 67, no. 10, 31 October 2016 (2016-10-31), pages 4160 - 4168 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111665170A (zh) * | 2020-06-16 | 2020-09-15 | 中国石油大学(华东) | 一种通气定量控制柔性基底变形和张力的液滴冲击实验装置 |
CN111665170B (zh) * | 2020-06-16 | 2023-02-07 | 中国石油大学(华东) | 一种通气定量控制柔性基底变形和张力的液滴冲击实验装置 |
CN111999033A (zh) * | 2020-08-28 | 2020-11-27 | 河南农业大学 | 一种通过弹性悬臂梁控制液滴撞后运动轨迹的方法 |
CN111999033B (zh) * | 2020-08-28 | 2021-08-20 | 河南农业大学 | 一种通过弹性悬臂梁控制液滴撞后运动轨迹的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108225987A (zh) | 2018-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019128557A1 (zh) | 解决微米级液滴撞击球形表面冷冻涂覆的系统与方法 | |
AU2020100794A4 (en) | System and method for use in freezing and coating after impact of micron-sized droplets onto spherical surfaces | |
WO2016062241A1 (zh) | 动态监控的高频超声雾化微粒制备系统 | |
Hijano et al. | Periodic emission of droplets from an oscillating electrified meniscus of a low-viscosity, highly conductive liquid | |
Wu et al. | Development of a three-dimensional simulation system for micro-inkjet and its experimental verification | |
CN111397539A (zh) | 一种用于喷墨打印的多目视觉检测系统及方法 | |
Ju et al. | The impact and freezing processes of a water droplet on different cold spherical surfaces | |
CN110530603B (zh) | 低沸点高挥发性介质常压环境液滴生成、蒸发性观测与撞壁试验系统及方法 | |
CN103308662A (zh) | 一种高温高压单液滴蒸发与燃烧装置 | |
CN114061964B (zh) | 一种多功能雾化试验系统 | |
CN104359837A (zh) | 一种高熔点材料颗粒相变过程高温光谱辐射特性测量系统 | |
Dong et al. | Three-dimensional imaging system for analyses of dynamic droplet impaction and deposit formation on leaves | |
CN108672184A (zh) | 一种制备宽幅面涂层的喷涂装置和喷涂方法 | |
Huang et al. | Understanding spray coating process: Visual observation of impingement of multiple droplets on a substrate | |
Chen et al. | Experimental research on the dynamics of a train of droplets impacting, from droplets to liquid film, continuity and inheritance | |
CN109324048B (zh) | 一种喷液气固流化床中液相分配特性的测量方法 | |
CN204620012U (zh) | 一种带冰风洞的气候人工模拟室 | |
CN202166827U (zh) | 一种涂布设备 | |
CN107271335B (zh) | 适用于海洋温差发电系统降膜蒸发器的喷雾撞壁实验装置 | |
CN106440481A (zh) | 一种超声喷雾制冷装置 | |
Jafari et al. | Low flow rate spray cooling by a flow blurring injector | |
CN111735744B (zh) | 一种喷嘴雾化空间分布评价方法 | |
CN207163005U (zh) | 一种气压喷雾制冷装置 | |
CN113289549A (zh) | 一种纳米粉体粒径可控制的喷雾冷冻干燥仪 | |
KR20160095339A (ko) | 스프레이 코팅유닛 및 이를 이용한 코팅시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18894361 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18894361 Country of ref document: EP Kind code of ref document: A1 |