WO2019128534A1 - 摄像头模组倾斜度测试方法、装置、存储介质及电子设备 - Google Patents

摄像头模组倾斜度测试方法、装置、存储介质及电子设备 Download PDF

Info

Publication number
WO2019128534A1
WO2019128534A1 PCT/CN2018/116240 CN2018116240W WO2019128534A1 WO 2019128534 A1 WO2019128534 A1 WO 2019128534A1 CN 2018116240 W CN2018116240 W CN 2018116240W WO 2019128534 A1 WO2019128534 A1 WO 2019128534A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
target area
contrast
camera module
preset
Prior art date
Application number
PCT/CN2018/116240
Other languages
English (en)
French (fr)
Inventor
张乐
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2019128534A1 publication Critical patent/WO2019128534A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras

Definitions

  • the present invention relates to the field of camera module testing, and particularly relates to a camera module tilt test method, device, storage medium and electronic device.
  • the degree of tilt between the lens and the image sensor needs to be checked before leaving the factory to ensure product quality.
  • the embodiment of the present application provides a camera module tilt test method, device, storage medium, and electronic device, which can be applied to a relatively wide test scenario and can improve test accuracy and stability.
  • An acquiring unit configured to acquire a preset number of images obtained by the camera module capturing a test chart card
  • a calculating unit configured to calculate a contrast of a target area of each image according to a brightness of a preset pixel in a target area of each image
  • a drawing unit for plotting an off-focus curve of each target area according to a contrast of a target area of each image
  • a determining unit configured to find a lens position of the corresponding image when each target area has the maximum contrast from the defocus curve of each target area, and determine the lens position of the corresponding image according to the maximum contrast of each target area The tilt of the camera module.
  • the storage medium provided by the embodiment of the present application has a computer program stored thereon, and when the computer program runs on the computer, the computer is caused to perform the tilt test method as described in the embodiment of the present application.
  • the electronic device provided by the embodiment of the present application includes a processor and a memory, and the memory has a computer program, and the processor is used to execute the tilt test method according to the embodiment of the present application by calling the computer program.
  • FIG. 1 is a schematic diagram of an application scenario of a camera module tilt test method according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic flow chart of a method for testing a tilt of a camera module according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an image acquisition method provided by an embodiment of the present application.
  • FIG. 4 is another schematic flowchart of a camera module tilt test method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a method for selecting a target area according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of pixel distribution of a target area provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of contrast and lens position data provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a defocus curve provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a camera module tilt test apparatus according to an embodiment of the present application.
  • FIG. 10 is another schematic structural diagram of a camera module tilt test apparatus according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 12 is another schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the prior art provides some camera module tilt detection methods, which mainly adopts a specific test chart card (bevel test card) to perform oblique bevel recognition analysis on the captured image to obtain space for each hypotenuse.
  • the value of the frequency response (SFR) determines the degree of tilt between the lens and the image sensor based on the obtained SFR value.
  • This method can only use a specific test chart card, the application scenario is limited, and involves oblique bevel recognition analysis, which is prone to recognition failure or analysis error, low test accuracy and poor stability. Therefore, the embodiment of the present application provides a camera module tilt test method, including the following steps:
  • the acquiring a preset number of images obtained by the camera module to capture a test card comprises:
  • the control motor drives the lens in the camera module to move within a preset step size, and captures the test chart card to obtain the preset number of images.
  • the selecting a target area from each image comprises:
  • the target area is selected from the edge of each image, and the selected target area includes the upper left, upper right, lower left, and lower right areas of the image.
  • the calculating the contrast of the target area of each image according to the brightness of the preset pixels in the target area of each image includes:
  • the contrast of the target area of each image is calculated based on the brightness of the preset pixels in the target area of each image.
  • the calculating the contrast of the target area of each image according to the brightness of the preset pixels in the target area of each image includes:
  • the drawing a defocus curve of each target area according to a contrast of a target area of each image including:
  • the lens position of the corresponding image when each target area has the maximum contrast is found out from the defocus curve of each target area, and is determined according to the lens position of the corresponding image when each target area has the maximum contrast.
  • the inclination of the camera module includes:
  • the lens position of the corresponding image when the upper left area has the maximum contrast From the defocus curves of the upper left, upper right, lower left, and lower right areas, respectively, the lens position of the corresponding image when the upper left area has the maximum contrast, the lens position of the corresponding image when the upper right area has the maximum contrast, and the maximum contrast ratio of the lower left area are obtained.
  • a total of four lens positions are obtained;
  • the method further includes:
  • the camera module is qualified according to the inclination of the camera module.
  • the method for testing the inclination of the camera module provided by the embodiment of the present application may be the inclination test device of the camera module provided by the embodiment of the present application, or the electronic device integrated with the inclination test device.
  • the camera module includes a lens and an image sensor.
  • the camera module may further include other components, such as a motor, a color filter, a substrate, and the like. It is not specifically limited here.
  • the lens is used to concentrate the light, and the captured scene is projected onto the image sensor; the image sensor is used to convert the image (light signal) projected by the lens into an electrical signal, and the motor is used to drive the lens to move, so that the lens projects a clear image to the image. sensor.
  • the embodiment of the present application provides a method for measuring the degree of tilt between the lens and the image sensor.
  • the camera module to be detected can be used to capture a test image card to obtain a preset number of images, from each image. Select the target area, and then calculate the contrast of the target area of each image according to the brightness of the preset pixels in the target area of each image, and draw the defocus curve of each target area according to the contrast of the target area of each image, from each The defocus curve of the target areas finds the lens position of the corresponding image when each target area has the maximum contrast, and determines the tilt of the camera module according to the lens position of the corresponding image when each target area has the maximum contrast.
  • test chart cards can meet the requirements, and the test scene is relatively wide; The oblique side of the image is identified and analyzed to avoid errors and improve test accuracy and stability.
  • the method for testing the inclination of the camera module includes: obtaining the shooting test card of the camera module. a preset number of images; selecting a target area from each image; calculating a contrast of a target area of each image according to a brightness of a preset pixel in a target area of each image; drawing each contrast according to a target area of each image The defocus curve of the target area; find the lens position of the corresponding image when each target area has the maximum contrast from the defocus curve of each target area, and according to the lens position of the corresponding image when each target area has the maximum contrast, Determining the inclination of the camera module.
  • a camera module tilt test method is provided. As shown in FIG. 2, the specific process of the tilt test method provided by the embodiment of the present application may be as follows:
  • Step S201 Acquire a preset number of images obtained by the camera module capturing a test chart card.
  • the lens in the motor-driven camera module can be controlled to move within a preset step size, and the test chart card is captured, and obtained. A preset number of images.
  • the lens can be moved within the step range of PR to P+R, and each time a position is moved, the camera module is controlled to take a shot on the test chart card, and each time the image is obtained, the preset is obtained.
  • the number of images can be moved within the step range of PR to P+R, and each time a position is moved, the camera module is controlled to take a shot on the test chart card, and each time the image is obtained, the preset is obtained. The number of images.
  • Step S202 Select a target area from each image.
  • a target area may be selected from each image, and the number of target regions may be selected one or more. Since the tilt of the camera module has the most serious influence on the edge of the image, several regions can be selected from the edge of the image as the target region. For example, four regions can be selected as the target region from the top, bottom, left, and right positions of the image, or four regions can be selected as the target region from the upper left, upper right, lower left, and lower right corners of the image, or from the image. Two areas are selected as the target area at the top and bottom.
  • the specific selection method is not specifically limited herein.
  • the selected area can be close to the edge of the image, but not directly on the edge of the image, that is, a certain distance can be left between the selected area and the edge of the image.
  • Step S203 Calculate the contrast of the target area of each image according to the brightness of the preset pixels in the target area of each image.
  • the color of the image is obtained by superimposing the three color channels of red, green, and blue.
  • RGB is the pixel color representing the three channels of red, green, and blue. Therefore, it can be R channel pixels, or G channel pixels, or B channel pixels in the image are used as preset pixels.
  • the proportion of the three pixels in the target area of each image may be obtained, and the pixel with the largest proportion of the three pixels is selected as the preset pixel, for example, the G channel pixel is selected as the preset pixel.
  • the contrast of each target area can be calculated.
  • the specific calculation method may be: obtaining brightness of a diagonal pixel adjacent to a preset pixel and a preset pixel in the target area, and calculating a square of a luminance difference between the preset pixel in the target area and the diagonal adjacent pixel of the preset pixel. And (that is, the luminance value of the pixel is first subtracted, the value obtained after subtraction is squared, and finally all the values obtained by the square operation are accumulated), and the calculated value is used as the contrast of the corresponding target region. According to this method, the contrast of each target area of each image can be obtained.
  • Step S204 Draw a defocus curve of each target area according to the contrast of the target area of each image.
  • the position of the lens (ie, the distance between the lens and the image sensor) when each image is taken may be the horizontal axis data, and the contrast of each target area of each image is plotted on the vertical axis data, and each is drawn.
  • the defocus curve of the target area For example, when the target area has four areas of upper left, upper right, lower left, and lower right, four defocus curves will be drawn, and each defocus curve corresponds to one target area.
  • Step S205 Find a lens position of the corresponding image when each target area has the maximum contrast from the defocus curve of each target area, and determine the camera mode according to the lens position of the corresponding image when each target area has the maximum contrast. The inclination of the group.
  • the lens position of the corresponding image when the upper left region has the maximum contrast corresponds to the lens position of the image, and the lens position of the corresponding image when the lower right area has the maximum contrast.
  • a total of four lens positions are obtained, and the difference between the maximum position value and the minimum position value among the four lens positions is calculated. The calculated difference is used as the inclination of the camera module.
  • the camera module After obtaining the inclination of the camera module, it can be judged whether the camera module is qualified according to the obtained inclination. For example, it can be judged whether the obtained inclination is within an acceptable inclination range, and if so, the camera module is considered to be qualified, and vice versa, the camera module is considered to be unqualified. In practical applications, the manufacturing process, assembly process improvement or optimization can be performed based on the test results.
  • the contrast of the target area of the image is calculated according to the brightness of the preset pixel in the target area of the image captured by the camera module, the defocus curve is drawn according to the contrast of the target area of the image, and the camera is determined according to the defocus curve.
  • the inclination of the module during the whole test, only the calculation of the preset pixel brightness in the target area of the image is involved, so it is not limited to using the hypotenuse test chart card, most of the test chart cards can meet the demand, and the test scene is relatively wide.
  • errors or failures can be avoided, and the test accuracy and stability are improved.
  • another camera module tilt test method is provided.
  • the method in this embodiment includes:
  • Step S401 Acquire a preset number of images obtained by the camera module capturing the test chart card.
  • the lens in the motor-driven camera module can be controlled to move within a preset step size, and the test chart card is captured, and obtained. A preset number of images.
  • the lens can be controlled to move within a step size of 323 to 367, each time moving in steps of 4 units, and each time moving to a position, the camera module is controlled to test the card. In one shot, you will get 12 images.
  • Step S402 selecting upper left, upper right, lower left, and lower right areas in each image.
  • the selected area of each image may be as shown in FIG. 5, including four areas of upper left, upper right, lower left, and lower right.
  • the centers of the four areas may be in two diagonals of the image.
  • the selected four regions are close to the edge of the image, but not directly on the edge of the image.
  • Step S403 calculating the contrast of the upper left, upper right, lower left, and lower right areas in each image.
  • the specific calculation method of the contrast of each area may be: obtaining the brightness of the diagonal neighboring pixels of the preset pixel and the preset pixel in the area, and calculating the diagonal neighboring pixels of the preset pixel and the preset pixel in the area. The sum of the squares of the luminance differences, the calculated value is taken as the contrast of the region.
  • the G channel pixel can be used as a preset pixel, and the diagonal of each G channel pixel and the G channel pixel can be calculated.
  • the sum of the squares of the luminance differences of adjacent pixels that is, the luminance values of the pixels are first subtracted, the values obtained after subtraction are squared, and finally all the values obtained by the square operation are accumulated), and the calculated values are taken as The contrast of this area.
  • Contrast indicates contrast
  • Gr01, Gr03, Gb10, Gb12, Gr21, Gr23, Gb31, and Gb32 indicate the brightness of the pixel.
  • the contrast of each selected area of each image can be obtained.
  • the contrast of each selected area of each image obtained and the lens position information at the time of each image shooting may be as shown in FIG. 7, each image has lens position information, and an image.
  • Step S404 drawing the defocus curves of the upper left, upper right, lower left, and lower right regions according to the contrast of the upper left, upper right, lower left, and lower right regions in each image and the lens position of each image.
  • the position of the lens when each image is taken may be the horizontal axis data, and the contrast of each selected area of each image is the vertical axis data, and the defocus curve of each selected area is drawn.
  • the defocus curve drawn after the region is selected according to the above method may be as shown in FIG. 8, including the defocus curves of the four regions of upper left, upper right, lower left, and lower right.
  • Step S405 respectively, from the defocus curves of the above four regions, correspondingly find the lens positions of the corresponding images when each region has the maximum contrast, and obtain four lens positions in total.
  • the corresponding picture in the upper left area with the maximum contrast can be found in the defocus curve of the upper left area (ie, the picture in the upper left area is the clearest)
  • the lens position, in the defocus curve of the upper right area find the lens position of the corresponding picture (ie, the picture in the upper right area when the upper right area has the highest contrast) in the upper right area; in the defocus curve of the lower left area, find the lower left
  • the lens position of the corresponding picture ie, the picture with the clearest picture in the lower left area
  • the defocus curve of the lower right area find the corresponding picture when the lower right area has the maximum contrast (ie, the lower right area is the clearest)
  • the position of the lens) gives a total of four lens positions.
  • Step S406 Calculate a difference between a position maximum value and a position minimum value among the four lens positions, and use the calculated difference value as the inclination of the camera module.
  • the lens position of the corresponding image when the lower left area has the maximum contrast is about 329; from the defocus curve of the upper left area, the corresponding upper left area has the maximum contrast.
  • the lens position of the image is about 334; from the defocus curve of the lower right area, the lens position of the corresponding image when the lower right area has the maximum contrast is about 353; from the defocus curve of the upper right area, the upper right area can be obtained.
  • the lens position of the corresponding image is about 362; the maximum value of the four position values is 362, and the minimum position is 329, the difference 33 (approximate) between 362 and 329 is used as the tilt of the camera module. degree.
  • the camera module After obtaining the inclination of the camera module, it can be judged whether the camera module is qualified according to the obtained inclination. For example, it can be judged whether the obtained inclination is within an acceptable inclination range, and if so, the camera module is considered to be qualified, and vice versa, the camera module is considered to be unqualified. In practical applications, the manufacturing process, assembly process improvement or optimization can be performed based on the test results.
  • the contrast of the target area of the image is calculated according to the brightness of the preset pixel in the target area of the image captured by the camera module, the defocus curve is drawn according to the contrast of the target area of the image, and the camera is determined according to the defocus curve.
  • the inclination of the module during the whole test, only the calculation of the preset pixel brightness in the target area of the image is involved, so it is not limited to using the hypotenuse test chart card, most of the test chart cards can meet the demand, and the test scene is relatively wide.
  • the identification and analysis of the hypotenuse in the image is not performed, errors or test failures can be avoided, and the test accuracy and stability are improved.
  • the embodiment of the present application further provides a camera module inclination testing device, including an acquiring unit, a selecting unit, a calculating unit, a drawing unit, and a determining unit, as follows:
  • An acquiring unit configured to acquire a preset number of images obtained by the camera module capturing a test chart card
  • a calculating unit configured to calculate a contrast of a target area of each image according to a brightness of a preset pixel in a target area of each image
  • a drawing unit for plotting an off-focus curve of each target area according to a contrast of a target area of each image
  • a determining unit configured to find a lens position of the corresponding image when each target area has the maximum contrast from the defocus curve of each target area, and determine the lens position of the corresponding image according to the maximum contrast of each target area The tilt of the camera module.
  • the acquiring unit is specifically configured to: control the motor to drive the lens in the camera module to move within a preset step size, and capture the test chart card to obtain the preset number of images.
  • the selecting unit is specifically configured to select a target area from an edge of each image, where the selected target area includes upper left, upper right, lower left, and lower right areas of the image.
  • the calculating unit includes a selecting subunit and a calculating subunit
  • the selecting subunit is configured to obtain a proportion of a plurality of pixels in a target area of each image, and select a pixel having the largest proportion of the number of pixels as a preset pixel in a target area of the corresponding image;
  • the calculating subunit is configured to calculate a contrast of a target area of each image according to a brightness of a preset pixel in a target area of each image.
  • the calculating subunit is specifically configured to calculate a sum of squares of luminance differences of the preset pixels in the target area of each image and diagonal neighboring pixels of the preset pixels, and the calculated The value is the contrast of the target area of the corresponding image.
  • the drawing unit is specifically configured to: the lens position of each image is the horizontal axis data, and the contrast of the target area of each image is the vertical axis data, respectively drawing the upper left, upper right, lower left, and lower right areas. Defocus curve.
  • the determining unit includes a lookup subunit and a determining subunit
  • the search subunit is configured to respectively obtain a lens corresponding to the lens position of the corresponding image when the upper left area has the maximum contrast and the corresponding image when the upper right area has the maximum contrast from the defocus curves of the upper left, upper right, lower left, and lower right areas, respectively.
  • the lens position of the corresponding image when the position, the lower left area has the maximum contrast, and the lens position of the corresponding image when the lower right area has the maximum contrast are obtained;
  • the determining subunit is configured to calculate a difference between a position maximum value and a position minimum value among the four lens positions, and use the calculated difference value as the inclination of the camera module.
  • the apparatus further includes:
  • the determining unit is configured to determine whether the camera module is qualified according to the inclination of the camera module.
  • a camera module tilt test device is further provided. As shown in FIG. 9, the device includes: an acquisition unit 901, a selection unit 902, a calculation unit 903, a rendering unit 904, and a determination unit 905, as follows. :
  • the acquiring unit 901 is configured to acquire a preset number of images obtained by the camera module capturing a test chart card;
  • the selecting unit 902 is configured to select a target area from each image
  • a calculating unit 903 configured to calculate a contrast of a target area of each image according to a brightness of a preset pixel in a target area of each image;
  • a drawing unit 904 configured to draw an off-focus curve of each target area according to a contrast of a target area of each image
  • a determining unit 905 configured to find, from the defocus curve of each target area, a lens position of the corresponding image when each target area has the maximum contrast, and determine the lens position of the corresponding image according to the maximum contrast of each target area.
  • the tilt of the camera module configured to find, from the defocus curve of each target area, a lens position of the corresponding image when each target area has the maximum contrast, and determine the lens position of the corresponding image according to the maximum contrast of each target area.
  • the obtaining unit 901 is specifically configured to:
  • the control motor drives the lens in the camera module to move within a preset step size, and captures the test chart card to obtain the preset number of images.
  • the selecting unit 902 is specifically configured to:
  • the target area is selected from the edge of each image, and the selected target area includes the upper left, upper right, lower left, and lower right areas of the image.
  • the calculating unit 903 includes a selecting subunit 9031 and a calculating subunit 9032;
  • the selecting sub-unit 9031 is configured to obtain a proportion of a plurality of pixels in a target area of each image, and select a pixel having the largest proportion of the number of pixels as a preset pixel in a target area of the corresponding image;
  • the calculating subunit 9032 is configured to calculate a contrast of a target area of each image according to a brightness of a preset pixel in a target area of each image.
  • the calculating subunit 9032 is specifically configured to:
  • the drawing unit 904 is specifically configured to:
  • the determining unit 905 includes:
  • the finding sub-unit 9051 is configured to respectively obtain the lens position of the corresponding image when the upper left area has the maximum contrast and the lens position of the corresponding image when the upper right area has the maximum contrast from the defocus curves of the upper left, upper right, lower left, and lower right areas, respectively.
  • the lens position of the corresponding image when the lower left area has the maximum contrast, and the lens position of the corresponding image when the lower right area has the maximum contrast, and a total of four lens positions are obtained;
  • the determining subunit 9052 is configured to calculate a difference between a maximum value of the position of the four lens positions and a minimum value of the position, and use the calculated difference as the inclination of the camera module.
  • the apparatus further includes:
  • the determining unit 906 is configured to determine whether the camera module is qualified according to the inclination of the camera module.
  • the acquiring unit 901 acquires a preset number of images obtained by the camera module capturing the test chart card, and the selecting unit 902 selects a target area from each image, and the calculating unit 903 according to each The brightness of the preset pixel in the target area of the image is calculated as the contrast of the target area of each image, the rendering unit 904 draws the defocus curve according to the contrast of the target area of the image, and finally the determining unit 905 determines the camera module according to the defocus curve.
  • the foregoing modules may be implemented as a separate entity, or may be implemented in any combination, and may be implemented as the same or a plurality of entities.
  • the foregoing modules refer to the foregoing method embodiments, and details are not described herein again.
  • the embodiment of the present application further provides an electronic device for testing the inclination of the camera module.
  • the electronic device 1000 includes a processor 1001 and a memory 1002.
  • the processor 1001 is electrically connected to the memory 1002.
  • the processor 1000 is a control center of the electronic device 1000, which connects various parts of the entire electronic device by various interfaces and lines, by running or loading a computer program stored in the memory 1002, and calling data stored in the memory 1002, The various functions of the electronic device 1000 are performed and data is processed to perform overall monitoring of the electronic device 1000.
  • the memory 1002 can be used to store software programs and modules, and the processor 1001 executes various functional applications and data processing by running computer programs and modules stored in the memory 1002.
  • the memory 1002 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, a computer program required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of electronic devices, etc.
  • memory 1002 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device. Accordingly, the memory 1002 can also include a memory controller to provide access to the memory 1002 by the processor 1001.
  • the processor 1001 in the electronic device 1000 loads the instructions corresponding to the process of one or more computer programs into the memory 1002 according to the following steps, and is stored in the memory 1002 by the processor 1001.
  • the computer program in which to implement various functions, as follows:
  • the processor 1001 may specifically perform the following steps:
  • the control motor drives the lens in the camera module to move within a preset step size, and captures the test chart card to obtain the preset number of images.
  • the processor 1001 may specifically perform the following steps:
  • the target area is selected from the edge of each image, and the selected target area includes the upper left, upper right, lower left, and lower right areas of the image.
  • the processor 1001 may specifically perform the following steps:
  • the contrast of the target area of each image is calculated based on the brightness of the preset pixels in the target area of each image.
  • the processor 1001 may specifically perform the following steps:
  • the processor 1001 may specifically perform the following steps:
  • the lens position of the corresponding image when each target region has the maximum contrast is found out from the defocus curve of each target region, and the lens position of the corresponding image is obtained according to the maximum contrast of each target region.
  • the processor 1001 may specifically perform the following steps:
  • the lens position of the corresponding image when the upper left area has the maximum contrast From the defocus curves of the upper left, upper right, lower left, and lower right areas, respectively, the lens position of the corresponding image when the upper left area has the maximum contrast, the lens position of the corresponding image when the upper right area has the maximum contrast, and the maximum contrast ratio of the lower left area are obtained.
  • a total of four lens positions are obtained;
  • the processor 1001 can also perform the following steps:
  • the camera module is qualified according to the inclination of the camera module.
  • the electronic device in the embodiment of the present application calculates the contrast of the target area of the image according to the brightness of the preset pixel in the target area of the image captured by the camera module, and draws the defocus curve according to the contrast of the target area of the image.
  • the tilt of the camera module is determined; during the whole test, only the calculation of the preset pixel brightness in the target area of the image is involved, so it is not limited to using the bevel test card, and most test cards can be used.
  • the test scenario is more extensive; in addition, because the oblique edge of the image is not identified and analyzed, error or test failure can be avoided, and the test accuracy and stability are improved.
  • the electronic device 1000 may further include: a display 1003, a radio frequency circuit 1004, an audio circuit 1005, and a power source 1006.
  • the display 1003, the radio frequency circuit 1004, the audio circuit 1005, and the power source 1006 are electrically connected to the processor 1001, respectively.
  • the display 1003 can be used to display information entered by a user or information provided to a user, as well as various graphical user interfaces, which can be composed of graphics, text, icons, video, and any combination thereof.
  • the display 1003 may include a display panel.
  • the display panel may be configured in the form of a liquid crystal display (LCD) or an organic light-emitting diode (OLED).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the radio frequency circuit 1004 can be used to transmit and receive radio frequency signals to establish wireless communication with a network device or other electronic device through wireless communication, and to transmit and receive signals with a network device or other electronic device.
  • the audio circuit 1005 can be used to provide an audio interface between a user and an electronic device through a speaker or a microphone.
  • the power source 1006 can be used to power various components of the electronic device 1000.
  • the power supply 1006 can be logically coupled to the processor 1001 through a power management system to enable functions such as managing charging, discharging, and power management through the power management system.
  • the electronic device 1000 may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the embodiment of the present application further provides a storage medium, where the storage medium stores a computer program, and when the computer program runs on a computer, causes the computer to perform the camera module tilt test method in any of the above embodiments. For example, obtaining a preset number of images obtained by the camera module capturing a test chart card; selecting a target area from each image; and calculating a target area of each image according to brightness of a preset pixel in a target area of each image Contrast; draw the defocus curve of each target area according to the contrast of the target area of each image; find the lens position of the corresponding image when each target area has the maximum contrast from the defocus curve of each target area, and according to The tilt position of the camera module is determined by the lens position of the corresponding image when each target area has the maximum contrast.
  • the storage medium may be a magnetic disk, an optical disk, a read only memory (ROM), or a random access memory (RAM).
  • ROM read only memory
  • RAM random access memory
  • a common tester in the art can understand all or part of the process of implementing the camera module tilt test method of the embodiment of the present application, which can be performed by a computer.
  • the program is controlled to control related hardware, which may be stored in a computer readable storage medium, such as in a memory of the electronic device, and executed by at least one processor within the electronic device, during execution
  • a flow may be included in an embodiment of a tilt test method such as a camera module.
  • the storage medium may be a magnetic disk, an optical disk, a read only memory, a random access memory, or the like.
  • each functional module may be integrated into one processing chip, or each module may exist physically separately, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated module if implemented in the form of a software functional module and sold or used as a standalone product, may also be stored in a computer readable storage medium, such as a read only memory, a magnetic disk or an optical disk, etc. .

Abstract

本申请实施例公开了一种摄像头模组倾斜度测试方法、装置、存储介质及电子设备,其中,倾斜度测试方法包括:获取所述摄像头模组拍摄测试图卡得到的预设数量的图像;从每张图像中选取目标区域;根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度;根据每张图像的目标区域的对比度绘制每个目标区域的离焦曲线;从每个目标区域的离焦曲线中找出每个目标区域具有最大对比度时对应图像的镜头位置,并根据每个目标区域具有最大对比度时对应图像的镜头位置,确定所述摄像头模组的倾斜度。

Description

摄像头模组倾斜度测试方法、装置、存储介质及电子设备
本申请要求于2017年12月28日提交中国专利局、申请号为201711464322.1、发明名称为“摄像头模组的倾斜度测试方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及摄像头模组测试领域,具体涉及一种摄像头模组倾斜度测试方法、装置、存储介质及电子设备。
背景技术
在摄像头模组生产的过程中,受制造、装配技术或工艺等的影响,摄像头模组中镜头和影像传感器之间会出现不平行的情况,即镜头和影像传感器之间存在一定程度的倾斜,这样的摄像头模组在工作的时候,会出现离焦现象,从而导致生成的图像比较模糊,成像质量较差。因此,在出厂前,需要对镜头和影像传感器之间的倾斜程度进行检测,以确保产品品质。
技术解决方案
本申请实施例提供了一种摄像头模组倾斜度测试方法、装置、存储介质及电子设备,能够应用于比较广泛的测试场景、且能够提高测试精度和稳定性。
本申请实施例提供的摄像头模组倾斜度测试方法,包括:
获取所述摄像头模组拍摄测试图卡得到的预设数量的图像;
从每张图像中选取目标区域;
根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度;
根据每张图像的目标区域的对比度绘制每个目标区域的离焦曲线;
从每个目标区域的离焦曲线中找出每个目标区域具有最大对比度时对应图像的镜头位置,并根据每个目标区域具有最大对比度时对应图像的镜头位置,确定所述摄像头模组的倾斜度。
本申请实施例提供的摄像头模组倾斜度测试装置,包括:
获取单元,用于获取所述摄像头模组拍摄测试图卡得到的预设数量的图像;
选取单元,用于从每张图像中选取目标区域;
计算单元,用于根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度;
绘制单元,用于根据每张图像的目标区域的对比度绘制每个目标区域的离焦曲线;
确定单元,用于从每个目标区域的离焦曲线中找出每个目标区域具有最大对比度时对应图像的镜头位置,并根据每个目标区域具有最大对比度时对应图像的镜头位置,确定所述摄像头模组的倾斜度。
本申请实施例提供的存储介质,其上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如本申请实施例所述的倾斜度测试方法。
本申请实施例提供的电子设备,包括处理器和存储器,所述存储器有计算机程序,所述处理器通过调用所述计算机程序,用于执行如本申请实施例所述的倾斜度测试方法。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的摄像头模组倾斜度测试方法的应用场景图。
图2是本申请实施例提供的摄像头模组倾斜度测试方法的流程示意图。
图3是本申请实施例提供的图像获取方法示意图。
图4是本申请实施例提供的摄像头模组倾斜度测试方法的另一流程示意图。
图5是本申请实施例提供的目标区域的选取方法示意图。
图6是本申请实施例提供的目标区域的像素分布示意图。
图7是本申请实施例提供的对比度及镜头位置数据示意图。
图8是本申请实施例提供的离焦曲线示意图。
图9是本申请实施例提供的摄像头模组倾斜度测试装置的结构示意图。
图10是本申请实施例提供的摄像头模组倾斜度测试装置的另一结构示意图。
图11是本申请实施例提供的电子设备的结构示意图。
图12是本申请实施例提供的电子设备的另一结构示意图。
本发明的实施方式
请参照图式,其中相同的组件符号代表相同的组件,本申请的原理是以实施在一适当的运算环境中来举例说明。以下的说明是基于所例示的本申请具体实施例,其不应被视为限制本申请未在此详述的其它具体实施例。
现有技术提供了一些摄像头模组倾斜度检测方法,其主要是通过拍摄特定的测试图卡(斜边测试图卡),对拍摄得到的图像进行斜边识别分析,得到每条斜边的空间频率响应(Spatial Frequency Response,SFR)值,根据得到的SFR值确定镜头和影像传感器之间的倾斜程度。这种方法只能使用特定的测试图卡,应用场景比较受限,且涉及斜边识别分析,容易出现识别失败或分析错误,测试精度低、稳定性比较差。因而,本申请实施例提供了一种摄像头模组倾斜度测试方法,包括以下步骤:
获取所述摄像头模组拍摄测试图卡得到的预设数量的图像;
从每张图像中选取目标区域;
根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度;
根据每张图像的目标区域的对比度绘制每个目标区域的离焦曲线;
从每个目标区域的离焦曲线中找出每个目标区域具有最大对比度时对应图像的镜头位置,并根据每个目标区域具有最大对比度时对应图像的镜头位置,确定所述摄像头模组的倾斜度。
一实施例中,所述获取所述摄像头模组拍摄测试图卡得到的预设数量的图像,包括:
控制马达驱动所述摄像头模组中的镜头在预设步长范围内移动,并拍摄所述测试图卡,得到所述预设数量的图像。
一实施例中,所述从每张图像中选取目标区域,包括:
从每张图像的边缘选取目标区域,所选取的目标区域包括图像的左上、右上、左下和右下区域。
一实施例中,所述根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度,包括:
获取每张图像的目标区域中各种像素所占的数量比例,选取所占的数量比例最大的像素作为对应图像的目标区域中的预设像素;
根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度。
一实施例中,所述根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度,包括:
计算每张图像的目标区域中所述预设像素和所述预设像素的对角相邻像素的亮度差的平方和,将计算得到的值作为对应图像的目标区域的对比度。
一实施例中,所述根据每张图像的目标区域的对比度绘制每个目标区域的离焦曲线,包括:
以每张图像的镜头位置为横轴数据,以每张图像的目标区域的对比度为纵轴数据,分别绘制左上、右上、左下和右下区域的离焦曲线。
一实施例中,所述从每个目标区域的离焦曲线中找出每个目标区域具有最大对比度时对应图像的镜头位置,并根据每个目标区域具有最大对比度时对应图像的镜头位置,确定所述摄像头模组的倾斜度,包括:
分别从左上、右上、左下和右下区域的离焦曲线中,对应找出左上区域具有最大对比度时对应图像的镜头位置、右上区域具有最大对比度时对应图像的镜头位置、左下区域具有最大对比度时对应图像的镜头位置,以及右下区域具有最大对比度时对应图像的镜头位置,共得到四个镜头位置;
计算所述四个镜头位置中位置最大值与位置最小值之间的差值,将计算得到的差值作为所述摄像头模组的倾斜度。
一实施例中,所述方法还包括:
根据所述摄像头模组的倾斜度判断所述摄像头模组是否合格。
本申请实施例提供的摄像头模组的倾斜度测试方法,该测试方法的执行主体可以是本申请实施例提供的摄像头模组的倾斜度测试装置,或者集成了该倾斜度测试装置的电子设备。
本申请实施例的倾斜度测试方法的一个具体应用场景可如图1所示,摄像头模组包括镜头和影像传感器,当然摄像头模组还可以包括其他部件,比如:马达、滤色片、基板等,此处不作具体限定。其中,镜头用于聚集光线,把拍摄的景物投射到影像传感器;影像传感器用于将镜头投射的图像(光信号)转换为电信号,马达用于带动镜头移动,使得镜头投射清晰的图像到影像传感器。
如图1左边所示,当镜头与影像传感器相对位置平行时,不同视场的焦点在同一水平面上,成像清晰;如图1右边所示,当镜头与影像传感器相对位置倾斜时,就会导致整个成像面不是同时处于合焦状态,即有些视场会处于失焦状态,其中,图像的边缘失焦最严重,图像边缘最模糊。因此,在出厂前,需要对摄像头模组内镜头与影像传感器之间的倾斜程度进行检测。
本申请实施例,即提供了测试镜头与影像传感器之间的倾斜程度的方法,在具体实施过程中,可以利用待检测的摄像头模组拍摄测试图卡得到预设数量的图像,从每张图像中选取目标区域,然后根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度,根据每张图像的目标区域的对比度绘制每个目标区域的离焦曲线,从每个目标区域的离焦曲线中找出每个目标区域具有最大对比度时对应图像的镜头位置,并根据每个目标区域具有最大对比度时对应图像的镜头位置,确定所述摄像头模组的倾斜度。整个测试过程中,只涉及图像的目标区域中预设像素亮度的计算,因此不局限于使用斜边测试图卡,大多数测试图卡都可以满足需求,测试场景比较广泛;另外,由于不用对图像中的斜边进行识别分析,可以避免出错,提高了测试精度和稳定性。
本申请实施例将从摄像头模组的倾斜度测试装置的角度,描述本申请实施例提供的摄像头模组倾斜度测试方法,该倾斜度测试方法包括:获取所述摄像头模组拍摄测试图卡得到的预设数量的图像;从每张图像中选取目标区域;根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度;根据每张图像的目标区域的对比度绘制每个目标区域的离焦曲线;从每个目标区域的离焦曲线中找出每个目标区域具有最大对比度时对应图像的镜头位置,并根据每个目标区域具有最大对比度时对应图像的镜头位置,确定所述摄像头模组的倾斜度。
在一优选实施例中,提供了一种摄像头模组倾斜度测试方法,如图2所示,本申请实施例提供的倾斜度测试方法的具体流程可以如下:
步骤S201、获取所述摄像头模组拍摄测试图卡得到的预设数量的图像。
具体实现中,当需要测试摄像头模组内镜头与影像传感器之间的倾斜程度时,可以控制马达驱动摄像头模组中的镜头在预设步长范围内移动,并拍摄所述测试图卡,得到预设 数量的图像。
例如图3所示,可以在P-R至P+R的步长范围内,移动镜头,每移动一个位置,控制摄像头模组对测试图卡进行一次拍摄,获取每次拍摄得到图像,即得到预设数量的图像。
步骤S202、从每张图像中选取目标区域。
具体实现中,在得到预设数量的图像之后,可以从每张图像中选取目标区域,目标区域选取的数量可以是一个或多个。由于摄像头模组的倾斜对图像边缘影响最为严重,因此,可以从图像的边缘选取若干区域作为目标区域。比如,可以从图像的上、下、左、右位置选取四个区域作为目标区域,或者从图像的左上、右上、左下、右下这四个角选取四个区域作为目标区域,或者从图像的顶部和底部选取两个区域作为目标区域,具体的选取方法此处不做具体限定。另外,为保证测试结果的准确度,所选取的区域可以靠近图像边缘,但不要直接在图像边缘上,即所选取的区域与图像边缘之间可以留有一定的距离。另外,实际应用中,也可以不进行区域选取,而将整张图像的所有区域作为目标区域。
步骤S203、根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度。
图像的颜色是通过对红(Red)、绿(Green)、蓝(Blue)三个颜色通道的变化叠加得到的,RGB即是代表红、绿、蓝三个通道的像素颜色,因此,可以将图像中的R通道像素、或者G通道像素、或者B通道像素作为预设像素。具体地,可以获取每张图像的目标区域中这三种像素所占的数量比例,从这三种像素中选取数量比例最大的像素,作为预设像素,例如选取G通道像素作为预设像素。
在得到每张图像的目标区域之后,可以计算每个目标区域的对比度。具体的计算方法可以是:获取目标区域内预设像素和预设像素的对角相邻像素的亮度,计算目标区域内的预设像素和预设像素的对角相邻像素的亮度差的平方和(即将像素的亮度值先相减,对相减之后得到的值做平方运算,最后将做平方运算得到的所有值进行累加),将计算得到的值作为对应目标区域的对比度。按照此方法,可以得到每张图像的每个目标区域的对比度。
步骤S204、根据每张图像的目标区域的对比度绘制每个目标区域的离焦曲线。
具体地,可以以每张图像拍摄时所述镜头的位置(即镜头与影像传感器之间的距离)为横轴数据,以每张图像的每个目标区域的对比度为纵轴数据,绘制每个目标区域的离焦曲线。例如:当目标区域有左上、右上、左下、右下四个区域时,将绘制四条离焦曲线,每个离焦曲线与一个目标区域对应。
步骤S205、从每个目标区域的离焦曲线中找出每个目标区域具有最大对比度时对应图像的镜头位置,并根据每个目标区域具有最大对比度时对应图像的镜头位置,确定所述摄像头模组的倾斜度。
具体地,分别从左上、右上、左下和右下区域的离焦曲线中,对应找出左上区域具有最大对比度时对应图像的镜头位置、右上区域具有最大对比度时对应图像的镜头位置、左下区域具有最大对比度时对应图像的镜头位置,以及右下区域具有最大对比度时对应图像的镜头位置,共得到四个镜头位置,计算所述四个镜头位置中位置最大值与位置最小值之间的差值,将计算得到的差值作为所述摄像头模组的倾斜度。
在得到摄像头模组的倾斜度之后,可以根据得到的倾斜度判断摄像头模组是否合格。例如,可以判断得到的倾斜度是否在可接受的倾斜度范围之内,如果在,则认为摄像头模组是合格的,反之,则认为摄像头模组不合格。实际应用中,可以据此检测结果进行制造、装配工艺的改进或优化。
本实施例中,会根据摄像头模组拍摄得到的图像的目标区域中预设像素的亮度,计算图像的目标区域的对比度,根据图像的目标区域的对比度绘制离焦曲线,根据离焦曲线确定摄像头模组的倾斜度;整个测试过程中,只涉及图像的目标区域中预设像素亮度的计算,因此不局限于使用斜边测试图卡,大多数测试图卡都可以满足需求,测试场景比较广泛; 另外,由于不用对图像中的斜边进行识别分析,可以避免出错或失败,提高了测试精度和稳定性。
在一优选实施例中,提供了另一种摄像头模组倾斜度测试方法,参考图4,本实施例的方法包括:
步骤S401、获取摄像头模组拍摄测试图卡得到的预设数量的图像。
具体实现中,当需要测试摄像头模组内镜头与影像传感器之间的倾斜程度时,可以控制马达驱动摄像头模组中的镜头在预设步长范围内移动,并拍摄所述测试图卡,得到预设数量的图像。
比如,在一个具体的实施例中,可以控制镜头在323~367的步长范围内,每次按照4个单位的步长进行移动,每移动至一个位置,控制摄像头模组对测试图卡进行一次拍摄,将得到12张图像。
步骤S402、选取每张图像中的左上、右上、左下、右下区域。
在一个具体的实施例中,每张图像所选取的区域可如图5所示,包括左上、右上、左下、右下这四个区域,这四个区域的中心可以在图像的两条对角线上,为保证测试结果的准确度,所选取的这四个区域都靠近图像边缘,但没有直接在图像边缘上。
步骤S403、计算每张图像中的左上、右上、左下、右下区域的对比度。
每个区域的对比度的具体计算方法可以是:获取该区域内预设像素和预设像素的对角相邻像素的亮度,计算该区域内的预设像素和预设像素的对角相邻像素的亮度差的平方和,将计算得到值作为该区域的对比度。
例如:某个区域内的像素如图6所示,该区域中G通道像素的数量比例最大,则可以将G通道像素作为预设像素,计算每个G通道像素与该G通道像素的对角相邻像素的亮度差的平方和(即先将像素的亮度值相减,对相减之后得到的值做平方运算,最后将做平方运算得到的所有值进行累加),将计算得到的数值作为该区域的对比度。比如图6中,该区域的对比度可以是:Contrast=(Gr01-Gb10) 2+(Gr01-Gb12) 2+(Gr03-Gb12) 2+(Gb10-Gr21) 2+(Gb12-Gr21) 2+(Gb12-Gr23) 2+(Gr21-Gb31) 2+(Gr21-Gb32) 2+(Gr23-Gb32) 2。其中,Contrast表示对比度,Gr01、Gr03、Gb10、Gb12、Gr21、Gr23、Gb31、Gb32表示像素的亮度。
按照上述方法,可以得到每张图像的每个所选区域的对比度。在一个具体的实施例中,所得到的每张图像的每个所选区域的对比度及每张图像拍摄时的镜头位置信息可如图7所示,每张图像都具有镜头位置信息,以及图像的左上、右上、左下、右下区域的对比度这五个信息。
步骤S404、根据每张图像中的左上、右上、左下、右下区域的对比度及每张图像的镜头位置,分别绘制左上、右上、左下和右下区域的离焦曲线。
具体地,可以以每张图像拍摄时所述镜头的位置为横轴数据,以每张图像的每个所选区域的对比度为纵轴数据,绘制每个所选区域的离焦曲线。
在一个具体的实施例中,按照上述方法选取区域之后所绘制的离焦曲线可如图8所示,包括左上、右上、左下、右下这四个区域的离焦曲线。
步骤S405、分别从上述四个区域的离焦曲线中,对应找出每个区域具有最大对比度时对应图像的镜头位置,共得到四个镜头位置。
当所选取的区域为图像的左上、右上、左下、右下这四个区域时,可以在左上区域的离焦曲线中,找出左上区域具有最大对比度时对应图片(即左上区域最清晰时的图片)的镜头位置,在右上区域的离焦曲线中,找出右上区域具有最大对比度时对应图片(即右上区域最清晰时的图片)的镜头位置;在左下区域的离焦曲线中,找出左下区域具有最大对 比度时对应图片(即左下区域最清晰时的图片)的镜头位置;在右下区域的离焦曲线中,找出右下区域具有最大对比度时对应图片(即右下区域最清晰时的图片)的镜头位置,共得到四个镜头位置。
步骤S406、计算所述四个镜头位置中位置最大值与位置最小值之间的差值,将计算得到的差值作为所述摄像头模组的倾斜度。
比如图8所示,从左下区域的离焦曲线中,可以得到左下区域具有最大对比度时对应图像的镜头位置大概为329;从左上区域的离焦曲线中,可以得到左上区域具有最大对比度时对应图像的镜头位置大概为334;从右下区域的离焦曲线中,可以得到右下区域具有最大对比度时对应图像的镜头位置大概为353;从右上区域的离焦曲线中,可以得到右上区域具有最大对比度时对应图像的镜头位置大概为362;这四个位置数值中位置最大值为362,位置最小值为329,则将362与329的差值33(近似)作为所述摄像头模组的倾斜度。
在得到摄像头模组的倾斜度之后,可以根据得到的倾斜度判断摄像头模组是否合格。例如,可以判断得到的倾斜度是否在可接受的倾斜度范围之内,如果在,则认为摄像头模组是合格的,反之,则认为摄像头模组不合格。实际应用中,可以据此检测结果进行制造、装配工艺的改进或优化。
本实施例中,会根据摄像头模组拍摄得到的图像的目标区域中预设像素的亮度,计算图像的目标区域的对比度,根据图像的目标区域的对比度绘制离焦曲线,根据离焦曲线确定摄像头模组的倾斜度;整个测试过程中,只涉及图像的目标区域中预设像素亮度的计算,因此不局限于使用斜边测试图卡,大多数测试图卡都可以满足需求,测试场景比较广泛;另外,由于不用对图像中的斜边进行识别分析,可以避免出错或测试失败,提高了测试精度和稳定性。
本申请实施例还提供了一种摄像头模组倾斜度测试装置,包括获取单元、选取单元、计算单元、绘制单元和确定单元,如下:
获取单元,用于获取所述摄像头模组拍摄测试图卡得到的预设数量的图像;
选取单元,用于从每张图像中选取目标区域;
计算单元,用于根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度;
绘制单元,用于根据每张图像的目标区域的对比度绘制每个目标区域的离焦曲线;
确定单元,用于从每个目标区域的离焦曲线中找出每个目标区域具有最大对比度时对应图像的镜头位置,并根据每个目标区域具有最大对比度时对应图像的镜头位置,确定所述摄像头模组的倾斜度。
一实施例中,所述获取单元具体用于,控制马达驱动所述摄像头模组中的镜头在预设步长范围内移动,并拍摄所述测试图卡,得到所述预设数量的图像。
一实施例中,所述选取单元具体用于,从每张图像的边缘选取目标区域,所选取的目标区域包括图像的左上、右上、左下和右下区域。
一实施例中,所述计算单元包括选取子单元和计算子单元;
所述选取子单元,用于获取每张图像的目标区域中各种像素所占的数量比例,选取所占的数量比例最大的像素作为对应图像的目标区域中的预设像素;
所述计算子单元,用于根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度。
一实施例中,所述计算子单元具体用于,计算每张图像的目标区域中所述预设像素和所述预设像素的对角相邻像素的亮度差的平方和,将计算得到的值作为对应图像的目标区域的对比度。
一实施例中,所述绘制单元具体用于,以每张图像的镜头位置为横轴数据,以每张图 像的目标区域的对比度为纵轴数据,分别绘制左上、右上、左下和右下区域的离焦曲线。
一实施例中,所述确定单元包括查找子单元和确定子单元;
所述查找子单元,用于分别从左上、右上、左下和右下区域的离焦曲线中,对应找出左上区域具有最大对比度时对应图像的镜头位置、右上区域具有最大对比度时对应图像的镜头位置、左下区域具有最大对比度时对应图像的镜头位置,以及右下区域具有最大对比度时对应图像的镜头位置,共得到四个镜头位置;
所述确定子单元,用于计算所述四个镜头位置中位置最大值与位置最小值之间的差值,将计算得到的差值作为所述摄像头模组的倾斜度。
一实施例中,所述装置还包括:
判断单元,用于根据所述摄像头模组的倾斜度判断所述摄像头模组是否合格。
在一优选实施例中,还提供一种摄像头模组倾斜度测试装置,如图9所示,该装置包括:获取单元901、选取单元902、计算单元903、绘制单元904以及确定单元905,如下:
获取单元901,用于获取所述摄像头模组拍摄测试图卡得到的预设数量的图像;
选取单元902,用于从每张图像中选取目标区域;
计算单元903,用于根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度;
绘制单元904,用于根据每张图像的目标区域的对比度绘制每个目标区域的离焦曲线;
确定单元905,用于从每个目标区域的离焦曲线中找出每个目标区域具有最大对比度时对应图像的镜头位置,并根据每个目标区域具有最大对比度时对应图像的镜头位置,确定所述摄像头模组的倾斜度。
在一些实施例中,所述获取单元901具体用于:
控制马达驱动所述摄像头模组中的镜头在预设步长范围内移动,并拍摄所述测试图卡,得到所述预设数量的图像。
在一些实施例中,所述选取单元902具体用于:
从每张图像的边缘选取目标区域,所选取的目标区域包括图像的左上、右上、左下和右下区域。
在一些实施例中,所述计算单元903包括选取子单元9031和计算子单元9032;
所述选取子单元9031,用于获取每张图像的目标区域中各种像素所占的数量比例,选取所占的数量比例最大的像素作为对应图像的目标区域中的预设像素;
所述计算子单元9032,用于根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度。
在一些实施例中,所述计算子单元9032具体用于:
计算每张图像的目标区域中所述预设像素和所述预设像素的对角相邻像素的亮度差的平方和,将计算得到的值作为对应图像的目标区域的对比度。
在一些实施例中,所述绘制单元904具体用于:
以每张图像的镜头位置为横轴数据,以每张图像的目标区域的对比度为纵轴数据,分别绘制左上、右上、左下和右下区域的离焦曲线。
在一些实施例中,如图10所示,所述确定单元905包括:
查找子单元9051,用于分别从左上、右上、左下和右下区域的离焦曲线中,对应找出左上区域具有最大对比度时对应图像的镜头位置、右上区域具有最大对比度时对应图像的镜头位置、左下区域具有最大对比度时对应图像的镜头位置,以及右下区域具有最大对比度时对应图像的镜头位置,共得到四个镜头位置;
确定子单元9052,用于计算所述四个镜头位置中位置最大值与位置最小值之间的差值,将计算得到的差值作为所述摄像头模组的倾斜度。
在一些实施例中,如图10所示,所述装置还包括:
判断单元906,用于根据所述摄像头模组的倾斜度判断所述摄像头模组是否合格。
由上可知,本实施例测试装置中,由获取单元901获取所述摄像头模组拍摄测试图卡得到的预设数量的图像,选取单元902从每张图像中选取目标区域,计算单元903根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度,绘制单元904根据图像的目标区域的对比度绘制离焦曲线,最后由确定单元905根据离焦曲线确定摄像头模组的倾斜度;整个测试过程中,只涉及图像的目标区域中预设像素亮度的计算,因此不局限于使用斜边测试图卡,大多数测试图卡都可以满足需求,测试场景比较广泛;另外,由于不用对图像中的斜边进行识别分析,可以避免出错,提高了测试精度和稳定性。
具体实施时,以上各个模块可以作为独立的实体来实现,也可以进行任意组合,作为同一或若干个实体来实现,以上各个模块的具体实施可参见前面的方法实施例,在此不再赘述。
本申请实施例还提供一种电子设备,用于测试摄像头模组的倾斜度。请参阅图11,电子设备1000包括处理器1001以及存储器1002。其中,处理器1001与存储器1002电性连接。
所述处理器1000是电子设备1000的控制中心,利用各种接口和线路连接整个电子设备的各个部分,通过运行或加载存储在存储器1002内的计算机程序,以及调用存储在存储器1002内的数据,执行电子设备1000的各种功能并处理数据,从而对电子设备1000进行整体监控。
所述存储器1002可用于存储软件程序以及模块,处理器1001通过运行存储在存储器1002的计算机程序以及模块,从而执行各种功能应用以及数据处理。存储器1002可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的计算机程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据电子设备的使用所创建的数据等。此外,存储器1002可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。相应地,存储器1002还可以包括存储器控制器,以提供处理器1001对存储器1002的访问。
在本申请实施例中,电子设备1000中的处理器1001会按照如下的步骤,将一个或一个以上的计算机程序的进程对应的指令加载到存储器1002中,并由处理器1001运行存储在存储器1002中的计算机程序,从而实现各种功能,如下:
获取所述摄像头模组拍摄测试图卡得到的预设数量的图像;
从每张图像中选取目标区域;
根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度;
根据每张图像的目标区域的对比度绘制每个目标区域的离焦曲线;
从每个目标区域的离焦曲线中找出每个目标区域具有最大对比度时对应图像的镜头位置,并根据每个目标区域具有最大对比度时对应图像的镜头位置,确定所述摄像头模组的倾斜度。
在某些实施方式中,在获取所述摄像头模组拍摄测试图卡得到的预设数量的图像时,处理器1001具体可以执行以下步骤:
控制马达驱动所述摄像头模组中的镜头在预设步长范围内移动,并拍摄所述测试图卡,得到所述预设数量的图像。
在某些实施方式中,在从每张图像中选取目标区域时,处理器1001具体可以执行以下步骤:
从每张图像的边缘选取目标区域,所选取的目标区域包括图像的左上、右上、左下和右下区域。
在某些实施方式中,在根据每张图像的目标区域中预设像素的亮度计算每张图像的目 标区域的对比度时,处理器1001具体可以执行以下步骤:
获取每张图像的目标区域中各种像素所占的数量比例,选取所占的数量比例最大的像素作为对应图像的目标区域中的预设像素;
根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度。
在某些实施方式中,在根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度时,处理器1001具体可以执行以下步骤:
计算每张图像的目标区域中所述预设像素和所述预设像素的对角相邻像素的亮度差的平方和,将计算得到的值作为对应图像的目标区域的对比度。
在某些实施方式中,在根据每张图像的目标区域的对比度绘制每个目标区域的离焦曲线时,处理器1001具体可以执行以下步骤:
以每张图像的镜头位置为横轴数据,以每张图像的目标区域的对比度为纵轴数据,分别绘制左上、右上、左下和右下区域的离焦曲线。
在某些实施方式中,在从每个目标区域的离焦曲线中找出每个目标区域具有最大对比度时对应图像的镜头位置,并根据每个目标区域具有最大对比度时对应图像的镜头位置,确定所述摄像头模组的倾斜度时,处理器1001具体可以执行以下步骤:
分别从左上、右上、左下和右下区域的离焦曲线中,对应找出左上区域具有最大对比度时对应图像的镜头位置、右上区域具有最大对比度时对应图像的镜头位置、左下区域具有最大对比度时对应图像的镜头位置,以及右下区域具有最大对比度时对应图像的镜头位置,共得到四个镜头位置;
计算所述四个镜头位置中位置最大值与位置最小值之间的差值,将计算得到的差值作为所述摄像头模组的倾斜度。
在某些实施方式中,处理器1001还可以执行以下步骤:
根据所述摄像头模组的倾斜度判断所述摄像头模组是否合格。
由上述可知,本申请实施例的电子设备,会根据摄像头模组拍摄得到的图像的目标区域中预设像素的亮度,计算图像的目标区域的对比度,根据图像的目标区域的对比度绘制离焦曲线,根据离焦曲线确定摄像头模组的倾斜度;整个测试过程中,只涉及图像的目标区域中预设像素亮度的计算,因此不局限于使用斜边测试图卡,大多数测试图卡都可以满足需求,测试场景比较广泛;另外,由于不用对图像中的斜边进行识别分析,可以避免出错或测试失败,提高了测试精度和稳定性。
请一并参阅图12,在某些实施方式中,电子设备1000还可以包括:显示器1003、射频电路1004、音频电路1005以及电源1006。其中,其中,显示器1003、射频电路1004、音频电路1005以及电源1006分别与处理器1001电性连接。
所述显示器1003可以用于显示由用户输入的信息或提供给用户的信息以及各种图形用户接口,这些图形用户接口可以由图形、文本、图标、视频和其任意组合来构成。显示器1003可以包括显示面板,在某些实施方式中,可以采用液晶显示器(Liquid Crystal Display,LCD)、或者有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板。
所述射频电路1004可以用于收发射频信号,以通过无线通信与网络设备或其他电子设备建立无线通讯,与网络设备或其他电子设备之间收发信号。
所述音频电路1005可以用于通过扬声器、传声器提供用户与电子设备之间的音频接口。
所述电源1006可以用于给电子设备1000的各个部件供电。在一些实施例中,电源1006可以通过电源管理系统与处理器1001逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管图12中未示出,电子设备1000还可以包括摄像头、蓝牙模块等,在此不再赘述。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,当所述计算机 程序在计算机上运行时,使得所述计算机执行上述任一实施例中的摄像头模组倾斜度测试方法,比如:获取所述摄像头模组拍摄测试图卡得到的预设数量的图像;从每张图像中选取目标区域;根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度;根据每张图像的目标区域的对比度绘制每个目标区域的离焦曲线;从每个目标区域的离焦曲线中找出每个目标区域具有最大对比度时对应图像的镜头位置,并根据每个目标区域具有最大对比度时对应图像的镜头位置,确定所述摄像头模组的倾斜度。
在本申请实施例中,存储介质可以是磁碟、光盘、只读存储器(Read Only Memory,ROM,)、或者随机存取记忆体(Random Access Memory,RAM)等。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
需要说明的是,对本申请实施例的摄像头模组倾斜度测试方法而言,本领域普通测试人员可以理解实现本申请实施例的摄像头模组倾斜度测试方法的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述计算机程序可存储于一计算机可读取存储介质中,如存储在电子设备的存储器中,并被该电子设备内的至少一个处理器执行,在执行过程中可包括如摄像头模组的倾斜度测试方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储器、随机存取记忆体等。
对本申请实施例的摄像头模组的倾斜度测试装置而言,其各功能模块可以集成在一个处理芯片中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中,所述存储介质譬如为只读存储器,磁盘或光盘等。
以上对本申请实施例所提供的一种摄像头模组倾斜度测试方法、装置、存储介质及电子设备进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (19)

  1. 一种摄像头模组倾斜度测试方法,其中,包括:
    获取所述摄像头模组拍摄测试图卡得到的预设数量的图像;
    从每张图像中选取目标区域;
    根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度;
    根据每张图像的目标区域的对比度绘制每个目标区域的离焦曲线;
    从每个目标区域的离焦曲线中找出每个目标区域具有最大对比度时对应图像的镜头位置,并根据每个目标区域具有最大对比度时对应图像的镜头位置,确定所述摄像头模组的倾斜度。
  2. 根据权利要求1所述的测试方法,其中,所述获取所述摄像头模组拍摄测试图卡得到的预设数量的图像,包括:
    控制马达驱动所述摄像头模组中的镜头在预设步长范围内移动,并拍摄所述测试图卡,得到所述预设数量的图像。
  3. 根据权利要求2所述的测试方法,其中,所述从每张图像中选取目标区域,包括:
    从每张图像的边缘选取目标区域,所选取的目标区域包括图像的左上、右上、左下和右下区域。
  4. 根据权利要求3所述的测试方法,其中,所述根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度,包括:
    获取每张图像的目标区域中各种像素所占的数量比例,选取所占的数量比例最大的像素作为对应图像的目标区域中的预设像素;
    根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度。
  5. 根据权利要求4所述的测试方法,其中,所述根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度,包括:
    计算每张图像的目标区域中所述预设像素和所述预设像素的对角相邻像素的亮度差的平方和,将计算得到的值作为对应图像的目标区域的对比度。
  6. 根据权利要求5所述的测试方法,其中,所述根据每张图像的目标区域的对比度绘制每个目标区域的离焦曲线,包括:
    以每张图像的镜头位置为横轴数据,以每张图像的目标区域的对比度为纵轴数据,分别绘制左上、右上、左下和右下区域的离焦曲线。
  7. 根据权利要求6所述的测试方法,其中,所述从每个目标区域的离焦曲线中找出每个目标区域具有最大对比度时对应图像的镜头位置,并根据每个目标区域具有最大对比度时对应图像的镜头位置,确定所述摄像头模组的倾斜度,包括:
    分别从左上、右上、左下和右下区域的离焦曲线中,对应找出左上区域具有最大对比度时对应图像的镜头位置、右上区域具有最大对比度时对应图像的镜头位置、左下区域具有最大对比度时对应图像的镜头位置,以及右下区域具有最大对比度时对应图像的镜头位置,共得到四个镜头位置;
    计算所述四个镜头位置中位置最大值与位置最小值之间的差值,将计算得到的差值作为所述摄像头模组的倾斜度。
  8. 根据权利要求1至7任意一项所述的测试方法,其中,所述方法还包括:
    根据所述摄像头模组的倾斜度判断所述摄像头模组是否合格。
  9. 一种摄像头模组倾斜度测试装置,其中,包括:
    获取单元,用于获取所述摄像头模组拍摄测试图卡得到的预设数量的图像;
    选取单元,用于从每张图像中选取目标区域;
    计算单元,用于根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度;
    绘制单元,用于根据每张图像的目标区域的对比度绘制每个目标区域的离焦曲线;
    确定单元,用于从每个目标区域的离焦曲线中找出每个目标区域具有最大对比度时对应图像的镜头位置,并根据每个目标区域具有最大对比度时对应图像的镜头位置,确定所述摄像头模组的倾斜度。
  10. 根据权利要求9所述的测试装置,其中,
    所述获取单元具体用于,控制马达驱动所述摄像头模组中的镜头在预设步长范围内移动,并拍摄所述测试图卡,得到所述预设数量的图像;
    所述选取单元具体用于,从每张图像的边缘选取目标区域,所选取的目标区域包括图像的左上、右上、左下和右下区域。
  11. 根据权利要求10所述的测试装置,其中,所述计算单元包括选取子单元和计算子单元;
    所述选取子单元,用于获取每张图像的目标区域中各种像素所占的数量比例,选取所占的数量比例最大的像素作为对应图像的目标区域中的预设像素;
    所述计算子单元,用于根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度。
  12. 根据权利要求11所述的测试装置,其中,
    所述计算子单元具体用于,计算每张图像的目标区域中所述预设像素和所述预设像素的对角相邻像素的亮度差的平方和,将计算得到的值作为对应图像的目标区域的对比度。
  13. 根据权利要求12所述的测试装置,其中,
    所述绘制单元具体用于,以每张图像的镜头位置为横轴数据,以每张图像的目标区域的对比度为纵轴数据,分别绘制左上、右上、左下和右下区域的离焦曲线;
    所述确定单元包括查找子单元和确定子单元;
    所述查找子单元,用于分别从左上、右上、左下和右下区域的离焦曲线中,对应找出左上区域具有最大对比度时对应图像的镜头位置、右上区域具有最大对比度时对应图像的镜头位置、左下区域具有最大对比度时对应图像的镜头位置,以及右下区域具有最大对比度时对应图像的镜头位置,共得到四个镜头位置;
    所述确定子单元,用于计算所述四个镜头位置中位置最大值与位置最小值之间的差值,将计算得到的差值作为所述摄像头模组的倾斜度。
  14. 一种存储介质,其上存储有计算机程序,其中,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至8任一项所述的倾斜度测试方法。
  15. 一种电子设备,包括处理器和存储器,所述存储器存储有计算机程序,其中,所述处理器通过调用所述计算机程序,从而执行以下步骤:
    获取摄像头模组拍摄测试图卡得到的预设数量的图像;
    从每张图像中选取目标区域;
    根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度;
    根据每张图像的目标区域的对比度绘制每个目标区域的离焦曲线;
    从每个目标区域的离焦曲线中找出每个目标区域具有最大对比度时对应图像的镜头位置,并根据每个目标区域具有最大对比度时对应图像的镜头位置,确定所述摄像头模组的倾斜度。
  16. 根据权利要求16所述的电子设备,其中,在获取所述摄像头模组拍摄测试图卡得到的预设数量的图像时,所述处理器具体用于执行以下步骤:
    控制马达驱动所述摄像头模组中的镜头在预设步长范围内移动,并拍摄所述测试图卡,得到所述预设数量的图像;
    在从每张图像中选取目标区域时,所述处理器具体用于执行以下步骤:
    从每张图像的边缘选取目标区域,所选取的目标区域包括图像的左上、右上、左下和 右下区域。
  17. 根据权利要求17所述的电子设备,其中,在根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度时,所述处理器具体用于执行以下步骤:
    获取每张图像的目标区域中各种像素所占的数量比例,选取所占的数量比例最大的像素作为对应图像的目标区域中的预设像素;
    根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度。
  18. 根据权利要求18所述的电子设备,其中,在根据每张图像的目标区域中预设像素的亮度计算每张图像的目标区域的对比度时,所述处理器具体用于执行以下步骤:
    计算每张图像的目标区域中所述预设像素和所述预设像素的对角相邻像素的亮度差的平方和,将计算得到的值作为对应图像的目标区域的对比度。
  19. 根据权利要求19所述的电子设备,其中,在根据每张图像的目标区域的对比度绘制每个目标区域的离焦曲线时,所述处理器具体用于执行以下步骤:
    以每张图像的镜头位置为横轴数据,以每张图像的目标区域的对比度为纵轴数据,分别绘制左上、右上、左下和右下区域的离焦曲线;
    在从每个目标区域的离焦曲线中找出每个目标区域具有最大对比度时对应图像的镜头位置,并根据每个目标区域具有最大对比度时对应图像的镜头位置,确定所述摄像头模组的倾斜度时,所述处理器具体用于执行以下步骤:
    分别从左上、右上、左下和右下区域的离焦曲线中,对应找出左上区域具有最大对比度时对应图像的镜头位置、右上区域具有最大对比度时对应图像的镜头位置、左下区域具有最大对比度时对应图像的镜头位置,以及右下区域具有最大对比度时对应图像的镜头位置,共得到四个镜头位置;
    计算所述四个镜头位置中位置最大值与位置最小值之间的差值,将计算得到的差值作为所述摄像头模组的倾斜度。
PCT/CN2018/116240 2017-12-28 2018-11-19 摄像头模组倾斜度测试方法、装置、存储介质及电子设备 WO2019128534A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711464322.1A CN107920246B (zh) 2017-12-28 2017-12-28 摄像头模组的倾斜度测试方法及装置
CN201711464322.1 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019128534A1 true WO2019128534A1 (zh) 2019-07-04

Family

ID=61894405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116240 WO2019128534A1 (zh) 2017-12-28 2018-11-19 摄像头模组倾斜度测试方法、装置、存储介质及电子设备

Country Status (2)

Country Link
CN (1) CN107920246B (zh)
WO (1) WO2019128534A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107920246B (zh) * 2017-12-28 2019-10-25 Oppo广东移动通信有限公司 摄像头模组的倾斜度测试方法及装置
CN111263136B (zh) * 2018-11-30 2022-04-01 欧菲影像技术(广州)有限公司 检测成像场曲的方法、检测成像倾斜的方法及成像检测仪
CN112543320A (zh) * 2019-09-23 2021-03-23 北京集创北方科技股份有限公司 图像采集设备测试方法、装置、系统及图像采集设备
CN111556311B (zh) * 2020-04-07 2022-02-01 昆山丘钛微电子科技有限公司 定焦摄像模组的质量检测方法、装置及计算机存储介质
CN113124830A (zh) * 2021-04-09 2021-07-16 广州得尔塔影像技术有限公司 一种摄像模组成像光学倾斜度测试方法及测试设备
CN113747146A (zh) * 2021-08-16 2021-12-03 珠海市丘钛微电子科技有限公司 测试图卡检测方法、装置、设备及存储介质
CN113840136B (zh) * 2021-09-03 2023-12-01 大连中科创达软件有限公司 一种相机安装精度的检测方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149789A (zh) * 2013-02-28 2013-06-12 宁波舜宇光电信息有限公司 基于图像mtf评价模组马达曲线的测试方法
US20150139501A1 (en) * 2013-11-20 2015-05-21 Steven Robert Rogers Wind velocity calibration system and method
CN105025290A (zh) * 2014-04-23 2015-11-04 宁波舜宇光电信息有限公司 一种自动调整摄像模组传感器与镜头之间倾斜的方法
CN105758381A (zh) * 2016-05-09 2016-07-13 深圳大学 一种基于频谱分析的摄像头模组倾斜探测方法
CN107920246A (zh) * 2017-12-28 2018-04-17 广东欧珀移动通信有限公司 摄像头模组的倾斜度测试方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4133577B2 (ja) * 2002-09-19 2008-08-13 株式会社リコー 光ディスク装置及びチルト制御量の調整方法
CN102929074A (zh) * 2011-08-12 2013-02-13 华晶科技股份有限公司 应用影像技术的镜头校准系统及其校准方法
CN106296711B (zh) * 2016-08-22 2019-04-09 华南理工大学 一种手机摄像头模组的多轴主动对准方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149789A (zh) * 2013-02-28 2013-06-12 宁波舜宇光电信息有限公司 基于图像mtf评价模组马达曲线的测试方法
US20150139501A1 (en) * 2013-11-20 2015-05-21 Steven Robert Rogers Wind velocity calibration system and method
CN105025290A (zh) * 2014-04-23 2015-11-04 宁波舜宇光电信息有限公司 一种自动调整摄像模组传感器与镜头之间倾斜的方法
CN105758381A (zh) * 2016-05-09 2016-07-13 深圳大学 一种基于频谱分析的摄像头模组倾斜探测方法
CN107920246A (zh) * 2017-12-28 2018-04-17 广东欧珀移动通信有限公司 摄像头模组的倾斜度测试方法及装置

Also Published As

Publication number Publication date
CN107920246B (zh) 2019-10-25
CN107920246A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
WO2019128534A1 (zh) 摄像头模组倾斜度测试方法、装置、存储介质及电子设备
US20210174489A1 (en) Method and apparatus for detecting a screen, and electronic device
US9183620B2 (en) Automated tilt and shift optimization
US9965861B2 (en) Method and system of feature matching for multiple images
US20180176452A1 (en) Method and system of self-calibration for phase detection autofocus
CN107749268B (zh) 屏幕检测方法及设备
US9746319B2 (en) Generation of depth data based on spatial light pattern
KR20180109918A (ko) 다중 카메라들을 사용하여 심리스 줌 기능을 구현하기 위한 시스템들 및 방법들
RU2466438C2 (ru) Способ облегчения фокусировки
US11282232B2 (en) Camera calibration using depth data
CN109656033B (zh) 一种区分液晶显示屏灰尘和缺陷的方法及装置
WO2021092815A1 (zh) 识别方法、测温方法、设备及存储介质
CN106289158A (zh) 距离检测装置以及包括该距离检测装置的相机模块
CN107103865B (zh) 检测显示屏中显示区域的方法和装置
US9336607B1 (en) Automatic identification of projection surfaces
CN111189841A (zh) 一种双相机检测机构以及双相机检测方法
CN108198189B (zh) 图片清晰度的获取方法、装置、存储介质及电子设备
US20130162837A1 (en) Image Capture
US9270984B2 (en) Camera with dust checking function
US10937184B2 (en) Camera assembly, method for tracking target portion based on the same, and electronic device
TW201445458A (zh) 一種攝像設備的檢測裝置及方法
CN115713491A (zh) 液晶显示面板缺陷检测方法、装置及电子设备
EP3349177A1 (en) System, method, and program for measuring distance between spherical objects
CN109211185A (zh) 一种飞行设备、获取位置信息的方法及装置
US9479716B2 (en) Image processing method, electronic device, electronic device readable storage medium and program applied in electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896753

Country of ref document: EP

Kind code of ref document: A1