WO2019128473A1 - 一种用于数据中心的高密度抗压光纤束光缆 - Google Patents

一种用于数据中心的高密度抗压光纤束光缆 Download PDF

Info

Publication number
WO2019128473A1
WO2019128473A1 PCT/CN2018/114140 CN2018114140W WO2019128473A1 WO 2019128473 A1 WO2019128473 A1 WO 2019128473A1 CN 2018114140 W CN2018114140 W CN 2018114140W WO 2019128473 A1 WO2019128473 A1 WO 2019128473A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
cable
data center
fiber bundle
sheath layer
Prior art date
Application number
PCT/CN2018/114140
Other languages
English (en)
French (fr)
Inventor
王胡江
林卫峰
高峰
王宇亮
蒋北
刘沛东
沈晨曦
胡静红
Original Assignee
江苏亨通光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通光电股份有限公司 filed Critical 江苏亨通光电股份有限公司
Publication of WO2019128473A1 publication Critical patent/WO2019128473A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Definitions

  • the present invention relates to the field of optical cables, and more particularly to a high density compression resistant fiber optic bundle cable for a data center.
  • High-density compression-resistant fiber-optic cable for data centers is a new concept product specifically designed for data center cabling.
  • Traditional MPO cables are roughly divided into two categories: combined microbeam cable and bare fiber bundle cable.
  • Conventional MPO cables have poor mechanical properties for tensile and compressive stress, and some outer jackets have poor cold resistance and cannot be applied to high-density switch backplanes or fiber-optic cabling solutions in data center equipment rooms.
  • the technical problem to be solved by the invention is how to make the optical cable meet certain side pressure and bending resistance, and adopt low-smoke halogen-free sheath, and at the same time satisfy many properties such as wear resistance, corrosion resistance and low temperature resistance.
  • the present invention provides a high-density compression-resistant fiber bundle cable for a data center, comprising: a micro-beam tube fiber, an aramid layer coated on the outside of the micro-beam tube fiber, and coated a sheath layer on the outer side of the aramid layer, three non-metallic reinforcement members are embedded in the sheath layer, and the three non-metal reinforcement members form a triangle;
  • the material of the sheath layer comprises, by weight parts, the following components: 20-40 parts of polyurethane, 25-45 parts of polyvinyl chloride, 5-15 parts of polyoxyalkylene modified polymethylsiloxane, 20-30 parts of nitrile rubber, 0.5-2 parts of dibutoxyethyl adipate, 0.4-1 part of trioctyl phosphate, 0.5-2 parts of modified filler, 2-4 parts of flame retardant, activator 0.2 - 0.6 parts, 0.5-1 part of accelerator.
  • the modified filler is modified carbon fiber, modified carbon nanotube or modified glass fiber, and the modified filler has a length of 1-10 ⁇ m.
  • the modified filler is prepared by the following steps: taking an aluminate coupling agent equivalent to 2% by weight of the filler, adding to the DMF solution, heating to 80 ° C until the aluminate coupling agent is completely dissolved , the mass ratio of the aluminate coupling agent to the DMF solution is 1:20; then the filler is added to the DMF solution, and stirred at 80 ° C for 0.5-2 h; then the solution is subjected to suction filtration, and then the filter residue is subjected to methanol filtration. Washing; repeated suction filtration and alcohol washing action three times, vacuum drying at 80 ° C for 2-5h, the modified filler is obtained.
  • the activator is one of zinc oxide, calcium carbonate, calcium stearate, and zinc stearate, and the activator has a particle size of 600-800 mesh.
  • the flame retardant is at least one of magnesium hydroxide, calcium montmorillonite, and ammonium polyphosphate.
  • the accelerator is an accelerator DM.
  • the method for preparing the sheath layer comprises: formulating polyurethane, polyvinyl chloride, polyoxyalkylene modified polymethylsiloxane, nitrile rubber, dibutoxyethyl adipate, Trioctyl phosphate, modified filler, flame retardant, activator and accelerator are put into a high-speed mixer and stirred uniformly; the stirred raw materials are put into a screw extruder and plasticized and extruded at 150-180 ° C.
  • Granulation that is, a sheath layer is obtained; when preparing a cold-resistant flame-retardant aerial cable, the sheath layer is added to a screw extruder, and a sheath layer having a thickness of 3-8 mm is obtained by extrusion.
  • the angle between the three non-metallic reinforcing members is 120°.
  • the outer diameter of the cable is 5.0 ⁇ 0.2 mm, and the thickness of the sheath layer is 1.1 ⁇ 0.1 mm.
  • each of the non-metallic reinforcing members is embedded in the middle of the sheath layer, and the non-metallic reinforcing member is 0.32 ⁇ 0.05 mm away from the edge of the sheath layer.
  • the optical cable sheath of the invention is symmetrically embedded with three flexible non-metallic reinforcing members, so that the optical cable meets certain lateral pressure resistance and bending resistance; the optical cable structure adopts a central tubular structure to ensure performance during the cable forming process. The impact, while meeting the higher mechanical and environmental performance of the cable.
  • the sub-units of the optical cable adopt micro-tubes to ensure that the optical cable can ensure a smaller outer diameter and a lighter cable weight with higher fiber density and larger capacity; it can be stripped without special tools.
  • Each of the microtubes is designed with 12 fiber bundles to match the standard connectors for component factory termination, testing, and ready-to-use plug-and-play.
  • the use characteristics of the optical cable are suitable for indoor and outdoor use.
  • the whole medium structure is adopted in the design to effectively prevent the environmental problems caused by the use process;
  • the outer protective material adopts a low-smoke and halogen-free sheath, and at the same time meets the wear resistance, low temperature resistance and resistance. Corrosion and many other properties.
  • the sheath layer is made of polyurethane, polyvinyl chloride and nitrile rubber as the main raw material, and the polyoxyalkylene modified polymethylsiloxane is used as a coupling agent to enhance the compatibility between the main raw materials and contribute to the compatibility.
  • Improve the strength of the sheath layer using dibutoxyethyl adipate and trioctyl phosphate as antifreeze plasticizers, which is beneficial to improve the low temperature resistance of the cold-resistant sheath layer and prevent it from becoming brittle at low temperatures. Cracks appear; the addition of fillers further increases the strength and toughness of the jacket layer while preventing crack propagation in the jacket layer.
  • FIG. 1 is a schematic structural view of an optical cable of the present invention
  • 1-microbeam tube fiber 10-fiber, 2-aramid layer, 3-sheath layer, 4-non-metallic reinforcement.
  • Embodiment 1 A high-density compression-resistant fiber bundle cable for a data center is disclosed in Embodiment 1, which includes: a micro-bundle fiber 1, a micro-bundle fiber 1 is provided with a plurality of optical fibers 10, and is coated on the micro-tube An aramid layer 2 on the outer side of the optical fiber 1, a sheath layer 3 coated on the outer portion of the aramid layer 2, three non-metallic reinforcing members 4 embedded in the sheath layer 3, and three non-metallic reinforcing members 4 are formed triangle.
  • the angle between the three non-metallic reinforcing members is 120°, and the stability of the cable cross section is ensured according to the stability of the regular triangle; the outer diameter of the cable is 5.0 ⁇ 0.2 mm; the thickness of the sheath layer 1.1 ⁇ 0.1mm, the thinnest point is not less than 0.9mm, each of the non-metallic reinforcing members is embedded in the middle of the sheath layer, and the distance between the non-metallic reinforcing member and the edge of the sheath layer is 0.32 ⁇ 0.05mm, preventing The uneven position of the reinforcing member in the sheath causes the cable to be broken.
  • the high-density compression-resistant fiber-optic cable used in the data center is a special design mold. It is particularly noteworthy that three flexible non-metallic reinforcements need to ensure constant tension control during production.
  • the tension control deviation of three flexible non-metallic reinforcements is 10g.
  • the optical cable is prevented from causing problems such as poor appearance and positional deviation of the reinforcing member. Therefore, we carry out the transformation and upgrading on the equipment, and adopt the constant tension pay-off device to ensure that the tension of the three flexible non-metallic reinforcing members is consistent and constant during the production of the optical cable.
  • the optical cable sheath is embedded with three flexible non-metallic reinforcing members symmetrically, so that the optical cable meets certain lateral pressure resistance and bending resistance; the optical cable structure adopts a central tubular structure to ensure performance during the cable forming process. It is unaffected while meeting the higher mechanical and environmental performance of the cable.
  • the sub-units of the optical cable adopt micro-tubes to ensure that the optical cable can ensure a smaller outer diameter and a lighter cable weight with higher fiber density and larger capacity; it can be stripped without special tools.
  • Each of the microtubes is designed with 12 fiber bundles to match the standard connectors for component factory termination, testing, and ready-to-use plug-and-play.
  • the use characteristics of the optical cable are suitable for indoor and outdoor use.
  • the whole medium structure is adopted in the design to effectively prevent the environmental problems caused by the use process;
  • the outer protective material adopts a low-smoke and halogen-free sheath, and at the same time meets the wear resistance, low temperature resistance and resistance. Corrosion and many other properties.
  • Example 2 The structure in Example 2 is as in Example 1, and the formulation of the sheath layer includes: 30 parts of polyurethane, 30 parts of polyvinyl chloride, and 8 parts of polyoxyalkylene-modified polymethylsiloxane. 25 parts of nitrile rubber, 1.5 parts of dibutoxyethyl adipate, 1 part of trioctyl phosphate, 1.5 parts of modified carbon fiber, 2 parts of ammonium polyphosphate, 0.5 part of zinc oxide, and 0.5 part of promoter DM.
  • the modified carbon fiber has a length of 1-10 ⁇ m
  • the zinc oxide has a particle size of 600 mesh.
  • the modified carbon fiber is prepared by the following steps: taking an aluminate coupling agent equivalent to 2% by weight of the carbon fiber, adding it to the DMF solution, heating to 80 ° C until the aluminate coupling agent is completely dissolved, the aluminate couple
  • the mass ratio of the crosslinking agent to the DMF solution is 1:20; then the carbon fiber is added to the DMF solution, and the mixture is stirred at 80 ° C for 1 hour; then the solution is subjected to suction filtration, and the filter residue is washed with methanol; repeated filtration and alcohol After the washing operation was three times, it was vacuum dried at 80 ° C for 3 h to obtain the modified carbon fiber.
  • the jacket layer is prepared by the following steps:
  • Formulation amount of polyurethane, polyvinyl chloride, polyoxyalkylene modified polymethylsiloxane, nitrile rubber, dibutoxyethyl adipate, trioctyl phosphate, modified filler, flame retardant The activator and the accelerator are put into a high-speed mixer and stirred uniformly; the stirred raw materials are put into a screw extruder, plasticized and extruded at 150-180 ° C, and granulated to obtain a sheath layer; When the flame-retardant overhead cable is fired, the sheath layer is added to the screw extruder and extruded to obtain a jacket layer having a thickness of 3-8 mm.
  • dibutoxyethyl adipate is a highly effective cold-resistant plasticizer, which has low volatility and good compatibility with NBR and CR. A small dosage is added to the compound to ensure a high level of low temperature performance at temperatures above -40 °C.
  • dibutyloxyethyl adipate has a very good prospect as a cold-resistant plasticizer, and can be used as a highly effective cold-resistant plasticizer for nitrile rubber which is reliable and irreplaceable.
  • dibutoxyethyl adipate and trioctyl phosphate as antifreeze plasticizers is beneficial to improve the low temperature resistance of the sheath layer, preventing it from becoming brittle at low temperatures and causing cracks.
  • the filler-modified carbon fiber is added, which is dispersed in the matrix material, further increases the strength and toughness of the sheath layer, and at the same time prevents crack propagation in the sheath layer. By providing the sheath layer, the cable can be well protected at a low temperature so that it can be used normally at temperatures below -20 °C.
  • Ammonium polyphosphate is a new type of flame retardant. It is decomposed by heat at around 225 °C to release non-flammable gases such as N2 and NH3.
  • polyphosphoric acid or polymetaphosphoric acid is produced. They are strong dehydrating agents and promote the dehydration of the surface of the substrate.
  • the carbon layer is formed to have a covering effect on the surface of the substrate to isolate the air.
  • polyphosphoric acid amine is added to the sheath layer, and a large amount of heat can be absorbed during combustion, and the gas generated at the time can block the flame, thereby achieving the purpose of flame retardant.
  • the formulation of the sheath layer comprises: 20 parts of polyurethane, 35 parts of polyvinyl chloride, 12 parts of polyoxyalkylene modified polymethylsiloxane, and 25 parts of nitrile rubber, in parts by weight, 2 parts of dibutoxyethyl adipate, 1 part of trioctyl phosphate, 0.5 part of modified carbon nanotubes, 3.5 parts of magnesium hydroxide, 0.4 parts of calcium carbonate, and 0.6 parts of accelerator DM.
  • the modified carbon nanotubes have a length of 1-10 ⁇ m
  • the calcium carbonate has a particle size of 800 mesh.
  • the modified carbon nanotubes are prepared by the following steps: taking an aluminate coupling agent equivalent to 2% by weight of the carbon nanotubes, adding to the DMF solution, and heating to 80 ° C until the aluminate coupling agent is completely dissolved.
  • the mass ratio of the aluminate coupling agent to the DMF solution is 1:20; then the carbon nanotubes are added to the DMF solution and stirred at 80 ° C for 2 h; then the solution is suction filtered, and the filter residue is washed with methanol. After repeatedly filtering and alcohol washing, the modified carbon nanotubes were obtained by vacuum drying at 80 ° C for 5 h.
  • magnesium hydroxide is added to the sheath layer, and the magnesium hydroxide dehydrates and decomposes at the combustion temperature, absorbs a large amount of heat, lowers the temperature of the substrate, and effectively delays the burning of the substrate; secondly, Strong magnesium oxide releases water vapor during combustion, diluting flammable gas and oxygen, which helps to delay combustion.
  • magnesium oxide formed by thermal decomposition of magnesium hydroxide is an excellent refractory material, forming a dense layer on the surface of the substrate. The cover layer, which insulates the air, prevents the burning.
  • the formulation of the sheath layer comprises: 40 parts of polyurethane, 25 parts of polyvinyl chloride, 8 parts of polyoxyalkylene modified polymethylsiloxane, and 21 parts of nitrile rubber, in parts by weight.
  • the modified glass fiber has a length of 1-10 ⁇ m, a diameter of 0.01-0.1 ⁇ m, and a zinc stearate particle size of 700 mesh.
  • the modified carbon nanotubes are prepared by the following steps: taking an aluminate coupling agent equivalent to 2% by weight of the glass fiber tube, adding to the DMF solution, heating to 80 ° C until the aluminate coupling agent is completely dissolved, The mass ratio of the aluminate coupling agent to the DMF solution is 1:20; then the glass fiber is added to the DMF solution, and the mixture is stirred at 80 ° C for 2 h; the solution is then suction filtered, and the filter residue is washed with methanol; After repeating the filtration and alcohol washing operations three times, the glass fiber was vacuum dried at 80 ° C for 5 h to obtain the modified glass fiber.
  • Table 3 Fire resistance performance parameter list of the optical cable of Embodiment 4
  • the cable samples in Examples 2-4 can withstand temperatures up to 1000 ° C, and the smoke toxicity produced also meets the requirements of the national standard, which indicates that the cold-resistant flame-retardant overhead of the above embodiment
  • the cable has good flame retardant properties.
  • a flame retardant is added to the sheath layer, which can perform preliminary flame-retardant, absorbs most of the heat of the flame, and the glass fiber reinforced plastic isolates the flame. The remaining heat is transferred to the flame-retardant inner sheath and is further absorbed, so that the optical fiber is reduced in heat, and the optical fiber can maintain luminous continuity for a long time.
  • the diameter of the cylinder should be: 20 (D+d) ⁇ 5% mm for the single-core cable test.
  • Example 4 As can be seen from the disclosure of Table 4, the sample of the optical cable of Example 2-4, after being placed in an environment of -20 ⁇ 3 ° C for 24 hours, and wound 30 times in the forward and reverse directions, only one sample surface in Example 2 Microcracks appeared; while ordinary optical cables were wound 20 times in the forward and reverse directions, three samples showed microcracks. After 30 turns in the positive and negative directions, all the samples showed microcracks. It can be seen that the cable samples of the examples 2-4 have significantly better cold resistance than ordinary optical cables and can be used in an environment below -20 °C.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

一种用于数据中心的高密度抗压光纤束光缆,其包括:微束管光纤(1)、包覆在微束管光纤(1)外部的芳纶层(2)、包覆在芳纶层(2)外部的护套层(3),护套层(3)内部嵌有三根非金属加强件(4),三根非金属加强件(4)构成三角形;护套层(3)的材料,按照重量份计,包括以下组分:聚氨酯20-40份、聚氯乙烯25-45份、聚亚氧烷基改性聚甲基硅氧烷5-15份、丁腈橡胶20-30份、己二酸二丁氧基乙酯0.5-2份、磷酸三辛酯0.4-1份、改性填料0.5-2份、阻燃剂2-4份、活化剂0.2-0.6份、促进剂0.5-1份。该光缆采用中心管式结构,保证在成缆过程中的性能不受影响,同时满足光缆更高的机械性能和环境性能。

Description

一种用于数据中心的高密度抗压光纤束光缆 技术领域
本发明涉及光缆领域,尤其是涉及一种用于数据中心的高密度抗压光纤束光缆。
背景技术
数据中心用高密度抗压光纤束光缆是专门为数据中心布线提出的一个新的概念产品。传统的MPO光缆大概分为两类:组合式微束管光缆和裸光纤束光缆。传统的MPO光缆抗张和抗压的机械性能较差,并且有些外护套的耐寒性较差,不能适用于数据中心机房高密度交换机背板或光纤布线解决方案。
发明内容
本发明要解决的技术问题是如何使得光缆满足一定的抗侧压及抗弯曲性能,并且采用低烟无卤护套,同时满足耐磨、耐腐蚀、耐低温等诸多性能。
为了解决上述技术问题,本发明提供了一种用于数据中心的高密度抗压光纤束光缆,其包括:微束管光纤、包覆在所述微束管光纤外部的芳纶层、包覆在所述芳纶层外部的护套层,所述护套层内部嵌有三根非金属加强件,三根所述非金属加强件构成三角形;
所述护套层的材料,按照重量份计,包括以下组分:聚氨酯20-40份、聚氯乙烯25-45份、聚亚氧烷基改性聚甲基硅氧烷5-15份、丁腈橡胶20-30份、己二酸二丁氧基乙酯0.5-2份、磷酸三辛酯0.4-1份、改性填料0.5-2份、阻燃剂2-4份、活化剂0.2-0.6份、促进剂0.5-1份。
优选地,所述改性填料为改性碳纤维、改性碳纳米管或改性玻璃纤维,所述改性填料的长度为1-10μm。
优选地,所述改性填料是经如下步骤制备而成的:取相当于填料重量2%的铝酸酯偶联剂,加入DMF溶液中,加热至80℃至铝酸酯偶联剂完全溶解, 铝酸酯偶联剂与DMF溶液的质量比为1:20;接着将填料加入到DMF溶液中,在80℃下离心搅拌0.5-2h;然后将溶液进行抽滤,再采用甲醇对滤渣进行洗涤;重复抽滤和醇洗动作三次后,于80℃下真空干燥2-5h,即得所述改性填料。
优选地,所述活化剂为氧化锌、碳酸钙、硬脂酸钙、硬脂酸锌中的一种,所述活化剂的粒度为600-800目。
优选地,所述阻燃剂为氢氧化镁、钙基蒙脱土、聚磷酸铵中的至少一种。
优选地,所述促进剂为促进剂DM。
优选地,所述护套层的制备方法:取配方量的聚氨酯、聚氯乙烯、聚亚氧烷基改性聚甲基硅氧烷、丁腈橡胶、己二酸二丁氧基乙酯、磷酸三辛酯、改性填料、阻燃剂、活化剂和促进剂投入到高速搅拌机中搅拌均匀;搅拌好的原料再投入到螺杆挤出机中,在150-180℃下塑化挤出、造粒,即得到护套层料;制备耐寒阻燃架空光缆时,将护套层料加入到螺杆挤出机中,经挤出得到厚度为3-8mm的护套层。
优选地,三根所述非金属加强件之间的夹角为120°。
优选地,光缆外径5.0±0.2mm,所述护套层的厚度1.1±0.1mm。
优选地,每根所述非金属加强件均内嵌于护套层的中间,所述非金属加强件与护套层边缘距离0.32±0.05mm。
本发明的技术效果:
本发明的光缆护套皮内对称内嵌3根柔性非金属加强件,使得光缆满足一定的抗侧压及抗弯曲性能;光缆结构采用中心管式结构,保证在成缆过程中的性能不受影响,同时满足光缆更高的机械性能和环境性能。
光缆的子单元采用微管,确保光缆在具有较高光纤密度及较大容量的情况下仍能保证较小的外径及较轻的光缆重量;无需专用工具即可开剥。每根微管设计12根光纤束与标准的连接器相匹配,便于组件工厂端接,测试,成品可即插即用。
光缆的使用特性适合在室内外使用,在设计时采用全介质结构,有效防止在使用过程中环境问题造成的影响;外护材料采用低烟无卤护套,同时满足耐磨、耐低温、耐腐蚀等诸多性能。
护套层以聚氨酯、聚氯乙烯和丁腈橡胶为主体原料,以聚亚氧烷基改性聚甲基硅氧烷为偶联剂,增强了主体原料之间的相容性,有助于提高护套层的强度;以己二酸二丁氧基乙酯和磷酸三辛酯作为抗冻增塑剂,有利于提高耐寒护套层的耐低温的能力,防至其在低温下变脆,出现裂缝;加入填料,进一步增加了护套层的强度和韧性,同时能防止护套层中裂纹的扩展。通过设置该护套层,在低温下能很好的保护住电缆,使之能在低于-20℃下的温度下正常使用。
附图说明
图1是本发明的光缆的结构示意图;
图中标号说明:
1-微束管光纤,10-光纤,2-芳纶层,3-护套层,4-非金属加强件。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1
实施例1中公开了一种用于数据中心的高密度抗压光纤束光缆,其包括:微束管光纤1、微束管光纤1中设有若干光纤10,包覆在所述微束管光纤1外部的芳纶层2、包覆在所述芳纶层2外部的护套层3,所述护套层3内部嵌有三根非金属加强件4,三根所述非金属加强件4构成三角形。
三根所述非金属加强件之间的夹角为120°,依据正三角形具有的稳定性保证了光缆截面的美观和良好的机械性能;光缆外径5.0±0.2mm;所述护套层的厚度1.1±0.1mm,最薄点不低于0.9mm,每根所述非金属加强件均内嵌于护套层的中间,所述非金属加强件与护套层边缘距离0.32±0.05mm,防止加强件在护套内位置不均匀导致光缆破皮所造成的影响。
数据中心用高密度抗压光纤束光缆采用的是专用设计模具,特别值得注意的是3根柔性非金属加强件在生产时需要保证恒张力控制,三根柔性非金属加强件张力控制偏差在10g之内,防止光缆产生外表不良、加强件位置偏差等问 题。因此,我们在设备上进行改造升级,采用恒张力放线装置,保证光缆在生产时三根柔性非金属加强件张力一致且恒定。
本实施例中的光缆护套皮内对称内嵌3根柔性非金属加强件,使得光缆满足一定的抗侧压及抗弯曲性能;光缆结构采用中心管式结构,保证在成缆过程中的性能不受影响,同时满足光缆更高的机械性能和环境性能。
光缆的子单元采用微管,确保光缆在具有较高光纤密度及较大容量的情况下仍能保证较小的外径及较轻的光缆重量;无需专用工具即可开剥。每根微管设计12根光纤束与标准的连接器相匹配,便于组件工厂端接,测试,成品可即插即用。
光缆的使用特性适合在室内外使用,在设计时采用全介质结构,有效防止在使用过程中环境问题造成的影响;外护材料采用低烟无卤护套,同时满足耐磨、耐低温、耐腐蚀等诸多性能。
实施例2
实施例2中的结构如实施例1,按重量份计,护套层的配方中包括:聚氨酯30份、聚氯乙烯30份、聚亚氧烷基改性聚甲基硅氧烷8份、丁腈橡胶25份、己二酸二丁氧基乙酯1.5份、磷酸三辛酯1份、改性碳纤维1.5份、聚磷酸铵2份、氧化锌0.5份、促进剂DM 0.5份。其中,改性碳纤维的长度为1-10μm,氧化锌的粒度为600目。
改性碳纤维是经如下步骤制备而成的:取相当于碳纤维重量2%的铝酸酯偶联剂,加入DMF溶液中,加热至80℃至铝酸酯偶联剂完全溶解,铝酸酯偶联剂与DMF溶液的质量比为1:20;接着将碳纤维加入到DMF溶液中,在80℃下离心搅拌1h;然后将溶液进行抽滤,再采用甲醇对滤渣进行洗涤;重复抽滤和醇洗动作三次后,于80℃下真空干燥3h,即得所述改性碳纤维。
护套层是经如下步骤制备而成的:
取配方量的聚氨酯、聚氯乙烯、聚亚氧烷基改性聚甲基硅氧烷、丁腈橡胶、己二酸二丁氧基乙酯、磷酸三辛酯、改性填料、阻燃剂、活化剂和促进剂投入到高速搅拌机中搅拌均匀;搅拌好的原料再投入到螺杆挤出机中,在150-180℃下塑化挤出、造粒,即得到护套层料;制备耐寒阻燃架空光缆时,将护套层料加入到螺杆挤出机中,挤出得到厚度为3-8mm的护套层层。
本实施例的护套层的配方中,己二酸二丁氧基乙酯是一种高效的耐寒增塑剂,其挥发性低,与NBR和CR有着良好的相容性,研究表明,在胶料中添加很少的剂量,在-40℃以上的温度下仍可保证较高的低温性能水平。目前,己二酸二丁氧基乙酯作为耐寒性增塑剂的使用前景十分好,可作为性能可靠和不可替代的丁腈橡胶的高效耐寒增塑剂。以己二酸二丁氧基乙酯和磷酸三辛酯作为抗冻增塑剂,有利于提高护套层的耐低温的能力,防至其在低温下变脆,出现裂缝。加入填料改性碳纤维,其分散于基体材料中,进一步增加了护套层的强度和韧性,同时能防止护套层中裂纹的扩展。通过设置该护套层,在低温下能很好的保护住电缆,使之能在低于-20℃下的温度下正常使用。
聚磷酸铵是一种新型的阻燃剂,其在225℃左右受热分解释放出N2、NH3等不易燃气体,同时会产生聚磷酸或聚偏磷酸,它们是强脱水剂,促使基材表面脱水生成炭层,对基材表面具有覆盖作用,可以隔绝空气。本实施例中,在护套层中加入聚磷酸胺,燃烧时能吸收大量的热量,能时产生的气体能阻隔火焰,从而达到阻燃的目的。
实施例3
本实施例中,按重量份计,护套层的配方中包括:聚氨酯20份、聚氯乙烯35份、聚亚氧烷基改性聚甲基硅氧烷12份、丁腈橡胶25份、己二酸二丁氧基乙酯2份、磷酸三辛酯1份、改性碳纳米管0.5份、氢氧化镁3.5份、碳酸钙0.4份、促进剂DM 0.6份。其中,改性碳纳米管的长度为1-10μm,碳酸钙的粒度为800目。
改性碳纳米管是经如下步骤制备而成的:取相当于碳纳米管重量2%的铝酸酯偶联剂,加入DMF溶液中,加热至80℃至铝酸酯偶联剂完全溶解,铝酸酯偶联剂与DMF溶液的质量比为1:20;接着将碳纳米管加入到DMF溶液中,在80℃下离心搅拌2h;然后将溶液进行抽滤,再采用甲醇对滤渣进行洗涤;重复抽滤和醇洗动作三次后,于80℃下真空干燥5h,即得所述改性碳纳米管。
本实施例中,在护套层中加入了氢氧化镁,氢氧化镁在燃烧温度下脱水分解,吸收了大量的热量,降低了基材的温度,有效地延缓了基材的燃烧;其次,强氧化镁燃烧时释放出水蒸气,稀释了可燃性气体和氧气,有助于延缓燃烧; 再次,氢氧化镁受热分解形成的氧化镁是一种优秀的耐火材料,在基材表面形成一层致密的覆盖层,隔绝了空气,阻止了燃烧。
实施例4
本实施例中,按重量份计,护套层的配方中包括:聚氨酯40份、聚氯乙烯25份、聚亚氧烷基改性聚甲基硅氧烷8份、丁腈橡胶21份、己二酸二丁氧基乙酯0.5份、磷酸三辛酯0.5份、改性玻璃纤维1份、聚磷酸胺1.5份、钙基蒙脱土1.5份、硬脂酸锌0.2份、促进剂DM 0.8份。其中,改性玻璃纤维的长度为1-10μm,直径为0.01-0.1μm,硬脂酸锌的粒度为700目。
改性碳纳米管是经如下步骤制备而成的:取相当于玻璃纤维管重量2%的铝酸酯偶联剂,加入DMF溶液中,加热至80℃至铝酸酯偶联剂完全溶解,铝酸酯偶联剂与DMF溶液的质量比为1:20;接着将玻璃纤维加入到DMF溶液中,在80℃下离心搅拌2h;然后将溶液进行抽滤,再采用甲醇对滤渣进行洗涤;重复抽滤和醇洗动作三次后,于80℃下真空干燥5h,即得所述改性玻璃纤维。
性能检测:
1.阻燃性能检测
取实施例2-4的光缆样品,根据国标GB/T 19216.21和GB/T 20285的规定来测试光缆的耐火性能,其耐火性能的结果如表1-3所示。
表1 实施例2的光缆的耐火性能参数表
Figure PCTCN2018114140-appb-000001
Figure PCTCN2018114140-appb-000002
表2 实施例3的光缆的耐火性能参数表
Figure PCTCN2018114140-appb-000003
表3 实施例4的光缆的耐火性能参数表
Figure PCTCN2018114140-appb-000004
Figure PCTCN2018114140-appb-000005
从表1-表3的结果可知,实施例2-4中的电缆样品,耐受温度可达1000℃,且产生的烟气毒性也满足国标的要求,这表明上述实施例的耐寒阻燃架空光缆具有良好的阻燃性能。其原因是,在光缆中设置了多层的阻燃层,其中护套层中加入了阻燃剂,可进行初步的阻燃,吸收了火焰的大部分热量,玻璃纤维增强塑料隔绝了火焰,剩余热量传递至阻燃内护套,进一步被吸收,使得光纤受热量减少,光纤可长时间保持光通性。
2.耐寒性能检测
取实施例2-4的光缆样品以及普通光缆样品各10个,在-20±3℃的环境下放置24小时,然后将样品在圆柱体表面正向绕不少于3圈后松开展直,再反向绕不少于3圈后松开展直,重复正、反向绕不少于10次,圆柱体的直径应为:对单芯电缆实验时为20(D+d)±5%毫米,对三芯电缆实验时为15(D+d)±5%毫米,其中D为光缆试样实测直径,d为光缆内的导体的实测直径;实验结束后,观察光缆护套表面有无可见的裂纹,所得结果如表4所示。
表4 实施例2-4的光缆样品的低温弯曲实验结果
Figure PCTCN2018114140-appb-000006
Figure PCTCN2018114140-appb-000007
从表4公开的内容可知,实施例2-4的光缆样品,在-20±3℃的环境下放置24小时后,并正、反向绕30次后,只有实施例2中的一个样品表面出现微裂纹;而普通的光缆在正、反向绕20次后,有3个样品出现微裂纹,正、反向绕30次后,全部样品均出现微裂纹。由此可知,本实施例2-4的光缆样品,耐寒性显著好于普通光缆,可在-20℃以下的环境中使用。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种用于数据中心的高密度抗压光纤束光缆,其特征在于,其包括:微束管光纤、包覆在所述微束管光纤外部的芳纶层、包覆在所述芳纶层外部的护套层,所述护套层内部嵌有三根非金属加强件,三根所述非金属加强件构成三角形;
    所述护套层的材料,按照重量份计,包括以下组分:聚氨酯20-40份、聚氯乙烯25-45份、聚亚氧烷基改性聚甲基硅氧烷5-15份、丁腈橡胶20-30份、己二酸二丁氧基乙酯0.5-2份、磷酸三辛酯0.4-1份、改性填料0.5-2份、阻燃剂2-4份、活化剂0.2-0.6份、促进剂0.5-1份。
  2. 如权利要求1所述的用于数据中心的高密度抗压光纤束光缆,其特征在于,所述改性填料为改性碳纤维、改性碳纳米管或改性玻璃纤维,所述改性填料的长度为1-10μm。
  3. 如权利要求2所述的用于数据中心的高密度抗压光纤束光缆,其特征在于,所述改性填料是经如下步骤制备而成的:取相当于填料重量2%的铝酸酯偶联剂,加入DMF溶液中,加热至80℃至铝酸酯偶联剂完全溶解,铝酸酯偶联剂与DMF溶液的质量比为1:20;接着将填料加入到DMF溶液中,在80℃下离心搅拌0.5-2h;然后将溶液进行抽滤,再采用甲醇对滤渣进行洗涤;重复抽滤和醇洗动作三次后,于80℃下真空干燥2-5h,即得所述改性填料。
  4. 如权利要求1所述的用于数据中心的高密度抗压光纤束光缆,其特征在于,所述活化剂为氧化锌、碳酸钙、硬脂酸钙、硬脂酸锌中的一种,所述活化剂的粒度为600-800目。
  5. 如权利要求1所述的用于数据中心的高密度抗压光纤束光缆,其特征在于,所述阻燃剂为氢氧化镁、钙基蒙脱土、聚磷酸铵中的至少一种。
  6. 如权利要求1所述的用于数据中心的高密度抗压光纤束光缆,其特征在于,所述促进剂为促进剂DM。
  7. 如权利要求1所述的用于数据中心的高密度抗压光纤束光缆,其特征在于,所述护套层的制备方法:取配方量的聚氨酯、聚氯乙烯、聚亚氧烷基改性 聚甲基硅氧烷、丁腈橡胶、己二酸二丁氧基乙酯、磷酸三辛酯、改性填料、阻燃剂、活化剂和促进剂投入到高速搅拌机中搅拌均匀;搅拌好的原料再投入到螺杆挤出机中,在150-180℃下塑化挤出、造粒,即得到护套层料;制备耐寒阻燃架空光缆时,将护套层料加入到螺杆挤出机中,经挤出得到厚度为3-8mm的护套层。
  8. 根据权利要求1所述的用于数据中心的高密度抗压光纤束光缆,其特征在于,三根所述非金属加强件之间的夹角为120°。
  9. 根据权利要求1所述的用于数据中心的高密度抗压光纤束光缆,其特征在于,光缆外径5.0±0.2mm,所述护套层的厚度1.1±0.1mm。
  10. 根据权利要求1所述的用于数据中心的高密度抗压光纤束光缆,其特征在于,每根所述非金属加强件均内嵌于护套层的中间,所述非金属加强件与护套层边缘距离0.32±0.05mm。
PCT/CN2018/114140 2017-12-27 2018-11-06 一种用于数据中心的高密度抗压光纤束光缆 WO2019128473A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711448323.7A CN107884891B (zh) 2017-12-27 2017-12-27 一种用于数据中心的高密度抗压光纤束光缆
CN201711448323.7 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019128473A1 true WO2019128473A1 (zh) 2019-07-04

Family

ID=61771479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114140 WO2019128473A1 (zh) 2017-12-27 2018-11-06 一种用于数据中心的高密度抗压光纤束光缆

Country Status (2)

Country Link
CN (1) CN107884891B (zh)
WO (1) WO2019128473A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4198594A1 (en) 2021-12-15 2023-06-21 Sterlite Technologies Limited Low weight optical fiber cable
EP4239386A1 (en) 2022-02-09 2023-09-06 Sterlite Technologies Limited Optical fiber cable with elongated strength members and manufacturing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107884891B (zh) * 2017-12-27 2024-06-14 江苏亨通光电股份有限公司 一种用于数据中心的高密度抗压光纤束光缆
CN113176634A (zh) * 2021-04-14 2021-07-27 湖北光宏通信科技有限公司 一种柔性金属套管光纤跳线及其装配工艺
CN113504619A (zh) * 2021-07-12 2021-10-15 宏安集团有限公司 一种多用途线缆
CN114879328A (zh) * 2022-05-30 2022-08-09 深圳市思珀光电通讯有限公司 一种阻燃光纤及其制备方法
CN114895400A (zh) * 2022-06-06 2022-08-12 深圳市思珀光电通讯有限公司 一种复合材料光纤及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110262089A1 (en) * 2010-04-23 2011-10-27 Kuang-Bang Hsu Small-diameter high bending-resistance fiber optic cable
CN103513372A (zh) * 2012-06-30 2014-01-15 肖玉山 防白蚁全干式光缆
CN104231672A (zh) * 2014-09-26 2014-12-24 贵州大学 一种高分子材料所用填料α-方石英粉体的改性方法
CN204613461U (zh) * 2015-03-26 2015-09-02 河北光城通信科技有限公司 高密度光缆
CN206671618U (zh) * 2016-08-30 2017-11-24 江苏中天科技股份有限公司 一种新型全介质中心束管式光缆
CN107501899A (zh) * 2017-08-22 2017-12-22 安徽意力电缆有限公司 一种聚氨酯弹性体改性聚氯乙烯电缆材料
CN107884891A (zh) * 2017-12-27 2018-04-06 江苏亨通光电股份有限公司 一种用于数据中心的高密度抗压光纤束光缆

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177507A (ja) * 1986-01-31 1987-08-04 Nippon Telegr & Teleph Corp <Ntt> 防水型難燃光フアイバケ−ブル用充てん混和剤
JP2006030478A (ja) * 2004-07-14 2006-02-02 Fuji Photo Film Co Ltd 保護層付き光学部材の製造方法及び製造装置並びに保護層付きプラスチック光ファイバ
JP2007086249A (ja) * 2005-09-21 2007-04-05 Fujifilm Corp プラスチック光学材料の製造方法
JP2008165004A (ja) * 2006-12-28 2008-07-17 Toyobo Co Ltd 光ファイバー
CN101481480B (zh) * 2009-01-24 2010-11-03 正威科技(深圳)有限公司 防水耐寒耐温阻燃聚氯乙烯绝缘材料
US20120063730A1 (en) * 2010-09-15 2012-03-15 Web Industries Inc. Flame Retardant Cable Fillers and Cables
CN104861338A (zh) * 2014-12-29 2015-08-26 殷培花 高性能低成本聚氯乙烯绝缘电缆料及其制备方法
CN105244107B (zh) * 2015-10-16 2017-10-03 安徽蓝德集团股份有限公司 一种抗冲击阻燃控制电缆
CN105602238A (zh) * 2016-03-22 2016-05-25 安徽渡江电缆集团有限公司 一种耐磨耐热改性聚氨酯橡胶电缆材料
CN106297982B (zh) * 2016-08-15 2017-12-05 江苏亨通线缆科技有限公司 智能设备用屏蔽抗干扰电缆
CN106398203A (zh) * 2016-08-31 2017-02-15 合肥邦立电子股份有限公司 一种车载usb2.0连接线束外护套材料
CN106589554A (zh) * 2016-12-28 2017-04-26 江西太平洋电缆集团有限公司 一种电缆用高耐寒阻燃型聚乙烯树脂及其制备方法
CN107254097A (zh) * 2017-06-22 2017-10-17 芜湖航天特种电缆厂股份有限公司 高耐候性户外电缆用外护套及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110262089A1 (en) * 2010-04-23 2011-10-27 Kuang-Bang Hsu Small-diameter high bending-resistance fiber optic cable
CN103513372A (zh) * 2012-06-30 2014-01-15 肖玉山 防白蚁全干式光缆
CN104231672A (zh) * 2014-09-26 2014-12-24 贵州大学 一种高分子材料所用填料α-方石英粉体的改性方法
CN204613461U (zh) * 2015-03-26 2015-09-02 河北光城通信科技有限公司 高密度光缆
CN206671618U (zh) * 2016-08-30 2017-11-24 江苏中天科技股份有限公司 一种新型全介质中心束管式光缆
CN107501899A (zh) * 2017-08-22 2017-12-22 安徽意力电缆有限公司 一种聚氨酯弹性体改性聚氯乙烯电缆材料
CN107884891A (zh) * 2017-12-27 2018-04-06 江苏亨通光电股份有限公司 一种用于数据中心的高密度抗压光纤束光缆

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4198594A1 (en) 2021-12-15 2023-06-21 Sterlite Technologies Limited Low weight optical fiber cable
EP4239386A1 (en) 2022-02-09 2023-09-06 Sterlite Technologies Limited Optical fiber cable with elongated strength members and manufacturing method thereof

Also Published As

Publication number Publication date
CN107884891B (zh) 2024-06-14
CN107884891A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
WO2019128473A1 (zh) 一种用于数据中心的高密度抗压光纤束光缆
US9784935B2 (en) Coextruded jacket for flame retardant fiber optic cables
US10725257B2 (en) Fiber optic cable
WO2019109807A1 (zh) 一种轻型非金属阻燃耐火光缆
CN111929786B (zh) 一种高阻燃耐磨耐腐蚀特种光缆
WO2016179919A1 (zh) 一种超柔性室内随行光电复合缆
CN104318997A (zh) 一种低烟无卤防潮耐火抗拉伸工业电缆
CN108492924A (zh) 一种膨胀阻燃型电力电缆
CN105842800A (zh) 一种防鼠防蚁耐火光缆及其制造方法
CN117270133B (zh) 一种阻燃光单元、阻燃光缆单元及组合式阻燃光缆
CN105931718A (zh) 一种高可靠性柔性矿物绝缘电缆
CN108732701A (zh) 一种防火耐紫外线的多芯光缆
CN204288884U (zh) 一种低烟无卤防潮耐火抗拉伸工业电缆
CN216351395U (zh) 一种耐高温阻水光缆
CN106772858B (zh) 一种航空航天用光缆及制备方法
CN209912575U (zh) 环保耐高温防火控制电缆
CN212136027U (zh) 一种具有连续柔性护套的防火线缆
CN108648868B (zh) 一种纤维加强型防火电缆
CN108594387B (zh) 一种阻燃光缆
CN107894640B (zh) 一种限定破断力架空引入光缆
CN214375438U (zh) 一种耐高温的预制成端圆形引入光缆
CN109867827A (zh) 一种电缆防护材料
CN219872920U (zh) 一种石英纤维编织套管
CN219610104U (zh) 一种具备防干扰的通信电缆
CN206697249U (zh) 耐寒型光电复合随行电梯电缆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896749

Country of ref document: EP

Kind code of ref document: A1