WO2019128414A1 - 一种指纹传感器 - Google Patents

一种指纹传感器 Download PDF

Info

Publication number
WO2019128414A1
WO2019128414A1 PCT/CN2018/111343 CN2018111343W WO2019128414A1 WO 2019128414 A1 WO2019128414 A1 WO 2019128414A1 CN 2018111343 W CN2018111343 W CN 2018111343W WO 2019128414 A1 WO2019128414 A1 WO 2019128414A1
Authority
WO
WIPO (PCT)
Prior art keywords
fingerprint
sensing module
fingerprint sensing
optical
capacitive
Prior art date
Application number
PCT/CN2018/111343
Other languages
English (en)
French (fr)
Inventor
李扬渊
Original Assignee
苏州迈瑞微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州迈瑞微电子有限公司 filed Critical 苏州迈瑞微电子有限公司
Publication of WO2019128414A1 publication Critical patent/WO2019128414A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms

Definitions

  • the present application relates to the field of fingerprint recognition technology, for example, to a fingerprint sensor.
  • Fingerprints have become synonymous with biometrics because of their lifetime invariance, uniqueness and convenience.
  • the fingerprint sensor realizes fingerprint recognition by collecting the fingerprint of the user.
  • the fingerprint sensor includes a capacitive fingerprint sensor and an optical fingerprint sensor.
  • the related fingerprint sensor can adopt only a single verification mechanism whether it is a capacitive fingerprint sensor or an optical fingerprint sensor, so it is easy to be deceived by fake fingerprints and has poor anti-false performance. .
  • the application provides a fingerprint sensor to solve the single problem of the verification mechanism of the related fingerprint sensor, and improve the anti-counterfeiting performance of the fingerprint sensor.
  • the embodiment of the present application provides a fingerprint sensor, including: a capacitive fingerprint sensing module and an optical fingerprint sensing module.
  • the capacitive fingerprint sensing module has a fingerprint sensing area disposed on one side of the capacitive fingerprint sensing module, and the capacitive fingerprint sensing module is configured to acquire a fingerprint of a user's finger in the fingerprint sensor area by capacitive coupling to generate a first image signal.
  • the optical fingerprint sensing module is located on a side of the capacitive fingerprint sensing module remote from the fingerprint sensing area, and is configured to receive a light generated by a user hand of the fingerprint sensing area to generate a second image signal.
  • FIG. 1 is a schematic structural diagram of a fingerprint sensor according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a capacitive fingerprint sensing module according to an embodiment of the present application
  • FIG. 3 is a top view of a capacitive fingerprint sensing module according to an embodiment of the present application.
  • FIG. 4 is a working principle diagram of a capacitive fingerprint sensing module according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another capacitive fingerprint sensing module according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another fingerprint sensor according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another fingerprint sensor according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of still another fingerprint sensor according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of still another fingerprint sensor according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a fingerprint sensor according to an embodiment of the present disclosure.
  • the fingerprint sensor includes a capacitive fingerprint sensing module 120 and an optical fingerprint sensing module 130 .
  • the capacitive fingerprint sensing module 120 includes a fingerprint sensing area 111.
  • the capacitive fingerprint sensing module 120 is configured to acquire a fingerprint of the user's finger 100 of the fingerprint sensor area by capacitive coupling to generate a first fingerprint image signal.
  • the optical fingerprint sensing module 130 is located on a side of the capacitive fingerprint sensing module 120 remote from the fingerprint sensing area 111, and is configured to receive the light emitted by the user's finger 100 of the fingerprint sensing area 111 to generate a second fingerprint image signal.
  • the fingerprint sensor further includes a housing 110, and the capacitive fingerprint sensing module 120 and the optical fingerprint sensing module 130 are disposed inside the housing 110.
  • the capacitive fingerprint sensing module 120 is transparent, and allows light reflected by the fingerprint of the user's finger 100 to be received by the optical fingerprint sensor 130 through the capacitive fingerprint sensing module 120.
  • the fingerprint of the user's finger 100 is a rough surface of the skin on the surface of the finger, including a protruding ridge and a valley of the depression.
  • the working principle of the fingerprint sensor is that the capacitive fingerprint sensing module 120 includes a plurality of sensing points for sensing the fingerprint of the user's finger 100.
  • the capacitive fingerprint sensing module 120 includes a plurality of sensing points for sensing the fingerprint of the user's finger 100.
  • the user's finger 100 touches the fingerprint sensing area 111 of the capacitive fingerprint sensing module 120, the user The ridges and valleys of the finger 100 are different from the sensing points of the capacitive fingerprint sensing module 120, and therefore, the sensing points of the ridge position of the user's finger 100 and the sensing points of the valley position of the user's finger 100 are sensed.
  • the capacitance values are different, and the first fingerprint image signals reflecting the ridges and valleys of the user's finger 110 can be generated according to different capacitance values sensed by the plurality of sensing points.
  • the optical fingerprint sensing module 130 receives the light emitted by the user's finger 100 in the fingerprint sensing area. When the light is irradiated on the ridge of the user's finger 100, the light is directly reflected and transmitted out of the capacitive fingerprint sensing module 120 by the optical fingerprint sensing. The module 130 receives that the energy loss of the light emitted by the user's finger 100 is small, and the light received by the optical fingerprint sensing module 130 is relatively bright; when the light is irradiated on the valley of the user's finger 100, the valley of the user's finger 100 and the fingerprint are sensed.
  • the area 111 has a certain distance, and the light will pass through the fingerprint sensing area 111 of the capacitive fingerprint sensing module 120 to enter the recessed area formed by the valley of the user's finger 110. After the light is reflected multiple times, the capacitive fingerprint sensing module 120 can be transmitted. Received by the optical fingerprint sensing module 130, the multiple reflections will cause a large loss of light energy emitted by the user's finger 100, and the light received by the optical fingerprint sensing module 130 is dark. Therefore, the user's finger 100 is received according to the optical fingerprint sensing module 130. The brightness of the light reflected by the fingerprint produces a second fingerprint image signal that reflects the ridges and valleys of the user's finger 110.
  • the fingerprint sensor includes a capacitive fingerprint sensing module 120 and an optical fingerprint sensing module 130.
  • the capacitive fingerprint sensing module 120 acquires a fingerprint of a user's finger in the fingerprint sensor area by capacitive coupling, and generates a first fingerprint.
  • the image signal; the optical fingerprint sensing module 120 is located on the side of the capacitive fingerprint sensing module 120 away from the fingerprint sensing area 111, and the light received by the user hand receiving the fingerprint sensing area generates a second fingerprint image signal, and has a capacitive fingerprint.
  • the function of the sensor and the optical fingerprint sensor can generate a first fingerprint image signal and a second fingerprint image signal corresponding to the fingerprint for the same fingerprint.
  • the embodiment of the present application solves the problem that the related fingerprint sensor adopts a single mode to obtain the fingerprint of the user's finger and is easily deceived by the fake fingerprint, and the anti-counterfeiting performance is poor, and the two fingerprint images are generated by using the capacitive fingerprint sensing module and the optical fingerprint sensing module respectively.
  • the signal formation verification mechanism achieves the effect of improving the anti-false performance of the fingerprint sensor.
  • the capacitive fingerprint sensing module 120 and the optical fingerprint sensing module 130 can be simultaneously enabled and do not interfere with each other.
  • the capacitive fingerprint sensing module 120 or the optical fingerprint sensing module can also be separately activated according to actual use requirements.
  • 130 acquires a fingerprint of the user's finger 100.
  • FIG. 2 is a schematic structural diagram of a capacitive fingerprint sensing module according to an embodiment of the present disclosure.
  • FIG. 3 is a top view of a capacitive fingerprint sensing module according to an embodiment of the present disclosure.
  • the capacitive fingerprint sensing module 120 includes: first transparent protection. The layer 121, the first transparent electrode layer 122, the first transparent dielectric layer 123, the second transparent electrode layer 124, and the dielectric layer 125.
  • a fingerprint sensing area 111 is disposed on one side of the first transparent protective layer 121.
  • the first transparent electrode layer 122 is disposed on a side of the first transparent protective layer 121 away from the fingerprint sensing area 111.
  • the first transparent electrode layer 122 includes a plurality of first electrodes 210 arranged along the first direction x.
  • the first transparent dielectric layer 123 is disposed on a side of the first transparent electrode layer 122 away from the first transparent protective layer 121.
  • the second transparent electrode layer 124 is disposed on a side of the first transparent dielectric layer 123 away from the first transparent protective layer 121, and the second transparent electrode layer 124 includes a plurality of second electrodes 220 arranged along the second direction y.
  • the dielectric layer 125 is disposed on a side of the second transparent electrode layer 124 away from the first transparent protective layer 121.
  • first electrode 210 and the second electrode 220 have overlapping regions, and it can be seen that the first electrode 210 and the second electrode 220 cross each other to form a grid, and the intersection of the first electrode 210 and the second electrode 220 (overlap region) A capacitor array capable of sensing a finger fingerprint is formed, the capacitance value of the capacitor array being capable of reflecting the shape of the finger surface.
  • the first direction x and the second direction y are perpendicular, which is only one application example of the present application, and is not a limitation of the present application.
  • each of the first electrodes 210 and each of the second electrodes 220 is one sensing point 230 (capacitance), and the plurality of sensing points 230 form an array of sensing points.
  • FIG. 4 is a schematic diagram of the working principle of a capacitive fingerprint sensing module according to an embodiment of the present application.
  • the working principle of the capacitive fingerprint sensing module 120 is described below with reference to FIG. 3 and FIG. 4 .
  • the plurality of first electrodes 210 included in the first transparent electrode layer 122 input driving signals
  • the plurality of second electrodes 220 included in the second transparent electrode layer 124 output detection signals.
  • the capacitance values of the positions of the sensing points 230 formed by all the first electrodes 210 and the second electrodes 220 can be obtained, that is, the two-dimensional plane of the entire fingerprint sensing area.
  • the size of the capacitor is a schematic diagram of the working principle of a capacitive fingerprint sensing module according to an embodiment of the present application.
  • the working principle of the capacitive fingerprint sensing module 120 is described below with reference to FIG. 3 and FIG. 4 .
  • the user's finger 100 touches the fingerprint sensing area
  • the user's finger 100 covers the plurality of sensing points 230. If the sensing point 230 is at the ridge of the fingerprint of the user's finger 100, the capacitance value of the sensing point 230 is The change is C1. If the position of the sensing point 230 is the valley of the fingerprint of the user's finger 100, the capacitance value of the sensing point 230 changes to C2, so the capacitance variation data according to the two-dimensional plane of the fingerprint sensing area can be generated. The first fingerprint image signal of the ridges and valleys of the user's finger 110 is reflected.
  • the first transparent conductive layer 122 is disposed on a side of the first transparent protective layer 121 away from the optical fingerprint sensing module 130.
  • the first transparent electrode layer 122 is disposed on the side of the first transparent protective layer 121 away from the optical fingerprint sensing module 130.
  • the photo-electrode layer 122 includes a plurality of first electrodes 210 arranged along the first direction x; the first transparent dielectric layer 123 is disposed on a side of the first transparent electrode layer 122 away from the first transparent protective layer 121; The electrode layer 124 is disposed on a side of the first transparent dielectric layer 123 away from the first transparent protective layer 121, and the second transparent electrode layer 124 includes a plurality of second electrodes 220 arranged along the second direction y; the dielectric layer 125 is disposed On the side of the second transparent electrode layer 124 away from the first transparent protective layer 121; wherein the first electrode 210 and the second electrode 220 have overlapping regions, the capacitive fingerprint sensing module 120 generates the first fingerprint image signal. .
  • the fingerprint sensor further includes a function circuit electrically connected to the first electrode and the second electrode, configured to input a driving signal to the first electrode, and receive the detection signal output by the second electrode.
  • the first electrode and the second electrode are metal wires, and the wire width of the metal wires is smaller than the spacing between the adjacent two metal wires. In one embodiment, when the line width of the metal wire is small, there is little impact on the optical fingerprint sensing module receiving light directed by the user's hand. In an embodiment, the metal wires have a pitch of 50 ⁇ m.
  • the first electrode and the second electrode are transparent conductive films, such as an indium tin oxide film or an aluminum-doped zinc oxide film.
  • the material of the first transparent dielectric layer is an organic transparent optical adhesive; the material of the first transparent protective layer is a light transmissive material, such as glass or sapphire.
  • the first transparent protective layer has a thickness of less than 300 ⁇ m.
  • FIG. 5 is a schematic structural diagram of another capacitive fingerprint sensing module according to an embodiment of the present disclosure.
  • the capacitive fingerprint sensing module 120 further includes a first transparent electrode layer 122 disposed away from the dielectric layer 125 .
  • the second transparent dielectric layer 127 and the second transparent protective layer 126 on one side, the second transparent protective layer 126 and the second transparent dielectric layer 127 are disposed between the first transparent electrode layer 122 and the first transparent protective layer 121.
  • another capacitive fingerprint sensing module provided in this embodiment is different from the capacitive fingerprint sensing module shown in FIG. 3 in the first transparent electrode layer 122 and the first transparent protective layer.
  • a second transparent protective layer 126 and a second transparent dielectric layer 127 are added between the two, and the preparation processes of the two are different, but the working principle is similar, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of another fingerprint sensor according to an embodiment of the present disclosure.
  • the optical fingerprint sensing module 130 includes a light source 131 and an optical image sensor 132.
  • the light source 131 is used to emit light.
  • the user's finger 100 of the fingerprint sensing area; the optical image sensor 132 is configured to receive the light emitted by the user's finger 100 and generate a second fingerprint image signal.
  • the light source 131 can be disposed on both sides of the capacitive fingerprint sensing module 120 , and the optical image sensor 132 can directly be attached to the capacitive fingerprint sensing module 120 through an optical glue, and the optical image sensor 132 directly Accept the light above it and generate a second fingerprint image signal.
  • the optical image sensor 132 directly Accept the light above it and generate a second fingerprint image signal.
  • FIG. 7 is a schematic structural diagram of another fingerprint sensor according to an embodiment of the present disclosure.
  • the optical fingerprint sensing module 130 further includes an optical structure 133 .
  • the optical structure 133 is disposed between the capacitive fingerprint sensing module 120 and the optical image sensor 132 and is configured to reflect and concentrate at least one of the light.
  • the optical structure 133 includes a convex lens, the optical image sensor 132 is disposed at the bottom of the housing 110, and the light source 131 is disposed on both sides of the optical image sensor 132.
  • the center of the fingerprint sensing area, the main optical axis of the optical structure 133, and the center of the optical image sensor 132 are coaxial.
  • the light emitted by the light source 131 is irradiated onto the user's finger 100 pressed on the fingerprint sensing area of the capacitive fingerprint sensing module 120, if the light is irradiated on the user's finger 100. In the ridge, the light is directly reflected and transmitted out of the capacitive fingerprint sensing module 120 and received by the optical image sensor 132.
  • the energy loss of the light emitted by the user's finger 100 is small, and the light received by the optical image sensor 132 is bright; In the valley of the user's finger 100, since the valley of the user's finger 100 and the fingerprint sensing area have a certain distance, the light will pass through the fingerprint sensing area of the capacitive fingerprint sensing module 120 and enter the concave area formed by the valley of the user's finger 110. After the light is reflected by the multiple reflections, the capacitive fingerprint sensing module 120 is received by the optical image sensor 132. The multiple reflections cause a large loss of light energy from the user's finger 100, and the optical image sensor 132 receives light. According to the optical image sensor 132 receiving the light and dark of the light reflected by the fingerprint of the user's finger 100, the reaction user's finger 110 can be generated. The second image signal fingerprint ridges and valleys.
  • the capacitive fingerprint sensor module 120 of any of the above embodiments may be used in the embodiment.
  • the working principle of the capacitive fingerprint sensing module 120 provided by any of the foregoing embodiments may generate a first fingerprint image signal. .
  • the optical fingerprint sensing module 130 further includes an optical structure 133.
  • the optical structure 133 is disposed between the capacitive fingerprint sensing module 120 and the optical image sensor 132, and is configured to reflect at least one of light and concentrated light.
  • the optical fingerprint sensing module 130 generates the second fingerprint image signal.
  • the capacitive fingerprint sensing module 120 of the embodiment may generate the first fingerprint image signal by using any of the capacitive fingerprint sensing modules provided in the foregoing embodiments. .
  • the fingerprint sensor provided by the embodiment of the present invention has the functions of a capacitive fingerprint sensor and an optical fingerprint sensor, and can generate a first fingerprint image signal and a second fingerprint image signal corresponding to the fingerprint for the same fingerprint, and solve the related fingerprint sensor.
  • the single mode obtains the problem that the user's finger fingerprint is easily deceived by fake fingerprints and has poor anti-counterfeiting performance, and realizes the use of the capacitive fingerprint sensing module and the optical fingerprint sensing module to generate two fingerprint image signal forming verification mechanisms respectively, thereby achieving the improvement of the fingerprint sensor. Anti-counterfeiting performance.
  • FIG. 8 is a schematic structural diagram of still another fingerprint sensor according to an embodiment of the present disclosure.
  • the optical fingerprint sensing module 130 may further include a prism 134 , a first surface of the prism 134 and a capacitive fingerprint.
  • the sensing module 120 is attached to one side of the fingerprint sensor area, and the light source 131 is disposed opposite to the second surface of the prism 134.
  • the lens group 133 is located between the third surface of the prism and the optical image sensor 132, and is adjacent to the third surface of the prism 134.
  • One side is disposed opposite to the third surface of the prism 134.
  • the light emitted by the light source 131 is incident from the second surface of the prism 134, and the light is evenly irradiated onto the fingerprint sensing area of the capacitive fingerprint sensing module 120.
  • the light is directly reflected and transmitted through the capacitive fingerprint sensing module 120 from the third side of the prism 134, and the light emitted from the third surface is received by the optical image sensor.
  • the optical image sensor 132 receiving, because the direct light reflection energy loss is small, the light received by the optical image sensor 132 is brighter; if the light is irradiated on the valley of the user's finger 100, since the valley of the user's finger 100 has a certain distance from the fingerprint sensing area, The light will pass through the fingerprint sensing area of the capacitive fingerprint sensing module 120 and enter the recessed area formed by the valley of the user's finger 110. After the light is reflected multiple times, the capacitive fingerprint sensing module 120 can be transmitted out from the third surface of the prism 134. The light emitted by the third surface is received by the optical image sensor 132, and the light received by the optical image sensor 132 is large due to the large energy loss of the multiple reflection of the light. Dark, therefore, the image signal to generate the second fingerprint ridges and valleys reaction user's finger 110 according to the brightness of the light sensor 132 receiving a user finger 100 an optical image of the fingerprint reflected.
  • the capacitive fingerprint sensor module 120 of any of the above embodiments may be used in the embodiment.
  • the working principle of the capacitive fingerprint sensing module 120 provided by any of the foregoing embodiments may generate a first fingerprint image signal. .
  • the optical fingerprint sensing module 130 further includes a prism 134.
  • the first surface of the prism 134 and the capacitive fingerprint sensing module 120 are attached to one side of the fingerprint sensor area, and the second side of the light source 131 and the prism 134 are attached.
  • the optical structure 133 is located between the third surface of the prism and the optical image sensor 132, and is adjacent to the third side of the prism 134, opposite to the third surface of the prism 134, to realize the optical fingerprint sensing module 130.
  • a second fingerprint image signal is generated.
  • the capacitive fingerprint sensing module 120 generates the first fingerprint image signal by using the capacitive fingerprint sensing module 120 provided in any of the above embodiments.
  • the fingerprint sensor provided by the embodiment of the present invention has the functions of a capacitive fingerprint sensor and an optical fingerprint sensor, and can generate a first fingerprint image signal and a second fingerprint image signal corresponding to the fingerprint for the same fingerprint, and solve the related fingerprint sensor.
  • the single mode obtains the problem that the user's finger fingerprint is easily deceived by fake fingerprints and has poor anti-counterfeiting performance, and realizes the use of the capacitive fingerprint sensing module and the optical fingerprint sensing module to generate two fingerprint image signal forming verification mechanisms respectively, thereby achieving the improvement of the fingerprint sensor. Anti-counterfeiting performance.
  • FIG. 9 is a schematic structural diagram of still another fingerprint sensor according to an embodiment of the present disclosure.
  • the optical fingerprint sensing module 130 includes an optical coherence tomography unit 135 configured to scan a fingerprint of the user's finger 100 . And generating a second fingerprint image signal.
  • the optical coherence tomography unit 135 can scan to obtain a second fingerprint image signal of the internal structure of the user's finger 100 with a depth of about 0.5 mm, and obtain the same fingerprint image signal as the external skin.
  • the second fingerprint image signal due to skin damage, contamination, etc. of the finger surface can be avoided, and the accuracy of the fingerprint sensor is higher.
  • the capacitive fingerprint sensing module 120 of any of the above embodiments may be used.
  • the working principle of the capacitive fingerprint sensing module 120 provided by any of the foregoing embodiments may generate a first fingerprint image signal.
  • the optical fingerprint sensing module 130 includes an optical coherence tomography unit 135 disposed inside the casing 110, configured to scan a fingerprint of a user and generate a second fingerprint image signal.
  • the optical fingerprint sensing module 130 is configured to generate a second fingerprint image signal.
  • the capacitive fingerprint sensing module 120 generates the first fingerprint image signal by using the capacitive fingerprint sensing module 120 provided in any of the above embodiments.
  • the fingerprint sensor provided by the embodiment of the present invention has the functions of a capacitive fingerprint sensor and an optical fingerprint sensor, and can generate a first fingerprint image signal and a second fingerprint image signal corresponding to the fingerprint for the same fingerprint, and solve the related fingerprint sensor.
  • the single mode acquires the fingerprint of the user's finger and is easily deceived by the fake fingerprint, and the anti-counterfeiting performance is poor.
  • the two image signal forming verification mechanisms are generated by using the capacitive fingerprint sensing module and the optical fingerprint sensing module respectively, thereby improving the fingerprint sensor prevention. The effect of fake performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Optics & Photonics (AREA)
  • Image Input (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

公开了一种指纹传感器,包括:电容式指纹传感模块,电容式指纹传感模块一侧设置指纹感应区,电容式指纹传感模块用于通过电容耦合的方式获取指纹传感器区的用户手指指纹,生成第一指纹图像信号;光学指纹传感模块,位于电容式指纹传感模块远离指纹感应区的一侧,用于接收从指纹传感区的用户手指出射的光线生成第二指纹图像信号。

Description

一种指纹传感器
本申请要求在2017年12月29日提交中国专利局、申请号为201711480272.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及指纹识别技术领域,例如涉及一种指纹传感器。
背景技术
指纹由于其具有终身不变性、唯一性和方便性,已几乎成为生物特征识别的代名词。指纹传感器通过采集用户的指纹进而实现指纹识别。
目前,指纹传感器包括电容式指纹传感器和光学指纹传感器,但是,相关的指纹传感器无论是电容式指纹传感器还是光学指纹传感器均只能采用单一的验证机制,因此容易被假指纹欺骗,防假性能差。
发明内容
申请提供了一种指纹传感器,以解决相关指纹传感器的验证机制单一的问题,提高指纹传感器的防假性能。
本申请实施例提供了一种指纹传感器,包括:电容式指纹传感模块和光学指纹传感模块。
电容式指纹传感模块,所述电容式指纹传感模块一侧设置指纹感应区,电容式指纹传感模块用于通过电容耦合的方式获取指纹传感器区的用户手指指纹,生成第一图像信号。
光学指纹传感模块,位于电容式指纹传感模块远离指纹感应区的一侧,用于接收从指纹传感区的用户手指出射的光线生成第二图像信号。
附图概述
图1为本申请实施例提供的一种指纹传感器的结构示意图;
图2为本申请实施例提供的一种电容式指纹传感模块的结构示意图;
图3为本申请实施例提供的一种电容式指纹传感模块的俯视图;
图4为本申请实施例提供的一种电容式指纹传感模块的工作原理图;
图5为本申请实施例提供的另一种电容式指纹传感模块的结构示意图;
图6为本申请实施例提供的另一种指纹传感器的结构示意图;
图7为本申请实施例提供的另一种指纹传感器的结构示意图;
图8为本申请实施例提供的又一种指纹传感器的结构示意图;
图9为本申请实施例提供的又一种指纹传感器的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
图1为本申请实施例提供的一种指纹传感器的结构示意图,参见图1,该指纹传感器包括:电容式指纹传感模块120和光学指纹传感模块130。
电容式指纹传感模块120包括指纹感应区111,电容式指纹传感模块120设置为通过电容耦合的方式获取指纹传感器区的用户手指100指纹,生成第一指纹图像信号。
光学指纹传感模块130位于电容式指纹传感模块120远离指纹感应区111的一侧,设置为接收指纹传感区111的用户手指100出射的光线生成第指纹二图像信号。
在一实施例中,指纹传感器还包括壳体110,电容式指纹传感模块120和光学指纹传感模块130设置于壳体110内部。
电容式指纹传感模块120为透明的,允许用户手指100指纹反射的光线穿过电容式指纹传感模块120被光学指纹传感器130接收。
用户手指100的指纹是手指表面皮肤凹凸不平的纹路,包括突出的脊部和凹陷的谷部。
该指纹传感器的工作原理为:电容式指纹传感模块120包括多个感测用户手指100指纹的感测点,当用户手指100触摸在电容式指纹传感模块120的指纹感应区111时,用户手指100的脊部和谷部与电容式指纹传感模块120的感测点的距离不同,因此,用户手指100脊部位置的感测点和用户手指100谷部位置的感测点感测的电容值不同,根据多个感测点感测的不同的电容值即可生 成反应用户手指110的脊部和谷部的第一指纹图像信号。
光学指纹传感模块130接收指纹传感区的用户手指100出射的光线,当光线照射在用户手指100的脊部时,光线直接被反射并透射出电容式指纹传感模块120被光学指纹传感模块130接收,用户手指100出射的光线的能量损失较小,光学指纹传感模块130接收的光线较亮;当光线照射在用户手指100的谷部时,由于用户手指100的谷部与指纹感应区111存在一定的距离,光线会穿射出电容式指纹传感模块120的指纹感应区111进入用户手指110谷部形成的凹陷区,光线经过多次反射后才能透射出电容式指纹传感模块120被光学指纹传感模块130接收,多次反射会使用户手指100出射的光线能量损失较大,光学指纹传感模块130接收的光线较暗,因此,根据光学指纹传感模块130接收用户手指100指纹反射的光线的明暗即可生成反应用户手指110的脊部和谷部的第二指纹图像信号。
本申请实施例通过设置指纹传感器包括电容式指纹传感模块120和光学指纹传感模块130,电容式指纹传感模块120实现通过电容耦合的方式获取指纹传感器区的用户手指指纹,生成第一指纹图像信号;光学指纹传感模块120位于电容式指纹传感模块120远离指纹感应区111的一侧,实现接收指纹传感区的用户手指出射的光线生成第二指纹图像信号,兼具电容式指纹传感器和光学指纹传感器的功效,可以针对同一指纹可生成与该指纹对应的第一指纹图像信号和第二指纹图像信号。本申请实施例解决了相关指纹传感器采用单一模式获取用户手指指纹容易被假指纹欺骗,防假性能差的问题,实现了分别使用电容式指纹传感模块和光学指纹传感模块生成两个指纹图像信号形成验证机制,达到了提高指纹传感器防假性能的效果。
在一实施例中,电容式指纹传感模块120和光学指纹传感模块130可同时启用且互不干扰,根据实际使用需求,也可单独启动电容式指纹传感模块120或光学指纹传感模块130获取用户手指100的指纹。
图2为本申请实施例提供的一种电容式指纹传感模块的结构示意图。图3为本申请实施例提供的一种电容式指纹传感模块的俯视图,参见图2和图3,在上述多个实施例的基础上,电容式指纹传感模块120包括:第一透明保护层121、第一透光电极层122、第一透明介质层123、第二透光电极层124和介电层125。
第一透明保护层121一侧设置指纹感应区111。
第一透光电极层122,设置于第一透明保护层121远离指纹感应区111的一 侧,第一透光电极层122包括多个沿第一方向x排布的第一电极210。
第一透明介质层123,设置于第一透光电极层122远离第一透明保护层121的一侧。
第二透光电极层124,设置于第一透明介质层123远离第一透明保护层121的一侧,第二透光电极层124包括多个沿第二方向y排布的第二电极220。
介电层125,设置于第二透光电极层124远离第一透明保护层121的一侧。
其中,第一电极210和第二电极220存在交叠区域,可以看到第一电极210和第二电极220相互交叉形成网格,第一电极210和第二电极220交叉点(交叠区域)形成能够感测手指指纹的电容阵列,该电容阵列的电容值能够反映手指表面的外形。
在一实施例中,如图3所示,第一方向x和第二方向y垂直,这仅是本申请的一个应用示例,而非对本申请的限制。
每一个第一电极210和每一个第二电极220的交叠区域为一个感测点230(电容),多个感测点230形成感测点阵列。
图4为本申请实施例提供的一种电容式指纹传感模块的工作原理图,下面结合图3和图4对电容式指纹传感模块120的工作原理进行说明。当电容式指纹传感模块120被启用时,第一透光电极层122包括的多个第一电极210输入驱动信号,第二透光电极层124包括的多个第二电极220输出检测信号,多个第一电极210和多个第二电极220之间耦合,可以得到所有第一电极210和第二电极220形成的感测点230位置的电容值大小,即整个指纹感应区的二维平面的电容大小。
参见图4,当用户手指100接触指纹感应区时,用户手指100覆盖多个感测点230,若感测点230位置处为用户手指100指纹的脊部,则该感测点230的电容值变化为C1,若感测点230位置处为用户手指100指纹的谷部,则该感测点230的电容值变化为C2,因此根据指纹感应区的二维平面的电容变化量数据即可生成反应用户手指110的脊部和谷部的第一指纹图像信号。
本申请实施例通过设置电容式指纹传感模块120包括第一透明保护层121;第一透光电极层122设置于第一透明保护层121远离光学指纹传感模块130的一侧,第一透光电极层122包括多个沿第一方向x排布的第一电极210;第一透明介质层123设置于第一透光电极层122远离第一透明保护层121的一侧;第二透光电极层124设置于第一透明介质层123远离第一透明保护层121的一侧, 第二透光电极层124包括多个沿第二方向y排布的第二电极220;介电层125设置于第二透光电极层124远离第一透明保护层121的一侧;其中,第一电极210和第二电极220存在交叠区域,实现了电容式指纹传感模块120生成第一指纹图像信号。
在一实施例中,该指纹传感器还包括功能电路,功能电路与第一电极和第二电极电连接,设置为向第一电极输入驱动信号,以及接收第二电极输出的检测信号。
在一实施例中,第一电极和第二电极为金属导线,金属导线的线宽小于相邻两个金属导线的间距。在一实施例中,当金属导线的线宽很小时,对光学指纹传感模块接收用户手指出射的光几乎没有影响。在一实施例中,金属导线的间距为50μm。
在一实施例中,第一电极和第二电极为透明导电膜,例如为氧化铟锡膜或掺铝的氧化锌膜等。
在一实施例中,第一透明介质层的材料为有机透明光学胶;第一透明保护层的材料为透光材料,例如为玻璃或蓝宝石等。
在一实施例中,第一透明保护层的厚度小于300μm。
图5为本申请实施例提供的另一种电容式指纹传感模块的结构示意图,参见图5,电容式指纹传感模块120还包括依次设置于第一透光电极层122远离介电层125一侧的第二透明介质层127和第二透明保护层126,第二透明保护层126和第二透明介质层127设置于第一透光电极层122和第一透明保护层121之间。
在一实施例中,本实施例中提供的另一种电容式指纹传感模块和图3所示的电容式指纹传感模块的区别是在第一透光电极层122和第一透明保护层121之间增设了第二透明保护层126和第二透明介质层127,二者的制备工艺不同,但工作原理类似,在此不再赘述。
图6为本申请实施例提供的另一种指纹传感器的结构示意图,参见图6,在该指纹传感器中,光学指纹传感模块130包括光源131和光学图像传感器132;光源131用于发出光线照射指纹感应区的用户手指100;光学图像传感器132设置为接收用户手指100出射的光线,并生成第二指纹图像信号。
在图6中,示例性地,光源131可设置于电容式指纹传感模块120的两侧,光学图像传感器132可通过光学胶直接与电容式指纹传感模块120贴合,光学 图像传感器132直接接受其上方的光线并生成第二指纹图像信号。这仅是本申请的一个应用示例,而非对本申请的限制。
图7为本申请实施例提供的另一种指纹传感器的结构示意图,参见图7,在该指纹传感器中,光学指纹传感模块130还包括光学结构133。
光学结构133设置于电容式指纹传感模块120和光学图像传感器132之间,设置为反射和汇聚光线中的至少之一。
在图7中,光学结构133包括凸透镜,光学图像传感器132设置于壳体110底部,光源131设置于光学图像传感器132两侧,这仅是本申请的一个应用示例,而非对本申请的限制。其中,指纹传感区的中心、光学结构133的主光轴和光学图像传感器132的中心三者共轴。
在本实施例中,光学指纹传感模块130启用后,光源131发出的光线照射到压在电容式指纹传感模块120指纹传感区上的用户手指100上,若光线照射在用户手指100的脊部,则光线直接被反射后透射出电容式指纹传感模块120被光学图像传感器132接收,用户手指100出射的光线的能量损失较小,光学图像传感器132接收的光线较亮;若光线照射在用户手指100的谷部,由于用户手指100的谷部与指纹感应区存在一定的距离,光线会穿射出电容式指纹传感模块120的指纹感应区进入用户手指110谷部形成的凹陷区,光线经过多次反射后才能透射出电容式指纹传感模块120被光学图像传感器132接收,多次反射会使用户手指100出射的光线能量损失较大,光学图像传感器132接收的光线较暗,因此,根据光学图像传感器132接收用户手指100指纹反射的光线的明暗即可生成反应用户手指110的脊部和谷部的第二指纹图像信号。
在一实施例中,本实施例可采用上述任意实施例提供的电容式指纹传感模块120,通过上述任意实施例提供的电容式指纹传感模块120的工作原理可实现生成第一指纹图像信号。
本申请实施例通过设置光学指纹传感模块130还包括光学结构133;光学结构133设置于电容式指纹传感模块120和光学图像传感器132之间,设置为反射光线和汇聚光线中的至少之一,实现了光学指纹传感模块130生成第二指纹图像信号,本实施例中的电容式指纹传感模块120可采用上述实施例提供的任意一种电容式指纹传感模块生成第一指纹图像信号。本申请实施例提供的指纹传感器兼具电容式指纹传感器和光学指纹传感器的功效,可以针对同一指纹可生成与该指纹对应的第一指纹图像信号和第二指纹图像信号,解决了相关指纹 传感器采用单一模式获取用户手指指纹容易被假指纹欺骗,防假性能差的问题,实现了分别使用电容式指纹传感模块和光学指纹传感模块生成两个指纹图像信号形成验证机制,达到了提高指纹传感器防假性能的效果。
图8为本申请实施例提供的又一种指纹传感器的结构示意图,参见图8,在该指纹传感器中,光学指纹传感模块130还可以包括棱镜134,棱镜134的第一面与电容式指纹传感模块120相对指纹传感器区的一面贴合,光源131与棱镜134的第二面相对设置,透镜组133位于棱镜的第三面和光学图像传感器132之间,并靠近棱镜134第三面的一侧,与棱镜134的第三面相对设置。
在本实施例中,光学指纹传感模块130启用后,光源131发出的光线从棱镜134的第二面射入,光线均匀的照射到压在电容式指纹传感模块120指纹传感区上的用户手指100上,若光线照射在用户手指100的脊部,则光线直接被反射后透射出电容式指纹传感模块120从棱镜134的第三面射出,第三面射出的光线被光学图像传感器132接收,由于光线直接反射能量损失较小,故光学图像传感器132接收的光线较亮;若光线照射在用户手指100的谷部,由于用户手指100的谷部与指纹感应区存在一定的距离,光线会穿射出电容式指纹传感模块120的指纹感应区进入用户手指110谷部形成的凹陷区,光线经过多次反射后才能透射出电容式指纹传感模块120从棱镜134的第三面射出,第三面射出的光线被光学图像传感器132接收,由于光线多次反射能量损失较大,故光学图像传感器132接收的光线较暗,因此,根据光学图像传感器132接收用户手指100指纹反射的光线的明暗即可生成反应用户手指110的脊部和谷部的第二指纹图像信号。
在一实施例中,本实施例可采用上述任意实施例提供的电容式指纹传感模块120,通过上述任意实施例提供的电容式指纹传感模块120的工作原理可实现生成第一指纹图像信号。
在本实施例中,通过设置光学指纹传感模块130还包括棱镜134,棱镜134的第一面与电容式指纹传感模块120相对指纹传感器区的一面贴合,光源131与棱镜134的第二面相对设置,光学结构133位于棱镜的第三面和光学图像传感器132之间,并靠近棱镜134第三面的一侧,与棱镜134的第三面相对设置,实现了光学指纹传感模块130生成第二指纹图像信号。通过采用上述任意实施例提供的电容式指纹传感模块120,实现了电容式指纹传感模块120生成第一指纹图像信号。本申请实施例提供的指纹传感器兼具电容式指纹传感器和光学指 纹传感器的功效,可以针对同一指纹可生成与该指纹对应的第一指纹图像信号和第二指纹图像信号,解决了相关指纹传感器采用单一模式获取用户手指指纹容易被假指纹欺骗,防假性能差的问题,实现了分别使用电容式指纹传感模块和光学指纹传感模块生成两个指纹图像信号形成验证机制,达到了提高指纹传感器防假性能的效果。
图9为本申请实施例提供的又一种指纹传感器的结构示意图,参见图9,在该指纹传感器中,光学指纹传感模块130包括光学相干断层扫描单元135,设置为扫描用户手指100的指纹并生成第二指纹图像信号。
其中,光学相干断层扫描单元135可经过扫描,得到用户手指100大约0.5mm深度的内部结构的第二指纹图像信号,获得与外部皮肤相同的指纹图像信号。通过设置光学相干断层扫描单元135可避免由于手指表面皮肤破损、污染等原因造成的第二指纹图像信号不准确,使指纹传感器的准确性更高。
本实施例可采用上述任意实施例提供的电容式指纹传感模块120,通过上述任意实施例提供的电容式指纹传感模块120的工作原理可实现生成第一指纹图像信号。
本申请实施例在上述多个实施例的基础上,通过设置光学指纹传感模块130包括光学相干断层扫描单元135,设置于壳体110内部,设置为扫描用户的指纹并生成第二指纹图像信号,实现了光学指纹传感模块130生成第二指纹图像信号。通过采用上述任意实施例提供的电容式指纹传感模块120,实现了电容式指纹传感模块120生成第一指纹图像信号。本申请实施例提供的指纹传感器兼具电容式指纹传感器和光学指纹传感器的功效,可以针对同一指纹可生成与该指纹对应的第一指纹图像信号和第二指纹图像信号,解决了相关指纹传感器采用单一模式获取用户手指指纹容易被假指纹欺骗,防假性能差的问题,实现了分别使用电容式指纹传感模块和光学指纹传感模块生成两个图像信号形成验证机制,达到了提高指纹传感器防假性能的效果。

Claims (11)

  1. 一种指纹传感器,包括:
    电容式指纹传感模块,所述电容式指纹传感模块一侧设置指纹感应区,所述电容式指纹传感模块设置为通过电容耦合的方式获取所述指纹感应区的用户手指的指纹,生成第一指纹图像信号;
    光学指纹传感模块,位于所述电容式指纹传感模块远离所述指纹感应区的一侧,设置为接收从所述指纹传感区的用户手指出射的光线生成第二指纹图像信号。
  2. 根据权利要求1所述的指纹传感器,其中,所述电容式指纹传感模块包括:
    透明保护层,所述透明保护层一侧设置所述指纹感应区;
    第一透光电极层,设置于所述透明保护层远离所述指纹感应区的一侧,所述第一透光电极层包括多个沿第一方向排布的第一电极;
    透明介质层,设置于所述第一透光电极层远离所述透明保护层的一侧;
    第二透光电极层,设置于透明介质层远离所述透明保护层的一侧,所述第二透光电极层包括多个沿第二方向排布的第二电极;
    介电层,设置于所述第二透光电极层远离所述第一透明保护层的一侧;
    其中,所述第一电极和所述第二电极存在交叠区域。
  3. 根据权利要求2所述的指纹传感器,其中,所述第一方向和所述第二方向垂直。
  4. 根据权利要求2所述的指纹传感器,还包括功能电路,所述功能电路与所述第一电极和所述第二电极电连接。
  5. 根据权利要求2所述的指纹传感器,其中,所述第一电极和所述第二电极为金属导线,所述金属导线的线宽小于相邻两个所述金属导线的间距。
  6. 根据权利要求2所述的指纹传感器,其中,所述第一电极和所述第二电极为透明导电膜。
  7. 根据权利要求2所述的指纹传感器,其中,所述透明介质层的材料为有机透明光学胶;所述透明保护层的材料为透光材料。
  8. 根据权利要求2所述的指纹传感器,其中,所述透明保护层的厚度小于300μm。
  9. 根据权利要求1所述的指纹传感器,其中,所述光学指纹传感模块包括光源和光学图像传感器;
    所述光源设置为发出光线照射所述指纹感应区的用户手指;
    所述光学图像传感器设置为接收用户手指反射的光线,并生成所述第二指纹图像信号。
  10. 根据权利要求9所述的指纹传感器,其中,所述光学指纹传感模块还包括光学结构;
    所述光学结构设置于所述电容式指纹传感模块和所述光学图像传感器之间,设置为反射光线和汇聚光线中的至少之一。
  11. 根据权利要求1所述的指纹传感器,其中,所述光学指纹传感模块包括光学相干断层扫描单元,设置为扫描所述用户手指的指纹并生成所述第二指纹图像信号。
PCT/CN2018/111343 2017-12-29 2018-10-23 一种指纹传感器 WO2019128414A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711480272.6A CN109993027B (zh) 2017-12-29 2017-12-29 一种指纹传感器
CN201711480272.6 2017-12-29

Publications (1)

Publication Number Publication Date
WO2019128414A1 true WO2019128414A1 (zh) 2019-07-04

Family

ID=67065070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111343 WO2019128414A1 (zh) 2017-12-29 2018-10-23 一种指纹传感器

Country Status (2)

Country Link
CN (1) CN109993027B (zh)
WO (1) WO2019128414A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080187189A1 (en) * 2007-02-05 2008-08-07 Union Community Co., Ltd. Apparatus and method for recognizing fingerprint dually
CN105556538A (zh) * 2013-07-17 2016-05-04 硅显示技术有限公司 能够使用光学的和电容的方法感测指纹的指纹识别传感器
CN106557216A (zh) * 2015-09-30 2017-04-05 乐金显示有限公司 指纹传感器阵列及具有该指纹传感器阵列的显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992158B (zh) * 2015-07-13 2020-11-13 格科微电子(上海)有限公司 提高光学指纹识别性能的方法
CN106991365A (zh) * 2016-01-21 2017-07-28 上海箩箕技术有限公司 光学指纹传感器模组及其使用方法
CN107292215A (zh) * 2016-03-31 2017-10-24 上海箩箕技术有限公司 光学指纹传感器模组

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080187189A1 (en) * 2007-02-05 2008-08-07 Union Community Co., Ltd. Apparatus and method for recognizing fingerprint dually
CN105556538A (zh) * 2013-07-17 2016-05-04 硅显示技术有限公司 能够使用光学的和电容的方法感测指纹的指纹识别传感器
CN106557216A (zh) * 2015-09-30 2017-04-05 乐金显示有限公司 指纹传感器阵列及具有该指纹传感器阵列的显示装置

Also Published As

Publication number Publication date
CN109993027B (zh) 2023-09-05
CN109993027A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
US11288483B2 (en) Fingerprint recognition device, fingerprint recognition method, and display device
CN106971173B (zh) 触控基板及显示面板
WO2020151158A1 (zh) 生物特征识别的装置
US10628656B2 (en) Image capture apparatus
WO2018024117A1 (zh) 一种表面纹理识别显示装置
WO2015192630A1 (zh) 图像采集装置、终端设备、液晶终端设备及图像采集方法
JP4832273B2 (ja) 生体認証用撮像モジュール、生体認証装置及びプリズム
KR20180080715A (ko) 각도 제한 리플렉터를 갖는 광학 지문 센서가 통합된 디스플레이
WO2019178793A1 (zh) 屏下生物特征识别装置和电子设备
US20190197290A1 (en) Optical fingerprint sensor
WO2020082375A1 (zh) 复合透镜结构、指纹识别装置和电子设备
CN108399392B (zh) 指纹识别结构和显示装置
TW201426563A (zh) 雜散光耦合式生物訊息感測模組及使用其之電子設備
TWM592604U (zh) 感光模組及取像裝置
US10832028B2 (en) Optical fingerprint module
CN112668540B (zh) 生物特征采集识别系统及方法、终端设备和存储介质
US10356296B2 (en) Light guide for finger print reader
TWI759662B (zh) 螢幕下圖像獲取結構及電子設備
CN108388827B (zh) 指纹成像模组和电子设备
KR20160017419A (ko) 지문 인식 장치 및 이를 이용하는 지문 인식 방법
CN108803781B (zh) 具有光学成像传感器的平板显示器
WO2018058694A1 (zh) 指纹撷取设备
CN211087274U (zh) 指纹检测装置和电子设备
WO2019218752A1 (zh) 纹路识别组件及其制备方法、显示装置
WO2019128414A1 (zh) 一种指纹传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894984

Country of ref document: EP

Kind code of ref document: A1