WO2019128218A1 - 移相结构及天线 - Google Patents

移相结构及天线 Download PDF

Info

Publication number
WO2019128218A1
WO2019128218A1 PCT/CN2018/097595 CN2018097595W WO2019128218A1 WO 2019128218 A1 WO2019128218 A1 WO 2019128218A1 CN 2018097595 W CN2018097595 W CN 2018097595W WO 2019128218 A1 WO2019128218 A1 WO 2019128218A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shifting
cavity
frequency band
sub
circuit
Prior art date
Application number
PCT/CN2018/097595
Other languages
English (en)
French (fr)
Inventor
苏国生
李明超
段红彬
陈礼涛
刘培涛
黄明达
高彬
邱建源
Original Assignee
京信通信系统(中国)有限公司
京信通信技术(广州)有限公司
京信通信系统(广州)有限公司
天津京信通信系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信系统(中国)有限公司, 京信通信技术(广州)有限公司, 京信通信系统(广州)有限公司, 天津京信通信系统有限公司 filed Critical 京信通信系统(中国)有限公司
Publication of WO2019128218A1 publication Critical patent/WO2019128218A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array

Definitions

  • the present invention relates to the field of mobile communications technologies, and in particular, to a phase shifting structure and an antenna.
  • multi-frequency antennas play an increasingly important role in network coverage.
  • the existing multi-frequency antennas are larger in size, and their own weight is heavy, which brings some problems:
  • the antenna has a large cross section, large wind load, and a bad antenna such as strong wind. It will bring safety hazards and increase the difficulty of construction.
  • the strength of the installed components of the antenna is very high and the cost is increased.
  • the antenna is not harmonious with the surrounding environment when the antenna is large. The public mistakenly believes that the radiation is large and interferes with the installation, resulting in an antenna. Site selection is difficult. Therefore, miniaturization of multi-frequency antennas has become a trend.
  • the vibrator multiplexing technique is a common method for miniaturization and weight reduction of multi-frequency antennas, and the conventional two independent arrays can be replaced by wide-band oscillator multiplexing, and the antenna is reduced by about half of the volume.
  • the prior art often uses a wide-band oscillator connected to the combining circuit, and the two divided frequency bands are respectively connected to the phase shifter to achieve the effect of independent electrical adjustment, but this method requires two phase shifters to be placed in one column of antennas.
  • the cable used is twice as large as the conventional antenna, which causes inconvenience to the antenna wiring.
  • the combination circuit is fixed on the phase shifter, but this method does not reduce the number of cables and solder joints.
  • the primary object of the present invention is to provide a phase shifting structure to reduce the size of the phase shifter, reduce the number of phase shifter cables, and improve the reliability of the phase shifter.
  • the present invention also provides an antenna that is connected to the radiating unit by using the phase shifting structure described above, thereby achieving independent adjustment of the tilt angle in different frequency bands.
  • the present invention provides the following technical solutions:
  • a phase shifting structure includes: a cavity, a combining circuit disposed on the cavity, a phase shifting component disposed in the cavity; the cavity comprising: a first sub cavity and a second sub cavity
  • the combining circuit is disposed between the first sub-cavity and the second sub-cavity; the phase shifting component includes a first frequency band shifting component and a first phase disposed in the first sub-cavity and the second sub-cavity respectively
  • the two-band phase shifting component has an input end on both sides of the combining circuit, and the output ends of the first frequency band phase shifting component and the second frequency band phase shifting component are respectively connected to the input ends of the combining circuit.
  • the combining circuit comprises at least one combiner, and the input ports on both sides of the combiner respectively connect the corresponding output ports on the first frequency band phase shifting component and the second frequency band phase shifting component.
  • the number of the combiners is less than or equal to a minimum value of the first frequency band phase shifting component and the second frequency band phase shifting component output end.
  • the first sub-cavity and the second sub-cavity are further provided with a via hole for facilitating the passage of the phase shifting circuit and the combining circuit.
  • the cavity further includes a connection structure connecting the first sub-cavity and the second sub-cavity, and the combining circuit is disposed on the connection structure.
  • connection structure is further provided with a wiring groove for protecting the coaxial cable, the wiring groove extending along the longitudinal direction of the cavity, wherein the wiring groove is provided with a medium for the coaxial cable and the inner conductor is worn. Through hole.
  • the combining circuit is a microstrip line structure.
  • the opening sides of the first sub-cavity and the second sub-cavity are provided with fixing members for fixing the cavity.
  • the first frequency band phase shifting component and the second frequency band phase shifting component respectively comprise a first frequency band phase shifting circuit and a second frequency band phase shifting circuit, wherein the first sub-cavity and the second sub-cavity are semi-closed
  • the first frequency band phase shifting circuit, the second frequency band phase shifting circuit and the combining circuit are disposed on the same PCB.
  • the sidewall of the cavity is further provided with a card slot for fixing the PCB board.
  • At least one of the first frequency band phase shifting component and the second frequency band phase shifting component is a medium phase shifting structure
  • the medium phase shifting structure comprises: a phase shifting circuit and a moving medium moving in conjunction with the phase shifting circuit.
  • phase shifting components there are multiple phase shifting components, and two adjacent phase shifting components are electrically connected.
  • the present invention provides an antenna comprising the phase shifting structure described in any of the above aspects.
  • the phase shifting structure provided by the invention integrates the phase shifting circuit and the combining circuit of the two phase shifting components through the cavity to reduce the volume of the phase shifting structure; and the two phase shifting components are respectively placed in different sub-cavities In the middle, the impact resistance of the phase-shifting structure is improved, and at the same time, the solder joints of the soldered cables on the phase-shifting structure can be protected, which is advantageous for ensuring the stability of the electrical performance of the phase-shifting structure, and placing the phase shifters of different frequency bands in the same cavity. Compared to the body, the introduction of passive intermodulation products can be avoided.
  • the phase shifting structure provided by the invention when the first sub-cavity and the two sub-cavities are semi-closed structures, integrates the phase shifting circuit and the combining circuit of the phase shifting component on one PCB board, thereby improving the integration degree of the phase shifting structure.
  • the volume of the phase shifting structure is reduced, and the number of components and cables is greatly reduced, which is convenient for assembly and mass production.
  • the phase shifting structure provided by the invention adopts a microstrip line structure to further reduce the volume of the phase shifting structure, and the impedance of the microstrip line structure is easily controlled, and the anti-interference ability of the phase shifting structure can be improved.
  • the phase shifting structure provided by the invention directly accommodates the cable on the phase shifting structure cavity through the wiring groove on one side of the cavity to achieve the purpose of protecting the wire; and the phase shifting component of the two frequency bands is tightly fixed to the antenna through the cavity On the bottom plate, it can withstand the impact force of the left and right up and down, and improve the impact resistance of the phase shifting structure.
  • the antenna provided by the present invention is improved on the basis of the phase shifting structure described above, and therefore, the antenna naturally inherits all the advantages of the phase shifting structure.
  • FIG. 1 is a schematic perspective view of a phase shifting structure provided by the present invention.
  • FIG. 2 is a schematic axial cross-sectional view of a phase shifting structure provided by the present invention.
  • FIG 3 is a perspective view of a second embodiment of a phase shifting structure provided by the present invention.
  • FIG. 4 is a schematic axial cross-sectional view showing a second embodiment of a phase shifting structure provided by the present invention.
  • the invention provides a phase shifting structure for integrating a phase shifter and a combining circuit, reducing the use of cables and simplifying the antenna layout.
  • the present invention provides an embodiment of a phase shifting structure. See FIG. 1 and FIG. 2 for a schematic structural view.
  • the phase shifting structure provided by the present invention comprises: a cavity 1, a combining circuit 4 disposed on the cavity 1, a phase shifting component disposed in the cavity 1, the cavity 1 including a first sub-cavity 11 And the second sub-cavity 12, the combining circuit 4 is disposed between the first sub-cavity 11 and the second sub-cavity 12;
  • the phase-shifting component comprises a first sub-cavity 11 and a second a first frequency band shifting component 2 and a second frequency band phase shifting component 3 in the sub-cavity 12,
  • the combining circuit 4 is provided with an input end on both sides thereof, and the first frequency band phase shifting component 2 and the second frequency band shifting
  • the output terminals on the phase component 3 are respectively connected to the input terminals on both sides of the combining circuit 4.
  • the cavity 1 includes at least two sub-cavities integrated, and the cavity may have a shape of a concave shape, an I-shape or the like as long as the cavity is satisfied to include at least two relatively independent sub-cavities.
  • the cavity 1 is preferably in a concave shape.
  • the first frequency band shifting component 2 is placed in the first sub-cavity 11, and the second frequency band shifter is placed in the second sub-cavity.
  • the combining circuit 4 is in contact with the concave surface of the concave cavity.
  • the combining circuit 4 is disposed between the first frequency band shifting component 2 and the second frequency band phase shifting component 3, which can greatly reduce the length of the wires connecting the phase shifting component and the combining circuit, and further, the combining circuit 4
  • the input ports are set on both sides to facilitate connection with the output port of the phase shifter, reducing cable usage and reducing wiring complexity. Compared with the design in which the combining circuit 4 is disposed outside the two phase shifters, the number of cables used is greatly reduced, and wiring is simplified.
  • the first frequency band phase shifting component 2 includes at least one first frequency band phase shifter
  • the second frequency band phase shifting component 3 includes at least one second frequency band phase shifter
  • the combining circuit 4 includes at least one combined circuit
  • the input ports on both sides of the combiner are respectively connected to the corresponding output ports on the first frequency band phase shifter and the second frequency band phase shifter.
  • At least one medium phase shifting structure exists in the first frequency band shifting component 2 or the second frequency band phase shifting component 3, and the medium phase shifting structure comprises: a phase shifting circuit and a moving medium that is phase-shifted with the phase shifting circuit. That is, the first frequency band phase shifting component 2 and the second frequency band phase shifting component 3 may each comprise a medium phase shifting structure, or one of the phase shifting components is a conductor phase shifter and the other is a medium phase shifter.
  • the phase shifter in the first frequency band phase shifting component 2 is a conductor phase shifter
  • the phase shifter in the second frequency band phase shifting component 3 is a medium phase shifter, or the phase shifting in the first frequency band phase shifting component 2
  • the device is a dielectric phase shifter
  • the phase shifter in the second frequency band phase shifting component 3 is a conductor phase shifter.
  • the conductor phase shifter changes the coupling length of the transmission line of the U-shaped movable conductor strip and the phase shifter to change the actual length of the transmission path, causing a change in the phase of the microwave signal.
  • the combining circuit 4 disposed between the phase shifting component 2 of the first frequency band and the phase shifting component 3 of the second frequency band is a microstrip line structure.
  • the microstrip line is a microwave transmission line composed of a single conductor strip supported on the substrate, and is separated from the ground plane by a dielectric. The thickness, width, distance from the ground plane, and characteristic impedance of the signal line are controllable. of.
  • the combining circuit 4 adopts the microstrip line structure to transmit signals with high speed, small volume, strong anti-interference ability and high reliability.
  • the first frequency band phase shifting component 2 and the second frequency band phase shifting component 3 each include a medium phase shifter
  • the first frequency band phase shifting component 2 includes: a first frequency band phase shifting circuit 21 and The first moving medium 22 is moved to change the phase of the first moving medium 22, and the first moving medium 22 is disposed on the upper and lower sides of the phase shifting circuit board of the first frequency band
  • the second frequency shifter 3 includes: The second-band phase shifting circuit 31 and the second moving medium 32 that cooperate with the second-band phase shifting circuit 31 to change the phase are disposed on the upper and lower sides of the second-band phase-shifting circuit board.
  • the moving medium combining circuit can move axially along the phase shifter, and the shape and size of the first moving medium 22 and the second moving medium 32 are not limited.
  • the output phase of the output of the combining circuit 4 is changed as the moving medium moves.
  • the first frequency band phase shifting circuit 21 and the second frequency band phase shifting circuit 22 provided by the present invention preferably adopt a PCB circuit, and a card slot 17 is further disposed on a sidewall of the concave shaped cavity perpendicular to the circuit board for
  • the internal circuit board is fixed to fix the internal circuit board in the cavity 1 to improve the impact resistance of the internal circuit board.
  • the first frequency band phase shifting circuit 21 and the second frequency band phase shifting circuit 22 can also be supported by plastic parts using a metal circuit. To reduce the weight of the phase shifting component while reducing manufacturing costs.
  • the first moving medium 22 and the second moving medium 32 move along the axial direction of the phase shifter, and the guiding boss is provided as a track for the phase shifter to move by using the slot of the PCB or the cavity.
  • the concave cavity 1 is a closed or semi-closed structure.
  • the concave surface of the concave cavity 1 and the lower end of the card slot 17 are preferably disposed on the same plane.
  • the cavity is a semi-closed structure, and the first frequency band shifting circuit 21, the second frequency band phase shifting circuit 31, and the combining circuit 4 are disposed on the same PCB board.
  • the first sub-cavity 11 and the second sub-cavity 12 are disposed on a side close to the concave surface of the cavity with a moving groove 16 for moving the PCB board in the cavity, and the length of the moving groove 16 is determined by the longitudinal length of the PCB board.
  • the two input ports of the combining circuit 4 are respectively connected to the output ports of the two phase shifters through a connection point.
  • the first sub-cavity 11 and the second sub-cavity 12 are provided with a conduction slot 13 above the moving slot 16 for avoiding a connection point between the phase shifting circuit and the combining circuit, and the size of the conducting channel 13 depends on The size of the connection point and the distance in which the PCB board moves longitudinally.
  • the first sub-cavity 11 and the second sub-cavity 12 are parallel to the PCB board.
  • the fixing member 14 is disposed on the side, and the fixing member 14 is a welding column for connecting the upper and lower sides of the cavity by welding or the like. It is apparent in FIG. 2 that the fixing member 14 is only disposed on the first portion.
  • a sub-cavity 11 is adjacent to the concave side of the concave cavity 1, and the fixing member 14 is not provided in view of the fact that there is no opening on the cavity side away from the concave surface.
  • the first frequency band phase shifting component 2 and the second frequency band phase shifting component 3 operate in different frequency bands.
  • the phase shifting circuit and the combining circuit of the phase shifters of two different frequency bands are integrated on the same circuit board, which reduces the number of components, greatly reduces the use of the cable, reduces the interference of the external environment to the phase shifter, and improves the phase shifting. Reliability of the device.
  • phase shifting circuit and the combining circuit of the phase shifters of different frequency bands are fabricated on the same PCB board, the number of external cables used for connecting the phase shifter and the combined circuit is reduced, and the welding of the phase shifter and the combined circuit component is reduced. point.
  • the first frequency band phase shifting circuit 21 is provided with an input port 211 for inputting a signal of a first frequency band, in the first frequency band.
  • the phase shifting circuit 21 is further provided with an output port 212, and the output port 212 is connected to the input terminal 42 of the combining circuit 4; likewise, the second frequency band phase shifting circuit 31 is provided with an input port 311 for the second frequency band signal.
  • the input is also provided with an output port 312 that is coupled to the input port 43 of the combining circuit 4.
  • the first frequency band signal is from the input end 211 of the first frequency band phase shifting circuit 21;
  • the second frequency band signal is from the input end of the second frequency band phase shifting circuit 31 311 input, the two frequency band signals are input to the combining circuit through the output end of the phase shifter, and the combined output circuit 44 outputs the signal through the combining circuit 4.
  • the combining circuit 4 includes at least one combiner, the number of the combiners being equal to the number of phase shifting component output ports.
  • the number of combiners disposed in the cavity is less than or equal to the number of output ports of the phase shifting component, and it is worth noting that the output port of the first frequency band phase shifter
  • the number of 212 and the number of output ports 312 of the second frequency band shifter may not be equal, and the number of the combiners is less than or equal to the first frequency band phase shifting component 2 and the second frequency band phase shifting component 3 The minimum number of output ports in the middle.
  • the cavity further includes a connection structure connecting the first sub-cavity 11 and the second sub-cavity 12 , and the combining circuit is disposed on the connection structure, and on the connection structure
  • the cable on the cavity constitutes a protective effect.
  • the wiring slot 15 is provided with a plurality of through holes for the medium and the inner conductor of the coaxial cable 5 to pass through, and is soldered to the internal circuit to form the input port 211 of the first frequency band phase shifting component 2 and the second frequency band phase shifter 3
  • the through hole 12 may have any shape such as a square shape or a circular shape, and the number of the through holes is not limited.
  • phase shifting structure may include a plurality of the phase shifting components, and each group of phase shifting components is electrically connected, as shown in FIG. 1 , including the first frequency band phase shifting component 2 and the third port output.
  • the two-band phase shifting component 3 has three corresponding combined electrical devices, and the input signal is input by the input port 211 of the first frequency band phase shifting component 2 and the input port 311 of the second frequency band phase shifting component 3, and the power splitter is used.
  • phase shifting components having multiple phase shifting components can be formed in the same way, no matter how many phase shifting components are included in the phase shifting structure, and how many output ports are included, different frequency bands can be realized. Highly integrated phase shifting components.
  • the phase shifting components of different frequency bands are respectively placed in the sub-cavities of the two semi-closed structures, thereby improving the impact resistance of the phase shifter, and the stability of the electrical performance of the phase shifting structure is ensured.
  • the phase shifting circuit and the combining circuit of different frequency bands are set on the same PCB board, and the phase shifting circuit and the combining circuit are integrated, the integration degree of the phase shifting structure is improved, the volume of the phase shifting structure is reduced, and the cable is greatly reduced. Used to simplify the antenna layout.
  • the present invention also provides a second embodiment, a perspective view of which is shown in FIG.
  • the phase shifting structure provided by the embodiment of the present invention comprises: a cavity 1, a combining circuit 4 disposed on the cavity 1, and a phase shifting component disposed inside the cavity 1, the cavity 1 including the first sub- a cavity 11 and a second sub-cavity 12, the combining circuit 4 is disposed between the first sub-cavity 11 and the second sub-cavity 12; the phase shifting component comprises a first sub-cavity respectively a first frequency band phase shifting component 2 in the body 11 and a second frequency band phase shifting component 3 disposed in the second subcavity 12, the combining circuit 4 is provided with input ends on both sides thereof, the first The output port 212 of the band phase shifting component 2 and the output terminal 312 of the second band phase shifting component 3 are respectively connected to the input terminals on both sides of the combining circuit 4.
  • the cavity is preferably in a concave shape.
  • the first frequency band shifting component 2 is placed in the first sub-cavity 11, and the second frequency band shifter is placed in the second sub-cavity 12.
  • the combining circuit 4 is in contact with the concave surface of the concave cavity.
  • the first frequency band phase shifting component 2 includes at least one first frequency band phase shifter
  • the second frequency band phase shifting component 3 includes at least one second frequency band phase shifter
  • the combining circuit 4 includes at least one combined circuit
  • At least one medium phase shifting structure exists in the first frequency band phase shifting component 2 or the second frequency band phase shifting component 3
  • the medium phase shifting structure includes: a phase shifting circuit and a phase shifting movement of the phase shifting circuit medium. That is, the first frequency band phase shifting component 2 and the second frequency band phase shifting component 3 may each comprise a medium phase shifting structure, or one of the phase shifting components is a conductor phase shifter and the other is a medium phase shifter.
  • the phase shifter in the first frequency band phase shifting component 2 is a conductor phase shifter
  • the phase shifter in the second frequency band phase shifting component 3 is a medium phase shifter, or the phase shifting in the first frequency band phase shifting component 2
  • the device is a dielectric phase shifter
  • the phase shifter in the second frequency band phase shifting component 3 is a conductor phase shifter.
  • the conductor phase shifter changes the coupling length of the transmission line of the U-shaped movable conductor strip and the phase shifter to change the actual length of the transmission path, causing a change in the phase of the microwave signal.
  • the first frequency band phase shifting component 2 and the second frequency band phase shifting component 3 operate in different frequency bands.
  • the first frequency band phase shifting component 2 and the second frequency band phase shifting component 3 each include a medium phase shifting component
  • the first frequency band phase shifting component 2 includes: a first frequency band phase shifting circuit 21 and a first matching
  • the frequency band shifting circuit 21 moves to change the phase of the first moving medium 22, the first moving medium 22 is disposed on the upper and lower sides of the first frequency band phase shifting circuit board
  • the second frequency band phase shifter 3 includes: the second frequency band shifting The phase circuit 31 and the second moving medium 32 that cooperate with the second frequency band shifting circuit 31 to change the phase are disposed on the upper and lower sides of the second frequency band phase shifting circuit board.
  • the moving medium combining circuit can move axially along the phase shifter, and the shape and size of the first moving medium 22 and the second moving medium 32 are not limited.
  • the output phase of the output of the combining circuit 4 is changed as the moving medium moves.
  • the combining circuit 4 provided in this embodiment is a microstrip line structure.
  • the microstrip line structure transmits signals with high speed, small volume, strong anti-interference ability and high reliability.
  • the cavity 1 provided in this embodiment is a closed structure, that is, the first sub-cavity 11 and the second sub-cavity 12 are not provided with a moving groove 16 on a side close to the concave surface of the cavity.
  • the circuits of the first frequency band phase shifting circuit 21, the second frequency band phase shifting circuit 31 and the combining circuit are respectively disposed on three independent PCB boards.
  • the first sub-cavity 11 and the second sub-cavity 12 are both closed structures, the first sub-cavity 11 and the second sub-cavity 12 are provided with a card slot 17 on the inner side wall perpendicular to the direction of the PCB board for fixing
  • the internal circuit board fixes the two ends of the first frequency band shifting circuit board and the second frequency band phase shifting circuit board to the card slot 17 of the cavity 1 respectively, so that the inner circuit board is fixed in the cavity 1 to improve the internal The board's impact resistance.
  • the card slot 17 may be provided on the outer walls of the two sub-chambers or the combining circuit 4 may be fixed to the concave surface of the concave cavity by welding, bonding or the like.
  • the embodiment of the present invention preferably has the lower end of the first sub-cavity 11 and the second sub-cavity 12 and the concave cavity.
  • the concave surfaces are arranged on the same plane.
  • the cavity itself has sufficient supporting force, so the embodiment does not separately provide the fixing member 14 to support the first sub-cavity 11 and the second sub-cavity 12. .
  • the connecting member 41 between the first-band phase shifting component 2 and the combining circuit 4 can only connect the shifting through the conducting slot 13 Phase component and combining circuit 4.
  • One end of the connecting member 41 is connected to the output port of the phase shifting component, and the other end is connected to the input port 42 of the combining circuit.
  • the connector 41 is preferably a metal conductor.
  • the input signals of the first frequency band phase shifting component 2 and the second frequency band phase shifter 3 are respectively input through the respective input ports 211 and 311, and are input to the combining circuit 4 via the connecting members 41 through the respective output ports 212 and 312.
  • the combining circuit 4 is combined and output to the external unit via the output port 44 of the combining circuit 4.
  • the phase shifting structure provided by the present invention may also include a multi-stage phase shifting component, and two stages of adjacent phase shifting components are electrically connected, including a first-band phase shifting component 2 and a second frequency band of three-port output.
  • the phase shifting component 3 has three corresponding combiners, and the input signal is input by the input port 211 of the first frequency band phase shifting component 2 and the input port 311 of the second frequency band phase shifting component 3, and then divided by the power splitter.
  • Two branches, one branch is connected to the external radiating unit via the first combiner, and one branch is connected to the input end of the first stage phase shifting component, and the output end of the first stage phase shifting component also has two branches.
  • One branch is connected to the external radiating unit via the second combiner, the other branch is connected to the input end of the second stage phase shifting component, and the output end of the second stage phase shifting component is connected to the external radiating unit via the third combiner Connected to achieve high integration of three-port phase shifters in different frequency bands.
  • Those skilled in the art can know that in this way, a multi-port phase shifting structure with multiple phase shifting components can be formed in the same way, no matter how many phase shifting components are included in the phase shifting structure, and how many output ports are included, different frequency bands can be realized.
  • the height of the phase shifter is highly integrated.
  • the phase shifters of different frequency bands are respectively placed in two closed sub-cavities to improve the impact resistance of the phase shifter, and at the same time, the solder joints of the soldered wires on the phase-shifting structure can be protected, which is beneficial to ensure The stability of the electrical performance of the phase shifting structure better avoids the introduction of passive intermodulation products as compared to the previous embodiment.
  • the embodiment of the present invention utilizes a card slot disposed inside the cavity for fixing the phase shifter PCB, saving process procedures, facilitating assembly and mass production.
  • phase shifting component provided by the present invention is not limited to including the first frequency band phase shifting component 2 and the second frequency band phase shifting component 3, and may also include phase shifters of more than two frequency bands. Such as the third frequency band phase shifter and the fourth frequency band phase shifter.
  • the number of combined circuits and the number of input terminals of the circuit and the connection method can be adjusted accordingly.
  • the cavity 1 is integrally formed by pultrusion, and the process is simple, and the process procedure is greatly reduced, the production cost is reduced, and the mass production is facilitated compared with the process of the conventional pillar cavity.
  • the phase shifting structure provided by the invention integrates the phase shifting circuit of the phase shifter and the circuit of the combining circuit through the cavity, reduces the volume of the phase shifting structure, improves the impact resistance of the phase shifter, and can protect the phase shifting structure.
  • the solder joints of the soldered cables are beneficial to ensure the stability of the electrical performance of the phase shifting structure, and the introduction of passive intermodulation products can be better avoided than when the phase shifters of different frequency bands are placed in the same cavity.
  • the present invention also provides an antenna comprising the phase shifting structure described in the above technical solution and a radiating element connected to the common output terminal 44 of the combining circuit 4 of the phase shifting structure.
  • the radiating unit of the antenna is connected to the output end of the phase shifting structure, and the downtilt angle of the different frequency bands is independently adjusted by the first frequency band shifting component and the second frequency band phase shifter.
  • the present invention further provides a base station, where the base station includes the antenna according to the above technical solution, and since the base station and the antenna are improved on the basis of the phase shifting structure, naturally inheriting the The advantages of the phase shifting structure are not described here.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明涉及移动通信技术领域,尤其涉及一种移相结构及天线。本发明提供一种移相结构,包括:腔体、设置于腔体上的合路电路,设置于腔体内的移相组件;所述腔体包括第一子腔体和第二子腔体,所述合路电路设置于所述第一子腔体和第二子腔体之间;所述移相组件包括分别设置于第一子腔体和第二子腔体内的第一频段移相组件和第二频段移相组件,所述合路电路两侧均设有输入端,所述第一频段移相组件和第二频段移相组件上的输出端分别与合路电路两侧的输入端相连。采用本发明提供的移相结构,将两个频段移相组件分别置于不同的子腔中,提高移相结构的抗冲击能力,能够更好地避免引入无源互调产物。

Description

移相结构及天线 技术领域
本发明涉及移动通信技术领域,尤其涉及一种移相结构及天线。
背景技术
随着移动通信的发展,多频天线在网络覆盖中扮演着越来越重要的角色。相比于其他基站天线而言,现有的多频天线尺寸较大,再加上本身重量较重,会带来一些问题:一是天线横截面较大,风载荷大,在强风等恶劣天线会带来安全隐患,也增加了施工难度;二是对天线的安装部件强度要求很高,增加成本;三是天线较大时与周围环境不和谐,公众误认为辐射大而抵触安装,造成天线选址困难。因此,多频天线的小型化已成为一种趋势。振子复用技术是多频天线小型化和轻量化的一个常用手段,可以将传统的两个独立阵列用宽频振子复用的形式代替,天线减少约一半的体积。
现有技术往往采用宽频振子与合路电路相连,分出的两个频段分别与移相器相连,达到独立电调的效果,但这种方式需要在一列天线中放置两个频段的移相器,使用的电缆也是常规天线的两倍,给天线布线带来不便。或者将合路电路固定于移相器上,但该种方法并不能减少电缆及焊点的数量。
发明内容
本发明的首要目的在于提供一种移相结构,以缩小移相器尺寸,减少移相器电缆的数量,提高移相器的可靠性。
此外,本发明还提供一种天线,其采用上述移相结构与辐射单元相连,实现不同频段下倾角独立调节。
为了实现上述目的,本发明提供如下技术方案:
一种移相结构,包括:腔体、设置于腔体上的合路电路,设置于所述腔体内的移相组件;所述腔体包括:第一子腔体和第二子腔体,所述合路电路 设置于第一子腔体和第二子腔体之间;所述移相组件包括分别设置于第一子腔体和第二子腔体内的第一频段移相组件和第二频段移相组件,所述合路电路两侧均设有输入端,所述第一频段移相组件和第二频段移相组件上的输出端分别与合路电路两侧的输入端相连。
优选地,所述合路电路包括至少一个合路器,所述合路器两侧的输入端口分别同时连接所述第一频段移相组件和第二频段移相组件上对应的输出端口。
具体地,所述合路器的数量小于或等于所述第一频段移相组件及第二频段移相组件输出端的最小值。
具体地,所述第一子腔体及第二子腔体还设置有便于移相电路与合路电路连接处通过的导通孔。
具体地,所述腔体还包括连接第一子腔体及第二子腔体的连接结构,所述合路电路设置于所述连接结构上。
具体地,所述连接结构上还设有用于保护同轴电缆的布线槽,所述布线槽沿着腔体纵长方向延伸,所述布线槽上设置有用于同轴电缆的介质及内导体穿过的通孔。
优选地,所述合路电路为微带线结构。
优选地,所述第一子腔体及第二子腔体的开口侧设置有固定腔体的固定件。
具体地,所述第一频段移相组件和第二频段移相组件分别包括第一频段移相电路和第二频段移相电路,所述第一子腔体及第二子腔体为半封闭结构,所述第一频段移相电路、第二频段移相电路及所述合路电路设置于同一PCB板上。
具体地,所述腔体内侧壁还设有用于固定PCB板的卡槽。
具体地,所述第一频段移相组件及第二频段移相组件中至少一个为介质移相结构,所述介质移相结构包括:移相电路及配合移相电路移动的移动介质。
具体地,所述移相组件有多个,两个相邻移相组件之间电性连接。
进一步地,本发明还提供了一种天线,其包括上述任一技术方案所述 的移相结构。
与现有技术相比,本发明的方案具有如下优点:
本发明提供的移相结构,通过腔体将两个移相组件的移相电路和合路电路整合起来,减小移相结构的体积;通过将两个频段移相组件分别置于不同的子腔中,提高移相结构的抗冲击能力,同时能够保护移相结构上焊接的线缆的焊点,有利于保证移相结构的电气性能的稳定性,与将不同频段移相器置于同一腔体中相比,能够避免引入无源互调产物。
本发明提供的移相结构,第一子腔体和二子腔体为半封闭结构时,将移相组件的移相电路及合路电路集成在一个PCB板上,提高了移相结构的集成度,减小了移相结构的体积,同时大大减少了部件和电缆的数量,便于组装和大批量生产。
本发明提供的移相结构,其中的合路电路采用微带线结构,进一步减小移相结构的体积,采用微带线结构的阻抗容易控制,能够提高移相结构的抗干扰能力。
本发明提供的移相结构,通过腔体一侧的布线槽包容移相结构腔体上的线缆,实现护线的目的;通过腔体将两个频段的移相组件紧紧地固定于天线底板上,承受左右上下前后的冲击力,提高移相结构的抗冲击能力。
另外,本发明提供的天线是在上述移相结构的基础上进行改进的,因此,所述天线自然继承了所述移相结构的全部优点。
本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明提供的移相结构的立体示意图。
图2为本发明提供的移相结构的轴向截面示意图。
图3为本发明提供的移相结构第二实施例的立体示意图。
图4为本发明提供的移相结构第二实施例的轴向截面示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
本发明提供一种移相结构,用于整合移相器与合路电路,减少电缆的使用,简化天线布局。
本发明提供了移相结构的一个实施例,其结构示意图请参阅图1、图2。本发明提供的移相结构包括:腔体1,设置于腔体1上的合路电路4,设置于所述腔体1内的移相组件,所述腔体1包括第一子腔体11和第二子腔体12,所述合路电路4设置于第一子腔体11和第二子腔体12之间;所述移相组件包括分别设置于第一子腔体11和第二子腔体12内的第一频段移相组件2和第二频段移相组件3,所述合路电路4两侧均设有输入端,所述第一频段移相组件2和第二频段移相组件3上的输出端分别与合路电路4两侧的输入端相连。
所述腔体1包括一体化的至少两个子腔,所述腔体可以为凹字形、工字型等形状,只要满足所述腔体包括至少两个相对独立的子腔即可。
本发明实施例优选所述腔体1为凹字形,如图2所示,所述第一频段移相组件2置于第一子腔11中,第二频段移相器置于第二子腔12中,所述合路电路4与凹字形腔体的凹陷面贴合。
将合路电路4设于所述第一频段移相组件2与第二频段移相组件3之间,能够大大减少连接移相组件与合路电路的导线的长度,进一步,将合路电路4的输入端口设置在两侧,便于就近与移相器的输出端口连接,减少电缆的使用,降低布线的复杂性。与合路电路4设置在两个移相器外侧的设计相比,大大减少了电缆的使用数量,简化了布线。
所述第一频段移相组件2中包括至少一个第一频段移相器,所述第二频段移相组件3包括至少一个第二频段移相器,所述合路电路4包括至少一个合路器,所述合路器两侧的输入端口分别同时连接所述第一频段移相 器和第二频段移相器上对应的输出端口。
所述第一频段移相组件2或者第二频段移相组件3中至少存在一个介质移相结构,所述介质移相结构包括:移相电路及配合所述移相电路移相的移动介质。即所述第一频段移相组件2及第二频段移相组件3可以均包括介质移相结构,或者其中一个移相组件中的移相器为导体移相器,另一个为介质移相器,第一频段移相组件2中的移相器为导体移相器,第二频段移相组件3中的移相器为介质移相器,或者,第一频段移相组件2中的移相器为介质移相器,所述第二频段移相组件3中的移相器为导体移相器。所述导体移相器通过U型可移动导体带和移相器传输线耦合长度变化,改变传输路径的实际长度,引起微波信号相位的改变。
设于第一频段移相组件2与第二频段移相组件3之间的合路电路4为微带线结构。微带线是支在基片上的单一导体带构成的微波传输线,与地平面之间用一种电介质隔离开,该信号线的厚度、宽度、与地平面之间的距离以及特性阻抗是可控的。所述合路电路4采用微带线结构传输信号的速度快,体积小,抗干扰能力强,可靠性高。
本发明实施例中优选所述第一频段移相组件2和第二频段移相组件3优选均包括介质移相器,所述第一频段移相组件2包括:第一频段移相电路21及配合第一频段移相电路21移动以改变相位的第一移动介质22,所述第一移动介质22设于第一频段移相电路板的上下两侧;第二频段移相器3包括:第二频段移相电路31及配合第二频段移相电路31移动以改变相位的第二移动介质32,所述第二移动介质32设于第二频段移相电路板的上下两侧。所述移动介质合路电路能够沿着移相器轴向移动,所述第一移动介质22及第二移动介质32的形状大小不限。随着移动介质移动的过程中改变合路电路4输出端的输出相位。
本发明提供的第一频段移相电路21及第二频段移相电路22优选采用PCB电路,所述凹字形腔体中垂直于所述电路板的侧壁上还设置有卡槽17,用于固定内部电路板,使内部电路板固定于所述腔体1中,提高内部电路板的抗冲击能力。第一频段移相电路21及第二频段移相电路22也可采用金属电路,用塑料件支撑。以降低移相组件的重量,同时降低制造成 本。
在本实施例中,第一移动介质22和第二移动介质32沿着移相器的轴向移动,利用PCB的开槽或者在腔体上设置导向凸台作为移相器移动的轨道。
所述凹字形腔体1为封闭或半封闭结构,本发明实施例优选将所述凹字形腔体1的凹陷面与所述卡槽17下端设置在同一平面上。
本发明实施例中,所述腔体为半封闭结构,所述第一频段移相电路21、第二频段移相电路31及所述合路电路4设置于同一PCB板上。第一子腔11与第二子腔12在靠近腔体凹陷面的一侧设置有移动槽16,用于所述PCB板在腔体内移动,该移动槽16的长度由PCB板的纵向长度决定。合路电路4的两个输入口分别与两个移相器的输出口通过连接点相连。所述第一子腔11及第二子腔12在所述移动槽16上方设置有导通槽13,用于避开移相电路与合路电路的连接点,该导通槽13的大小取决于该连接点的大小及PCB电路板纵向移动的距离。
为了增强半封闭结构的第一子腔11及第二子腔12支撑力,进而更好地保护内部组件,本实施例中第一子腔11与第二子腔12在平行于PCB板的两侧均设有固定件14,所述固定件14可以是焊接柱,用于通过焊接等方式连接所述腔体的上下两侧,在图2中明显看出所述固定件14仅设置于第一子腔11靠近凹字形腔体1的凹陷面一侧,考虑到在远离所述凹陷面的腔侧无开口,因此并未设置所述固定件14。
所述第一频段移相组件2和第二频段移相组件3工作于不同的频段。将两个不同频段的移相器的移相电路和合路电路集成在同一电路板上,减少了部件的数量,大大减少了电缆的使用,同时减少外界环境对移相器的干扰,提高移相器的可靠性。
将不同频段的移相器的移相电路和合路电路制作在同一PCB板上,减少移相器与合路电路连接所用到的外部电缆的数量,减少移相器与合路电路部件互联的焊点。
本发明提供的图1及图2所示的移相结构的结构示意图中,第一频段移相电路21中设置有一个输入端口211,用于第一频段信号的输入,在 所述第一频段移相电路21上还设置有输出端口212,所述输出端口212与合路电路4的输入端42相连;同样地,第二频段移相电路31设置有输入端口311,用于第二频段信号的输入,还设置有输出端口312,所述输出端口312与合路电路4的输入端口43相连。
第一频段移相组件2与第二频段移相组件3工作时,第一频段信号从第一频段移相电路21的输入端211;第二频段信号从第二频段移相电路31的输入端311输入,两种频段信号经移相器的输出端输入到合路电路,经合路电路4合并再输出端44输出信号。
所述合路电路4包括至少一个合路器,所述合路器的数量可以与移相组件输出端口的数量相等。但为了进一步减小移相结构的腔体体积,腔体中设置的合路器的数量小于或等于移相组件输出端口的数量,值得说明的是,所述第一频段移相器的输出端口212的数量与所述第二频段移相器的输出端口312的数量可以不相等,则所述合路器的数量小于或等于所述第一频段移相组件2及第二频段移相组件3中输出端口数量的最小值。
如图1所示,所述腔体还包括连接第一子腔体11与第二子腔体12的连接结构,所述合路电路设置于所述连接结构上,且在所述连接结构上还设置有2条平行的布线槽15,所述布线槽15沿着腔体纵长方向延伸,用于同轴电缆5的外导体焊接,同时保护腔体1上焊接的同轴电缆,对所述腔体上的线缆构成防护作用。所述布线槽15上设置有若干通孔,用于同轴电缆5的介质及内导体穿过,与内部电路焊接形成第一频段移相组件2的输入端口211、第二频段移相器3的输入端口311及合路电路4的输出口44。所述通孔12可以是方形、圆形等任意形状,通孔数量不限。
值得说明的是,移相结构中可以包括多个所述移相组件,每组移相组件之间电性连接,如图1所示,包括三端口输出的第一频段移相组件2和第二频段移相组件3,对应的合路电器的数量为3个,输入信号由第一频段移相组件2的输入端口211和第二频段移相组件3的输入端口311输入后,用功分器分为两条支路,一条支路经第一合路器与外部辐射单元相连,一条支路与第一级移相组件输入端相连,第一级移相组件的输出端同样有两条支路,一条支路经第二合路器与外部辐射单元相连,另一条支路与第 二级移相组件的输入端相连,第二级移相组件的输出端经第三合路器与外部辐射单元相连,实现不同频段的三端口移相器的高度集成。本领域内技术人员可以知晓,按此方式同理可组成具有多个移相组件的多端口移相器,不管该移相结构内含多少移相组件,含多少输出端口,均可实现不同频段移相组件的高度集成。
本发明实施例分别将不同频段的移相组件置于两个半封闭结构的子腔中,提高移相器的抗冲击能力,有利于保证移相结构的电气性能的稳定性。同时,将不同频段的移相电路及合路电路设于同一PCB板上,整合了移相电路和合路电路,提高移相结构的集成度,减小移相结构的体积,大大减少了电缆的使用,简化了天线布局。
本发明还提供了第二种实施例,其立体图请参阅图3。本发明实施例提供的移相结构包括:腔体1,设于腔体1上的合路电路4,及设于所述腔体1内部的移相组件,所述腔体1包括第一子腔体11和第二子腔体12,所述合路电路4设置于所述第一子腔体11和第二子腔体12之间;所述移相组件包括分别设置于第一子腔体11内的第一频段移相组件2及设置于所述第二子腔体12内的第二频段移相组件3,所述合路电路4两侧均设有输入端,所述第一频段移相组件2的输出端口212及第二频段移相组件3的输出端312分别与合路电路4两侧的输入端相连。
本发明实施例优选所述腔体为凹字形,如图4所示,所述第一频段移相组件2置于第一子腔11中,第二频段移相器置于第二子腔12中,所述合路电路4与凹字形腔体的凹陷面贴合。
所述第一频段移相组件2中包括至少一个第一频段移相器,所述第二频段移相组件3包括至少一个第二频段移相器,所述合路电路4包括至少一个合路器,所述第一频段移相组件2或者第二频段移相组件3中至少存在一个介质移相结构,所述介质移相结构包括:移相电路及配合所述移相电路移相的移动介质。即所述第一频段移相组件2及第二频段移相组件3可以均包括介质移相结构,或者其中一个移相组件中的移相器为导体移相器,另一个为介质移相器,第一频段移相组件2中的移相器为导体移相器,第二频段移相组件3中的移相器为介质移相器,或者,第一频段移相组件 2中的移相器为介质移相器,所述第二频段移相组件3中的移相器为导体移相器。所述导体移相器通过U型可移动导体带和移相器传输线耦合长度变化,改变传输路径的实际长度,引起微波信号相位的改变。
所述第一频段移相组件2和第二频段移相组件3工作于不同的频段。本实施例优选所述第一频段移相组件2和第二频段移相组件3均包括介质移相器,所述第一频段移相组件2包括:第一频段移相电路21及配合第一频段移相电路21移动以改变相位的第一移动介质22,所述第一移动介质22设于第一频段移相电路板的上下两侧;第二频段移相器3包括:第二频段移相电路31及配合第二频段移相电路31移动以改变相位的第二移动介质32,所述第二移动介质32设于第二频段移相电路板的上下两侧。所述移动介质合路电路能够沿着移相器轴向移动,所述第一移动介质22及第二移动介质32的形状大小不限。随着移动介质移动的过程中改变合路电路4输出端的输出相位。
本实施例提供的合路电路4为微带线结构。采用微带线结构传输信号的速度快,体积小,抗干扰能力强,可靠性高。
与上一实施例不同的是,本实施例提供的腔体1为封闭结构,即所述第一子腔11与第二子腔12在靠近腔体凹陷面的一侧并未设置移动槽16,第一频段移相电路21、第二频段移相电路31及合路电路的电路分别设置于独立的三块PCB板上。
由于第一子腔11与第二子腔12均为封闭结构,所述第一子腔11及第二子腔12在垂直于PCB板方向的内侧壁上均设有卡槽17,用于固定内部电路板,将第一频段移相电路板及第二频段移相电路板的两端分别固定于腔体1的卡槽17上,使内部电路板固定于所述腔体1中,提高内部电路板的抗冲击能力。同样地,可以在两侧子腔外壁设置卡槽17或者采用焊接、粘合等方式将合路电路4固定在凹字形腔体凹陷面。
设于不同空间内的三个PCB板放置的位置不受限制,为了简化布线工艺,本发明实施例优选将第一子腔11、第二子腔12的卡槽17下端与凹字形腔体的凹陷面设置在同一平面上。
由于第一子腔11与第二子腔12均为封闭结构,腔体自身具备足够的 支撑力,因此本实施例并未另外设置固定件14来支撑第一子腔11和第二子腔12。
此外,由于第一子腔11与第二子腔12均为封闭结构,第一频段移相组件2与合路电路4之间的连接件41只能通过所述导通槽13连接所述移相组件与合路电路4。所述连接件41的一端连接移相组件的输出口,另一端连接合路电路的输入口42。所述连接件41优选为金属导体。所述第一频段移相组件2与第二频段移相器3的输入信号分别通过各自的输入端口211和311输入,从各自的输出口212和312经由连接件41输入合路电路4,经过合路电路4合并之后再经合路电路4的输出端口44输出到外部单元中。
除了上述区别,本发明实施例提供的移相结构中其他部件的位置及作用均与上一实施例相同,在此不再赘述。
同样地,本发明提供的移相结构也可以包括多级移相组件,两级相邻所述移相组件之间电性连接,包括三端口输出的第一频段移相组件2及第二频段移相组件3,对应的合路器的数量为3个,输入信号由第一频段移相组件2的输入端口211和第二频段移相组件3的输入端口311输入后,用功分器分为两条支路,一条支路经第一合路器与外部辐射单元相连,一条支路与第一级移相组件输入端相连,第一级移相组件的输出端同样有两条支路,一条支路经第二合路器与外部辐射单元相连,另一条支路与第二级移相组件的输入端相连,第二级移相组件的输出端经第三合路器与外部辐射单元相连,实现不同频段的三端口移相器的高度集成。本领域内技术人员可以知晓,按此方式同理可组成具有多个移相组件的多端口移相结构,不管该移相结构内含多少移相组件,含多少输出端口,均可实现不同频段移相器的高度集成。
本发明实施例在分别将不同频段的移相器置于两个封闭的子腔中,提高移相器的抗冲击能力,同时能够保护移相结构上焊接的线缆的焊点,有利于保证移相结构的电气性能的稳定性,与上一实施例相比,更好地避免引入无源互调产物。另外,本发明实施例利用腔体内侧设置的卡槽用于移相器PCB的固定,节省工艺程序,便于组装和大批量生产。
值得说明的是,本发明提供的移相结构,所述移相组件并不仅限于包括第一频段移相组件2和第二频段移相组件3,也可以包括超过两个频段的移相器,如第三频段移相器及第四频段移相器。相应调整合路电路的数量及电路的输入端的数量及连接方式即可。
进一步地,腔体1的制作采用拉挤方式一体成型,工艺简便,与传统支柱腔体的工艺相比大大减少了工艺程序,降低了生产成本,便于大批量生产。
本发明提供的移相结构,通过腔体将移相器的移相电路和合路电路的电路整合起来,减小移相结构的体积,提高移相器的抗冲击能力,同时能够保护移相结构上焊接的线缆的焊点,有利于保证移相结构的电气性能的稳定性,与将不同频段移相器置于同一腔体中相比,能够更好地避免引入无源互调产物。
更进一步地,本发明还提供了一种天线,所述天线包括上述技术方案所述的移相结构和与所述移相结构的合路电路4的公共输出端44相连的辐射单元。
所述天线的辐射单元与移相结构输出端相连,并通过第一频段移相组件和第二频段移相器实现不同频段的下倾角独立调节。
更进一步地,本发明还提供了一种基站,所述基站包括上述技术方案所述的天线,由于所述基站及天线皆是在上述移相结构的基础上进行改进的,自然承继了所述移相结构的优点,在此不再赘述。
以上所述仅是本发明的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (13)

  1. 一种移相结构,其特征在于,包括:腔体,设置于腔体上的合路电路,设置于腔体内的移相组件;所述腔体包括第一子腔体和第二子腔体,所述合路电路设置于第一子腔体和第二子腔体之间;所述移相组件包括分别设置于第一子腔体和第二子腔体内的第一频段移相组件和第二频段移相组件,所述合路电路两侧均设有输入端,所述第一频段移相组件和第二频段移相组件上的输出端分别与合路电路两侧的输入端相连。
  2. 根据权利要求1所述的移相结构,其特征在于,所述合路电路包括至少一个合路器,所述合路器两侧的输入端口分别同时连接所述第一频段移相组件和第二频段移相组件上对应的输出端口。
  3. 根据权利要求2所述的移相结构,其特征在于,所述合路器的数量小于或等于所述第一频段移相组件及第二频段移相组件输出端的最小值。
  4. 根据权利要求1所述的移相结构,其特征在于,所述第一子腔体及第二子腔体还设置有便于移相电路与合路电路连接处通过的导通孔。
  5. 根据权利要求1所述的移相结构,其特征在于,所述腔体还包括连接第一子腔体及第二子腔体的连接结构,所述合路电路设置于所述连接结构上。
  6. 根据权利要求5所述的移相结构,其特征在于,所述连接结构上还设有用于设置同轴电缆的布线槽,所述布线槽沿着腔体纵长方向延伸,所述布线槽上设置有用于同轴电缆的介质及内导体穿过的通孔。
  7. 根据权利要求1所述的移相结构,其特征在于,所述合路电路为微带线结构。
  8. 根据权利要求1任一所述的移相结构,其特征在于,所述第一子腔体及第二子腔体的开口侧设置有固定腔体的固定件。
  9. 根据权利要求1至8任一所述的移相结构,其特征在于,所述第一频段移相组件和第二频段移相组件分别包括第一频段移相电路和第二频段移相电路,所述第一子腔体及第二子腔体为半封闭结构,所述第一频段移相电路、第二频段移相电路及所述合路电路设置于同一PCB板上。
  10. 根据权利要求9所述的移相结构,其特征在于,所述腔体内侧壁还 设有用于固定PCB板的卡槽。
  11. 根据权利要求9所述的移相结构,其特征在于,所述第一频段移相组件及二频段移相组件中至少一个为介质移相结构,所述介质移相结构包括:与移相电路匹配移动的移动介质。
  12. 根据权利要求1至8任一所述的移相结构,其特征在于,所述移相组件有多个,两个相邻所述移相组件之间电性连接。
  13. 一种天线,其特征在于,包括如权利要求1至12任一项所述的移相结构。
PCT/CN2018/097595 2017-12-29 2018-07-27 移相结构及天线 WO2019128218A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711479528.1 2017-12-29
CN201711479528.1A CN107968239A (zh) 2017-12-29 2017-12-29 移相结构及天线

Publications (1)

Publication Number Publication Date
WO2019128218A1 true WO2019128218A1 (zh) 2019-07-04

Family

ID=61993585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097595 WO2019128218A1 (zh) 2017-12-29 2018-07-27 移相结构及天线

Country Status (2)

Country Link
CN (1) CN107968239A (zh)
WO (1) WO2019128218A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107968239A (zh) * 2017-12-29 2018-04-27 京信通信系统(中国)有限公司 移相结构及天线
CN108232379A (zh) * 2017-12-29 2018-06-29 京信通信系统(中国)有限公司 移相结构及天线
WO2020215660A1 (zh) * 2019-04-23 2020-10-29 京信通信技术(广州)有限公司 复合网络微波器件及其微波器件腔体
CN210430115U (zh) * 2019-05-13 2020-04-28 华为技术有限公司 移相器、阵列天线及基站
CN110085953A (zh) * 2019-05-28 2019-08-02 京信通信技术(广州)有限公司 复合网络微波器件及天线
CN110277611A (zh) * 2019-06-25 2019-09-24 华南理工大学 合路移相器
CN110661102B (zh) * 2019-09-29 2021-05-07 华南理工大学 移相装置及基站天线
CN113241520B (zh) * 2021-03-22 2023-04-14 广东通宇通讯股份有限公司 一种阵列天线
CN115411527B (zh) * 2022-04-27 2023-08-04 江苏亨鑫科技有限公司 一种应用于融合基站天线的一体化馈电网络的装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103975485A (zh) * 2013-12-02 2014-08-06 广东通宇通讯股份有限公司 基站天线馈电网络
CN106654494A (zh) * 2016-09-28 2017-05-10 武汉虹信通信技术有限责任公司 一种双系统移相合路模块及独立电调天线
CN106972267A (zh) * 2017-04-28 2017-07-21 广州司南天线设计研究所有限公司 一种应用于基站天线的空间立体移相器
CN107968239A (zh) * 2017-12-29 2018-04-27 京信通信系统(中国)有限公司 移相结构及天线
CN207624876U (zh) * 2017-12-29 2018-07-17 京信通信系统(中国)有限公司 移相结构及天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103975485A (zh) * 2013-12-02 2014-08-06 广东通宇通讯股份有限公司 基站天线馈电网络
CN106654494A (zh) * 2016-09-28 2017-05-10 武汉虹信通信技术有限责任公司 一种双系统移相合路模块及独立电调天线
CN106972267A (zh) * 2017-04-28 2017-07-21 广州司南天线设计研究所有限公司 一种应用于基站天线的空间立体移相器
CN107968239A (zh) * 2017-12-29 2018-04-27 京信通信系统(中国)有限公司 移相结构及天线
CN207624876U (zh) * 2017-12-29 2018-07-17 京信通信系统(中国)有限公司 移相结构及天线

Also Published As

Publication number Publication date
CN107968239A (zh) 2018-04-27

Similar Documents

Publication Publication Date Title
WO2019128218A1 (zh) 移相结构及天线
WO2019128216A1 (zh) 移相结构及天线
US7528676B2 (en) Balun circuit suitable for integration with chip antenna
WO2019114664A1 (zh) 一种馈电设备、天线及电子设备
US10530059B2 (en) Folding dipole antenna, wireless communication module and method of constructing the same
CN102593565A (zh) 电介质波导管的输入输出连接构造
EP1798806B1 (en) Apparatus for Converting Transmission Structure
CN110931987B (zh) 移相馈电装置、辐射阵列及大规模阵列天线
CN113437455B (zh) 分频移相器、馈电网络及基站天线
US20180083335A1 (en) Cable and high-frequency device using same
CN209767534U (zh) T型偏置电路以及用于基站天线的校准板
CN112886986A (zh) 一种射频电路及基站天线带状线合路器
CN109417213B (zh) 用于将信号供应给发射器的电路板组件
WO2021238210A1 (zh) 集成馈电器的移相器及应用其的天线
CN112290171B (zh) 同轴电缆和带状线的连接装置及其组装方法和高频设备
CN213150976U (zh) 同轴电缆和带状线的连接装置和高频设备
CN114497930A (zh) 合路移相装置与天线
EP1396934B1 (en) Compact balun with rejection filter for 802.11a and 802.11b simultaneous operation
WO2022160094A1 (zh) 一种一体化基站天线
CN111525216A (zh) 集成馈电器的移相器及应用其的天线
CN111063998A (zh) 天线及馈电校准网络装置
EP3249741B1 (en) Device for the connection between a strip line and a coaxial cable
CN220189864U (zh) 移相器及基站天线
US12009603B2 (en) Bias tee circuit and calibration board for base station antenna
CN217934179U (zh) 超宽带定向耦合器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18895857

Country of ref document: EP

Kind code of ref document: A1