WO2019128008A1 - 发电机转子液控盘车系统的自检方法及装置 - Google Patents

发电机转子液控盘车系统的自检方法及装置 Download PDF

Info

Publication number
WO2019128008A1
WO2019128008A1 PCT/CN2018/084570 CN2018084570W WO2019128008A1 WO 2019128008 A1 WO2019128008 A1 WO 2019128008A1 CN 2018084570 W CN2018084570 W CN 2018084570W WO 2019128008 A1 WO2019128008 A1 WO 2019128008A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic cylinder
self
hydraulic
limit position
generator rotor
Prior art date
Application number
PCT/CN2018/084570
Other languages
English (en)
French (fr)
Inventor
李红峰
王国帅
郑俊杰
翟恩地
张新刚
李晔
Original Assignee
江苏金风科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏金风科技有限公司 filed Critical 江苏金风科技有限公司
Priority to EP18894275.9A priority Critical patent/EP3564527B1/en
Priority to AU2018398704A priority patent/AU2018398704B2/en
Priority to ES18894275T priority patent/ES2857876T3/es
Priority to US16/480,345 priority patent/US11698055B2/en
Publication of WO2019128008A1 publication Critical patent/WO2019128008A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/30Retaining components in desired mutual position
    • F05B2260/31Locking rotor in position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/50Kinematic linkage, i.e. transmission of position
    • F05B2260/507Kinematic linkage, i.e. transmission of position using servos, independent actuators, etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/83Testing, e.g. methods, components or tools therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/40Type of control system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/50Control logic embodiment by
    • F05B2270/506Control logic embodiment by hydraulic means, e.g. hydraulic valves within a hydraulic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/70Type of control algorithm
    • F05B2270/708Type of control algorithm with comparison tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to the technical field of wind turbines, in particular to a self-checking method and device for a generator rotor control panel system.
  • the prior art proposes a hydraulic cylinder driven hydraulic steering system that is mounted on the nacelle base 10 and includes five drive units 20, see FIG.
  • the cranking system utilizes five hydraulic cylinders 30 to provide the driving force of the driving wheel.
  • the hydraulic cylinder 30 fixed at one end can drive the displacement of the matching driving unit 20, and the generator end cover 40 is uniformly distributed with the generator end cover hole in the circumferential direction. 50.
  • the drive pin 60 on each drive unit 20 is displaced into the bore after being aligned with the target generator end cap aperture 50, as shown in Figures 2, 3 and 4.
  • the telescopic hydraulic cylinder 30 can drive the generator end cover 40 to rotate, thereby realizing the cranking operation.
  • the existing cranking system does not have a self-checking procedure, and it is impossible to check whether there is a problem in the cranking system before the turning operation, and whether it will affect the use.
  • the present invention provides a self-checking method and device for a generator rotor hydraulic control system, which can perform self-checking of the turning system before the hydraulic steering condition is started.
  • the self-checking method for the generator rotor hydraulic control system comprises the following steps:
  • a plurality of the hydraulic cylinders sequentially perform a motion execution module function check: moving to a limit position of the cranking, and inserting and pulling motion between the turning pin and the fitting hole. And determining that the cranking system has a first starting condition.
  • the invention also provides a self-checking device for a generator rotor hydraulic control system, comprising:
  • a first detecting unit that acquires a reference length dimension when the reference hydraulic cylinder is located at the target working position
  • a storage unit storing a length dimension relationship table between the plurality of hydraulic cylinders of the hydraulic control system
  • control unit based on the reference length dimension and the length dimension relationship table, controlling a plurality of the hydraulic cylinders to sequentially perform a motion execution module function check: moving to a limit position of the cranking, and performing between the turning pin and the fitting hole Insert and pull movements.
  • the present invention provides a self-checking technical solution. Compared with the prior art, the following beneficial effects are obtained:
  • the scheme can select a reference hydraulic cylinder before the system starts working, and use the reference length dimension when the reference hydraulic cylinder is at the target working position as a reference point, which is equivalent to the coordinate origin of the self-test program.
  • the control hydraulic cylinder is sequentially moved to the limit position of the cranking cylinder, and the insertion and removal movement between the corresponding turning pin and the fitting hole is performed. It is thus confirmed that the first start condition is provided, that is, the motion execution module function check is completed.
  • the safety and reliability of the operation of the hydraulic control system can be effectively ensured, thereby greatly improving the operation efficiency of the whole machine on the basis of completely avoiding the influence of unfavorable factors on the operation of the turning operation.
  • the limit position check can be performed for a plurality of hydraulic cylinders, and it is verified that each hydraulic cylinder can move to its own limit position, and it is confirmed that the hydraulic cylinder itself has a good starting basis. Further, after the limit position check satisfies the second start condition, the motion execution module function check is performed to maximize the reliability of the cranking operation.
  • the hydraulic cylinder having the smallest angle with the horizontal plane serves as the reference hydraulic cylinder, and there is almost no load in the free state, or the load in the free state is the smallest. Use this as a control reference to get the best accuracy.
  • FIG. 1 is a schematic view of a shaft of a generator rotor hydraulic control system
  • Figure 2 is a front elevational view of the cabling system of Figure 1;
  • Figure 3 is an enlarged schematic view of a portion A of Figure 2;
  • Figure 4 is a side view of the drive unit of the generator rotor hydraulic control system
  • FIG. 5 is a flow chart of a self-test method for providing a generator rotor hydraulic control system according to Embodiment 1;
  • FIG. 6 is a flow chart of a self-test method of the generator rotor hydraulic control system provided in the second embodiment
  • FIG. 7 is a block diagram of a self-checking device of a generator rotor hydraulic control system according to an embodiment of the present invention.
  • 10-cabin base 20-drive unit, 30-cylinder, 40-generator end cover, 50-generator end cover hole, 60-disc pin;
  • each hydraulic cylinder is a push cylinder or a pull cylinder.
  • Hydraulic cylinder movement limit refers to the length limit of the hydraulic cylinder itself: the longest telescopic length and the shortest shortening length.
  • the shortest limit position refers to the position where the hydraulic cylinder is at the shortest shortening length, and the longest limit position means that the hydraulic cylinder is the longest telescopic.
  • the position of the length, for the hydraulic cylinder of 0-400mm, the shortest limit position means that the hydraulic cylinder is shortened to 0mm, and the longest limit position means that the hydraulic cylinder can extend up to 400mm. That is, the shortest shortening length of the hydraulic cylinder is 0 mm, and the longest telescopic length is 400 mm.
  • Hydraulic cylinder driving limit refers to the length limit of the hydraulic cylinder in the control system of the turning system, such as 10-390mm
  • the shortest limit position means that the minimum length of the hydraulic cylinder is 10mm under the operation of the turning system. That is, the minimum hydraulic cylinder can be shortened to 10 mm under the operation of the turning system.
  • the longest limit position of the disc means that the hydraulic cylinder can extend up to 390 mm under the operation of the turning system.
  • Centering The center line of the pin and the hole coincide.
  • FIG. 5 is a flowchart of a self-test method according to an embodiment of the present invention, which is used for self-test before starting the generator rotor hydraulic control system.
  • the self-test method of the generator rotor hydraulic control system includes the following steps:
  • the size relationship between the hydraulic cylinders of the hydraulic control system is fixed. Based on the hydraulic cylinders used in each set of hydraulic control system, there is a theoretically determined length-size relationship, that is, the difference relationship; the length-size relationship table can be based on The reference hydraulic cylinders are respectively established with the size relationship of other hydraulic cylinders, and the dimensional relationship can be established between the hydraulic cylinders.
  • the reference hydraulic cylinder can select a third hydraulic cylinder 33 that is substantially horizontal. In the free state, the hydraulic cylinder has almost no load. In comparison, the other hydraulic cylinders have their own weight load to the third hydraulic cylinder 33. As a control reference, you get the best accuracy. In fact, the attitude angles of the hydraulic cylinders of different systems have different overall design requirements.
  • the reference hydraulic cylinder is preferably a hydraulic cylinder with the smallest angle between the hydraulic cylinders and the horizontal plane, that is, the requirements for avoiding the influence of the self-weight load mentioned above.
  • the reference length dimension when the reference hydraulic cylinder is located at the target working position is a manual control mode.
  • the control system causes the third hydraulic cylinder to move in the manual operation mode, and the steering pin is aligned with the hole in the generator end cover through a visual inspection or a sensor, and the disk pin is inserted into the generator end cover hole.
  • the “target working position” described herein is that the corresponding turning pin of the reference hydraulic cylinder is inserted into the matching hole, that is, the turning pin and the hole on the generator end cover are centered, and the disk is The pin can be inserted into the generator cover hole.
  • the five hydraulic cylinders sequentially perform a function check of the motion execution module: moving to the limit position of the cranking, and performing the insertion and extraction movement between the turning pin and the fitting hole, It is determined that the cranking system has a first starting condition, that is, checking the hydraulic cylinder driving limit and checking whether the mating interface of the motion module and the generator meets the operating conditions of the cranking.
  • the motion may include moving clockwise to the limit position of the crank and/or moving counterclockwise to the limit position of the crank.
  • the corresponding mating component can be manually observed, and the insertion signal and the pullout signal of the disc pin can be automatically judged. And confirm, and feedback to the operator through the user interface, or save to the system management database.
  • FIG. 6 is a flowchart of a self-test method according to a second embodiment of the present invention. As shown in FIG. 6, the self-checking method of the generator rotor hydraulic control system includes the following steps:
  • the size relationship between the hydraulic cylinders of the hydraulic control system is fixed. Based on the hydraulic cylinders used in each set of hydraulic control system, there is a theoretically determined length-size relationship, that is, the difference relationship; the length-size relationship table can be based on The reference hydraulic cylinders are respectively established with the size relationship of other hydraulic cylinders, and the dimensional relationship can be established between the hydraulic cylinders.
  • the reference hydraulic cylinder can select a third hydraulic cylinder 33 that is substantially horizontal. In the free state, the hydraulic cylinder has almost no load. Similarly, the "target working position" is suitable for inserting the corresponding driving pin of the reference hydraulic cylinder. In the matching hole.
  • a plurality of hydraulic cylinders are respectively subjected to limit position inspection to verify that each hydraulic cylinder can move to its own limit position.
  • the limit position check may determine the length of the hydraulic cylinder at the extreme position to determine that the cranking system has a second starting condition, i.e., confirm that the hydraulic cylinder itself has a good starting basis.
  • the execution order of the motion execution module function check and the hydraulic cylinder limit position check is not specifically limited herein. After the limit position check satisfies the second start condition, the motion execution module function check is performed, which obviously ensures the reliable operation of the cranking operation to the utmost extent. Sex.
  • the motion may also include a clockwise motion to the extreme position and/or a counterclockwise motion to the extreme position.
  • the limit position check should be consistent with the direction of motion of the motion execution module function check.
  • One or five drive hydraulic cylinders move counterclockwise one by one to the limit position of the hydraulic cylinder
  • Seven or five drive hydraulic cylinders move clockwise one by one to the limit position of the hydraulic cylinder
  • limit position check and the motion execution module function check can also be such a design, that is, the counterclockwise movement after the clockwise movement, respectively, can also complete the above self-test operation.
  • FIG. 7 is a block diagram of a self-checking device of a generator rotor hydraulic control system according to an embodiment of the present invention.
  • the self-checking device of the generator rotor hydraulic control system includes a first detecting unit 71, a storage unit 72 and a control unit 73.
  • the first detecting unit 71 acquires the reference length dimension when the reference hydraulic cylinder is located at the target working position; here, the first detecting unit 71 can implement signal acquisition and acquisition by using the sensor, and the specific structural principle of the sensor is not the invention point of the present application. A person skilled in the art can make a selection based on the concept of the present invention, and details are not described herein again.
  • the limit position of the plurality of hydraulic cylinders and the limit position of the cranking cylinder may be acquired and output to the control unit to determine that the turning system has the second starting condition.
  • the storage unit 72 stores a length dimension relationship table between the plurality of hydraulic cylinders of the hydraulic steering system; the relationship table may be preset based on the hydraulic cylinder parameters of the specific cranking system.
  • control unit 73 can issue a specific command based on the reference length dimension and the length dimension relationship table, and control a plurality of the hydraulic cylinders to sequentially perform a motion execution module function check: moving to a limit position of the cranking, and performing a driving pin Insertion and pull-out movement with the fitting hole. Further, the control unit 73 can also issue specific commands to control the plurality of hydraulic cylinders to perform the limit position check respectively: moving to the hydraulic cylinder limit position.
  • the control unit 73 can be set independently or can utilize the control unit of the whole machine control system.
  • the self-test device may further include a second detecting unit 74 to obtain an insertion signal and an extraction signal of the disk truck pin, and output to the control unit to determine that the car system has the first Start condition.
  • the second detecting unit 74 can also implement signal acquisition by using a sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Wind Motors (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Hydraulic Motors (AREA)
  • Actuator (AREA)

Abstract

一种发电机转子液控盘车系统的自检方法,包括以下步骤:建立所述液控盘车系统多个液压缸间的长度尺寸关系表;选择基准液压缸,获取所述基准液压缸位于目标工作位置时的基准长度尺寸,所述目标工作位置为所述基准液压缸相应的盘车销插入适配孔中;基于所述基准长度尺寸和所述长度尺寸关系表,多个所述液压缸依次进行运动执行模块功能检查:运动至盘车极限位置,进行盘车销与适配孔之间的插、拔运动,以确定所述盘车系统具备第一启动条件。可有效保障液控盘车系统操作的安全可靠性,从而在完全规避不利因素对盘车操作影响的基础上,大大提高了整机作业效率。本发明还提供一种发电机转子液控盘车系统的自检装置。

Description

发电机转子液控盘车系统的自检方法及装置
本申请要求于2017年12月28日提交中国专利局、申请号为201711459630.5、发明名称为“发电机转子液控盘车系统的自检方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及风力发电机技术领域,具体涉及一种发电机转子液控盘车系统的自检方法及装置。
背景技术
众所周知,风力发电机组中的发电机均需要配置盘车系统,以便在特定场合下进行必要的盘车操作。例如,长时间未使用的发电机再次启用前,需要对发电机轴承进行盘车,以利于油膜建立;机组装配过程中,配合叶片安装;以及在装配完成后进行校验盘车,以判断由发电机带动的负荷(即机械或传动部分)是否有阻力增大而卡死的情况,从而不会使发电机的启动负荷变大而损坏电机(即烧坏)。显然,运行可靠的盘车系统是发电机的关键性指标要求。
基于此,现有技术提出了一种液压缸驱动的液控盘车系统,该盘车系统安装在机舱底座10上,包括五个驱动单元20,请参见图1。该盘车系统利用五个液压缸30提供盘车驱动力,具体地,一端固定的液压缸30可带动相适配的驱动单元20位移,发电机端盖40上周向均布有发电机端盖孔50,每个驱动单元20上的盘车销60位移至与目标发电机端盖孔50对正后插入孔内,结合图2、图3和图4所示。此时,伸缩液压缸30即可驱动发电机端盖40转动,实现盘车操作。然而,现有盘车系统未设自检程序,无法在盘车作业前检查核实盘车系统是否存在问题,是否会影响使用。
有鉴于此,亟待针对现有盘车系统进行优化设计,以在盘车系统开始工作前确认是否具备启动条件,从而为风力发电机整机良好运行提供有效保障。
发明内容
为解决上述技术问题,本发明提供一种发电机转子液控盘车系统的自 检方法及装置,该方法和装置能够在液控盘车工况启动前进行盘车系统的自检。
本发明提供的发电机转子液控盘车系统的自检方法,包括以下步骤:
建立所述液控盘车系统的多个液压缸间的长度尺寸关系表;
选择基准液压缸,获取所述基准液压缸位于目标工作位置时的基准长度尺寸,其中,所述目标工作位置为所述基准液压缸相应的盘车销插入适配孔中;
基于所述基准长度尺寸和所述长度尺寸关系表,多个所述液压缸依次进行运动执行模块功能检查:运动至盘车极限位置,进行盘车销与适配孔之间的插、拔运动,以确定所述盘车系统具备第一启动条件。
本发明还提供一种发电机转子液控盘车系统的自检装置,包括:
第一检测单元,获取基准液压缸位于目标工作位置时的基准长度尺寸;
存储单元,储存所述液控盘车系统的多个液压缸间的长度尺寸关系表;
控制单元,基于所述基准长度尺寸和所述长度尺寸关系表,控制多个所述液压缸依次进行运动执行模块功能检查:运动至盘车极限位置,进行盘车销与适配孔之间的插、拔运动。
针对液控盘车系统,本发明另辟蹊径地提出了上述自检技术方案。与现有技术相比,具有如下有益效果:
首先,当需要进行盘车操作时,该方案可在系统开始工作前选择基准液压缸,并以该基准液压缸位于目标工作位置时的基准长度尺寸作为基准点,相当于自检程序的坐标原点;基于多个液压缸间所固有的长度尺寸关系,以及基准液压缸的基准长度尺寸,控制液压缸依次运动至盘车极限位置,进行相应盘车销与适配孔之间的插拔运动,从而确认具备第一启动条件,也即,完成运动执行模块功能检查。如此设置,可有效保障液控盘车系统操作的安全可靠性,从而在完全规避不利因素对盘车操作影响的基础上,大大提高了整机作业效率。
其次,在本发明的优选方案还可针对多个液压缸进行极限位置检查,核实各液压缸均能够运动至自身极限位置,确认液压缸自身功能具有良好的启动基础。进一步地,极限位置检查满足第二启动条件后,进行运动执 行模块功能检查,以最大限度地确保盘车操作的可靠性。
再者,本发明优选与水平面夹角最小的液压缸作为基准液压缸,其自由状态下几乎没有载荷,或者说其自由状态下的载荷最小。以此作为控制参考基准,可获得最佳的精准度。
附图说明
图1为发电机转子液控盘车系统的轴测示意图;
图2为图1所示盘车系统的主视图;
图3为图2的A部放大示意图;
图4为发电机转子液控盘车系统的驱动单元侧视图;
图5为实施例一所提供发电机转子液控盘车系统的自检方法的流程图;
图6为实施例二所提供发电机转子液控盘车系统的自检方法的流程图;
图7为具体实施方式所述发电机转子液控盘车系统的自检装置的单元框图。
图1-图4中:
10-机舱底座上、20-驱动单元、30-液压缸、40-发电机端盖、50-发电机端盖孔、60-盘车销;
31-第一液压缸、32-第二液压缸、33-第三液压缸、34-第四液压缸、35-第五液压缸;
图7中:
71-第一检测单元、72-存储单元、73-控制单元、74-第二检测单元。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
不失一般性,本实施方式以图1和图2中所示液控盘车系统作为描述 主体,该系统采用五组驱动单元,辅以五根适配的液压缸提供驱动力。图中所示,第一液压缸31、第三液压缸33和第四液压缸34的装配方向一致,第二液压缸32和第五液压缸35的装配方向一致;相对于盘车系统的转动方向,各液压缸分别为推缸或拉缸。具体来说:
a.发电机顺时针转动时,第一液压缸31、第三液压缸33和第四液压缸34为推缸组,第二液压缸32和第五液压缸35为拉缸组;
b.发电机逆时针转动时,第一液压缸31、第三液压缸33和第四液压缸34为拉缸组,第二液压缸32和第五液压缸35为推缸组。
术语解释:
液压缸运动极限:指液压缸自身能够伸缩的长度极限:最长伸缩长度和最短缩短长度,最短极限位置是指液压缸处于最短缩短长度的位置,最长极限位置是指液压缸处于最长伸缩长度的位置,如对于0-400mm的液压缸而言,最短极限位置是指液压缸最短缩短到0mm,最长极限位置是指液压缸最长能伸到400mm。即该液压缸的最短缩短长度为0mm,最长伸缩长度为的400mm。
液压缸盘车运动极限:指在盘车系统控制程序中,液压缸能伸缩的长度极限,如10-390mm,最短盘车极限位置是指在盘车系统操作下液压缸缩短最小长度是10mm,即在盘车系统操作下液压缸能缩短至的最小值为10mm,最长盘车极限位置是指在盘车系统操作下液压缸最长能伸到390mm。
对中:就是销轴和孔的中心线重合。
请参考图5,图5为本发明一种具体实施例的自检方法流程图,用于发电机转子液控盘车系统启动前自检。
如图5所示,该发电机转子液控盘车系统的自检方法,包括以下步骤:
S51,建立多个液压缸间的长度尺寸关系表。
液控盘车系统多个液压缸间的尺寸关系固定,基于每套液控盘车系统所采用的液压缸,均有理论上确定的长度尺寸关系,即差值关系;该长度尺寸关系表可依据一基准液压缸分别建立与其他液压缸的尺寸关系,也可以各液压缸间分别建立尺寸关系。
S52,选择并获取基准液压缸位于目标工作位置时的基准长度尺寸。
基准液压缸可以选择大致趋于水平的第三液压缸33,在自由状态下,该液压缸几乎没有载荷,相比较而言,其他液压缸都有驱动单元自身重量载荷,以第三液压缸33作为控制参考基准,可获得最佳的精准度。实际上,不同系统液压缸姿态角度均有不同的总体设计要求,基准液压缸优选为多个液压缸中与水平面夹角最小的液压缸,即符合上述规避自重载荷影响的要求。
优选地,获取所述基准液压缸位于目标工作位置时的基准长度尺寸为手动控制模式。控制系统在手动操作模式下,使第三液压缸运动伸长,通过目测或者传感器,使盘车销与发电机端盖上的孔对中,盘车销插入发电机端盖孔中。
需要说明的是,本文所述的“目标工作位置”为该基准液压缸相应的盘车销插入适配孔中,也就是说,使盘车销与发电机端盖上的孔对中,盘车销可插入发电机端盖孔中。
S53,运动执行模块功能检查。
基于所述基准长度尺寸和所述长度尺寸关系表,五个液压缸依次进行运动执行模块功能检查:运动至盘车极限位置,进行盘车销与适配孔之间的插、拔运动,以确定盘车系统具备第一启动条件,即,检查液压缸盘车运动极限和检查运动模块与发电机的配合接口是否满足盘车操作条件。
其中,运动执行模块功能检查中,所述运动可以包括顺时针运动至盘车极限位置和/或逆时针运动至盘车极限位置。
对于逆时针运动检查,五个液压缸的动作顺序依次具体如下:
一、第五液压缸35运动执行模块功能检查
a)第五液压缸35运动到最长盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出;
二、第四液压缸34运动执行模块功能检查
a)第四液压缸34运动到最短盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出。
三、第三液压缸33运动执行模块功能检查
a)第三液压缸33运动到最短盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出。
四、第二液压缸32运动执行模块功能检查
a)第二液压缸32运动到最长盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出。
五、第一液压缸31运动执行模块功能检查
a)第一液压缸31运动到最短盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出。
对于顺时针运动检查,五个液压缸的动作顺序依次具体如下:
一、第一液压缸31运动执行模块功能检查
a)第一液压缸31运动到最长盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出;
二、第二液压缸32运动执行模块功能检查
a)第二液压缸32运动到最短盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出。
三、第三液压缸33运动执行模块功能检查
a)第三液压缸33运动到最长盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出。
四、第四液压缸34运动执行模块功能检查
a)第四液压缸34运动到最长盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出。
五、第五液压缸35运动执行模块功能检查
a)第一液压缸35运动到最短盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出。
这里,检查液压缸盘车运动极限和检查运动模块与发电机的配合接口是否满足盘车操作条件,可以人工观察相应配合部件,也可以通过获取盘车销的插入信号和拔出信号自动进行判断和确认,并通过用户交互界面反馈给操作人员,或者同步保存至系统管理数据库。
请参考图6,图6为本发明第二种具体实施例的自检方法流程图,如图6所示,该发电机转子液控盘车系统的自检方法,包括以下步骤:
S61,建立多个液压缸间的长度尺寸关系表。
液控盘车系统多个液压缸间的尺寸关系固定,基于每套液控盘车系统所采用的液压缸,均有理论上确定的长度尺寸关系,即差值关系;该长度尺寸关系表可依据一基准液压缸分别建立与其他液压缸的尺寸关系,也可以各液压缸间分别建立尺寸关系。
S62,选择并获取基准液压缸位于目标工作位置时的基准长度尺寸。
基准液压缸可以选择大致趋于水平的第三液压缸33,在自由状态下,该液压缸几乎没有载荷,同样,所述的“目标工作位置”为该基准液压缸相应的盘车销插入适配孔中。
S63,液压缸极限位置检查。
多个液压缸分别进行极限位置检查,核实每个液压缸均能够运动至自身极限位置。这里,所述极限位置检查可能通过获取位于极限位置的所述液压缸的长度尺寸,以确定盘车系统具备第二启动条件,即,确认液压缸自身功能具有良好的启动基础。
S64,运动执行模块功能检查,具体与第一实施例相同。
应当理解,运动执行模块功能检查与液压缸极限位置检查的执行顺序这里不作具体限制,极限位置检查满足第二启动条件后,进行运动执行模块功能检查,显然可以最大限度地确保盘车操作的可靠性。
具体来说,所述极限位置检查中,所述运动同样可以包括顺时针运动至极限位置和/或逆时针运动至极限位置。当然,极限位置检查与运动执行模块功能检查的运动方向应当一致。
对于极限位置检查和所述运动执行模块功能检查分别依逆时针运动后依顺时针运动的操作顺序,具体如下:
一、五个驱动液压缸逐个按照逆时针运动到液压缸极限位置
a)第一液压缸31按照逆时针方向运动到最短极限位置;
b)第二液压缸32按照逆时针方向运动到最长极限位置;
c)第三液压缸33按照逆时针方向运动到最短极限位置;
d)第四液压缸34按照逆时针方向运动到最短极限位置;
e)第五液压缸35按照逆时针方向运动到最长极限位置。
二、第五液压缸35运动执行模块功能检查
a)第五液压缸35运动到最长盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出;
三、第四液压缸34运动执行模块功能检查
a)第四液压缸34运动到最短盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出。
四、第三液压缸33运动执行模块功能检查
a)第三液压缸33运动到最短盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出。
五、第二液压缸32运动执行模块功能检查
a)第二液压缸32运动到最长盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出。
六、第一液压缸31运动执行模块功能检查
a)第一液压缸31运动到最短盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出。
七、五个驱动液压缸逐个按照顺时针运动到液压缸极限位置
a)第五液压缸35按照顺时针方向运动到最短极限位置;
b)第四液压缸34按照顺时针方向运动到最长极限位置;
c)第三液压缸33按照顺时针方向运动到最长极限位置;
d)第二液压缸32按照顺时针方向运动到最短极限位置;
e)第一液压缸31按照顺时针方向运动到最长极限位置。
八、第一液压缸31运动执行模块功能检查
a)第一液压缸31运动到最长盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出;
九、第二液压缸32运动执行模块功能检查
a)第二液压缸32运动到最短盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出。
十、第三液压缸33运动执行模块功能检查
a)第三液压缸33运动到最长盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出。
十一、第四液压缸34运动执行模块功能检查
a)第四液压缸34运动到最长盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出。
十二、第五液压缸35运动执行模块功能检查
a)第一液压缸35运动到最短盘车极限位置;
b)盘车销与发电机端盖孔对中,并插入孔中;
c)盘车销从端盖孔中拔出。
当然,极限位置检查和所述运动执行模块功能检查也可以为这样的设计,也就是说,分别依顺时针运动后依逆时针运动,同样可以完成上述自检操作。
请参考图7,图7为具体实施方式所述发电机转子液控盘车系统的自检装置的单元框图。
如图7所示,该发电机转子液控盘车系统的自检装置,包括第一检测 单元71、存储单元72和控制单元73。
其中,第一检测单元71,获取基准液压缸位于目标工作位置时的基准长度尺寸;这里,第一检测单元71可以采用传感器实现信号采集获取,传感器的具体结构原理非本申请的发明点所在,本领域技术人员可以基于本发明构思进行选择,在此不再赘述。当然,作为获取液压缸长度的第一检测单元71,还可以获取多个液压缸的极限位置和盘车极限位置,并输出至控制单元,以确定盘车系统具备第二启动条件。
其中,存储单元72储存所述液控盘车系统多个液压缸间的长度尺寸关系表;该关系表可基于具体盘车系统的液压缸参数进行预设。
其中,控制单元73能够基于所述基准长度尺寸和所述长度尺寸关系表,发出具体指令,控制多个所述液压缸依次进行运动执行模块功能检查:运动至盘车极限位置,进行盘车销与适配孔之间的插、拔运动。进一步地,该控制单元73还可以发出具体指令,控制多个液压缸分别进行极限位置检查:运动至液压缸极限位置。该控制单元73可以独立设置,也可以利用整机控制系统的控制单元。
另外,为了实现更好的用户体验,该自检装置还可以包括第二检测单元74,以获取盘车销的插入信号和拔出信号,并输出至控制单元,以确定盘车系统具备第一启动条件。同理,第二检测单元74也可以采用传感器实现信号采集获取。
需要说明的是,本实施方式提供的上述实施例,并非局限于图1和图2中所示装配方向的五个液压缸作为控制基础,应当理解,只要核心构思与本方案一致均在本申请请求保护的范围内。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (14)

  1. 发电机转子液控盘车系统的自检方法,其特征在于,包括以下步骤:
    建立所述液控盘车系统的多个液压缸间的长度尺寸关系表;
    选择基准液压缸,获取所述基准液压缸位于目标工作位置时的基准长度尺寸,其中,所述目标工作位置为所述基准液压缸相应的盘车销插入适配孔中;
    基于所述基准长度尺寸和所述长度尺寸关系表,多个所述液压缸依次进行运动执行模块功能检查:运动至盘车极限位置,进行盘车销与适配孔之间的插、拔运动,以确定所述盘车系统具备第一启动条件。
  2. 如权利要求1所述的发电机转子液控盘车系统的自检方法,其特征在于,所述运动执行模块功能检查中,所述运动包括顺时针运动至盘车极限位置和/或逆时针运动至盘车极限位置。
  3. 如权利要求1或2所述的发电机转子液控盘车系统的自检方法,其特征在于,所述运动执行模块功能检查通过获取所述盘车销的插入信号和拔出信号,以确定所述盘车系统具备第一启动条件。
  4. 如权利要求1所述的发电机转子液控盘车系统的自检方法,其特征在于,还包括:
    多个所述液压缸分别进行极限位置检查:运动至液压缸极限位置。
  5. 如权利要求4所述的发电机转子液控盘车系统的自检方法,其特征在于,所述极限位置检查中,所述运动包括顺时针运动至极限位置和/或逆时针运动至极限位置。
  6. 如权利要求4或5所述的发电机转子液控盘车系统的自检方法,其特征在于,所述极限位置检查还获取位于极限位置的所述液压缸的长度尺寸,以确定所述盘车系统具备第二启动条件。
  7. 如权利要求4所述的发电机转子液控盘车系统的自检方法,其特征在于,所述极限位置检查与所述运动执行模块功能检查的运动方向一致。
  8. 如权利要求7所述的发电机转子液控盘车系统的自检方法,其特征在于,所述极限位置检查满足所述第二启动条件后,进行所述运动执行模块功能检查:
    所述极限位置检查和所述运动执行模块功能检查分别依顺时针运动后依逆时针运动;
    或,
    所述极限位置检查和所述运动执行模块功能检查分别依逆时针运动后依顺时针运动。
  9. 如权利要求1所述的发电机转子液控盘车系统的自检方法,其特征在于,所述获取所述基准液压缸位于目标工作位置时的基准长度尺寸为手动控制模式。
  10. 如权利要求1所述的发电机转子液控盘车系统的自检方法,其特征在于,所述基准液压缸为多个所述液压缸中与水平面夹角最小的液压缸。
  11. 发电机转子液控盘车系统的自检装置,其特征在于,包括:
    第一检测单元(71),获取基准液压缸位于目标工作位置时的基准长度尺寸;
    存储单元(72),储存所述液控盘车系统的多个液压缸间的长度尺寸关系表;
    控制单元(73),基于所述基准长度尺寸和所述长度尺寸关系表,控制多个所述液压缸依次进行运动执行模块功能检查:运动至盘车极限位置,进行盘车销与适配孔之间的插、拔运动。
  12. 如权利要求11所述的发电机转子液控盘车系统的自检装置,其特征在于,所述控制单元(73)还控制多个所述液压缸分别进行极限位置检查:运动至液压缸极限位置。
  13. 如权利要求11所述的发电机转子液控盘车系统的自检装置,其特征在于,还包括:
    第二检测单元(74),获取所述盘车销的插入信号和拔出信号,并输出至所述控制单元(73),以确定所述盘车系统具备第一启动条件。
  14. 如权利要求11至13中任一项所述的发电机转子液控盘车系统的自检装置,其特征在于,所述第一检测单元(71)还获取多个所述液压缸的极限位置和盘车极限位置,并输出至所述控制单元(73),以确定所述盘车系统具备第二启动条件。
PCT/CN2018/084570 2017-12-28 2018-04-26 发电机转子液控盘车系统的自检方法及装置 WO2019128008A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18894275.9A EP3564527B1 (en) 2017-12-28 2018-04-26 Self-checking method and device for generator rotor hydraulic control turning system
AU2018398704A AU2018398704B2 (en) 2017-12-28 2018-04-26 Self-checking method and device for generator rotor hydraulic control turning system
ES18894275T ES2857876T3 (es) 2017-12-28 2018-04-26 Método y dispositivo de autocomprobación para sistema de giro de control hidráulico de rotor de generador
US16/480,345 US11698055B2 (en) 2017-12-28 2018-04-26 Self-inspection method and device for hydraulic control turning system of generator rotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711459630.5 2017-12-28
CN201711459630.5A CN109973327B (zh) 2017-12-28 2017-12-28 发电机转子液控盘车系统的自检方法及装置

Publications (1)

Publication Number Publication Date
WO2019128008A1 true WO2019128008A1 (zh) 2019-07-04

Family

ID=67062965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084570 WO2019128008A1 (zh) 2017-12-28 2018-04-26 发电机转子液控盘车系统的自检方法及装置

Country Status (6)

Country Link
US (1) US11698055B2 (zh)
EP (1) EP3564527B1 (zh)
CN (1) CN109973327B (zh)
AU (1) AU2018398704B2 (zh)
ES (1) ES2857876T3 (zh)
WO (1) WO2019128008A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110360057B (zh) * 2019-07-30 2020-11-13 上海电气风电集团股份有限公司 一种风力发电机组单叶片吊装盘车装置及其吊装方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050560A (en) * 1975-02-19 1977-09-27 Stal-Laval Turbin Ab Fluid pressure actuated clutch for starting multi-stage turbine
CN101054946A (zh) * 2007-05-30 2007-10-17 唐晓兵 液压盘车装置
CN103742372A (zh) * 2013-12-27 2014-04-23 北京金风科创风电设备有限公司 风力发电机组盘车组件与盘车方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201925109U (zh) * 2011-01-11 2011-08-10 龙源(北京)风电工程技术有限公司 风电机组高速轴的盘车装置
CN202370759U (zh) * 2011-11-22 2012-08-08 三一电气有限责任公司 一种盘车驱动调整装置及风力发电机
US9366230B2 (en) * 2013-03-14 2016-06-14 General Electric Company System and method for reducing loads acting on a wind turbine in response to transient wind conditions
DE102014207712A1 (de) * 2013-06-24 2014-12-24 Siemens Aktiengesellschaft Vorrichtung und Verfahren zum Drehen eines Rotors einer Windkraftanlage
CN103644082B (zh) * 2013-11-14 2016-11-09 上海华仪风能电气有限公司 兆瓦级风力发电机风轮锁定装置
GB201320191D0 (en) * 2013-11-15 2014-01-01 Ricardo Uk Ltd Wind turbine
CN204344384U (zh) * 2014-12-29 2015-05-20 华仪风能有限公司 一种风力发电机风轮锁定装置
CN106677993B (zh) * 2016-12-29 2019-02-12 江苏金风科技有限公司 用于转动风力发电机组转子的装置及方法
CN109973303B (zh) * 2017-12-28 2020-05-12 江苏金风科技有限公司 发电机转子液控盘车系统的控制方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050560A (en) * 1975-02-19 1977-09-27 Stal-Laval Turbin Ab Fluid pressure actuated clutch for starting multi-stage turbine
CN101054946A (zh) * 2007-05-30 2007-10-17 唐晓兵 液压盘车装置
CN103742372A (zh) * 2013-12-27 2014-04-23 北京金风科创风电设备有限公司 风力发电机组盘车组件与盘车方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GAO, FENGQUAN ET AL.: "Structure and fault diagnosis of turning gear for 200mw steam turbine", TURBINE TECHNOLOGY, vol. 46, no. 6, 30 December 2004 (2004-12-30), pages 470 - 471, XP009515643, ISSN: 1001-5884 *
REN, YAN ET AL.: "Commisioning research on hydraulic turning system of gas turbine generator (non-official translation)", SICHUAN ELECTRIC POWER TECHNOLOGY, vol. 39, no. 1, 20 February 2016 (2016-02-20), pages 82 - 86, XP009515639, ISSN: 1003-6954, DOI: 10.16527/j.cnki.cn51-1315/tm.2016.01.019 *
See also references of EP3564527A4
ZHANG, ZHENGANG.: " Reason analysis and countermeasures for the application failure of the hydraulic turning device of 200mw unit", PROCEEDINGS OF THE 25TH ANNUAL MEETING OF THE NATIONAL THERMAL POWER 200MW CLASS TECHNICAL COOPERATION CONFERENCE (NON-OFFICIAL TRANSLATION), vol. 25, 1 September 2007 (2007-09-01), pages 225 - 228, XP009515649 *

Also Published As

Publication number Publication date
ES2857876T3 (es) 2021-09-29
CN109973327B (zh) 2020-03-03
CN109973327A (zh) 2019-07-05
AU2018398704B2 (en) 2020-07-09
EP3564527A4 (en) 2020-01-08
AU2018398704A1 (en) 2019-07-25
EP3564527A1 (en) 2019-11-06
US11698055B2 (en) 2023-07-11
EP3564527B1 (en) 2020-11-25
US20190376493A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
EP2905467B1 (en) Wind turbine generator and method for locking rotation of rotor head of same
CN109696082B (zh) 一种火箭发射电连接器快速脱落装置
CN106762438B (zh) 用于转动风力发电机组转子的装置及方法
US9651020B2 (en) Portable crane for use in wind turbines
CN105793186A (zh) 用于控制负载的方法和系统
US20120131786A1 (en) Positioning system for use in wind turbines and methods of positioning a drive train component
SE535518C2 (sv) Lyftanordning för lyft av komponenter ingående i vindkraftverk och liknande konstruktioner
CN109973304B (zh) 风力发电机组的转子转动控制系统和控制方法
WO2019128008A1 (zh) 发电机转子液控盘车系统的自检方法及装置
KR20150047718A (ko) 풍력 발전기용 블레이드 검사장치 및 검사방법
US10697429B2 (en) Controller for wind turbine, wind turbine, program for rotor turning, and method of rotor turning for wind turbine
WO2019127997A1 (zh) 发电机转子液控盘车系统的控制方法及装置
CN207108306U (zh) 提升机和风力发电机组
CN105756723A (zh) 一种主动熔断装置、方法及航空发动机
CN106493488B (zh) 一种车身切换装置
JP2017049130A (ja) ブレード検査装置及びブレード検査方法
JP2021020573A (ja) 無人飛行機の状態確認装置および状態確認方法
CN205099243U (zh) 一种宽角度支撑臂举升机
CN102889829B (zh) 支承车与发射箱箱体的快速定位机构
CN112145346A (zh) 风力发电机组及仰角调节装置、系统、方法、介质和设备
CN104832369B (zh) 轮毂自动对销系统和控制方法、以及风力发电机
CN104340754B (zh) 一种收线机用的从动顶锥装置
CN212766812U (zh) 测试设备和飞行测试系统
CN105386921B (zh) 一种制动装置及其制动方法
CN204776016U (zh) 具有高空拍摄功能的飞行器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018398704

Country of ref document: AU

Date of ref document: 20180426

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018894275

Country of ref document: EP

Effective date: 20190716

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE