WO2019127193A1 - 一种天线及无人机 - Google Patents

一种天线及无人机 Download PDF

Info

Publication number
WO2019127193A1
WO2019127193A1 PCT/CN2017/119295 CN2017119295W WO2019127193A1 WO 2019127193 A1 WO2019127193 A1 WO 2019127193A1 CN 2017119295 W CN2017119295 W CN 2017119295W WO 2019127193 A1 WO2019127193 A1 WO 2019127193A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
length
antenna
radio signal
substrate
Prior art date
Application number
PCT/CN2017/119295
Other languages
English (en)
French (fr)
Inventor
李栋
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/119295 priority Critical patent/WO2019127193A1/zh
Priority to CN201780016268.6A priority patent/CN109075432B/zh
Publication of WO2019127193A1 publication Critical patent/WO2019127193A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/36Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like adapted to receive antennas or radomes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way

Definitions

  • the present application relates to the field of antenna technologies, and in particular, to an antenna and a drone.
  • the antenna is usually installed on the tripod of the drone, and at the same time, the motor is installed at the connection between the tripod and the UAV frame, that is, the motor is located above the antenna, so that the motor When working, it will cause interference to the antenna, causing the radiation pattern of the antenna to shift upward.
  • the present application discloses an antenna and a drone.
  • an antenna including a substrate, a radiation portion printed on one side of the substrate, and a guiding unit printed on the other side of the substrate;
  • the radiating portion includes a high frequency radiating unit for transmitting and receiving a high frequency radio signal, and the low frequency radiating unit for transmitting and receiving a low frequency radio signal;
  • the length of the guiding unit is the same as the length of the high frequency radiating element.
  • a drone comprising:
  • a fuselage having a tripod and a propeller
  • a motor mounted at a junction of the fuselage and the tripod for providing flight power to the drone
  • An antenna mounted on the stand comprising a substrate, a radiation portion printed on one side of the substrate, and a guiding unit printed on the other side of the substrate;
  • the radiating portion includes a high frequency radiating unit for transmitting and receiving a high frequency radio signal, and the low frequency radiating unit for transmitting and receiving a low frequency radio signal;
  • the length of the guiding unit is the same as the length of the high frequency radiating element.
  • the guiding unit can be made by printing the guiding unit on the antenna substrate on the other side different from the side on which the radiation portion is located, and the length of the guiding unit is the same as the length of the high-frequency radiation unit in the radiation portion.
  • the unit adjusts the high-frequency radiation pattern of the antenna and does not affect the low-frequency radiation pattern of the antenna.
  • Figure 1 is a front cross-sectional view of the antenna structure
  • Figure 2 is a rear cross-sectional view of the antenna structure
  • Figure 3 is a high frequency radiation pattern under normal conditions
  • FIG. 4 is an example of a high frequency radiation pattern of an antenna based on the antenna structure illustrated in FIG. 2;
  • Figure 5 shows an example of a drone.
  • the present application provides an antenna and a drone.
  • the antenna and the drone of the present application are described in detail below with reference to the accompanying drawings.
  • the features in the following embodiments and embodiments may be combined with each other, and the technical solutions in which the features in the embodiments and the embodiments are combined with each other also belong to the embodiments disclosed in the present application.
  • the antenna proposed in the present application is a dual-frequency symmetric vibrator antenna, that is, the antenna proposed in the present application can be used for transmitting and receiving radio signals of two frequency bands, for example, can be used for transmitting and receiving a high-frequency radio signal with a frequency of 5.8 GHz, and a frequency of 2.4. GHz low frequency radio signal.
  • FIG. 1 it is a front cross-sectional view of the antenna structure.
  • the antenna 100 illustrated in FIG. 1 includes a substrate 110 and a radiation portion 120 printed on one side of the substrate 110.
  • the substrate 110 may have a thickness of 0.6 mm, and the material thereof may be Rogers 4350.
  • the radiation portion 120 includes: a first radiator 130 and a second radiator 140.
  • the first radiator 130 and the second radiator 140 are based on an axis of symmetry. (such as the imaginary axis of the example shown in Figure 1) is symmetrical.
  • the first radiator 130 includes a low-frequency radiating unit 131 of a long branch, and a high-frequency radiating unit 132 of the short branch, correspondingly, the second radiator 140 includes a low-frequency radiating unit 141 of the long branch, and high-frequency radiation of the short branch Unit 142.
  • the radiation unit has the highest transmission and reception conversion efficiency when the length of the radiation unit is 1/4 of the wavelength of the radio signal transmitted and received. Therefore, in one embodiment, the length of the high frequency radiation unit 132 is ⁇ 1 /4. Similarly, the length of the high frequency radiating element 142 is also ⁇ 1 /4, and ⁇ 1 is the wavelength of the high frequency radio signal.
  • the length of the low frequency radiating element 131 is ⁇ 2 /4.
  • the length of the low frequency radiating element 142 is also ⁇ 2 /4, and ⁇ 2 is the wavelength of the low frequency radio signal.
  • the present application proposes to print a guiding unit on the other side of the substrate 110, which may be a metal conductor.
  • FIG. 2 is a rear cross-sectional view of the antenna structure. As shown in FIG. 2, the other side of the substrate 110 is printed with a guiding unit 150, and the guiding unit 150 is adjacent to one end of the substrate 110.
  • the length of the guiding unit 150 may be set according to the length of the high-frequency radiating unit 132 (or the high-frequency radiating unit 142). Specifically, the length of the guiding unit 150 is the same as the length of the high-frequency radiating unit 132 (or the high-frequency radiating unit 142), that is, ⁇ 1 /4.
  • the length of the guiding unit 150 should be the low frequency radiating unit 131 (or the low frequency radiating unit).
  • the length of the 141) is different, and specifically, the length of the directing unit 150 is smaller than the length of the low frequency radiating unit 131 (or the low frequency radiating unit 141).
  • the guiding unit 150 is printed on the lower end of the substrate 110. At this time, the guiding unit 150 can adjust the high-frequency radiation pattern of the antenna 110 downwardly, for example, As shown in FIG. 3, it is a high-frequency radiation pattern under normal conditions, as shown in FIG. 4, which is an example of a high-frequency radiation pattern of the antenna based on the antenna structure illustrated in FIG. 2.
  • the guiding unit 150 can adjust the upward shift of the high-frequency radiation pattern of the antenna 110. effect.
  • the guiding unit 150 is inclined at a certain angle with the substrate 110.
  • the guiding unit 150 can be completely printed on the substrate while reducing the width of the substrate 110. 110, thereby reducing the size of the antenna.
  • the length of the guiding unit 150 has a certain limit, and by changing the width of the guiding unit 150, The intensity of the influence of the guiding unit 150 on the high-frequency radiation pattern is changed. Specifically, the larger the width of the guiding unit 150 is, the greater the influence on the high-frequency radiation pattern is, and the more the width of the guiding unit 150 can be expressed. The larger the offset angle of the high-frequency radiation pattern is, the correspondingly, the intensity of the influence of the guiding unit 150 on the high-frequency radiation pattern can be changed by adjusting the distance between the guiding unit 150 and the high-frequency radiation unit.
  • the distance between the directing unit 150 and the high frequency radiating element can be expressed as the distance between the respective centroids of the two. Specifically, the closer the distance between the two, the greater the influence of the directing unit 150 on the high-frequency radiation pattern, that is, the closer the distance between the two, the more the offset angle of the high-frequency radiation pattern is. Big.
  • the guiding unit can be made by printing the guiding unit on the antenna substrate on the other side different from the side on which the radiation portion is located, and the length of the guiding unit is the same as the length of the high-frequency radiation unit in the radiation portion.
  • the unit adjusts the high-frequency radiation pattern of the antenna and does not affect the low-frequency radiation pattern of the antenna.
  • the antenna is usually installed on the tripod of the drone, and at the same time, the motor is installed at the connection between the tripod and the UAV body, that is, the motor is located above the antenna.
  • the size of the drone body is relatively large, so the antenna size does not need to be too small, and the distance between the motor and the antenna is not too small, so that the motor will have a high-frequency radiation pattern of the antenna while the motor is working. The effect is small, but the effect is small, and the specific deviation of the antenna's high-frequency radiation pattern is small.
  • the size of the drone body will be reduced as much as possible, so that the drone can be used to perform missions in more scenes, while the size of the drone is larger.
  • the antenna size will also be reduced, and the distance between the motor and the antenna will be relatively reduced, so that when the motor is working, the motor will have a greater impact on the antenna's high-frequency radiation pattern, and The motor is again above the antenna, which will cause the antenna's high frequency radiation pattern to be shifted upwards at an angle greater.
  • the antenna proposed in the present application can be mounted on the stand.
  • the drone as illustrated in FIG. 5 includes a housing 510 that can include a fuselage 530 and a stand 540 coupled to both sides of the bottom of the fuselage 530. Further, the housing 510 may further include an arm 550 connected to both sides of the airframe 530.
  • the propeller 560 is fixedly mounted on the arm 550 to provide flight power to the drone, and the fuselage 530 and the stand 540 are fixed.
  • a motor 570 is connected, and the antenna 520 is fixedly coupled to the stand 540.
  • the antenna 520 includes a substrate, a radiation portion printed on one side of the substrate, and a guiding unit printed on the other side of the substrate; wherein the radiation portion includes a high frequency radiation unit and a low frequency radiation unit, and the high frequency radiation unit is used for The high frequency radio signal is sent and received, and the low frequency radiating unit is used for transmitting and receiving low frequency radio signals; the length of the guiding unit is the same as the length of the high frequency radiating unit.
  • the length of the cell is directed to 1/4, [lambda] 1 is the frequency of the radio signal wavelength ⁇ .
  • the length of the lead-directing unit is different from the length of the low frequency radiating element.
  • the length of the lead-directing unit is less than the length of the low frequency radiating element.
  • the directing unit is adjacent to an end of the substrate remote from the motor.
  • the lead-in unit is a metal conductor.
  • the length of the low frequency radiating element is ⁇ 2 /4, and ⁇ 2 is the wavelength of the low frequency radio signal.
  • the frequency of the high frequency radio signal is 5.8 GHz and the frequency of the low frequency radio signal is 2.4 GHz.
  • the motor 570 is located above the antenna 520, it interferes with the antenna 520, causing the high-frequency radiation pattern of the antenna 520 to shift upward, but at the same time, the antenna 520 has a guiding unit.
  • the directing unit can adjust the high frequency radiation pattern of the antenna 520.
  • the high frequency radiation pattern of the antenna 520 can be kept horizontal by printing the guiding unit on one end of the substrate near the bottom end of the base.
  • the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Aerials (AREA)

Abstract

一种天线及无人机,所述天线包括基板、印刷在所述基板一侧的辐射部、以及印刷在所述基板另一侧的引向单元;其中,所述辐射部包括高频辐射单元与低频辐射单元,所述高频辐射单元用于收发高频无线电信号,所述低频辐射单元用于收发低频无线电信号;所述引向单元的长度与所述高频辐射单元的长度相同。上述引向单元可对高频无线电信号产生引向作用,因而可改变天线的高频辐射方向图,同时,上述引向单元不会对低频无线电信号产生反射作用,因而不会改变天线的低频辐射方向图。

Description

一种天线及无人机 技术领域
本申请涉及天线技术领域,尤其涉及一种天线及无人机。
背景技术
天线作为无人机载荷的重要组成部分,通常安装在无人机的脚架上,而同时在脚架与无人机机架连接处还安装有电机,也即电机位于天线上方,从而在电机工作时,将对天线造成干扰,使得天线的辐射方向图向上偏移。
发明内容
有鉴于此,本申请公开了一种天线及无人机。
第一方面,公开一种天线,包括基板、印刷在所述基板一侧的辐射部、以及印刷在所述基板另一侧的引向单元;
其中,所述辐射部包括高频辐射单元与低频辐射单元,所述高频辐射单元用于收发高频无线电信号,所述低频辐射单元用于收发低频无线电信号;
所述引向单元的长度与所述高频辐射单元的长度相同。
第二方面,公开一种无人机,所述无人机包括:
机身,所述机身上具有脚架、螺旋桨;
电机,安装于所述机身与所述脚架的连接处,用于为所述无人机提供飞行动力;
天线,安装于所述脚架,包括基板、印刷在所述基板一侧的辐射部、以及印刷在所述基板另一侧的引向单元;
其中,所述辐射部包括高频辐射单元与低频辐射单元,所述高频辐射单元用于收发高频无线电信号,所述低频辐射单元用于收发低频无线电信号;
所述引向单元的长度与所述高频辐射单元的长度相同。
由上述实施例可见,通过在天线基板上,与辐射部所在侧不同的另一侧印刷引向单元,且该引向单元的长度与辐射部中高频辐射单元的长度相同,可以使得该引向单元对天线的高频辐射方向图产生调整作用,同时,不会对天线的低频辐射方向图产生影响。
附图说明
图1为天线结构正面剖视图;
图2为天线结构背面剖视图;
图3为正常情况下的高频辐射方向图;
图4为基于图2所示例的天线结构,天线的高频辐射方向图的一种示例;
图5为无人机的一种示例。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提出一种天线及无人机,下面结合附图,示出下述实施例对本申请的天线及无人机进行详细说明。在不冲突的情况下,下述实施例及实施方式中的特征可以相互组合,并且,实施例及实施方式中的特征相互组合构成的技术方案,也属于本申请公开的实施例。
实施例一
首先说明,本申请提出的天线为双频对称振子天线,即本申请提出的天线可用于收发两个频段的无线电信号,例如,可用于收发频率为5.8GHz的高频无线电信号,与频率为2.4GHz的低频无线电信号。具体的,如图1所示,为天线结构正面剖视图。
如图1所示例的天线100,包括基板110,与印刷在基板110一侧的辐射部120。其中,基板110的厚度可以为0.6mm,其材料可以为Rogers4350,辐射部120包括:第一辐射体130、第二辐射体140,该第一辐射体130与第二辐射体140基于一对称轴(例如图1中所示例的虚轴)对称。该第一辐射体130包括长枝节的低频辐射单元131,与短枝节的的高频辐射单元132,相应的,第二辐射体140包括长枝节的低频辐射单元141,与短枝节的高频辐射单元142。
考虑到当辐射单元的长度为其收发的无线电信号波长的1/4时,辐射单元的发射和接收转换效率最高,因此,在一实施例中,高频辐射单元132的长度为λ 1/4,同样,高频辐射单元142的长度也为λ 1/4,λ 1为高频无线电信号的波长。
相应的,低频辐射单元131的长度为λ 2/4,同样,低频辐射单元142的长度也为λ 2/4,λ 2为低频无线电信号的波长。
进一步,为了调整天线100的高频辐射方向图,本申请提出,在基板110的另一侧印刷引向单元,该引向单元可以为金属导体。
请参见图2,为天线结构背面剖视图,如图2所示,基板110的另一侧印刷有引向单元150,且该引向单元150靠近基板110的一端。
在本申请实施例中,为了实现通过引向单元150调整天线100的高频辐射方向图,可以根据高频辐射单元132(或高频辐射单元142)的长度设置引向单元150的长度。具体的,引向单元150的长度与高频辐射单元132(或高频辐射单元142)的长度相同,即为λ 1/4。
相应的,为了避免引向单元150调整高频辐射方向图的同时,也改变低频辐射方向图,在本申请实施例中提出,引向单元150的长度应与低频辐射单元131(或低频辐射单元141)的长度不同,具体的,引向单元150的长度小于低频辐射单元131(或低频辐射单元141)的长度。
需要说明的是,如图2所示,引向单元150印刷在基板110的下端,此时,引向单元150可以对天线110的高频辐射方向图起到向下偏移的调整作用,例如,如图3所示,为正常情况下的高频辐射方向图,如图4所示,为基于图2所示例的天线结构,天线的高频辐射方向图的一种示例。
在上述基础上,本领域技术人员可以理解的是,若引向单元150印刷在基板110的上端,那么,引向单元110则可以对天线110的高频辐射方向图起到向上偏移的调整作用。
还需要说明的是,如图2所示,引向单元150与基板110呈一定的倾斜角度,如此设置可以在减小基板110宽度的情形下,仍可以使得引向单元150完整地印刷在基板110上,从而减小天线的尺寸。
还需要说明的是,通过上述描述可知,为了调整高频辐射方向图,同时不对低频辐射方向图产生影响,引向单元150的长度具有一定限制,而通过改变引向单元150的宽度,则可以改变引向单元150对高频辐射方向图的影响强度,具体的,引向单元150的宽度越大,其对高频辐射方向图的影响越大,具体可以表现为引向单元150的宽度越大,高频辐射方向图的偏移角度越大;相应的,还可以通过调整引向单元150与高频辐射单元之间的距离来改变引向单元150对高频辐射方向图的影响强度,在一实施例中,引向单元150与高频辐射单元之间的距离可以表示为两者各自质心之间的距离。具体的,两者之间的距离越近,则引向单 元150对高频辐射方向图的影响越大,也即,两者之间的距离越近,高频辐射方向图的偏移角度越大。
由上述实施例可见,通过在天线基板上,与辐射部所在侧不同的另一侧印刷引向单元,且该引向单元的长度与辐射部中高频辐射单元的长度相同,可以使得该引向单元对天线的高频辐射方向图产生调整作用,同时,不会对天线的低频辐射方向图产生影响。
至此,完成实施例一的相关描述。
如下,示出本申请提出的天线的一种应用场景。
天线作为无人机载荷的重要组成部分,通常安装在无人机的脚架上,而同时在脚架与无人机机身连接处还安装有电机,也即电机位于天线上方。目前,无人机机身体积相对较大,从而天线尺寸也无需太小,电机与天线之间的距离也不会太小,从而在电机工作时,电机虽然会对天线的高频辐射方向图产生影响,但影响较小,具体可表现为使得天线的高频辐射方向图的偏移角度较小。
而随着无人机技术的发展,无人机机身体积也将尽可能地减小,以使得无人机可以适用于执行更多场景下的飞行任务,而在无人机机身体积较小的情况下,天线尺寸也将减小,电机与天线之间的距离相对而言也会减小,从而在电机工作时,电机将对天线的高频辐射方向图产生较大的影响,而且电机又位于天线上方,从而将使得天线的高频辐射方向图向上偏移的角度较大。此时,为了校正天线的高频辐射方向图,则可以在脚架上安装本申请提出的天线。
请参见图5,为无人机的一种示例。如图5所示例的无人机包括:壳体510,壳体510上可包括机身530和连接在机身530底部两侧的脚架540。进一步,壳体510上还可以包括连接在机身530两侧的机臂550,机臂550上固定安装有螺旋桨560,为无人机提供飞行动力,机身530与脚架540之间还固定连接有电机570,天线520则固定连接在脚架540上。
具体的,上述天线520包括基板、印刷在基板一侧的辐射部,以及印刷在基板另一侧的引向单元;其中,辐射部包括高频辐射单元与低频辐射单元,高频辐射单元用于收发高频无线电信号,低频辐射单元用于收发低频无线电信号;引向单元的长度与高频辐射单元的长度相同。
在一实施例中,引向单元的长度为λ 1/4,所述λ 1为所述高频无线电信号的波长。
在一实施例中,引向单元的长度与低频辐射单元的长度不同。
在一实施例中,引向单元的长度小于所述低频辐射单元的长度。
在一实施例中,引向单元靠近基板上远离电机的一端。
在一实施例中,引向单元为金属导体。
在一实施例中,低频辐射单元的长度为λ 2/4,λ 2为低频无线电信号的波长。
在一实施例中,高频无线电信号的频率为5.8GHz,低频无线电信号的频率为2.4GHz。
结合上述实施例一中天线的相关描述,虽然电机570位于天线520的上方,对天线520产生干扰,导致天线520的高频辐射方向图向上偏移,但同时天线520中具有引向单元,该引向单元可以对天线520的高频辐射方向图起到调整作用,具体的,通过将引向单元印刷在基板的靠近脚架底端的一端,可以使得天线520的高频辐射方向图保持水平。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (16)

  1. 一种天线,其特征在于,包括基板、印刷在所述基板一侧的辐射部、以及印刷在所述基板另一侧的引向单元;
    其中,所述辐射部包括高频辐射单元与低频辐射单元,所述高频辐射单元用于收发高频无线电信号,所述低频辐射单元用于收发低频无线电信号;
    所述引向单元的长度与所述高频辐射单元的长度相同。
  2. 根据权利要求1所述的天线,其特征在于,所述引向单元的长度为λ1/4,所述λ1为所述高频无线电信号的波长。
  3. 根据权利要求1所述的天线,其特征在于,所述引向单元的长度与所述低频辐射单元的长度不同。
  4. 根据权利要求3所述的天线,其特征在于,所述引向单元的长度小于所述低频辐射单元的长度。
  5. 根据权利要求1所述的天线,其特征在于,所述引向单元靠近所述基板的其中一端。
  6. 根据权利要求1所述的天线,其特征在于,所述引向单元为金属导体。
  7. 根据权利要求1所述的天线,其特征在于,所述低频辐射单元的长度为λ2/4,所述λ2为所述低频无线电信号的波长。
  8. 根据权利要求1所述的天线,其特征在于,所述高频无线电信号的频率为5.8GHz;所述低频无线电信号的频率为2.4GHz。
  9. 一种无人机,其特征在于,所述无人机包括:
    机身,所述机身上具有脚架、螺旋桨;
    电机,安装于所述机身与所述脚架的连接处,用于为所述无人机提供飞行动力;
    天线,安装于所述脚架,包括基板、印刷在所述基板一侧的辐射部、以及印刷在所述基板另一侧的引向单元;
    其中,所述辐射部包括高频辐射单元与低频辐射单元,所述高频辐射单元用于收发高频无线电信号,所述低频辐射单元用于收发低频无线电信号;
    所述引向单元的长度与所述高频辐射单元的长度相同。
  10. 根据权利要求9所述的无人机,其特征在于,所述引向单元的长度为λ1/4,所述λ1为所述高频无线电信号的波长。
  11. 根据权利要求9所述的无人机,其特征在于,所述引向单元的长度与所述低频辐射单元的长度不同。
  12. 根据权利要求11所述的无人机,其特征在于,所述引向单元的长度小于所述低频辐射单元的长度。
  13. 根据权利要求9所述的无人机,其特征在于,所述引向单元靠近所述基板上远离所述电机的一端。
  14. 根据权利要求9所述的无人机,其特征在于,所述引向单元为金属导体。
  15. 根据权利要求9所述的无人机,其特征在于,所述低频辐射单元的长度为λ2/4,所述λ2为所述低频无线电信号的波长。
  16. 根据权利要求9所述的无人机,其特征在于,所述高频无线电信号的频率为5.8GHz;所述低频无线电信号的频率为2.4GHz。
PCT/CN2017/119295 2017-12-28 2017-12-28 一种天线及无人机 WO2019127193A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/119295 WO2019127193A1 (zh) 2017-12-28 2017-12-28 一种天线及无人机
CN201780016268.6A CN109075432B (zh) 2017-12-28 2017-12-28 一种天线及无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/119295 WO2019127193A1 (zh) 2017-12-28 2017-12-28 一种天线及无人机

Publications (1)

Publication Number Publication Date
WO2019127193A1 true WO2019127193A1 (zh) 2019-07-04

Family

ID=64812337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119295 WO2019127193A1 (zh) 2017-12-28 2017-12-28 一种天线及无人机

Country Status (2)

Country Link
CN (1) CN109075432B (zh)
WO (1) WO2019127193A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2715353C1 (ru) * 2019-07-25 2020-02-26 Общество с ограниченной ответственностью "Специальный Технологический Центр" Бортовая антенна для беспилотного летательного аппарата

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022241681A1 (zh) * 2021-05-19 2022-11-24 深圳市大疆创新科技有限公司 天线装置及无人机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1058118A (zh) * 1990-07-11 1992-01-22 冯钢 电视用全频道非金属天线
CN102044756A (zh) * 2009-10-26 2011-05-04 雷凌科技股份有限公司 双频印刷式八木天线
CN206040978U (zh) * 2016-09-26 2017-03-22 深圳市大疆创新科技有限公司 天线和无人机
CN106654603A (zh) * 2016-12-28 2017-05-10 深圳国人通信股份有限公司 一种三频超宽带基站天线
CN107223292A (zh) * 2016-09-26 2017-09-29 深圳市大疆创新科技有限公司 天线及无人机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812855A (en) * 1985-09-30 1989-03-14 The Boeing Company Dipole antenna with parasitic elements
CN105226399B (zh) * 2014-05-27 2019-10-25 深圳光启智能光子技术有限公司 定向天线
US10771135B2 (en) * 2016-02-02 2020-09-08 The Johns Hopkins University Apparatus and method for establishing and maintaining a communications link
CN106275399A (zh) * 2016-08-25 2017-01-04 欧志洪 一种设有存储装置的智能电力巡检无人机
CN106299671B (zh) * 2016-10-17 2019-05-17 山西大学 双频带滤波天线
WO2018072067A1 (zh) * 2016-10-18 2018-04-26 深圳市大疆创新科技有限公司 天线组件及无人机
CN206194947U (zh) * 2016-10-18 2017-05-24 深圳市大疆创新科技有限公司 无人机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1058118A (zh) * 1990-07-11 1992-01-22 冯钢 电视用全频道非金属天线
CN102044756A (zh) * 2009-10-26 2011-05-04 雷凌科技股份有限公司 双频印刷式八木天线
CN206040978U (zh) * 2016-09-26 2017-03-22 深圳市大疆创新科技有限公司 天线和无人机
CN107223292A (zh) * 2016-09-26 2017-09-29 深圳市大疆创新科技有限公司 天线及无人机
CN106654603A (zh) * 2016-12-28 2017-05-10 深圳国人通信股份有限公司 一种三频超宽带基站天线

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2715353C1 (ru) * 2019-07-25 2020-02-26 Общество с ограниченной ответственностью "Специальный Технологический Центр" Бортовая антенна для беспилотного летательного аппарата

Also Published As

Publication number Publication date
CN109075432B (zh) 2021-02-12
CN109075432A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
US10135149B2 (en) Phased array for millimeter-wave mobile handsets and other devices
US10290925B2 (en) Antenna structure and wireless communication device using same
US11824277B2 (en) High gain and large bandwidth antenna incorporating a built-in differential feeding scheme
US10998631B2 (en) Antenna system
US9496624B2 (en) Antenna device and antenna apparatus
CN204029975U (zh) 双馈入双极化的高方向性阵列天线系统
US9583842B2 (en) System and method for attaching solder balls and posts in antenna areas
WO2016127893A1 (zh) 辐射单元及双极化天线
CN105811098A (zh) 一种宽频带圆极化高增益天线
US20220399918A1 (en) Apparatus that supports spatial diversity, at least at reception
WO2019127193A1 (zh) 一种天线及无人机
WO2020151049A1 (zh) 一种通讯天线及其辐射单元
WO2019228309A1 (zh) 天线、无人飞行器的遥控器及无人飞行器
Xia et al. Multi-array designs for mmWave and sub-THz communication to UAVs
CN105896084A (zh) 一种全频段车载天线
CN111384595B (zh) 多入多出天线及基站
US9300034B2 (en) Multi-antenna structure
EP3764469B1 (en) Antenna
CN105048090B (zh) 双面偶极子天线
US11955703B2 (en) Antenna and unmanned aerial vehicle
CN204118246U (zh) 一种平板天线
CN105006643B (zh) 一种开口环圆极化背腔天线阵列
CN104201479A (zh) 一种Ku波段低剖面平板天线
US9397394B2 (en) Antenna arrays with modified Yagi antenna units
WO2019085437A1 (zh) 一种无人机的天线结构及无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936021

Country of ref document: EP

Kind code of ref document: A1