WO2022241681A1 - 天线装置及无人机 - Google Patents

天线装置及无人机 Download PDF

Info

Publication number
WO2022241681A1
WO2022241681A1 PCT/CN2021/094685 CN2021094685W WO2022241681A1 WO 2022241681 A1 WO2022241681 A1 WO 2022241681A1 CN 2021094685 W CN2021094685 W CN 2021094685W WO 2022241681 A1 WO2022241681 A1 WO 2022241681A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
frequency
parasitic
component
radiation
Prior art date
Application number
PCT/CN2021/094685
Other languages
English (en)
French (fr)
Inventor
李栋
马超
饶雄斌
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/094685 priority Critical patent/WO2022241681A1/zh
Publication of WO2022241681A1 publication Critical patent/WO2022241681A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith

Definitions

  • the present application relates to the technical field of communications, and in particular to an antenna device and a drone.
  • the UAV airborne antennas in the civilian field are omnidirectional antennas.
  • the omnidirectional antenna will receive interference signals from other directions in addition to the useful signals transmitted by the control terminal.
  • the radiation pattern of the antenna will not change The attitude of the UAV is adjusted, and the communication quality between the UAV and the control terminal is difficult to be guaranteed.
  • phased array antennas are usually used to change the radiation pattern of UAV airborne antennas, but the technical difficulty and cost of phased arrays are high, and the size of phased array antennas is relatively large. Difficult to install.
  • Embodiments of the present application provide an antenna device and a drone.
  • An antenna device includes a radiation component, a parasitic component, and a switch device.
  • the radiation component includes two radiation units, each radiation unit includes a high-frequency radiation branch and a low-frequency radiation branch, the high-frequency radiation branch is used for radiating high-frequency electromagnetic waves, and the low-frequency radiation branch is used for radiating low-frequency electromagnetic waves.
  • the parasitic component includes two parasitic units, each of which includes a high-frequency parasitic branch and a low-frequency parasitic branch, the resonant frequency of the high-frequency parasitic branch is the same as that of the high-frequency radiation branch, and the low-frequency The resonant frequency of the parasitic stub is the same as the resonant frequency of the low frequency radiation stub.
  • the switching device is connected to the two parasitic units, and when the switching device is in a conducting state, the parasitic component can reflect the high-frequency electromagnetic wave and the low-frequency electromagnetic wave, and when the switching device is in the In the off state, the parasitic component can guide the high-frequency electromagnetic wave and the low-frequency electromagnetic wave.
  • An unmanned aerial vehicle includes the antenna device described above.
  • the antenna arrangement includes a radiating element, a parasitic element, and a switching device.
  • the radiation component includes two radiation units, each radiation unit includes a high-frequency radiation branch and a low-frequency radiation branch, the high-frequency radiation branch is used for radiating high-frequency electromagnetic waves, and the low-frequency radiation branch is used for radiating low-frequency electromagnetic waves.
  • the parasitic component includes two parasitic units, each of which includes a high-frequency parasitic branch and a low-frequency parasitic branch, the resonant frequency of the high-frequency parasitic branch is the same as that of the high-frequency radiation branch, and the low-frequency The resonant frequency of the parasitic stub is the same as the resonant frequency of the low frequency radiation stub.
  • the switching device is connected to the two parasitic units, and when the switching device is in a conducting state, the parasitic component can reflect the high-frequency electromagnetic wave and the low-frequency electromagnetic wave, and when the switching device is in the In the off state, the parasitic component can guide the high-frequency electromagnetic wave and the low-frequency electromagnetic wave.
  • the antenna device and the drone according to the embodiments of the present application make the parasitic component reflect or guide the electromagnetic wave radiated by the radiation component by changing the on-off state of the switch device, so that the radiation gain of the antenna device in a specific direction is increased and the radiation gain is reduced. For the reception of interference signals from other directions, the adjustment of the antenna radiation direction is realized at a lower cost.
  • the first antenna assembly includes two first radiation units, each of which includes a first high-frequency radiation branch and a first low-frequency radiation branch.
  • the second antenna assembly includes two second radiation units, each of the second radiation units includes a second high-frequency radiation branch and a second low-frequency radiation branch, and the resonant frequency of the second high-frequency radiation branch is the same as that of the The resonance frequency of the first high-frequency radiation branch is the same, and the resonance frequency of the second low-frequency radiation branch is the same as that of the second low-frequency radiation branch.
  • the switching device connects the first antenna component and the second antenna component, when the switching device disconnects the first antenna component and turns on the second antenna component to provide the second antenna component with When feeding power, the first antenna component can guide the high-frequency electromagnetic waves and low-frequency electromagnetic waves radiated by the second antenna component.
  • the switching device disconnects the second antenna component and turns on the When the first antenna component is used to feed the first antenna component, the second antenna component can guide the high-frequency electromagnetic waves and low-frequency electromagnetic waves radiated by the first antenna component.
  • the drone according to the embodiment of the present application includes the above-mentioned another antenna device.
  • the further antenna arrangement includes a first antenna assembly, a second antenna assembly, and a switching device.
  • the first antenna assembly includes two first radiation units, each of which includes a first high-frequency radiation branch and a first low-frequency radiation branch.
  • the second antenna assembly includes two second radiation units, each of the second radiation units includes a second high-frequency radiation branch and a second low-frequency radiation branch, and the resonant frequency of the second high-frequency radiation branch is the same as that of the
  • the resonance frequency of the first high-frequency radiation branch is the same, and the resonance frequency of the second low-frequency radiation branch is the same as that of the second low-frequency radiation branch.
  • the switching device connects the first antenna component and the second antenna component, when the switching device disconnects the first antenna component and turns on the second antenna component to provide the second antenna component with When feeding power, the first antenna component can guide the high-frequency electromagnetic waves and low-frequency electromagnetic waves radiated by the second antenna component.
  • the switching device disconnects the second antenna component and turns on the When the first antenna component is used to feed the first antenna component, the second antenna component can guide the high-frequency electromagnetic waves and low-frequency electromagnetic waves radiated by the first antenna component.
  • the antenna device and the drone according to the embodiments of the present application can change the conduction state of the first antenna component and the conduction state of the second antenna component through the switching device, so that the second antenna component can guide the electromagnetic wave radiated by the first antenna component , it is also possible to change the conduction state of the first antenna component and the conduction state of the second antenna component through the switching device so that the first antenna component can guide the electromagnetic wave radiated by the second antenna component, so that the antenna device can move in a specific direction
  • the radiation gain of the antenna is improved, and the reception of interference signals from other directions is reduced, and the adjustment of the antenna radiation direction is realized at a lower cost.
  • FIG. 1 is a schematic structural diagram of an antenna device according to some embodiments of the present application.
  • FIG. 2 is a schematic structural diagram of a radiation assembly in some embodiments of the present application.
  • Fig. 3 is a schematic structural diagram of a parasitic device in some embodiments of the present application.
  • FIG. 4 is a schematic structural diagram of an antenna device in some embodiments of the present application.
  • FIG. 5 is a schematic structural diagram of an antenna device in some embodiments of the present application.
  • FIG. 6 is a schematic structural diagram of an antenna device in some embodiments of the present application.
  • FIG. 7 is a schematic structural diagram of an antenna device in some embodiments of the present application.
  • Fig. 8 is a schematic structural diagram of an antenna device according to some embodiments of the present application.
  • FIG. 9 is a schematic structural diagram of an antenna device in some embodiments of the present application.
  • FIG. 10 is a schematic structural diagram of an antenna device in some embodiments of the present application.
  • FIG. 11 is a schematic structural diagram of an antenna device in some embodiments of the present application.
  • FIG. 12 is a schematic structural diagram of an antenna device in some embodiments of the present application.
  • Fig. 13 is a schematic structural diagram of a drone in some embodiments of the present application.
  • Fig. 14 is a schematic structural diagram of a drone in some embodiments of the present application.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • an embodiment of the present application provides an antenna device 100 .
  • the antenna device 100 includes a radiation component 10 , a parasitic component 20 , and a switching device 30 .
  • the radiation assembly 10 includes two radiation units 11, and each radiation unit 11 includes a high-frequency radiation branch 111 and a low-frequency radiation branch 112, the high-frequency radiation branch 111 is used for radiating high-frequency electromagnetic waves, and the low-frequency radiation branch 112 is used for radiating low-frequency electromagnetic waves.
  • the parasitic component 20 includes two parasitic units 21, and each parasitic unit 21 includes a high-frequency parasitic branch 211 and a low-frequency parasitic branch 212.
  • the resonant frequency of is the same as the resonant frequency of the low-frequency radiation stub 112 .
  • the switch device 30 is connected to two parasitic units 21.
  • the parasitic component 20 can reflect high-frequency electromagnetic waves and low-frequency electromagnetic waves.
  • the switch device 30 is in the off state, the parasitic component 20 can reflect It plays a guiding role for high-frequency electromagnetic waves and low-frequency electromagnetic waves.
  • the antenna device 100 in the embodiment of the present application can make the parasitic component 20 reflect or direct the electromagnetic wave radiated by the radiation component 10 by changing the on-off state of the switch device 30, so that the radiation gain of the antenna device 100 in a specific direction is improved, And the reception of interference signals from other directions is reduced, and the adjustment of the antenna radiation direction is realized at a lower cost.
  • the radiation component 10 includes a first dielectric body 12 .
  • the first dielectric body 12 can be a PCB board, ceramics, LDS, PC/ABS plastic, and the like.
  • the first dielectric body 12 includes a first surface 121 and a second surface 122 opposite to each other.
  • the two radiation units 11 of the radiation assembly 10 are arranged on the first surface 121 of the first dielectric body 12 or the second surface 122 of the first dielectric body 12 .
  • Each radiation unit 11 includes a high frequency radiation branch 111 and a low frequency radiation branch 112 .
  • the length of the high-frequency radiation branch 111 is related to the central wavelength of the high-frequency radiation branch 111, for example, the length of the high-frequency radiation branch 111 can be 1/4 of the wavelength corresponding to the center frequency of the high-frequency radiation branch 111 One, but not limited thereto, it may also be a value around a quarter of the wavelength corresponding to the center frequency of the high-frequency radiation branch 111 , which will not be listed here.
  • the value range of the center frequency of the high-frequency radiation branch 111 may be [4.4GHz, 6.0GHz].
  • the center frequency of the high-frequency radiation branch 111 is 5.8GHz, but it is not limited thereto, and may also be 4.4GHz.
  • GHz, 4.6GHz, 4.8GHz, 5.0GHz, 5.2GHz, 5.4GHz, 5.6GHz, 6.0GHz, etc. are not listed here.
  • the length of the low-frequency radiation branch 112 is related to the central wavelength of the low-frequency radiation branch 112.
  • the length of the low-frequency radiation branch 112 may be a quarter of the wavelength corresponding to the center frequency of the low-frequency radiation branch 112, but not It is not limited thereto, and may also be a value around a quarter of the wavelength corresponding to the central frequency of the low-frequency radiation branch 112 , which will not be listed here.
  • the value range of the center frequency of the low-frequency radiation branch 112 may be [2.2GHz, 3.0GHz].
  • the center frequency of the low-frequency radiation branch 112 is 2.4GHz, but it is not limited thereto, and may also be 2.2GHz. GHz, 2.3GHz, 2.5GHz, 2.6GHz, 2.7GHz, 2.8GHz, 2.9GHz, 3.0GHz, etc. are not listed here.
  • a group of high-frequency radiation branches 111 and low-frequency radiation branches 112 extending toward the same direction form a radiation unit 11 .
  • two radiation units 11 are distributed symmetrically with respect to the symmetry axis O1 of the long side of the first dielectric body 12 .
  • the two radiating units 11 can be regarded as a dipole antenna.
  • the radiation component 10 further includes a feed unit 40 , and one end of the high-frequency radiation branch 111 and one end of the low-frequency radiation branch 112 in each radiation unit 11 are connected to the feed unit 40 .
  • the feeding unit 40 can be used to connect with the feeding line 51 , so that the radiation unit 11 can receive radio frequency energy provided by other devices through the feeding line 51 .
  • the antenna device 100 further includes a controller 50 , and the controller 50 is connected to the radiation component 10 through a feeder 51 to feed the radiation component 10 .
  • the parasitic component 20 includes a second dielectric body 22 .
  • the second dielectric body 22 can be a PCB board, ceramics, LDS, PC/ABS plastic, and the like.
  • the second dielectric body 22 includes a first surface 221 and a second surface 222 opposite to each other.
  • the two parasitic units 21 of the parasitic component 20 are disposed on the first surface 221 of the second dielectric body 22 or the second surface 222 of the second dielectric body 22 .
  • Each parasitic unit 21 includes a high frequency parasitic branch 211 and a low frequency parasitic branch 212 .
  • the length of the high-frequency parasitic branch 211 is related to the central wavelength of the high-frequency parasitic branch 211.
  • the length of the high-frequency parasitic branch 211 can be 1/4 of the wavelength corresponding to the center frequency of the high-frequency parasitic branch 211
  • it may also be a value around a quarter of the wavelength corresponding to the center frequency of the high-frequency parasitic branch 211 , which will not be listed here.
  • the value range of the center frequency of the high-frequency parasitic branch 211 can be [4.4GHz, 6.0GHz].
  • the center frequency of the high-frequency parasitic branch 211 is 5.8GHz, but it is not limited thereto, and can also be 4.4GHz.
  • GHz, 4.6GHz, 4.8GHz, 5.0GHz, 5.2GHz, 5.4GHz, 5.6GHz, 6.0GHz, etc. are not listed here.
  • the length of the low-frequency parasitic branch 212 is related to the central wavelength of the low-frequency parasitic branch 212.
  • the length of the low-frequency parasitic branch 212 may be a quarter of the wavelength corresponding to the center frequency of the low-frequency parasitic branch 212, but not It is not limited thereto, and may also be a value near a quarter of the wavelength corresponding to the center frequency of the low-frequency parasitic branch 212 , which will not be listed here.
  • the value range of the central frequency of the low-frequency parasitic branch 212 may be [2.2GHz, 3.0GHz].
  • the central frequency of the low-frequency parasitic branch 212 is 2.4GHz, but it is not limited thereto, and may also be 2.2GHz. GHz, 2.3GHz, 2.5GHz, 2.6GHz, 2.7GHz, 2.8GHz, 2.9GHz, 3.0GHz, etc. are not listed here.
  • a group of high-frequency parasitic branches 211 and low-frequency parasitic branches 212 extending toward the same direction form a parasitic unit 21 .
  • two parasitic units 21 are distributed symmetrically with respect to the symmetry axis O2 of the long side of the second dielectric body 22 .
  • the switching device 30 is connected to two parasitic units 21.
  • the switching device 30 is a single-pole single-throw switch, and the switching device 30 is turned on when the blade of the single-pole single-throw switch contacts the contact. State, when the blade of the single pole single throw switch is out of contact with the contact, the switching device 30 is in the off state.
  • the switch device 30 is in the on state, the two parasitic units 21 are conductive to form an electrical connection, and when the switch device 30 is in the off state, the two parasitic units 21 are not in conduction and no electrical connection is formed.
  • the switching device 30 is disposed on the second dielectric body 22 of the parasitic component 20 .
  • the controller 50 may be a radio frequency control chip, which is used to feed power to the radiation element 10 and control the on and off of the switch device 30 .
  • the controller 50 can be connected to the radiation component 10 through the feeder line 51 to feed the radiation component 10 , and can also be connected to the switch device 30 through the signal line 52 to control the switch device 30 on and off.
  • the radiation component 10 corresponding to the parasitic component 20 radiates electromagnetic waves
  • the radiation component 10 itself has a current I0
  • the parasitic component 20 generates induced current under the action of the electric field formed by the radiation component 10 . If the switch device 30 is in the conduction state and the two parasitic units 21 are conducted, an induced current I1 is generated in the circuit formed by the two parasitic units 21 and the switch device 30, and the direction of the induced current I1 is opposite to the direction of the current I0.
  • the parasitic component 20 can reflect the electromagnetic waves radiated by the radiating component 10, so that the electromagnetic waves radiated by the radiating component 10 can be concentrated in the reflection direction, that is, the radiating component 20 can 10.
  • the radiated electromagnetic wave becomes weaker in the guiding direction and stronger in the reflecting direction.
  • the directing direction is the direction in which the radiation of the radiating component 10 faces the parasitic component 20, such as the X1 direction shown in FIG. .
  • the respective circuits of the two parasitic units 21 generate an induced current I2 and an induced current I3 respectively, and the induced current I2 and the induced current I3 are related to the current
  • the direction of I0 is the same.
  • the parasitic component 20 can guide the electromagnetic waves radiated by the radiating component 10, so that the electromagnetic waves radiated by the radiating component 10 are guided in the guiding direction. Concentrate upward, that is, make the radiation of the radiation component 10 stronger in the guiding direction and weaker in the reflecting direction.
  • the distance between the radiation component 10 and the parasitic component 20 is between a quarter of the wavelength corresponding to the center frequency of the high-frequency radiation branch 111 and the center of the low-frequency radiation branch 112. Frequency corresponds to a quarter of a wavelength.
  • the radiation direction of the antenna device 100 can be adjusted by changing the on and off states of the switch device 30 to achieve the anti-interference effect. For example, when there is an interference signal in the guiding direction, the switching device 30 is connected to increase the radiation gain of the antenna device 100 in the reflection direction, and reduce the reception of the interference signal in the guiding direction by the antenna device 100, so as to achieve the effect of anti-interference.
  • the switch device 30 when there is an interference signal in the reflection direction, the switch device 30 is turned off, so that the radiation gain of the antenna device 100 in the directing direction is increased, and the reception of the interference signal in the reflection direction by the antenna device 100 is reduced, so as to achieve the anti-interference effect.
  • the central frequency of the high-frequency radiation branch 111 is the same as the central frequency of the high-frequency parasitic branch 211, that is, the central wavelength of the high-frequency radiation branch 111 is the same as that of the high-frequency parasitic branch 211.
  • the center wavelength is the same.
  • the length of the high-frequency radiation branch 111 is a quarter of the wavelength corresponding to the center frequency of the high-frequency radiation branch 111
  • the length of the high-frequency parasitic branch 211 is the center frequency of the high-frequency parasitic branch 211 A quarter of the corresponding wavelength
  • the central frequency of the high-frequency radiation branch 111 is the same as that of the high-frequency parasitic branch 211
  • the length of the high-frequency radiation branch 111 is the same as that of the high-frequency parasitic branch 211 .
  • the low frequency radiation stub 112 and the low frequency parasitic stub 212 have the same shape.
  • the low-frequency radiation branch 112 is L-shaped, and the low-frequency parasitic branch 212 is also L-shaped; for another example, the low-frequency radiation branch 112 is a bent branch, including six corners, and the low-frequency parasitic branch 212 is also a bent branch with six corners.
  • the angle of each kink of the low-frequency parasitic branch 212 is the same as that of the corresponding kink of the high-frequency radiation stick 111 .
  • the shapes of the low-frequency radiation stub 112 and the low-frequency parasitic stub 212 are not limited thereto, and will not be listed here.
  • the high-frequency radiation branch 111 and the high-frequency parasitic branch 211 have the same shape.
  • the shape of the low-frequency radiation stub 112 is the same as that of the low-frequency parasitic stub 212
  • the shape of the high-frequency radiation stub 111 is the same as that of the high-frequency parasitic stub 211 .
  • the explanation of the same shape is the same as before, and will not be repeated here.
  • the size of the low frequency radiation stub 112 and the low frequency parasitic stub 212 are the same.
  • the size of a branch is the distance between the beginning of the branch and the end of the branch. Taking the low-frequency radiation branch 112 shown in FIG. 2 as an example, the starting end S1 of the low-frequency radiation branch 112 is close to the feed unit 40, the end S2 of the low-frequency radiation branch 112 is far away from the feeding unit 40, and the straight-line distance between the starting end S1 and the end S2 is L1 is the size of the low frequency radiation stub 112 .
  • the size of the low-frequency radiation branch 112 is smaller than the length of the low-frequency radiation branch 112 , so that a longer low-frequency radiation branch 112 can be provided on the first dielectric body 12 with a predetermined length.
  • the length of the low-frequency radiation branch 112 is a quarter of the wavelength corresponding to the center frequency of the low-frequency radiation branch 112, and the size of the low-frequency radiation branch 112 is ten times the wavelength corresponding to the center frequency of the low-frequency radiation branch 112.
  • the length of the first dielectric body 12 can be reduced, which is beneficial to realize the thinning of the radiation component 10 .
  • the high-frequency radiation stub 111 and the high-frequency parasitic stub 211 have the same size.
  • the size of the low-frequency radiation stub 112 is the same as that of the low-frequency parasitic stub 212
  • the size of the high-frequency radiation stub 111 is the same as that of the high-frequency parasitic stub 211 .
  • the explanation of the same size is the same as before, and will not be repeated here.
  • the high-frequency radiation branch 111 and the high-frequency parasitic branch 211 can completely overlap. That is, the shape and size of the high-frequency radiation stub 111 and the high-frequency parasitic stub 211 are the same.
  • the low frequency radiation stub 112 and the low frequency parasitic stub 212 can completely overlap. That is, the shape and size of the low frequency radiation stub 112 and the low frequency parasitic stub 212 are the same.
  • the high-frequency radiation branch 111 and the high-frequency parasitic branch 211 can completely overlap, and the low-frequency radiation branch 112 and the low-frequency parasitic branch 212 can completely overlap.
  • the difference between the radiation component 10 and the parasitic component 20 is only The feeding unit 40 is connected to the two radiating units 11 , and the switching device 30 is connected to the two parasitic units 21 . That is to say, when the high-frequency radiation branch 111 and the high-frequency parasitic branch 211 can completely overlap, and the low-frequency radiation branch 112 and the low-frequency parasitic branch 212 can completely overlap, if the feed unit 40 is connected to the two parasitic units 21, the parasitic Component 20 can be used as radiating component 10, and can play the same effect of radiating electromagnetic waves as radiating component 10; The on or off state of the radiating components 10 can reflect or guide the electromagnetic waves radiated by other radiating components 10 .
  • the high-frequency radiation branch 111 is arranged corresponding to the high-frequency parasitic branch 211
  • the low-frequency radiation branch 112 is arranged corresponding to the low-frequency parasitic branch 212 .
  • the high-frequency radiation branch 111 radiates high-frequency electromagnetic waves
  • the high-frequency parasitic branch 211 is more likely to generate a corresponding induced current under the electric field of the corresponding high-frequency radiation branch 111
  • the low-frequency radiation branch 112 radiates low-frequency electromagnetic waves
  • the low-frequency parasitic The branch 212 is more likely to generate a corresponding induced current under the electric field of the corresponding low-frequency radiation branch 112 .
  • the arrangement of the high-frequency radiation branch 111 corresponding to the high-frequency parasitic branch 211, and the corresponding arrangement of the low-frequency radiation branch 112 and the low-frequency parasitic branch 212 can also make the arrangement of the radiation component 10 and the parasitic component 20 in the antenna device 100 more compact, which is beneficial to realize the antenna Thinning of the device 100.
  • the first surface 121 of the first dielectric body 12 is parallel to the first surface 221 of the second dielectric body 22, so that the parasitic component 20 can better align the radiation component in the X1 direction.
  • the electromagnetic wave radiated by 10 acts as a guide, or preferably reflects the electromagnetic wave radiated by the radiating component 10 in the X2 direction.
  • the positional relationship between the first surface 121 of the first dielectric body 12 and the first surface 221 of the second dielectric body 22 is not limited to being parallel.
  • the first surface 121 of the first dielectric body 12 and the second dielectric body The first surface 221 of the body 22 is vertical; in another embodiment, the first surface 121 of the first dielectric body 12 is inclined relative to the first surface 221 of the second dielectric body 22 .
  • the first surface 121 of the first dielectric body 12 is parallel to or perpendicular to the first surface 221 of the second dielectric body 22, or the first surface 121 of the first dielectric body 12 is opposite to the second dielectric body 22
  • the parasitic element 20 can guide or reflect the electromagnetic wave radiated by the radiating element 10 .
  • the second surface 122 of the first dielectric body 12 is opposite to the second surface 222 of the second dielectric body 22 , and the radiation unit 11 is arranged on the first surface 121 of the first dielectric body 12 , the parasitic unit 21 is disposed on the first surface 221 of the second dielectric body 22 .
  • a certain distance needs to be separated between the radiation component 10 and the parasitic component 20 so that the induced current generated by the parasitic component 20 has predetermined characteristics. Specifically, the induced current generated by the parasitic component 20 is affected by the distance between the parasitic unit 21 and the radiation unit 11.
  • the radiation unit 11 When the distance between the radiation component 10 and the parasitic component 20 is fixed, the radiation unit 11 is arranged on the first dielectric body 12
  • the first surface 121 of the second dielectric body 22 the parasitic unit 21 is arranged on the first surface 221 of the second dielectric body 22, and the second surface 122 of the first dielectric body 12 is opposite to the second surface 222 of the second dielectric body 22, and can be radiated
  • the distance between the radiation unit 11 and the parasitic unit 21 is increased while the distance between the component 10 and the parasitic component 20 remains unchanged.
  • the radiation unit 11 when the distance between the radiation unit 11 and the parasitic unit 21 is a preset distance, the radiation unit 11 is arranged on the first surface 121 of the first dielectric body 12, and the parasitic unit 21 is arranged on the second dielectric body 22
  • the first surface 221 of the first dielectric body 12 and the second surface 222 of the second dielectric body 22 are opposite to make the distance between the radiation component 10 and the parasitic component 20 closer to reduce the
  • the size of the antenna device 100 can make the arrangement of the radiating component 10 and the parasitic component 20 in the antenna device 100 more compact, which is beneficial to realize thinning of the antenna device 100 .
  • the antenna device 100 can radiate high-frequency electromagnetic waves and low-frequency electromagnetic waves.
  • the electromagnetic wave and the low-frequency electromagnetic wave play a role of reflection, and when the switch device 30 is in an off state, the parasitic component 20 can guide the high-frequency electromagnetic wave and the low-frequency electromagnetic wave.
  • the radiation of the antenna can be selectively amplified in the guiding direction or the reflecting direction, so that the antenna device 100 can increase the gain in the direction where the signal needs to be transmitted, so as to facilitate the signal transmission in this direction, and can weaken the antenna device 100 when it is not needed. Radiation in the direction of the transmission signal to reduce the reception of interference signals in this direction, so as to achieve the anti-interference effect.
  • each parasitic component 20 there may be multiple parasitic components 20 (two or more, the same below), and multiple switching devices 30, and each parasitic component 20 is provided with a switching device 30 , the controller 50 is connected to a plurality of switching devices 30 through a signal line 52 , and a plurality of parasitic components 20 are located on different sides of the radiation component 10 .
  • each parasitic component 20 can independently guide the electromagnetic wave radiated by the radiation component 10 along the direction toward the parasitic component 20, or along the direction away from the parasitic component 20.
  • the direction acts as a reflection.
  • the gain direction and weakening direction of the electromagnetic waves radiated by the radiation component 10 are affected by the guidance/reflection of multiple parasitic components 20 .
  • the first parasitic component 201 can guide the electromagnetic waves radiated by the radiating component 10 to concentrate the electromagnetic waves in the X1 direction; the first parasitic component 201 can also reflect the electromagnetic waves radiated by the radiating component 10 to concentrate the electromagnetic waves in the X2 direction.
  • the second parasitic component 202 can guide the electromagnetic waves radiated by the radiating component 10 to concentrate the electromagnetic waves in the Y1 direction; the second parasitic component 202 can also reflect the electromagnetic waves radiated by the radiating component 10 to concentrate the electromagnetic waves in the Y2 direction. If the first switching device 301 is connected to the first parasitic component 201, and the second switching device 302 is connected to the second parasitic component 202, then: (1) when the first switching device 301 is turned on and the second switching device 302 is turned on, the antenna The gain of the radiation of the device 100 is increased in the X2 direction, the Y2 direction, and the directions between X2 and Y2.
  • the positional relationship between the two parasitic components 20 and the radiating component 10 is not limited to being located on the left side and the upper side of the radiating component 10, but may also be located on the left side and the lower side, the right side and the radiating component 10.
  • the upper side, the right side, the lower side, etc. are not limited here.
  • the surface where the radiation unit 11 is located is perpendicular to the surface where the parasitic unit 21 of one of the parasitic components 20 is located, and parallel to the surface where the parasitic unit 21 of the other parasitic component 20 is located. In this way, the directing/reflecting action directions of the two parasitic units 21 on the radiation of the radiating unit 11 are orthogonal, which is convenient for adjusting the radiation pattern of the antenna device 100 . Referring to FIG.
  • the surface on which the radiation unit 11 is located is perpendicular to the surface on which the parasitic unit 21 of one parasitic component 20 is located, and is relatively inclined to the surface on which the parasitic unit 21 of the other parasitic component 20 is located.
  • the surface on which the radiation unit 11 is located is parallel to the surface on which the parasitic unit 21 of one parasitic component 20 is located, and is relatively inclined to the surface on which the parasitic unit 21 of the other parasitic component 20 is located.
  • the surface where the radiation unit 11 is located and the surfaces where the parasitic units 21 of the two parasitic components 20 are located are relatively inclined.
  • the surface where the parasitic unit 21 of each parasitic component 20 is located and the surface where the radiating unit 11 is located can be parallel, perpendicular, or relatively inclined, which is not limited here, and can be flexibly set according to the installation environment of the antenna device 100.
  • these several Different relative positional relationships between the parasitic component 20 and the radiating component 10 can realize that the two parasitic units 21 guide and/or reflect the radiation of the radiating unit 11 .
  • the antenna device 100 may further include a driving member 60, and the driving member 60 is used to drive the radiation component 10 and/or the parasitic component 20 to move, so as to change the distance between the radiation component 10 and the parasitic component 20. relative position. In this way, the radiation pattern of the antenna device 100 can be flexibly adjusted without disposing a plurality of parasitic units 21 .
  • the radiation assembly 10 is fixed, and the driving element 60 is used to drive the parasitic assembly 20 to move.
  • the parasitic assembly 20 can be mounted on the driving element 60 to be driven by the driving element 60 to move relative to the radiation assembly 10 .
  • the driving element 60 drives the parasitic component 20 to move to the left side of the radiating component 10 and the switching device 30 is in the off state
  • the parasitic component 20 guides the electromagnetic waves radiated by the radiating component 10 to concentrate the electromagnetic waves in the X1 direction. If it is desired to concentrate the electromagnetic wave radiated by the radiating component 10 in the Y1 direction, the parasitic component 20 can be driven to move to the upper side of the radiating component 10 through the driver 60 and the switching device 30 is kept in an off state.
  • the upper side of 10 acts as a guide, so that the electromagnetic wave is concentrated in the direction of Y1; or the driving member 60 can drive the parasitic component 20 to move to the lower side of the radiation component 10 and make the switching device 30 in a conductive state. At this time, the parasitic component 20 is in the radiation component.
  • the lower side of 10 acts as a reflection to make the electromagnetic waves concentrate in the Y1 direction. Understandably, the driving member 60 can drive the parasitic component 20 to move around the radiation component 10, for example, drive the parasitic component 20 to move to the left side, lower left side, lower side, lower right side, right side, upper right side, upper side, The upper left side, etc., are not limited here.
  • the parasitic component 20 is fixed, and the driver 60 is used to drive the radiation component 10 to move. Change the relative position between the radiation component 10 and the parasitic component 20 .
  • the driver 60 can drive both the radiation component 10 and the parasitic component 20 to move.
  • the driver 60 includes a first driver and a second driver, and the radiation component 10 is installed on the first driver.
  • the parasitic component 20 is mounted on the second driving component to be driven to move by the first driving component, so as to change the relative position between the radiation component 10 and the parasitic component 20 .
  • the embodiment of the present application further provides an antenna device 200 , and the antenna device 200 includes a first antenna component 70 , a second antenna component 80 , and a switch device 30 .
  • the first antenna assembly 70 includes two first radiation units 71 , and each first radiation unit 71 includes a first high frequency radiation branch 711 and a first low frequency radiation branch 712 .
  • the second antenna assembly 80 includes two second radiation units 81, each second radiation unit 81 includes a second high-frequency radiation branch 811 and a second low-frequency radiation branch 812, and the resonance frequency of the second high-frequency radiation branch 811 is the same as that of the first
  • the resonance frequency of the high-frequency radiation branch 711 is the same
  • the resonance frequency of the second low-frequency radiation branch 812 is the same as that of the second low-frequency radiation branch 812 .
  • the switch device 30 is connected to the first antenna component 70 and the second antenna component 80. When the switch device 30 disconnects the first antenna component 70 and turns on the second antenna component 80 to feed the second antenna component 80, the first antenna The component 70 can guide the high-frequency electromagnetic waves and low-frequency electromagnetic waves radiated by the second antenna component 80. When the switch device 30 disconnects the second antenna component 80 and turns on the first antenna component 70 to give the first antenna component 70 When feeding power, the second antenna assembly 80 can guide the high-frequency electromagnetic waves and low-frequency electromagnetic waves radiated by the first antenna assembly 70 .
  • the antenna device 200 of the embodiment of the present application can change the conduction state of the first antenna component 70 and the conduction state of the second antenna component 80 through the switching device 30, so that the second antenna component 80 can induce electromagnetic waves radiated by the first antenna component 70. It can also change the conduction state of the first antenna assembly 70 and the conduction state of the second antenna assembly 80 through the switch device 30 so that the first antenna assembly 70 can guide the electromagnetic waves radiated by the second antenna assembly 80, so as to The radiation gain of the antenna device 200 in a specific direction is increased, and the reception of interfering signals in other directions is reduced, and the adjustment of the antenna radiation direction is realized at a lower cost.
  • the switch device 30 is a SPDT switch.
  • the switch device 30 can The first antenna assembly 70 is turned on, and the second antenna assembly 80 is disconnected; when the blade 33 of the SPDT switch is connected to the second contact 32, the blade 33 is disconnected from the first contact 31, at this time, the switching device 30 can turn on the second antenna assembly 80 and turn off the first antenna assembly 70 .
  • the antenna device 200 further includes a controller 50, the controller 50 is connected to the switching device 30 through the feeder 51, and connected to the switching device 30 through the signal line 52, and the controller 50 is used to control the switching device 30 to give the first Either the antenna assembly 70 or the second antenna assembly 80 feeds.
  • the controller 50 controls the switch device 30 to turn on the first antenna component 70 or the second antenna component 80 through the signal line 52, and feeds the antenna component in the first antenna component 70 and the second antenna component 80 through the feeder 51. feed.
  • the switch device 30 is arranged in the line of the feeder 51, and the switch device 30 is used to selectively connect the first antenna component 70 and the controller 50, or connect the second antenna component 80 and the controller 50. .
  • the switch device 30 when the switch device 30 turns off the first antenna component 70, the two first radiating elements 71 are in an off state; when the switch device 30 turns on the first antenna component 70, the two first radiating elements 71 Cell 71 is in the ON state.
  • the switching device 30 when the switching device 30 turns off the second antenna assembly 80, the two second radiating elements 81 are in the off state; when the switching device 30 turns on the second antenna assembly 80, the two second radiating elements 81 are in the conducting state pass status.
  • the second antenna component 80 when the first antenna component 70 feeds power and the second antenna component 80 does not feed power, the second antenna component 80 is equivalent to the parasitic component 20 shown in FIGS. 1 to 3, Further, when the second antenna assembly 80 is not fed, the two second radiating elements 81 are in the off state, so the second antenna assembly 80 is equivalent to the parasitic assembly 20 with the two parasitic elements 21 in the off state, at this time The second antenna component 80 can guide the electromagnetic wave radiated by the first antenna component 70 . Similarly, when the second antenna component 80 feeds power and the first antenna component 70 does not feed power, the first antenna component 70 is equivalent to the parasitic component 20 shown in FIGS.
  • the first antenna component 70 when there is no feed, the two first radiating elements 71 are in the off state, so the first antenna assembly 70 is equivalent to the parasitic assembly 20 with the two parasitic elements 21 in the off state, and at this time the first antenna assembly 70 can
  • the electromagnetic waves radiated by the two antenna components 80 play a guiding role.
  • the principle of the directing action relationship between the first antenna component 70 and the second antenna component 80 is the same as the guiding action relationship between the radiating component 10 and the parasitic component 20 shown in FIGS. 1 to 3 , the first antenna component Among the antenna components 70 and the second antenna component 80, the antenna component turned on by the switching device 30 functions as the radiation component 10, and the antenna component not turned on acts as the parasitic component 20.
  • the specific principle is the same as before, and will not be repeated here.
  • the distance between the first antenna component 70 and the second antenna component 80 is 1/4 of the wavelength corresponding to the center frequency of the first high-frequency radiation branch 711 and
  • the central frequency of the first low-frequency radiation branch 712 corresponds to a quarter of the wavelength, so as to ensure that the first antenna component 70 or the second antenna component 80 can guide the antenna component that radiates electromagnetic waves when the parasitic component 20 is used.
  • the center frequency of the first high-frequency radiation branch 711 is the same as the center frequency of the second high-frequency radiation branch 811, that is, the center wavelength of the first high-frequency radiation branch 711 is the same as that of the second high-frequency radiation branch 711.
  • the central wavelength of the second high-frequency radiation branch 811 is the same, which means that the central wavelength of the high-frequency radiation branch 111 is the same as the central wavelength of the high-frequency parasitic branch 211 .
  • the length of the first high-frequency radiation branch 711 is a quarter of the wavelength corresponding to the center frequency of the first high-frequency radiation branch 711
  • the length of the second high-frequency radiation branch 811 is the second The center frequency of the high-frequency radiation branch 811 corresponds to a quarter of the wavelength
  • the center frequency of the first high-frequency radiation branch 711 is the same as the center frequency of the second high-frequency radiation branch 811.
  • the first high-frequency radiation branch 711 The length of is the same as that of the second high-frequency radiation branch 811.
  • the first high-frequency radiation branch 711 and the second high-frequency radiation branch 811 have the same shape
  • the first low-frequency radiation branch 712 and the second low-frequency radiation branch 812 have the same shape , which means that the high-frequency radiation branch 111 and the high-frequency parasitic branch 211 have the same shape
  • the low-frequency radiation branch 112 and the low-frequency parasitic branch 212 have the same shape.
  • the first low-frequency radiation branch 712 and the second low-frequency radiation branch 812 have the same size, which is equivalent to the low-frequency radiation branch 112 and the low-frequency parasitic branch 212 having the same size and the same size.
  • the explanation is the same as before, and will not be repeated here.
  • the size of the first high-frequency radiation branch 711 and the second high-frequency radiation branch 811 are the same, which is equivalent to the size of the high-frequency radiation branch 111 and the high-frequency parasitic branch 211, which are not repeated here. repeat.
  • the first low-frequency radiation branch 712 and the second low-frequency radiation branch 812 have the same size, and the first high-frequency radiation branch 711 and the second high-frequency radiation branch 811 have the same size, which is equivalent to the low-frequency radiation branch 112
  • the size of the low-frequency parasitic branch 212 is the same, and the size of the high-frequency radiation branch 111 is the same as that of the high-frequency parasitic branch 211 , which will not be repeated here.
  • the first high-frequency radiation branch 711 and the second high-frequency radiation branch 811 can completely overlap. That is, the shape and size of the first high-frequency radiation branch 711 and the second high-frequency radiation branch 811 are the same.
  • the first low-frequency radiation branch 712 and the second low-frequency radiation branch 812 can completely overlap. That is, the shape and size of the first low-frequency radiation branch 712 and the second low-frequency radiation branch 812 are the same.
  • the first high-frequency radiation branch 711 and the second high-frequency radiation branch 811 can completely overlap, and the first low-frequency radiation branch 712 can completely overlap with the second low-frequency radiation branch 812.
  • the first antenna assembly 70 is identical to the second antenna assembly 80, and may be identical to the radiation unit 10 in FIGS. 1-3.
  • the first high-frequency radiation branch 711 is arranged correspondingly to the second high-frequency radiation branch 811
  • the first low-frequency radiation branch 712 is arranged correspondingly to the second low-frequency radiation branch 812, which is equivalent to
  • the high-frequency radiation branch 111 is set corresponding to the high-frequency parasitic branch 211
  • the low-frequency radiation branch 112 is set corresponding to the low-frequency parasitic branch 212 , which will not be repeated here.
  • the first antenna assembly 70 includes a first dielectric body 72, the first dielectric body 72 includes a first surface 721 and a second surface 722 facing away, the second antenna assembly 80 includes a second dielectric body 82, the second dielectric body 82 includes a first surface 821 and a second surface 822 opposite to each other, and the first radiation unit 71 is arranged on the first surface 721 of the first dielectric body 72 or the first dielectric body 72
  • the second radiating unit 81 is disposed on the first surface 821 of the second dielectric body 82 or the second surface 822 of the second dielectric body 82 .
  • the positional relationship between the first dielectric body 72 of the first antenna component 70 and the second dielectric body 82 of the second antenna component 80 can be Including: the first surface 721 of the first dielectric body 72 is parallel to the first surface 821 of the second dielectric body 82, the first surface 721 of the first dielectric body 72 is perpendicular to the first surface 821 of the second dielectric body 82, or the first surface 721 of the second dielectric body 82 is vertical.
  • the first surface 721 of a dielectric body 72 is inclined relative to the first surface 821 of the second dielectric body 82 .
  • the second surface 722 of the first dielectric body 72 is opposite to the second surface 822 of the second dielectric body 82, and the first radiation unit 71 is disposed on the first surface 721 of the first dielectric body 72 , the second radiation unit 81 is disposed on the first surface 821 of the second dielectric body 82 , so that the distance between the first antenna component 70 and the second antenna component 80 can be set closer, and the size of the antenna device 200 can be reduced.
  • the switch device 30 is connected to the feed unit 40 on each second antenna assembly 80 through a feeder 51, and the plurality of second antenna assemblies 80 may be located on different sides of first antenna assembly 70 .
  • the switch device 30 can be used to selectively conduct the first antenna component 70 and the controller 50 to feed power only to the first antenna component 70, and the second antenna component 80 that is not turned on by the switch device 30 is not fed.
  • the fed second antenna assembly 80 guides the electromagnetic wave radiated by the first antenna assembly 70 .
  • the switching device 30 can also be used to conduct at least one second antenna assembly 80 and the controller 50 to feed power to at least one second antenna assembly 80, so that other non-conducting second antenna assemblies 80 can be used to conduct the second antenna assembly 80.
  • the electromagnetic wave radiated by the component 80 plays a guiding role, or the electromagnetic wave radiated by the conductive second antenna component 80 is guided by the non-conducting first antenna component 70 . In this way, according to the positional relationship between the second antenna component 80 and the first antenna component 70, the antenna device 200 can select a specific direction from a plurality of different directions to gain radiation.
  • the antenna assembly can selectively select radiation in a specific direction in the orthogonal first direction X (including X1 and X2 ) and the second direction Y (including Y1 and Y2 ) for gain.
  • the four antenna assemblies forming a rectangle can also be four first antenna assemblies 70, three first antenna assemblies 70 and one second antenna component 80, two first antenna components 70 and two second antenna components 80, or four second antenna components 80, that is to say, the number of first antenna components 70 can also be multiple, All of the above combinations enable the antenna assembly to select a specific direction to gain radiation in the orthogonal first direction X and the second direction Y.
  • a case where there are three second antenna assemblies 80 and one first antenna assembly 70 is taken as an example for description.
  • the second antenna assembly 801 and the second antenna assembly 803 are respectively located on the opposite first and third sides of the rectangle, and the second antenna assembly 802
  • the first antenna assembly 70 is located on the second and fourth sides of the rectangle, respectively.
  • the second antenna assembly 801, the second antenna assembly 802, and the second antenna assembly 803 are respectively located on the left side of the first antenna assembly 70, upper side, and right side.
  • the switch device 30 in the antenna device 200 can be a single-pole four-throw switch. When the switch device 30 turns on the first antenna component 70 to feed the first antenna component 70, the other three second antenna components 80 are not fed. Similar to the role of the parasitic component 20 in FIGS. Antenna components 70 are not fed and function similarly to parasitic component 20 in FIGS. 1-4 .
  • the remaining three second antenna components 80 are not fed and play a role similar to that of the parasitic component 20 in FIGS.
  • the second antenna assembly 802 and the second antenna assembly 803 guide the electromagnetic waves radiated by the first antenna assembly 70, and the guiding functions are along the X1 direction, the Y1 direction, and the X2 direction respectively, wherein the guiding along the X1 direction and the X2 direction
  • the directional effects cancel each other out, so the electromagnetic waves radiated by the antenna device 200 finally appear to be concentrated in the Y1 direction, that is, the gain of the radiation of the antenna device 200 in the Y1 direction increases.
  • the second antenna assembly 801, the first antenna assembly 70, and the second antenna assembly 803 guide the electromagnetic waves radiated by the second antenna assembly 802 along the X1 direction, the Y2 direction, and the X2 direction, wherein the directions along the X1 direction and the X2 direction
  • the directing effects cancel each other out, so the electromagnetic waves radiated by the antenna device 200 finally appear to be concentrated in the Y2 direction, that is, the gain of the radiation of the antenna device 200 in the Y2 direction increases.
  • the second antenna component 803 can be turned on to increase the gain of the radiation of the antenna device 200 in the X1 direction; Gain boost.
  • the radiation of the antenna device 200 can increase the gain in the orthogonal X1 direction, Y1 direction, X2 direction, or Y2 direction.
  • the first antenna assembly 70, the second antenna assembly 802, and the second antenna assembly 803 guide the electromagnetic waves radiated by the first antenna assembly 70
  • the action is along the Y2 direction, the Y1 direction, and the X2 direction respectively. If the first radiating element 71 of the first antenna assembly 70 is the same as the second radiating element 81 of the second antenna assembly 802, the guiding effects along the Y2 direction and the Y1 direction can cancel each other out; The radiating unit 71 is different from the second radiating unit 81 of the second antenna assembly 802, and the guiding effects along the Y2 direction and the Y1 direction cannot cancel each other out.
  • the radiation of the antenna device 200 may be between the Y1 direction and the X2 direction.
  • the gain increase in a certain direction between, or the gain increase in a certain direction between the Y2 direction and the X2 direction. That is to say, when the first radiating unit 71 is different from the second radiating unit 81, the radiation of the antenna device 200 can also be in a non-orthogonal direction other than the orthogonal X1 direction, Y1 direction, X2 direction, or Y2 direction.
  • Gain boost on .
  • the fed antenna components in the antenna device 200 may also include multiple ones, and the fed antenna components play the same role as the radiation component 10 shown in FIGS.
  • the parasitic component 20 shown in FIGS. 1-4 functions similarly.
  • the second antenna assembly 801, the second antenna assembly 802, and the second antenna assembly 803 are all feeding, and when the first antenna assembly 70 is not feeding, the first antenna assembly 70 plays a role similar to that of the parasitic assembly 20, and the second antenna assembly
  • the electromagnetic waves radiated by the component 801, the second antenna component 802, and the second antenna component 803 all have a guiding effect.
  • the positional relationship between the four antenna components is not limited to forming a rectangle.
  • the four antenna components form other shapes, such as parallelograms, trapezoids, and prisms, the radiation of the antenna device 200 can correspond to The gain is improved in a specific direction according to the positional relationship such as the spacing and angle between the four antenna components.
  • the number of antenna components in the antenna device 200 is not limited to four, and may also be five, six, seven or more antenna components, which are not listed here.
  • a plurality of antenna assemblies may also form a shape such as a pentagon, a hexagon, a heptagon, and a ring, which will not be listed here.
  • the embodiment of the present application also provides a drone 1000 .
  • the drone 1000 includes the antenna device 100 and/or the antenna device 200 described in any one of the above embodiments, and the drone 1000 performs signal transmission with the control terminal 2000 through the antenna device 100 and/or the antenna device 200 .
  • the control terminal 2000 may be a remote controller, a control base station, etc., which is not limited here.
  • the controller 50 of the antenna device 100 controls the on-off state of the switch device 30 according to the attitude of the drone 1000 relative to the control terminal 2000 .
  • the drone 1000 is provided with a GPS positioning device, and the GPS positioning device can obtain the attitude angle of the drone 1000 relative to the control terminal 2000 .
  • the antenna device 100 includes the radiation component 10 and the parasitic component 20 as an example, the switch device 30 is connected to the parasitic component 20, and the radiation component 10 is closer to the nose than the parasitic component 20 1100 , the parasitic component 20 is closer to the tail 1200 than the radiating component 10 .
  • the controller 50 controls the switch device 30 to be in a conducting state, so that the parasitic component 20 radiates to the radiation component 10
  • the electromagnetic waves of the drone play a role of reflection, so that the radiated electromagnetic waves are concentrated toward the direction of the nose 1100, so that the radiation in the direction of the nose 1100 is amplified, so as to improve the strength and quality of the signal interaction between the UAV 1000 and the control terminal 2000, and reduce the
  • the small UAV 1000 receives interference signals from other directions such as the direction of the tail 1200 .
  • the controller 50 controls the switch device 30 to be in an off state, so that the parasitic component 20 radiates to the radiation component 10
  • the electromagnetic waves play a guiding role, so that the radiated electromagnetic waves are concentrated toward the direction of the tail 1200, so that the radiation in the direction of the tail 1200 is amplified, so as to improve the strength and quality of the signal interaction between the UAV 1000 and the control terminal 2000, and Reduce the UAV 1000 receiving interference signals from other directions such as the direction of the tail 1200 .
  • the first antenna assembly 70 is closer to the nose 1100 than the second antenna assembly 80
  • the second antenna assembly 80 is closer to the tail 1200 than the first antenna assembly 70 .
  • the controller 50 controls the switch device 30 to turn on the second antenna assembly 80 and cut off the first antenna assembly 70, making the first antenna assembly 70 guide the electromagnetic waves radiated by the second antenna assembly 80, so that the radiated electromagnetic waves are concentrated toward the direction of the nose 1100, so that the radiation in the direction of the nose 1100 is amplified, so as to improve the drone 1000 and the strength and quality of the signal interaction between the control terminal 2000, and reduce the UAV 1000 receiving interference signals from other directions such as the direction of the tail 1200.
  • the controller 50 controls the switch device 30 to turn on the first antenna assembly 70 and cut off the second antenna assembly 80, make the second antenna assembly 80 guide the electromagnetic waves radiated by the first antenna assembly 70, and concentrate the radiated electromagnetic waves toward the direction of the tail 1200, so that the radiation in the direction of the tail 1200 is amplified to improve the drone 1000 and the strength and quality of the signal interaction between the control terminal 2000, and reduce the UAV 1000 receiving interference signals from other directions such as the direction of the tail 1200.
  • the on-off state of the switch device 30 is related to the strength of the signal received by the control terminal 2000 .
  • the controller 50 controls the switch device 30 to change the on-off state sequentially, so that the radiation gain direction of the antenna device 100 changes sequentially.
  • the signal received by the control terminal 2000 The on-off state of the switching device 30 in a strong time period is regarded as the on-off state of the switching device 30 in the second preset period, and the next first preset period starts until the end of the second preset period.
  • the UAV 1000 includes two antenna devices, both of which are the aforementioned antenna devices 100, and are respectively referred to as the first antenna
  • the device 100 and the second antenna device 100 the first antenna device 100 includes a first switching device 30
  • the second antenna device 100 includes a second switching device 30 .
  • the first switching device 30 is turned on and the second switching device 30 is turned on at 0ms-20ms in the first preset period, and the first switching device 30 is turned on at 20ms-40ms in the first preset period.
  • the second switching device 30 is turned off, the first switching device 30 is turned off and the second switching device 30 is turned off at 40ms-60ms in the first preset period, and the second switching device 30 is turned off at 60ms-80ms in the first preset period
  • the first switching device 30 is turned off and the second switching device 30 is turned on. If the signal strength received by the control terminal 2000 is the strongest at 0-20 ms, the first switching device 30 is kept in the first cycle (80 ms-160 ms) throughout the second cycle. The switching device 30 is turned on and the second switching device 30 is turned on, and so on. If the signal strength received by the control terminal 2000 is the strongest at 20ms-40ms, then the first switching device 30 is kept on throughout the second cycle.
  • the second switching device 30 is off, if the signal strength received by the control terminal 2000 is the strongest at 40ms-60ms, keep the first switching device 30 off and the second switching device 30 off throughout the second period If the signal strength received by the control terminal 2000 is the strongest at 60 ms-80 ms, keep the first switching device 30 off and the second switching device 30 on throughout the second period.
  • the UAV 1000 is not limited to include one or two antenna devices 100 , but may also include three, four, five or more antenna devices 100 .
  • the antenna device 100 may include multiple parasitic components 20 to flexibly adjust the gain of the antenna device 100 in different directions.
  • the on-off state of the switch device 30 corresponds to the on-state of a plurality of antenna components, that is, the on-off state of the switch device 30 determines the Whether to feed power.
  • the UAV 1000 includes the antenna device 200 shown in FIG. 10 , that is, the antenna device 200 includes the first antenna assembly 70 and the second antenna assembly 80 as an example.
  • the antenna assembly 70 or only the second antenna assembly 80 is turned on.
  • the on-off state of the switch device 30 in the first preset period is as follows: only the first antenna component 70 is turned on during the 0ms-20ms, and only the second antenna component 80 is turned on during the 20ms-40ms.
  • the switching device 30 keeps turning on only the first antenna assembly 70, and so on, if the control If the strength of the signal received by the terminal 2000 is the strongest at 20ms-40ms, then the switching device 30 keeps only the second antenna component 80 turned on during the entire second cycle.
  • the UAV 1000 may be provided with multiple antenna devices 200, for example, two, three, four, five or more antenna devices 200, so as to flexibly adjust the gain of the antenna devices 200 in different directions.
  • the antenna device 100 may include a plurality of second antenna assemblies 80 .
  • the UAV 1000 includes the antenna device 200 shown in FIG.
  • the on-off state of the device 30 includes: only the first antenna component 70 is turned on (that is, the first antenna component 70 feeds, the same below), only the second antenna component 801 is turned on, only the second antenna component 802 is turned on, or only the second antenna component 802 is turned on.
  • the second antenna assembly 803 is turned on.
  • the on-off state of the switch device 30 in the first preset period is as follows: only the first antenna component 70 is turned on at the 0th-20ms, only the second antenna component 801 is turned on at the 20-40ms, and only the second antenna component 801 is turned on at the 40-60ms.
  • the second antenna component 802 is turned on, and only the second antenna component 803 is turned on during the 60ms-80ms. If the signal strength received by the control terminal 2000 is the strongest at the time of 0ms-20ms, then in the whole second period (80ms-160ms) the switching device 30 keeps only the first antenna assembly 70 turned on, and so on, if the control The signal intensity received by the terminal 2000 is the strongest at 20ms-40ms, then the switching device 30 keeps only the second antenna assembly 801 turned on in the entire second period, if the signal received by the control terminal 2000 at the 40ms-60ms Intensity is the strongest, then the switching device 30 keeps only conducting the second antenna assembly 802 in the whole second cycle, if the signal strength received by the control terminal 2000 is the strongest at the time of 60ms-80ms, then the switch device 30 is switched on in the whole second cycle Device 30 remains on only second antenna assembly 803 .
  • the on-off state of the switch device 30 may also include: turning on two antenna components at the same time, such as turning on the first antenna component 70 and the second antenna component 801 at the same time; may also include: turning on three antenna components at the same time , such as turning on the second antenna component 801, the second antenna component 802, and the second antenna component 803 at the same time; it may also include: turning on four antenna components at the same time, such as turning on the first antenna component 70 and the second antenna component at the same time 801, a second antenna component 802, and a second antenna component 803.
  • the on-off state of the switch device 30 may also include turning on more than four antenna components simultaneously, which are not listed here.
  • the drone 1000 further includes a fuselage 1300 , an arm 1400 installed on the fuselage 1300 , and a tripod 1500 installed on the arm 1400 .
  • the arm 1400 is equipped with the antenna device 100 and/or the antenna device 200 .
  • the stand 1500 is mounted with the antenna device 100 and/or the antenna device 200 .
  • the antenna device 100 and/or the antenna device 200 are installed on the arm 1400 and the stand 1500 . That is, the drone 1000 may be equipped with only the antenna device 100 , or only the antenna device 200 , or both the antenna device 100 and the antenna device 200 .
  • the arm 1400 extends horizontally relative to the fuselage 1300 , so the polarization direction of the current in the antenna device 100 / 200 installed on the arm 1400 is along the horizontal direction.
  • the stand 1500 extends vertically relative to the body 1300 , so the polarization direction of the current in the antenna device 100 / 200 installed on the stand 1500 is along the vertical direction.
  • the UAV 1000 flies along different paths at different attitude angles, the attenuation rates of the vertically polarized and horizontally polarized currents are also different.
  • the vertical polarization and horizontal polarization of each antenna device 100/200 can complement each other, so as to improve the lower limit of radiation attenuation of the drone 1000 as a whole.
  • the two sides of the nose 1100 of the UAV 1000 are respectively provided with tripods 1500
  • the two sides of the tail 1200 of the UAV 1000 are respectively provided with arms 1400
  • the UAV 1000 The tripods 1500 on both sides of the nose 1100 are provided with the antenna device 100 and/or the antenna device 200
  • the arms 1400 on both sides of the tail 1200 of the UAV 1000 are provided with the antenna device 100 and/or the antenna device 200 .
  • the orientation of the radiation unit 11 and the orientation of the parasitic unit 21 are consistent with the direction of the roll axis O3 of the fuselage 1300; in the antenna device 100 in the arm 1400, the radiation unit 11 and the orientation of the parasitic unit 21 are both inclined relative to the roll axis O3 of the fuselage 1300 .
  • the space of the arm 1400 and the tripod 1500 can be fully used to install the antenna device 100, and the current polarization characteristics of each antenna device 100 can be taken into account, so that the vertical polarization and horizontal polarization of each antenna device 100 can complement each other, so that Increase the overall radiation attenuation lower limit of drone 1000.
  • the orientation of the first radiation unit 71 and the orientation of the second radiation unit 81 are consistent with the direction of the roll axis O3 of the fuselage 1300; in the antenna device 200 in the arm 1400 , the orientation of the first radiation unit 71 and the orientation of the second radiation unit 81 are both inclined relative to the roll axis O3 of the fuselage 1300 .
  • the space of the arm 1400 and the tripod 1500 can be fully used to install the antenna device 200, and the current polarization characteristics of each antenna device 200 can be taken into account, so that the vertical polarization and horizontal polarization of each antenna device 200 can complement each other, so that Increase the overall radiation attenuation lower limit of drone 1000.
  • references to the terms “certain embodiments,” “one embodiment,” “some embodiments,” “examples,” “specific examples,” or “some examples” are intended to mean A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present application.
  • the schematic representations of the above terms are not necessarily directed to the same embodiment or example.
  • the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples.
  • those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of said features.
  • “plurality” means at least two, such as two, three, unless otherwise specifically defined.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

一种天线装置(100)及无人机(1000)。天线装置(100)包括辐射组件(10)、寄生组件(20)、及开关器件(30)。辐射组件(10)用于辐射高频电磁波和低频电磁波。当开关器件(30)处于导通状态时,寄生组件(20)能够对高频电磁波和低频电磁波起到反射作用,当开关器件(30)处于关断状态时,寄生组件(20)能够对高频电磁波和低频电磁波起到引向作用。

Description

天线装置及无人机 技术领域
本申请涉及通信技术领域,特别涉及一种天线装置及无人机。
背景技术
目前民用领域的无人机机载天线大多为全向天线,全向天线在接收控制端传输的有用信号之外还会同时接收到其他方向的干扰信号,此外,天线的辐射方向图不会随无人机姿态进行调整,无人机和控制端之间的通信质量难以得到保证。
军用领域中,通常使用相控阵天线来改变无人机机载天线的辐射方向图,但是相控阵技术难度和成本都较高,且相控阵天线尺寸较大,在民用小型无人机上安装困难。
发明内容
本申请的实施方式提供了一种天线装置及无人机。
本申请实施方式的天线装置包括辐射组件、寄生组件、及开关器件。所述辐射组件包括两个辐射单元,每个所述辐射单元包括高频辐射枝节和低频辐射枝节,所述高频辐射枝节用于辐射高频电磁波,所述低频辐射枝节用于辐射低频电磁波。所述寄生组件包括两个寄生单元,每个所述寄生单元包括高频寄生枝节和低频寄生枝节,所述高频寄生枝节的谐振频率与所述高频辐射枝节的谐振频率相同,所述低频寄生枝节的谐振频率与所述低频辐射枝节的谐振频率相同。所述开关器件连接两个所述寄生单元,当所述开关器件处于导通状态时,所述寄生组件能够对所述高频电磁波和所述低频电磁波起到反射作用,当所述开关器件处于关断状态时,所述寄生组件能够对所述高频电磁波和所述低频电磁波起到引向作用。
本申请实施方式的无人机包括上述天线装置。所述天线装置包括辐射组件、寄生组件、及开关器件。所述辐射组件包括两个辐射单元,每个所述辐射单元包括高频辐射枝节和低频辐射枝节,所述高频辐射枝节用于辐射高频电磁波,所述低频辐射枝节用于辐射低频电磁波。所述寄生组件包括两个寄生单元,每个所述寄生单元包括高频寄生枝节和低频寄生枝节,所述高频寄生枝节的谐振频率与所述高频辐射枝节的谐振频率相同,所述低频寄生枝节的谐振频率与所述低频辐射枝节的谐振频率相同。所述开关器件连接两个所述寄生单元,当所述开关器件处于导通状态时,所述寄生组件能够对所述高频电磁波和所述低频电磁波起到反射作用,当所述开关器件处于关断状态时,所述寄生组件能够对所述高频电磁波和所述低频电磁波起到引向作用。
本申请实施方式的天线装置及无人机通过改变开关器件的通断状态使寄生组件对辐射组件辐射的电磁波起反射或引向作用,以使天线装置在特定的方向的辐射增益提高,并降低对其他方向干扰信号的接收,以较低的成本实现了天线辐射方向的调节。
本申请实施方式的另一天线装置包括第一天线组件、第二天线组件、及开关器件。所述第一天线组件包括两个第一辐射单元,每个所述第一辐射单元包括第一高频辐射枝节和第一低频辐射枝节。所述第二天线组件包括两个第二辐射单元,每个所述第二辐射单元包括第二高频辐射枝节和第二低频辐射枝节,所述第二高频辐射枝节的谐振频率与所述第一高频辐射枝节的谐振频率相同,所述第二低频辐射枝节的谐振频率与所述第二低频辐射枝节的谐振频率相同。所述开关器件连接所述第一天线组件及所述第二天线组件,当所述开关器件断开所述述第一天线组件并导通所述第二天线组件以给所述第二天线组件馈电时,所述第一天线组件能够对所述第二天线组件辐射的高频电磁波和低频电磁波起到引向作用,当所述开关器件断开所述述第二天线组件并导通所述第一天线组件以给所述第一天线组件馈电时,所述第二天线组件能够对所述第一天线组件辐射的高频电磁波和 低频电磁波起到引向作用。
本申请实施方式的无人机包括上述另一天线装置。所述另一天线装置包括第一天线组件、第二天线组件、及开关器件。所述第一天线组件包括两个第一辐射单元,每个所述第一辐射单元包括第一高频辐射枝节和第一低频辐射枝节。所述第二天线组件包括两个第二辐射单元,每个所述第二辐射单元包括第二高频辐射枝节和第二低频辐射枝节,所述第二高频辐射枝节的谐振频率与所述第一高频辐射枝节的谐振频率相同,所述第二低频辐射枝节的谐振频率与所述第二低频辐射枝节的谐振频率相同。所述开关器件连接所述第一天线组件及所述第二天线组件,当所述开关器件断开所述述第一天线组件并导通所述第二天线组件以给所述第二天线组件馈电时,所述第一天线组件能够对所述第二天线组件辐射的高频电磁波和低频电磁波起到引向作用,当所述开关器件断开所述述第二天线组件并导通所述第一天线组件以给所述第一天线组件馈电时,所述第二天线组件能够对所述第一天线组件辐射的高频电磁波和低频电磁波起到引向作用。
本申请实施方式的天线装置及无人机能够通过开关器件改变第一天线组件的导通状态和第二天线组件的导通状态使第二天线组件对第一天线组件辐射的电磁波起引向作用,还能够通过开关器件改变第一天线组件的导通状态和第二天线组件的导通状态使第一天线组件对第二天线组件辐射的电磁波起引向作用,以使天线装置在特定的方向的辐射增益提高,并降低对其他方向干扰信号的接收,以较低的成本实现了天线辐射方向的调节。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的天线装置的结构示意图;
图2是本申请某些实施方式的辐射组件的结构示意图;
图3是本申请某些实施方式的寄生装置的结构示意图;
图4是本申请某些实施方式的天线装置的结构示意图;
图5是本申请某些实施方式的天线装置的结构示意图;
图6是本申请某些实施方式的天线装置的结构示意图;
图7是本申请某些实施方式的天线装置的结构示意图;
图8是本申请某些实施方式的天线装置的结构示意图;
图9是本申请某些实施方式的天线装置的结构示意图;
图10是本申请某些实施方式的天线装置的结构示意图;
图11是本申请某些实施方式的天线装置的结构示意图;
图12是本申请某些实施方式的天线装置的结构示意图;
图13本申请某些实施方式的无人机的结构示意图;
图14本申请某些实施方式的无人机的结构示意图。
具体实施方式
以下结合附图对本申请的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
另外,下面结合附图描述的本申请的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参阅图1,本申请实施方式提供一种天线装置100。天线装置100包括辐射组件10、寄生组件20、及开关器件30。辐射组件10包括两个辐射单元11,每个辐射单元11包括高频辐射枝节111和低频辐射枝节112,高频辐射枝节111用于辐射高频电磁波,低频辐射枝节112用于辐射低频电磁波。寄生组件20包括两个寄生单元21,每个寄生单元21包括高频寄生枝节211和低频寄生枝节212,高频寄生枝节211的谐振频率与高频辐射枝节111的谐振频率相同,低频寄生枝节212的谐振频率与低频辐射枝节112的谐振频率相同。开关器件30连接两个寄生单元21,当开关器件30处于导通状态时,寄生组件20能够对高频电磁波和低频电磁波起到反射作用,当开关器件30处于关断状态时,寄生组件20能够对高频电磁波和低频电磁波起到引向作用。
本申请实施方式的天线装置100能够通过改变开关器件30的通断状态使寄生组件20对辐射组件10辐射的电磁波起反射或引向作用,以使天线装置100在特定的方向的辐射增益提高,并降低对其他方向干扰信号的接收,以较低的成本实现了天线辐射方向的调节。
请参阅图2,辐射组件10包括第一介质体12。第一介质体12可以是PCB板、陶瓷、LDS、PC/ABS塑胶等。第一介质体12包括相背的第一面121与第二面122。辐射组件10的两个辐射单元11设置在第一介质体12的第一面121或第一介质体12的第二面122。每个辐射单元11包括高频辐射枝节111和低频辐射枝节112。
请参阅图2,高频辐射枝节111的长度与高频辐射枝节111的中心波长有关,示例地,高频辐射枝节111的长度可以为高频辐射枝节111的中心频率对应的波长的四分之一,但并不限于此,还可以是高频辐射枝节111的中心频率对应的波长的四分之一附近的取值,在此不一一列举。
高频辐射枝节111的中心频率的取值范围可以是[4.4GHz,6.0GHz],在一个实施例中,高频辐射枝节111的中心频率为5.8GHz,但并不限于此,还可以是4.4GHz、4.6GHz、4.8GHz、5.0GHz、5.2GHz、5.4GHz、5.6GHz、6.0GHz等,在此不一一列举。
请参阅图2,低频辐射枝节112的长度与低频辐射枝节112的中心波长有关,示例地,低频辐射枝节112的长度可以为低频辐射枝节112的中心频率对应的波长的四分之一,但并不限于此,还可以是低频辐射枝节112的中心频率对应的波长的四分之一附近的取值,在此不一一列举。其中,低频辐射枝节112的中心频率的取值范围可以是[2.2GHz,3.0GHz],在一个实施例中,低频辐射枝节112的中心频率为2.4GHz,但并不限于此,还可以是2.2GHz、2.3GHz、2.5GHz、2.6GHz、2.7GHz、2.8GHz、2.9GHz、3.0GHz等,在此不一一列举。
请参阅图2,朝同一方向延伸的一组高频辐射枝节111和低频辐射枝节112组成一个辐射单元11。在某些实施方式中,在第一介质体12的第一面121或第一介质体12的第二面122,两个辐射单元11相对第一介质体12长边的对称轴O1对称分布。两个辐射单元11可看做一个偶极子天线。
在某些实施方式中,辐射组件10还包括馈电单元40,每个辐射单元11中高频辐射枝节111的一端和低频辐射枝节112的一端均与馈电单元40连接。馈电单元40可用于与馈线51连接,以使辐射单元11能够通过馈线51接收其他设备提供的射频能量。
请结合图1,在某些实施方式中,天线装置100还包括控制器50,控制器50通过馈线51连接辐射组件10以给辐射组件10馈电。
请参阅图3,寄生组件20包括第二介质体22。第二介质体22可以是PCB板、陶瓷、LDS、PC/ABS塑 胶等。第二介质体22包括相背的第一面221与第二面222。寄生组件20的两个寄生单元21设置在第二介质体22的第一面221或第二介质体22的第二面222。每个寄生单元21包括高频寄生枝节211和低频寄生枝节212。
请参阅图3,高频寄生枝节211的长度与高频寄生枝节211的中心波长有关,示例地,高频寄生枝节211的长度可以为高频寄生枝节211的中心频率对应的波长的四分之一,但并不限于此,还可以是高频寄生枝节211的中心频率对应的波长的四分之一附近的取值,在此不一一列举。
高频寄生枝节211的中心频率的取值范围可以是[4.4GHz,6.0GHz],在一个实施例中,高频寄生枝节211的中心频率为5.8GHz,但并不限于此,还可以是4.4GHz、4.6GHz、4.8GHz、5.0GHz、5.2GHz、5.4GHz、5.6GHz、6.0GHz等,在此不一一列举。
请参阅图3,低频寄生枝节212的长度与低频寄生枝节212的中心波长有关,示例地,低频寄生枝节212的长度可以为低频寄生枝节212的中心频率对应的波长的四分之一,但并不限于此,还可以是低频寄生枝节212的中心频率对应的波长的四分之一附近的取值,在此不一一列举。其中,低频寄生枝节212的中心频率的取值范围可以是[2.2GHz,3.0GHz],在一个实施例中,低频寄生枝节212的中心频率为2.4GHz,但并不限于此,还可以是2.2GHz、2.3GHz、2.5GHz、2.6GHz、2.7GHz、2.8GHz、2.9GHz、3.0GHz等,在此不一一列举。
请参阅图3,朝同一方向延伸的一组高频寄生枝节211和低频寄生枝节212组成一个寄生单元21。在某些实施方式中,在第二介质体22的第一面221或第二介质体22的第二面222,两个寄生单元21相对第二介质体22长边的对称轴O2对称分布。
请参阅图1至图3,开关器件30连接两个寄生单元21,在一个实施例中,开关器件30为单刀单掷开关,当单刀单掷开关的刀片接触触头时开关器件30处于导通状态,当单刀单掷开关的刀片与触头断开接触时开关器件30处于关断状态。当开关器件30处于导通状态时,两个寄生单元21之间导通形成电性连接,当开关器件30处于关断状态时,两个寄生单元21之间不导通不形成电性连接。
在某些实施方式中,开关器件30设置于寄生组件20的第二介质体22。在一个实施例中,控制器50可以是射频控制芯片,用于给辐射组件10馈电,及控制开关器件30的通断。具体地,控制器50可通过馈线51连接辐射组件10以给辐射组件10馈电,也可通过信号线52连接开关器件30,以控制开关器件30的通断。
当与寄生组件20对应的辐射组件10辐射电磁波时,辐射组件10自身存在电流I0,寄生组件20在辐射组件10工作形成的电场的作用下产生感应电流。若开关器件30处于导通状态,两个寄生单元21之间导通,则两个寄生单元21与开关器件30组成的电路中产生感应电流I1,且感应电流I1与电流I0的方向相反,此时,无论辐射组件10辐射高频电磁波,还是辐射低频电磁波,寄生组件20均能够对辐射组件10辐射的电磁波起反射作用,使辐射组件10辐射的电磁波在反射方向上集中,即,使辐射组件10辐射的电磁波在引向方向上变弱,在反射方向上变强。其中,引向方向为辐射组件10的辐射朝向寄生组件20的方向,如图4所示的X1方向,反射方向是辐射组件10的辐射背离寄生组件20的方向,如图4所示的X2方向。若开关器件30处于关断状态,两个寄生单元21之间不导通,则两个寄生单元21各自的电路中分别产生感应电流I2及感应电流I3,且感应电流I2及感应电流I3与电流I0的方向相同,此时,无论辐射组件10辐射高频电磁波,还是辐射低频电磁波,寄生组件20均能够对辐射组件10辐射的电磁波起引向作用,使辐射组件10辐射的电磁波在引向方向上集中,即,使辐射组件10的辐射在引向方向上变强,在反射方向上变弱。
请参阅图2及图3,在某些实施方式中,辐射组件10与寄生组件20之间的距离在高频辐射枝节111的中心频率对应的波长的四分之一与低频辐射枝节112的中心频率对应的波长的四分之一之间。如此,能够通过改变开关器件30的连通和关断状态调节天线装置100的辐射方向,以达到抗干扰的效果。例如,当引向方向存在干扰信号时连通开关器件30,使天线装置100在反射方向上的辐射增益提高,并降低天线装置100对引向 方向干扰信号的接收,达到抗干扰的效果。再例如,当反射方向存在干扰信号时关断开关器件30,使天线装置100在引向方向上的辐射增益提高,并降低天线装置100对反射方向干扰信号的接收,达到抗干扰的效果。
请参阅图2及图3,在某些实施方式中,高频辐射枝节111的中心频率与高频寄生枝节211的中心频率相同,即高频辐射枝节111的中心波长与高频寄生枝节211的中心波长相同。进一步地,在一个实施例中,高频辐射枝节111的长度为高频辐射枝节111的中心频率对应的波长的四分之一,高频寄生枝节211的长度为高频寄生枝节211的中心频率对应的波长的四分之一,且高频辐射枝节111的中心频率与高频寄生枝节211的中心频率相同,此时高频辐射枝节111的长度和高频寄生枝节211的相同。
请参阅图2及图3,在某些实施方式中,低频辐射枝节112与低频寄生枝节212的形状相同。例如,低频辐射枝节112呈L形,低频寄生枝节212同样呈L形;再例如,低频辐射枝节112为弯折枝节,包括六个折角,低频寄生枝节212同样为六个折角的弯折枝节,且低频寄生枝节212的每个折角与高频辐射枝节111对应的折角的角度相同。低频辐射枝节112与低频寄生枝节212的形状不局限于此,在此不一一列举。
类似地,在某些实施方式中,高频辐射枝节111与高频寄生枝节211的形状也相同。在某些实施方式中,低频辐射枝节112与低频寄生枝节212的形状相同,且高频辐射枝节111与高频寄生枝节211的形状相同。此处形状相同的解释同前,不再赘述。
请参阅图2及图3,在某些实施方式中,低频辐射枝节112与低频寄生枝节212的尺寸相同。枝节的尺寸是枝节的起始端与枝节的末端之间的距离。以图2示意的低频辐射枝节112为例,低频辐射枝节112的起始端S1靠近馈电单元40,低频辐射枝节112的末端S2远离馈电单元40,起始端S1与末端S2之间的直线距离L1为低频辐射枝节112的尺寸。由于低频辐射枝节112为弯折的形状,因此低频辐射枝节112的尺寸小于低频辐射枝节112的长度,从而能够在预设长度的第一介质体12上设置更长的低频辐射枝节112。在一个实施例中,低频辐射枝节112的长度为低频辐射枝节112的中心频率对应的波长的四分之一,且低频辐射枝节112的尺寸为低频辐射枝节112的中心频率对应的波长的十分之一,以能够减小第一介质体12的长度,利于实现辐射组件10的轻薄化。
类似地,在某些实施方式中,高频辐射枝节111与高频寄生枝节211的尺寸相同。在某些实施方式中,低频辐射枝节112与低频寄生枝节212的尺寸相同,且高频辐射枝节111与高频寄生枝节211的尺寸相同。此处尺寸相同的解释同前,不再赘述。
请参阅图2及图3,在某些实施方式中,高频辐射枝节111与高频寄生枝节211能够完全重合。即,高频辐射枝节111与高频寄生枝节211的形状和尺寸均相同。类似地,在某些实施方式中,低频辐射枝节112与低频寄生枝节212能够完全重合。即,低频辐射枝节112与低频寄生枝节212的形状和尺寸均相同。在某些实施方式中,高频辐射枝节111与高频寄生枝节211能够完全重合,且低频辐射枝节112与低频寄生枝节212能够完全重合,此时,辐射组件10与寄生组件20的区别仅在于馈电单元40连接两个辐射单元11,而开关器件30连接两个寄生单元21。也即是说,当高频辐射枝节111与高频寄生枝节211能够完全重合,且低频辐射枝节112与低频寄生枝节212能够完全重合时,若馈电单元40连接两个寄生单元21,则寄生组件20可作为辐射组件10使用,能够起到和辐射组件10相同的辐射电磁波的效果;若开关器件30连接两个辐射单元11,则辐射组件10可作为寄生组件20使用,能够根据开关器件30的连通或关断状态对其他辐射组件10辐射的电磁波起到反射或引向作用。
请参阅图1至图4,在某些实施方式中,高频辐射枝节111与高频寄生枝节211对应设置,低频辐射枝节112与低频寄生枝节212对应设置。如此,当高频辐射枝节111辐射高频电磁波时,高频寄生枝节211更容易在对应的高频辐射枝节111的电场下产生对应的感应电流;当低频辐射枝节112辐射低频电磁波时,低频寄生枝节212更容易在对应的低频辐射枝节112的电场下产生对应的感应电流。此外,高频辐射枝节111与高频寄 生枝节211对应设置,低频辐射枝节112与低频寄生枝节212对应设置还可以使天线装置100中辐射组件10和寄生组件20的布置更紧凑,有利于实现天线装置100的轻薄化。
请参阅图4,在某些实施方式中,第一介质体12的第一面121与第二介质体22的第一面221平行,以使寄生组件20在X1方向上更好地对辐射组件10辐射的电磁波起引向作用,或在X2方向上更好地对辐射组件10辐射的电磁波起反射作用。第一介质体12的第一面121与第二介质体22的第一面221的位置关系不局限于平行,在又一个实施例中,第一介质体12的第一面121与第二介质体22的第一面221垂直;在再一个实施例中,第一介质体12的第一面121相对第二介质体22的第一面221倾斜。本申请的天线装置100中,第一介质体12的第一面121与第二介质体22的第一面221平行、垂直、或第一介质体12的第一面121相对第二介质体22的第一面221倾斜时,寄生组件20均能够对辐射组件10辐射的电磁波起引向或反射作用。
请参阅图4,在某些实施方式中,第一介质体12的第二面122与第二介质体22的第二面222相对,辐射单元11设置于第一介质体12的第一面121,寄生单元21设置于第二介质体22的第一面221。结合前文所述,辐射组件10与寄生组件20之间需要间隔一定的距离,以使寄生组件20产生的感应电流具有预定的特性。具体地,寄生组件20产生的感应电流受寄生单元21与辐射单元11之间的距离影响,当辐射组件10与寄生组件20之间的距离固定时,将辐射单元11设置于第一介质体12的第一面121,寄生单元21设置于第二介质体22的第一面221,并使第一介质体12的第二面122与第二介质体22的第二面222相对,能够在辐射组件10与寄生组件20之间的距离不变的条件下增加辐射单元11和寄生单元21之间的距离。也即是说,在辐射单元11和寄生单元21之间的距离为预设距离时,将辐射单元11设置于第一介质体12的第一面121,寄生单元21设置于第二介质体22的第一面221,并使第一介质体12的第二面122与第二介质体22的第二面222相对能够使辐射组件10与寄生组件20之间的距离更近,以能够减小天线装置100的尺寸,可以使天线装置100中辐射组件10和寄生组件20的布置更紧凑,有利于实现天线装置100的轻薄化。
请参阅图1至图4,综上,本申请实施方式的天线装置100能够辐射高频电磁波和低频电磁波,天线装置100中,当开关器件30处于导通状态时,寄生组件20能够对高频电磁波和低频电磁波起到反射作用,当开关器件30处于关断状态时,寄生组件20能够对高频电磁波和低频电磁波起到引向作用。如此,可以选择性地在引向方向或反射方向增益天线的辐射,使天线装置100在需要传输信号的方向上增益提高,以利于该方向上的信号传输,且能够减弱天线装置100在不需要传输信号的方向上的辐射,以减少该方向上干扰信号的接收,从而达到抗干扰效果。
请参阅图5,在某些实施方式中,寄生组件20可为多个(两个或两个以上,下同),开关器件30也可为多个,每个寄生组件20设有一个开关器件30,控制器50通过信号线52连接多个开关器件30,多个寄生组件20位于辐射组件10的不同侧。根据每个寄生组件20的开关器件30的通断状态,每个寄生组件20均能够独立地对辐射组件10辐射的电磁波沿朝向寄生组件20的方向起引向作用,或沿背离寄生组件20的方向起反射作用。辐射组件10辐射的电磁波的增益方向和削弱方向受多个寄生组件20的引向/反射共同作用影响。
请参阅图5,例如,寄生组件20为两个,包括位于辐射组件10左侧的第一寄生组件201和位于辐射组件10上侧的第二寄生组件202。开关器件30也为两个,分别为设置于第一寄生组件201上的第一开关器件301和第二寄生组件202上的第二开关器件302。第一寄生组件201能够对辐射组件10辐射的电磁波起引向作用,使电磁波向X1方向集中;第一寄生组件201还能够对辐射组件10辐射的电磁波起反射作用,使电磁波向X2方向集中。第二寄生组件202能够对辐射组件10辐射的电磁波起引向作用,使电磁波向Y1方向集中;第二寄生组件202还能够对辐射组件10辐射的电磁波起反射作用,使电磁波向Y2方向集中。若第一开关器件301连接第一寄生组件201,第二开关器件302连接第二寄生组件202,则:(1)当第一开关器件301导通、且第二开关器件302导通时,天线装置100的辐射在X2方向、Y2方向、以及X2与Y2之间的方向的增益提升。 (2)当第一开关器件301导通,而第二开关器件302关断时,天线装置100的辐射在X2方向、Y1方向、以及X2与Y1之间的方向的增益提升。(3)当第一开关器件301关断,且第二开关器件302关断时,天线装置100的辐射在X1方向、Y1方向、以及X1与Y1之间的方向的增益提升。(4)当第一开关器件301关断,而第二开关器件302导通时,天线装置100的辐射在X1方向、Y2方向和X1与Y2之间的方向的增益提升。
当寄生组件20为两个时,两个寄生组件20与辐射组件10的位置关系不仅限于位于辐射组件10的左侧和上侧,还可以位于辐射组件10的左侧和下侧、右侧和上侧、右侧和下侧等,在此不作限制。
请参阅图5,在某些实施方式中,寄生组件20为两个。在一个实施例中,辐射单元11所在的表面与其中一个寄生组件20的寄生单元21所在的表面垂直,并与另一个寄生组件20的寄生单元21所在的表面平行。如此,两个寄生单元21对辐射单元11的辐射的引向/反射作用方向正交,便于调控天线装置100的辐射方向图。请参阅图6,在又一个实施例中,辐射单元11所在的表面与其中一个寄生组件20的寄生单元21所在的表面垂直,并与另一个寄生组件20的寄生单元21所在的表面相对倾斜。请参阅图7,在再一个实施例中,辐射单元11所在的表面与其中一个寄生组件20的寄生单元21所在的表面平行,并与另一个寄生组件20的寄生单元21所在的表面相对倾斜。请参阅图8,在再一个实施例中,辐射单元11所在的表面与两个寄生组件20的寄生单元21所在的表面均相对倾斜。即,每个寄生组件20的寄生单元21所在的表面与辐射单元11所在的表面可以平行、垂直、或相对倾斜,在此不作限制,可根据天线装置100的安装环境灵活设置,同时,这几种寄生组件20与辐射组件10不同的相对位置关系,均能实现两个寄生单元21对辐射单元11的辐射起引向和/或反射作用。
请参阅图9,在某些实施方式中,天线装置100还可包括驱动件60,驱动件60用于驱动辐射组件10和/或寄生组件20运动,以改变辐射组件10与寄生组件20之间的相对位置。如此,无需设置多个寄生单元21,也可以灵活调整天线装置100的辐射方向图。
例如,在一个实施例中,辐射组件10固定,驱动件60用于驱动寄生组件20运动,例如寄生组件20可安装于驱动件60以被驱动件60驱动而相对辐射组件10运动。当驱动件60驱动寄生组件20运动至辐射组件10左侧且开关器件30处于关断状态时,寄生组件20对辐射组件10辐射的电磁波起引向作用,使电磁波向X1方向集中。若想要使辐射组件10辐射的电磁波向Y1方向集中,则可以通过驱动件60驱动寄生组件20移动至辐射组件10上侧并保持开关器件30处于关断状态,此时寄生组件20在辐射组件10上侧起引向作用,使电磁波向Y1方向集中;或者可以通过驱动件60驱动寄生组件20移动至辐射组件10下侧并使开关器件30处于导通状态,此时寄生组件20在辐射组件10下侧起反射作用,使电磁波向Y1方向集中。可理解地,驱动件60能够驱动寄生组件20围绕辐射组件10运动,例如驱动寄生组件20运动至辐射组件10左侧、左下侧、下侧、右下侧、右侧、右上侧、上侧、左上侧等,在此不作限制。
类似地,在又一个实施例中,寄生组件20固定,驱动件60用于驱动辐射组件10运动,例如辐射组件10可安装于驱动件60以被驱动件60驱动而相对寄生组件20运动,从而改变辐射组件10与寄生组件20之间的相对位置。在再一个实施例中,驱动件60既能驱动辐射组件10运动,又能驱动寄生组件20运动,例如驱动件60包括第一驱动件和第二驱动件,辐射组件10安装于第一驱动件以被第一驱动件驱动而运动,寄生组件20安装于第二驱动件以被第二驱动件驱动而运动,从而改变辐射组件10与寄生组件20之间的相对位置。
请参阅图10,本申请实施方式还提供一种天线装置200,天线装置200包括第一天线组件70、第二天线组件80、及开关器件30。第一天线组件70包括两个第一辐射单元71,每个第一辐射单元71包括第一高频辐射枝节711和第一低频辐射枝节712。第二天线组件80包括两个第二辐射单元81,每个第二辐射单元81包括第二高频辐射枝节811和第二低频辐射枝节812,第二高频辐射枝节811的谐振频率与第一高频辐射枝节711的谐振频率相同,第二低频辐射枝节812的谐振频率与第二低频辐射枝节812的谐振频率相同。开关器件30 连接第一天线组件70及第二天线组件80,当开关器件30断开述第一天线组件70并导通第二天线组件80以给第二天线组件80馈电时,第一天线组件70能够对第二天线组件80辐射的高频电磁波和低频电磁波起到引向作用,当开关器件30断开述第二天线组件80并导通第一天线组件70以给第一天线组件70馈电时,第二天线组件80能够对第一天线组件70辐射的高频电磁波和低频电磁波起到引向作用。
本申请实施方式的天线装置200能够通过开关器件30改变第一天线组件70的导通状态和第二天线组件80的导通状态使第二天线组件80对第一天线组件70辐射的电磁波起引向作用,还能够通过开关器件30改变第一天线组件70的导通状态和第二天线组件80的导通状态使第一天线组件70对第二天线组件80辐射的电磁波起引向作用,以使天线装置200在特定的方向的辐射增益提高,并降低对其他方向干扰信号的接收,以较低的成本实现了天线辐射方向的调节。
在一个实施例中,开关器件30为单刀双掷开关,当单刀双掷开关的刀片33与第一触点31连接时,刀片33与第二触点32断开,此时,开关器件30能够导通第一天线组件70,而断开第二天线组件80;当单刀双掷开关的刀片33与第二触点32连接时,刀片33与第一触点31断开,此时,开关器件30能够导通第二天线组件80,而断开第一天线组件70。
在某些实施方式中,天线装置200还包括控制器50,控制器50通过馈线51连接开关器件30,及通过信号线52连接开关器件30,控制器50用于控制开关器件30以给第一天线组件70或第二天线组件80馈电。其中,控制器50通过信号线52控制开关器件30导通第一天线组件70或第二天线组件80,并通过馈线51向第一天线组件70和第二天线组件80中被导通的天线组件馈电。
在某些实施方式中,开关器件30设于馈线51的线路中,开关器件30用于选择性地导通第一天线组件70与控制器50,或导通第二天线组件80与控制器50。
在某些实施方式中,当开关器件30断开第一天线组件70时,两个第一辐射单元71处于关断状态;当开关器件30导通第一天线组件70时,两个第一辐射单元71处于导通状态。类似地,当开关器件30断开第二天线组件80时,两个第二辐射单元81处于关断状态;当开关器件30导通第二天线组件80时,两个第二辐射单元81处于导通状态。
请参阅图1至图3以及图10,当第一天线组件70馈电,第二天线组件80没有馈电时,第二天线组件80相当于图1至图3中所示的寄生组件20,进一步地,当第二天线组件80没有馈电时,两个第二辐射单元81处于关断状态,因此第二天线组件80相当于两个寄生单元21处于关断状态的寄生组件20,此时第二天线组件80能够对第一天线组件70辐射的电磁波起到引向作用。类似地,当第二天线组件80馈电,第一天线组件70没有馈电时,第一天线组件70相当于图1至图3中所示的寄生组件20,进一步地,当第一天线组件70没有馈电时,两个第一辐射单元71处于关断状态,因此第一天线组件70相当于两个寄生单元21处于关断状态的寄生组件20,此时第一天线组件70能够对第二天线组件80辐射的电磁波起到引向作用。
第一天线组件70和第二天线组件80之间的引向作用关系与图1至图3中所示的辐射组件10和寄生组件20之间的引向作用关系的原理相同,第一天线组件70和第二天线组件80中被开关器件30导通的天线组件起辐射组件10的作用,未被导通的天线组件起寄生组件20的作用,具体原理同前,此处不再赘述。
请参阅图1及图10,在某些实施方式中,第一天线组件70与第二天线组件80之间的距离在第一高频辐射枝节711的中心频率对应的波长的四分之一与第一低频辐射枝节712的中心频率对应的波长的四分之一之间,以确保第一天线组件70或第二天线组件80作为寄生组件20时能够对辐射电磁波的天线组件起引向作用。
请参阅图1及图10,在某些实施方式中,第一高频辐射枝节711的中心频率与第二高频辐射枝节811的中心频率相同,即第一高频辐射枝节711的中心波长与第二高频辐射枝节811的中心波长相同,相当于高频辐射枝节111的中心波长与高频寄生枝节211的中心波长相同。进一步地,在一个实施例中,第一高频辐射枝节 711的长度为第一高频辐射枝节711的中心频率对应的波长的四分之一,第二高频辐射枝节811的长度为第二高频辐射枝节811的中心频率对应的波长的四分之一,且第一高频辐射枝节711的中心频率与第二高频辐射枝节811的中心频率相同,此时第一高频辐射枝节711的长度和第二高频辐射枝节811的相同。
请参阅图1及图10,在某些实施方式中,第一高频辐射枝节711与第二高频辐射枝节811的形状相同,第一低频辐射枝节712与第二低频辐射枝节812的形状相同,相当于高频辐射枝节111与高频寄生枝节211的形状相同,低频辐射枝节112与低频寄生枝节212的形状相同,形状相同的解释同前,此处不再赘述。
请参阅图1及图10,在某些实施方式中,第一低频辐射枝节712与第二低频辐射枝节812的尺寸相同,相当于低频辐射枝节112与低频寄生枝节212的尺寸相同,尺寸相同的解释同前,此处不再赘述。类似地,在某些实施方式中,第一高频辐射枝节711与第二高频辐射枝节811的尺寸相同,相当于高频辐射枝节111与高频寄生枝节211的尺寸相同,此处不再赘述。在某些实施方式中,第一低频辐射枝节712与第二低频辐射枝节812的尺寸相同,且第一高频辐射枝节711与第二高频辐射枝节811的尺寸相同,相当于低频辐射枝节112与低频寄生枝节212的尺寸相同,且高频辐射枝节111与高频寄生枝节211的尺寸相同,此处不再赘述。
请参阅图1及图10,在某些实施方式中,第一高频辐射枝节711与第二高频辐射枝节811能够完全重合。即,第一高频辐射枝节711与第二高频辐射枝节811的形状和尺寸均相同。类似地,在某些实施方式中,第一低频辐射枝节712与第二低频辐射枝节812能够完全重合。即,第一低频辐射枝节712与第二低频辐射枝节812的形状和尺寸均相同。在某些实施方式中,第一高频辐射枝节711与第二高频辐射枝节811能够完全重合,且第一低频辐射枝节712与第二低频辐射枝节812能够完全重合,此时第一天线组件70和第二天线组件80完全相同,且可与图1至图3中辐射单元10完全相同。
请参阅图1及图10,在某些实施方式中,第一高频辐射枝节711与第二高频辐射枝节811对应设置,第一低频辐射枝节712与第二低频辐射枝节812对应设置,相当于高频辐射枝节111与高频寄生枝节211对应设置,低频辐射枝节112与低频寄生枝节212对应设置,此处不再赘述。
请参阅图10及图11,在某些实施方式中,第一天线组件70包括第一介质体72,第一介质体72包括相背的第一面721与第二面722,第二天线组件80包括第二介质体82,第二介质体82包括相背的第一面821与第二面822,第一辐射单元71设置于第一介质体72的第一面721或第一介质体72的第二面722,第二辐射单元81设置于第二介质体82的第一面821或第二介质体82的第二面822。
请结合图5至图8,与辐射组件10和寄生组件20的位置关系类似,第一天线组件70的第一介质体72和第二天线组件80的第二介质体82之间的位置关系可包括:第一介质体72的第一面721与第二介质体82的第一面821平行、第一介质体72的第一面721与第二介质体82的第一面821垂直、或第一介质体72的第一面721相对第二介质体82的第一面821倾斜。
进一步地,在某些实施方式中,第一介质体72的第二面722与第二介质体82的第二面822相对,第一辐射单元71设置于第一介质体72的第一面721,第二辐射单元81设置于第二介质体82的第一面821,以使第一天线组件70与第二天线组件80之间的距离可以设置得更近,减小天线装置200的尺寸。
请参阅图12,在某些实施方式中,第二天线组件80可为多个,开关器件30通过馈线51与每个第二天线组件80上的馈电单元40连接,多个第二天线组件80可位于第一天线组件70的不同侧。开关器件30可用于选择性地导通第一天线组件70与控制器50以仅给第一天线组件70馈电,未被开关器件30导通的第二天线组件80就未被馈电,未被馈电的第二天线组件80对第一天线组件70辐射的电磁波起引向作用。开关器件30还可用于导通至少一个第二天线组件80与控制器50以给至少一个第二天线组件80馈电,使其他未导通的第二天线组件80对该导通的第二天线组件80辐射的电磁波起引向作用,或者使未导通的第一天线组件70对导通的第二天线组件80辐射的电磁波起引向作用。如此,根据第二天线组件80与第一天线组件70之间的位置 关系,天线装置200能够在多个不同方向中选取特定的方向对辐射进行增益。
请参阅图4、图11及图12,在某些实施方式中,第二天线组件80为三个,三个第二天线组件80与第一天线组件70围成矩形。如此,天线组件能够选择性地在正交的第一方向X(包括X1和X2)和第二方向Y(包括Y1和Y2)中选取特定的方向的辐射进行增益。
根据第一天线组件70和第二天线组件80之间的引向关系,围成矩形的四个天线组件还可以是四个第一天线组件70、三个第一天线组件70和一个第二天线组件80、两个第一天线组件70和两个第二天线组件80、或四个第二天线组件80等任意一种情况,也即是说第一天线组件70的数量也可以为多个,上述组合均能够使天线组件在正交的第一方向X和第二方向Y中选取特定的方向增益辐射。下面以第二天线组件80为三个,第一天线组件70为一个的情况为例进行说明。
在三个第二天线组件80和一个第一天线组件70围成的矩形中,第二天线组件801和第二天线组件803分别位于矩形相对的第一边和第三边,第二天线组件802和第一天线组件70分别位于矩形相对的第二边和第四边,此时,第二天线组件801、第二天线组件802、第二天线组件803分别位于第一天线组件70的左侧、上侧、和右侧。天线装置200中开关器件30可以为单刀四掷开关,当开关器件30导通第一天线组件70以使第一天线组件70馈电时,其余三个第二天线组件80均未馈电而起与图1至图4中寄生组件20的类似的作用;类似地,当开关器件30导通第二天线组件80中的一个以使其馈电时,其余两个第二天线组件80和第一天线组件70均未馈电而起与图1至图4中寄生组件20类似的作用。
具体地,当第一天线组件70馈电时,其余三个第二天线组件80均未馈电而起与图1至图4中寄生组件20类似的作用具体为:第二天线组件801、第二天线组件802、第二天线组件803对第一天线组件70辐射的电磁波起引向作用,且该引向作用分别沿X1方向、Y1方向、及X2方向,其中沿X1方向及X2方向的引向作用相互抵消,因此天线装置200辐射的电磁波最终表现为朝Y1方向集中,即天线装置200的辐射在Y1方向的增益提升。
类似地,若需要使天线装置200的辐射在Y2方向的增益提升,只需通过开关器件30导通第二天线组件802以使第二天线组件802馈电,此时其余两个第二天线组件80和第一天线组件70均未馈电,起与图1至图4中寄生组件20类似的作用。第二天线组件801、第一天线组件70、第二天线组件803对第二天线组件802辐射的电磁波的引向作用分别沿X1方向、Y2方向、及X2方向,其中沿X1方向及X2方向的引向作用相互抵消,因此天线装置200辐射的电磁波最终表现为朝Y2方向集中,即天线装置200的辐射在Y2方向上的增益提升。
类似地,还可以仅导通第二天线组件803以使天线装置200的辐射在X1方向上的增益提升;还可以仅导通第二天线组件801以使天线装置200的辐射在X2方向上的增益提升。如此,当四个天线组件围成矩形时,天线装置200的辐射能够在正交的X1方向、Y1方向、X2方向、或Y2方向上的增益提升。
进一步地,在一个实施例中,当仅有第二天线组件801馈电时,第一天线组件70、第二天线组件802、第二天线组件803对第一天线组件70辐射的电磁波的引向作用分别沿Y2方向、Y1方向、及X2方向。若第一天线组件70的第一辐射单元71与第二天线组件802的第二辐射单元81相同,则沿Y2方向和Y1方向的引向作用能够相互抵消;若第一天线组件70的第一辐射单元71与第二天线组件802的第二辐射单元81不同,则沿Y2方向和Y1方向的引向作用存在无法相互抵消的情况,此时天线装置200的辐射可能在Y1方向与X2方向之间的某方向上的增益提升,或者在Y2方向与X2方向之间的某方向上的增益提升。也即是说,当第一辐射单元71与第二辐射单元81不同时,天线装置200的辐射还能够在正交的X1方向、Y1方向、X2方向、或Y2方向之外的非正交方向上的增益提升。
进一步地,天线装置200中被馈电的天线组件还可包括多个,被馈电的天线组件起与图1至图4所示辐射 组件10相同的作用,没有被馈电的天线组件起与图1至图4所示寄生组件20相似的作用。例如第二天线组件801、第二天线组件802、第二天线组件803均馈电,第一天线组件70不馈电时,第一天线组件70起与寄生组件20类似的作用,对第二天线组件801、第二天线组件802、第二天线组件803辐射的电磁波均有引向作用。
进一步地,四个天线组件之间的位置关系不仅限于围成一个矩形,当四个天线组件围成其他形状时,如平行四边形、梯形、棱形等形状时,天线装置200的辐射能够对应地根据四个天线组件之间的间距和夹角等位置关系在特定的方向上的增益提升。
进一步地,天线装置200中天线组件的数量不局限于四个,还可以是五个、六个、七个或更多个天线组件,在此不一一列举。多个天线组件还可以围成五边形、六边形、七边形、环形等形状,在此不一一列举。
请参阅图13至图14,本申请实施方式还提供一种无人机1000。无人机1000包括上述任意一项实施方式所述的天线装置100和/或天线装置200,无人机1000通过天线装置100和/或天线装置200与控制端2000进行信号传输。控制端2000可以是遥控器、控制基站等,在此不作限制。
请参阅图1、图10、图13、及图14,在某些实施方式中,天线装置100的控制器50根据无人机1000相对控制端2000的姿态来控制开关器件30的通断状态。例如,无人机1000设有GPS定位装置,GPS定位装置能够获取无人机1000相对控制端2000的姿态角。
请结合图1,以无人机1000包括前述的天线装置100,天线装置100包括辐射组件10和寄生组件20为例,开关器件30与寄生组件20连接,辐射组件10较寄生组件20靠近机头1100,寄生组件20较辐射组件10靠近机尾1200。当根据无人机1000相对控制端2000的姿态角可以确定无人机1000的机头1100朝向控制端2000时,控制器50控制开关器件30处于导通状态,使寄生组件20对辐射组件10辐射的电磁波起到反射作用,使辐射的电磁波朝机头1100方向集中,以使机头1100方向的辐射受到增益,以提高无人机1000与控制端2000之间信号交互的强度与质量,并减小无人机1000接收到其他方向如机尾1200方向的干扰信号。当根据无人机1000相对控制端2000的姿态角可以确定无人机1000的机尾1200朝向控制端2000时,控制器50控制开关器件30处于断开状态,使寄生组件20对辐射组件10辐射的电磁波起到引向作用,使辐射的电磁波朝机尾1200方向集中,以使机尾1200方向的辐射受到增益,以提高无人机1000与控制端2000之间信号交互的强度与质量,并减小无人机1000接收到其他方向如机尾1200方向的干扰信号。
请结合图10,以无人机1000包括前述的天线装置200,天线装置200包括第一天线组件70和第二天线组件80为例,第一天线组件70较第二天线组件80靠近机头1100,第二天线组件80较第一天线组件70靠近机尾1200。当根据无人机1000相对控制端2000的姿态角可以确定无人机1000的机头1100朝向控制端2000时,控制器50控制开关器件30导通第二天线组件80,并切断第一天线组件70,使第一天线组件70对第二天线组件80辐射的电磁波起到引向作用,使辐射的电磁波朝机头1100方向集中,以使机头1100方向的辐射受到增益,以提高无人机1000与控制端2000之间信号交互的强度与质量,并减小无人机1000接收到其他方向如机尾1200方向的干扰信号。当根据无人机1000相对控制端2000的姿态角可以确定无人机1000的机尾1200朝向控制端2000时,控制器50控制开关器件30导通第一天线组件70,并切断第二天线组件80,使第二天线组件80对第一天线组件70辐射的电磁波起到引向作用,使辐射的电磁波朝机尾1200方向集中,以使机尾1200方向的辐射受到增益,以提高无人机1000与控制端2000之间信号交互的强度与质量,并减小无人机1000接收到其他方向如机尾1200方向的干扰信号。
请参阅图1、图10、图13、及图14,在某些实施方式中,开关器件30的通断状态与控制端2000接收到的信号的强度有关。例如,在第一预设周期内,控制器50控制开关器件30依次变化通断状态,使天线装置100的辐射增益方向依次变化,当第一周期结束时,将控制端2000接收到的信号最强的时间段开关器件30的通断状态作为第二预设周期内开关器件30的通断状态,直到第二预设周期结束开始下一个第一预设周期。
具体地,请参阅图1、图13、及图14,在一个实施例中,无人机1000包括两个天线装置,两个天线装置均为前述的天线装置100,并分别称为第一天线装置100及第二天线装置100,第一天线装置100包括第一开关器件30,第二天线装置100包括第二开关器件30。在第一预设周期内的第0ms-20ms时第一开关器件30导通且第二开关器件30导通、在第一预设周期内的第20ms-40ms时第一开关器件30导通且第二开关器件30关断、在第一预设周期内的第40ms-60ms时第一开关器件30关断且第二开关器件30关断、在第一预设周期内的第60ms-80ms时第一开关器件30关断且第二开关器件30导通,若控制端2000在第0-20ms时接收到的信号强度最强,则在整个第二周期内(第80ms-160ms)保持第一开关器件30导通且第二开关器件30导通,依此类推,若控制端2000在第20ms-40ms时接收到的信号强度最强,则在整个第二周期内保持第一开关器件30导通且第二开关器件30关断,若控制端2000在第40ms-60ms时接收到的信号强度最强,则在整个第二周期内保持第一开关器件30关断且第二开关器件30关断,若控制端2000在第60ms-80ms时接收到的信号强度最强,则在整个第二周期内保持第一开关器件30关断且第二开关器件30导通。
可理解地,无人机1000中不仅限于包括一个或两个天线装置100,还可包括三个、四个、五个或更多天线装置100。
请结合图5、图13、及图14,在又一个实施例中,天线装置100可包括多个寄生组件20,灵活调节天线装置100在不同方向的增益。
类似地,请参阅图10、12至图14,在又一个实施例中,开关器件30的通断状态对应多个天线组件的导通状态,即开关器件30的通断状态决定每个天线组件是否馈电。
下面以无人机1000包括图10所示的天线装置200,即,天线装置200包括第一天线组件70及第二天线组件80为例,开关器件30的通断状态包括:仅导通第一天线组件70或仅导通第二天线组件80。开关器件30在第一预设周期内的通断状态如下:第0ms-20ms时仅导通第一天线组件70,第20ms-40ms时仅导通第二天线组件80。若控制端2000在第0ms-20ms时接收到的信号强度最强,则在整个第二周期内(第40ms-80ms)开关器件30保持仅导通第一天线组件70,依此类推,若控制端2000在第20ms-40ms时接收到的信号强度最强,则在整个第二周期内开关器件30保持仅导通第二天线组件80。
无人机1000可设置多个天线装置200,例如设置两个、三个、四个、五个或更多天线装置200,以灵活调节天线装置200在不同方向的增益。
在又一个实施方式中,天线装置100可包括多个第二天线组件80。下面以无人机1000包括图12所示的天线装置200,即,天线装置200包括第一天线组件70、第二天线组件801、第二天线组件802、及第二天线组件803为例,开关器件30的通断状态包括:仅导通第一天线组件70(即第一天线组件70馈电,下同)、仅导通第二天线组件801、仅导通第二天线组件802、或仅导通第二天线组件803。开关器件30在第一预设周期内的通断状态如下:第0ms-20ms时仅导通第一天线组件70、第20ms-40ms时仅导通第二天线组件801、第40ms-60ms时仅导通第二天线组件802、第60ms-80ms时仅导通第二天线组件803。若控制端2000在第0ms-20ms时接收到的信号强度最强,则在整个第二周期内(第80ms-160ms)开关器件30保持仅导通第一天线组件70,依此类推,若控制端2000在第20ms-40ms时接收到的信号强度最强,则在整个第二周期内开关器件30保持仅导通第二天线组件801,若控制端2000在第40ms-60ms时接收到的信号强度最强,则在整个第二周期内开关器件30保持仅导通第二天线组件802,若控制端2000在第60ms-80ms时接收到的信号强度最强,则在整个第二周期内开关器件30保持仅导通第二天线组件803。
可理解地,开关器件30的通断状态还可包括:同时导通两个天线组件,如同时导通第一天线组件70及第二天线组件801;还可包括:同时导通三个天线组件,如同时导通第二天线组件801、第二天线组件802、及第二天线组件803;还可包括:同时导通四个天线组件,如同时导通第一天线组件70、第二天线组件801、第 二天线组件802、及第二天线组件803。当天线装置100包括四个以上的更多天线组件时,开关器件30的通断状态还可包括同时导通四个以上的更多天线组件,在此不一一列举。
请参阅图13及图14,在某些实施方式中,无人机1000还包括机身1300、安装于机身1300的机臂1400、及安装于机臂1400的脚架1500。在一个实施例中,机臂1400安装有天线装置100和/或天线装置200。在又一个实施例中,脚架1500安装有天线装置100和/或天线装置200。在再一个实施例中,机臂1400和脚架1500均安装有天线装置100和/或天线装置200。即无人机1000可仅装有天线装置100,或仅装有天线装置200,或装有天线装置100及天线装置200。
其中,机臂1400相对机身1300沿水平方向延伸,因此安装在机臂1400的天线装置100/200中电流的极化方向沿水平方向。脚架1500相对机身1300沿垂直方向延伸,因此安装在脚架1500的天线装置100/200中电流的极化方向沿垂直方向。在无人机1000以不同的姿态角沿不同的路径飞行时,垂直极化和水平极化的电流的衰减速率也不同,当机臂1400和脚架1500均安装有天线装置100和/或天线装置200时,各个天线装置100/200的垂直极化和水平极化能够互相弥补,以提高无人机1000整体的辐射衰减下限。
具体地,在某些实施方式中,无人机1000的机头1100的两侧分别设有脚架1500,无人机1000的机尾1200的两侧分别设有机臂1400,无人机1000的机头1100两侧的脚架1500设有天线装置100和/或天线装置200,无人机1000的机尾1200两侧的机臂1400设有天线装置100和/或天线装置200。
进一步地,脚架1500内的天线装置100中,辐射单元11的朝向和寄生单元21的朝向均与机身1300的横滚轴O3方向一致;机臂1400内的天线装置100中,辐射单元11的朝向和寄生单元21的朝向均相对机身1300的横滚轴O3倾斜。如此,能够充分利用机臂1400和脚架1500的空间设置天线装置100,并能够兼顾各个天线装置100的电流极化特性,使各个天线装置100的垂直极化和水平极化能够互相弥补,以提高无人机1000整体的辐射衰减下限。
进一步地,脚架1500内的天线装置200中,第一辐射单元71的朝向和第二辐射单元81的朝向均与机身1300的横滚轴O3方向一致;机臂1400内的天线装置200中,第一辐射单元71的朝向和第二辐射单元81的朝向均相对机身1300的横滚轴O3倾斜。如此,能够充分利用机臂1400和脚架1500的空间设置天线装置200,并能够兼顾各个天线装置200的电流极化特性,使各个天线装置200的垂直极化和水平极化能够互相弥补,以提高无人机1000整体的辐射衰减下限。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (30)

  1. 一种天线装置,其特征在于,所述天线装置包括:
    辐射组件,所述辐射组件包括两个辐射单元,每个所述辐射单元包括高频辐射枝节和低频辐射枝节,所述高频辐射枝节用于辐射高频电磁波,所述低频辐射枝节用于辐射低频电磁波;
    寄生组件,所述寄生组件包括两个寄生单元,每个所述寄生单元包括高频寄生枝节和低频寄生枝节,所述高频寄生枝节的谐振频率与所述高频辐射枝节的谐振频率相同,所述低频寄生枝节的谐振频率与所述低频辐射枝节的谐振频率相同;及
    开关器件,所述开关器件连接两个所述寄生单元,当所述开关器件处于导通状态时,所述寄生组件能够对所述高频电磁波和所述低频电磁波起到反射作用,当所述开关器件处于关断状态时,所述寄生组件能够对所述高频电磁波和所述低频电磁波起到引向作用。
  2. 根据权利要求1所述的天线装置,其特征在于,所述辐射组件与所述寄生组件之间的距离在所述高频辐射枝节的中心频率对应的波长的四分之一与所述低频辐射枝节的中心频率对应的波长的四分之一之间。
  3. 根据权利要求1所述的天线装置,其特征在于,所述高频辐射枝节与所述高频寄生枝节的形状相同,所述低频辐射枝节与所述低频寄生枝节的形状相同;所述高频辐射枝节与所述高频寄生枝节的尺寸相同,所述低频辐射枝节与所述低频寄生枝节的尺寸相同。
  4. 根据权利要求1所述的天线装置,其特征在于,所述高频辐射枝节与所述高频寄生枝节对应设置,所述低频辐射枝节与所述低频寄生枝节对应设置。
  5. 根据权利要求1所述的天线装置,其特征在于,所述辐射组件包括第一介质体,所述第一介质体包括相背的第一面与第二面,所述寄生组件包括第二介质体,所述第二介质体包括相背的第一面与第二面,所述辐射单元设置于所述第一介质体的第一面或所述第一介质体的第二面,所述寄生单元设置于所述第二介质体的第一面或所述第二介质体的第二面;
    所述第一介质体的第一面与所述第二介质体的第一面平行;或
    所述第一介质体的第一面与所述第二介质体的第一面垂直;或
    所述第一介质体的第一面相对所述第二介质体的第一面倾斜。
  6. 根据权利要求1所述的天线装置,其特征在于,所述辐射组件包括第一介质体,所述第一介质体包括相背的第一面与第二面,所述寄生组件包括第二介质体,所述第二介质体包括相背的第一面与第二面,所述第一介质体的第二面与所述第二介质体的第二面相对,所述辐射单元设置于所述第一介质体的第一面,所述寄生单元设置于所述第二介质体的第一面。
  7. 根据权利要求1所述的天线装置,其特征在于,所述天线装置还包括控制器,所述控制器通过信号线连接所述开关器件,以控制所述开关器件的通断,所述开关器件设置于所述寄生组件的第二介质体。
  8. 根据权利要求7所述的天线装置,其特征在于,所述控制器通过馈线连接所述辐射组件以给所述辐射组件馈电。
  9. 根据权利要求8所述的天线装置,其特征在于,所述开关器件为单刀单掷开关。
  10. 根据权利要求7所述的天线装置,其特征在于,所述寄生组件为多个,所述开关器件为多个,每个所述寄生组件设有一个所述开关器件,所述控制器通过信号线连接多个所述开关器件,多个所述寄生组件位于所述辐射组件的不同侧。
  11. 根据权利要求10所述的天线装置,其特征在于,所述寄生组件为两个,所述辐射单元所在的表面与其中一个所述寄生组件的寄生单元所在的表面垂直,并与另一个所述寄生组件的寄生单元所在的表面平行;或
    所述辐射单元所在的表面与其中一个所述寄生组件的寄生单元所在的表面垂直,并与另一个所述寄生组件 的寄生单元所在的表面相对倾斜;或
    所述辐射单元所在的表面与其中一个所述寄生组件的寄生单元所在的表面平行,并与另一个所述寄生组件的寄生单元所在的表面相对倾斜。
  12. 根据权利要求7所述的天线装置,其特征在于,所述天线装置还包括:
    驱动件,所述驱动件用于驱动所述辐射组件和/或所述寄生组件运动,以改变所述辐射组件与所述寄生组件之间的相对位置。
  13. 一种天线装置,其特征在于,所述天线装置包括:
    第一天线组件,所述第一天线组件包括两个第一辐射单元,每个所述第一辐射单元包括第一高频辐射枝节和第一低频辐射枝节;
    第二天线组件,所述第二天线组件包括两个第二辐射单元,每个所述第二辐射单元包括第二高频辐射枝节和第二低频辐射枝节,所述第二高频辐射枝节的谐振频率与所述第一高频辐射枝节的谐振频率相同,所述第二低频辐射枝节的谐振频率与所述第二低频辐射枝节的谐振频率相同;及
    开关器件,所述开关器件连接所述第一天线组件及所述第二天线组件,当所述开关器件断开所述述第一天线组件并导通所述第二天线组件以给所述第二天线组件馈电时,所述第一天线组件能够对所述第二天线组件辐射的高频电磁波和低频电磁波起到引向作用,当所述开关器件断开所述述第二天线组件并导通所述第一天线组件以给所述第一天线组件馈电时,所述第二天线组件能够对所述第一天线组件辐射的高频电磁波和低频电磁波起到引向作用。
  14. 根据权利要求13所述的天线装置,其特征在于,所述第一天线组件与所述第二天线组件之间的距离在所述第一高频辐射枝节的中心频率对应的波长的四分之一与所述第一低频辐射枝节的中心频率对应的波长的四分之一之间。
  15. 根据权利要求13所述的天线装置,其特征在于,所述第一高频辐射枝节与所述第二高频辐射枝节的形状相同,所述第一低频辐射枝节与所述第二低频辐射枝节的形状相同;所述第一高频辐射枝节与所述第二高频辐射枝节的尺寸相同,所述第一低频辐射枝节与所述第二低频辐射枝节的尺寸相同。
  16. 根据权利要求13所述的天线装置,其特征在于,所述第一高频辐射枝节与所述第二高频辐射枝节对应设置,所述第一低频辐射枝节与所述第二低频辐射枝节对应设置。
  17. 根据权利要求13所述的天线装置,其特征在于,所述第一天线组件包括第一介质体,所述第一介质体包括相背的第一面与第二面,所述第二天线组件包括第二介质体,所述第二介质体包括相背的第一面与第二面,所述第一辐射单元设置于所述第一介质体的第一面或所述第一介质体的第二面,所述第二辐射单元设置于所述第二介质体的第一面或所述第二介质体的第二面;
    所述第一介质体的第一面与所述第二介质体的第一面平行;或
    所述第一介质体的第一面与所述第二介质体的第一面垂直;或
    所述第一介质体的第一面相对所述第二介质体的第一面倾斜。
  18. 根据权利要求13所述的天线装置,其特征在于,所述第一天线组件包括第一介质体,所述第一介质体包括相背的第一面与第二面,所述第二天线组件包括第二介质体,所述第二介质体包括相背的第一面与第二面,所述第一介质体的第二面与所述第二介质体的第二面相对,所述第一辐射单元设置于所述第一介质体的第一面,所述第二辐射单元设置于所述第二介质体的第一面。
  19. 根据权利要求13所述的天线装置,其特征在于,所述天线装置还包括控制器,所述控制器通过馈线连接所述开关器件,及通过信号线连接所述开关器件,所述控制器用于控制所述开关器件以给所述第一天线组件或所述第二天线组件馈电。
  20. 根据权利要求19所述的天线装置,其特征在于,所述开关器件设于所述馈线的线路中,所述开关器件用于选择性地导通所述第一天线组件与所述控制器,或导通所述第二天线组件与所述控制器。
  21. 根据权利要求20所述的天线装置,其特征在于,所述开关器件为单刀双掷开关。
  22. 根据权利要求20所述的天线装置,其特征在于,所述第二天线组件为多个,多个所述第二天线组件位于所述第一天线组件的不同侧,所述开关器件用于选择性地导通所述第一天线组件与所述控制器以给所述第一天线组件馈电,和/或导通至少一个所述第二天线组件与所述控制器以给至少一个所述第二天线组件馈电。
  23. 根据权利要求22所述的天线装置,其特征在于,所述第二天线组件为三个,三个所述第二天线组件与所述第一天线组件围成矩形。
  24. 根据权利要求17所述的天线装置,其特征在于,所述开关器件为单刀四掷开关。
  25. 一种无人机,其特征在于,所述无人机包括:
    权利要求1-24任意一项所述的天线装置。
  26. 根据权利要求25所述的无人机,其特征在于,所述天线装置的控制器根据所述无人机相对控制端的姿态来控制所述开关器件的通断状态。
  27. 根据权利要求25所述的无人机,其特征在于,所述天线装置的控制器控制所述开关器件的通断状态,所述开关器件的通断状态与控制端接收到的信号的强度有关。
  28. 根据权利要求25述的无人机,其特征在于,所述无人机还包括:
    机身;
    安装于所述机身的机臂;及
    安装于所述机臂的脚架,所述机臂和/或所述脚架安装有所述天线装置。
  29. 根据权利要求28所述的无人机,其特征在于,所述无人机的机头的两侧分别设有脚架,所述无人机的机尾的两侧分别设有所述机臂,所述无人机的机头两侧的所述脚架设有所述天线装置,所述无人机的机尾两侧的所述机臂设有所述天线装置。
  30. 根据权利要求29所述的无人机,其特征在于,所述脚架内的所述天线装置中,所述辐射单元的朝向和所述寄生单元的朝向均与所述机身的横滚轴方向一致,或所述第一辐射单元的朝向和所述第二辐射单元的朝向均与所述机身的横滚轴方向一致;所述机臂内的所述天线装置中,所述辐射单元的朝向和所述寄生单元的朝向均相对所述机身的横滚轴倾斜,或所述第一辐射单元的朝向和所述第二辐射单元的朝向均相对所述机身的横滚轴倾斜。
PCT/CN2021/094685 2021-05-19 2021-05-19 天线装置及无人机 WO2022241681A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/094685 WO2022241681A1 (zh) 2021-05-19 2021-05-19 天线装置及无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/094685 WO2022241681A1 (zh) 2021-05-19 2021-05-19 天线装置及无人机

Publications (1)

Publication Number Publication Date
WO2022241681A1 true WO2022241681A1 (zh) 2022-11-24

Family

ID=84140086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094685 WO2022241681A1 (zh) 2021-05-19 2021-05-19 天线装置及无人机

Country Status (1)

Country Link
WO (1) WO2022241681A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025554A (zh) * 2015-03-31 2016-10-12 韩国电子通信研究院 波束形成天线
CN107004945A (zh) * 2016-10-18 2017-08-01 深圳市大疆创新科技有限公司 天线组件及无人机
CN107851897A (zh) * 2016-06-17 2018-03-27 华为技术有限公司 一种天线
CN109075432A (zh) * 2017-12-28 2018-12-21 深圳市大疆创新科技有限公司 一种天线及无人机
CN110265792A (zh) * 2018-03-12 2019-09-20 杭州海康威视数字技术股份有限公司 天线装置和无人机
CN110914155A (zh) * 2018-08-10 2020-03-24 深圳市大疆创新科技有限公司 无人机
US20200203848A1 (en) * 2018-12-19 2020-06-25 National Chiao Tung University Compact high-gain pattern reconfigurable antenna

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025554A (zh) * 2015-03-31 2016-10-12 韩国电子通信研究院 波束形成天线
CN107851897A (zh) * 2016-06-17 2018-03-27 华为技术有限公司 一种天线
CN107004945A (zh) * 2016-10-18 2017-08-01 深圳市大疆创新科技有限公司 天线组件及无人机
CN109075432A (zh) * 2017-12-28 2018-12-21 深圳市大疆创新科技有限公司 一种天线及无人机
CN110265792A (zh) * 2018-03-12 2019-09-20 杭州海康威视数字技术股份有限公司 天线装置和无人机
CN110914155A (zh) * 2018-08-10 2020-03-24 深圳市大疆创新科技有限公司 无人机
US20200203848A1 (en) * 2018-12-19 2020-06-25 National Chiao Tung University Compact high-gain pattern reconfigurable antenna

Similar Documents

Publication Publication Date Title
US9287633B2 (en) Dual frequency coupling feed antenna and adjustable wave beam module using the antenna
EP1782499B1 (en) System and method for an omnidirectional planar antenna apparatus with selectable elements
KR101872460B1 (ko) 광대역 이중 편파 안테나
US7602340B2 (en) Antenna device and wireless terminal using the antenna device
EP1964209B1 (en) Antennas with polarization diversity
US8098199B2 (en) Array antenna apparatus including multiple steerable antennas and capable of avoiding affection among steerable antennas
JP5314704B2 (ja) アレーアンテナ装置
JP4010650B2 (ja) アンテナ装置及びそれを内蔵した無線装置
CN109755745B (zh) 天线系统
WO2019228339A1 (zh) 天线及无人飞行器
WO2021184986A1 (zh) 天线装置及电子设备
JP6923490B2 (ja) アンテナ装置
CN113597713B (zh) 天线结构及其制造方法
WO2019228336A1 (zh) 天线及无人飞行器
WO2019228309A1 (zh) 天线、无人飞行器的遥控器及无人飞行器
KR101111578B1 (ko) 이중편파 양방향성 안테나
JPH08204431A (ja) 多共振アンテナ装置
JPH0955621A (ja) アレーアンテナ
JP2004194218A (ja) アンテナ装置およびそれを用いた無線装置
WO2022241681A1 (zh) 天线装置及无人机
JP2000068729A (ja) 指向性制御アンテナ装置とこの指向性制御アンテナ装置を用いる無線装置及び無線通信システム
CN215869782U (zh) 天线装置及无人机
WO2023001037A1 (zh) 天线、无线信号处理设备及无人机
CN213845482U (zh) 无人机
WO2022099577A1 (zh) 无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940138

Country of ref document: EP

Kind code of ref document: A1