WO2019126965A1 - 电池及电池的状态检测方法 - Google Patents

电池及电池的状态检测方法 Download PDF

Info

Publication number
WO2019126965A1
WO2019126965A1 PCT/CN2017/118410 CN2017118410W WO2019126965A1 WO 2019126965 A1 WO2019126965 A1 WO 2019126965A1 CN 2017118410 W CN2017118410 W CN 2017118410W WO 2019126965 A1 WO2019126965 A1 WO 2019126965A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
battery
negative electrode
positive electrode
reference electrode
Prior art date
Application number
PCT/CN2017/118410
Other languages
English (en)
French (fr)
Inventor
阳光
Original Assignee
深圳配天智能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳配天智能技术研究院有限公司 filed Critical 深圳配天智能技术研究院有限公司
Priority to CN201780035398.4A priority Critical patent/CN109314265A/zh
Priority to PCT/CN2017/118410 priority patent/WO2019126965A1/zh
Publication of WO2019126965A1 publication Critical patent/WO2019126965A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of batteries, and in particular to a method for detecting a state of a battery and a battery.
  • a battery refers to a space in a cup, tank or other container or composite container containing an electrolyte solution and a metal electrode to generate electrical current, a device capable of converting chemical energy into electrical energy. It has a positive electrode and a negative electrode.
  • batteries are broadly referred to as small devices that generate electrical energy. Such as solar cells.
  • the performance parameters of the battery mainly include electromotive force, capacity, specific energy and resistance.
  • the existing battery design is a positive and negative two-pole design, when evaluating the battery state, for example, detecting the remaining power, many methods are not allowed to measure the remaining power due to factors such as ambient temperature, discharge current, and capacity change caused by battery electrification. . Even if an influence function such as temperature is added to the calculation, an accurate value cannot be obtained, and the calculation process is too complicated.
  • the technical problem to be solved by the present invention is to provide a state detecting method for a battery and a battery, which can improve the accuracy of battery state evaluation and detection, and the calculation complexity is not high.
  • the present invention provides a battery including a first positive electrode, a first negative electrode, and a reference electrode, the first positive electrode and the first negative electrode being used as a power supply electrode when the battery is charged or discharged.
  • the reference electrode is configured to cooperate with at least one of the first positive electrode and the first negative electrode to perform state detection on the battery.
  • the reference electrode is in an idle state at a time other than the state detection of the battery.
  • the battery further comprises a casing and an electrolyte, wherein the electrolyte is disposed in the casing, and the first positive electrode, the first negative electrode and the reference electrode are disposed in the electrolyte and extend outside the casing.
  • the battery further comprises two isolation layers disposed in the electrolyte and located between the first positive electrode and the first negative electrode, wherein the reference electrode is located between the two isolation layers or outside the two isolation layers.
  • first positive electrode, the first negative electrode and the reference electrode are arranged side by side with each other, and the reference electrode is located between the first positive electrode and the first negative electrode.
  • the reference electrode acts as a second negative electrode to cooperate with the first positive electrode to detect the state of the battery, and/or the reference electrode acts as a second positive electrode to cooperate with the first negative electrode to perform state detection on the battery.
  • the reference electrode is made of the same material as the first positive electrode, or the reference electrode is made of the same material as the first negative electrode.
  • the material used for the reference electrode is different from the first positive electrode and the first negative electrode.
  • the battery further includes a detecting circuit electrically connected to the first positive electrode, the first negative electrode and the reference electrode, and detecting the first state parameter between the first positive electrode and the first negative electrode and the reference electrode and the first A second state parameter between at least one of the positive electrode and the first negative electrode.
  • the detection circuit is a voltage detection circuit, and the first state parameter and the second state parameter are open circuit voltages, respectively.
  • the battery further comprises a processor, and the processor calculates the remaining power of the battery according to the first state parameter and the second state parameter.
  • the present invention also provides a state detecting method for a battery, wherein the battery includes a first positive electrode, a first negative electrode, and a reference electrode, and the first positive electrode and the first negative electrode are used to charge the battery Or as a power supply electrode during discharge, the method comprising the steps of: detecting a first state parameter between the first positive electrode and the first negative electrode; detecting between the reference electrode and at least one of the first positive electrode and the first negative electrode a second state parameter; performing a state evaluation of the battery based on the first state parameter and the second state parameter.
  • the step of detecting the second state parameter between the reference electrode and at least one of the first positive electrode and the first negative electrode comprises: using the reference electrode as the second negative electrode and cooperating with the first positive electrode to detect the reference electrode A second state parameter between the first positive electrode and the first positive electrode.
  • the material used for the reference electrode is the same as the first negative electrode.
  • the step of detecting the second state parameter between the reference electrode and at least one of the first positive electrode and the first negative electrode comprises: using the reference electrode as the second positive electrode and cooperating with the first negative electrode to detect the reference electrode A second state parameter between the first negative electrode and the first negative electrode.
  • the material used for the reference electrode is the same as the first positive electrode.
  • the step of detecting the second state parameter between the reference electrode and at least one of the first positive electrode and the first negative electrode comprises: using the reference electrode as the second negative electrode and cooperating with the first positive electrode to detect the reference electrode a second state parameter between the first positive electrode and the first positive electrode, and the second negative electrode is coupled to the first negative electrode to detect a second state parameter between the reference electrode and the first negative electrode Two second state parameters.
  • the material used for the reference electrode is different from the first positive electrode and the first negative electrode.
  • the reference electrode is in an idle state at a time other than the state detection of the battery.
  • the present embodiment can greatly improve the battery state evaluation by establishing a reference electrode and performing state evaluation of the battery by using the reference electrode with the positive and negative electrodes, for example, detecting the remaining power.
  • the accuracy and calculation method are not complicated.
  • FIG. 1 is a schematic structural view of a first embodiment of a battery of the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of the battery of the present invention.
  • FIG. 3 is a schematic structural view of a third embodiment of the battery of the present invention.
  • Figure 4 is a schematic view showing the structure of a fourth embodiment of the battery of the present invention.
  • Figure 5 is a schematic view showing the structure of a fifth embodiment of the battery of the present invention.
  • Figure 6 is a schematic view showing the structure of a sixth embodiment of the battery of the present invention.
  • Fig. 7 is a flow chart showing the first embodiment of the state detecting method of the battery of the present invention.
  • the battery 10 of the present embodiment includes a first positive electrode 11, a first negative electrode 12, and a reference electrode 13.
  • the first positive electrode 11 and the first negative electrode 12 serve to serve as a power supply electrode when the battery 10 is charged or discharged.
  • the reference electrode 13 is for cooperating with at least one of the first positive electrode 11 and the first negative electrode 12 to perform state detection of the battery 10.
  • the first state parameter between the first positive electrode 11 and the first negative electrode 12 may be detected first, and then the reference electrode 13 and the first positive electrode 11 and the first negative electrode 12 are detected.
  • the reference electrode 13 may be directly used to cooperate with at least one of the first positive electrode 11 and the first negative electrode 12 to perform state detection on the battery 10, for example, to detect a state parameter between the reference electrode 13 and the first positive electrode 11.
  • the state of the battery 10 is evaluated. In general, the state of the battery 10 is evaluated by evaluating the remaining capacity of the battery 10, its useful life, health status, etc., or by detecting the voltage of the battery 10. In the embodiment, the first voltage between the first positive electrode 11 and the first negative electrode 12 is first detected, and then
  • a second voltage between the reference electrode 13 and at least one of the first positive electrode 11 and the first negative electrode 12 is detected again.
  • the second voltage is the voltage between the reference electrode 13 and the first negative electrode 12.
  • the reference electrode 13 is used as the negative electrode, that is, the same polarity as the first negative electrode 12
  • the second voltage is the voltage between the reference electrode 13 and the first positive electrode 11.
  • the reference electrode 13 may be in an idle state at a time other than the state detection of the battery 10.
  • the accuracy of the battery state evaluation can be greatly improved, and the calculation method is not complicated.
  • FIG. 2 is a schematic view showing the structure of a second embodiment of the battery of the present invention.
  • the battery 20 of the present embodiment includes a housing 21, an electrolyte 22, an isolation layer 23, a first positive electrode 24, a first negative electrode 25, and a reference electrode 26.
  • the electrolyte 22 is disposed in the casing 21, and the first positive electrode 24, the first negative electrode 25, and the reference electrode 26 are disposed in the electrolyte 22 and extend outside the casing 21.
  • the isolation layer 23 is provided with two, disposed in the electrolyte 22 and located between the first positive electrode 24 and the first negative electrode 25. In other embodiments, the isolation layer 23 may be provided only as one, or may be provided in two or more, and only the reference electrode 26 may be separated from at least one of the first positive electrode 24 and the first negative electrode 25. Further, the reference electrode 26 is not necessarily disposed between the first positive electrode 24 and the first negative electrode 25, and may be disposed on one side or in a triangular arrangement with the first positive electrode 24 and the first negative electrode 25.
  • the reference electrode 26 is disposed at the same pole as the first positive electrode 24, that is, the first positive electrode 24 is disposed on the same side of the outside of the two isolation layers 23. At this time, the reference electrode 26 functions as a second positive electrode in cooperation with the first negative electrode 25 to perform state detection on the battery 20.
  • the material used for the reference electrode 26 is the same as that of the first positive electrode 24.
  • the first state parameter between the first positive electrode 24 and the first negative electrode 25 may be detected first, and then the second state parameter between the reference electrode 26 and the first negative electrode 25 may be detected. Finally, the battery 20 is evaluated for status based on the first state parameter and the second state parameter. Alternatively, the state parameter between the reference electrode 26 and the first negative electrode 25 may be directly detected to perform state evaluation of the battery 20. In general, the state of the battery 20 is evaluated to detect the remaining capacity of the battery 20, its useful life, health status, etc., and can also be used to evaluate the voltage of the battery 20. In the present embodiment, the first voltage between the first positive electrode 24 and the first negative electrode 25 is detected first, and the second voltage between the reference electrode 26 and the first negative electrode 25 is detected.
  • the remaining power, the service life or the health state of the battery 20 can be determined according to the relationship graph.
  • the relationship graph can be drawn based on accurate data measured in advance. It is also possible to obtain the voltage of the battery 20 by taking the average of the two as the voltage of the battery 20 after obtaining the first voltage and the second voltage, or by other algorithms or a previously measured comparison table.
  • the reference electrode 26 may be in an idle state at a time other than the state detection of the battery 20.
  • the accuracy of the battery state evaluation can be greatly improved, and the calculation method is not complicated.
  • FIG. 3 is a schematic view showing the structure of a third embodiment of the battery of the present invention.
  • the battery 30 of the present embodiment includes a casing 31, an electrolytic solution 32, an isolation layer 33, a first positive electrode 34, a first negative electrode 35, and a reference electrode 36.
  • the electrolyte 32 is disposed in the casing 31, and the first positive electrode 34, the first negative electrode 35, and the reference electrode 36 are disposed in the electrolyte 32 and extend outside the casing 31.
  • the isolation layer 33 is provided with two, disposed in the electrolyte 32 and located between the first positive electrode 34 and the first negative electrode 35.
  • the isolation layer 33 may be provided only one, and the reference electrode 36 may be separated from one of the first positive electrode 34 and the first negative electrode 35, or a plurality of the reference electrodes 36 may be provided.
  • the reference electrode 36 is not necessarily disposed between the first positive electrode 34 and the first negative electrode 35, and may be disposed on one side or in a triangular arrangement with the first positive electrode 34 and the first negative electrode 35.
  • the reference electrode 36 is disposed in the same polarity as the first negative electrode 35, that is, the first negative electrode 35 is disposed on the same side of the outside of the two isolation layers 33. At this time, the reference electrode 36 functions as a second negative electrode in cooperation with the first positive electrode 34 to perform state detection on the battery 30.
  • the material used for the reference electrode 36 is the same as that of the first negative electrode 35.
  • the first state parameter between the first positive electrode 34 and the first negative electrode 35 may be detected first, and then the second state parameter between the reference electrode 36 and the first positive electrode 34 may be detected. Finally, the battery 30 is evaluated for status based on the first state parameter and the second state parameter.
  • the state parameter between the reference electrode 36 and the first positive electrode 34 may be directly detected to perform state evaluation of the battery 30.
  • the state evaluation of the battery 30 is to detect the remaining power of the battery 30, the service life, the health state, and the like, and can also be used to detect the voltage of the battery 30.
  • the first voltage between the first positive electrode 34 and the first negative electrode 35 is detected first, and the second voltage between the reference electrode 36 and the first positive electrode 34 is detected.
  • the remaining power, the service life or the health state of the battery 30 can be determined according to the relationship graph.
  • the relationship graph can be drawn based on accurate data measured in advance. It is also possible to obtain the voltage of the battery 30 by taking the average of the two as the voltage of the battery 30 after obtaining the first voltage and the second voltage, or by other algorithms or a previously measured look-up table.
  • the reference electrode 36 may be in an idle state at a time other than the state detection of the battery 30.
  • the accuracy of the battery state evaluation can be greatly improved, and the calculation method is not complicated.
  • the battery 40 of the present embodiment includes a casing 41, an electrolytic solution 42, an isolation layer 43, a first positive electrode 44, a first negative electrode 45, and a reference electrode 46.
  • the electrolyte 42 is disposed in the casing 41.
  • the first positive electrode 44, the first negative electrode 45, and the reference electrode 46 are disposed in the electrolyte 42 and extend outside the casing 41.
  • the isolation layer 43 is provided with two, disposed in the electrolyte 42 and located between the first positive electrode 44 and the first negative electrode 45.
  • the isolation layer 43 may be provided with one, and the reference electrode 46 may be spaced apart from the first positive electrode 44 and the first negative electrode 45.
  • the reference electrode 46 and the isolation layer 43 are not necessarily located between the first positive electrode 44 and the first negative electrode 45.
  • the isolation layer 43 may be disposed on one side of the battery 40, and only the reference electrode is needed. 46 can be isolated.
  • the reference electrode 46 is disposed at a different pole from the first positive electrode 44 and the first negative electrode 45, and the reference electrode 46 is disposed between the two isolation layers 43 and the first positive electrode 44 and the first negative electrode 45. Both are isolated by the isolation layer 43. At this time, the reference electrode 46 functions as both the second negative electrode and the first positive electrode 44 to detect the state of the battery 40, and also serves as the second positive electrode in cooperation with the first negative electrode 45 to detect the state of the battery 40.
  • the material used for the reference electrode 46 is different from the first positive electrode 44 and the first negative electrode 45.
  • the first state parameter between the first positive electrode 44 and the first negative electrode 45 may be detected first, and then the second state parameter between the reference electrode 46 and the first positive electrode 44 may be detected.
  • the second state parameter between the reference electrode 46 and the first negative electrode 45 is detected again, and finally the state of the battery 40 is evaluated according to the first state parameter and the two second state parameters.
  • the reference electrode 46 can be directly used to cooperate with the first positive electrode 44 and the first negative electrode 45 to perform state detection on the battery 40, for example, to detect a state parameter between the reference electrode 46 and the first positive electrode 44 and the reference electrode 46.
  • the state parameter between the first negative electrode 45 and the first negative electrode 45 is used to evaluate the state of the battery 40.
  • the evaluation of the state of the battery 40 is to detect the remaining power of the battery 40, the service life, the health state, and the like, and can also be used to detect the voltage of the battery 40.
  • the first voltage between the first positive electrode 44 and the first negative electrode 45 is detected first, and then the second voltage between the reference electrode 46 and the first positive electrode 44 is detected, and then the reference electrode 46 is detected.
  • a first voltage and one of the second voltages may be used to determine the remaining power, the service life, the health state, or the voltage of the battery 40, and a first A voltage is compared with two second voltages to determine remaining power, service life, health status, or voltage.
  • the relationship graph can be drawn based on accurate data measured in advance.
  • the average of the two second voltages may be calculated, and then the average of the two second voltages and the first voltage are weighted. The calculation is averaged to derive the voltage of the battery 40.
  • the weight of the first voltage may be adjusted according to different types of batteries, such as weights of 70%, 50%, and the like.
  • the reference electrode 46 may be in an idle state at a time other than the state detection of the battery 40.
  • the accuracy of the battery state evaluation can be greatly improved, and the calculation method is not complicated.
  • FIG. 5 is a schematic view showing the structure of a fifth embodiment of the battery of the present invention.
  • the battery 50 of the present embodiment includes a first positive electrode 51, a first negative electrode 52, a reference electrode 53, and a detection circuit 54.
  • the first positive electrode 51 and the first negative electrode 52 serve to serve as a power supply electrode when the battery 50 is charged or discharged.
  • the reference electrode 53 is for cooperating with at least one of the first positive electrode 51 and the first negative electrode 52 to perform state detection of the battery 50.
  • the detecting circuit 54 is electrically connected to the first positive electrode 51, the first negative electrode 52 and the reference electrode 53, respectively, and detects a first state parameter between the first positive electrode 51 and the first negative electrode 52 and the reference electrode 53 and the first A second state parameter between at least one of the positive electrode 51 and the first negative electrode 52.
  • the detection circuit 54 may be turned on, the first state parameter between the first positive electrode 51 and the first negative electrode 52 is detected, and then the reference electrode 53 and the first positive electrode 51 and the second electrode are detected. A second state parameter between at least one of the negative electrodes 52, and finally a state evaluation of the battery 50 based on the first state parameter and the second state parameter.
  • the reference electrode 53 may be directly used to cooperate with at least one of the first positive electrode 51 and the first negative electrode 52 to perform state detection on the battery 50, for example, to detect a state parameter between the reference electrode 53 and the first positive electrode 51.
  • detecting a state parameter between the reference electrode 53 and the first negative electrode 52, or detecting a state parameter between the reference electrode 53 and the first positive electrode 51 and a state parameter between the reference electrode 53 and the first negative electrode 52 The battery 50 is evaluated for status.
  • the reference electrode 53 and the detection circuit 54 may be in an idle state at a time other than the state detection by the battery 50.
  • the detection circuit 54 is a voltage detection circuit
  • the first state parameter and the second state parameter are open circuit voltages, respectively.
  • the accuracy of the battery state evaluation can be greatly improved, and the calculation method is not complicated.
  • FIG. 6 is a schematic view showing the structure of a sixth embodiment of the battery of the present invention.
  • the battery 60 of the present embodiment includes a first positive electrode 61, a first negative electrode 62, a reference electrode 63, a detection circuit 64, and a processor 65.
  • the first positive electrode 61 and the first negative electrode 62 are used as a power supply electrode when the battery 60 is charged or discharged.
  • the reference electrode 63 is for cooperating with at least one of the first positive electrode 61 and the first negative electrode 62 to perform state detection of the battery 60.
  • the detecting circuit 64 is electrically connected to the first positive electrode 61, the first negative electrode 62, and the reference electrode 63, respectively, and detects a first state parameter between the first positive electrode 61 and the first negative electrode 62 and the reference electrode 63 and the first A second state parameter between at least one of the positive electrode 61 and the first negative electrode 62.
  • the processor 65 is coupled to the detection circuit 64 to calculate the state parameters of the battery 60 based on the first state parameter and the second state parameter, thereby completing the state evaluation of the battery 60.
  • the detection circuit 64 may be turned on, the first state parameter between the first positive electrode 61 and the first negative electrode 62 is detected, and then the reference electrode 63 and the first positive electrode 61 and the second electrode are detected. A second state parameter between at least one of the negative electrodes 62 is finally evaluated by the processor 65 based on the first state parameter and the second state parameter.
  • the reference electrode 63 may be directly used to cooperate with at least one of the first positive electrode 61 and the first negative electrode 62 to perform state detection on the battery 60, for example, to detect a state parameter between the reference electrode 63 and the first positive electrode 61.
  • the status of the battery 60 is evaluated.
  • the reference electrode 63, the detecting circuit 64, and the processor 65 may be in an idle state at a time other than the state detection by the battery 60.
  • the detection circuit 64 is a voltage detection circuit 64
  • the first state parameter and the second state parameter are open circuit voltages, respectively
  • the processor 65 calculates the remaining power of the battery 60 based on the first state parameter and the second state parameter.
  • the accuracy of the battery state evaluation can be greatly improved, and the calculation method is not complicated.
  • the first positive electrode, the first negative electrode, and the reference electrode may be disposed side by side with each other, and the reference electrode is located between the first positive electrode and the first negative electrode.
  • the number of the first positive electrode, the first negative electrode, and the reference electrode is not limited in the present invention.
  • FIG. 7 is a schematic flow chart of a first embodiment of a method for detecting a state of a battery of the present invention.
  • the battery includes a first positive electrode, a first negative electrode, and a reference electrode, and the first positive electrode and the first negative electrode are used as a power supply electrode when the battery is charged or discharged.
  • the battery state detection method includes the following steps:
  • step S71 a first state parameter between the first positive electrode and the first negative electrode is detected.
  • step S72 a second state parameter between the reference electrode and at least one of the first positive electrode and the first negative electrode is detected.
  • step S73 the battery is evaluated for status according to the first state parameter and the second state parameter.
  • the state evaluation of the battery by the reference electrode in combination with the positive and negative electrodes can greatly improve the accuracy of the battery state evaluation, and the calculation method is not complicated.
  • the first state parameter and the second state parameter are respectively open circuit voltages.
  • the step S73 of evaluating the state of the battery according to the first state parameter and the second state parameter includes: estimating the remaining amount of power of the battery according to the first state parameter and the second state parameter.
  • the step S72 of detecting the second state parameter between the reference electrode and at least one of the first positive electrode and the first negative electrode may include the following three modes:
  • the reference electrode is used as the second negative electrode and cooperates with the first positive electrode to detect a second state parameter between the reference electrode and the first positive electrode.
  • the material used for the reference electrode is the same as the first negative electrode.
  • the reference electrode is used as a second positive electrode and cooperates with the first negative electrode to detect a second state parameter between the reference electrode and the first negative electrode.
  • the material used for the reference electrode is the same as the first positive electrode.
  • a reference electrode as the second negative electrode, and cooperating with the first positive electrode to detect a second state parameter between the reference electrode and the first positive electrode, and using the reference electrode as the second positive electrode and the first negative electrode The second state parameter between the reference electrode and the first negative electrode is detected to cooperate to obtain two second state parameters.
  • the material used for the reference electrode is different from the first positive electrode and the first negative electrode.
  • the state parameter is, for example, an open circuit voltage.
  • the reference electrode may be in an idle state at a time other than the state detection of the battery.
  • the present embodiment can greatly improve the accuracy of the battery state evaluation by setting up the reference electrode and performing the state evaluation of the battery by using the reference electrode with the positive and negative electrodes, for example, detecting the remaining power, and calculating the manner. It is not complicated either.

Abstract

本发明公开了一种电池以及检测电池剩余电量的方法,该电池包括第一正电极、第一负电极以及参考电极,第一正电极与第一负电极用于在电池进行充电或放电时作为供电电极,参考电极用于与第一正电极和第一负电极中的至少一个配合来对电池进行状态检测。通过上述方式,本发明通过设立参考电极,并通过参考电极配合正负电极进行电池的状态评估,例如剩余电量的检测,能够大幅度提高电池状态评估的准确性,并且计算方式也并不复杂。

Description

电池及电池的状态检测方法
【技术领域】
本发明涉及电池领域,特别是涉及一种电池及电池的状态检测方法。
【背景技术】
电池指盛有电解质溶液和金属电极以产生电流的杯、槽或其他容器或复合容器的部分空间,能将化学能转化成电能的装置。具有正极、负极之分。随着科技的进步,电池泛指能产生电能的小型装置。如太阳能电池。电池的性能参数主要有电动势、容量、比能量和电阻。利用电池作为能量来源,可以得到具有稳定电压,稳定电流,长时间稳定供电,受外界影响很小的电流,并且电池结构简单,携带方便,充放电操作简便易行,不受外界气候和温度的影响,性能稳定可靠,在现代社会生活中的各个方面发挥有很大作用。
而由于现有的电池设计是正负两极设计,因此在进行电池状态评估,例如检测剩余电量时,诸多办法都因为环境温度、放电电流及电池电化导致的容量变化等因素而测不准剩余电量。就算在计算时加入温度等的影响函数,也无法得到准确数值,并且使得计算过程太过复杂。
【发明内容】
本发明主要解决的技术问题是提供一种电池及电池的状态检测方法,能够提高电池状态评估检测的准确性,且计算复杂度不高。
为解决上述技术问题,本发明提供一种电池,该电池包括第一正电极、第一负电极以及参考电极,第一正电极与第一负电极用于在电池进行充电或放电时作为供电电极,参考电极用于与第一正电极和第一负电极中的至少一个配合来对电池进行状态检测。
其中,在电池进行状态检测以外的其他时间,参考电极处于闲置状态。
其中,电池进一步包括壳体以及电解液,电解液设置于壳体中,第一正电极、第一负电极以及参考电极设置于电解液中,并延伸至壳体外。
其中,电池进一步包括设置于电解液内且位于第一正电极和第一负电极之间的两个隔离层,其中参考电极位于两个隔离层之间,或者位于两个隔离层外侧。
其中,第一正电极、第一负电极以及参考电极彼此并排设置,且参考电极位于第一正电极和第一负电极之间。
其中,参考电极作为第二负电极与第一正电极配合来对电池进行状态检测,并且/或者参考电极作为第二正电极与第一负电极配合来对电池进行状态检测。
其中,参考电极所用材料与第一正电极相同,或者参考电极所用的材料与第一负电极相同。
其中,参考电极所使用的材料与第一正电极以及第一负电极均不相同。
其中,电池进一步包括检测电路,检测电路分别与第一正电极、第一负电极以及参考电极电连接,并检测第一正电极与第一负电极之间的第一状态参数以及参考电极与第一正电极和第一负电极中的至少一个之间的第二状态参数。
其中,检测电路为电压检测电路,第一状态参数和第二状态参数分别为开路电压。
其中,电池进一步包括处理器,处理器根据第一状态参数和第二状态参数计算电池的剩余电量。
为解决上述技术问题,本发明还提供一种电池的状态检测方法,其中,电池包括第一正电极、第一负电极以及参考电极,第一正电极与第一负电极用于在电池进行充电或放电时作为供电电极,方法包括以下步骤:检测第一正电极和第一负电极之间的第一状态参数;检测参考电极与第一正电极和第一负电极中的至少一个之间的第二状态参数;根据第一状态参数和第二状态参数对电池进行状态评估。
其中,第一状态参数与第二状态参数分别为开路电压;根据第一状态参数和第二状态参数对电池进行状态评估的步骤包括:根据第一状态参数和第二状态参数评估电池的剩余电量。
其中,检测参考电极与第一正电极和第一负电极中的至少一个之间的第二状态参数的步骤包括:将参考电极作为第二负电极,并与第一正电极配合来检测参考电极与第一正电极之间的第二状态参数。
其中,参考电极所用的材料与第一负电极相同。
其中,检测参考电极与第一正电极和第一负电极中的至少一个之间的第二状态参数的步骤包括:将参考电极作为第二正电极,并与第一负电极配合来检测参考电极与第一负电极之间的第二状态参数。
其中,参考电极所用的材料与第一正电极相同。
其中,检测参考电极与第一正电极和第一负电极中的至少一个之间的第二状态参数的步骤包括:将参考电极作为第二负电极,并与第一正电极配合来检测参考电极与第一正电极之间的第二状态参数,并且,将参考电极作为第二正电极,并与第一负电极配合来检测参考电极与第一负电极之间的第二状态参数,共获取两个第二状态参数。
其中,参考电极所使用的材料与第一正电极以及第一负电极均不相同。
其中,在电池进行状态检测以外的其他时间,参考电极处于闲置状态。
本发明的有益效果是:区别于现有技术的情况,本实施方式通过设立参考电极,并通过参考电极配合正负电极进行电池的状态评估,例如剩余电量的检测,能够大幅度提高电池状态评估的准确性,并且计算方式也并不复杂。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,也属于本发明保护范畴。
图1是本发明电池的第一实施方式的结构示意图;
图2是本发明电池的第二实施方式的结构示意图;
图3是本发明电池的第三实施方式的结构示意图;
图4是本发明电池的第四实施方式的结构示意图;
图5是本发明电池的第五实施方式的结构示意图;
图6是本发明电池的第六实施方式的结构示意图;
图7是本发明电池的状态检测方法的第一实施方式的流程示意图。
【具体实施方式】
下面结合附图和实施例,对本发明作进一步的详细描述。特别指出的是,以下实施例仅用于说明本发明,但不对本发明的范围进行限定。同样的,以下实施例仅为本发明的部分实施例而非全部实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例,例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
参阅图1,图1是本发明电池的第一实施方式的结构示意图。如图1所示,本实施方式的电池10包括第一正电极11、第一负电极12以及参考电极13。
第一正电极11与第一负电极12用于在电池10进行充电或放电时作为供电电极。参考电极13用于与第一正电极11和第一负电极12中的至少一个配合来对电池10进行状态检测。
在对电池10进行状态检测时,可以先检测第一正电极11与第一负电极12之间的第一状态参数,然后再检测参考电极13与第一正电极11和第一负电极12中的至少一个之间的第二状态参数,最后根据第一状态参数以及第二状态参数对电池10进行状态评估。或者,也可以直接使用参考电极13与第一正电极11和第一负电极12中的至少一个配合来对电池10进行状态检测,例如检测参考电极13与第一正电极11之间的状态参数,或者检测参考电极13与第一负电极12之间的状态参数,或者检测参考电极13与第一正电极11之间的状态参数以及参考电极13与第一负电极12之间的状态参数,来对电池10进行状态评估。一般来说,对电池10的状态评估是评估电池10的剩余电量、使用寿命、健康状态等,或是检测电池10的电压。在本实施方式中,先检测第一正电极11与第一负电极12之间的第一电压,然后
再检测参考电极13与第一正电极11和第一负电极12中的至少一个之间的第二电压。其中,在参考电极13作为正电极时,即与第一正电极11同极设置时,第二电压为参考电极13与第一负电极12之间的电压。而当参考电极13作为负电极时,即与第一负电极12同极设置时,第二电压为参考电极13与第一正电极11之间的电压。得到第一电压与第二电压后,可根据关系曲线图来确定电池10的剩余电量、使用寿命或者健康状态等。关系曲线图可以根据预先测定的准确数据来绘制。或者,得到第一电压与第二电压之后,可以取两者的平均数作为电池10的电压,或通过其他的算法或预先测得的对照表来获取电池10的电压。
另外,在本实施方式的优选实施方式中,在电池10进行状态检测以外的其他时间,参考电极13可以处于闲置状态。
通过设立参考电极,并通过参考电极配合正负电极进行电池的状态评估,例如剩余电量的检测,能够大幅度提高电池状态评估的准确性,并且计算方式也并不复杂。
参阅图2,图2是本发明电池的第二实施方式的结构示意图。如图2所示,本实施方式的电池20包括壳体21、电解液22、隔离层23、第一正电极24、第一负电极25以及参考电极26。
电解液22设置于壳体21中,第一正电极24、第一负电极25以及参考电极26设置于电解液22中,并延伸至壳体21外。隔离层23设置有两个,设置于电解液22内且位于第一正电极24和第一负电极25之间。在其他实施方式中,隔离层23可以只设置为一个,或者设置为两个以上,只需将参考电极26与第一正电极24、第一负电极25中的至少一个隔开即可。并且,参考电极26也并非必须设置于第一正电极24与第一负电极25之间,可以设置于一侧,或与第一正电极24、第一负电极25呈三角形设置等。
在本实施方式中参考电极26与第一正电极24同极设置,即与第一正电极24设置于两个隔离层23外侧的同侧。此时,参考电极26作为第二正电极与第一负电极25配合来对电池20进行状态检测。
在本实施方式中,优选的,参考电极26所用材料与第一正电极24相同。
在进行电池20的状态检测时,可以先检测第一正电极24与第一负电极25之间的第一状态参数,再检测参考电极26与第一负电极25之间的第二状态参数,最后根据第一状态参数以及第二状态参数对电池20进行状态评估。或者,也可以直接检测参考电极26与第一负电极25之间的状态参数,来对电池20进行状态评估。一般来说,对电池20的状态评估是检测电池20的剩余电量、使用寿命、健康状态等,也可以用来评估电池20的电压。在本实施方式中,先检测第一正电极24与第一负电极25之间的第一电压,再检测参考电极26与第一负电极25之间的第二电压。得到第一电压与第二电压之后,可根据关系曲线图来确定电池20的剩余电量、使用寿命或者健康状态等。关系曲线图可以根据预先测定的准确数据来绘制。也可以在得到第一电压与第二电压后,取两者的平均数作为电池20的电压,或通过其他的算法或预先测得的对照表来获取电池20的电压。
另外,在本实施方式的优选实施方式中,在电池20进行状态检测以外的其他时间,参考电极26可以处于闲置状态。
通过设立相当于第二正电极的参考电极,并通过参考电极配合负电极进行电池的状态评估,例如剩余电量的检测,能够大幅度提高电池状态评估的准确性,并且计算方式也并不复杂。
参阅图3,图3是本发明电池的第三实施方式的结构示意图。如图3所示,本实施方式的电池30包括壳体31、电解液32、隔离层33、第一正电极34、第一负电极35以及参考电极36。
电解液32设置于壳体31中,第一正电极34、第一负电极35以及参考电极36设置于电解液32中,并延伸至壳体31外。隔离层33设置有两个,设置于电解液32内且位于第一正电极34和第一负电极35之间。同样的,在其他实施方式中,隔离层33可以只设置有一个,将参考电极36与第一正电极34、第一负电极35中的一个隔开即可,也可以设置有多个。并且,参考电极36也并非必须设置于第一正电极34与第一负电极35之间,可以设置于一侧,或与第一正电极34、第一负电极35呈三角形设置等。
在本实施方式中参考电极36与第一负电极35同极设置,即与第一负电极35设置于两个隔离层33外侧的同侧。此时,参考电极36作为第二负电极与第一正电极34配合来对电池30进行状态检测。
在本实施方式中,优选的,参考电极36所用材料与第一负电极35相同。
在进行电池30的状态检测时,可以先检测第一正电极34与第一负电极35之间的第一状态参数,再检测参考电极36与第一正电极34之间的第二状态参数,最后根据第一状态参数以及第二状态参数对电池30进行状态评估。或者,也可以直接检测参考电极36与第一正电极34之间的状态参数,来对电池30进行状态评估。一般来说,对电池30的状态评估是检测电池30的剩余电量、使用寿命、健康状态等,也可以用于检测电池30的电压。在本实施方式中,先检测第一正电极34与第一负电极35之间的第一电压,再检测参考电极36与第一正电极34之间的第二电压。得到第一电压与第二电压之后,可根据关系曲线图来确定电池30的剩余电量、使用寿命或者健康状态等。关系曲线图可以根据预先测定的准确数据来绘制。也可以在得到第一电压与第二电压后,取两者的平均数作为电池30的电压,或通过其他的算法或预先测得的对照表来获取电池30的电压。
另外,在本实施方式的优选实施方式中,在电池30进行状态检测以外的其他时间,参考电极36可以处于闲置状态。
通过设立相当于第二负电极的参考电极,并通过参考电极配合正电极进行电池的状态评估,例如剩余电量的检测,能够大幅度提高电池状态评估的准确性,并且计算方式也并不复杂。
参阅图4,图4是本发明电池的第四实施方式的结构示意图。如图4所示,本实施方式的电池40包括壳体41、电解液42、隔离层43、第一正电极44、第一负电极45以及参考电极46。
电解液42设置于壳体41中,第一正电极44、第一负电极45以及参考电极46设置于电解液42中,并延伸至壳体41外。隔离层43设置有两个,设置于电解液42内且位于第一正电极44和第一负电极45之间。在其他实施方式中,隔离层43可以设置有一个,将参考电极46与第一正电极44、第一负电极45分隔开即可。另外,也可以将隔离层43设置有多个,增强隔离效果,或者为了增加参考电极46的数量。另外,参考电极46与隔离层43并非必须位于第一正电极44和第一负电极45之间,在其他实施方式中,可以将隔离层43设置于电池40的一侧,只需要将参考电极46隔离即可。
在本实施方式中参考电极46与第一正电极44以及第一负电极45均不同极设置,参考电极46设置于两个隔离层43之间,与第一正电极44以及第一负电极45之间均通过隔离层43进行隔离。此时,参考电极46既作为第二负电极与第一正电极44配合来对电池40进行状态检测,也作为第二正电极与第一负电极45配合来对电池40进行状态检测。
在本实施方式中,优选的,参考电极46所用材料与第一正电极44以及第一负电极45均不相同。
在对电池40进行状态检测时,可以先检测第一正电极44与第一负电极45之间的第一状态参数,然后再检测参考电极46与第一正电极44之间的第二状态参数,再检测参考电极46与第一负电极45之间的第二状态参数,最后根据第一状态参数以及两个第二状态参数对电池40进行状态评估。或者,也可以直接使用参考电极46与第一正电极44和第一负电极45配合来对电池40进行状态检测,例如检测参考电极46与第一正电极44之间的状态参数以及参考电极46与第一负电极45之间的状态参数,来对电池40进行状态评估。一般来说,对电池40的状态评估是检测电池40的剩余电量、使用寿命、健康状态等也可以用来检测电池40的电压。在本实施方式中,先检测第一正电极44与第一负电极45之间的第一电压,再检测参考电极46与第一正电极44之间的第二电压,再检测参考电极46与第一负电极45之间的第二电压。得到第一电压与两个第二电压后,可以使用一个第一电压与其中一个第二电压对照关系曲线图来确定电池40的剩余电量、使用寿命、健康状态或者电压等,也可以使用一个第一电压与两个第二电压对照关系曲线图来确定剩余电量、使用寿命、健康状态或者电压等。当只需要一个第二电压时,在检测第二电压时可选择性的只检测一个即可。关系曲线图可以根据预先测定的准确数据来绘制。当使用第一电压与两个第二电压来对电池40的电压进行评估时,可以先计算两个第二电压的平均值,然后再将两个第二电压的平均值和第一电压进行加权平均计算,从而得出所述电池40的电压。所述第一电压的的权重可以是可以根据电池的不同类型而进行相应的调整,例如权重为70%、50%等。
另外,在本实施方式的优选实施方式中,在电池40进行状态检测以外的其他时间,参考电极46可以处于闲置状态。
通过设立参考电极,并通过参考电极配合正负电极进行电池的状态评估,例如剩余电量的检测,能够大幅度提高电池状态评估的准确性,并且计算方式也并不复杂。
参阅图5,图5是本发明电池的第五实施方式的结构示意图。如图5所示,本实施方式的电池50包括第一正电极51、第一负电极52、参考电极53以及检测电路54。
第一正电极51与第一负电极52用于在电池50进行充电或放电时作为供电电极。参考电极53用于与第一正电极51和第一负电极52中的至少一个配合来对电池50进行状态检测。
检测电路54分别与第一正电极51、第一负电极52以及参考电极53电连接,并检测第一正电极51与第一负电极52之间的第一状态参数以及参考电极53与第一正电极51和第一负电极52中的至少一个之间的第二状态参数。
在对电池50进行状态检测时,可以先开启检测电路54,检测第一正电极51与第一负电极52之间的第一状态参数,然后再检测参考电极53与第一正电极51和第一负电极52中的至少一个之间的第二状态参数,最后根据第一状态参数以及第二状态参数对电池50进行状态评估。或者,也可以直接使用参考电极53与第一正电极51和第一负电极52中的至少一个配合来对电池50进行状态检测,例如检测参考电极53与第一正电极51之间的状态参数,或者检测参考电极53与第一负电极52之间的状态参数,或者检测参考电极53与第一正电极51之间的状态参数以及参考电极53与第一负电极52之间的状态参数,来对电池50进行状态评估。
另外,在本实施方式的优选实施方式中,在电池50进行状态检测以外的其他时间,参考电极53以及检测电路54可以处于闲置状态。
在优选实施方式中,检测电路54为电压检测电路,第一状态参数和第二状态参数分别为开路电压。
通过设立参考电极,并通过参考电极配合正负电极进行电池的状态评估,例如剩余电量的检测,能够大幅度提高电池状态评估的准确性,并且计算方式也并不复杂。
参阅图6,图6是本发明电池的第六实施方式的结构示意图。如图6所示,本实施方式的电池60包括第一正电极61、第一负电极62、参考电极63、检测电路64以及处理器65。
第一正电极61与第一负电极62用于在电池60进行充电或放电时作为供电电极。参考电极63用于与第一正电极61和第一负电极62中的至少一个配合来对电池60进行状态检测。
检测电路64分别与第一正电极61、第一负电极62以及参考电极63电连接,并检测第一正电极61与第一负电极62之间的第一状态参数以及参考电极63与第一正电极61和第一负电极62中的至少一个之间的第二状态参数。
处理器65连接检测电路64,根据第一状态参数和第二状态参数计算电池60的状态参数,从而完成对电池60的状态评估。
在对电池60进行状态检测时,可以先开启检测电路64,检测第一正电极61与第一负电极62之间的第一状态参数,然后再检测参考电极63与第一正电极61和第一负电极62中的至少一个之间的第二状态参数,最后由处理器65根据第一状态参数以及第二状态参数对电池60进行状态评估。或者,也可以直接使用参考电极63与第一正电极61和第一负电极62中的至少一个配合来对电池60进行状态检测,例如检测参考电极63与第一正电极61之间的状态参数,或者检测参考电极63与第一负电极62之间的状态参数,或者检测参考电极63与第一正电极61之间的状态参数以及参考电极63与第一负电极62之间的状态参数,来对电池60进行状态评估。
另外,在本实施方式的优选实施方式中,在电池60进行状态检测以外的其他时间,参考电极63、检测电路64以及处理器65可以处于闲置状态。
在优选实施方式中,检测电路64为电压检测电路64,第一状态参数和第二状态参数分别为开路电压,处理器65根据第一状态参数和第二状态参数计算电池60的剩余电量。
通过设立参考电极,并通过参考电极配合正负电极进行电池的状态评估,例如剩余电量的检测,能够大幅度提高电池状态评估的准确性,并且计算方式也并不复杂。
本领域技术人员完全可以将第二、第三以及第四实施方式与第五或第六实施方式进行结合,即在第二、第三以及第四实施方式中加入检测电路或检测电路及处理器,以形成新的实施方式,此处不再赘述。
另外,在上述实施方式中,都可以将第一正电极、第一负电极以及参考电极彼此并排设置,且参考电极位于第一正电极和第一负电极之间。并且,本发明对第一正电极、第一负电极以及参考电极的数量不做限定。
参阅图7,图7是本发明电池的状态检测方法的第一实施方式的流程示意图。在本实施方式中,电池包括第一正电极、第一负电极以及参考电极,第一正电极与第一负电极用于在电池进行充电或放电时作为供电电极。电池的状态检测方法包括以下步骤:
在步骤S71中,检测第一正电极和第一负电极之间的第一状态参数。
在步骤S72中,检测参考电极与第一正电极和第一负电极中的至少一个之间的第二状态参数。
在步骤S73中,根据第一状态参数和第二状态参数对电池进行状态评估。
通过参考电极配合正负电极进行电池的状态评估,例如剩余电量的检测,能够大幅度提高电池状态评估的准确性,并且计算方式也并不复杂。
在优选实施方式中,第一状态参数与第二状态参数分别为开路电压。根据第一状态参数和第二状态参数对电池进行状态评估的步骤S73包括:根据第一状态参数和第二状态参数评估电池的剩余电量。
具体的,检测参考电极与第一正电极和第一负电极中的至少一个之间的第二状态参数的步骤S72可以包括下述三种方式:
第一种方式
将参考电极作为第二负电极,并与第一正电极配合来检测参考电极与第一正电极之间的第二状态参数。
在此种方式中,参考电极所用的材料与第一负电极相同。
第二种方式
将参考电极作为第二正电极,并与第一负电极配合来检测参考电极与第一负电极之间的第二状态参数。
在此种方式中,参考电极所用的材料与第一正电极相同。
第三种方式
将参考电极作为第二负电极,并与第一正电极配合来检测参考电极与第一正电极之间的第二状态参数,并且,将参考电极作为第二正电极,并与第一负电极配合来检测参考电极与第一负电极之间的第二状态参数,共获取两个第二状态参数。
在此种方式中,参考电极所使用的材料与第一正电极以及第一负电极均不相同。
其中,状态参数例如为开路电压。
另外,在电池进行状态检测以外的其他时间,参考电极可以处于闲置状态。
区别于现有技术的情况,本实施方式通过设立参考电极,并通过参考电极配合正负电极进行电池的状态评估,例如剩余电量的检测,能够大幅度提高电池状态评估的准确性,并且计算方式也并不复杂。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种电池,其特征在于,所述电池包括第一正电极、第一负电极以及参考电极,所述第一正电极与所述第一负电极用于在所述电池进行充电或放电时作为供电电极,所述参考电极用于与所述第一正电极和所述第一负电极中的至少一个配合来对所述电池进行状态检测。
  2. 根据权利要求1所述的电池,其特征在于,在所述电池进行状态检测以外的其他时间,所述参考电极处于闲置状态。
  3. 根据权利要求1所述的电池,其特征在于,所述电池进一步包括壳体以及电解液,所述电解液设置于所述壳体中,所述第一正电极、所述第一负电极以及所述参考电极设置于所述电解液中,并延伸至所述壳体外。
  4. 根据权利要求3所述的电池,其特征在于,所述电池进一步包括设置于所述电解液内且位于所述第一正电极和所述第一负电极之间的两个隔离层,其中所述参考电极位于所述两个隔离层之间,或者位于所述两个隔离层外侧。
  5. 根据权利要求1所述的电池,其特征在于,所述第一正电极、所述第一负电极以及所述参考电极彼此并排设置,且所述参考电极位于所述第一正电极和所述第一负电极之间。
  6. 根据权利要求1所述的电池,其特征在于,所述参考电极作为第二负电极与所述第一正电极配合来对所述电池进行状态检测,并且/或者所述参考电极作为第二正电极与所述第一负电极配合来对所述电池进行状态检测。
  7. 根据权利要求1所述的电池,其特征在于,所述参考电极所用材料与所述第一正电极相同,或者所述参考电极所用的材料与所述第一负电极相同。
  8. 根据权利要求1所述的电池,其特征在于,所述参考电极所使用的材料与所述第一正电极以及所述第一负电极均不相同。
  9. 根据权利要求1所述的电池,其特征在于,所述电池进一步包括检测电路,所述检测电路分别与所述第一正电极、第一负电极以及参考电极电连接,并检测所述第一正电极与所述第一负电极之间的第一状态参数以及所述参考电极与所述第一正电极和所述第一负电极中的至少一个之间的第二状态参数。
  10. 根据权利要求9所述的电池,其特征在于,所述检测电路为电压检测电路,所述第一状态参数和所述第二状态参数分别为开路电压。
  11. 根据权利要求9所述的电池,其特征在于,所述电池进一步包括处理器,所述处理器根据所述第一状态参数和所述第二状态参数计算所述电池的剩余电量。
  12. 一种电池的状态检测方法,其特征在于,所述电池包括第一正电极、第一负电极以及参考电极,所述第一正电极与所述第一负电极用于在所述电池进行充电或放电时作为供电电极,所述方法包括以下步骤:
    检测所述第一正电极和所述第一负电极之间的第一状态参数;
    检测所述参考电极与所述第一正电极和所述第一负电极中的至少一个之间的第二状态参数;
    根据所述第一状态参数和所述第二状态参数对所述电池进行状态评估。
  13. 根据权利要求12所述的方法,其特征在于,所述第一状态参数与所述第二状态参数分别为开路电压;
    所述根据所述第一状态参数和所述第二状态参数对所述电池进行状态评估的步骤包括:
    根据所述第一状态参数和所述第二状态参数评估所述电池的剩余电量。
  14. 根据权利要求12所述的检测电池剩余电量的方法,其特征在于,所述检测所述参考电极与所述第一正电极和所述第一负电极中的至少一个之间的第二状态参数的步骤包括:
    将所述参考电极作为第二负电极,并与所述第一正电极配合来检测所述参考电极与所述第一正电极之间的所述第二状态参数。
  15. 根据权利要求14所述的检测电池剩余电量的方法,其特征在于,所述参考电极所用的材料与所述第一负电极相同。
  16. 根据权利要求12所述的检测电池剩余电量的方法,其特征在于,所述检测所述参考电极与所述第一正电极和所述第一负电极中的至少一个之间的第二状态参数的步骤包括:
    将所述参考电极作为第二正电极,并与所述第一负电极配合来检测所述参考电极与所述第一负电极之间的所述第二状态参数。
  17. 根据权利要求16所述的检测电池剩余电量的方法,其特征在于,所述参考电极所用的材料与所述第一正电极相同。
  18. 根据权利要求12所述的检测电池剩余电量的方法,其特征在于,所述检测所述参考电极与所述第一正电极和所述第一负电极中的至少一个之间的第二状态参数的步骤包括:
    将所述参考电极作为第二负电极,并与所述第一正电极配合来检测所述参考电极与所述第一正电极之间的所述第二状态参数,并且,将所述参考电极作为第二正电极,并与所述第一负电极配合来检测所述参考电极与所述第一负电极之间的所述第二状态参数,共获取两个所述第二状态参数。
  19. 根据权利要求18所述的检测电池剩余电量的方法,其特征在于,所述参考电极所使用的材料与所述第一正电极以及所述第一负电极均不相同。
  20. 根据权利要求12所述的检测电池剩余电量的方法,其特征在于,在所述电池进行状态检测以外的其他时间,所述参考电极处于闲置状态。
PCT/CN2017/118410 2017-12-25 2017-12-25 电池及电池的状态检测方法 WO2019126965A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780035398.4A CN109314265A (zh) 2017-12-25 2017-12-25 电池及电池的状态检测方法
PCT/CN2017/118410 WO2019126965A1 (zh) 2017-12-25 2017-12-25 电池及电池的状态检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/118410 WO2019126965A1 (zh) 2017-12-25 2017-12-25 电池及电池的状态检测方法

Publications (1)

Publication Number Publication Date
WO2019126965A1 true WO2019126965A1 (zh) 2019-07-04

Family

ID=65225729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118410 WO2019126965A1 (zh) 2017-12-25 2017-12-25 电池及电池的状态检测方法

Country Status (2)

Country Link
CN (1) CN109314265A (zh)
WO (1) WO2019126965A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103250301A (zh) * 2010-10-13 2013-08-14 弗劳恩霍弗应用技术研究院 具有内部参考电极的基于锂技术的电化学电池、用于其制造的工艺以及用于同时监测其阳极和阴极的电压或阻抗的方法
CN104821417A (zh) * 2014-01-30 2015-08-05 赫拉胡克公司 电池和用于确定电池的老化状态的方法
CN105705958A (zh) * 2013-11-23 2016-06-22 Hrl实验室有限责任公司 具有参比电极的蓄电池的电压保护及健康监控
US9847558B1 (en) * 2013-10-11 2017-12-19 Hrl Laboratories, Llc Methods and apparatus for real-time characterization of batteries with a reference electrode

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8586222B2 (en) * 2010-04-08 2013-11-19 GM Global Technology Operations LLC Lithium-ion cell with an array of reference electrodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103250301A (zh) * 2010-10-13 2013-08-14 弗劳恩霍弗应用技术研究院 具有内部参考电极的基于锂技术的电化学电池、用于其制造的工艺以及用于同时监测其阳极和阴极的电压或阻抗的方法
US9847558B1 (en) * 2013-10-11 2017-12-19 Hrl Laboratories, Llc Methods and apparatus for real-time characterization of batteries with a reference electrode
CN105705958A (zh) * 2013-11-23 2016-06-22 Hrl实验室有限责任公司 具有参比电极的蓄电池的电压保护及健康监控
CN104821417A (zh) * 2014-01-30 2015-08-05 赫拉胡克公司 电池和用于确定电池的老化状态的方法

Also Published As

Publication number Publication date
CN109314265A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2018190508A1 (ko) 노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법
WO2013151355A1 (ko) 고장 자가 진단 기능을 구비한 절연 저항 측정 장치 및 이를 이용한 자가 진단 방법
WO2017095066A1 (ko) 언노운 방전 전류에 의한 배터리 셀의 불량 검출 장치 및 방법
WO2015030295A1 (ko) 배터리 진단 기능을 가진 충전기 및 그 제어방법
WO2013147494A1 (ko) 배터리의 절연 저항 측정 장치 및 방법
WO2014084628A1 (ko) 배터리 전류 측정 장치 및 그 방법
WO2018074744A1 (ko) 전압 분배를 이용한 스위치 진단 장치 및 방법
WO2022015025A1 (ko) 배터리 밸브 및 이를 포함하는 배터리
WO2019088746A1 (ko) 배터리 soc 추정 장치 및 방법
WO2021006566A1 (ko) 배터리 셀 진단 장치 및 방법
WO2015034144A1 (ko) 배터리 팩의 프리차지 저항 산출 장치 및 방법
WO2020262787A1 (ko) 내부 단락 셀 검출 방법
WO2018097512A1 (ko) 배터리 충전제어 알고리즘
WO2022145830A1 (ko) 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 전기 차량
WO2022177291A1 (ko) 배터리 관리 시스템, 배터리 팩, 에너지 저장 시스템 및 배터리 관리 방법
WO2022092621A1 (ko) 배터리 진단 장치 및 방법
WO2022025725A1 (ko) 배터리 관리 장치, 배터리 팩, 배터리 시스템 및 배터리 관리 방법
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2019126965A1 (zh) 电池及电池的状态检测方法
WO2020166840A1 (ko) 배터리 셀 이상 판단 장치 및 방법
WO2023282713A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2023063625A1 (ko) 배터리 진단 장치, 배터리 팩, 전기 차량, 및 배터리 진단 방법
WO2022265358A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2023287180A1 (ko) 배터리 진단 장치, 배터리 팩, 전기 차량 및 배터리 진단 방법
WO2022019703A1 (ko) 배터리를 진단하기 위한 장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935994

Country of ref document: EP

Kind code of ref document: A1