WO2019124768A1 - Sintering operation control apparatus and method therefor - Google Patents

Sintering operation control apparatus and method therefor Download PDF

Info

Publication number
WO2019124768A1
WO2019124768A1 PCT/KR2018/014286 KR2018014286W WO2019124768A1 WO 2019124768 A1 WO2019124768 A1 WO 2019124768A1 KR 2018014286 W KR2018014286 W KR 2018014286W WO 2019124768 A1 WO2019124768 A1 WO 2019124768A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
sintering machine
raw material
data
value
Prior art date
Application number
PCT/KR2018/014286
Other languages
French (fr)
Korean (ko)
Inventor
손상한
전지원
나지훈
정인현
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2019124768A1 publication Critical patent/WO2019124768A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • F27B21/02Sintering grates or tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/02Observation or illuminating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0096Arrangements of controlling devices involving simulation means, e.g. of the treating or charging step

Definitions

  • An embodiment relates to a sintering operation control device and a method thereof.
  • the sintering process is a process in which a mixed raw material in which various kinds of iron ores, subsidiary raw materials such as limestone, and a binder such as coal are mixed is charged into a movable type sintering machine and then the partial melting of the iron ore is performed by the heat of combustion of the binder to be.
  • the compacted sintered ores through the sintering process are used as raw materials for the blast furnace.
  • the ratio of the binder contained in the blending raw material, the height of the blending raw material on the sintering machine bed, the charging density of the blending raw material, and the moving speed of the sintering machine are very important factors for determining the productivity of the sintering operation and the quality of the sintered ores. Therefore, in the sintering step, the amount of the binder contained in the blending raw material, the height of the bed layer and the charging density of the blending raw material when the blending raw material is charged into the sintering machine, and the moving speed of the sintering machine It needs to be adjusted appropriately according to quality conditions.
  • the quality of the sinter ore produced during the sintering operation and the productivity of the sintering operation can be measured about once to three times per day due to various obstacles.
  • the operating factors of the sintering operation are controlled according to the quality of the sintered ore and the productivity of the sintering operation intermittently measured, there is a problem that it is difficult to efficiently manage the sintering operation due to the representative limit of the data.
  • An object of the present invention is to provide a sintering operation control apparatus and method capable of automatically controlling a sintering operation by judging a current sintering operation state in real time.
  • a sintering operation control apparatus including a database for storing a prediction model for predicting at least one operation value associated with sintering operation through a neural network algorithm, An operation data collecting unit for acquiring a particle size distribution of the sintered ores from the image of the sintered ores emitted from the sintering unit and collecting the operation data including the particle size distribution in relation to the operation state of the sintering operation, And a control unit for automatically controlling the sintering equipment in accordance with the at least one operation value.
  • the at least one operating value may include a binding material ratio in the blending raw material charged into the sintering machine, a blending raw material height on the bed of the sintering machine, a blending raw material loading density of the sintering machine, and a moving speed of the sintering machine .
  • the control unit may control an amount of the binder to be supplied from the storage bin to the mixer for raw material mixture, based on the combination ratio in the blended material among the at least one operation value.
  • the control unit may control the mixing material feed amount of the mixing material storage hopper based on the mixing material height on the bed of the sintering machine among the at least one operating value.
  • the control unit may control the pressing member on the sintering unit based on the mixing material loading density of the sintering unit among the at least one operating value.
  • the control unit may control the conveyor that moves the sintering machine based on the moving speed of the sintering machine among the at least one operation value.
  • the neural network algorithm may be composed of a convolutional neural network.
  • the sintering operation control apparatus may further include a learning unit configured to learn the operation data collected through the operation data collecting unit with learning data for a predetermined period of time to construct the prediction model.
  • the operating data includes at least one of a raw material mixture ratio, a blending raw material component, a coupling ratio in a blending raw material, a binder particle size, an ignition temperature and a gas pressure in an ignition, a moisture content of the blending raw material, a dust generating amount,
  • the flow rate of the sintering machine, the flow speed of the sintering machine, the charging density, the air permeability, the exhaust gas temperature, the oxygen concentration, the negative pressure and flow rate of the hood, the sintered light component, the sintered light particle size, the sintered light intensity, And may include at least one.
  • the sintering operation control method includes the steps of obtaining a particle size distribution of the sintered ores from an image of the sintered ores discharged from a sintering machine using at least one camera, Collecting operational data including the particle size distribution, using the operational data as input data of a prediction model predicting at least one operational value associated with the sintering operation through a neural network algorithm, Obtaining an operating value, and automatically controlling the sintering facility in accordance with the at least one operating value.
  • the at least one operating value includes at least one of a binding material ratio in the blended material charged into the sintering machine, a blending material height on the bed of the sintering machine, a mixing material loading density of the sintering machine, and a balancing speed of the sintering machine can do.
  • the controlling may include controlling an amount of the binder to be supplied from the storage bin to the mixer for raw material, based on the binder ratio in the blend material among the at least one operation value.
  • the controlling step may include controlling the feed amount of the compounding raw material storage hopper based on the height of the compounding raw material on the bed of the sintering machine among the at least one operation value.
  • the controlling may include controlling the pressing member on the sintering machine based on the mixing material loading density of the sintering machine among the at least one operating value.
  • the controlling may include controlling a conveyor that moves the sintering machine, based on the moving speed of the sintering machine among the at least one manipulated value.
  • the neural network algorithm may be composed of a convolution neural network.
  • the sintering operation control method may further include a step of constructing the prediction model by learning the operation data with training data for a predetermined period.
  • the sintering equipment can be controlled in real time in accordance with the current operating conditions, and the efficiency of the sintering operation can be improved and the quality of the sintered ores can be stably maintained.
  • Fig. 1 shows an example of a sintering facility.
  • FIG. 2 is a schematic view of a sintering operation control apparatus according to an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a method of verifying a prediction model according to an embodiment of the present invention.
  • FIG. 4 is a schematic view illustrating a sintering operation control method according to an embodiment of the present invention.
  • Figure 1 schematically shows a sintering facility.
  • the sintering equipment includes a mixing material storage hopper 10, an ignition furnace 20, a plurality of sintering machines 30, a conveyor 40, a windbox 50, a duct 61, a dust collector 62 A duct blower 63, a hood 70, and a heat source storage unit 80.
  • the raw materials such as iron ores, quartz, serpentine, and limestone as well as binders such as anthracite coal and coke are transported from a storage bin (not shown) to a mixer (not shown), mixed with water, granulation, and is charged into the compounding material storage hopper 10.
  • the blending raw materials for sintering stored in the blending raw material storage hopper 10 are supplied to the sintering machine 30 at a predetermined ratio for sintering operation.
  • Each of the sintering machines 30 is of a moving type and receives the raw material mixture from the mixing raw material storage hopper 10 and sequentially moves horizontally in the sintering process progressing direction. Each sintering machine 30 moves to the light distribution section through horizontal movement, and discharges the sintered light that has been sintered to the light distribution section.
  • the ignition furnace 20 performs a function of burning the binder contained in the raw material layer by spraying a flame with a blending raw material on the bed of the sintering machine 30 (hereinafter referred to as a raw material layer).
  • the sintering furnace 20 is located at one side of the mixing material storage hopper 10 and the sintering machine 30 supplied with the mixing material for sintering by the mixing material storage hopper 10 The flame is injected into the raw material layer of the sintering machine 30.
  • the ignition furnace 20 may use various means capable of injecting a flame into a raw material layer such as a gas burner.
  • a hood 70 for supplying a gas for supplying a heat source to the sintering machine 30 is disposed at one side of the ignition furnace 20 and the hood 70 is connected to a heat source storage part 80 for storing a gas for supplying a heat source .
  • the conveyor 40 is extended in the sintering process progressing direction, and moves a plurality of sintering machines 30 sequentially disposed in the sintering process progressing direction in the sintering process progressing direction.
  • a plurality of windboxes 50 are disposed on the movement path of the sintering machine 30 to provide a suction force to each of the sintering machines 30 so that the outside air sucked by the sintering machine 30, Gas, and flame ignited by the ignition furnace 20 to move toward the lower side of the sintering machine 30.
  • the dust sucked by the plurality of wind boxes 50 is removed by the duct 61, the dust collector 62, and the duct blower 63.
  • the flame temperature is raised to 1300 ° C. to 1400 ° C., whereby the subsidiary raw materials such as limestone and iron ores form a low melting point compound and are partially melted to proceed the sintering reaction of iron ores.
  • the sintering machine 30 in which the surface layer of the raw material layer is ignited by the ignition furnace 20 is conveyed in one direction by the conveyor 40 and the ignited raw material layer is connected to the cold air by the movement of the sintering machine 30 And cooled.
  • a wind box 50 is provided below the sintering machine 30, and the wind box 50 sucks the heat of the ignited raw material layer downward. At this time, the heat of the raw material layer gradually descends from the upper layer portion to the lower layer portion due to the suction force of the wind box 50, whereby the entire raw material layer is fired, and the fired raw material layer moves along the sintering machine 30 Cooled and finally made into sintered ores.
  • the bonding material ratio included in the blending raw material the height of the raw material layer on the sintering machine 30 bed, the loading density of the raw material layer, and the moving speed of the sintering machine 30, It is a very important factor to decide.
  • the combination ratio, the height of the raw material layer on the bed of the sintering machine 30, the loading density of the raw material layer, and the conveyance speed of the sintering machine 30 And controls the sintering equipment on the basis thereof.
  • FIG. 2 is a schematic view of a blast furnace operation control apparatus according to an embodiment of the present invention.
  • 3 is a diagram for explaining a method of verifying a prediction model according to an embodiment of the present invention.
  • a sintering operation control apparatus 100 includes a operation data collecting unit 110, a user input unit 120, a operation data database 130, a learning unit 140, A database 150, a predicting unit 160, and a sintering operation control unit 170.
  • the operation data collecting unit 110 can collect a plurality of operation data related to the operating state of the sintering operation in real time.
  • Table 1 below shows examples of the operation data collected by the operation data collecting unit 110.
  • the operation data may include raw material mixture data, raw material mixture data, operation data of the ignition system 20, operation data of the sintering machine 30, sintering light data, amount of dust generated, and the like.
  • the raw material blend data may include information related to blending raw materials such as raw material blending ratio (ore kind, sub-raw material type, particle size), blended raw material ingredient, binding raw material ratio in blended raw material, binder particle size and the like.
  • the raw material mixture data may include information related to the raw material mixture such as the primary and secondary moisture contents of the raw material mixture.
  • the operation data of the ignition circuit 20 may also include information related to the operation of the ignition circuit 20, such as the ignition temperature of the ignition circuit 20, the gas pressure of the ignition circuit 20, and the like.
  • the operating data of the sintering machine 30 is used to calculate the feed rate and loading ratio of the raw material to the sintering machine 30, the post-layering (the height of the compounding material on the bed of the sintering machine 30), the sintering advancing speed , Air permeability, exhaust gas temperature, negative pressure and flow rate (or air volume) of hood 70, oxygen concentration, and the like.
  • the sintered-orbital data also includes information related to the sintered ores produced by the sintering operation such as the components (sintered ores) of the sintered ores (FeO content, basicity etc.), particle size (or particle size distribution) and strength .
  • the operation data collecting unit 110 includes at least one sensor (not shown), and can automatically acquire operation data using the at least one sensor.
  • the operation data collecting unit 110 may acquire various sensed values by using a temperature sensor, a pressure sensor, a gas sensor, and the like, and obtain operation data related to the sintering operation therefrom.
  • the operation data collecting unit 110 includes at least one camera (not shown), and can automatically acquire operation data using the at least one camera (not shown). For example, the operation data collecting unit 110 photographs the compounding materials accumulated on the bed of the sintering machine 30 in real time using a camera, and automatically acquires the layering information through image analysis of the image It is possible. In addition, for example, the operation data collecting unit 110 photographs the mixed raw materials charged into the sintering machine 30 in real time through at least one camera, and implements the filling density of the mixed raw materials through the image analysis on the corresponding images It can also be acquired automatically.
  • the operation data collecting unit 110 photographs the sintered ores emitted from the sintering machine 30 to the light distribution unit through at least one camera in real time, analyzes the image data, May be automatically obtained.
  • the camera for photographing the sintered ores can be arranged to photograph the light distribution portion for conveying the sintered ores discharged from the sintering machine 30 to the blast furnace.
  • the operation data collecting unit 110 may receive the operation data from the operator through the user input unit 120.
  • the operation data collecting unit 110 may receive operation data from an external facility.
  • the operation data collecting unit 110 may store the operation data collected in the operation data database 130 in a time series.
  • the learning unit 140 includes a neural network algorithm based prediction model for learning operational data collected through the operation data collecting unit 110 for training data for learning and for predicting operation guidance related to the sintering operation, Can be generated.
  • CNN convolutional neural network
  • CNN is a neural network consisting of one or several convolutional layers, a pooling layer, and fully connected layers.
  • features are extracted from time series data through a convolutional layer and a pooling layer, and prediction is performed through classification in a fully connected layer.
  • the learning unit 140 may set the number of features per variable to four and the number of time series data to eight (8 equal) in order to generate a predictive model.
  • the fully connected layer is composed of two layers, and the number of neurons in each layer is set to 100 and 50, so that learning can be performed.
  • the predictive model thus generated can predict an operation value including at least one of the combination ratio in the blended raw material, the post-finishing ratio, the charging density of the blended raw material, and the moving speed of the sintering machine 30 from the inputted time series operational data have.
  • the learning unit 140 may perform the consistency and reliability verification process for the prediction model to verify the validity of the operation value provided by the prediction model.
  • the learning unit 140 can perform consistency and reliability verification for the model to be checked by comparing the manipulated values in the actual sintering operation with the manipulated values obtained using the predictive model.
  • the target value of the predictive model is set as the sintered normal-temperature intensity, and the intensity of the sintered normal-temperature strength in the actual sintering operation is compared with the intensity of the sintered ordinary- It is possible to perform verification of consistency and reliability.
  • the learning unit 140 also predicts the room temperature strength of the sintered ores at a high level to lower the bonding cost and the charging density It is possible to verify the consistency and reliability of the prediction model by confirming whether the prediction result is presented.
  • the learning unit 140 may automatically control the sintering operation using a prediction model and monitor the operation efficiency (chartering amount) and the operation stabilization state (deviation of the management indicator) to verify the consistency and reliability of the prediction model .
  • the prediction model generated by the learning unit 140 is stored in the prediction model database 150 and used for predicting the operation value related to the sintering operation in the prediction unit 160.
  • the predicting unit 160 can estimate operation values related to the sintering operation from the operation data, which are time series data, using a neural network algorithm based prediction model. That is, the predicting unit 160 inputs the operation data collected through the operation data collecting unit 110 as the time series input data of the prediction model based on the neural network algorithm, and outputs the output value of the prediction model to the operation values .
  • the sintering operation control unit 170 can automatically control the sintering facility based on the operation values output by the predicting unit 160.
  • the sintering operation control unit 170 controls the amount of the binder material supplied from the storage bin (not shown) to the mixer for raw material mixing (not shown) based on the combined raw material ratio in the mixing raw material among the predicted operation values, Can be controlled.
  • the sintering operation control unit 170 controls the mixing material feed amount of the mixing material storage hopper 10 on the basis of the post-lamination operation of the predicted operating values, It is possible to adjust the amount.
  • the sintering operation control unit 170 controls the pressing member (not shown) located on the sintering machine 30 and the like to set the charging density of the sintering compounding raw material Can be adjusted. Further, for example, the sintering operation control unit 170 can control the moving speed of the sintering machine 30 by controlling the conveyor 40 on the basis of the moving speed of the predicted operating values.
  • the functions of the operation data collecting unit 110, the learning unit 140, the predicting unit 160 and the sintering operation controlling unit 170 may be performed by one or more central processing units unit, CPU) or other chipset, microprocessor, or the like.
  • FIG. 4 is a schematic view illustrating a sintering operation control method of a blast furnace according to an embodiment of the present invention.
  • a sintering operation control apparatus 100 generates a predictive model through neural network algorithm, for example, CNN-based learning (S100).
  • CNN-based learning S100
  • the sintering operation control apparatus 100 may collect and accumulate operation data of the sintering facility for a predetermined period of time, and generate a prediction model by using accumulated operation data of the time series as learning data of the neural network algorithm .
  • the sintering operation control apparatus 100 continuously collects a plurality of operation data related to the operation state of the sintering facility for operation values related to the sinter operation (S110). Then, operation data related to the sintering operation is obtained (S120) by using the continuously collected operation data of the time series as the time series input data of the prediction model based on the neural network algorithm.
  • the sintering operation control apparatus 100 automatically controls the sintering facility based on the operation value (S130).
  • the sintering operation control device 100 controls the amount of binder supplied from the storage bin (not shown) to the mixer for raw material mixing (not shown) based on the combined ratio of the raw materials in the mixing operation, It is possible to control the binding ratio of the raw material mixture.
  • the sintering operation control apparatus 100 may also control the amount of the compounding material accumulated on the bed of each sintering machine 30 by controlling the compounding material storage hopper 10 on the basis of the post-deposition of the predicted operation values have.
  • the sintering operation control apparatus 100 may also control the charging density of the blending raw material for sintering by controlling a pressing member (not shown) located above the sintering machine 30 based on the charging density of the predicted operating values .
  • the sintering operation control device 100 may control the moving speed of the sintering machine 30 by controlling the conveyor 40 based on the moving speed of the predicted operating values.
  • the sintering operation control device 100 predicts the operation values corresponding to the current sintering operation state in real time using the neural network-based prediction model, and automatically controls the sintering facility based on the predicted operation values. Therefore, it is possible to control the sintering equipment in real time according to the current operating conditions, thereby improving the efficiency of the sintering operation and stably maintaining the quality of the sintered ores.
  • the sintering operation control method according to the embodiment of the present invention can be executed through software.
  • the constituent means of the present invention are code segments that perform the necessary tasks.
  • the program or code segments may be stored on a computer readable recording medium.
  • a computer-readable recording medium includes all kinds of recording apparatuses in which data that can be read by a computer system is stored.
  • Examples of the computer-readable recording device include ROM, RAM, CD-ROM, DVD-ROM, DVD-RAM, magnetic tape, floppy disk, hard disk and optical data storage device.
  • the computer-readable recording medium may be distributed over a network-connected computer device so that computer-readable code can be stored and executed in a distributed manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A sintering operation control apparatus may comprise: a database for storing a prediction model for predicting at least one manipulated value related to a sintering operation through a neural network algorithm; an operation data collection unit for acquiring a particle size distribution of sintered ore, discharged from a sintering machine, from an image obtained by capturing the sintered ore by using at least one camera, and collecting operation data including the particle size distribution in relation to an operation state of the sintering operation; a prediction unit for acquiring the at least one manipulated value by using the operation data as input data of the prediction model; and a control unit for automatically controlling sintering equipment according to the at least one manipulated value.

Description

소결 조업 제어 장치 및 그 방법Sintering operation control device and method thereof
실시 예는 소결 조업 제어 장치 및 그 방법에 관한 것이다. An embodiment relates to a sintering operation control device and a method thereof.
소결 공정은, 여러 종류의 철광석과, 석회석 등의 부원료, 그리고 석탄 등의 결합재가 혼합된 배합원료를 이동식 대차형의 소결기로 장입시킨 뒤, 결합재의 연소열에 의해 철광석을 부분 용융시켜 괴성화하는 공정이다. 소결 공정을 통해 괴성화된 소결광은 고로(blast furnace)의 장입 원료로 사용된다. The sintering process is a process in which a mixed raw material in which various kinds of iron ores, subsidiary raw materials such as limestone, and a binder such as coal are mixed is charged into a movable type sintering machine and then the partial melting of the iron ore is performed by the heat of combustion of the binder to be. The compacted sintered ores through the sintering process are used as raw materials for the blast furnace.
소결 공정에서 배합원료에 포함되는 결합재 비율, 소결기 베드 상의 배합원료의 높이, 배합원료의 장입 밀도, 소결기의 대차 이동 속도 등은 소결 조업의 생산성 및 소결광의 품질을 결정하는 매우 중요한 요소이다. 따라서, 소결 공정에서는 배합원료에 포함되는 결합재의 량, 배합원료를 소결기 내로 장입 시의 배합원료의 베드층 높이 및 장입 밀도, 그리고 소결기(이동 대차)의 이동 속도가, 소결 생산성 및 소결광의 품질 상황에 따라서 적절히 조절될 필요가 있다.The ratio of the binder contained in the blending raw material, the height of the blending raw material on the sintering machine bed, the charging density of the blending raw material, and the moving speed of the sintering machine are very important factors for determining the productivity of the sintering operation and the quality of the sintered ores. Therefore, in the sintering step, the amount of the binder contained in the blending raw material, the height of the bed layer and the charging density of the blending raw material when the blending raw material is charged into the sintering machine, and the moving speed of the sintering machine It needs to be adjusted appropriately according to quality conditions.
한편, 소결 조업 중 현재 생산되는 소결광의 품질 및 소결 조업의 생산성은, 여러 장애 요소로 인해 하루 대략 1회에서 3회 정도 측정이 가능하다. 이와 같이 간헐적으로 측정되는 소결광의 품질 상태나 소결 조업의 생산성에 따라서 소결 조업의 조업 인자들을 제어할 경우, 데이터의 대표성 한계로 인해 소결 조업을 효율적으로 관리하기 어려운 문제가 있다. On the other hand, the quality of the sinter ore produced during the sintering operation and the productivity of the sintering operation can be measured about once to three times per day due to various obstacles. When the operating factors of the sintering operation are controlled according to the quality of the sintered ore and the productivity of the sintering operation intermittently measured, there is a problem that it is difficult to efficiently manage the sintering operation due to the representative limit of the data.
실시 예를 통해 해결하려는 과제는 현재의 소결 조업 상태를 실시간으로 판단하여 소결 조업을 자동으로 제어할 수 있는 소결 조업 제어 장치 및 그 방법을 제공하는 것이다. An object of the present invention is to provide a sintering operation control apparatus and method capable of automatically controlling a sintering operation by judging a current sintering operation state in real time.
상기 과제를 해결하기 위한 본 발명의 실시 예에 따른 소결 조업 제어 장치는, 신경회로망 알고리즘을 통해 소결 조업과 관련된 적어도 하나의 조작 값을 예측하는 예측 모델을 저장하는 데이터베이스, 적어도 하나의 카메라를 이용하여 소결기로부터 배출된 소결광을 촬영한 영상으로부터 상기 소결광의 입도 분포를 획득하고, 상기 소결 조업의 조업 상태와 관련하여 상기 입도 분포를 포함하는 조업 데이터들을 수집하는 조업 데이터 수집부, 상기 조업 데이터를 상기 예측 모델의 입력 데이터로 사용하여, 상기 적어도 하나의 조작 값을 획득하는 예측부, 및 상기 적어도 하나의 조작 값에 따라서, 소결 설비를 자동으로 제어하는 제어부를 포함할 수 있다. According to an aspect of the present invention, there is provided a sintering operation control apparatus including a database for storing a prediction model for predicting at least one operation value associated with sintering operation through a neural network algorithm, An operation data collecting unit for acquiring a particle size distribution of the sintered ores from the image of the sintered ores emitted from the sintering unit and collecting the operation data including the particle size distribution in relation to the operation state of the sintering operation, And a control unit for automatically controlling the sintering equipment in accordance with the at least one operation value.
상기 적어도 하나의 조작 값은, 소결기로 장입되는 배합원료 내 결합재비, 상기 소결기의 베드 상의 배합원료 높이, 상기 소결기의 배합원료 장입 밀도, 및 상기 소결기의 대차 이동 속도를 포함 할 수 있다.The at least one operating value may include a binding material ratio in the blending raw material charged into the sintering machine, a blending raw material height on the bed of the sintering machine, a blending raw material loading density of the sintering machine, and a moving speed of the sintering machine .
상기 제어부는, 상기 적어도 하나의 조작 값 중 상기 배합원료 내 결합재비를 토대로, 저장 빈으로부터 원료 배합용 혼합기로 공급되는 결합재 량을 제어할 수 있다. The control unit may control an amount of the binder to be supplied from the storage bin to the mixer for raw material mixture, based on the combination ratio in the blended material among the at least one operation value.
상기 제어부는, 상기 적어도 하나의 조작 값 중 상기 소결기의 베드 상의 배합원료 높이를 토대로, 배합원료 저장호퍼의 배합원료 공급량을 제어할 수 있다. The control unit may control the mixing material feed amount of the mixing material storage hopper based on the mixing material height on the bed of the sintering machine among the at least one operating value.
상기 제어부는, 상기 적어도 하나의 조작 값 중 상기 소결기의 배합원료 장입 밀도를 토대로, 상기 소결기 상부의 가압 부재를 제어할 수 있다. 상기 제어부는, 상기 적어도 하나의 조작 값 중 상기 소결기의 대차 이동 속도를 토대로, 상기 소결기를 이동시키는 컨베이어를 제어할 수 있다. The control unit may control the pressing member on the sintering unit based on the mixing material loading density of the sintering unit among the at least one operating value. The control unit may control the conveyor that moves the sintering machine based on the moving speed of the sintering machine among the at least one operation value.
상기 신경회로망 알고리즘은, 컨벌루션 신경망(Convolutional neural network)으로 구성될 수 있다. The neural network algorithm may be composed of a convolutional neural network.
상기 소결 조업 제어 장치는, 상기 조업 데이터 수집부를 통해 수집되는 상기 조업 데이터들을 소정 기간 학습용 데이터로 학습하여 상기 예측 모델을 구성하는 학습부를 더 포함할 수 있다. The sintering operation control apparatus may further include a learning unit configured to learn the operation data collected through the operation data collecting unit with learning data for a predetermined period of time to construct the prediction model.
상기 조업 데이터는, 원료 배합비, 배합원료 성분, 배합원료 내 결합재비, 결합재 입도, 점화로의 점화 온도 및 가스 압력, 배합원료의 수분 함량, 더스트 발생량, 소결기의 원료 장입 속도 및 장입비, 상기 소결기의 베드 상의 배합원료 높이, 상기 소결기의 대차 이동 속도, 장입 밀도, 통기성, 배가스 온도, 산소 농도, 후드의 부압 및 유량, 소결광 성분, 소결광 입도, 소결광 강도, 소결광의 환원성 및 환원분화 중 적어도 하나를 포함할 수 있다.The operating data includes at least one of a raw material mixture ratio, a blending raw material component, a coupling ratio in a blending raw material, a binder particle size, an ignition temperature and a gas pressure in an ignition, a moisture content of the blending raw material, a dust generating amount, The flow rate of the sintering machine, the flow speed of the sintering machine, the charging density, the air permeability, the exhaust gas temperature, the oxygen concentration, the negative pressure and flow rate of the hood, the sintered light component, the sintered light particle size, the sintered light intensity, And may include at least one.
또한, 본 발명의 실시 예에 따른 소결 조업 제어 방법은, 적어도 하나의 카메라를 이용하여 소결기로부터 배출된 소결광을 촬영한 영상으로부터 상기 소결광의 입도 분포를 획득하는 단계, 상기 소결 조업의 조업 상태와 관련하여 상기 입도 분포를 포함하는 조업 데이터들을 수집하는 단계, 상기 조업 데이터를, 신경회로망 알고리즘을 통해 소결 조업과 관련된 적어도 하나의 조작 값을 예측하는 예측 모델의 입력 데이터로 사용하여, 상기 적어도 하나의 조작 값을 획득하는 단계, 및 상기 적어도 하나의 조작 값에 따라서, 소결 설비를 자동으로 제어하는 단계를 포함할 수 있다. The sintering operation control method according to an embodiment of the present invention includes the steps of obtaining a particle size distribution of the sintered ores from an image of the sintered ores discharged from a sintering machine using at least one camera, Collecting operational data including the particle size distribution, using the operational data as input data of a prediction model predicting at least one operational value associated with the sintering operation through a neural network algorithm, Obtaining an operating value, and automatically controlling the sintering facility in accordance with the at least one operating value.
상기 적어도 하나의 조작 값은, 소결기로 장입되는 배합원료 내 결합재비, 상기 소결기의 베드 상의 배합원료 높이, 상기 소결기의 배합원료 장입 밀도, 및 상기 소결기의 대차 이동 속도 중 적어도 하나를 포함할 수 있다. Wherein the at least one operating value includes at least one of a binding material ratio in the blended material charged into the sintering machine, a blending material height on the bed of the sintering machine, a mixing material loading density of the sintering machine, and a balancing speed of the sintering machine can do.
상기 제어하는 단계는, 상기 적어도 하나의 조작 값 중 상기 배합원료 내 결합재비를 토대로, 저장 빈으로부터 원료 배합용 혼합기로 공급되는 결합재 량을 제어하는 단계를 포함할 수 있다. The controlling may include controlling an amount of the binder to be supplied from the storage bin to the mixer for raw material, based on the binder ratio in the blend material among the at least one operation value.
상기 제어하는 단계는, 상기 적어도 하나의 조작 값 중 상기 소결기의 베드 상의 배합원료 높이를 토대로, 배합원료 저장호퍼의 배합원료 공급량을 제어하는 단계를 포함할 수 있다.The controlling step may include controlling the feed amount of the compounding raw material storage hopper based on the height of the compounding raw material on the bed of the sintering machine among the at least one operation value.
상기 제어하는 단계는, 상기 적어도 하나의 조작 값 중 상기 소결기의 배합원료 장입 밀도를 토대로, 상기 소결기 상부의 가압 부재를 제어하는 단계를 포함할 수 있다.The controlling may include controlling the pressing member on the sintering machine based on the mixing material loading density of the sintering machine among the at least one operating value.
상기 제어하는 단계는, 상기 적어도 하나의 조작 값 중 상기 소결기의 대차 이동 속도를 토대로, 상기 소결기를 이동시키는 컨베이어를 제어하는 단계를 포함할 수 있다.The controlling may include controlling a conveyor that moves the sintering machine, based on the moving speed of the sintering machine among the at least one manipulated value.
상기 소결 조업 제어 방법에서, 상기 신경회로망 알고리즘은, 컨벌루션 신경망(Convolutional neural network)으로 구성될 수 있다. In the sintering operation control method, the neural network algorithm may be composed of a convolution neural network.
상기 소결 조업 제어 방법은, 상기 조업 데이터들을 소정 기간 학습용 데이터로 학습하여 상기 예측 모델을 구성하는 단계를 더 포함할 수 있다.The sintering operation control method may further include a step of constructing the prediction model by learning the operation data with training data for a predetermined period.
실시 예에 따르면, 현재 조업 상황에 맞게 소결 설비를 실시간 제어할 수 있어, 소결 조업의 효율을 향상시키고 소결광의 품질을 안정적으로 유지시킬 수 있다. According to the embodiment, the sintering equipment can be controlled in real time in accordance with the current operating conditions, and the efficiency of the sintering operation can be improved and the quality of the sintered ores can be stably maintained.
도 1은 소결 설비의 일 예를 도시한 것이다. Fig. 1 shows an example of a sintering facility.
도 2는 본 발명의 실시 예에 따른 소결 조업 제어 장치를 개략적으로 도시한 것이다. 2 is a schematic view of a sintering operation control apparatus according to an embodiment of the present invention.
도 3은 본 발명의 실시 예에 따른 예측 모델의 검증 방법을 설명하기 위한 도면이다. 3 is a diagram for explaining a method of verifying a prediction model according to an embodiment of the present invention.
도 4는 본 발명의 실시 예에 따른 소결 조업 제어 방법을 개략적으로 도시한 것이다. 4 is a schematic view illustrating a sintering operation control method according to an embodiment of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시 예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예들에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, which will be readily apparent to those skilled in the art to which the present invention pertains. The present invention may be embodied in many different forms and is not limited to the embodiments described herein.
본 발명의 실시 예를 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.In order to clearly illustrate the embodiments of the present invention, portions that are not related to the description are omitted, and the same or similar components are denoted by the same reference numerals throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.Throughout the specification, when a part is referred to as being "connected" to another part, it includes not only "directly connected" but also "electrically connected" with another part in between .
이하, 필요한 도면들을 참조하여 소결 조업 제어 장치 및 그 방법에 대해 상세히 설명하기로 한다. Hereinafter, the sintering operation control device and the method thereof will be described in detail with reference to necessary drawings.
도 1은 소결 설비를 개략적으로 도시한 것이다. Figure 1 schematically shows a sintering facility.
도 1을 참조하면, 소결 설비는 배합원료 저장호퍼(10), 점화로(20), 복수의 소결기(30), 컨베이어(40), 윈드 박스(50), 덕트(61), 집진기(62), 덕트 블로워(63), 후드(70) 및 열원 저장부(80)를 포함한다.1, the sintering equipment includes a mixing material storage hopper 10, an ignition furnace 20, a plurality of sintering machines 30, a conveyor 40, a windbox 50, a duct 61, a dust collector 62 A duct blower 63, a hood 70, and a heat source storage unit 80.
소결광의 주원료인 각종 철광석과, 규석, 사문암, 석회석 등의 부원료, 그리고 무연탄, 코크스 등의 결합재는 저장 빈(미도시)으로부터 혼합기(미도시)로 이송되어 혼합된 뒤, 수분이 첨가되어 조립(granulation)된 상태로 배합원료 저장호퍼(10)로 장입된다. 배합원료 저장호퍼(10)에 저장된 소결용 배합원료는, 소결 조업을 위해 일정량의 비율로 소결기(30)로 공급된다. The raw materials such as iron ores, quartz, serpentine, and limestone as well as binders such as anthracite coal and coke are transported from a storage bin (not shown) to a mixer (not shown), mixed with water, granulation, and is charged into the compounding material storage hopper 10. The blending raw materials for sintering stored in the blending raw material storage hopper 10 are supplied to the sintering machine 30 at a predetermined ratio for sintering operation.
각 소결기(30)는 이동식 대차 형으로, 배합원료 저장호퍼(10)로부터 배합원료를 공급 받아 소결 공정 진행 방향으로 순차적으로 수평 이동한다. 각 소결기(30)는 수평 이동을 통해 배광부로 이동하여, 소결이 완료된 소결광을 배광부로 배출한다. Each of the sintering machines 30 is of a moving type and receives the raw material mixture from the mixing raw material storage hopper 10 and sequentially moves horizontally in the sintering process progressing direction. Each sintering machine 30 moves to the light distribution section through horizontal movement, and discharges the sintered light that has been sintered to the light distribution section.
점화로(20)는 소결기(30)의 베드 상의 배합원료(이하, '원료층'이라 명명하여 사용함)로 화염을 분사함으로써, 원료층에 포함된 결합재를 연소시키는 기능을 수행한다. 이를 위해, 점화로(20)는 배합원료 저장호퍼(10)의 일측에 위치하며, 배합원료 저장호퍼(10)에 의해 소결용 배합원료를 공급 받은 소결기(30)가 점화로(20)의 하측으로 이동되면, 해당 소결기(30)의 원료층으로 화염을 분사한다. 점화로(20)는 가스 버너 등 원료층으로 화염을 분사할 수 있는 다양한 수단이 사용될 수 있다.The ignition furnace 20 performs a function of burning the binder contained in the raw material layer by spraying a flame with a blending raw material on the bed of the sintering machine 30 (hereinafter referred to as a raw material layer). The sintering furnace 20 is located at one side of the mixing material storage hopper 10 and the sintering machine 30 supplied with the mixing material for sintering by the mixing material storage hopper 10 The flame is injected into the raw material layer of the sintering machine 30. The ignition furnace 20 may use various means capable of injecting a flame into a raw material layer such as a gas burner.
점화로(20)의 일측에는 열원 공급용 가스를 소결기(30)로 공급하는 후드(70)가 위치하며, 후드(70)는 열원 공급용 가스가 저장되는 열원 저장부(80)와 연결된다.A hood 70 for supplying a gas for supplying a heat source to the sintering machine 30 is disposed at one side of the ignition furnace 20 and the hood 70 is connected to a heat source storage part 80 for storing a gas for supplying a heat source .
컨베이어(40)는 소결 공정 진행 방향으로 연장 형성되어, 소결 공정 진행 방향으로 순차적으로 배치된 복수의 소결기(30)를 소결 공정 진행 방향으로 이동시킨다.The conveyor 40 is extended in the sintering process progressing direction, and moves a plurality of sintering machines 30 sequentially disposed in the sintering process progressing direction in the sintering process progressing direction.
윈드 박스(50)는 소결기(30)의 이동 경로 상에 복수 개가 배치되어, 각 소결기(30)에 대해 흡인력을 제공하여, 소결기(30)로 흡인된 외기, 소결기(30) 내의 가스, 점화로(20)에 의해 착화된 화염 등이 소결기(30) 하측을 향해 이동하도록 한다.A plurality of windboxes 50 are disposed on the movement path of the sintering machine 30 to provide a suction force to each of the sintering machines 30 so that the outside air sucked by the sintering machine 30, Gas, and flame ignited by the ignition furnace 20 to move toward the lower side of the sintering machine 30.
복수의 윈드 박스(50)에 의해 흡입된 가스는, 덕트(61), 집진기(62) 및 덕트 블로워(63)에 의해 분진이 제거된다.The dust sucked by the plurality of wind boxes 50 is removed by the duct 61, the dust collector 62, and the duct blower 63.
전술한 구조의 소결 설비에서, 점화로(20)가 소결기(30)에 장입된 원료층의 상부에 화염을 분사하면, 화염에 의한 열, 소결기(30)로 흡입된 외기, 코크스가 만나 원료층의 상부층 즉, 표층이 착화된다. 이에 따라, 화염 주의의 온도가 1300℃ 내지 1400℃로 승온 되고, 이로 인해 부원료인 석회석과 철광석이 저융점 화합물을 형성하며 부분 용융되어 철광석의 소결 반응이 진행된다. In the sintering plant having the above-described structure, when the flame is sprayed on the upper part of the raw material layer charged in the sintering machine 30 by the ignition furnace 30, the heat due to the flame, the outside air sucked into the sintering machine 30, The upper layer, that is, the surface layer of the raw material layer is ignited. As a result, the flame temperature is raised to 1300 ° C. to 1400 ° C., whereby the subsidiary raw materials such as limestone and iron ores form a low melting point compound and are partially melted to proceed the sintering reaction of iron ores.
점화로(20)에 의해 원료층의 표층이 착화된 소결기(30)는 컨베이어(40)에 의해 일 방향으로 이송되고, 착화된 원료층은 소결기(30)의 이동으로 찬공기와 접속되어 냉각된다. 소결기(30)의 하부에는 윈드박스(50)가 설치되고 이 윈드박스(50)는 착화된 원료층의 열기를 하부로 흡입한다. 이 때, 윈드박스(50)의 흡입력에 의해 원료층의 열기가 원료층의 상층부에서 하층부로 점차 내려오고 이로 인해 원료층 전체가 소성되고, 소성된 원료층은 소결기(30)를 따라 이동하면서 냉각되어 최종적으로 소결광으로 만들어진다.The sintering machine 30 in which the surface layer of the raw material layer is ignited by the ignition furnace 20 is conveyed in one direction by the conveyor 40 and the ignited raw material layer is connected to the cold air by the movement of the sintering machine 30 And cooled. A wind box 50 is provided below the sintering machine 30, and the wind box 50 sucks the heat of the ignited raw material layer downward. At this time, the heat of the raw material layer gradually descends from the upper layer portion to the lower layer portion due to the suction force of the wind box 50, whereby the entire raw material layer is fired, and the fired raw material layer moves along the sintering machine 30 Cooled and finally made into sintered ores.
이러한 소결 공정에서 배합원료에 포함되는 결합재비, 소결기(30) 베드 상의 원료층의 높이, 원료층의 장입 밀도, 소결기(30)의 대차 이동 속도 등은 소결 조업의 생산성 및 소결광의 품질을 결정하는 매우 중요한 요소이다. In this sintering process, the bonding material ratio included in the blending raw material, the height of the raw material layer on the sintering machine 30 bed, the loading density of the raw material layer, and the moving speed of the sintering machine 30, It is a very important factor to decide.
따라서, 본 발명의 실시 예에서는, 소결 조업 상태와 관련된 조업 데이터들로부터 결합재비, 소결기(30)의 베드 상의 원료층의 높이, 원료층의 장입 밀도, 그리고 소결기(30)의 대차 이동 속도를 예측하고, 이를 토대로 소결 설비를 제어한다. Therefore, in the embodiment of the present invention, the combination ratio, the height of the raw material layer on the bed of the sintering machine 30, the loading density of the raw material layer, and the conveyance speed of the sintering machine 30 And controls the sintering equipment on the basis thereof.
도 2는 본 발명의 실시 예에 따른 고로의 소결 조업 제어 장치를 개략적으로 도시한 것이다. 또한, 도 3은 본 발명의 실시 예에 따른 예측 모델의 검증 방법을 설명하기 위한 도면이다. 2 is a schematic view of a blast furnace operation control apparatus according to an embodiment of the present invention. 3 is a diagram for explaining a method of verifying a prediction model according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 실시 예에 따른 소결 조업 제어 장치(100)는 조업 데이터 수집부(110), 사용자 입력부(120), 조업 데이터 데이터베이스(130), 학습부(140), 예측 모델 데이터베이스(150), 예측부(160), 및 소결 조업 제어부(170)를 포함할 수 있다.2, a sintering operation control apparatus 100 according to an embodiment of the present invention includes a operation data collecting unit 110, a user input unit 120, a operation data database 130, a learning unit 140, A database 150, a predicting unit 160, and a sintering operation control unit 170.
조업 데이터 수집부(110)는 소결 조업의 조업 상태와 관련된 복수의 조업 데이터를 실시간으로 수집할 수 있다.The operation data collecting unit 110 can collect a plurality of operation data related to the operating state of the sintering operation in real time.
아래 표 1은 조업 데이터 수집부(110)에서 수집되는 조업 데이터의 예들을 도시한 것이다. Table 1 below shows examples of the operation data collected by the operation data collecting unit 110.
표 1. 조업 데이터 예Table 1. Examples of operating data
Figure PCTKR2018014286-appb-I000001
Figure PCTKR2018014286-appb-I000001
위 표 1을 참조하면, 조업 데이터는, 원료 배합 데이터, 원료 혼합 데이터, 점화로(20)의 동작 데이터, 소결기(30)의 동작 데이터, 소결광 데이터, 더스트 발생량 등을 포함할 수 있다. 원료 배합 데이터는, 원료 배합비(광석 종류, 부원료 종류, 입도), 배합원료 성분, 배합원료 내 결합재비, 결합재 입도 등의 원료 배합과 관련된 정보를 포함할 수 있다. 또한, 원료 혼합 데이터는, 배합원료의 1차 및 2차 수분 함량 등 원료 혼합과 관련된 정보를 포함할 수 있다. 또한, 점화로(20)의 동작 데이터는, 점화로(20)의 점화 온도, 점화로(20)의 가스 압력 등 점화로(20)의 동작과 관련된 정보를 포함할 수 있다. 또한, 소결기(30)의 동작 데이터는 소결기(30)로의 원료 장입 속도 및 장입 비, 층후(소결기(30)의 베드 상의 배합원료 높이), 소결 진행 속도(대차 이동 속도), 장입 밀도, 통기성, 배가스 온도, 후드(70)의 부압 및 유량(또는 풍량), 산소 농도 등 소결기(30)의 동작과 관련된 정보를 포함할 수 있다. 또한, 소결광 데이터는, 소결광의 성분(소결광내 FeO 함량, 염기도 등), 입도(또는 입도 분포), 및 강도(상온 강도), 소결광의 환원성 및 환원분화 등 소결 작업으로 제조된 소결광과 관련된 정보를 포함할 수 있다.Referring to Table 1, the operation data may include raw material mixture data, raw material mixture data, operation data of the ignition system 20, operation data of the sintering machine 30, sintering light data, amount of dust generated, and the like. The raw material blend data may include information related to blending raw materials such as raw material blending ratio (ore kind, sub-raw material type, particle size), blended raw material ingredient, binding raw material ratio in blended raw material, binder particle size and the like. In addition, the raw material mixture data may include information related to the raw material mixture such as the primary and secondary moisture contents of the raw material mixture. The operation data of the ignition circuit 20 may also include information related to the operation of the ignition circuit 20, such as the ignition temperature of the ignition circuit 20, the gas pressure of the ignition circuit 20, and the like. The operating data of the sintering machine 30 is used to calculate the feed rate and loading ratio of the raw material to the sintering machine 30, the post-layering (the height of the compounding material on the bed of the sintering machine 30), the sintering advancing speed , Air permeability, exhaust gas temperature, negative pressure and flow rate (or air volume) of hood 70, oxygen concentration, and the like. The sintered-orbital data also includes information related to the sintered ores produced by the sintering operation such as the components (sintered ores) of the sintered ores (FeO content, basicity etc.), particle size (or particle size distribution) and strength .
조업 데이터 수집부(110)는 적어도 하나의 센서(미도시)를 포함하며, 이를 이용하여 조업 데이터를 자동으로 획득할 수 있다. 예를 들어, 조업 데이터 수집부(110)는 온도 센서, 압력 센서, 가스 센서 등을 이용하여 각종 센싱값을 획득하고, 이로부터 소결 조업과 관련된 조업 데이터를 획득할 수 있다. The operation data collecting unit 110 includes at least one sensor (not shown), and can automatically acquire operation data using the at least one sensor. For example, the operation data collecting unit 110 may acquire various sensed values by using a temperature sensor, a pressure sensor, a gas sensor, and the like, and obtain operation data related to the sintering operation therefrom.
조업 데이터 수집부(110)는 적어도 하나의 카메라(미도시)를 포함하며, 이를 이용하여 조업 데이터를 자동으로 획득할 수도 있다. 예를 들어, 조업 데이터 수집부(110)는 카메라를 이용하여 소결기(30)의 베드 상에 누적된 배합원료를 실시간으로 촬영하고, 해당 영상에 대한 영상 분석을 통해 층후 정보를 자동으로 획득할 수도 있다. 또한, 예를 들어, 조업 데이터 수집부(110)는 적어도 하나의 카메라를 통해 소결기(30)로 장입되는 배합원료를 실시간으로 촬영하고, 해당 영상에 대한 영상 분석을 통해 배합원료의 장입 밀도를 자동으로 획득할 수도 있다. 또한, 예를 들어, 조업 데이터 수집부(110)는 적어도 하나의 카메라를 통해 소결기(30)에서 배광부로 배출된 소결광을 실시간으로 촬영하고, 해당 영상에 대한 영상 분석을 통해 소결광의 입도 분포 데이터를 자동으로 획득할 수도 있다. 이 경우, 소결광을 촬영하기 위한 카메라는, 소결기(30)에서 배출된 소결광을 고로로 운반하는 배광부를 촬영하도록 배치될 수 있다. The operation data collecting unit 110 includes at least one camera (not shown), and can automatically acquire operation data using the at least one camera (not shown). For example, the operation data collecting unit 110 photographs the compounding materials accumulated on the bed of the sintering machine 30 in real time using a camera, and automatically acquires the layering information through image analysis of the image It is possible. In addition, for example, the operation data collecting unit 110 photographs the mixed raw materials charged into the sintering machine 30 in real time through at least one camera, and implements the filling density of the mixed raw materials through the image analysis on the corresponding images It can also be acquired automatically. In addition, for example, the operation data collecting unit 110 photographs the sintered ores emitted from the sintering machine 30 to the light distribution unit through at least one camera in real time, analyzes the image data, May be automatically obtained. In this case, the camera for photographing the sintered ores can be arranged to photograph the light distribution portion for conveying the sintered ores discharged from the sintering machine 30 to the blast furnace.
조업 데이터 수집부(110)는 사용자 입력부(120)를 통해 조업자로부터 조업 데이터를 입력 받을 수도 있다. The operation data collecting unit 110 may receive the operation data from the operator through the user input unit 120.
또한, 조업 데이터 수집부(110)는 외부 설비로부터 조업 데이터를 수신할 수도 있다. In addition, the operation data collecting unit 110 may receive operation data from an external facility.
조업 데이터 수집부(110)는 수집되는 조업 데이터들을 시계열로 조업 데이터 데이터베이스(130)에 저장할 수 있다. The operation data collecting unit 110 may store the operation data collected in the operation data database 130 in a time series.
학습부(140)는 소정 기간 동안 조업 데이터 수집부(110)를 통해 수집된 조업 데이터들을 학습용 데이터로 학습하여, 소결 조업과 관련된 조작 값(Action guidance)을 예측하기 위한 신경회로망 알고리즘 기반의 예측 모델을 생성할 수 있다. The learning unit 140 includes a neural network algorithm based prediction model for learning operational data collected through the operation data collecting unit 110 for training data for learning and for predicting operation guidance related to the sintering operation, Can be generated.
학습부(140)에서 예측 모델 생성에 사용된 신경회로망 알고리즘은, 컨벌루션 신경망(Convolutional neural network, CNN)으로 구성된다. CNN은 하나 또는 여러 개의 콘볼루션 계층(convolutional layer)과 통합 계층(pooling layer), 완전하게 연결된 계층(fully connected layer)들로 구성되는 신경망이다. CNN에서는 콘볼루션 계층(convolutional layer)과 통합 계층(pooling layer)을 통해 시계열의 조업 데이터들로부터 특징들을 추출하고, 완전하게 연결된 계층(fully connected layer)에서의 분류를 통해 예측을 진행한다.The neural network algorithm used for generating the predictive model in the learning unit 140 is composed of a convolutional neural network (CNN). CNN is a neural network consisting of one or several convolutional layers, a pooling layer, and fully connected layers. In CNN, features are extracted from time series data through a convolutional layer and a pooling layer, and prediction is performed through classification in a fully connected layer.
본 발명의 실시 예에서, 학습부(140)는 예측 모델 생성을 위해 변수 당 특징의 개수를 4개로 설정하고, 시계열 데이터의 개수를 8개(8 일치)로 설정할 수 있다. 또한, 완전하게 연결된 계층(fully connected layer)을 2개층으로 구성하고, 각 층에서의 뉴런(Neuron)의 개수는 100개와 50개로 설정하여 학습을 진행할 수 있다. 이렇게 생성된 예측 모델은, 입력되는 시계열의 조업 데이터로부터, 배합원료 내 결합재비, 층후, 배합원료의 장입 밀도, 및 소결기(30)의 대차 이동 속도 중 적어도 하나를 포함하는 조작 값을 예측할 수 있다. In the embodiment of the present invention, the learning unit 140 may set the number of features per variable to four and the number of time series data to eight (8 equal) in order to generate a predictive model. In addition, the fully connected layer is composed of two layers, and the number of neurons in each layer is set to 100 and 50, so that learning can be performed. The predictive model thus generated can predict an operation value including at least one of the combination ratio in the blended raw material, the post-finishing ratio, the charging density of the blended raw material, and the moving speed of the sintering machine 30 from the inputted time series operational data have.
학습부(140)는 예측 모델이 생성되면, 예측 모델에 의해 제공되는 조작 값의 타당성을 검증하기 위해 예측 모델에 대한 정합성 및 신뢰성 검증 과정을 수행할 수 있다. When the prediction model is generated, the learning unit 140 may perform the consistency and reliability verification process for the prediction model to verify the validity of the operation value provided by the prediction model.
학습부(140)는 실제 소결 조업에서의 조작 값들과, 예측 모델을 이용하여 획득되는 조작 값들의 비교를 통해 예츨 모델에 대한 정합성 및 신뢰성 검증을 수행할 수 있다. The learning unit 140 can perform consistency and reliability verification for the model to be checked by comparing the manipulated values in the actual sintering operation with the manipulated values obtained using the predictive model.
예를 들어, 도 3에 도시된 바와 같이, 예측 모델의 목표값을 소결광 상온 강도로 설정하고, 실제 소결 조업에서의 소결광 상온 강도와, 예측 모델에 의해 예측된 소결광 상온 강도를 비교하여 예츨 모델에 대한 정합성 및 신뢰성 검증을 수행할 수 있다. 일 예로, 학습부(140)는 실제 소결광의 상온 강도가 조업 기준치 대비 높게 나타나 결합재비 또는 장입 밀도를 낮추어야 하는 상황에서, 예측 모델 또한 소결광의 상온 강도를 높게 예측하여 결합재비 및 장입 밀도를 낮추도록 예측 결과를 제시하는지를 확인하여 예측 모델의 정합성 및 신뢰성을 검증할 수 있다. For example, as shown in FIG. 3, the target value of the predictive model is set as the sintered normal-temperature intensity, and the intensity of the sintered normal-temperature strength in the actual sintering operation is compared with the intensity of the sintered ordinary- It is possible to perform verification of consistency and reliability. For example, in the case where the room temperature strength of the actual sintering light is higher than the operating standard value and the coupling ratio or the charging density should be lowered, the learning unit 140 also predicts the room temperature strength of the sintered ores at a high level to lower the bonding cost and the charging density It is possible to verify the consistency and reliability of the prediction model by confirming whether the prediction result is presented.
학습부(140)는 예측 모델을 이용하여 소결 조업을 자동 제어하고, 조업 효율(용선 출선량) 및 조업 안정화 상태(관리 지표의 편차)를 모니터링하여 예측 모델에 대한 정합성 및 신뢰성을 검증할 수도 있다. The learning unit 140 may automatically control the sintering operation using a prediction model and monitor the operation efficiency (chartering amount) and the operation stabilization state (deviation of the management indicator) to verify the consistency and reliability of the prediction model .
학습부(140)에 의해 생성된 예측 모델은 예측 모델 데이터베이스(150)에 저장되어 예측부(160)에서의 소결 조업과 관련된 조작 값 예측에 사용된다. The prediction model generated by the learning unit 140 is stored in the prediction model database 150 and used for predicting the operation value related to the sintering operation in the prediction unit 160. [
예측부(160)는 신경회로망 알고리즘 기반의 예측 모델을 이용하여 시계열 데이터인 조업 데이터들로부터 소결 조업과 관련된 조작 값들을 추정할 수 있다. 즉, 예측부(160)는 조업 데이터 수집부(110)를 통해 수집되는 조업 데이터들을, 신경회로망 알고리즘 기반의 예측 모델의 시계열 입력 데이터로 입력하고, 예측 모델의 출력 값을 소결 조업과 관련된 조작 값들로 획득할 수 있다. The predicting unit 160 can estimate operation values related to the sintering operation from the operation data, which are time series data, using a neural network algorithm based prediction model. That is, the predicting unit 160 inputs the operation data collected through the operation data collecting unit 110 as the time series input data of the prediction model based on the neural network algorithm, and outputs the output value of the prediction model to the operation values .
소결 조업 제어부(170)는 예측부(160)에 의해 출력되는 조작 값들을 토대로, 소결 설비를 자동으로 제어할 수 있다. 예를 들어, 소결 조업 제어부(170)는 예측된 조작 값들 중 배합원료 내 결합재비를 토대로, 저장 빈(미도시)으로부터 원료 배합용 혼합기(미도시)로 공급되는 결합재 량을 제어함으로써, 배합원료의 결합재비를 조절할 수 있다. 또한, 예를 들어, 소결 조업 제어부(170)는 예측된 조작 값들 중 층후를 토대로, 배합원료 저장호퍼(10)의 배합원료 공급량 제어함으로써 각 소결기(30)의 베드 상에 누적되는 배합원료의 량을 조절하도록 할 수 있다. 또한, 예를 들어, 소결 조업 제어부(170)는 예측된 조작 값들 중 장입 밀도를 토대로, 소결기(30) 상부에 위치하는 가압 부재(미도시) 등을 제어하여 소결용 배합원료의 장입 밀도를 조절할 수 있다. 또한, 예를 들어, 소결 조업 제어부(170)는 예측된 조작 값들 중 대차 이동 속도를 토대로, 컨베이어(40)를 제어함으로써 소결기(30)의 이동 속도를 조절할 수 있다. The sintering operation control unit 170 can automatically control the sintering facility based on the operation values output by the predicting unit 160. [ For example, the sintering operation control unit 170 controls the amount of the binder material supplied from the storage bin (not shown) to the mixer for raw material mixing (not shown) based on the combined raw material ratio in the mixing raw material among the predicted operation values, Can be controlled. Further, for example, the sintering operation control unit 170 controls the mixing material feed amount of the mixing material storage hopper 10 on the basis of the post-lamination operation of the predicted operating values, It is possible to adjust the amount. For example, the sintering operation control unit 170 controls the pressing member (not shown) located on the sintering machine 30 and the like to set the charging density of the sintering compounding raw material Can be adjusted. Further, for example, the sintering operation control unit 170 can control the moving speed of the sintering machine 30 by controlling the conveyor 40 on the basis of the moving speed of the predicted operating values.
전술한 구조의 소결 조업 제어 장치(100)에서, 조업 데이터 수집부(110), 학습부(140), 예측부(160) 및 소결 조업 제어부(170)의 기능들은 하나 이상의 중앙 처리 유닛(central processing unit, CPU)이나 기타 칩셋, 마이크로프로세서 등으로 구현되는 프로세서에 의해 수행될 수 있다.The functions of the operation data collecting unit 110, the learning unit 140, the predicting unit 160 and the sintering operation controlling unit 170 may be performed by one or more central processing units unit, CPU) or other chipset, microprocessor, or the like.
도 4는 본 발명의 실시 예에 따른 고로의 소결 조업 제어 방법을 개략적으로 도시한 것이다. 4 is a schematic view illustrating a sintering operation control method of a blast furnace according to an embodiment of the present invention.
도 4를 참조하면, 본 발명의 실시 예에 따른 소결 조업 제어 장치(100)는, 신경회로망 알고리즘 예를 들어, CNN 기반의 학습을 통해 예측 모델을 생성한다(S100). Referring to FIG. 4, a sintering operation control apparatus 100 according to an embodiment of the present invention generates a predictive model through neural network algorithm, for example, CNN-based learning (S100).
상기 S100 단계에서, 소결 조업 제어 장치(100)는 소정 기간 동안 소결 설비의 조업 데이터를 수집하여 누적하고, 누적된 시계열의 조업 데이터들을 신경회로망 알고리즘의 학습 데이터로 사용하여 예측 모델을 생성할 수 있다. In operation S100, the sintering operation control apparatus 100 may collect and accumulate operation data of the sintering facility for a predetermined period of time, and generate a prediction model by using accumulated operation data of the time series as learning data of the neural network algorithm .
예측 모델이 생성됨에 따라, 소결 조업 제어 장치(100)는 소결 조업과 관련된 조작 값들의 위해 소결 설비의 조업 상태와 관련된 복수의 조업 데이터를 지속적으로 수집한다(S110). 그리고, 지속적으로 수집되는 시계열의 조업 데이터들을 신경회로망 알고리즘 기반의 예측 모델의 시계열 입력 데이터로 사용하여 소결 조업과 관련된 조작 값을 획득한다(S120). As the prediction model is generated, the sintering operation control apparatus 100 continuously collects a plurality of operation data related to the operation state of the sintering facility for operation values related to the sinter operation (S110). Then, operation data related to the sintering operation is obtained (S120) by using the continuously collected operation data of the time series as the time series input data of the prediction model based on the neural network algorithm.
또한, 소결 조업 제어 장치(100)는, 소결 조업과 관련된 조작 값이 획득되면, 이에 기반하여 소결 설비를 자동으로 제어한다(S130).Further, when the operation value related to the sintering operation is obtained, the sintering operation control apparatus 100 automatically controls the sintering facility based on the operation value (S130).
상기 S130 단계에서, 소결 조업 제어 장치(100)는 예측된 조작 값들 중 배합원료 내 결합재비를 토대로, 저장 빈(미도시)으로부터 원료 배합용 혼합기(미도시)로 공급되는 결합재 량을 제어함으로써, 배합원료의 결합재비를 조절할 수 있다. 또한, 소결 조업 제어 장치(100)는 예측된 조작 값들 중 층후를 토대로, 배합원료 저장호퍼(10)를 제어함으로써 각 소결기(30)의 베드 상에 누적되는 배합원료의 량을 조절하도록 할 수도 있다. 또한, 소결 조업 제어 장치(100)는 예측된 조작 값들 중 장입 밀도를 토대로, 소결기(30) 상부에 위치하는 가압 부재(미도시) 등을 제어하여 소결용 배합원료의 장입 밀도를 조절할 수도 있다. 또한, 소결 조업 제어 장치(100)는 예측된 조작 값들 중 대차 이동 속도를 토대로 컨베이어(40)를 제어함으로써 소결기(30)의 이동 속도를 조절할 수도 있다.In step S130, the sintering operation control device 100 controls the amount of binder supplied from the storage bin (not shown) to the mixer for raw material mixing (not shown) based on the combined ratio of the raw materials in the mixing operation, It is possible to control the binding ratio of the raw material mixture. The sintering operation control apparatus 100 may also control the amount of the compounding material accumulated on the bed of each sintering machine 30 by controlling the compounding material storage hopper 10 on the basis of the post-deposition of the predicted operation values have. The sintering operation control apparatus 100 may also control the charging density of the blending raw material for sintering by controlling a pressing member (not shown) located above the sintering machine 30 based on the charging density of the predicted operating values . Also, the sintering operation control device 100 may control the moving speed of the sintering machine 30 by controlling the conveyor 40 based on the moving speed of the predicted operating values.
전술한 실시 예에 따르면, 소결 조업 제어 장치(100)는, 신경망 기반의 예측 모델을 사용하여 현재 소결 조업 상태에 대응하는 조작 값들을 실시간으로 예측하고, 이를 토대로 소결 설비를 자동으로 제어한다. 따라서, 현재 조업 상황에 맞게 소결 설비를 실시간 제어할 수 있어, 소결 조업의 효율을 향상시키고 소결광의 품질을 안정적으로 유지시킬 수 있다. According to the above-described embodiment, the sintering operation control device 100 predicts the operation values corresponding to the current sintering operation state in real time using the neural network-based prediction model, and automatically controls the sintering facility based on the predicted operation values. Therefore, it is possible to control the sintering equipment in real time according to the current operating conditions, thereby improving the efficiency of the sintering operation and stably maintaining the quality of the sintered ores.
본 발명의 실시 예에 의한 소결 조업 제어 방법은 소프트웨어를 통해 실행될 수 있다. 소프트웨어로 실행될 때, 본 발명의 구성 수단들은 필요한 작업을 실행하는 코드 세그먼트들이다. 프로그램 또는 코드 세그먼트들은 컴퓨터가 읽을 수 있는 기록매체에 저장될 수 있다. The sintering operation control method according to the embodiment of the present invention can be executed through software. When executed in software, the constituent means of the present invention are code segments that perform the necessary tasks. The program or code segments may be stored on a computer readable recording medium.
컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록 장치를 포함한다. 컴퓨터가 읽을 수 있는 기록 장치의 예로는, ROM, RAM, CD-ROM, DVD_ROM, DVD_RAM, 자기 테이프, 플로피 디스크, 하드 디스크, 광 데이터 저장장치 등이 있다. 또한, 컴퓨터로 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 장치에 분산되어 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. A computer-readable recording medium includes all kinds of recording apparatuses in which data that can be read by a computer system is stored. Examples of the computer-readable recording device include ROM, RAM, CD-ROM, DVD-ROM, DVD-RAM, magnetic tape, floppy disk, hard disk and optical data storage device. Also, the computer-readable recording medium may be distributed over a network-connected computer device so that computer-readable code can be stored and executed in a distributed manner.
지금까지 참조한 도면과 기재된 발명의 상세한 설명은 단지 본 발명의 예시적인 것으로서, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 용이하게 선택하여 대체할 수 있다. 또한 당업자는 본 명세서에서 설명된 구성요소 중 일부를 성능의 열화 없이 생략하거나 성능을 개선하기 위해 구성요소를 추가할 수 있다. 뿐만 아니라, 당업자는 공정 환경이나 장비에 따라 본 명세서에서 설명한 방법 단계의 순서를 변경할 수도 있다. 따라서 본 발명의 범위는 설명된 실시형태가 아니라 특허청구범위 및 그 균등물에 의해 결정되어야 한다.It is to be understood that both the foregoing general description and the following detailed description of the present invention are illustrative and explanatory only and are intended to be illustrative of the invention and are not to be construed as limiting the scope of the invention as defined by the appended claims. It is not. Therefore, those skilled in the art can readily select and substitute it. Those skilled in the art will also appreciate that some of the components described herein can be omitted without degrading performance or adding components to improve performance. In addition, those skilled in the art may change the order of the method steps described herein depending on the process environment or equipment. Therefore, the scope of the present invention should be determined by the appended claims and equivalents thereof, not by the embodiments described.
(부호의 설명)(Explanation of Symbols)
10: 배합원료 저장호퍼10: Mixing raw material storage hopper
20: 점화로20: By ignition
30: 소결기30: Sintering machine
40: 컨베이어40: Conveyor
50: 윈드 박스50: Wind Box
61: 덕트61: Duct
62: 집진기62: Dust collector
63: 덕트 블로워63: Duct blower
70: 후드70: Hood
80: 연료 저장부80: fuel storage portion
100: 소결 조업 제어 장치100: Sintering operation control device
110: 조업 데이터 수집부110: Operation data collecting unit
120: 사용자 입력부120: user input section
130: 조업 데이터 데이터베이스130: Operation data database
140: 학습부140:
150: 예측 모델 데이터베이스150: Predictive model database
160: 예측부160: prediction unit
170: 소결 조업 제어부170: Sintering operation control section

Claims (17)

  1. 소결 조업 제어 장치에 있어서, 1. A sintering operation control device comprising:
    신경회로망 알고리즘을 통해 소결 조업과 관련된 적어도 하나의 조작 값을 예측하는 예측 모델을 저장하는 데이터베이스,A database storing a prediction model for predicting at least one manipulation value associated with the sintering operation through a neural network algorithm,
    적어도 하나의 카메라를 이용하여 소결기로부터 배출된 소결광을 촬영한 영상으로부터 상기 소결광의 입도 분포를 획득하고, 상기 소결 조업의 조업 상태와 관련하여 상기 입도 분포를 포함하는 조업 데이터들을 수집하는 조업 데이터 수집부,Acquiring a particle size distribution of the sintered ores from an image of the sintered ores emitted from the sintering machine using at least one camera and collecting operational data including the particle size distribution in relation to the operating state of the sintering operation part,
    상기 조업 데이터를 상기 예측 모델의 입력 데이터로 사용하여, 상기 적어도 하나의 조작 값을 획득하는 예측부, 및A prediction unit that uses the operation data as input data of the prediction model to obtain the at least one operation value;
    상기 적어도 하나의 조작 값에 따라서, 소결 설비를 자동으로 제어하는 제어부를 포함하며, And a control unit for automatically controlling the sintering equipment in accordance with the at least one operation value,
    상기 조업 데이터는 소결광의 입도 분포 데이터를 포함하는 소결 조업 제어 장치. Wherein the operation data includes particle size distribution data of sintered ores.
  2. 제1항에 있어서,The method according to claim 1,
    상기 적어도 하나의 조작 값은, 소결기로 장입되는 배합원료 내 결합재비, 상기 소결기의 베드 상의 배합원료 높이, 상기 소결기의 배합원료 장입 밀도, 및 상기 소결기의 대차 이동 속도를 포함하는 소결 조업 제어 장치. Wherein the at least one operating value includes at least one of a sintering operation including a mixing ratio in a blending raw material charged into a sintering machine, a blending raw material height on a bed of the sintering machine, a blending raw material loading density of the sintering machine, controller.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 제어부는, 상기 적어도 하나의 조작 값 중 상기 배합원료 내 결합재비를 토대로, 저장 빈으로부터 원료 배합용 혼합기로 공급되는 결합재 량을 제어하는 소결 조업 제어 장치. Wherein the control unit controls the amount of the binder to be supplied from the storage bin to the mixer for raw material mixture based on the combination ratio in the blended material among the at least one operation value.
  4. 제2항에 있어서,3. The method of claim 2,
    상기 제어부는, 상기 적어도 하나의 조작 값 중 상기 소결기의 베드 상의 배합원료 높이를 토대로, 배합원료 저장호퍼의 배합원료 공급량을 제어하는 소결 조업 제어 장치. Wherein the control unit controls the mixing material feed amount of the mixing material storage hopper based on the mixing material height on the bed of the sintering machine among the at least one operation value.
  5. 제2항에 있어서,3. The method of claim 2,
    상기 제어부는, 상기 적어도 하나의 조작 값 중 상기 소결기의 배합원료 장입 밀도를 토대로, 상기 소결기 상부의 가압 부재를 제어하는 소결 조업 제어 장치. Wherein the control unit controls the pressing member on the sintering unit based on the mixing material loading density of the sintering machine among the at least one operating value.
  6. 제2항에 있어서,3. The method of claim 2,
    상기 제어부는, 상기 적어도 하나의 조작 값 중 상기 소결기의 대차 이동 속도를 토대로, 상기 소결기를 이동시키는 컨베이어를 제어하는 소결 조업 제어 장치. Wherein the control unit controls a conveyor that moves the sintering machine based on a moving speed of the sintering machine among the at least one manipulated value.
  7. 제1항에 있어서,The method according to claim 1,
    상기 신경회로망 알고리즘은, 컨벌루션 신경망(Convolutional neural network)으로 구성되는 소결 조업 제어 장치.Wherein the neural network algorithm comprises a convolution neural network.
  8. 제1항에 있어서,The method according to claim 1,
    상기 조업 데이터 수집부를 통해 수집되는 상기 조업 데이터들을 소정 기간 학습용 데이터로 학습하여 상기 예측 모델을 구성하는 학습부를 더 포함하는 소결 조업 제어 장치.Further comprising a learning unit configured to learn the operation data collected through the operation data collecting unit with data for training for a predetermined period to construct the prediction model.
  9. 제1항에 있어서,The method according to claim 1,
    상기 조업 데이터는, 원료 배합비, 배합원료 성분, 배합원료 내 결합재비, 결합재 입도, 점화로의 점화 온도 및 가스 압력, 배합원료의 수분 함량, 더스트 발생량, 소결기의 원료 장입 속도 및 장입비, 상기 소결기의 베드 상의 배합원료 높이, 상기 소결기의 대차 이동 속도, 장입 밀도, 통기성, 배가스 온도, 산소 농도, 후드의 부압 및 유량, 소결광 성분, 소결광 입도, 소결광 강도, 소결광의 환원성 및 환원분화 중 적어도 하나를 더 포함하는 소결 조업 제어 장치. The operating data includes at least one of a raw material mixture ratio, a blending raw material component, a coupling ratio in a blending raw material, a binder particle size, an ignition temperature and a gas pressure in an ignition, a moisture content of the blending raw material, a dust generating amount, The flow rate of the sintering machine, the flow speed of the sintering machine, the charging density, the air permeability, the exhaust gas temperature, the oxygen concentration, the negative pressure and flow rate of the hood, the sintered light component, the sintered light particle size, the sintered light intensity, Wherein the sintering operation control device further includes at least one sintering operation control device.
  10. 소결 조업 제어 방법에 있어서, In the sintering operation control method,
    적어도 하나의 카메라를 이용하여 소결기로부터 배출된 소결광을 촬영한 영상으로부터, 상기 소결광의 입도 분포를 획득하는 단계, Obtaining a particle size distribution of the sintered ores from an image of the sintered ores emitted from the sintering machine using at least one camera,
    상기 소결 조업의 조업 상태와 관련하여 상기 입도 분포를 포함하는 조업 데이터들을 수집하는 단계,Collecting operational data including the particle size distribution in relation to the operational state of the sintering operation,
    상기 조업 데이터를, 신경회로망 알고리즘을 통해 소결 조업과 관련된 적어도 하나의 조작 값을 예측하는 예측 모델의 입력 데이터로 사용하여, 상기 적어도 하나의 조작 값을 획득하는 단계, 및Using the operational data as input data of a predictive model predicting at least one manipulated value associated with a sintering operation through a neural network algorithm to obtain the at least one manipulated value,
    상기 적어도 하나의 조작 값에 따라서, 소결 설비를 자동으로 제어하는 단계를 포함하는 소결 조업 제어 방법. And automatically controlling the sintering equipment in accordance with the at least one operating value.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 적어도 하나의 조작 값은, 소결기로 장입되는 배합원료 내 결합재비, 상기 소결기의 베드 상의 배합원료 높이, 상기 소결기의 배합원료 장입 밀도, 및 상기 소결기의 대차 이동 속도 중 적어도 하나를 포함하는 소결 조업 제어 방법.Wherein the at least one operating value includes at least one of a binding material ratio in the blended material charged into the sintering machine, a blending material height on the bed of the sintering machine, a mixing material loading density of the sintering machine, and a balancing speed of the sintering machine / RTI >
  12. 제11항에 있어서,12. The method of claim 11,
    상기 제어하는 단계는, Wherein the controlling comprises:
    상기 적어도 하나의 조작 값 중 상기 배합원료 내 결합재비를 토대로, 저장 빈으로부터 원료 배합용 혼합기로 공급되는 결합재 량을 제어하는 단계를 포함하는 소결 조업 제어 방법.And controlling an amount of the binder to be supplied from the storage bin to the mixer for raw material, based on the binder ratio in the blend material among the at least one operation value.
  13. 제11항에 있어서,12. The method of claim 11,
    상기 제어하는 단계는, Wherein the controlling comprises:
    상기 적어도 하나의 조작 값 중 상기 소결기의 베드 상의 배합원료 높이를 토대로, 배합원료 저장호퍼의 배합원료 공급량을 제어하는 단계를 포함하는 소결 조업 제어 방법.And controlling the feed amount of the blending raw material storage hopper based on the blending raw material height on the bed of the sintering machine among the at least one operating value.
  14. 제11항에 있어서,12. The method of claim 11,
    상기 제어하는 단계는, Wherein the controlling comprises:
    상기 적어도 하나의 조작 값 중 상기 소결기의 배합원료 장입 밀도를 토대로, 상기 소결기 상부의 가압 부재를 제어하는 단계를 포함하는 소결 조업 제어 방법.Controlling the pressing member on the sintering machine based on the mixing material loading density of the sintering machine among the at least one operating value.
  15. 제11항에 있어서,12. The method of claim 11,
    상기 제어하는 단계는, Wherein the controlling comprises:
    상기 적어도 하나의 조작 값 중 상기 소결기의 대차 이동 속도를 토대로, 상기 소결기를 이동시키는 컨베이어를 제어하는 단계를 포함하는 소결 조업 제어 방법.And controlling a conveyor for moving the sintering machine based on the moving speed of the sintering machine among the at least one operation value.
  16. 제10항에 있어서,11. The method of claim 10,
    상기 신경회로망 알고리즘은, 컨벌루션 신경망(Convolutional neural network)으로 구성되는 소결 조업 제어 방법.Wherein the neural network algorithm comprises a convolution neural network.
  17. 제10항에 있어서,11. The method of claim 10,
    상기 조업 데이터들을 소정 기간 학습용 데이터로 학습하여 상기 예측 모델을 구성하는 단계를 더 포함하는 소결 조업 제어 방법.Further comprising the step of: learning the operation data with learning data for a predetermined period to construct the prediction model.
PCT/KR2018/014286 2017-12-18 2018-11-20 Sintering operation control apparatus and method therefor WO2019124768A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0174215 2017-12-18
KR1020170174215A KR20190072997A (en) 2017-12-18 2017-12-18 Apparatus and method for controlling of sintering process

Publications (1)

Publication Number Publication Date
WO2019124768A1 true WO2019124768A1 (en) 2019-06-27

Family

ID=66993712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014286 WO2019124768A1 (en) 2017-12-18 2018-11-20 Sintering operation control apparatus and method therefor

Country Status (2)

Country Link
KR (1) KR20190072997A (en)
WO (1) WO2019124768A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111947462A (en) * 2020-08-11 2020-11-17 中冶长天国际工程有限责任公司 Sintering machine charge level image analysis system and method
CN112577318A (en) * 2020-12-02 2021-03-30 湖南中冶长天重工科技有限公司 Sintering machine material layer thickness control method and device and sintering machine
CN113259631A (en) * 2021-06-18 2021-08-13 上海交通大学 On-site real-time video acquisition and analysis system based on sintering machine tail
CN113269138A (en) * 2021-06-18 2021-08-17 上海交通大学 FeO content detection method based on deep multi-source information fusion
CN114842918A (en) * 2022-04-11 2022-08-02 青岛恒拓环保科技有限公司 Automatic sintering mixture water adding method based on machine learning

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113742990A (en) * 2020-05-28 2021-12-03 中冶长天国际工程有限责任公司 Method and system for predicting sintering cake fracture moment of sintering machine tail
KR102449020B1 (en) * 2020-09-28 2022-09-28 주식회사 포스코아이씨티 System and Method for Predicting Strength of Sintered Ore
KR102423095B1 (en) * 2020-11-27 2022-07-19 한국세라믹기술원 Apparatus and method predicting permittivity of varistor pellet and record media recorded program for realizing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587462A (en) * 1991-09-27 1993-04-06 Nkk Corp Burning controller of sintered ore
JPH05279759A (en) * 1992-04-03 1993-10-26 Nippon Steel Corp Method for controlling sintering operation
KR100540009B1 (en) * 2003-11-28 2005-12-29 주식회사 비츠로시스 Water need forecasting method using neural network
JP2009280837A (en) * 2008-05-19 2009-12-03 Nippon Steel Corp Method for controlling quality of sintered ore
KR20130073605A (en) * 2011-12-23 2013-07-03 주식회사 포스코 Apparatus for controlling density of sintered ore and method for controlling density of sintered ore using the same
KR101462548B1 (en) * 2013-08-23 2014-11-18 주식회사 포스코 Apparatus for manufacturing sintered ore and method for manufacturing sintered ore using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587462A (en) * 1991-09-27 1993-04-06 Nkk Corp Burning controller of sintered ore
JPH05279759A (en) * 1992-04-03 1993-10-26 Nippon Steel Corp Method for controlling sintering operation
KR100540009B1 (en) * 2003-11-28 2005-12-29 주식회사 비츠로시스 Water need forecasting method using neural network
JP2009280837A (en) * 2008-05-19 2009-12-03 Nippon Steel Corp Method for controlling quality of sintered ore
KR20130073605A (en) * 2011-12-23 2013-07-03 주식회사 포스코 Apparatus for controlling density of sintered ore and method for controlling density of sintered ore using the same
KR101462548B1 (en) * 2013-08-23 2014-11-18 주식회사 포스코 Apparatus for manufacturing sintered ore and method for manufacturing sintered ore using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111947462A (en) * 2020-08-11 2020-11-17 中冶长天国际工程有限责任公司 Sintering machine charge level image analysis system and method
CN112577318A (en) * 2020-12-02 2021-03-30 湖南中冶长天重工科技有限公司 Sintering machine material layer thickness control method and device and sintering machine
CN113259631A (en) * 2021-06-18 2021-08-13 上海交通大学 On-site real-time video acquisition and analysis system based on sintering machine tail
CN113269138A (en) * 2021-06-18 2021-08-17 上海交通大学 FeO content detection method based on deep multi-source information fusion
CN113259631B (en) * 2021-06-18 2022-11-08 上海交通大学 On-site real-time video acquisition and analysis system based on sintering machine tail
CN114842918A (en) * 2022-04-11 2022-08-02 青岛恒拓环保科技有限公司 Automatic sintering mixture water adding method based on machine learning
CN114842918B (en) * 2022-04-11 2024-05-24 青岛恒拓环保科技有限公司 Automatic water adding method for sintering mixture based on machine learning

Also Published As

Publication number Publication date
KR20190072997A (en) 2019-06-26

Similar Documents

Publication Publication Date Title
WO2019124768A1 (en) Sintering operation control apparatus and method therefor
JP5298634B2 (en) Quality control method for sintered ore
WO2020027385A1 (en) System for predicting residual tapping amount of blast furnace and method therefor
WO2019098484A1 (en) Blast control device for blast furnace and method therefor
WO2019107980A1 (en) Quality prediction device and method
JP2001323326A (en) Sintering machine operating method
WO2017159962A1 (en) Sintering apparatus and sintering method
RU2606680C2 (en) Method and system for controlling the main exhaust fan
WO2019112207A1 (en) Apparatus and method for controlling amount of pulverized coal injection
JP6782203B2 (en) Calorific value estimation method, calorific value estimation device, and waste storage facility
JP2005090774A (en) Device for estimating supply amount of garbage for garbage incinerator
JP4949113B2 (en) Two-dimensional simulation apparatus, simulation method, and blast furnace operation method
KR20220025428A (en) Technology for real-time powder ratio measurement and moisture estimation of coke feeded from coke storage bin
KR101022455B1 (en) Apparatus for Controlling Surface Layer Temperature of Sintered Ore Using Waste Heat of Exhaust Gas from Boiler and Method for Controlling the Same
WO2019124790A1 (en) Apparatus and method for producing sintered ore
KR100226885B1 (en) Iron ore sintering method to recover sensible heat of exhausted gas and device therefor
JP3179311B2 (en) Operating method of coke dry fire extinguishing equipment
CN111947462B (en) Sintering machine charge level image analysis system and method
JP2018169141A (en) Waste supply device and waste supply method
KR20190071370A (en) Apparatus and method for controlling furnace heat of blast furnace
TW202336705A (en) Image inspection device, machine learning device, image inspection method, and image inspection program
WO2018097674A1 (en) Facility for manufacturing sintered ore
JP2003034563A (en) Manufacturing method of cement clinker
TW202336704A (en) Image inspecting device, machine learning device, image inspecting method, and image inspecting program
KR20020046760A (en) Equipment and method of heat-control for sinter in discharging-ore

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890986

Country of ref document: EP

Kind code of ref document: A1