WO2019107980A1 - Quality prediction device and method - Google Patents

Quality prediction device and method Download PDF

Info

Publication number
WO2019107980A1
WO2019107980A1 PCT/KR2018/014981 KR2018014981W WO2019107980A1 WO 2019107980 A1 WO2019107980 A1 WO 2019107980A1 KR 2018014981 W KR2018014981 W KR 2018014981W WO 2019107980 A1 WO2019107980 A1 WO 2019107980A1
Authority
WO
WIPO (PCT)
Prior art keywords
quality
information
processed
state information
current state
Prior art date
Application number
PCT/KR2018/014981
Other languages
French (fr)
Korean (ko)
Inventor
유종우
조병국
정은호
박종인
김병일
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2019107980A1 publication Critical patent/WO2019107980A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06395Quality analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to a quality prediction apparatus and method, and more particularly, to a quality prediction apparatus and method capable of accurately estimating the quality of an object to be processed based on accumulated data by accumulating and accumulating processing results of the object to be processed will be.
  • Sintered ores are blast furnace materials made of iron ore, limestone, coke, and anthracite as raw materials and manufactured to a size suitable for blast furnace use.
  • the sintered ores are produced through a process of preparing a raw material mixture and a process of sintering the raw material mixture. Among them, the sintering process is usually carried out in a dewatering sintering machine.
  • the sintering machine is a machine in which the bogie is moved in the order of charging, ignition, sintering and cooling sections, the raw material layer is formed by charging the raw material mixture into the bogie, the combustion bands are formed on the top of the raw material layer, Is moved from the upper part of the raw material layer to the lower part, and the raw material layer is sintered and cooled to produce a sintered light in the form of a cake. Thereafter, the sintering machine is made from sintered light by distributing the sintered cake from a truck, crushing and cooling it.
  • the sintered ores are classified into a particle size of several to several tens of millimeters, which is a size suitable for blast furnace use, and are transported to the blast furnace.
  • the sintered ores are used as a raw material in a sintering process (hereinafter referred to as a "blast furnace process") carried out in a blast furnace. Therefore, the quality of the sintered ores is an essential condition for the stabilization of the sintering process.
  • the quality of the sintered ores is determined within this time.
  • the quality of the sintered ore can not be directly measured.
  • the sintered cake is shredded in a truck, and the sintered cake is crushed using a hot crusher, the crushed sintered cake is charged into the cooler and allowed to stay for about 90 minutes and cooled.
  • the quality of the sintered ores and the strength of the sintered ores are measured by using a sample after collecting the sintered ores for quality confirmation.
  • the sinter ore can be sampled and measured for quality only after about two hours have passed since the quality was determined.
  • the method of operating the sintering machine is as follows. First, the operation of the sintering machine is started with the established operating conditions, and then the quality of the sintered ores is monitored, and the operation conditions are modified with the result, and the operation of the sintering machine is continued. However, as described above, there is a considerable time gap between the point of time at which the sintered ores are shined and the point at which the quality of the sintered ores is measured.
  • the operator estimates the quality of the sintered ore with each criterion, modifies the operating conditions according to the result, and reflects the modifications to the operation of the sintering machine first. That is, since the operator directly adjusts the operating conditions according to their respective standards until the measurement of the sinter ore quality, continuity of the process when the operator alternates can not be guaranteed. Also, due to the limited manpower situation, if the operator fails to continuously observe the sintering machine and misses an appropriate response time, it may cause a quality deviation.
  • Patent Document 1 JP2013-151715 A
  • Patent Document 2 KR10-1442983 B1
  • the present invention provides a quality predicting apparatus and method capable of accurately accumulating and accumulating processing results of an object to be processed and accurately estimating the quality of the object to be processed based on the accumulated data.
  • the present invention provides an apparatus and method for predicting the quality of an object to be processed using an artificial intelligence-based in-depth neural network.
  • a quality predicting apparatus includes: a storage unit for accumulating and accumulating data of a quality of an object to be processed associated with state information and state information of an object to be processed; A measurement unit for acquiring current state information of the object to be processed in the object processing path; And a quality predicting unit for extracting a data set corresponding to the current state information based on the data stored in the storage unit and predicting the quality of the object using the data set.
  • the measuring unit comprises: a first measuring unit for obtaining an exhaust gas temperature distribution of the object to be processed along the extending direction of the path; And a second measuring unit for obtaining a temperature distribution in the object to be processed in a direction across the path at an end point of the path.
  • the first measuring unit and the second measuring unit may obtain the state information by patterning in the form of thermal image information.
  • the storage unit may store cause information about the quality information together.
  • the storage unit may store the status information, the corresponding quality information, and the cause information for the quality information, and store the resultant information in a data set.
  • control unit connected to the quality predicting unit, wherein the control unit can control at least a part of the object treatment facility using the cause information matching the predicted quality.
  • the quality predicting unit can extract a data set using the artificial intelligence based depth network and predict the quality of the object to be processed.
  • the artificial intelligence may include deep running, and the in-depth neural network may include a convolutional neural network.
  • a quality predicting method includes a process of accumulating and accumulating data on the quality of an article to be processed associated with state information and state information of a subject to be processed; Processing the object to be processed in the processing path; Acquiring current state information of the object to be processed in the processing path; Extracting a data set corresponding to the current state information from the accumulated data and using the data set to predict the quality of the object to be processed; And outputting the current state information and the predicted quality according to the current state information.
  • the step of acquiring the state information comprises: patterning the exhaust gas temperature distribution of the object to be processed in the form of thermal image information in the direction of the extension of the path; And patterning the temperature distribution in the object to be processed in the form of thermal image information in the direction crossing the path at the end point of the path.
  • the matching result is stored as a data set after matching the cause information of the quality information in addition to the quality information of the object to be processed associated with the status information and the status information.
  • the step of extracting the data set may include the steps of: comparing the current state information with state information in the accumulated data using a neural network based on artificial intelligence; Selecting state information in the accumulated data corresponding to the current state information, and extracting a data set including the selected state information; And predicting quality information of the object to be processed included in the extracted data set with the current quality of the object to be processed.
  • the object to be treated includes sintered ores, and the treatment path may include a sintering section through which a sludge passage of the sintering machine can pass.
  • the processing performance of the object to be processed can be recorded and accumulated, and the quality of the object to be processed can be accurately predicted based on the accumulated data using the artificial intelligence-based in-depth neural network.
  • sintering process a sintering process
  • various processing results of the sintering process are accumulated and stored, and a deep learning based convolutional neural network ) Is used to extract a data set including the state information similar or identical to the current sintered-state information in the accumulated data.
  • the quality information of the sintered ores contained in the extracted data set can be accurately predicted by the sintering quality of the current sintering process.
  • the sintering machine can be rationally operated by an accurate guide, and it is possible to reduce the cost of the joint, reduce the amount of the by-product and the carbon dioxide gas, and reduce the cost.
  • FIG. 1 is a schematic view of a quality predicting device and an object to be treated according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of data accumulated according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of a process of extracting a data set using a neural network according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a quality estimation method according to an embodiment of the present invention.
  • 5 is a graph for explaining the accuracy of a quality prediction result according to an embodiment of the present invention.
  • An apparatus and method for predicting quality can accumulate processing data of an object to be processed and can provide a technical feature capable of accurately predicting the quality of the object to be processed based on the accumulated data.
  • the apparatus and method for predicting quality according to an embodiment of the present invention are applied to a sintering process of a steel mill and can be applied to various other treatments.
  • embodiments of the present invention will be described with reference to a sintering process.
  • Fig. 1 is a schematic view showing a quality predicting device and an object to be treated in accordance with an embodiment of the present invention.
  • the object to be treated according to an embodiment of the present invention includes a hopper 10 (hereinafter referred to as a " processing path " (20) which is spaced apart from the hopper (10) in the direction in which the object to be treated (hereinafter referred to as the "processing step") proceeds, Batches (20) for receiving the blend material from the hopper (10) and loading it therein, windboxes (40) installed in the lower part of the processing path and communicating with the inside of the bogies (30) A dust collector 82 provided on the other side of the duct 81 and a duct 81 connected to the dust collector 82 and a duct 81 connected to the dust collector 82, And a blower 83 installed therein.
  • a hopper 10 hereinafter referred to as a " processing path " (20) which is spaced apart from the hopper (10) in the direction in which the object to
  • the compounding raw material may be a raw material for producing the object to be treated.
  • the blending raw material may be a raw material for producing the sintered ores.
  • the blending raw materials may include minute iron ore, limestone, minute coke and anthracite.
  • the material to be treated may be an sintered ore, and the treatment process may be a sintering process. Of course, this need not be particularly limited.
  • the hopper 10 is installed on a loading zone to be described later.
  • the hopper 10 is provided with a drum feeder and a chute at a lower portion thereof.
  • the drum feeder and the chute load the mixing material in the hopper 10 vertically segregated in the inside of the carriage 30.
  • a material layer to be described later is formed in a charging zone.
  • the blended raw materials charged into the carts 30 are referred to as raw material layers.
  • the raw material layer may be referred to as a sintered bed.
  • the raw material layer is heat-treated, for example, sintered while moving the treatment path in the direction in which the treatment process proceeds, and is distributed in the form of a sintered cake in the light-shielding portion, which is the end point of the treatment path.
  • the ignition furnace 20 is installed on the ignition section to be described later.
  • the ignition furnace 20 can be supplied with fuel.
  • the fuel is burned in the ignition furnace 20 to generate a flame and the flame is injected into the inside of the bogies 30.
  • the flame is ignited on the surface of the raw material layer to form a combustion zone. That is, a combustion zone is formed in the ignition zone.
  • the combustion zone can move from the surface of the raw material layer to the lower layer via the upper layer.
  • the sintering reaction which is a reaction in which limestone and mined iron ores form a low melting point compound, proceeds near the combustion zone.
  • the raw material layer can be sintered into sintered ores. That is, the raw material layer is sintered in the sintering section.
  • the bogies (30) are opened upward, and openings are formed at the bottom. Through the openings, the inside of the bogies (30) communicates with the wind boxes (40). The inside of the carriages 30 is sucked downward by the wind boxes 40.
  • Bogies 30 are connected to each other endlessly.
  • a conveyor may be installed to support the carts 30.
  • a conveyor is installed in the direction in which the treatment process proceeds, and the conveyors 30 are installed.
  • the upper side of the conveyor forms a processing path, and the lower side of the conveyor forms a conveyance path.
  • the carts 30 can travel on the treatment path in the direction in which the treatment process proceeds.
  • the carts 30 pass through the light distribution portion, distribute the object to be processed, such as sintered light, in the form of a cake, and enter the return path. Then, the carts 30 can travel on the return path in the direction opposite to the direction in which the treatment process proceeds, and return to the starting point of the treatment path.
  • the object to be processed such as sintered light
  • the carts 30 can travel on the return path in the direction opposite to the direction in which the treatment process proceeds, and return to the starting point of the treatment path.
  • the processing path A includes a plurality of sections.
  • the plurality of sections include a charging section B, an ignition section C, and a sintering section D. At this time, it may be the order of the charging zone B, the ignition zone C, and the sintering zone D in the direction in which the treatment process proceeds.
  • the raw material layer can be sintered while passing through the sintering section (D).
  • the sintering section D includes a first section D1, a second section D2 and a third section D3. The criteria for dividing these sections may vary.
  • the criteria may vary, and it is not necessary to limit it in the examples in particular.
  • the sintering section D is defined as a first section D1 from the starting point of the sintering section D to the first half of the first half of the sintering section D and the third section from the end point of the sintering section D to the third half (D3), and an intermediate portion between the first section D1 and the third section D3 may be defined as the second section D2.
  • Windboxes (40) provide suction force downward into the carriages (30). At this time, the wind boxes 40 can form a negative pressure therein by the blower 83, and the inside of the bogies 30 can be sucked downward by using the blowers. The exhaust gases are collected into the windboxes 40. The exhaust gas may be recovered to the duct 81.
  • the object to be treated (also referred to as "sintering machine") is operated, firstly, the operation of the object to be treated is started with the established operation conditions. For example, prior to commencement of the operation of the object treatment facility, a physical model of the sintering process is used based on the information related to the material mixture to establish operating conditions for achieving the desired quality of the sinter ores, The operation of the facility is started. At this time, the information related to the blended raw materials may be various, such as raw material composition, binding cost, and anthracite ratio. In addition, the operating conditions may vary, such as bed speed, bedding, and loading density.
  • the quality of the sintered ores is determined in the sintering section. Therefore, if the quality of the sintered ores is precisely predicted at the time when the sintered ores are lighted, for example, with the state information of the sintered ores, the operating condition of the sintering machine can be modified immediately so that the quality of the sintered ores can be maintained at a desired level.
  • the object to be treated according to the embodiment of the present invention may include a quality predicting device.
  • the quality prediction apparatus monitors the state information representing the quality of the sintered ore, and can accurately predict the quality of the sintered ores.
  • the quality predicting device can continuously operate the object treatment facility with the modified operation condition while correcting the operation condition by reflecting the quality prediction result continuously or periodically to the operation condition.
  • a quality prediction apparatus includes a storage unit 600 for storing and accumulating quality information of an object to be processed associated with status information of the object to be processed and status information, A quality estimating unit 700 for extracting a data set corresponding to the current state information based on the data stored in the storage unit and estimating the quality of the object to be processed using the data set, .
  • the quality predicting apparatus may further include a controller (not shown) connected to the quality predicting unit 700.
  • the control unit can control at least a part of the object treatment facility using the cause information matching the predicted quality. That is, the quality prediction apparatus can function as a control apparatus for operating the object to be treated. Therefore, the quality prediction apparatus according to the embodiment of the present invention may be referred to as a control apparatus of the object to be treated.
  • the storage unit 600 may track the quality information of the object to be processed associated with the state information of the object to be processed and the state information, and may accumulate the quality information together with the state information. Also, the storage unit 600 may track the cause information about the quality information of the object to be processed and store them together. At this time, the storage unit 600 may store the status information, the corresponding quality information, and the cause information of the quality information, and accumulate them as a data set.
  • the state information of a predetermined number of times is stored in the storage unit 600 while collecting the information for each time of the sintering process which is repeated several tens to several hundred times or more and continuously accumulating the data set of the total number of times,
  • the cause information of the same rotation as the information is matched with this state information and is stored together.
  • FIG. 2 is a diagram showing an example of data accumulated according to an embodiment of the present invention.
  • the state information (third information) of the object to be processed includes, for example, the exhaust gas temperature distribution obtained in the third section D3 of the sintering section and the temperature distribution in the object to be processed obtained in the light-distribution section.
  • the exhaust gas temperature distribution means the exhaust gas temperature distribution obtained inside the wind boxes of the third section of the wind boxes 40.
  • the temperature distribution in the material to be treated means the distribution of the glowing layer at the cross section of the sintered cake.
  • the state information of the object to be processed is information that can be obtained from the sintering machine and is stored as "firing pattern (S1, S2 ...)" in the accumulated data.
  • the storage unit 600 patterns the plastic patterns in the form of thermal image information and stores them.
  • the x-axis is the traveling direction of the treatment process
  • the y-axis is the width direction of the treatment path
  • the z-axis is the height direction of the raw material layer. 2
  • the right portion of the thermal image is on the light pipe side
  • the left side portion is on the upstream side of the light pipe portion, for example, the ignition path 20 side.
  • the temperature on the upstream side of the light-transmitting portion is relatively low and the temperature on the light-emitting portion side is relatively high. Further, the temperature gradually increases from the upstream side of the light-directing portion to the light-directing portion side.
  • Such a temperature change state or pattern can be obtained in the form of thermal image information of the exhaust gas temperature distribution.
  • the quality information (fourth information) of the article to be processed associated with the state information of the article to be treated may include the intensity, particle size, productivity of the sintered ores and the current state (exit ratio and reduction ratio) in the blast furnace process using the sintered ores.
  • the strength, particle size and productivity among the quality information of the object to be treated can be obtained by sampling the sintered ores after about two hours after the light distribution of the sintered ores, and the status in the blast furnace process can be obtained from a blast furnace process which is a subsequent process.
  • the acquired information is stored as "output condition (O1, O2 ...)" in the accumulated data.
  • the cause information of the quality information of the object to be treated is information obtained by tracking the cause of the quality of the object to be treated, and there are roughly two kinds of information. One of them is information related to the raw material of the blend, and the other is information related to the sintering machine.
  • the mixing material information (referred to as 'first information') includes, for example, raw material components / particle size, binding ratio / particle size, water / quicklime / anthracite ratio and the like. ) &Quot;.
  • the sintering machine information (referred to as 'second information') includes, for example, a bogie speed, a layer thickness, a loading density, an air flow rate and the like and is stored in the accumulated data as the "operating condition P1, P2.
  • the above-mentioned information collectively refers to the processing performance of the object to be processed.
  • the accumulated data is, for example, a set of huge experimental data having input conditions, operating conditions, firing patterns, and output conditions, and the quality prediction unit 700 uses the data as data for predicting the quality of the material to be processed.
  • the state information of the object to be processed can represent the quality of the object to be processed, and the quality of the object to be processed is predicted by utilizing the state information.
  • the quality information is predicted only by the input condition, but since the output condition is influenced by the operation condition, it is impossible to predict the quality information only by the input condition. If the firing result of the sintering process varies depending on the input conditions and the operating conditions, such fluctuations are immediately expressed in the exhaust gas temperature distribution and in the distribution of the heat radiation layer. That is, both the input conditions and the operating conditions are reflected in the firing pattern.
  • state information of the object to be processed which is a plastic pattern, among the processing results in the accumulated data is used as an index for quality prediction, the quality of the object to be processed can be predicted quickly before sampling of the object to be processed.
  • the quality predicting unit 700 uses the artificial intelligence-based depth network to improve the accuracy of prediction. Therefore, objective predictions can be made by the learned neural network based on the accumulated data, rather than being subjectively predicted by the operator with the state information of the object to be processed.
  • the measuring unit can obtain the current state information of the object to be processed in the processing path.
  • the measuring section includes a first measuring section 510 for obtaining an exhaust gas temperature distribution of the object to be processed along the extending direction of the processing path and a second measuring section 510 for determining the temperature distribution within the object to be processed And a second measurement unit 520 for acquiring the second measurement value.
  • the first measuring unit 510 may be a thermometer, for example, and may be disposed in the third section D3.
  • the first measuring unit 510 may be disposed in, for example, the wind boxes 40, which is a position at which the temperature of the exhaust gas can be measured, but is not limited thereto.
  • the first measuring unit 510 is disposed at five to fifteen positions spaced apart from each other in the proceeding direction of the processing process and is disposed at five to ten positions spaced apart in the width direction of the processing path, As shown in FIG. Of course, their spacing and number may vary.
  • the first measurement unit 510 can be used to obtain the temperature distribution of the exhaust gas passing through the combustion zone in the horizontal direction.
  • the temperature of the flue gas varies depending on the sintering condition of the sintered ores, and the horizontal sintering pattern information of the sintered ores can be obtained through the temperature distribution of the flue gas.
  • the second measuring unit 520 may be a thermal imager or a CCD image sensor.
  • the second measuring unit 520 is disposed outside the light-directing unit and is provided so as to be able to shoot an end face of the sintered cake to be light-distribution.
  • the temperature distribution in the object to be treated can be obtained in detail in the cross section of the sintered cake photographed by the light distribution unit. This is also referred to as information on the vertical sintering state of the sintered ores.
  • the meaning of the glow layer is as follows. For example, when the sintering process is performed while controlling the thickness of the heat-generating layer to a certain range, the quality of the sintered ores can be obtained. That is, the thickness control of the glowing layer is related to the quality of the sintered ores.
  • the first measuring unit 510 and the second measuring unit 520 are connected to the storage unit 600.
  • the first measuring unit 510 and the second measuring unit 520 pattern the state information in the form of thermal image information and acquire the information, Output.
  • the data stored in the storage unit 600 is data for predicting the current state information of the object to be processed. For example, if the current state information of the object to be processed is measured by the measuring unit and the state information similar or identical to the current state information is found in the accumulated data, the quality information matching the found state information may be output to predict the current state information .
  • the quality predicting unit 700 performs this.
  • the quality predicting unit 700 may be connected to the storage unit 600.
  • the quality predicting unit 700 can extract the data set corresponding to the current state information based on the data stored in the storage unit 600 and predict the quality of the object to be processed using the data set.
  • the quality predicting unit 700 can extract the data set using the artificial intelligence-based in-depth neural network, and predict the quality of the object to be processed.
  • the artificial intelligence includes deep running
  • the deep neural network can include convolutional neural networks.
  • high accuracy of predictions can be realized by utilizing the artificial intelligence algorithms that are currently developed, and the quality information can be predicted preliminarily and objectively using a formalized plastic pattern.
  • the quality predicting unit 700 will be described in detail below when describing the quality predicting method.
  • a control unit (not shown) is connected to the quality predicting unit.
  • the control unit outputs the predicted quality in a variety of ways that the operator can perceive, such as a text or graphic on the screen, or a voice.
  • the control unit controls at least a part of the object treatment facility using the cause information matching the predicted quality.
  • the control unit can control the hopper 10, the ignition path 20, the carts 30, and the blower 83. [ Of course, the control section can control the overall operation of the object to be treated.
  • the controller can be used to notify the operator of the disturbance factor of the quality fluctuation, and to control the disturbance factor by controlling the processing facility.
  • the control by the control unit is not particularly limited.
  • control unit may control the operation of the measurement unit, the storage unit 600, and the quality prediction unit 700.
  • FIG. 3 is a diagram illustrating an example of a process of extracting a data set using a neural network according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a quality estimation method according to an embodiment of the present invention
  • 5 is a graph for explaining the accuracy of the quality prediction result according to the embodiment of the present invention.
  • FIG. 1 A quality prediction method according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5.
  • FIG. 1 A quality prediction method according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5.
  • the quality prediction method includes a step S100 of accumulating and accumulating the quality information of the object to be processed related to the state information and the state information of the object to be processed, (S400) of extracting a data set corresponding to the current state information from the accumulated data and estimating the quality of the object to be processed using the extracted data set, And outputting the current state information and the predicted quality accordingly (S500).
  • the object to be treated includes sintered ores
  • the treatment path includes a sintering section through which the sludge of the sintering machine can pass.
  • S100 The state information of the object to be processed and the quality information of the object to be processed associated with the state information are converted into data and stored in the storage unit 600. At this time, after matching the cause information of the quality information in addition to the quality information of the object to be processed associated with the status information and the status information, the matching result is accumulated as a data set.
  • the contents thereof have been described in detail when explaining the quality predicting apparatus, and thus, are omitted in order to avoid duplication of explanation. This process can be carried out continuously by repeating the sintering process. If a certain amount of data is stored first, quality can be predicted in the following process.
  • S200 Process the object to be processed in the processing path. That is, the sintering process is performed.
  • the compounding materials are charged into the carts 30, and the carts 30 are sintered while moving to the processing path to produce sintered ores.
  • S300 obtains the current state information of the object to be processed in the processing path.
  • the temperature distribution of the exhaust gas of the article to be processed is obtained by using, for example, a measuring section, and the temperature distribution in the article to be processed, that is, the distribution of the sintered cake cross-
  • the exhaust gas temperature distribution of the object to be processed is patterned and obtained in the form of thermal image information in the direction of extension of the path, and the temperature distribution in the object to be processed in the direction crossing the path at the end point of the path, And obtained by patterning.
  • the data set corresponding to the current state information is extracted from the accumulated data, and the quality of the object to be processed is predicted using the data set.
  • the present state information is compared with state information in the accumulated data by using the artificial intelligence-based in-depth neural network.
  • the pattern of the inputted current state information is recognized, and a pattern of state information in the data is recognized, and then a matching pattern is found.
  • This process can be performed using a deep learning based convolutional neural network, thus increasing its accuracy.
  • state information in the accumulated data matching the input current state information is selected, and a data set (also referred to as a "data set") containing the selected state information is extracted.
  • various performances are matched in the data set, and the quality information of the object to be processed included in the extracted data set is predicted with the current quality of the object to be processed.
  • the method of extracting the data set by comparing the status information may be various. Although only the flue gas temperature distribution is shown in the figure, the glow layer distribution is also used in the comparison process.
  • the control unit is used to output the input current state information and the predicted quality accordingly.
  • the output method may be various, and is not particularly limited. For example, when outputting quality, the quality value is out of the range based on a predetermined range. If the quality value is within a threshold value of the range, the variation is output. If the quality value is out of the range and the value exceeds the threshold value, do.
  • the threshold value means quality fluctuation to such an extent as to influence the present state of the blast furnace process.
  • the threshold can be set to any value in conjunction with the blast furnace performance accumulated through previous processes.
  • the cause information about the quality is outputted together. Then, at least a part of the object treatment facility is controlled by the control unit using the outputted cause information.
  • actual quality information of the object to be processed associated with the current state information is obtained.
  • the produced sintered ores are sampled to obtain actual quality information.
  • the current state information and the actual quality information are converted into data and added to the accumulated data.
  • the accumulated data can be continuously reinforced as it becomes richer.
  • a sieving process is performed and an algorithm of a deep learning-based convolution neural network is applied to predict the quality of an object to be processed, actual quality is tracked, And the error is shown.
  • the horizontal axis of the graph in Fig. 5 represents the error of the drop strength, and the vertical axis represents the number of cases.
  • the accuracy is about 61% and within ⁇ 1.0, it is 90%.
  • Accuracy can be improved if more data is accumulated and learning algorithms are added.
  • an artificial intelligence algorithm applied to the embodiment it can be seen that CNN which is strong in pattern recognition is suitable from general machine learning algorithm according to the quality and number of quality information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Artificial Intelligence (AREA)
  • Quality & Reliability (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Health Care (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The present invention presents a quality prediction device and a quality prediction method employing same, the quality prediction device comprising: a storage unit for turning state information and quality information of a treatment subject into data and accumulating same; a measurement unit for acquiring current state information of the treatment subject, in a treatment subject treatment path; and a quality prediction unit for extracting, based on the data accumulated in the storage unit, a data set corresponding to the current state information, and then predicting the quality of the treatment subject by using same. The present invention presents a quality prediction device and method which can turn treatment performance of a treatment subject into data and accumulate same, and accurately predict the quality of the treatment subject on the basis of the accumulated data.

Description

품질 예측 장치 및 방법Apparatus and method for predicting quality
본 발명은 품질 예측 장치 및 방법에 관한 것으로서, 더욱 상세하게는, 피처리물의 처리 실적을 데이터화하여 축적하고, 축적된 데이터를 기반으로 피처리물의 품질을 정확하게 예측할 수 있는 품질 예측 장치 및 방법에 관한 것이다.The present invention relates to a quality prediction apparatus and method, and more particularly, to a quality prediction apparatus and method capable of accurately estimating the quality of an object to be processed based on accumulated data by accumulating and accumulating processing results of the object to be processed will be.
소결광은 분철광석, 석회석, 분코크스 및 무연탄을 원료로 하여 고로 사용에 적합한 크기로 제조된 고로 장입물이다. 소결광은 배합 원료를 준비하는 과정과 배합 원료를 소결하는 과정을 통하여 제조된다. 그중 소결하는 과정은 통상적으로 드와이트 로이드식 소결기에서 수행된다.Sintered ores are blast furnace materials made of iron ore, limestone, coke, and anthracite as raw materials and manufactured to a size suitable for blast furnace use. The sintered ores are produced through a process of preparing a raw material mixture and a process of sintering the raw material mixture. Among them, the sintering process is usually carried out in a dewatering sintering machine.
소결기는 대차를 장입, 점화, 소결 및 냉각 구간의 순서로 이동시키며, 대차에 배합 원료를 장입하여 원료층을 형성하고, 원료층의 상부에 연소대를 형성하고, 하방으로 공기를 흡인하여 연소대를 원료층의 상부에서 하부로 이동시키고, 원료층을 소결 및 냉각시켜 소결광을 케이크 형태로 제조한다. 이후, 소결기는 소결 케이크를 대차에서 배광한 후, 파쇄 및 냉각하여 소결광으로 제조한다.The sintering machine is a machine in which the bogie is moved in the order of charging, ignition, sintering and cooling sections, the raw material layer is formed by charging the raw material mixture into the bogie, the combustion bands are formed on the top of the raw material layer, Is moved from the upper part of the raw material layer to the lower part, and the raw material layer is sintered and cooled to produce a sintered light in the form of a cake. Thereafter, the sintering machine is made from sintered light by distributing the sintered cake from a truck, crushing and cooling it.
소결광은 고로 사용에 적합한 크기인 수 내지 수십㎜의 입도로 분급되어 고로로 이송된다. 소결광은 고로에서 수행되는 제선 공정(이하, "고로 공정")에서 원료로 사용된다. 따라서, 소결광의 품질은 제선 공정 안정화에 있어 필수조건이다.The sintered ores are classified into a particle size of several to several tens of millimeters, which is a size suitable for blast furnace use, and are transported to the blast furnace. The sintered ores are used as a raw material in a sintering process (hereinafter referred to as a "blast furnace process") carried out in a blast furnace. Therefore, the quality of the sintered ores is an essential condition for the stabilization of the sintering process.
대차가 소결기의 각 구간을 통과하는 데는 30분 정도가 소요되고, 이 시간내에 소결광의 품질이 결정된다. 하지만 이때에는 소결광의 품질을 직접 측정할 수가 없다. 예컨대 대차에서 소결 케이크를 배광하고, 열간 파쇄기(hot crusher)를 이용하여 소결 케이크를 파쇄하면, 파쇄된 소결 케이크를 냉각기에 장입하여 90분 정도 체류시키며 냉각한다. 이후, 다단 스크린에서 냉각된 소결광을 입도 선별할 때, 품질 확인용 소결광 샘플을 채취한 후, 샘플을 이용하여 소결광의 입도 및 강도 등의 품질을 측정한다. 이처럼 소결광은 품질이 결정된 시점으로부터 약 두시간 정도 지난 이후에야 샘플을 채취하여 품질을 측정할 수 있다.It takes about 30 minutes for the bogie to pass through each section of the sintering machine, and the quality of the sintered ores is determined within this time. However, at this time, the quality of the sintered ore can not be directly measured. For example, when the sintered cake is shredded in a truck, and the sintered cake is crushed using a hot crusher, the crushed sintered cake is charged into the cooler and allowed to stay for about 90 minutes and cooled. Thereafter, when selecting the size of the sintered ores cooled in the multistage screen, the quality of the sintered ores and the strength of the sintered ores are measured by using a sample after collecting the sintered ores for quality confirmation. As such, the sinter ore can be sampled and measured for quality only after about two hours have passed since the quality was determined.
한편, 소결기를 운전하는 방식은 다음과 같다. 우선, 기 수립된 운전 조건을 가지고 소결기의 운전을 개시하고, 이후, 소결광의 품질을 모니터링하면서, 그 결과를 가지고 운전 조건을 수정하며 소결기의 운전을 계속한다. 그러나 앞서 설명한 것처럼, 소결광을 배광하는 시점과 소결광의 품질을 측정하는 시점 사이에는 상당한 시간 공백이 있다.The method of operating the sintering machine is as follows. First, the operation of the sintering machine is started with the established operating conditions, and then the quality of the sintered ores is monitored, and the operation conditions are modified with the result, and the operation of the sintering machine is continued. However, as described above, there is a considerable time gap between the point of time at which the sintered ores are shined and the point at which the quality of the sintered ores is measured.
따라서, 시간적 공백을 극복하기 위하여, 조업자는 각자의 기준을 가지고 소결광의 품질을 추정하고, 그 결과에 따라 운전 조건을 수정하고, 수정 사항을 소결기의 운전에 우선 반영한다. 즉, 소결광 품질 측정 이전까지 조업자가 각자의 기준에 따라 직접 운전 조건을 수정하므로, 조업자의 교대 시 공정의 연속성을 담보할 수 없다. 또한, 제한된 인력 상황으로 인해, 조업자가 지속적으로 소결기를 관찰하지 못하여 적절한 대응 시점을 놓치면, 품질 편차를 야기할 수 있다.Therefore, in order to overcome the temporal blank, the operator estimates the quality of the sintered ore with each criterion, modifies the operating conditions according to the result, and reflects the modifications to the operation of the sintering machine first. That is, since the operator directly adjusts the operating conditions according to their respective standards until the measurement of the sinter ore quality, continuity of the process when the operator alternates can not be guaranteed. Also, due to the limited manpower situation, if the operator fails to continuously observe the sintering machine and misses an appropriate response time, it may cause a quality deviation.
본 발명의 배경이 되는 기술은 하기의 특허문헌에 게재되어 있다.Techniques as a background of the present invention are listed in the following patent documents.
(선행기술문헌)(Prior art document)
(특허문헌)(Patent Literature)
(특허문헌 1) JP2013-151715 A (Patent Document 1) JP2013-151715 A
(특허문헌 2) KR10-1442983 B1 (Patent Document 2) KR10-1442983 B1
본 발명은 피처리물의 처리 실적을 데이터화하여 축적하고, 축적된 데이터를 기반으로 피처리물의 품질을 정확하게 예측할 수 있는 품질 예측 장치 및 방법을 제공한다.The present invention provides a quality predicting apparatus and method capable of accurately accumulating and accumulating processing results of an object to be processed and accurately estimating the quality of the object to be processed based on the accumulated data.
본 발명은 인공지능 기반의 심층 신경망을 이용하여 피처리물의 품질을 정확하게 예측할 수 있는 품질 예측 장치 및 방법을 제공한다.The present invention provides an apparatus and method for predicting the quality of an object to be processed using an artificial intelligence-based in-depth neural network.
본 발명의 실시 형태에 따른 품질 예측 장치는, 피처리물의 상태 정보 및 상태 정보와 관련된 피처리물의 품질 정보를 데이터화하여 축적하는 저장부; 피처리물 처리 경로에서 피처리물의 현재 상태 정보를 획득하는 측정부; 상기 저장부에 축적된 데이터를 기반으로, 현재 상태 정보에 대응하는 데이터 집합을 추출하고, 상기 데이터 집합을 이용하여 상기 피처리물의 품질을 예측하는 품질 예측부;를 포함한다.A quality predicting apparatus according to an embodiment of the present invention includes: a storage unit for accumulating and accumulating data of a quality of an object to be processed associated with state information and state information of an object to be processed; A measurement unit for acquiring current state information of the object to be processed in the object processing path; And a quality predicting unit for extracting a data set corresponding to the current state information based on the data stored in the storage unit and predicting the quality of the object using the data set.
상기 측정부는, 상기 경로의 연장 방향에 따른, 상기 피처리물의 배가스 온도 분포를 획득하는 제1 측정부; 및 상기 경로의 종료 지점에서, 상기 경로를 가로지르는 방향으로, 상기 피처리물내의 온도 분포를 획득하는 제2 측정부;를 포함할 수 있다.Wherein the measuring unit comprises: a first measuring unit for obtaining an exhaust gas temperature distribution of the object to be processed along the extending direction of the path; And a second measuring unit for obtaining a temperature distribution in the object to be processed in a direction across the path at an end point of the path.
상기 제1 측정부 및 상기 제2 측정부는, 상태 정보를 열영상 정보의 형태로 패턴화하여 획득할 수 있다.The first measuring unit and the second measuring unit may obtain the state information by patterning in the form of thermal image information.
상기 저장부는, 상기 품질 정보에 대한 원인 정보를 함께 저장할 수 있다.The storage unit may store cause information about the quality information together.
상기 저장부는, 상태 정보, 그에 따른 품질 정보 및 품질 정보에 대한 원인 정보를 매칭하여 데이터 집합으로 축적할 수 있다.The storage unit may store the status information, the corresponding quality information, and the cause information for the quality information, and store the resultant information in a data set.
상기 품질 예측부에 연결되는 제어부;를 더 포함하고, 상기 제어부는, 예측된 품질에 매칭하는 원인 정보를 활용하여 피처리물 처리 설비의 적어도 일부를 제어할 수 있다.And a control unit connected to the quality predicting unit, wherein the control unit can control at least a part of the object treatment facility using the cause information matching the predicted quality.
상기 품질 예측부는, 인공지능 기반의 심층 신경망을 이용하여, 데이터 집합을 추출하고, 상기 피처리물의 품질을 예측할 수 있다.The quality predicting unit can extract a data set using the artificial intelligence based depth network and predict the quality of the object to be processed.
상기 인공지능은 딥러닝을 포함하고, 상기 심층 신경망은 콘볼루션 신경망을 포함할 수 있다.The artificial intelligence may include deep running, and the in-depth neural network may include a convolutional neural network.
본 발명의 실시 형태에 따른 품질 예측 방법은, 피처리물의 상태 정보 및 상태 정보와 관련된 피처리물의 품질 정보를 데이터화하여 축적하는 과정; 처리 경로에서 피처리물을 처리하는 과정; 상기 처리 경로에서 피처리물의 현재 상태 정보를 획득하는 과정; 축적된 데이터로부터, 현재 상태 정보에 대응하는 데이터 집합을 추출하고, 이를 이용하여 상기 피처리물의 품질을 예측하는 과정; 상기 현재 상태 정보 및 그에 따라 예측된 품질을 출력하는 과정;을 포함한다.A quality predicting method according to an embodiment of the present invention includes a process of accumulating and accumulating data on the quality of an article to be processed associated with state information and state information of a subject to be processed; Processing the object to be processed in the processing path; Acquiring current state information of the object to be processed in the processing path; Extracting a data set corresponding to the current state information from the accumulated data and using the data set to predict the quality of the object to be processed; And outputting the current state information and the predicted quality according to the current state information.
상기 상태 정보를 획득하는 과정은, 상기 경로의 연장 방향으로 상기 피처리물의 배가스 온도 분포를 열영상 정보의 형태로 패턴화하여 획득하는 과정; 상기 경로의 종료 지점에서 상기 경로를 가로지르는 방향으로 상기 피처리물내의 온도 분포를 열영상 정보의 형태로 패턴화하여 획득하는 과정;을 포함할 수 있다.Wherein the step of acquiring the state information comprises: patterning the exhaust gas temperature distribution of the object to be processed in the form of thermal image information in the direction of the extension of the path; And patterning the temperature distribution in the object to be processed in the form of thermal image information in the direction crossing the path at the end point of the path.
상태 정보 및 상태 정보와 관련된 피처리물의 품질 정보에 더하여 품질 정보에 대한 원인 정보를 매칭한 후, 매칭 결과를 데이터 집합으로 축적할 수 있다.It is possible to store the matching result as a data set after matching the cause information of the quality information in addition to the quality information of the object to be processed associated with the status information and the status information.
상기 데이터 집합을 추출하는 과정은, 인공지능 기반의 심층 신경망을 이용하여, 상기 현재 상태 정보와 축적된 데이터내의 상태 정보들을 비교하는 과정; 상기 현재 상태 정보에 일치하는 축적된 데이터내의 상태 정보를 선택하고, 선택된 상태 정보를 포함하는 데이터 집합을 추출하는 과정; 및 추출된 데이터 집합에 포함된 피처리물의 품질 정보를 피처리물의 현재 품질로 예측하는 과정;을 포함할 수 있다.The step of extracting the data set may include the steps of: comparing the current state information with state information in the accumulated data using a neural network based on artificial intelligence; Selecting state information in the accumulated data corresponding to the current state information, and extracting a data set including the selected state information; And predicting quality information of the object to be processed included in the extracted data set with the current quality of the object to be processed.
축적된 데이터내에 상기 현재 상태 정보와 일치하는 상태 정보가 없는 경우, 축적된 데이터 내에서, 상기 현재 상태 정보와 가장 유사한 상태 정보를 포함하는 데이터 집합을 추출할 수 있다.If there is no state information matching the current state information in the accumulated data, a data set including state information most similar to the current state information can be extracted in the accumulated data.
상기 예측된 품질을 출력하는 과정 이후에, 상기 예측된 품질이 변동 및 비정상으로 출력되는 경우 그에 대한 원인 정보를 함께 출력하는 과정; 출력된 원인 정보를 활용하여 피처리물 처리 설비의 적어도 일부를 제어하는 과정;을 더 포함할 수 있다.Outputting the predicted quality, if the predicted quality is output as fluctuation and abnormality, together with the cause information; And controlling at least a part of the object treatment facility using the output cause information.
상기 피처리물의 품질을 예측하는 과정 이후에, 현재 상태 정보와 관련된 피처리물의 실제 품질 정보를 획득하는 과정; 현재 상태 정보 및 실제 품질 정보를 데이터화하여, 축적된 데이터에 추가하는 과정;을 더 포함할 수 있다.Acquiring actual quality information of the object to be processed associated with the current state information after the process of predicting the quality of the object to be processed; And adding the current state information and the actual quality information to the accumulated data.
상기 피처리물은 소결광을 포함하고, 상기 처리 경로는 소결기의 대차가 통과 가능한 소결 구간을 포함할 수 있다.The object to be treated includes sintered ores, and the treatment path may include a sintering section through which a sludge passage of the sintering machine can pass.
본 발명의 실시 형태에 따르면, 피처리물의 처리 실적을 데이터화하여 축적하고, 인공지능 기반의 심층 신경망을 이용하여, 축적된 데이터를 기반으로 피처리물의 품질을 정확하게 예측할 수 있다.According to the embodiment of the present invention, the processing performance of the object to be processed can be recorded and accumulated, and the quality of the object to be processed can be accurately predicted based on the accumulated data using the artificial intelligence-based in-depth neural network.
예컨대 소결기에서 수행되는 소결광 제조 공정(이하, "소결 공정")에 적용되면, 소결 공정의 각종 처리 실적을 데이터화하여 축적하고, 딥러닝(deep learning) 기반의 콘볼루션 신경망(convolutional neural network, CNN)을 이용하여, 축적된 데이터내에서, 현재의 소결광 상태 정보와 유사 내지 일치하는 상태 정보가 포함된 데이터 집합을 추출한다. 그리고 추출된 데이터 집합에 포함된 소결광의 품질 정보를 현재 소결 공정에서의 소결광 품질로 정확하게 예측할 수 있다.For example, when the present invention is applied to a sintering process (hereinafter referred to as "sintering process") performed in a sintering machine, various processing results of the sintering process are accumulated and stored, and a deep learning based convolutional neural network ) Is used to extract a data set including the state information similar or identical to the current sintered-state information in the accumulated data. The quality information of the sintered ores contained in the extracted data set can be accurately predicted by the sintering quality of the current sintering process.
즉, 공정 중 딜레이 없이 소결광의 품질을 객관적으로 예측하고, 그 결과를 기반으로 소결 설비의 운전 조건의 수정을 위한 정확한 가이드를 제공하여, 소결광의 품질 변동을 방지하고, 균일한 소결광 품질을 확보할 수 있다.In other words, by objectively predicting the quality of the sintered ore without delay in the process and providing accurate guides for correcting the operating conditions of the sintering facility based on the result, it is possible to prevent fluctuations in the quality of the sintered ore and ensure uniform sintering quality .
또한, 정확한 가이드에 의해 소결기를 합리적으로 운전할 수 있어, 결합재비 저감, 함철부산물 증사용 및 이산화탄소 가스의 저감 등이 가능하여, 비용 절감이 가능해 진다.In addition, the sintering machine can be rationally operated by an accurate guide, and it is possible to reduce the cost of the joint, reduce the amount of the by-product and the carbon dioxide gas, and reduce the cost.
도 1은 본 발명의 실시 예에 따른 품질 예측 장치 및 피처리물 처리 설비의 개략도이다.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view of a quality predicting device and an object to be treated according to an embodiment of the present invention. Fig.
도 2는 본 발명의 실시 예에 따라 축적되는 데이터의 일 예시를 보여주는 도면이다.2 is a diagram showing an example of data accumulated according to an embodiment of the present invention.
도 3은 본 발명의 실시 예에 따라 심층 신경망을 이용하여 데이터 세트를 추출하는 과정의 일 예시를 보여주는 도면이다.FIG. 3 is a diagram illustrating an example of a process of extracting a data set using a neural network according to an embodiment of the present invention. Referring to FIG.
도 4은 본 발명의 실시 예에 따른 품질 예측 방법의 순서도이다.4 is a flowchart of a quality estimation method according to an embodiment of the present invention.
도 5는 본 발명의 실시 예에 따른 품질 예측 결과의 정확도를 설명하기 위한 그래프이다.5 is a graph for explaining the accuracy of a quality prediction result according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여, 본 발명의 실시 예를 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니고, 서로 다른 다양한 형태로 구현될 것이다. 단지 본 발명의 실시 예는 본 발명의 개시가 완전하도록 하고, 해당 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 본 발명의 실시 예를 설명하기 위하여 도면은 과장될 수 있고, 도면상의 동일한 부호는 동일한 요소를 지칭한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described below, but may be embodied in various forms. It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. BRIEF DESCRIPTION OF THE DRAWINGS The drawings may be exaggerated for purposes of describing embodiments of the present invention, wherein like reference numerals refer to like elements throughout.
본 발명의 실시 예에 따른 품질 예측 장치 및 방법은, 피처리물의 처리 실적을 데이터화하여 축적할 수 있고, 축적된 데이터를 기반으로 피처리물의 품질을 정확하게 예측할 수 있는 기술적 특징을 제시한다.An apparatus and method for predicting quality according to an embodiment of the present invention can accumulate processing data of an object to be processed and can provide a technical feature capable of accurately predicting the quality of the object to be processed based on the accumulated data.
본 발명의 실시 예에 따른 품질 예측 장치 및 방법은, 제철소의 소결 공정에 적용되며, 그 밖의 각종 피처리물 처리 공정에도 적용될 수 있다. 이하, 소결 공정을 기준으로, 본 발명의 실시 예를 설명한다.The apparatus and method for predicting quality according to an embodiment of the present invention are applied to a sintering process of a steel mill and can be applied to various other treatments. Hereinafter, embodiments of the present invention will be described with reference to a sintering process.
도 1은 본 발명의 실시 예에 따른 품질 예측 장치 및 피처리물 처리 설비를 도시한 개략도이다. 도 1을 참조하면, 본 발명의 실시 예에 따른 피처리물 처리 설비는, 배합 원료를 저장하고, 피처리물 처리 경로(이하, "처리 경로")의 시작 지점의 상측에 배치되는 호퍼(10), 피처리물 처리 공정(이하, "처리 공정")이 진행되는 방향으로, 호퍼(10)에서 이격되는 점화로(20), 처리 경로에 설치되고, 처리 공정이 진행되는 방향으로 주행하고, 호퍼(10)로부터 배합 원료를 공급받아 내부에 적재하는 대차들(20), 처리 경로의 하부에 설치되고, 대차들(30)의 내부에 연통하는 윈드 박스들(40), 일측이 윈드 박스들(40)에 연결되는 덕트(81), 덕트(81)의 타측에 설치되는 집진기(82), 덕트(81)의 일측에서 타측을 향하는 방향으로, 집진기(82)로부터 이격되어 덕트(81)에 설치되는 블로어(83)를 포함할 수 있다.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a quality predicting device and an object to be treated in accordance with an embodiment of the present invention. Fig. 1, the object to be treated according to an embodiment of the present invention includes a hopper 10 (hereinafter referred to as a " processing path " (20) which is spaced apart from the hopper (10) in the direction in which the object to be treated (hereinafter referred to as the "processing step") proceeds, Batches (20) for receiving the blend material from the hopper (10) and loading it therein, windboxes (40) installed in the lower part of the processing path and communicating with the inside of the bogies (30) A dust collector 82 provided on the other side of the duct 81 and a duct 81 connected to the dust collector 82 and a duct 81 connected to the dust collector 82, And a blower 83 installed therein.
배합 원료는 피처리물을 제조하기 위한 원료일 수 있다. 예컨대 배합 원료는 소결광을 제조하기 위한 원료일 수 있다. 이 경우, 배합 원료는 분철광석, 석회석, 분코크스 및 무연탄을 포함할 수 있다. 피처리물은 소결광일 수 있고, 처리 공정은 소결 공정일 수 있다. 물론, 이를 특별히 한정할 필요는 없다.The compounding raw material may be a raw material for producing the object to be treated. For example, the blending raw material may be a raw material for producing the sintered ores. In this case, the blending raw materials may include minute iron ore, limestone, minute coke and anthracite. The material to be treated may be an sintered ore, and the treatment process may be a sintering process. Of course, this need not be particularly limited.
호퍼(10)는 후술하는 장입 구간상에 설치된다. 호퍼(10)는 하부에 드럼 피더 및 슈트가 구비된다. 드럼 피더 및 슈트는 호퍼(10)내의 배합 원료를 대차들(30)의 내부에 수직 편석하게 장입시킨다. 장입 구간에서 후술하는 원료층이 형성된다.The hopper 10 is installed on a loading zone to be described later. The hopper 10 is provided with a drum feeder and a chute at a lower portion thereof. The drum feeder and the chute load the mixing material in the hopper 10 vertically segregated in the inside of the carriage 30. [ A material layer to be described later is formed in a charging zone.
대차들(30)의 내부에 장입된 배합 원료를 원료층이라고 한다. 원료층을 소결 베드라고 지칭할 수도 있다. 원료층은 처리 경로를 처리 공정이 진행되는 방향으로 이동하면서 열처리 예컨대 소결되고, 처리 경로의 종료 지점인 배광부에서 소결 케이크 형태로 배광된다.The blended raw materials charged into the carts 30 are referred to as raw material layers. The raw material layer may be referred to as a sintered bed. The raw material layer is heat-treated, for example, sintered while moving the treatment path in the direction in which the treatment process proceeds, and is distributed in the form of a sintered cake in the light-shielding portion, which is the end point of the treatment path.
점화로(20)는 후술하는 점화 구간상에 설치된다. 점화로(20)는 연료를 공급받을 수 있다. 점화로(20)를 연료를 연소시켜 화염을 생성하고, 화염을 대차들(30)의 내부에 분사한다. 화염은 원료층의 표면에 착화되어 연소대를 형성한다. 즉, 점화 구간에서 연소대가 형성된다.The ignition furnace 20 is installed on the ignition section to be described later. The ignition furnace 20 can be supplied with fuel. The fuel is burned in the ignition furnace 20 to generate a flame and the flame is injected into the inside of the bogies 30. [ The flame is ignited on the surface of the raw material layer to form a combustion zone. That is, a combustion zone is formed in the ignition zone.
후술하는 소결 구간에서, 연소대가 원료층의 표면에서 상부층을 거쳐 하부층으로 이동할 수 있다. 연소대가 이동하는 동안 연소대 부근에서는 석회석과 분철광석이 저융점 화합물을 형성하는 반응인 소결 반응이 진행된다. 이 반응에 의해 원료층이 소결광으로 소결될 수 있다. 즉, 소결 구간에서 원료층이 소결된다.In the sintering section to be described later, the combustion zone can move from the surface of the raw material layer to the lower layer via the upper layer. During the combustion zone movement, the sintering reaction, which is a reaction in which limestone and mined iron ores form a low melting point compound, proceeds near the combustion zone. By this reaction, the raw material layer can be sintered into sintered ores. That is, the raw material layer is sintered in the sintering section.
대차들(30)은 내부가 상측으로 개방되고, 바닥에는 개구들이 형성된다. 개구들을 통하여 대차들(30)의 내부가 윈드 박스들(40)에 연통한다. 윈드 박스들(40)에 의해 대차들(30)의 내부가 하방으로 흡인된다. 대차들(30)은 엔드리스로 서로 연결된다. 대차들(30)을 지지하기 위하여 컨베이어가 설치될 수 있다. 예컨대 처리 공정이 진행되는 방향으로 컨베이어가 설치되고, 컨베이어를 둘러 대차들(30)이 설치된다. 컨베이어의 상부측이 처리 경로를 형성하고, 컨베이어의 하부측이 회송 경로를 형성한다. 대차들(30)은 처리 공정이 진행되는 방향으로 처리 경로를 주행할 수 있다. 그리고 대차들(30)은 배광부를 통과하며 피처리물 예컨대 소결광을 케이크의 형태로 배광하고, 회송 경로로 진입할 수 있다. 이어서, 대차들(30)은 처리 공정이 진행되는 방향의 반대 방향으로 회송 경로를 주행하고, 처리 경로의 시작 지점으로 복귀할 수 있다.The bogies (30) are opened upward, and openings are formed at the bottom. Through the openings, the inside of the bogies (30) communicates with the wind boxes (40). The inside of the carriages 30 is sucked downward by the wind boxes 40. [ Bogies 30 are connected to each other endlessly. A conveyor may be installed to support the carts 30. For example, a conveyor is installed in the direction in which the treatment process proceeds, and the conveyors 30 are installed. The upper side of the conveyor forms a processing path, and the lower side of the conveyor forms a conveyance path. The carts 30 can travel on the treatment path in the direction in which the treatment process proceeds. Then, the carts 30 pass through the light distribution portion, distribute the object to be processed, such as sintered light, in the form of a cake, and enter the return path. Then, the carts 30 can travel on the return path in the direction opposite to the direction in which the treatment process proceeds, and return to the starting point of the treatment path.
처리 경로(A)는 복수의 구간을 포함한다. 복수의 구간은 장입 구간(B), 점화 구간(C) 및 소결 구간(D)을 포함한다. 이때, 처리 공정이 진행되는 방향으로, 장입 구간(B), 점화 구간(C) 및 소결 구간(D)의 순서일 수 있다. 원료층은 소결 구간(D)을 통과하면서 소결될 수 있다. 한편, 소결 구간(D)은 제1 구간(D1), 제2 구간(D2) 및 제3 구간(D3)을 포함한다. 이들 구간을 나누는 기준은 다양할 수 있다. 예를 들어, 소결 구간(D)의 연장 길이를 기준으로 하거나, 배가스 온도가 최대인 지점을 기준으로 하거나, 또는, 원료층내의 고체 연료인 무연탄의 연소가 종료되는 지점을 기준으로 할 수 있다. 이 외에도 기준은 다양할 수 있고, 이를 실시 예에서 특별히 한정할 필요가 없다.The processing path A includes a plurality of sections. The plurality of sections include a charging section B, an ignition section C, and a sintering section D. At this time, it may be the order of the charging zone B, the ignition zone C, and the sintering zone D in the direction in which the treatment process proceeds. The raw material layer can be sintered while passing through the sintering section (D). Meanwhile, the sintering section D includes a first section D1, a second section D2 and a third section D3. The criteria for dividing these sections may vary. For example, it may be based on the extension length of the sintering section D, on the basis of the point where the exhaust gas temperature is maximum, or on the point where the combustion of anthracite coal, which is solid fuel in the raw material layer, is terminated. In addition, the criteria may vary, and it is not necessary to limit it in the examples in particular.
예컨대 소결 구간(D)을 삼등분하고, 소결 구간(D)의 시작점에서 전반부 1/3 지점까지 제1 구간(D1)이라 정하고, 소결 구간(D)의 종료점에서 후반부 1/3 지점까지 제3 구간(D3)이라 정하고, 제1 구간(D1)과 제3 구간(D3)의 사이의 중간부를 제2 구간(D2)이라 정할 수 있다.For example, the sintering section D is defined as a first section D1 from the starting point of the sintering section D to the first half of the first half of the sintering section D and the third section from the end point of the sintering section D to the third half (D3), and an intermediate portion between the first section D1 and the third section D3 may be defined as the second section D2.
윈드 박스들(40)은 대차들(30)의 내부에 하방으로 흡인력을 제공한다. 이때, 윈드 박스들(40)은 블로어(83)에 의해 내부에 부압을 형성할 수 있고, 이를 이용하여 대차들(30)의 내부를 하방으로 흡인할 수 있다. 윈드 박스들(40)의 내부로 배가스가 수집된다. 배가스는 덕트(81)에 회수될 수 있다.Windboxes (40) provide suction force downward into the carriages (30). At this time, the wind boxes 40 can form a negative pressure therein by the blower 83, and the inside of the bogies 30 can be sucked downward by using the blowers. The exhaust gases are collected into the windboxes 40. The exhaust gas may be recovered to the duct 81.
피처리물 처리 설비("소결기"라고도 함)를 운전할 때, 우선, 기 수립된 운전 조건을 가지고 피처리물 처리 설비의 운전을 개시한다. 예컨대 피처리물 처리 설비의 운전을 개시하기 전에 배합 원료와 관련된 정보들을 기반으로 소결 공정의 물리 모델을 사용하여 목표하는 소결광의 품질을 달성하기 위한 운전 조건을 수립한 후, 이를 가지고 피처리물 처리 설비의 운전을 개시한다. 이때, 배합 원료와 관련된 정보들은 원료성분, 결합재비 및 무연탄비 등 다양할 수 있다. 또한, 운전 조건은 대차속도, 층후 및 장입밀도 등 다양할 수 있다.When the object to be treated (also referred to as "sintering machine") is operated, firstly, the operation of the object to be treated is started with the established operation conditions. For example, prior to commencement of the operation of the object treatment facility, a physical model of the sintering process is used based on the information related to the material mixture to establish operating conditions for achieving the desired quality of the sinter ores, The operation of the facility is started. At this time, the information related to the blended raw materials may be various, such as raw material composition, binding cost, and anthracite ratio. In addition, the operating conditions may vary, such as bed speed, bedding, and loading density.
이후, 소결광의 품질을 모니터링하면서, 그 결과를 가지고 운전 조건을 수정하며, 소결기의 운전을 계속해야 한다.Thereafter, the quality of the sintered ores is monitored, the operating conditions are modified with the result, and the operation of the sintering machine is continued.
한편, 소결 구간에서 소결광의 품질이 결정된다. 따라서, 소결광이 배광되는 시점에 예컨대 소결광의 상태 정보를 가지고 소결광의 품질을 정확하게 예측할 수 있으면, 소결광의 품질이 원하는 수준으로 유지될 수 있도록 소결기의 운전 조건을 즉시 수정할 수 있다.On the other hand, the quality of the sintered ores is determined in the sintering section. Therefore, if the quality of the sintered ores is precisely predicted at the time when the sintered ores are lighted, for example, with the state information of the sintered ores, the operating condition of the sintering machine can be modified immediately so that the quality of the sintered ores can be maintained at a desired level.
이를 위해, 본 발명의 실시 예에 따른 피처리물 처리 설비는 품질 예측 장치를 구비할 수 있다. 이때, 품질 예측 장치는 소결광의 품질을 대표할 수 있는 상태 정보들을 모니터링하며, 이를 이용하여 소결광의 품질을 정확하게 예측할 수 있다.To this end, the object to be treated according to the embodiment of the present invention may include a quality predicting device. At this time, the quality prediction apparatus monitors the state information representing the quality of the sintered ore, and can accurately predict the quality of the sintered ores.
그리고 품질 예측 장치는 품질 예측 결과를 운전 조건에 계속적으로 또는 주기적으로 반영하여 운전 조건을 수정하면서, 수정된 운전 조건으로 피처리물 처리 설비의 운전을 계속할 수 있다.And the quality predicting device can continuously operate the object treatment facility with the modified operation condition while correcting the operation condition by reflecting the quality prediction result continuously or periodically to the operation condition.
도 1을 참조하면, 본 발명의 실시 예에 따른 품질 예측 장치는, 피처리물의 상태 정보 및 상태 정보와 관련된 피처리물의 품질 정보를 데이터화하여 축적하는 저장부(600), 처리 경로에서 피처리물의 현재 상태 정보를 획득하는 측정부, 및 저장부에 축적된 데이터를 기반으로, 현재 상태 정보에 대응하는 데이터 집합을 추출하고, 데이터 집합을 이용하여 피처리물의 품질을 예측하는 품질 예측부(700)를 포함한다. 품질 예측 장치는 품질 예측부(700)에 연결되는 제어부(미도시)를 더 포함할 수 있다. 제어부는 예측된 품질에 매칭하는 원인 정보를 활용하여 피처리물 처리 설비의 적어도 일부를 제어할 수 있다. 즉, 품질 예측 장치는 피처리물 처리 장치의 운전을 위한 제어 장치로서 기능할 수 있다. 따라서, 본 발명의 실시 예에 따른 품질 예측 장치를 피처리물 처리 설비의 제어 장치라고 지칭할 수도 있다.Referring to FIG. 1, a quality prediction apparatus according to an embodiment of the present invention includes a storage unit 600 for storing and accumulating quality information of an object to be processed associated with status information of the object to be processed and status information, A quality estimating unit 700 for extracting a data set corresponding to the current state information based on the data stored in the storage unit and estimating the quality of the object to be processed using the data set, . The quality predicting apparatus may further include a controller (not shown) connected to the quality predicting unit 700. The control unit can control at least a part of the object treatment facility using the cause information matching the predicted quality. That is, the quality prediction apparatus can function as a control apparatus for operating the object to be treated. Therefore, the quality prediction apparatus according to the embodiment of the present invention may be referred to as a control apparatus of the object to be treated.
저장부(600)는 피처리물의 상태 정보 및 상태 정보와 관련된 피처리물의 품질 정보를 추적하고, 이를 데이터화하여 상태 정보와 함께 축적할 수 있다. 또한, 저장부(600)는 피처리물의 품질 정보에 대한 원인 정보를 추적하여 이들을 함께 저장할 수 있다. 이때, 저장부(600)는 상태 정보, 그에 따른 품질 정보 및 품질 정보에 대한 원인 정보를 매칭하여 데이터 집합으로 축적할 수 있다.The storage unit 600 may track the quality information of the object to be processed associated with the state information of the object to be processed and the state information, and may accumulate the quality information together with the state information. Also, the storage unit 600 may track the cause information about the quality information of the object to be processed and store them together. At this time, the storage unit 600 may store the status information, the corresponding quality information, and the cause information of the quality information, and accumulate them as a data set.
예컨대 수십 내지 수백회차 이상 반복되는 소결 공정의 각 회차별로 상기 정보들을 수집하며 전체 회차의 데이터 집합을 계속하여 축적하는 중에, 예컨대 소정 회차의 상태 정보가 저장부(600)에 저장되면 동일 회차의 품질 정보와 동일 회차의 원인 정보를 이 상태 정보와 매칭시켜 함께 저장한다.For example, if the state information of a predetermined number of times is stored in the storage unit 600 while collecting the information for each time of the sintering process which is repeated several tens to several hundred times or more and continuously accumulating the data set of the total number of times, The cause information of the same rotation as the information is matched with this state information and is stored together.
도 2는 본 발명의 실시 예에 따라 축적되는 데이터의 일 예시를 보여주는 도면이다.2 is a diagram showing an example of data accumulated according to an embodiment of the present invention.
도 2를 참조하면, 피처리물의 상태 정보(제3 정보)는 예컨대 소결 구간의 제3 구간(D3)에서 획득된 배가스 온도 분포, 및 배광부에서 획득된 피처리물내의 온도 분포를 포함한다. 여기서, 배가스 온도 분포는 윈드 박스들(40) 중 제3구간의 윈드 박스들의 내부에서 획득된 배가스 온도 분포를 의미한다. 또한, 피처리물내의 온도 분포는 소결 케이크의 단면에서의 적열층 분포를 의미한다. 피처리물의 상태 정보는 소결기에서 얻을 수 있는 정보로서, 이는 축적된 데이터내에 "소성 패턴(S1, S2...)"으로 저장된다. 저장부(600)는 이들 소성 패턴을 열영상 정보의 형태로 패턴화하여 저장한다. 한편, 도면에서 x축은 처리 공정의 진행 방향이고, y축은 처리 경로의 폭 방향이며, z축은 원료층의 높이 방향이다. 이때, 도 2에 제시된 배가스 온도 분포의 열영상을 보면, 열영상의 우측 부분이 배광부측이고, 좌측 부분이 배광부의 상류측 예컨대 점화로(20)측이다. 배광부의 상류측은 온도가 상대적으로 낮고 배광부측은 온도가 상대적으로 높다. 또한, 배광부의 상류측에서 배광부측으로 갈수록 온도가 점차 증가한다. 이러한 온도의 변화 상태 혹은 패턴을 배가스 온도 분포의 열영상 정보의 형태로 얻을 수 있다.2, the state information (third information) of the object to be processed includes, for example, the exhaust gas temperature distribution obtained in the third section D3 of the sintering section and the temperature distribution in the object to be processed obtained in the light-distribution section. Herein, the exhaust gas temperature distribution means the exhaust gas temperature distribution obtained inside the wind boxes of the third section of the wind boxes 40. The temperature distribution in the material to be treated means the distribution of the glowing layer at the cross section of the sintered cake. The state information of the object to be processed is information that can be obtained from the sintering machine and is stored as "firing pattern (S1, S2 ...)" in the accumulated data. The storage unit 600 patterns the plastic patterns in the form of thermal image information and stores them. On the other hand, in the drawing, the x-axis is the traveling direction of the treatment process, the y-axis is the width direction of the treatment path, and the z-axis is the height direction of the raw material layer. 2, the right portion of the thermal image is on the light pipe side, and the left side portion is on the upstream side of the light pipe portion, for example, the ignition path 20 side. The temperature on the upstream side of the light-transmitting portion is relatively low and the temperature on the light-emitting portion side is relatively high. Further, the temperature gradually increases from the upstream side of the light-directing portion to the light-directing portion side. Such a temperature change state or pattern can be obtained in the form of thermal image information of the exhaust gas temperature distribution.
피처리물의 상태 정보와 관련된 피처리물의 품질 정보(제4 정보)는 소결광의 강도, 입도, 생산성 및 소결광을 이용한 고로 공정에서의 현황(출선비 및 환원제비 등)을 포함할 수 있다. 피처리물의 품질 정보 중 강도, 입도 및 생산성은 소결광의 배광 이후 약 두시간이 지난 후, 소결광의 샘플링에 의해 획득할 수 있고, 고로 공정에서의 현황은 후속 공정인 고로 공정으로부터 획득할 수 있다. 획득된 정보들은 축적된 데이터내에 "출력 조건(O1, O2...)"으로 저장된다.The quality information (fourth information) of the article to be processed associated with the state information of the article to be treated may include the intensity, particle size, productivity of the sintered ores and the current state (exit ratio and reduction ratio) in the blast furnace process using the sintered ores. The strength, particle size and productivity among the quality information of the object to be treated can be obtained by sampling the sintered ores after about two hours after the light distribution of the sintered ores, and the status in the blast furnace process can be obtained from a blast furnace process which is a subsequent process. The acquired information is stored as "output condition (O1, O2 ...)" in the accumulated data.
피처리물의 품질 정보에 대한 원인 정보는 피처리물의 품질이 정해지게 된 원인을 추적하여 얻는 정보로서, 크게 두 가지로 나뉜다. 그중 하나는 배합 원료와 관련된 정보이고, 나머지는 소결기와 관련된 정보이다. 배합 원료 정보('제1 정보'라고 한다)는 예컨대 원료성분/입도, 결합재비/입도, 수분/생석회/무연탄비 등을 포함하며, 이는 축적된 데이터내에 "입력조건(I1, I2...)"으로 저장된다. 또한, 소결기 정보('제2 정보'라고 한다)는 예컨대 대차속도, 층후, 장입밀도, 풍량 등을 포함하며, 축적되는 데이터내에 "운전조건(P1, P2...)"으로 저장된다.The cause information of the quality information of the object to be treated is information obtained by tracking the cause of the quality of the object to be treated, and there are roughly two kinds of information. One of them is information related to the raw material of the blend, and the other is information related to the sintering machine. The mixing material information (referred to as 'first information') includes, for example, raw material components / particle size, binding ratio / particle size, water / quicklime / anthracite ratio and the like. ) &Quot;. Further, the sintering machine information (referred to as 'second information') includes, for example, a bogie speed, a layer thickness, a loading density, an air flow rate and the like and is stored in the accumulated data as the "operating condition P1, P2.
상술한 정보들을 통칭하여 피처리물의 처리 실적이라고 할 수 있다. 축적된 데이터는 이를테면 입력조건과 운전조건과 소성 패턴과 출력조건을 가진 거대한 실험 데이터의 집합으로서, 이를 품질 예측부(700)가 피처리물의 품질을 예측하기 위한 자료로 사용한다.The above-mentioned information collectively refers to the processing performance of the object to be processed. The accumulated data is, for example, a set of huge experimental data having input conditions, operating conditions, firing patterns, and output conditions, and the quality prediction unit 700 uses the data as data for predicting the quality of the material to be processed.
한편, 실시 예에서는 처리 실적들 중, 피처리물의 상태 정보가 피처리물의 품질을 대표할 수 있는 것으로 판단하고, 이를 활용하여 피처리물의 품질을 예측한다. 그 이유는 다음과 같다.On the other hand, in the embodiment, it is judged that the state information of the object to be processed can represent the quality of the object to be processed, and the quality of the object to be processed is predicted by utilizing the state information. The reason for this is as follows.
예컨대 입력조건만으로 품질 정보를 예측하면 가장 좋으나, 출력조건은 운전조건에도 영향을 받으므로 입력조건만으로는 품질 정보의 예측이 불가능하다. 그리고 입력조건과 운전조건에 의해 소결 공정의 소성결과가 변동되면, 이러한 변동은, 배가스 온도 분포와 배광부 적열층 분포에 즉시 표출된다. 즉, 소성 패턴에 입력조건과 운전조건이 모두 반영되어 있다.For example, it is best if the quality information is predicted only by the input condition, but since the output condition is influenced by the operation condition, it is impossible to predict the quality information only by the input condition. If the firing result of the sintering process varies depending on the input conditions and the operating conditions, such fluctuations are immediately expressed in the exhaust gas temperature distribution and in the distribution of the heat radiation layer. That is, both the input conditions and the operating conditions are reflected in the firing pattern.
따라서, 축적된 데이터내의 처리 실적 중 소성 패턴인 피처리물의 상태 정보를 품질 예측을 위한 지표로 하면 피처리물의 샘플링 전에 피처리물의 품질을 신속하게 예측할 수 있다.Therefore, if state information of the object to be processed, which is a plastic pattern, among the processing results in the accumulated data is used as an index for quality prediction, the quality of the object to be processed can be predicted quickly before sampling of the object to be processed.
이때, 예측의 정확성을 높이기 위해 품질 예측부(700)가 인공지능 기반의 심층 신경망을 이용한다. 이에, 피처리물의 상태 정보를 가지고 조업자가 주관적으로 예측하는 것이 아닌, 축적된 데이터를 근거로 하는 학습된 심층 신경망에 의한 객관적인 예측이 이루어질 수 있다.At this time, the quality predicting unit 700 uses the artificial intelligence-based depth network to improve the accuracy of prediction. Therefore, objective predictions can be made by the learned neural network based on the accumulated data, rather than being subjectively predicted by the operator with the state information of the object to be processed.
측정부는 처리 경로에서 피처리물의 현재 상태 정보를 획득할 수 있다. 측정부는, 처리 경로의 연장 방향에 따른, 피처리물의 배가스 온도 분포를 획득하는 제1 측정부(510), 및 처리 경로의 종료 지점에서, 처리 경로를 가로지르는 방향으로, 피처리물내의 온도 분포를 획득하는 제2 측정부(520)을 포함할 수 있다.The measuring unit can obtain the current state information of the object to be processed in the processing path. The measuring section includes a first measuring section 510 for obtaining an exhaust gas temperature distribution of the object to be processed along the extending direction of the processing path and a second measuring section 510 for determining the temperature distribution within the object to be processed And a second measurement unit 520 for acquiring the second measurement value.
제1 측정부(510)는 예컨대 온도계일 수 있고, 제3 구간(D3)에 배치될 수 있다. 제1 측정부(510)는 배가스의 온도를 측정 가능한 위치인, 예컨대 윈드 박스들(40)내에 배치될 수 있으나, 이를 특별히 한정하지는 않는다. 제1 측정부(510)는 처리 공정의 진행 방향으로 이격되어 다섯 내지 열다섯 위치에 배치되고, 또한, 처리 경로의 폭 방향으로 이격되어 다섯 내지 열 위치에 배치되어, 총 25개 내지 150개의 개수로 배치될 수 있다. 물론, 이의 배치 간격과 개수는 다양할 수 있다. 제1 측정부(510)를 이용하여, 연소대를 통과한 배가스의 온도 분포를 수평 방향으로 획득할 수 있다. 배가스의 온도는 소결광의 소결 상태에 따라 변하며, 배가스의 온도 분포를 통하여 소결광의 수평 소결 패턴 정보를 얻을 수 있다.The first measuring unit 510 may be a thermometer, for example, and may be disposed in the third section D3. The first measuring unit 510 may be disposed in, for example, the wind boxes 40, which is a position at which the temperature of the exhaust gas can be measured, but is not limited thereto. The first measuring unit 510 is disposed at five to fifteen positions spaced apart from each other in the proceeding direction of the processing process and is disposed at five to ten positions spaced apart in the width direction of the processing path, As shown in FIG. Of course, their spacing and number may vary. The first measurement unit 510 can be used to obtain the temperature distribution of the exhaust gas passing through the combustion zone in the horizontal direction. The temperature of the flue gas varies depending on the sintering condition of the sintered ores, and the horizontal sintering pattern information of the sintered ores can be obtained through the temperature distribution of the flue gas.
제2 측정부(520)는 열화상 카메라 또는 CCD 이미지 센서일 수 있다. 제2 측정부(520)는 배광부의 외측에 배치되고, 배광되는 소결 케이크의 단면을 촬용 가능하도록 설치된다. 제2 측정부(520)를 이용하여 피처리물내의 온도 분포 상세하게는 배광부에서 촬용되는 소결 케이크의 단면에서의 적열층 분포를 얻을 수 있다. 이를 소결광의 수직 소결 상태에 대한 정보라고도 한다. 적열층의 의미는 다음과 같다. 예컨대 적열층의 두께를 일정한 범위로 제어하면서 소결 공정을 수행하면, 일정한 소결광의 품질을 얻을 수 있다. 즉, 적열층의 두께 제어는 소결광의 품질과 관련이 있다.The second measuring unit 520 may be a thermal imager or a CCD image sensor. The second measuring unit 520 is disposed outside the light-directing unit and is provided so as to be able to shoot an end face of the sintered cake to be light-distribution. By using the second measuring unit 520, the temperature distribution in the object to be treated can be obtained in detail in the cross section of the sintered cake photographed by the light distribution unit. This is also referred to as information on the vertical sintering state of the sintered ores. The meaning of the glow layer is as follows. For example, when the sintering process is performed while controlling the thickness of the heat-generating layer to a certain range, the quality of the sintered ores can be obtained. That is, the thickness control of the glowing layer is related to the quality of the sintered ores.
제1 측정부(510) 및 제2 측정부(520)는 저장부(600)에 연결되며, 상태 정보를 열영상 정보의 형태로 패턴화하여 획득하고, 획득한 정보를 저장부(600)로 출력한다.The first measuring unit 510 and the second measuring unit 520 are connected to the storage unit 600. The first measuring unit 510 and the second measuring unit 520 pattern the state information in the form of thermal image information and acquire the information, Output.
저장부(600)에 축적된 데이터는 피처리물의 현재 상태 정보를 예측하기 위한 자료가 된다. 예컨대 측정부로 피처리물의 현재 상태 정보를 측정하고, 현재 상태 정보와 유사하거나 일치하는 상태 정보를 축적된 데이터내의에서 찾으면, 찾아진 상태 정보에 매칭하는 품질 정보를 출력하여 현재 상태 정보를 예측할 수 있다.The data stored in the storage unit 600 is data for predicting the current state information of the object to be processed. For example, if the current state information of the object to be processed is measured by the measuring unit and the state information similar or identical to the current state information is found in the accumulated data, the quality information matching the found state information may be output to predict the current state information .
즉, 현재 획득 가능한 소성 패턴을 매개로 과거의 실적인 축적된 데이터내에서 유사한 소성 패턴을 찾고, 이에 매칭하는 각종 실적 정보를 현재 공정에서 기대되는 실적을 예측할 수 있다. 이를 품질 예측부(700)가 수행한다.That is, it is possible to find a similar firing pattern in the accumulated data, which is the past performance by way of the currently obtainable firing pattern, and predict the performance expected in the current process as various pieces of performance information matching the firing pattern. The quality predicting unit 700 performs this.
품질 예측부(700)는 저장부(600)에 연결될 수 있다. 품질 예측부(700)는 저장부(600)에 축적된 데이터를 기반으로, 현재 상태 정보에 대응하는 데이터 집합을 추출하고, 데이터 집합을 이용하여 피처리물의 품질을 예측할 수 있다.The quality predicting unit 700 may be connected to the storage unit 600. The quality predicting unit 700 can extract the data set corresponding to the current state information based on the data stored in the storage unit 600 and predict the quality of the object to be processed using the data set.
품질 예측부(700)는 인공지능 기반의 심층 신경망을 이용하여, 데이터 집합을 추출하고, 피처리물의 품질을 예측할 수 있다. 이때, 인공지능은 딥러닝을 포함하고, 심층 신경망은 콘볼루션 신경망을 포함할 수 있다. 즉, 현재 비약적으로 발달한 인공지능의 알고리즘을 활용하여 예측의 높은 정확도를 구현할 수 있고, 정형화된 소성 패턴을 활용하여 품질 정보를 선제적으로 그리고 객관적으로 예측할 수 있다. 품질 예측부(700)에 대한 상세한 설명은 하기에서 품질 예측 방법을 설명할 때 함께 하기로 한다.The quality predicting unit 700 can extract the data set using the artificial intelligence-based in-depth neural network, and predict the quality of the object to be processed. At this time, the artificial intelligence includes deep running, and the deep neural network can include convolutional neural networks. In other words, high accuracy of predictions can be realized by utilizing the artificial intelligence algorithms that are currently developed, and the quality information can be predicted preliminarily and objectively using a formalized plastic pattern. The quality predicting unit 700 will be described in detail below when describing the quality predicting method.
제어부(미도시)는 품질 예측부에 연결된다. 제어부는 예측된 품질을 조업자가 인지 가능한 다양한 방식 예컨대 화면에 텍스트나 그래픽으로 출력하거나, 음성으로 출력한다. 또한, 제어부는 예측된 품질에 매칭하는 원인 정보를 활용하여 피처리물 처리 설비의 적어도 일부를 제어한다. 제어부는 호퍼(10), 점화로(20), 대차들(30), 블로어(83)를 제어할 수 있다. 물론, 제어부는 피처리물 처리 설비의 작동 전반을 제어할 수 있다. 제어부를 이용하여 조업자에게 품질 변동에 대한 외란 요인을 알려주고, 처리 설비를 제어하여 외란 요인을 통제할 수 있다. 제어부에 의한 제어는 특별히 한정하지 않는다. 예를 들면, 호퍼(10)의 배합 원료 불출 속도를 제어하거나, 대차들(30)의 속도를 제어하거나 점화로(20)로 공급되는 연료량을 조절하는 등의 제어 방식은 다양할 수 있다. 한편, 제어부는 측정부, 저장부(600) 및 품질 예측부(700)의 작동을 제어할 수 있다.A control unit (not shown) is connected to the quality predicting unit. The control unit outputs the predicted quality in a variety of ways that the operator can perceive, such as a text or graphic on the screen, or a voice. In addition, the control unit controls at least a part of the object treatment facility using the cause information matching the predicted quality. The control unit can control the hopper 10, the ignition path 20, the carts 30, and the blower 83. [ Of course, the control section can control the overall operation of the object to be treated. The controller can be used to notify the operator of the disturbance factor of the quality fluctuation, and to control the disturbance factor by controlling the processing facility. The control by the control unit is not particularly limited. For example, there may be a variety of control methods such as controlling the dispensing rate of the raw material mixture in the hopper 10, controlling the speed of the carts 30, or adjusting the amount of fuel supplied to the ignition passages 20. Meanwhile, the control unit may control the operation of the measurement unit, the storage unit 600, and the quality prediction unit 700.
도 3은 본 발명의 실시 예에 따라 심층 신경망을 이용하여 데이터 세트를 추출하는 과정의 일 예시를 보여주는 도면이고, 도 4은 본 발명의 실시 예에 따른 품질 예측 방법의 순서도이다. 또한, 도 5는 본 발명의 실시 예에 따른 품질 예측 결과의 정확도를 설명하기 위한 그래프이다.FIG. 3 is a diagram illustrating an example of a process of extracting a data set using a neural network according to an embodiment of the present invention, and FIG. 4 is a flowchart of a quality estimation method according to an embodiment of the present invention. 5 is a graph for explaining the accuracy of the quality prediction result according to the embodiment of the present invention.
이하, 도 1 내지 도 5를 참조하여, 본 발명의 실시 예에 따른 품질 예측 방법을 설명한다.Hereinafter, a quality prediction method according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5. FIG.
본 발명의 실시 예에 따른 품질 예측 방법은, 피처리물의 상태 정보 및 상태 정보와 관련된 피처리물의 품질 정보를 데이터화하여 축적하는 과정(S100), 처리 경로에서 피처리물을 처리하는 과정(S200), 처리 경로에서 피처리물의 현재 상태 정보를 획득하는 과정(S300), 축적된 데이터로부터, 현재 상태 정보에 대응하는 데이터 집합을 추출하고, 이를 이용하여 피처리물의 품질을 예측하는 과정(S400), 현재 상태 정보 및 그에 따라 예측된 품질을 출력하는 과정(S500)을 포함한다. 이때, 앞서 설명한 것처럼 피처리물은 소결광을 포함하고, 처리 경로는 소결기의 대차가 통과 가능한 소결 구간을 포함한다.The quality prediction method according to an embodiment of the present invention includes a step S100 of accumulating and accumulating the quality information of the object to be processed related to the state information and the state information of the object to be processed, (S400) of extracting a data set corresponding to the current state information from the accumulated data and estimating the quality of the object to be processed using the extracted data set, And outputting the current state information and the predicted quality accordingly (S500). At this time, as described above, the object to be treated includes sintered ores, and the treatment path includes a sintering section through which the sludge of the sintering machine can pass.
S100 : 피처리물의 상태 정보 및 상태 정보와 관련된 피처리물의 품질 정보를 데이터화하여 저장부(600)에 축적한다. 이때, 상태 정보 및 상태 정보와 관련된 피처리물의 품질 정보에 더하여 품질 정보에 대한 원인 정보를 매칭한 후, 매칭 결과를 데이터 집합으로 축적한다. 이의 내용은 품질 예측 장치를 설명할 때, 상세히 설명하였으므로, 설명의 중복을 피하기 위해여, 생략한다. 이 과정은 소결 공정을 반복하면서 계속하여 수행될 수 있다. 우선적으로 일정한 양의 데이터가 축적이 되면, 이하의 과정에서 품질을 예측할 수 있다.S100: The state information of the object to be processed and the quality information of the object to be processed associated with the state information are converted into data and stored in the storage unit 600. At this time, after matching the cause information of the quality information in addition to the quality information of the object to be processed associated with the status information and the status information, the matching result is accumulated as a data set. The contents thereof have been described in detail when explaining the quality predicting apparatus, and thus, are omitted in order to avoid duplication of explanation. This process can be carried out continuously by repeating the sintering process. If a certain amount of data is stored first, quality can be predicted in the following process.
S200 : 처리 경로에서 피처리물을 처리한다. 즉, 소결 공정을 수행한다. 대차들(30)에 배합 원료를 장입하고, 대차들(30)을 처리 경로로 이동시키면서 소결하여 소결광을 제조한다.S200: Process the object to be processed in the processing path. That is, the sintering process is performed. The compounding materials are charged into the carts 30, and the carts 30 are sintered while moving to the processing path to produce sintered ores.
S300 : 처리 경로에서 피처리물의 현재 상태 정보를 획득한다. 예컨대 측정부를 이용하여 피처리물의 배가스 온도 분포를 획득하고, 또한, 피처리물내의 온도 분포 즉, 배광부에서의 소결 케이크 단면 적열층 분포를 획득한다. 이때, 경로의 연장 방향으로 피처리물의 배가스 온도 분포를 열영상 정보의 형태로 패턴화하여 획득하고, 경로의 종료 지점에서 경로를 가로지르는 방향으로 피처리물내의 온도 분포를 열영상 정보의 형태로 패턴화하여 획득한다.S300: obtains the current state information of the object to be processed in the processing path. The temperature distribution of the exhaust gas of the article to be processed is obtained by using, for example, a measuring section, and the temperature distribution in the article to be processed, that is, the distribution of the sintered cake cross- At this time, the exhaust gas temperature distribution of the object to be processed is patterned and obtained in the form of thermal image information in the direction of extension of the path, and the temperature distribution in the object to be processed in the direction crossing the path at the end point of the path, And obtained by patterning.
S400 : 축적된 데이터로부터, 현재 상태 정보에 대응하는 데이터 집합을 추출하고, 이를 이용하여 상기 피처리물의 품질을 예측한다. 도 3을 참조하면, 인공지능 기반의 심층 신경망을 이용하여, 입력된 현재 상태 정보와 축적된 데이터내의 상태 정보들을 비교한다. 이때, 입력된 현태 상태 정보의 패턴을 인식하고, 데이터내의 상태 정보들의 패턴을 인식한 후, 일치하는 패턴을 찾는다. 이 과정은 딥러닝 기반의 콘볼루션 신경망을 이용하여 수행할 수 있고, 따라서, 그 정확도를 높일 수 있다. 비교 과정이 완료되면 입력된 현재 상태 정보에 일치하는 축적된 데이터내의 상태 정보를 선택하고, 선택된 상태 정보를 포함하는 데이터 집합("데이터 세트"라고도 함)을 추출한다. 도면에 표시된 것처럼 데이터 집합내에 다양한 실적들이 매칭되어 있고, 추출된 데이터 집합에 포함된 피처리물의 품질 정보를 피처리물의 현재 품질로 예측한다.S400: The data set corresponding to the current state information is extracted from the accumulated data, and the quality of the object to be processed is predicted using the data set. Referring to FIG. 3, the present state information is compared with state information in the accumulated data by using the artificial intelligence-based in-depth neural network. At this time, the pattern of the inputted current state information is recognized, and a pattern of state information in the data is recognized, and then a matching pattern is found. This process can be performed using a deep learning based convolutional neural network, thus increasing its accuracy. Upon completion of the comparison process, state information in the accumulated data matching the input current state information is selected, and a data set (also referred to as a "data set") containing the selected state information is extracted. As shown in the figure, various performances are matched in the data set, and the quality information of the object to be processed included in the extracted data set is predicted with the current quality of the object to be processed.
한편, 축적된 데이터내에 입력된 현재 상태 정보와 일치하는 상태 정보가 없는 경우, 축적된 데이터내에서, 입력된 현재 상태 정보와 가장 유사한 상태 정보를 포함하는 데이터 집합을 추출할 수 있다. 이 외에도 상태 정보들을 비교하여 데이터 집합을 추출하는 방식은 다양할 수 있다. 도면에는 배가스 온도 분포만 도시되어 있으나, 비교 과정에는 적열층 분포도 함께 사용된다.On the other hand, if there is no state information matching the current state information input in the accumulated data, it is possible to extract a data set including the state information most similar to the inputted current state information in the accumulated data. In addition to this, the method of extracting the data set by comparing the status information may be various. Although only the flue gas temperature distribution is shown in the figure, the glow layer distribution is also used in the comparison process.
S500 : 이후, 제어부를 이용하여, 입력된 현재 상태 정보 및 그에 따라 예측된 품질을 출력한다. 그 출력 방식은 다양할 수 있고, 특별히 한정하지 않는다. 예컨대 품질을 출력할 때, 소정의 범위를 기준으로 품질 값이 범위를 벗어나되 그 값이 범위의 임계치 이내이면 변동으로 출력하고, 품질 값이 범위를 벗어나되 그 값이 임계치를 초과하면 비정상으로 출력한다. 여기서 임계치는 후속하는 고로 공정의 현황에 영향을 끼칠 수 있는 정도의 품질 변동을 의미한다. 임계치는 이전 공정들을 통해서 축적된 고로 실적와 연계하여 그 값을 임의의 값으로 정할 수 있다.S500: Thereafter, the control unit is used to output the input current state information and the predicted quality accordingly. The output method may be various, and is not particularly limited. For example, when outputting quality, the quality value is out of the range based on a predetermined range. If the quality value is within a threshold value of the range, the variation is output. If the quality value is out of the range and the value exceeds the threshold value, do. Here, the threshold value means quality fluctuation to such an extent as to influence the present state of the blast furnace process. The threshold can be set to any value in conjunction with the blast furnace performance accumulated through previous processes.
한편, 예측된 품질을 출력하는 과정 이후에, 예측된 품질이 변동 및 비정상으로 출력되는 경우 그에 대한 원인 정보를 함께 출력한다. 그리고 출력된 원인 정보를 활용하여 제어부로 피처리물 처리 설비의 적어도 일부를 제어한다. 이 과정에 의해 피처리물의 품질이 원하는 품질로 빠르게 복귀할 수 있다.On the other hand, if the predicted quality is output as fluctuation and abnormality after the process of outputting the predicted quality, the cause information about the quality is outputted together. Then, at least a part of the object treatment facility is controlled by the control unit using the outputted cause information. By this process, the quality of the object to be processed can be quickly returned to a desired quality.
피처리물의 품질을 예측하는 과정 이후에는, 현재 상태 정보와 관련된 피처리물의 실제 품질 정보를 획득한다. 예컨대 제조된 소결광을 샘플링하여 실제 품질 정보를 획득한다. 이후, 현재 상태 정보 및 실제 품질 정보를 데이터화하여, 축적된 데이터에 추가한다. 이에, 축적된 데이터가 점차 풍부해지면서 계속하여 보강될 수 있다.After the process of predicting the quality of the object to be processed, actual quality information of the object to be processed associated with the current state information is obtained. For example, the produced sintered ores are sampled to obtain actual quality information. Then, the current state information and the actual quality information are converted into data and added to the accumulated data. Thus, the accumulated data can be continuously reinforced as it becomes richer.
도 5를 참조하면, 실시 예에 따라 소결 공정을 진행하면서 딥러닝 기반의 콘볼루션 신경망 중 어느 한 알고리즘을 적용하여 피처리물의 품질을 예측하고, 실제 품질을 추적한 후, 예측된 품질과 실제 품질을 비교하여 그 오차를 도시하였다.Referring to FIG. 5, a sieving process is performed and an algorithm of a deep learning-based convolution neural network is applied to predict the quality of an object to be processed, actual quality is tracked, And the error is shown.
도 5의 그래프 가로축은 낙하강도의 오차를 나타내고, 세로축에 경우의 수를 나타낸다. 낙하강도의 오차가 ±0.4 이내가 약 61%의 정확도를 나타내고, ±1.0 이내가 90%의 정확도를 나타낸다. 데이터가 많이 쌓이고 학습알고리즘이 추가되면 정확도는 향상될수 있다. 실시 예에 적용되는 인공지능 알고리즘으로서, 품질 정보의 질 및 개수에 따라 일반적인 머쉰러닝 알고리즘부터 패턴인식에 강점을 보이는 CNN 등이 적합함을 알 수 있다.The horizontal axis of the graph in Fig. 5 represents the error of the drop strength, and the vertical axis represents the number of cases. When the drop strength error is within ± 0.4, the accuracy is about 61% and within ± 1.0, it is 90%. Accuracy can be improved if more data is accumulated and learning algorithms are added. As an artificial intelligence algorithm applied to the embodiment, it can be seen that CNN which is strong in pattern recognition is suitable from general machine learning algorithm according to the quality and number of quality information.
본 발명의 상기 실시 예는 본 발명의 설명을 위한 것이고, 본 발명의 제한을 위한 것이 아니다. 본 발명의 상기 실시 예에 개시된 구성과 방식은 서로 결합하거나 교차하여 다양한 형태로 변형될 것이고, 이 같은 변형 예들도 본 발명의 범주로 볼 수 있음을 주지해야 한다. 즉, 본 발명은 청구범위 및 이와 균등한 기술적 사상의 범위 내에서 서로 다른 다양한 형태로 구현될 것이며, 본 발명이 해당하는 기술 분야에서의 업자는 본 발명의 기술적 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.The above-described embodiments of the present invention are for the explanation of the present invention and are not intended to limit the present invention. It should be noted that the configurations and the methods disclosed in the above embodiments of the present invention may be modified into various forms by combining or intersecting with each other, and such modifications may be considered within the scope of the present invention. That is, the present invention may be embodied in various forms within the scope of the claims and equivalents thereof, and it is possible for the technician skilled in the art to make various embodiments within the scope of the technical idea of the present invention. .

Claims (16)

  1. 피처리물의 상태 정보 및 상태 정보와 관련된 피처리물의 품질 정보를 데이터화하여 축적하는 저장부;A storage unit for storing and accumulating quality information of the object to be processed associated with the state information of the object to be processed and the state information;
    피처리물 처리 경로에서 피처리물의 현재 상태 정보를 획득하는 측정부;A measurement unit for acquiring current state information of the object to be processed in the object processing path;
    상기 저장부에 축적된 데이터를 기반으로, 현재 상태 정보에 대응하는 데이터 집합을 추출하고, 상기 데이터 집합을 이용하여 상기 피처리물의 품질을 예측하는 품질 예측부;를 포함하는 품질 예측 장치.And a quality predicting unit for extracting a data set corresponding to the current state information based on the data stored in the storage unit and predicting the quality of the object using the data set.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 측정부는,Wherein the measuring unit comprises:
    상기 경로의 연장 방향에 따른, 상기 피처리물의 배가스 온도 분포를 획득하는 제1 측정부; 및A first measurement unit for obtaining an exhaust gas temperature distribution of the object to be processed along the extension direction of the path; And
    상기 경로의 종료 지점에서, 상기 경로를 가로지르는 방향으로, 상기 피처리물내의 온도 분포를 획득하는 제2 측정부;를 포함하는 품질 예측 장치.And a second measuring unit for obtaining a temperature distribution in the object to be processed in a direction across the path at an end point of the path.
  3. 청구항 2에 있어서,The method of claim 2,
    상기 제1 측정부 및 상기 제2 측정부는,Wherein the first measuring unit and the second measuring unit comprise:
    상태 정보를 열영상 정보의 형태로 패턴화하여 획득하는 품질 예측 장치.A quality prediction apparatus for patterning and acquiring state information in the form of column image information.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 저장부는,Wherein,
    상기 품질 정보에 대한 원인 정보를 함께 저장하는 품질 예측 장치.And stores cause information about the quality information together.
  5. 청구항 4에 있어서,The method of claim 4,
    상기 저장부는,Wherein,
    상태 정보, 그에 따른 품질 정보 및 품질 정보에 대한 원인 정보를 매칭하여 데이터 집합으로 축적하는 품질 예측 장치.The quality information, the quality information and the cause information for the quality information are matched and accumulated in the data set.
  6. 청구항 4에 있어서,The method of claim 4,
    상기 품질 예측부에 연결되는 제어부;를 더 포함하고,And a control unit connected to the quality predicting unit,
    상기 제어부는,Wherein,
    예측된 품질에 매칭하는 원인 정보를 활용하여 피처리물 처리 설비의 적어도 일부를 제어하는 품질 예측 장치.And controls at least a part of the object processing facility using cause information matching the predicted quality.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 품질 예측부는,The quality predicting unit,
    인공지능 기반의 심층 신경망을 이용하여, 데이터 집합을 추출하고, 상기 피처리물의 품질을 예측하는 품질 예측 장치.A quality prediction apparatus for extracting a data set using an artificial intelligence based in-depth neural network and predicting the quality of the object to be processed.
  8. 청구항 7에 있어서,The method of claim 7,
    상기 인공지능은 딥러닝을 포함하고,The artificial intelligence includes deep running,
    상기 심층 신경망은 콘볼루션 신경망을 포함하는 품질 예측 장치.Wherein the depth neural network comprises a convolutional neural network.
  9. 피처리물의 상태 정보 및 상태 정보와 관련된 피처리물의 품질 정보를 데이터화하여 축적하는 과정;A process of accumulating and accumulating the quality information of the object to be processed related to the state information of the object to be processed and the state information;
    처리 경로에서 피처리물을 처리하는 과정;Processing the object to be processed in the processing path;
    상기 처리 경로에서 피처리물의 현재 상태 정보를 획득하는 과정;Acquiring current state information of the object to be processed in the processing path;
    축적된 데이터로부터, 현재 상태 정보에 대응하는 데이터 집합을 추출하고, 이를 이용하여 상기 피처리물의 품질을 예측하는 과정;Extracting a data set corresponding to the current state information from the accumulated data and using the data set to predict the quality of the object to be processed;
    상기 현재 상태 정보 및 그에 따라 예측된 품질을 출력하는 과정;을 포함하는 품질 예측 방법.And outputting the current state information and the predicted quality according to the current state information.
  10. 청구항 9에 있어서,The method of claim 9,
    상기 상태 정보를 획득하는 과정은,The process of acquiring the status information includes:
    상기 경로의 연장 방향으로 상기 피처리물의 배가스 온도 분포를 열영상 정보의 형태로 패턴화하여 획득하는 과정;A step of patterning and obtaining an exhaust gas temperature distribution of the object to be processed in the form of thermal image information in the direction of extension of the path;
    상기 경로의 종료 지점에서 상기 경로를 가로지르는 방향으로 상기 피처리물내의 온도 분포를 열영상 정보의 형태로 패턴화하여 획득하는 과정;을 포함하는 품질 예측 방법.And patterning the temperature distribution in the object to be processed in the form of thermal image information in the direction crossing the path at the end point of the path.
  11. 청구항 9에 있어서,The method of claim 9,
    상태 정보 및 상태 정보와 관련된 피처리물의 품질 정보에 더하여 품질 정보에 대한 원인 정보를 매칭한 후, 매칭 결과를 데이터 집합으로 축적하는 품질 예측 방법.The quality information of the object to be processed associated with the status information and the status information, the cause information of the quality information, and accumulating the matching result into a data set.
  12. 청구항 9에 있어서,The method of claim 9,
    상기 데이터 집합을 추출하는 과정은,The step of extracting the data set includes:
    인공지능 기반의 심층 신경망을 이용하여, 상기 현재 상태 정보와 축적된 데이터내의 상태 정보들을 비교하는 과정;Comparing the current state information with state information in the accumulated data using an artificial intelligence based in-depth neural network;
    상기 현재 상태 정보에 일치하는 축적된 데이터내의 상태 정보를 선택하고, 선택된 상태 정보를 포함하는 데이터 집합을 추출하는 과정;Selecting state information in the accumulated data corresponding to the current state information, and extracting a data set including the selected state information;
    추출된 데이터 집합에 포함된 피처리물의 품질 정보를 피처리물의 현재 품질로 예측하는 과정;을 포함하는 품질 예측 방법.And predicting quality information of the object to be processed included in the extracted data set with the current quality of the object to be processed.
  13. 청구항 12에 있어서,The method of claim 12,
    축적된 데이터내에 상기 현재 상태 정보와 일치하는 상태 정보가 없는 경우,If there is no state information in the accumulated data that matches the current state information,
    축적된 데이터내에서, 상기 현재 상태 정보와 가장 유사한 상태 정보를 포함하는 데이터 집합을 추출하는 품질 예측 방법.And extracting a set of data including accumulated state information that is most similar to the current state information.
  14. 청구항 11에 있어서,The method of claim 11,
    상기 예측된 품질을 출력하는 과정 이후에,After the outputting of the predicted quality,
    상기 예측된 품질이 변동 및 비정상으로 출력되는 경우 그에 대한 원인 정보를 함께 출력하는 과정;If the predicted quality is output as fluctuation and abnormality, outputting the cause information together;
    출력된 원인 정보를 활용하여 피처리물 처리 설비의 적어도 일부를 제어하는 과정;을 더 포함하는 품질 예측 방법.And controlling at least a part of the object processing facility using the output cause information.
  15. 청구항 9에 있어서,The method of claim 9,
    상기 피처리물의 품질을 예측하는 과정 이후에,After the process of predicting the quality of the object to be processed,
    현재 상태 정보와 관련된 피처리물의 실제 품질 정보를 획득하는 과정;Acquiring actual quality information of the object to be processed associated with the current state information;
    현재 상태 정보 및 실제 품질 정보를 데이터화하여, 축적된 데이터에 추가하는 과정;을 더 포함하는 품질 예측 방법.And adding the current state information and the actual quality information to the accumulated data.
  16. 청구항 9에 있어서,The method of claim 9,
    상기 피처리물은 소결광을 포함하고,Wherein the object to be processed comprises an sintered ore,
    상기 처리 경로는 소결기의 대차가 통과 가능한 소결 구간을 포함하는 품질 예측 방법.Wherein the treatment path includes a sintering zone through which the sludge bed can pass.
PCT/KR2018/014981 2017-11-30 2018-11-29 Quality prediction device and method WO2019107980A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170162903A KR102074359B1 (en) 2017-11-30 2017-11-30 Apparatus and Method for quality prediction
KR10-2017-0162903 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019107980A1 true WO2019107980A1 (en) 2019-06-06

Family

ID=66665189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014981 WO2019107980A1 (en) 2017-11-30 2018-11-29 Quality prediction device and method

Country Status (2)

Country Link
KR (1) KR102074359B1 (en)
WO (1) WO2019107980A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112941307A (en) * 2021-01-28 2021-06-11 山西太钢不锈钢股份有限公司 Control method for stabilizing sintering process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230037921A (en) 2021-09-10 2023-03-17 주식회사 포스코 Apparatus and method for pridicting defect rate of manufacturing quality

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050288812A1 (en) * 2004-06-03 2005-12-29 National Cheng Kung University Quality prognostics system and method for manufacturing processes
JP2009070227A (en) * 2007-09-14 2009-04-02 Jfe Steel Kk Quality prediction device, quality prediction method, and method for manufacturing product
KR101151677B1 (en) * 2010-12-30 2012-08-07 서울대학교산학협력단 Method and apparatus for predicting system failure and grading status of power distribution panel system
KR20140014459A (en) * 2012-07-24 2014-02-06 주식회사 포스코 Apparatus for forecasting a slab quality and method of thereof
KR20170047503A (en) * 2015-10-23 2017-05-08 주식회사 포스코 Apparatus and Method for Manufacturing Sintered Ore

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761050B2 (en) 2012-01-24 2015-08-12 新日鐵住金株式会社 Magnetic component measurement method
KR101442983B1 (en) 2013-07-30 2014-11-03 주식회사 포스코 Device and method for controlling ventilation of sintering machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050288812A1 (en) * 2004-06-03 2005-12-29 National Cheng Kung University Quality prognostics system and method for manufacturing processes
JP2009070227A (en) * 2007-09-14 2009-04-02 Jfe Steel Kk Quality prediction device, quality prediction method, and method for manufacturing product
KR101151677B1 (en) * 2010-12-30 2012-08-07 서울대학교산학협력단 Method and apparatus for predicting system failure and grading status of power distribution panel system
KR20140014459A (en) * 2012-07-24 2014-02-06 주식회사 포스코 Apparatus for forecasting a slab quality and method of thereof
KR20170047503A (en) * 2015-10-23 2017-05-08 주식회사 포스코 Apparatus and Method for Manufacturing Sintered Ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112941307A (en) * 2021-01-28 2021-06-11 山西太钢不锈钢股份有限公司 Control method for stabilizing sintering process

Also Published As

Publication number Publication date
KR20190063836A (en) 2019-06-10
KR102074359B1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
WO2019124768A1 (en) Sintering operation control apparatus and method therefor
WO2019107980A1 (en) Quality prediction device and method
JP5298634B2 (en) Quality control method for sintered ore
KR20010032770A (en) Control of cement clinker production by analysis of sulfur content in the end product
JP3916450B2 (en) Combustion control method and apparatus for refuse incinerator
WO2020027385A1 (en) System for predicting residual tapping amount of blast furnace and method therefor
JP2001323326A (en) Sintering machine operating method
WO2018101645A1 (en) Air permeability measuring device and sintering apparatus
CA1043110A (en) Method for the collection of dust of a high zinc content during the production of reduced iron pellets
JPH11325740A (en) Grate kiln iron ore pellet firing device
WO2017159962A1 (en) Sintering apparatus and sintering method
WO2018074783A1 (en) Exhaust gas processing apparatus and processing method
CN103717763A (en) Method and regulator for adjusting the burn-through point in a sintering machine
KR100406358B1 (en) Flue gas recirculation type two story iron ore sintering method and flue gas recirculation type two story iron ore sintering apparatus
WO2014169442A1 (en) Downstream type tunnel kiln for coal-based direct reduced iron and production process therefor
WO2017078429A1 (en) Apparatus and method for charging raw material
KR101462548B1 (en) Apparatus for manufacturing sintered ore and method for manufacturing sintered ore using the same
CN111947462B (en) Sintering machine charge level image analysis system and method
KR100226885B1 (en) Iron ore sintering method to recover sensible heat of exhausted gas and device therefor
WO2019124790A1 (en) Apparatus and method for producing sintered ore
KR100896569B1 (en) An Apparatus for Controlling the Sub Gate in Sintering Facilities
KR100205468B1 (en) Exhausted gas circulation iron-ore sintering apparatus
CN111947463B (en) Sintering machine charge level image analysis system and method
JP3179311B2 (en) Operating method of coke dry fire extinguishing equipment
KR970010803B1 (en) Control method of sintering finish point

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883599

Country of ref document: EP

Kind code of ref document: A1