WO2019124343A1 - Moving body - Google Patents

Moving body Download PDF

Info

Publication number
WO2019124343A1
WO2019124343A1 PCT/JP2018/046500 JP2018046500W WO2019124343A1 WO 2019124343 A1 WO2019124343 A1 WO 2019124343A1 JP 2018046500 W JP2018046500 W JP 2018046500W WO 2019124343 A1 WO2019124343 A1 WO 2019124343A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
detected
coordinate system
unit
movement
Prior art date
Application number
PCT/JP2018/046500
Other languages
French (fr)
Japanese (ja)
Inventor
洋人 坂原
Original Assignee
株式会社ダイヘン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイヘン filed Critical 株式会社ダイヘン
Publication of WO2019124343A1 publication Critical patent/WO2019124343A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to a mobile that performs obstacle detection.
  • a distance measuring sensor is used to measure the distance to a surrounding object, and an obstacle is detected using the measurement result (see, for example, Patent Document 1).
  • an obstacle is detected in such a manner, the mobile body decelerates or stops, for example, to prevent a collision with the obstacle.
  • movement control in accordance with obstacle detection in the moving body, safer movement can be realized.
  • the moving object when the moving object enters a narrow passage or passes through a narrow T-junction, the moving object may become inoperable by detecting the wall as an obstacle.
  • obstacles such as human beings present in the mobile environment, there is a demand for avoiding collision properly.
  • the present invention has been made to solve the above-described problems, and when a moving object passes through a narrow passage or the like, movement can not be restricted by obstacle detection, and a person or the like is detected as an obstacle. It is an object of the present invention to provide a mobile body whose safety can be improved by appropriately avoiding a collision.
  • a mobile is a mobile that moves autonomously, and uses a distance measurement sensor that measures the distance to surrounding objects in a plurality of directions, and measurement results by the distance measurement sensor
  • Obstacle detection unit that detects an obstacle
  • a movement mechanism that moves a moving object
  • a movement control unit that controls the movement mechanism to prevent a collision with the obstacle detected by the obstacle detection unit
  • world coordinates A map storage unit in which a map indicating the position of an obstacle in the system is stored, a current position acquisition unit for acquiring a current position of a moving object, and an obstacle detected by an obstacle detection unit using the current position,
  • the movement control unit performs different control on an obstacle according to the judgment result of the judgment unit.
  • control of movement can be made different for known obstacles shown by the map and unknown obstacles. Therefore, for example, when an unknown obstacle is detected, the vehicle stops or decelerates even if the obstacle is far, and when a known obstacle is detected, the obstacle is close. It is also possible to control so as not to stop or decelerate until it is reached. As a result, for example, it is possible to reduce the restriction of movement due to the wall being detected as an obstacle when the moving object passes through a narrow passage, etc. You will be able to slow down.
  • the movement control unit performs control for preventing a collision when the distance to the detected obstacle is shorter than the distance threshold, and the detected known obstacle
  • the distance threshold for may be shorter than the distance threshold for a detected unknown obstacle.
  • the movement control unit may avoid the obstacle by the potential method when the detected obstacle is known.
  • the potential method it is possible to realize movement that bypasses obstacles, so that movement is not inhibited by known obstacles such as walls. it can.
  • the obstacle detection unit detects an obstacle in the local coordinate system of the mobile unit, and the determination unit performs local coordinate of the position of the obstacle in the world coordinate system indicated by the map. It may be transformed to the position of the system and the determination may be made in the local coordinate system.
  • the determination unit performs local coordinate of the position of the obstacle in the world coordinate system indicated by the map. It may be transformed to the position of the system and the determination may be made in the local coordinate system.
  • the obstacle detection unit is configured to detect an obstacle in the local coordinate system of the mobile unit
  • the determination unit is configured to detect the obstacle in the local coordinate system detected by the obstacle detection unit.
  • the position may be converted to a position in the world coordinate system, and the determination may be made in the world coordinate system.
  • the determination unit determines that the obstacle is known when the obstacle detected by the obstacle detection unit and the obstacle shown by the map are closer than the error threshold. You may With such a configuration, even if an error is included in the acquisition of the current position, it is possible to determine whether the obstacle is known or not, in consideration of the error.
  • the control of movement can be made different for known and unknown obstacles indicated by the map, for example, when the mobile passes through a narrow passage etc. While being able to reduce the restriction of movement by detecting a known obstacle such as a wall, it becomes possible to appropriately stop and decelerate an unknown obstacle such as a human.
  • Block diagram showing the configuration of a mobile according to an embodiment of the present invention Flow chart showing operation of mobile according to the same embodiment
  • a diagram showing an example of a map in the embodiment The figure which shows an example of the detection result of the obstacle in the embodiment.
  • the figure which shows an example of the detection result of the obstacle in the embodiment The figure which shows an example of the local coordinate system which shows the detected obstacle and the obstacle on a map in the same embodiment.
  • Diagram for explaining movement control in the embodiment Diagram for explaining movement of mobile in the same embodiment
  • the moving body according to the present embodiment is controlled with respect to movement performed when an obstacle is detected with respect to a known obstacle shown by a map and an unknown obstacle such as a human present in the moving environment of the moving body. It is different.
  • FIG. 1 is a block diagram showing the configuration of a mobile unit 1 according to the present embodiment.
  • the mobile unit 1 according to the present embodiment moves autonomously, and includes the moving mechanism 11, the distance measurement sensor 12, the obstacle detection unit 13, the current position acquisition unit 14, and the map storage unit 15.
  • a determination unit 16 and a movement control unit 17 are provided.
  • moving the mobile unit 1 autonomously may be moving to a destination based on its own judgment instead of moving according to an operation instruction that the mobile unit 1 receives from a user or the like.
  • the destination may be, for example, manually determined or automatically determined. Also, the movement to the destination may or may not be performed, for example, along the movement path.
  • to move to the destination based on its own judgment may be, for example, moving to the destination by the moving body 1 determining itself by the traveling direction, movement, stop, and the like.
  • the mobile unit 1 may move so as not to collide with an obstacle.
  • the moving body 1 may be, for example, a carriage or a moving robot.
  • the robot may be, for example, an entertainment robot, a monitoring robot, a transfer robot, a cleaning robot, or a robot for capturing a moving image or a still image. , May be other robots.
  • the moving mechanism 11 moves the moving body 1.
  • the moving mechanism 11 may or may not be capable of moving the moving body 1 in all directions.
  • To be able to move in all directions means to be able to move in any direction.
  • the moving mechanism 11 may have, for example, a traveling unit (for example, a wheel or the like) and a driving unit (for example, a motor or an engine) for driving the traveling unit.
  • the traveling part may be an all-direction moving wheel (for example, an omni wheel, a mecanum wheel, or the like).
  • a movable body having an omnidirectionally moving wheel and movable in all directions see, for example, JP-A-2017-128187.
  • a known mechanism can be used as the moving mechanism 11, and thus the detailed description thereof is omitted.
  • the ranging sensor 12 measures the distances to surrounding objects in a plurality of directions.
  • the distance measurement sensor 12 may be, for example, a laser sensor, an ultrasonic sensor, a distance sensor using a microwave, a distance sensor using a stereo image captured by a stereo camera, or the like.
  • the laser sensor may be a laser range sensor (laser range scanner). Note that these distance measuring sensors are already known, and the description thereof will be omitted. In the present embodiment, the case where the distance measuring sensor 12 is a laser range sensor will be mainly described.
  • the moving body 1 may have one laser range sensor, or may have two or more laser range sensors. In the latter case, all directions may be covered by two or more laser range sensors.
  • the distance measuring sensor 12 when the distance measuring sensor 12 is an ultrasonic sensor, a distance sensor using microwaves, etc., the distances in multiple directions may be measured by rotating the distance measuring direction of the distance measuring sensor 12.
  • a plurality of distance measurement sensors 12 arranged for each direction may be used to measure the distance in a plurality of directions.
  • the distance measuring sensor 12 may measure the distance in the direction of the predetermined range, or may measure the distance in all directions.
  • the distance measuring sensor 12 may measure distances in a plurality of directions with respect to the range only in front of the moving body 1.
  • the distance measurement sensor 12 may measure distances in a plurality of directions at predetermined angular intervals for the entire circumference (360 degrees).
  • the angular interval may be constant, such as, for example, an interval of 1 degree, an interval of 2 degrees, or an interval of 5 degrees.
  • the information obtained from the distance measurement sensor 12 may be, for example, distances to surrounding objects with respect to each of a plurality of azimuth angles based on a certain direction of the mobile body 1. By using the distance, it becomes possible to know what kind of object exists around the moving body 1 in the local coordinate system of the moving body 1.
  • the obstacle detection unit 13 detects an obstacle using the distance measured by the distance measurement sensor 12. For example, when it is found that an object is present in a predetermined area near the moving body 1 by the distance measured by the distance measurement sensor 12, the obstacle detection unit 13 detects the object as an obstacle. It is also good. For example, when the distance to the surrounding object measured by the distance measurement sensor 12 becomes equal to or less than a predetermined threshold, the obstacle detection unit 13 may detect the object as an obstacle.
  • the distance to the surrounding object may be, for example, the distance from the distance measurement sensor 12 or the distance from the outer edge of the moving body 1, and the outer edge of the moving body 1 is virtually expanded It may be a distance from a position or a distance from another reference.
  • the number of areas where an obstacle is detected may be one, or two or more.
  • the area may include, for example, all directions of the mobile unit 1 or may include only the traveling direction of the mobile unit 1.
  • the obstacle detection unit 13 detects an obstacle in the local coordinate system of the moving object 1.
  • the local coordinate system of the mobile unit 1 is a coordinate system set in the mobile unit 1.
  • the obstacle detection unit 13 acquires a position (e.g., a coordinate value or the like) in the local coordinate system regarding the detected obstacle.
  • the position may, for example, be indicated by one or more points or by a line.
  • the point may be, for example, a measurement point by the distance measurement sensor 12.
  • the current position acquisition unit 14 acquires the current position of the mobile unit 1.
  • the acquisition of the current position may be performed, for example, using wireless communication, may be performed using a measurement result of the distance to the surrounding object, or may be performed by capturing an image of the surrounding , And other means capable of obtaining the current position may be used.
  • a method of acquiring the current position using wireless communication for example, a method using GPS (Global Positioning System), a method using indoor GPS, a method using a nearest wireless base station, and the like are known.
  • SLAM Simultaneous Localization and Mapping
  • the current position acquisition unit 14 uses the map to The current position may be obtained by specifying the position corresponding to the measurement result of the distance to the object, and the surrounding image is taken and the map is used to specify the position corresponding to the photographing result.
  • the position may be acquired.
  • the current position acquisition unit 14 may acquire the current position using, for example, an autonomous navigation device. Further, it is preferable that the current position acquisition unit 14 acquire the current position including the direction (direction) of the mobile body 1.
  • the direction may be indicated by an azimuth angle measured clockwise, for example, with 0 degrees to the north, and may be indicated by information indicating other directions.
  • the orientation may be obtained by an electronic compass or a geomagnetic sensor. It is assumed that the position of the mobile object 1 on the map stored in the map storage unit 15 can be specified by the current position acquired by the current position acquisition unit 14. As described later, since the map of the world coordinate system (global coordinate system) is stored in the map storage unit 15, the current position acquired by the current position acquiring unit 14 may also be a position in the world coordinate system. . Further, when the current position acquired by the current position acquisition unit 14 is not a position in the world coordinate system, it is preferable that the current position can be converted to a position in the world coordinate system.
  • the map storage unit 15 stores a map indicating the position of the obstacle in the world coordinate system.
  • the obstacle may indicate, for example, a wall or a column in a mobile environment, or a machine or device installed on a floor surface.
  • the map may be a map showing obstacles in the factory.
  • the map may be as shown in FIG. In FIG. 3, obstacles B1 to B4 are shown. Those obstacles may be, for example, a surrounding wall in the moving space of the moving body 1, a facility installed, or the like.
  • the process of storing the map in the map storage unit 15 does not matter.
  • a map may be stored in the map storage unit 15 via a recording medium, or a map transmitted via a communication line or the like may be stored in the map storage unit 15.
  • the storage in the map storage unit 15 may be temporary storage in a RAM or the like, or may be long-term storage.
  • the map storage unit 15 can be realized by a predetermined recording medium (for example, a semiconductor memory, a magnetic disk, an optical disk, etc.).
  • the determination unit 16 uses the current position acquired by the current position acquisition unit 14 to determine whether the obstacle detected by the obstacle detection unit 13 is a known one indicated by the map stored in the map storage unit 15 Determine if.
  • an obstacle indicated by a map may be referred to as a "known obstacle”
  • an obstacle not indicated by the map may be referred to as an "unknown obstacle”.
  • the determination unit 16 determines whether the obstacle detected by the obstacle detection unit 13 is a known obstacle or an unknown obstacle.
  • the determination unit 16 can specify the positional relationship between the mobile unit 1 and the obstacle on the map by using the current position of the mobile unit 1 and the map. Then, when the obstacle detected by the obstacle detection unit 13 corresponds to any obstacle on the map, it can be determined that the detected obstacle is known, and the obstacle is detected.
  • the obstacle does not correspond to any obstacle on the map, it can be determined that the detected obstacle is unknown. This determination may be made in (1) the local coordinate system or (2) in the world coordinate system, as described below.
  • the local coordinate system and the world coordinate system are each assumed to be a two-dimensional orthogonal coordinate system. Further, the local coordinate system is an xy coordinate system, and the world coordinate system is an xy coordinate system.
  • the determination unit 16 converts the position of the obstacle in the world coordinate system indicated by the map stored in the map storage unit 15 into the position in the local coordinate system, Make a decision in the coordinate system.
  • the obstacle D1 is detected by the obstacle detection unit 13.
  • the obstacle detection shall be performed in area
  • the region R11 may be, for example, a region in the traveling direction of the mobile body 1. Since the ranging result is, for example, information of a pair of angle and distance as described above, the result of plotting the result on the local coordinate system of the moving body 1 is a set of points, but in FIG. 4A, In order to simplify the explanation, it is indicated by an outline like an obstacle D1. Therefore, the contour may be considered strictly as a set of one or more measurement points. The same applies to other obstacles.
  • the current position in the world coordinate system at that time is (X1, Y1, ⁇ 1).
  • (X1, Y1) is a coordinate value indicating a position in the world coordinate system
  • ⁇ 1 is an angle indicating a direction in the world coordinate system.
  • the angle may be, for example, an angle based on the X axis or Y axis of the world coordinate system.
  • the determination unit 16 can specify the position of the obstacle on the map in the local coordinate system.
  • the identification may be performed, for example, by transforming the position of an obstacle in the world coordinate system into the local coordinate system using a transformation matrix from the world coordinate system to the local coordinate system (for example, simultaneous transformation matrix etc.) Good.
  • the determination unit 16 determines that the obstacle D1 is a known obstacle.
  • the determination as to whether the obstacle on the map matches the detected obstacle may be made, for example, depending on whether the feature points extracted from each match. A method of determining whether two figures match is already known, and the detailed description thereof is omitted.
  • the determination unit 16 may determine that the obstacle D1 is known.
  • the error threshold value E TH may be set to be larger than the error of the current position, the error of the detected position of the obstacle, and the like, for example.
  • the obstacle detection unit 13 detects the obstacle D2. Further, it is assumed that the position of the obstacle on the map in the world coordinate system is converted to the position of the local coordinate system using the current position at that time, and the result is the position of the obstacle B4 shown in FIG. 5B. Then, in the local coordinate system shown in FIG. 5B, since the obstacle B4 and the obstacle D2 have different contour positions and shapes, the determination unit 16 determines that the obstacle D2 is an unknown obstacle. It is also good.
  • the determination unit 16 converts the position of the obstacle in the local coordinate system detected by the obstacle detection unit 13 into the position in the world coordinate system, and determines in the world coordinate system I do.
  • the determination is substantially performed in the same manner as the above (1) except that the coordinate system in which the determination is made is different.
  • the determination unit 16 uses the current position (X1, Y1, ⁇ 1) at that time to determine the local coordinate system.
  • the position of the obstacle D1 at is converted to the world coordinate system.
  • the transformation may be performed, for example, using a transformation matrix (eg, simultaneous transformation matrix) from the local coordinate system to the world coordinate system.
  • a transformation matrix eg, simultaneous transformation matrix
  • the position and the shape of the obstacle D1 detected by the obstacle detection unit 13 match the position and the shape of the obstacle B4 shown on the map of the world coordinate system. Determines that the obstacle D1 is a known obstacle. In the same manner as the above description, even if the obstacle B4 on the map and the detected obstacle D1 are separated from each other, if both are close to the error threshold, the determination unit 16 determines the obstacle D1. It may be determined that is known.
  • the movement control unit 17 controls the movement of the movable body 1 by controlling the movement mechanism 11.
  • the control of movement may be control of the direction of movement of the mobile body 1 or start / stop of movement.
  • the movement control unit 17 may control the movement mechanism 11 so that the moving body 1 moves along the movement path.
  • the movement control unit 17 may control the movement mechanism 11 so that the current position acquired by the current position acquisition unit 14 is along the movement path.
  • the movement control unit 17 may control movement using a map. In that case, the mobile unit 1 may use the map stored in the map storage unit 15.
  • the movement control unit 17 controls the movement mechanism 11 so as to prevent the collision with the obstacle detected by the obstacle detection unit 13.
  • the movement control unit 17 performs different control on the obstacle in accordance with the determination result of the determination unit 16. That is, the movement control unit 17 performs different control depending on whether the detected obstacle is known or unknown.
  • the movement control unit 17 performs weaker control to prevent a collision as compared with the case where the detected obstacle is unknown. It may be Weaker control may be considered to be control in which the change from normal movement control becomes smaller. For example, deceleration is weaker control than stop and bypass control is weaker than stop.
  • the movement control when the detected obstacle is unknown may be considered to be normal movement control when the obstacle is detected.
  • control means that the method of movement control is different, and does not mean whether the result of the control is different. For example, as described later, even when using different distance threshold values for a known obstacle and an unknown obstacle, if the detected obstacle is present in the vicinity of the mobile body 1, This is because the mobile unit 1 is stopped regardless of any obstacle.
  • the movement control unit 17 does not necessarily perform control for preventing a collision for all detected obstacles.
  • the movement control unit 17 When the movement control unit 17 satisfies a predetermined condition (for example, the distance to the obstacle may be shorter than a distance threshold described later) for the detected obstacle, the movement control unit 17 Control such as deceleration or stop for preventing a collision may be performed, and when a predetermined condition is not satisfied for a detected obstacle, control for preventing a collision may not be performed.
  • a predetermined condition for example, the distance to the obstacle may be shorter than a distance threshold described later
  • the movement control unit 17 prevents the collision when the distance to the detected obstacle is shorter than the distance threshold. Control is performed, and when the distance to the detected obstacle is longer than the distance threshold, the control for preventing the collision is not performed. In addition, when the distance to the detected obstacle is the same as the distance threshold, the movement control unit 17 may or may not perform control for preventing a collision.
  • the distance threshold is different for known and unknown obstacles. That is, it is assumed that the distance threshold for the detected known obstacle is shorter than the distance threshold for the detected unknown obstacle.
  • FIG. 7 is a diagram showing an example of two distance thresholds.
  • the region R ⁇ b> 11 is a region within the radius L ⁇ b> 1 from the position of the distance measurement sensor 12.
  • the distance threshold for the unknown obstacle is set to L1
  • the distance threshold for the known obstacle is set to L2.
  • L2 is a real number smaller than L1.
  • the movement control unit 17 stops the moving body 1. Then, when the obstacle D3 shown in FIG. 7 is detected by the obstacle detection unit 13 (in this case, the obstacle D4 in FIG. 7 is not detected), the obstacle D3 is known. If the object is an obstacle, the movement control unit 17 does not stop the moving body 1 because the obstacle is farther than the distance threshold L2. On the other hand, if the obstacle D3 is unknown, it is an obstacle closer than the distance threshold L1, so the movement control unit 17 stops the moving body 1. Further, when the obstacle D4 shown in FIG. 7 is detected by the obstacle detection unit 13, it is closer than the distance threshold L1, L2 regardless of whether the obstacle is known or unknown. Since the obstacle is an obstacle, the movement control unit 17 stops the moving body 1. In the case where no obstacle is detected in the region R11, the movement control unit 17 does not stop the moving body 1.
  • the distance from the ranging sensor 12 was used as a distance to an obstacle was demonstrated here, it may not be so.
  • the distance to the obstacle for example, the distance from the outer edge of the mobile body 1 or another place may be used. Since the position of the obstacle in the local coordinate system can be specified by the distance measurement result, the position can be used to obtain the distance from the arbitrary position of the mobile body 1 to the obstacle.
  • the movement control unit 17 may perform the above-described movement control using the thus obtained distance.
  • the distance threshold may be the same for all directions or may be different for each direction. In the latter case, for example, a large distance threshold may be used for the traveling direction, and the distance may be shorter as the traveling direction is away.
  • control in the case where detection of an obstacle is performed may be performed stepwise according to the distance between the obstacle and the moving object 1. For example, when a distant obstacle is detected, the movement control unit 17 decelerates the moving body 1, and when a nearby obstacle is detected, the movement control unit 17 stops the moving body 1 You may Such may be the case when a known obstacle is detected and when an unknown obstacle is detected. Further, in the local coordinate system of the mobile unit 1, the stop area and the deceleration area for the unknown obstacle may be set, and the stop area and the deceleration area for the known obstacle may be set. The stop area of the known obstacle is set closer to the mobile body 1 than the stop area of the unknown obstacle, and the deceleration area of the known obstacle is the deceleration area of the unknown obstacle.
  • the position closer to the mobile unit 1 be set than that. Then, when an unknown obstacle exists in the stop area of the unknown obstacle, the movement control unit 17 stops the mobile body 1, and the unknown obstacle exists in the deceleration area of the unknown obstacle. In this case, the movement control unit 17 may decelerate the moving body 1. Also, when a known obstacle exists in the stop area of the known obstacle, the movement control unit 17 stops the mobile body 1, and a known obstacle exists in the deceleration area of the known obstacle. In this case, the movement control unit 17 may decelerate the moving body 1. In addition, when the moving body 1 is decelerated, the speed after the deceleration may be fixed or not. In the latter case, for example, deceleration may be performed so as to be a speed determined relative to the current speed (e.g., 50% speed, etc.).
  • the movement control unit 17 may not perform control for preventing a collision with the obstacle.
  • the distance threshold for the known obstacle may be set to the lowest value, ie, a value that is not to be subjected to control for preventing a collision against the known obstacle.
  • the distance threshold for known obstacles may be set to “0”. Since known obstacles are known in advance, the movement route etc. is usually searched or set so as to avoid the obstacles, and stop and deceleration are performed for known obstacles.
  • the movement control unit 17 avoids the obstacle by the potential method.
  • the moving mechanism 11 may be controlled to control the moving mechanism 11 so as to decelerate or stop when the detected obstacle is unknown. To avoid the obstacle may be to pass other than the position of the obstacle.
  • the potential method since the path generation is performed assuming that each obstacle generates a repulsive force, the mobile body 1 is not stopped, and bypasses each obstacle or does not approach each obstacle and goes to the destination . Therefore, the mobile object 1 can be prevented from decelerating or stopping by detection of a known obstacle, and priority can be given to reaching the destination.
  • the movement control unit 17 performs avoidance using the potential method when a known obstacle is detected, and performs deceleration or stop when an unknown obstacle is detected by appropriate control. It is believed that there is. Also, for example, when the acquisition of the current position is performed by self-positioning using the measurement result of the distance to the surrounding object, a certain degree of error exists in the current position. On the other hand, when the potential method is used, a path as far as possible from the obstacle is generated, so even if such an error exists at the current position, the mobile body 1 collides with the known obstacle at the time of actual movement.
  • the movement control unit 17 detects the position of the known obstacle detected using Rapidly exploring Random Trees (RRT), the Dijkstra method, the A * algorithm, or the like. A route to be avoided may be obtained, and the moving mechanism 11 may be controlled so that the mobile unit 1 moves along the route.
  • RRT Rapidly exploring Random Trees
  • the collision with the obstacle is prevented by the bypass of the obstacle using the potential method or RRT, etc., and the detected obstacle is unknown.
  • the collision with the obstacle is prevented by avoiding the obstacle using the potential method, and the potential is detected when the detected obstacle is unknown.
  • the collision with the obstacle is prevented by the acquisition of the route that bypasses the obstacle using non-legal RRT, Dijkstra method, A * algorithm, etc., and the movement along the route (that is, the movement to bypass the obstacle) It may be done.
  • the movement control unit 17 controls the movement of the movable body 1.
  • the control of the movement may be, for example, control of the movement toward the destination.
  • the mobile unit 1 may reach the destination from the departure place by repeatedly performing the control of the movement in step S101.
  • Step S102 The obstacle detection unit 13 determines whether an obstacle has been detected. And when an obstruction is detected, it progresses to step S103, and when that is not right, it returns to step S101.
  • the determination unit 16 performs conversion between the world coordinate system and the local coordinate system.
  • the position of the obstacle on the map of the world coordinate system may be converted to the position of the local coordinate system of the mobile 1, and the position of the obstacle detected in the local coordinate system of the mobile 1
  • the position may be converted to a position on the map of the world coordinate system.
  • Step S104 The determination unit 16 determines whether the detected obstacle is known or unknown, using the position of the obstacle after conversion in step S103. Then, if a known obstacle is detected, the process proceeds to step S105, and if an unknown obstacle is detected, the process proceeds to step S106.
  • Step S105 The movement control unit 17 performs movement control according to detection of a known obstacle. Then, the process returns to step S101.
  • this movement control may be, for example, deceleration or stop of the moving body 1 or bypassing of an obstacle using the potential method or the like.
  • the movement control unit 17 may not perform control according to the detection of the obstacle.
  • the movement control unit 17 restricts the upper limit of the movement speed to one after decelerating, and then returns to step S101 to perform movement. You may continue.
  • the upper limit of the moving speed may be released.
  • the movement control unit 17 continues the stop until the obstacle is not detected, and after the obstacle is not detected, the step is performed. It may return to S101 and resume movement.
  • Step S106 The movement control unit 17 performs movement control according to the detection of an unknown obstacle. Then, the process returns to step S101.
  • This movement control may be, for example, deceleration or stop of the moving body 1 as described above.
  • the movement control unit 17 may not perform control according to the detection of the obstacle.
  • the movement control unit 17 restricts the upper limit of the movement speed to one after deceleration, and then returns to step S101 to move. You may continue. In that case, when the obstacle is not detected (when it is determined NO in step S102), the upper limit of the moving speed may be released.
  • the movement control unit 17 continues the stop until the obstacle is not detected, and after the obstacle is not detected, the step is performed. It may return to S101 and resume movement.
  • the movement control unit 17 specifies movement control corresponding to each obstacle for each obstacle, selects the safest movement control from among the plurality of movement controls thus specified, The moving mechanism 11 may be controlled to perform the movement control.
  • the safest movement control is movement control that is the least likely to collide with an obstacle.
  • the movement control unit 17 determines that the moving body with the highest degree of safety. The stop of 1 may be selected, and the moving mechanism 11 may be controlled to stop the moving body 1. In addition, the movement control unit 17 may combine them instead of selecting any one of the plurality of movement controls identified. For example, if the identified movement control is deceleration of the moving body 1 and detouring of the detected obstacle, the movement control unit 17 decelerates the moving body 1 and detects the detected obstacle. The movement mechanism 11 may be controlled to bypass the Moreover, the order of the process in the flowchart of FIG.
  • the order of each step may be changed as long as the same result can be obtained.
  • distance measurement by the distance measurement sensor 12 and acquisition of the current position by the current position acquisition unit 14 are assumed to be repeatedly performed. Further, in the flowchart of FIG. 2, the processing is ended by the arrival of the moving object 1 at the destination, or the interruption of the power-off or the processing end.
  • FIG. 8 is a diagram for describing a specific example of movement of the mobile unit 1 according to the present embodiment.
  • mobile unit 1 starts from the position of mobile unit 1-0 and sequentially moves each position of mobile units 1-1, 1-2, and 1-3 (step S101). ).
  • the obstacle detection unit 13 detects the obstacles B1 to B3 as obstacles respectively.
  • the determining unit 16 determines that the obstacles B1 to B3 are known (steps S103 and S104).
  • the mobile unit 1 can continue to move as shown in FIG. 8 by using a short distance threshold or bypassing an obstacle according to the potential method (step S105).
  • an unknown obstacle such as a human being is detected in the middle of the movement (steps S102 to S104)
  • safety is also ensured by performing deceleration or stop of the mobile body 1 accordingly. It will be.
  • the known obstacle is obtained by performing different movement control in the case where the detected obstacle is known and the case where the detected obstacle is unknown. And appropriate obstacles can be made for unknown obstacles. Specifically, the possibility that the moving body 1 is decelerated or stopped in response to detection of a known obstacle can be reduced, and even if a known obstacle is detected, the moving body Smoother movement of 1 will be able to be continued. In addition, when an unknown obstacle is detected, safety can be ensured by decelerating or stopping the moving body 1 according to the detection.
  • determination unit 16 determines whether the detected obstacle is known or unknown in the local coordinate system of mobile unit 1 or the world coordinate system corresponding to the map. Although the case has been described, it does not have to be.
  • the determination unit 16 may make the determination in a third coordinate system that is neither the local coordinate system of the mobile body 1 nor the world coordinate system of the map. In that case, the position of the obstacle detected in the local coordinate system is converted to the third coordinate system, the position of the obstacle on the map is also converted to the third coordinate system, and the conversion results are used. The judgment may be made.
  • obstacle detection other than that may be performed.
  • obstacle detection may be performed using a contact sensor.
  • the movement control unit 17 may perform movement control such as stopping the moving body 1.
  • each processing or each function may be realized by centralized processing by a single device or a single system, or distributed processing by a plurality of devices or a plurality of systems. It may be realized by
  • the transfer of information performed between the components is performed by, for example, one of the components if the two components performing the transfer of information are physically different. It may be performed by the output of the information and the reception of the information by the other component, or if the two components that exchange the information are physically the same, one of the components It may be performed by moving from the phase of processing corresponding to to the phase of processing corresponding to the other component.
  • information related to processing executed by each component for example, information received, acquired, selected, generated, transmitted, or received by each component
  • information such as threshold values, mathematical expressions, addresses and the like used by each component in processing may be held temporarily or for a long time in a recording medium (not shown), even if not specified in the above description.
  • each component or a storage unit (not shown) may store information in the recording medium (not shown).
  • Each component or a reading unit (not shown) may read information from the recording medium (not shown).
  • the information used in each component or the like for example, information such as a threshold or an address used in processing by each component or various setting values may be changed by the user, although not explicitly stated in the description, the user may or may not be able to change the information as appropriate.
  • the change is realized, for example, by a receiving unit (not shown) that receives a change instruction from the user and a change unit (not shown) that changes the information according to the change instruction.
  • the acceptance of the change instruction by the acceptance unit (not shown) may be, for example, acceptance from an input device, reception of information transmitted via a communication line, or acceptance of information read from a predetermined recording medium .
  • the two or more components included in the mobile unit 1 may have a communication device, an input device, etc.
  • the two or more components may have a physically single device. Or may have separate devices.
  • each component may be configured by dedicated hardware, or a component that can be realized by software may be realized by executing a program.
  • each component can be realized by a program execution unit such as a CPU reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the program execution unit may execute the program while accessing the storage unit or the recording medium.
  • the program may be executed by being downloaded from a server or the like, or may be executed by being read out of a program recorded on a predetermined recording medium (for example, an optical disc, a magnetic disc, a semiconductor memory, etc.) Good.
  • this program may be used as a program that constitutes a program product.
  • the computer that executes the program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
  • the mobile by this invention the effect that it can respond appropriately also to an unknown obstacle and a known obstacle is acquired, and it is useful as a mobile which moves autonomously.

Abstract

[Problem] To solve the problem that when a moving body passes through a narrow path, movement is limited due to the fact that a wall is detected as an obstacle. [Solution] A moving object 1 is provided with a distance measuring sensor 12 for measuring the distance to an object around; an obstacle detection unit 13 for detecting an obstacle using the measurement result; a movement mechanism 11; a movement control unit 17 for controlling movement so as to avoid collision against the detected obstacle; a map storage unit 15 in which a map indicating the obstacle is stored; a present position acquisition unit 14; and a determination unit 16 for determining, using the present position, whether the detected obstacle is a known obstacle in the map. Meanwhile, the movement control unit 17 exercises different control pertaining to the obstacle in accordance with the result of determination. Thus, it is possible to differentiate control with regard to a known obstacle and an unknown obstacle and reduce limitations on movement due to the fact that a known wall is detected as an obstacle, as well as prevent collision against the known obstacle.

Description

移動体Moving body
 本発明は、障害物検知を行う移動体に関する。 The present invention relates to a mobile that performs obstacle detection.
 従来の移動体において、測距センサを用いて周囲の物体までの距離を測定し、その測定結果を用いて障害物を検知することが行われている(例えば、特許文献1参照)。そのようにして障害物を検知した場合には、移動体は、例えば、その障害物との衝突を防ぐために減速したり停止したりする。そのように、移動体において障害物検知に応じた移動制御を行うことによって、より安全な移動を実現することができる。 In a conventional moving body, a distance measuring sensor is used to measure the distance to a surrounding object, and an obstacle is detected using the measurement result (see, for example, Patent Document 1). When an obstacle is detected in such a manner, the mobile body decelerates or stops, for example, to prevent a collision with the obstacle. As such, by performing movement control in accordance with obstacle detection in the moving body, safer movement can be realized.
特開2017-97535号公報JP 2017-97535 A
 しかしながら、移動体が狭い通路に進入する際や、狭いT字路を通る際などには、壁を障害物として検知してしまうことによって、移動体が動作不能になる可能性があった。一方、移動環境に存在する人間などの障害物については、適切に衝突を回避したいという要望がある。 However, when the moving object enters a narrow passage or passes through a narrow T-junction, the moving object may become inoperable by detecting the wall as an obstacle. On the other hand, with regard to obstacles such as human beings present in the mobile environment, there is a demand for avoiding collision properly.
 本発明は、上記課題を解決するためになされたものであり、移動体が狭い通路などを通る際などにおいて、障害物検知によって移動が制限されないようにできると共に、人間などが障害物として検知された際には、適切に衝突を回避することによって安全性を向上することができる移動体を提供することを目的とする。 The present invention has been made to solve the above-described problems, and when a moving object passes through a narrow passage or the like, movement can not be restricted by obstacle detection, and a person or the like is detected as an obstacle. It is an object of the present invention to provide a mobile body whose safety can be improved by appropriately avoiding a collision.
 上記目的を達成するため、本発明による移動体は、自律的に移動する移動体であって、複数方向に関して周囲の物体までの距離を測定する測距センサと、測距センサによる測定結果を用いて障害物を検知する障害物検知部と、移動体を移動させる移動機構と、障害物検知部によって検知された障害物への衝突を防ぐように移動機構を制御する移動制御部と、ワールド座標系における障害物の位置を示す地図が記憶される地図記憶部と、移動体の現在位置を取得する現在位置取得部と、現在位置を用いて、障害物検知部によって検知された障害物が、地図によって示される既知のものかどうかを判断する判断部と、を備え、移動制御部は、判断部の判断結果に応じて、障害物に関して異なる制御を行う、ものである。
 このような構成により、地図によって示される既知の障害物と、未知の障害物について、移動の制御を異なるようにすることができる。したがって、例えば、未知の障害物が検知された場合には、その障害物が遠くに存在しても停止や減速を行い、既知の障害物が検知された場合には、その障害物が近くになるまで停止や減速を行わないというように制御することも可能になる。その結果、例えば、移動体が狭い通路などを通る際に壁が障害物として検知されることによって移動が制限されることを低減できると共に、移動環境にいる人間に対しては、適切に停止や減速を行うことができるようになる。
In order to achieve the above object, a mobile according to the present invention is a mobile that moves autonomously, and uses a distance measurement sensor that measures the distance to surrounding objects in a plurality of directions, and measurement results by the distance measurement sensor Obstacle detection unit that detects an obstacle, a movement mechanism that moves a moving object, a movement control unit that controls the movement mechanism to prevent a collision with the obstacle detected by the obstacle detection unit, and world coordinates A map storage unit in which a map indicating the position of an obstacle in the system is stored, a current position acquisition unit for acquiring a current position of a moving object, and an obstacle detected by an obstacle detection unit using the current position, The movement control unit performs different control on an obstacle according to the judgment result of the judgment unit.
With such a configuration, control of movement can be made different for known obstacles shown by the map and unknown obstacles. Therefore, for example, when an unknown obstacle is detected, the vehicle stops or decelerates even if the obstacle is far, and when a known obstacle is detected, the obstacle is close. It is also possible to control so as not to stop or decelerate until it is reached. As a result, for example, it is possible to reduce the restriction of movement due to the wall being detected as an obstacle when the moving object passes through a narrow passage, etc. You will be able to slow down.
 また、本発明による移動体では、移動制御部は、検知された障害物までの距離が距離閾値より短い場合に、衝突を防止するための制御を行うものであり、検知された既知の障害物に関する距離閾値は、検知された未知の障害物に関する距離閾値よりも短くてもよい。
 このような構成により、既知の障害物については、衝突を防止するための制御を行う範囲が狭くなり、例えば、移動体が狭い通路などを通る際に、壁が障害物として検知されることによって移動体の移動が制限される可能性を低減することができる。
Further, in the moving object according to the present invention, the movement control unit performs control for preventing a collision when the distance to the detected obstacle is shorter than the distance threshold, and the detected known obstacle The distance threshold for may be shorter than the distance threshold for a detected unknown obstacle.
With such a configuration, for known obstacles, the range for performing control to prevent a collision is narrowed, for example, by detecting a wall as an obstacle when the moving object passes through a narrow passage or the like. It is possible to reduce the possibility of the movement of the mobile being limited.
 また、本発明による移動体では、移動制御部は、検知された障害物が既知のものである場合には、ポテンシャル法によって障害物の回避を行ってもよい。
 このような構成により、既知の障害物については、ポテンシャル法を用いることによって、障害物を迂回する移動を実現することができ、壁などの既知の障害物によって移動が阻害されないようにすることができる。
Further, in the mobile object according to the present invention, the movement control unit may avoid the obstacle by the potential method when the detected obstacle is known.
With such a configuration, for known obstacles, using the potential method, it is possible to realize movement that bypasses obstacles, so that movement is not inhibited by known obstacles such as walls. it can.
 また、本発明による移動体では、障害物検知部は、移動体のローカル座標系において障害物を検知するものであり、判断部は、地図によって示されるワールド座標系における障害物の位置をローカル座標系の位置に変換し、ローカル座標系において判断を行ってもよい。
 このような構成により、障害物の検知結果の含まれるローカル座標系において、検知された障害物が既知のものであるかどうかを判断することができるようになる。
In the mobile unit according to the present invention, the obstacle detection unit detects an obstacle in the local coordinate system of the mobile unit, and the determination unit performs local coordinate of the position of the obstacle in the world coordinate system indicated by the map. It may be transformed to the position of the system and the determination may be made in the local coordinate system.
Such a configuration makes it possible to determine whether the detected obstacle is known in the local coordinate system in which the detection result of the obstacle is included.
 また、本発明による移動体では、障害物検知部は、移動体のローカル座標系において障害物を検知するものであり、判断部は、障害物検知部によって検知されたローカル座標系における障害物の位置をワールド座標系の位置に変換し、ワールド座標系において判断を行ってもよい。
 このような構成により、地図と同じ座標系において、検知された障害物が既知のものであるかどうかを判断することができるようになる。
Further, in the mobile unit according to the present invention, the obstacle detection unit is configured to detect an obstacle in the local coordinate system of the mobile unit, and the determination unit is configured to detect the obstacle in the local coordinate system detected by the obstacle detection unit. The position may be converted to a position in the world coordinate system, and the determination may be made in the world coordinate system.
Such a configuration makes it possible to determine whether the detected obstacle is known in the same coordinate system as the map.
 また、本発明による移動体では、判断部は、障害物検知部によって検知された障害物と、地図によって示される障害物とが誤差閾値より近い場合に、障害物が既知のものであると判断してもよい。
 このような構成により、現在位置の取得に誤差が含まれていても、その誤差を考慮して、障害物が既知のものであるかどうかを判断することができるようになる。
Further, in the moving object according to the present invention, the determination unit determines that the obstacle is known when the obstacle detected by the obstacle detection unit and the obstacle shown by the map are closer than the error threshold. You may
With such a configuration, even if an error is included in the acquisition of the current position, it is possible to determine whether the obstacle is known or not, in consideration of the error.
 本発明による移動体によれば、地図によって示される既知の障害物と、未知の障害物について、移動の制御を異なるようにすることができ、例えば、移動体が狭い通路などを通る際に、壁などの既知の障害物が検知されることによる移動の制限を低減できると共に、人間などの未知の障害物に対しては、適切に停止や減速を行うことができるようになる。 According to the mobile according to the present invention, the control of movement can be made different for known and unknown obstacles indicated by the map, for example, when the mobile passes through a narrow passage etc. While being able to reduce the restriction of movement by detecting a known obstacle such as a wall, it becomes possible to appropriately stop and decelerate an unknown obstacle such as a human.
本発明の実施の形態による移動体の構成を示すブロック図Block diagram showing the configuration of a mobile according to an embodiment of the present invention 同実施の形態による移動体の動作を示すフローチャートFlow chart showing operation of mobile according to the same embodiment 同実施の形態における地図の一例を示す図A diagram showing an example of a map in the embodiment 同実施の形態における障害物の検知結果の一例を示す図The figure which shows an example of the detection result of the obstacle in the embodiment. 同実施の形態における検知された障害物と地図上の障害物とを示すローカル座標系の一例を示す図The figure which shows an example of the local coordinate system which shows the detected obstacle and the obstacle on a map in the same embodiment. 同実施の形態における検知された障害物と地図上の障害物とを示すローカル座標系の一例を示す図The figure which shows an example of the local coordinate system which shows the detected obstacle and the obstacle on a map in the same embodiment. 同実施の形態における障害物の検知結果の一例を示す図The figure which shows an example of the detection result of the obstacle in the embodiment. 同実施の形態における検知された障害物と地図上の障害物とを示すローカル座標系の一例を示す図The figure which shows an example of the local coordinate system which shows the detected obstacle and the obstacle on a map in the same embodiment. 同実施の形態における検知された障害物と地図上の障害物とを示すワールド座標系の一例を示す図The figure which shows an example of the world coordinate system which shows the detected obstacle and the obstacle on a map in the embodiment. 同実施の形態における移動制御について説明するための図Diagram for explaining movement control in the embodiment 同実施の形態における移動体の移動について説明するための図Diagram for explaining movement of mobile in the same embodiment
 以下、本発明による移動体について、実施の形態を用いて説明する。なお、以下の実施の形態において、同じ符号を付した構成要素及びステップは同一または相当するものであり、再度の説明を省略することがある。本実施の形態による移動体は、地図によって示される既知の障害物と、移動体の移動環境に存在する人間などの未知の障害物とについて、障害物が検知された際に行う移動に関する制御が異なるものである。 Hereinafter, the mobile unit according to the present invention will be described using the embodiment. In the following embodiments, components and steps denoted by the same reference numerals are the same or correspond to each other, and the description thereof may not be repeated. The moving body according to the present embodiment is controlled with respect to movement performed when an obstacle is detected with respect to a known obstacle shown by a map and an unknown obstacle such as a human present in the moving environment of the moving body. It is different.
 図1は、本実施の形態による移動体1の構成を示すブロック図である。本実施の形態による移動体1は、自律的に移動するものであり、移動機構11と、測距センサ12と、障害物検知部13と、現在位置取得部14と、地図記憶部15と、判断部16と、移動制御部17とを備える。なお、移動体1が自律的に移動するとは、移動体1がユーザ等から受け付ける操作指示に応じて移動するのではなく、自らの判断によって目的地に移動することであってもよい。その目的地は、例えば、手動で決められたものであってもよく、または、自動的に決定されたものであってもよい。また、その目的地までの移動は、例えば、移動経路に沿って行われてもよく、または、そうでなくてもよい。また、自らの判断によって目的地に移動するとは、例えば、進行方向、移動や停止などを移動体1が自ら判断することによって、目的地まで移動することであってもよい。また、例えば、移動体1が、障害物に衝突しないように移動することであってもよい。移動体1は、例えば、台車であってもよく、移動するロボットであってもよい。ロボットは、例えば、エンターテインメントロボットであってもよく、監視ロボットであってもよく、搬送ロボットであってもよく、清掃ロボットであってもよく、動画や静止画を撮影するロボットであってもよく、その他のロボットであってもよい。 FIG. 1 is a block diagram showing the configuration of a mobile unit 1 according to the present embodiment. The mobile unit 1 according to the present embodiment moves autonomously, and includes the moving mechanism 11, the distance measurement sensor 12, the obstacle detection unit 13, the current position acquisition unit 14, and the map storage unit 15. A determination unit 16 and a movement control unit 17 are provided. Note that moving the mobile unit 1 autonomously may be moving to a destination based on its own judgment instead of moving according to an operation instruction that the mobile unit 1 receives from a user or the like. The destination may be, for example, manually determined or automatically determined. Also, the movement to the destination may or may not be performed, for example, along the movement path. Further, to move to the destination based on its own judgment may be, for example, moving to the destination by the moving body 1 determining itself by the traveling direction, movement, stop, and the like. Also, for example, the mobile unit 1 may move so as not to collide with an obstacle. The moving body 1 may be, for example, a carriage or a moving robot. The robot may be, for example, an entertainment robot, a monitoring robot, a transfer robot, a cleaning robot, or a robot for capturing a moving image or a still image. , May be other robots.
 移動機構11は、移動体1を移動させる。移動機構11は、例えば、移動体1を全方向に移動できるものであってもよく、または、そうでなくてもよい。全方向に移動できるとは、任意の方向に移動できることである。移動機構11は、例えば、走行部(例えば、車輪など)と、その走行部を駆動する駆動手段(例えば、モータやエンジンなど)とを有していてもよい。なお、移動機構11が、移動体1を全方向に移動できるものである場合には、その走行部は、全方向移動車輪(例えば、オムニホイール、メカナムホイールなど)であってもよい。全方向移動車輪を有し、全方向に移動可能な移動体については、例えば、特開2017-128187号公報を参照されたい。この移動機構11としては、公知のものを用いることができるため、その詳細な説明を省略する。 The moving mechanism 11 moves the moving body 1. For example, the moving mechanism 11 may or may not be capable of moving the moving body 1 in all directions. To be able to move in all directions means to be able to move in any direction. The moving mechanism 11 may have, for example, a traveling unit (for example, a wheel or the like) and a driving unit (for example, a motor or an engine) for driving the traveling unit. When the moving mechanism 11 can move the moving body 1 in all directions, the traveling part may be an all-direction moving wheel (for example, an omni wheel, a mecanum wheel, or the like). For a movable body having an omnidirectionally moving wheel and movable in all directions, see, for example, JP-A-2017-128187. A known mechanism can be used as the moving mechanism 11, and thus the detailed description thereof is omitted.
 測距センサ12は、複数方向に関して周囲の物体までの距離を測定する。測距センサ12は、例えば、レーザセンサや、超音波センサ、マイクロ波を用いた距離センサ、ステレオカメラによって撮影されたステレオ画像を用いた距離センサなどであってもよい。そのレーザセンサは、レーザレンジセンサ(レーザレンジスキャナ)であってもよい。なお、それらの測距センサについてはすでに公知であり、それらの説明を省略する。本実施の形態では、測距センサ12がレーザレンジセンサである場合について主に説明する。また、移動体1は、1個のレーザレンジセンサを有していてもよく、または、2個以上のレーザレンジセンサを有していてもよい。後者の場合には、2個以上のレーザレンジセンサによって、全方向がカバーされてもよい。また、測距センサ12が超音波センサや、マイクロ波を用いた距離センサなどである場合に、測距センサ12の測距方向を回転させることによって複数方向の距離を測定してもよく、複数方向ごとに配置された複数の測距センサ12を用いて複数方向の距離を測定してもよい。測距センサ12は、所定範囲の方向に関して距離を測定するものであってもよく、全方向に関して距離を測定するものであってもよい。例えば、測距センサ12は、移動体1の前方のみの範囲について、複数方向の距離を測定するものであってもよい。また、例えば、測距センサ12は、全周囲(360度)について、あらかじめ決められた角度間隔で複数方向の距離を測定するものであってもよい。その角度間隔は、例えば、1度間隔や2度間隔、5度間隔などのように一定であってもよい。測距センサ12から得られる情報は、例えば、移動体1のある向きを基準とした複数の方位角のそれぞれに関する周辺の物体までの距離であってもよい。その距離を用いることによって、移動体1のローカル座標系において、移動体1の周囲にどのような物体が存在するのかを知ることができるようになる。 The ranging sensor 12 measures the distances to surrounding objects in a plurality of directions. The distance measurement sensor 12 may be, for example, a laser sensor, an ultrasonic sensor, a distance sensor using a microwave, a distance sensor using a stereo image captured by a stereo camera, or the like. The laser sensor may be a laser range sensor (laser range scanner). Note that these distance measuring sensors are already known, and the description thereof will be omitted. In the present embodiment, the case where the distance measuring sensor 12 is a laser range sensor will be mainly described. In addition, the moving body 1 may have one laser range sensor, or may have two or more laser range sensors. In the latter case, all directions may be covered by two or more laser range sensors. Further, when the distance measuring sensor 12 is an ultrasonic sensor, a distance sensor using microwaves, etc., the distances in multiple directions may be measured by rotating the distance measuring direction of the distance measuring sensor 12. A plurality of distance measurement sensors 12 arranged for each direction may be used to measure the distance in a plurality of directions. The distance measuring sensor 12 may measure the distance in the direction of the predetermined range, or may measure the distance in all directions. For example, the distance measuring sensor 12 may measure distances in a plurality of directions with respect to the range only in front of the moving body 1. Further, for example, the distance measurement sensor 12 may measure distances in a plurality of directions at predetermined angular intervals for the entire circumference (360 degrees). The angular interval may be constant, such as, for example, an interval of 1 degree, an interval of 2 degrees, or an interval of 5 degrees. The information obtained from the distance measurement sensor 12 may be, for example, distances to surrounding objects with respect to each of a plurality of azimuth angles based on a certain direction of the mobile body 1. By using the distance, it becomes possible to know what kind of object exists around the moving body 1 in the local coordinate system of the moving body 1.
 障害物検知部13は、測距センサ12によって測定された距離を用いて障害物を検知する。障害物検知部13は、例えば、測距センサ12によって測定された距離によって、移動体1の近くの所定の領域に物体が存在することが分かった場合に、その物体を障害物として検知してもよい。例えば、測距センサ12によって測定された周囲の物体までの距離が所定の閾値以下になった場合に、障害物検知部13は、その物体を障害物として検知してもよい。その周囲の物体までの距離は、例えば、測距センサ12からの距離であってもよく、移動体1の外縁からの距離であってもよく、移動体1の外縁を仮想的に膨張させた位置からの距離であってもよく、その他の基準からの距離であってもよい。なお、障害物が検知される領域は、1個であってもよく、2個以上であってもよい。その領域は、例えば、移動体1の全方向を含んでいてもよく、または、移動体1の進行方向のみを含んでいてもよい。測距結果を用いて障害物を検知するため、障害物検知部13は、移動体1のローカル座標系において障害物を検知することになる。移動体1のローカル座標系とは、移動体1において設定された座標系である。障害物検知部13は、障害物を検知した場合に、その検知した障害物に関するローカル座標系における位置(例えば、座標値等)を取得することが好適である。その位置は、例えば、1以上の点で示されてもよく、線で示されてもよい。その点は、例えば、測距センサ12による測定点であってもよい。 The obstacle detection unit 13 detects an obstacle using the distance measured by the distance measurement sensor 12. For example, when it is found that an object is present in a predetermined area near the moving body 1 by the distance measured by the distance measurement sensor 12, the obstacle detection unit 13 detects the object as an obstacle. It is also good. For example, when the distance to the surrounding object measured by the distance measurement sensor 12 becomes equal to or less than a predetermined threshold, the obstacle detection unit 13 may detect the object as an obstacle. The distance to the surrounding object may be, for example, the distance from the distance measurement sensor 12 or the distance from the outer edge of the moving body 1, and the outer edge of the moving body 1 is virtually expanded It may be a distance from a position or a distance from another reference. In addition, the number of areas where an obstacle is detected may be one, or two or more. The area may include, for example, all directions of the mobile unit 1 or may include only the traveling direction of the mobile unit 1. In order to detect an obstacle using the distance measurement result, the obstacle detection unit 13 detects an obstacle in the local coordinate system of the moving object 1. The local coordinate system of the mobile unit 1 is a coordinate system set in the mobile unit 1. When the obstacle detection unit 13 detects an obstacle, it is preferable that the obstacle detection unit 13 acquires a position (e.g., a coordinate value or the like) in the local coordinate system regarding the detected obstacle. The position may, for example, be indicated by one or more points or by a line. The point may be, for example, a measurement point by the distance measurement sensor 12.
 現在位置取得部14は、移動体1の現在位置を取得する。現在位置の取得は、例えば、無線通信を用いて行われてもよく、周囲の物体までの距離の測定結果を用いて行われてもよく、周囲の画像を撮影することによって行われてもよく、現在位置を取得できるその他の手段を用いてなされてもよい。無線通信を用いて現在位置を取得する方法としては、例えば、GPS(Global Positioning System)を用いる方法や、屋内GPSを用いる方法、最寄りの無線基地局を用いる方法などが知られている。また、例えば、周囲の物体までの距離の測定結果を用いたり、周囲の画像を撮影したりすることによって現在位置を取得する方法としては、例えば、SLAM(Simultaneous Localization and Mapping)などによって知られている方法を用いてもよい。周囲の物体までの距離の測定結果としては、例えば、測距センサ12の測定結果を用いてもよい。また、あらかじめ作成された地図(例えば、周囲の物体までの距離の測定結果や撮影画像を有する地図など)が記憶されている場合には、現在位置取得部14は、地図を用いて、周囲の物体までの距離の測定結果に対応する位置を特定することによって現在位置を取得してもよく、周囲の画像を撮影し、地図を用いて、その撮影結果に対応する位置を特定することによって現在位置を取得してもよい。また、現在位置取得部14は、例えば、自律航法装置を用いて現在位置を取得してもよい。また、現在位置取得部14は、移動体1の向き(方向)を含む現在位置を取得することが好適である。その方向は、例えば、北を0度として、時計回りに測定された方位角によって示されてもよく、その他の方向を示す情報によって示されてもよい。その向きは、電子コンパスや地磁気センサによって取得されてもよい。現在位置取得部14によって取得される現在位置により、地図記憶部15で記憶されている地図上の移動体1の位置を特定できるようになっているものとする。後述するように、地図記憶部15ではワールド座標系(グローバル座標系)の地図が記憶されているため、現在位置取得部14によって取得される現在位置も、ワールド座標系における位置であってもよい。また、現在位置取得部14によって取得される現在位置が、ワールド座標系における位置でない場合には、その現在位置をワールド座標系における位置に変換できるようになっていることが好適である。 The current position acquisition unit 14 acquires the current position of the mobile unit 1. The acquisition of the current position may be performed, for example, using wireless communication, may be performed using a measurement result of the distance to the surrounding object, or may be performed by capturing an image of the surrounding , And other means capable of obtaining the current position may be used. As a method of acquiring the current position using wireless communication, for example, a method using GPS (Global Positioning System), a method using indoor GPS, a method using a nearest wireless base station, and the like are known. Also, for example, as a method of acquiring the current position by using the measurement result of the distance to the surrounding object or photographing the surrounding image, for example, known by SLAM (Simultaneous Localization and Mapping) or the like. Any method may be used. As a measurement result of the distance to the surrounding object, for example, the measurement result of the distance measurement sensor 12 may be used. In addition, when a map (for example, a measurement result of the distance to a surrounding object, a map having a photographed image, etc.) created in advance is stored, the current position acquisition unit 14 uses the map to The current position may be obtained by specifying the position corresponding to the measurement result of the distance to the object, and the surrounding image is taken and the map is used to specify the position corresponding to the photographing result. The position may be acquired. Also, the current position acquisition unit 14 may acquire the current position using, for example, an autonomous navigation device. Further, it is preferable that the current position acquisition unit 14 acquire the current position including the direction (direction) of the mobile body 1. The direction may be indicated by an azimuth angle measured clockwise, for example, with 0 degrees to the north, and may be indicated by information indicating other directions. The orientation may be obtained by an electronic compass or a geomagnetic sensor. It is assumed that the position of the mobile object 1 on the map stored in the map storage unit 15 can be specified by the current position acquired by the current position acquisition unit 14. As described later, since the map of the world coordinate system (global coordinate system) is stored in the map storage unit 15, the current position acquired by the current position acquiring unit 14 may also be a position in the world coordinate system. . Further, when the current position acquired by the current position acquisition unit 14 is not a position in the world coordinate system, it is preferable that the current position can be converted to a position in the world coordinate system.
 地図記憶部15では、ワールド座標系における障害物の位置を示す地図が記憶される。その障害物は、例えば、移動環境における壁や柱、床面に設置されている機械や機器などを示すものであってもよい。例えば、移動体1が工場内を移動する場合には、その地図は、工場内の障害物を示す地図であってもよい。例えば、地図は、図3で示されるものであってもよい。図3において、障害物B1~B4が示されている。それらの障害物は、例えば、移動体1の移動空間における周囲の壁や、設置されている設備等であってもよい。地図記憶部15に地図が記憶される過程は問わない。例えば、記録媒体を介して地図が地図記憶部15で記憶されるようになってもよく、通信回線等を介して送信された地図が地図記憶部15で記憶されるようになってもよい。地図記憶部15での記憶は、RAM等における一時的な記憶でもよく、または、長期的な記憶でもよい。地図記憶部15は、所定の記録媒体(例えば、半導体メモリや磁気ディスク、光ディスクなど)によって実現されうる。 The map storage unit 15 stores a map indicating the position of the obstacle in the world coordinate system. The obstacle may indicate, for example, a wall or a column in a mobile environment, or a machine or device installed on a floor surface. For example, when the mobile unit 1 moves in the factory, the map may be a map showing obstacles in the factory. For example, the map may be as shown in FIG. In FIG. 3, obstacles B1 to B4 are shown. Those obstacles may be, for example, a surrounding wall in the moving space of the moving body 1, a facility installed, or the like. The process of storing the map in the map storage unit 15 does not matter. For example, a map may be stored in the map storage unit 15 via a recording medium, or a map transmitted via a communication line or the like may be stored in the map storage unit 15. The storage in the map storage unit 15 may be temporary storage in a RAM or the like, or may be long-term storage. The map storage unit 15 can be realized by a predetermined recording medium (for example, a semiconductor memory, a magnetic disk, an optical disk, etc.).
 判断部16は、現在位置取得部14によって取得された現在位置を用いて、障害物検知部13によって検知された障害物が、地図記憶部15で記憶されている地図によって示される既知のものかどうかを判断する。以下、地図によって示される障害物を「既知の障害物」と呼び、地図によって示されていない障害物を「未知の障害物」と呼ぶことがある。判断部16は、障害物検知部13によって検知された障害物が、既知の障害物であるのか、または未知の障害物であるのかを判断するものである。判断部16は、移動体1の現在位置と地図とを用いることによって、移動体1と地図上の障害物との位置関係を特定することができる。そして、障害物検知部13によって検知された障害物が、地図上のいずれかの障害物に相当する場合には、その検知された障害物が既知であると判断することができ、その検知された障害物が、地図上のいずれの障害物にも相当しない場合には、その検知された障害物が未知のものであると判断することができる。この判断は、以下に説明するように、(1)ローカル座標系において行われてもよく、(2)ワールド座標系において行われてもよい。なお、本実施の形態では、説明を簡単にするため、ローカル座標系及びワールド座標系は、それぞれ2次元直交座標系であるとする。また、ローカル座標系をxy座標系とし、ワールド座標系をXY座標系とする。 The determination unit 16 uses the current position acquired by the current position acquisition unit 14 to determine whether the obstacle detected by the obstacle detection unit 13 is a known one indicated by the map stored in the map storage unit 15 Determine if. Hereinafter, an obstacle indicated by a map may be referred to as a "known obstacle", and an obstacle not indicated by the map may be referred to as an "unknown obstacle". The determination unit 16 determines whether the obstacle detected by the obstacle detection unit 13 is a known obstacle or an unknown obstacle. The determination unit 16 can specify the positional relationship between the mobile unit 1 and the obstacle on the map by using the current position of the mobile unit 1 and the map. Then, when the obstacle detected by the obstacle detection unit 13 corresponds to any obstacle on the map, it can be determined that the detected obstacle is known, and the obstacle is detected. If the obstacle does not correspond to any obstacle on the map, it can be determined that the detected obstacle is unknown. This determination may be made in (1) the local coordinate system or (2) in the world coordinate system, as described below. In the present embodiment, in order to simplify the description, the local coordinate system and the world coordinate system are each assumed to be a two-dimensional orthogonal coordinate system. Further, the local coordinate system is an xy coordinate system, and the world coordinate system is an xy coordinate system.
(1)ローカル座標系における判断
 この場合には、判断部16は、地図記憶部15で記憶されている地図によって示されるワールド座標系における障害物の位置をローカル座標系の位置に変換し、ローカル座標系において判断を行う。
(1) Determination in Local Coordinate System In this case, the determination unit 16 converts the position of the obstacle in the world coordinate system indicated by the map stored in the map storage unit 15 into the position in the local coordinate system, Make a decision in the coordinate system.
 例えば、図4Aで示されるように、障害物検知部13によって障害物D1が検知されたとする。なお、その障害物検知は、測距結果を用いて領域R11において行われるものとする。領域R11は、例えば、移動体1の進行方向の領域であってもよい。測距結果は、上記のように、例えば、角度と距離との組の情報であるため、その結果を移動体1のローカル座標系にプロットした結果は点の集合となるが、図4Aでは、説明を簡単にするため、障害物D1のように輪郭線で示している。したがって、その輪郭線は、厳密には、1個または2個以上の測定点の集合であると考えてもよい。他の障害物に関しても同様であるとする。 For example, as shown in FIG. 4A, it is assumed that the obstacle D1 is detected by the obstacle detection unit 13. In addition, the obstacle detection shall be performed in area | region R11 using a ranging result. The region R11 may be, for example, a region in the traveling direction of the mobile body 1. Since the ranging result is, for example, information of a pair of angle and distance as described above, the result of plotting the result on the local coordinate system of the moving body 1 is a set of points, but in FIG. 4A, In order to simplify the explanation, it is indicated by an outline like an obstacle D1. Therefore, the contour may be considered strictly as a set of one or more measurement points. The same applies to other obstacles.
 また、その時点のワールド座標系における現在位置が(X1,Y1,Θ1)であったとする。なお、(X1,Y1)は、ワールド座標系における位置を示す座標値であり、Θ1は、ワールド座標系における向きを示す角度である。その角度は、例えば、ワールド座標系のX軸またはY軸を基準とした角度であってもよい。その現在位置に相当する地図上の位置及び方向を特定することによって、判断部16は、地図上の障害物に関するローカル座標系における位置を特定することができる。その特定は、例えば、ワールド座標系からローカル座標系への変換行列(例えば、同時変換行列など)を用いて、ワールド座標系における障害物の位置をローカル座標系に変換することによって行われてもよい。ワールド座標系とローカル座標系との縮尺が異なる場合には、その変換において縮尺の違いを考慮するものとする。そして、図3で示される地図上の障害物B4に関するローカル座標系における位置を特定した場合に、図4Bで示されるようになっていたとすると、その障害物B4の輪郭の位置及び形状が、障害物検知部13によって検知された障害物D1の位置及び形状と一致するため、判断部16は、障害物D1が既知の障害物であると判断する。なお、地図上の障害物と、検知された障害物とが一致するかどうかの判断は、例えば、それぞれから抽出された特徴点が一致するかどうかによって行われてもよい。2個の図形が一致するかどうかの判断手法はすでに公知であり、その詳細な説明を省略する。 Further, it is assumed that the current position in the world coordinate system at that time is (X1, Y1, Θ1). Note that (X1, Y1) is a coordinate value indicating a position in the world coordinate system, and Θ1 is an angle indicating a direction in the world coordinate system. The angle may be, for example, an angle based on the X axis or Y axis of the world coordinate system. By specifying the position and direction on the map corresponding to the current position, the determination unit 16 can specify the position of the obstacle on the map in the local coordinate system. The identification may be performed, for example, by transforming the position of an obstacle in the world coordinate system into the local coordinate system using a transformation matrix from the world coordinate system to the local coordinate system (for example, simultaneous transformation matrix etc.) Good. When the scale of the world coordinate system and that of the local coordinate system are different, the difference in scale should be taken into account in the transformation. Then, when the position in the local coordinate system with respect to the obstacle B4 on the map shown in FIG. 3 is specified, if it is as shown in FIG. 4B, the position and shape of the outline of the obstacle B4 is an obstacle In order to coincide with the position and the shape of the obstacle D1 detected by the object detection unit 13, the determination unit 16 determines that the obstacle D1 is a known obstacle. The determination as to whether the obstacle on the map matches the detected obstacle may be made, for example, depending on whether the feature points extracted from each match. A method of determining whether two figures match is already known, and the detailed description thereof is omitted.
 なお、例えば、現在位置の取得が、周囲の物体までの距離の測定結果を用いた自己位置同定によって行われている場合には、現在位置にある程度の誤差が存在することになる。したがって、その現在位置を用いて障害物の位置をワールド座標系からローカル座標系に変換した場合に、図4Cで示されるように、障害物B4と障害物D1との位置の誤差が距離E1となることがある。その場合には、例えば、その距離E1が誤差閾値ETHよりも小さいときに、すなわち、障害物検知部13によって検知された障害物D1と、地図によって示される障害物B4とが誤差閾値ETHより近いときには、判断部16は、障害物D1が既知のものであると判断してもよい。その誤差閾値ETHは、例えば、現在位置の取得誤差や、障害物の検知位置の誤差等を考慮して、それらの誤差よりも大きくなるように設定されてもよい。 In addition, for example, when the acquisition of the current position is performed by self-positioning using the measurement result of the distance to the surrounding object, a certain degree of error exists in the current position. Therefore, when the position of the obstacle is converted from the world coordinate system to the local coordinate system using its current position, as shown in FIG. 4C, the error in the position between the obstacle B4 and the obstacle D1 becomes the distance E1. Can be In that case, for example, when the distance E1 is smaller than the error threshold E TH , that is, the obstacle D1 detected by the obstacle detection unit 13 and the obstacle B4 indicated by the map are the error threshold E TH. When it is closer, the determination unit 16 may determine that the obstacle D1 is known. The error threshold value E TH may be set to be larger than the error of the current position, the error of the detected position of the obstacle, and the like, for example.
 また、例えば、図5Aで示されるように、障害物検知部13によって障害物D2が検知されたとする。また、その時点の現在位置を用いて、地図上の障害物のワールド座標系における位置を、ローカル座標系の位置に変換した結果が、図5Bで示される障害物B4の位置であったとする。すると、図5Bで示されるローカル座標系において、障害物B4と、障害物D2とは輪郭の位置も形状も異なるため、判断部16は、障害物D2が未知の障害物であると判断してもよい。 Also, for example, as illustrated in FIG. 5A, it is assumed that the obstacle detection unit 13 detects the obstacle D2. Further, it is assumed that the position of the obstacle on the map in the world coordinate system is converted to the position of the local coordinate system using the current position at that time, and the result is the position of the obstacle B4 shown in FIG. 5B. Then, in the local coordinate system shown in FIG. 5B, since the obstacle B4 and the obstacle D2 have different contour positions and shapes, the determination unit 16 determines that the obstacle D2 is an unknown obstacle. It is also good.
(2)ワールド座標系における判断
 この場合には、判断部16は、障害物検知部13によって検知されたローカル座標系における障害物の位置をワールド座標系の位置に変換し、ワールド座標系において判断を行う。なお、判断を行う座標系が異なる以外は、実質的に上記(1)と同様に判断が行われることになる。
(2) Determination in the world coordinate system In this case, the determination unit 16 converts the position of the obstacle in the local coordinate system detected by the obstacle detection unit 13 into the position in the world coordinate system, and determines in the world coordinate system I do. The determination is substantially performed in the same manner as the above (1) except that the coordinate system in which the determination is made is different.
 例えば、図4Aで示されるように、障害物検知部13によって障害物D1が検知された場合に、判断部16は、その時点の現在位置(X1,Y1,Θ1)を用いて、ローカル座標系における障害物D1の位置を、ワールド座標系に変換する。その変換は、例えば、ローカル座標系からワールド座標系への変換行列(例えば、同時変換行列など)を用いて行ってもよい。その変換により、障害物D1は、ワールド座標系において、図6で示される位置になったとする。なお、地図上の点P1と、点P1から延びる矢印の向きは、移動体1の現在位置(X1,Y1,Θ1)を示しているとする。図6で示されるように、障害物検知部13によって検知された障害物D1の位置及び形状は、ワールド座標系の地図上に示される障害物B4の位置及び形状と一致するため、判断部16は、障害物D1が既知の障害物であると判断する。なお、上記説明と同様に、地図上の障害物B4と、検知された障害物D1との位置が離れていたとしても、両者が誤差閾値より近い場合には、判断部16は、障害物D1が既知のものであると判断してもよい。 For example, as illustrated in FIG. 4A, when the obstacle detection unit 13 detects the obstacle D1, the determination unit 16 uses the current position (X1, Y1, Θ1) at that time to determine the local coordinate system. The position of the obstacle D1 at is converted to the world coordinate system. The transformation may be performed, for example, using a transformation matrix (eg, simultaneous transformation matrix) from the local coordinate system to the world coordinate system. It is assumed that the obstacle D1 is at the position shown in FIG. 6 in the world coordinate system due to the conversion. It is assumed that the point P1 on the map and the direction of the arrow extending from the point P1 indicate the current position (X1, Y1, Θ1) of the mobile unit 1. As shown in FIG. 6, the position and the shape of the obstacle D1 detected by the obstacle detection unit 13 match the position and the shape of the obstacle B4 shown on the map of the world coordinate system. Determines that the obstacle D1 is a known obstacle. In the same manner as the above description, even if the obstacle B4 on the map and the detected obstacle D1 are separated from each other, if both are close to the error threshold, the determination unit 16 determines the obstacle D1. It may be determined that is known.
 移動制御部17は、移動機構11を制御することによって、移動体1の移動を制御する。移動の制御は、移動体1の移動の向きや、移動の開始・停止などの制御であってもよい。例えば、移動経路が設定されている場合には、移動制御部17は、移動体1がその移動経路に沿って移動するように、移動機構11を制御してもよい。より具体的には、移動制御部17は、現在位置取得部14によって取得される現在位置が、その移動経路に沿ったものになるように、移動機構11を制御してもよい。また、移動制御部17は、地図を用いて、移動の制御を行ってもよい。その場合には、移動体1は、地図記憶部15で記憶されている地図を用いてもよい。 The movement control unit 17 controls the movement of the movable body 1 by controlling the movement mechanism 11. The control of movement may be control of the direction of movement of the mobile body 1 or start / stop of movement. For example, when the movement path is set, the movement control unit 17 may control the movement mechanism 11 so that the moving body 1 moves along the movement path. More specifically, the movement control unit 17 may control the movement mechanism 11 so that the current position acquired by the current position acquisition unit 14 is along the movement path. In addition, the movement control unit 17 may control movement using a map. In that case, the mobile unit 1 may use the map stored in the map storage unit 15.
 また、移動制御部17は、障害物検知部13によって検知された障害物への衝突を防ぐように移動機構11を制御する。なお、移動制御部17は、判断部16の判断結果に応じて、障害物に関して異なる制御を行う。すなわち、移動制御部17は、検知された障害物が既知の場合と未知の場合とで異なる制御を行うことになる。移動制御部17は、検知された障害物が既知のものである場合には、検知された障害物が未知のものである場合と比較して、衝突を防止するためのより弱い制御を行うものであってもよい。より弱い制御とは、通常の移動制御からの変化が小さくなる制御であると考えてもよい。例えば、停止よりも減速の方がより弱い制御であり、停止よりも迂回の方がより弱い制御である。検知された障害物が未知のものである場合の移動制御が、障害物が検知された場合における通常の移動制御であると考えてもよい。なお、異なる制御とは、移動制御の方法が異なることを意味しており、その制御の結果が異なるかどうかを意味していない。例えば、後述するように、既知の障害物と、未知の障害物とについて、それぞれ異なる距離閾値を用いる場合であっても、検知された障害物が移動体1の近傍に存在するのであれば、いずれの障害物であっても移動体1が停止することになるからである。また、移動制御部17は、必ずしも検知されたすべての障害物について、衝突を防ぐための制御を行うものではない。移動制御部17は、検知された障害物について所定の条件(その条件は、例えば、障害物までの距離が、後述する距離閾値より短いことであってもよい。)が満たされる場合には、衝突を防ぐための減速や停止等の制御を行い、検知された障害物についてその所定の条件が満たされない場合には、衝突を防ぐための制御を行わなくてもよい。ここで、既知の障害物と未知の障害物とに関する異なる制御の一例として、次の(A)、(B)を挙げることができる。 In addition, the movement control unit 17 controls the movement mechanism 11 so as to prevent the collision with the obstacle detected by the obstacle detection unit 13. The movement control unit 17 performs different control on the obstacle in accordance with the determination result of the determination unit 16. That is, the movement control unit 17 performs different control depending on whether the detected obstacle is known or unknown. When the detected obstacle is known, the movement control unit 17 performs weaker control to prevent a collision as compared with the case where the detected obstacle is unknown. It may be Weaker control may be considered to be control in which the change from normal movement control becomes smaller. For example, deceleration is weaker control than stop and bypass control is weaker than stop. The movement control when the detected obstacle is unknown may be considered to be normal movement control when the obstacle is detected. Note that different control means that the method of movement control is different, and does not mean whether the result of the control is different. For example, as described later, even when using different distance threshold values for a known obstacle and an unknown obstacle, if the detected obstacle is present in the vicinity of the mobile body 1, This is because the mobile unit 1 is stopped regardless of any obstacle. In addition, the movement control unit 17 does not necessarily perform control for preventing a collision for all detected obstacles. When the movement control unit 17 satisfies a predetermined condition (for example, the distance to the obstacle may be shorter than a distance threshold described later) for the detected obstacle, the movement control unit 17 Control such as deceleration or stop for preventing a collision may be performed, and when a predetermined condition is not satisfied for a detected obstacle, control for preventing a collision may not be performed. Here, following (A) and (B) can be mentioned as an example of the different control regarding a known obstacle and an unknown obstacle.
(A)異なる距離閾値を用いて障害物への衝突を防止する場合
 この場合には、移動制御部17は、検知された障害物までの距離が距離閾値より短いときに、衝突を防止するための制御を行い、検知された障害物までの距離が距離閾値より長いときに、衝突を防止するための制御を行わないものとする。なお、検知された障害物までの距離が距離閾値と同じであるときには、移動制御部17は、衝突を防止するための制御を行ってもよく、または行わなくてもよい。その距離閾値は、既知の障害物と、未知の障害物とで異なっている。すなわち、検知された既知の障害物に関する距離閾値は、検知された未知の障害物に関する距離閾値よりも短くなっているものとする。したがって、ある障害物が検知されたとしても、その障害物が既知の場合には、移動体1が停止や減速しないのに対して、その障害物が未知の場合には、移動体1が停止や減速するという状況があることになる。ここで、この移動制御について、図7で示される具体例を用いて説明する。図7は、2個の距離閾値の一例を示す図である。図7において、領域R11は、測距センサ12の位置から半径L1以内の領域であるとする。そして、未知の障害物に関する距離閾値はL1に設定されており、既知の障害物に関する距離閾値はL2に設定されているものとする。なお、L2はL1よりも小さい実数である。また、この具体例では、距離閾値以内の障害物が検知された場合には、移動制御部17は、移動体1を停止させるものとする。すると、図7で示される障害物D3が障害物検知部13によって検知された場合(この場合には、図7の障害物D4は検知されていないとする。)に、その障害物D3が既知のものであれば、距離閾値L2よりも遠い障害物であるため、移動制御部17は、移動体1を停止させない。一方、その障害物D3が未知のものであれば、距離閾値L1より近い障害物であるため、移動制御部17は、移動体1を停止させる。また、図7で示される障害物D4が障害物検知部13によって検知された場合には、その障害物が既知のものであっても未知のものであっても、距離閾値L1,L2より近い障害物であるため、移動制御部17は、移動体1を停止させることになる。なお、領域R11において障害物が検知されていない場合には、移動制御部17は、移動体1を停止させないことになる。
(A) In the case of using a different distance threshold to prevent a collision with an obstacle In this case, the movement control unit 17 prevents the collision when the distance to the detected obstacle is shorter than the distance threshold. Control is performed, and when the distance to the detected obstacle is longer than the distance threshold, the control for preventing the collision is not performed. In addition, when the distance to the detected obstacle is the same as the distance threshold, the movement control unit 17 may or may not perform control for preventing a collision. The distance threshold is different for known and unknown obstacles. That is, it is assumed that the distance threshold for the detected known obstacle is shorter than the distance threshold for the detected unknown obstacle. Therefore, even if a certain obstacle is detected, if the obstacle is known, the moving body 1 does not stop or decelerate, whereas if the obstacle is unknown, the moving body 1 stops. And there will be situations where it will slow down. Here, this movement control will be described using the specific example shown in FIG. FIG. 7 is a diagram showing an example of two distance thresholds. In FIG. 7, it is assumed that the region R <b> 11 is a region within the radius L <b> 1 from the position of the distance measurement sensor 12. Then, the distance threshold for the unknown obstacle is set to L1, and the distance threshold for the known obstacle is set to L2. L2 is a real number smaller than L1. Further, in this specific example, when an obstacle within the distance threshold is detected, the movement control unit 17 stops the moving body 1. Then, when the obstacle D3 shown in FIG. 7 is detected by the obstacle detection unit 13 (in this case, the obstacle D4 in FIG. 7 is not detected), the obstacle D3 is known. If the object is an obstacle, the movement control unit 17 does not stop the moving body 1 because the obstacle is farther than the distance threshold L2. On the other hand, if the obstacle D3 is unknown, it is an obstacle closer than the distance threshold L1, so the movement control unit 17 stops the moving body 1. Further, when the obstacle D4 shown in FIG. 7 is detected by the obstacle detection unit 13, it is closer than the distance threshold L1, L2 regardless of whether the obstacle is known or unknown. Since the obstacle is an obstacle, the movement control unit 17 stops the moving body 1. In the case where no obstacle is detected in the region R11, the movement control unit 17 does not stop the moving body 1.
 なお、ここでは、障害物までの距離として、測距センサ12からの距離が用いられる場合について説明したが、そうでなくてもよい。障害物までの距離としては、例えば、移動体1の外縁や、その他の箇所からの距離が用いられてもよい。測距結果によってローカル座標系における障害物の位置を特定できるため、その位置を用いて、移動体1の任意の位置から障害物までの距離を取得することができる。移動制御部17は、そのようにして取得した距離を用いて、上記の移動制御を行ってもよい。 In addition, although the case where the distance from the ranging sensor 12 was used as a distance to an obstacle was demonstrated here, it may not be so. As the distance to the obstacle, for example, the distance from the outer edge of the mobile body 1 or another place may be used. Since the position of the obstacle in the local coordinate system can be specified by the distance measurement result, the position can be used to obtain the distance from the arbitrary position of the mobile body 1 to the obstacle. The movement control unit 17 may perform the above-described movement control using the thus obtained distance.
 また、距離閾値は、すべての方向について同じであってもよく、または、方向ごとに異なっていてもよい。後者の場合には、例えば、進行方向については、大きい距離閾値が用いられ、進行方向から離れるにしたがって、短くなってもよい。 Also, the distance threshold may be the same for all directions or may be different for each direction. In the latter case, for example, a large distance threshold may be used for the traveling direction, and the distance may be shorter as the traveling direction is away.
 また、障害物の検知が行われた場合の制御は、障害物と移動体1との距離に応じて段階的に行われてもよい。例えば、遠くの障害物が検知された場合には、移動制御部17は、移動体1を減速し、近くの障害物が検知された場合には、移動制御部17は、移動体1を停止してもよい。既知の障害物が検知された場合と、未知の障害物が検知された場合のそれぞれについて、そのようになっていてもよい。また、移動体1のローカル座標系において、未知の障害物に関する停止領域と減速領域とが設定されており、また、既知の障害物に関する停止領域と減速領域とが設定されていてもよい。なお、既知の障害物の停止領域は、未知の障害物の停止領域よりも移動体1に近い側に設定されており、また、既知の障害物の減速領域は、未知の障害物の減速領域よりも移動体1に近い側に設定されていることが好適である。そして、未知の障害物が、未知の障害物の停止領域に存在する場合には、移動制御部17は、移動体1を停止させ、未知の障害物が、未知の障害物の減速領域に存在する場合には、移動制御部17は、移動体1を減速させてもよい。また、既知の障害物が、既知の障害物の停止領域に存在する場合には、移動制御部17は、移動体1を停止させ、既知の障害物が、既知の障害物の減速領域に存在する場合には、移動制御部17は、移動体1を減速させてもよい。なお、移動体1が減速される場合に、その減速後の速度が決まっていてもよく、または、そうでなくてもよい。後者の場合には、例えば、その時点の速度に対して相対的に決まる速度(例えば、50%の速度など)となるように減速が行われてもよい。 In addition, control in the case where detection of an obstacle is performed may be performed stepwise according to the distance between the obstacle and the moving object 1. For example, when a distant obstacle is detected, the movement control unit 17 decelerates the moving body 1, and when a nearby obstacle is detected, the movement control unit 17 stops the moving body 1 You may Such may be the case when a known obstacle is detected and when an unknown obstacle is detected. Further, in the local coordinate system of the mobile unit 1, the stop area and the deceleration area for the unknown obstacle may be set, and the stop area and the deceleration area for the known obstacle may be set. The stop area of the known obstacle is set closer to the mobile body 1 than the stop area of the unknown obstacle, and the deceleration area of the known obstacle is the deceleration area of the unknown obstacle. It is preferable that the position closer to the mobile unit 1 be set than that. Then, when an unknown obstacle exists in the stop area of the unknown obstacle, the movement control unit 17 stops the mobile body 1, and the unknown obstacle exists in the deceleration area of the unknown obstacle. In this case, the movement control unit 17 may decelerate the moving body 1. Also, when a known obstacle exists in the stop area of the known obstacle, the movement control unit 17 stops the mobile body 1, and a known obstacle exists in the deceleration area of the known obstacle. In this case, the movement control unit 17 may decelerate the moving body 1. In addition, when the moving body 1 is decelerated, the speed after the deceleration may be fixed or not. In the latter case, for example, deceleration may be performed so as to be a speed determined relative to the current speed (e.g., 50% speed, etc.).
 また、既知の障害物が検知されたことに応じて、移動体1が停止や減速を行うことがある場合について説明したが、そうでなくてもよい。移動制御部17は、既知の障害物が検知された場合には、その障害物への衝突を防止するための制御を行わなくてもよい。具体的には、上記説明において、既知の障害物に関する距離閾値は、最低の値、すなわち既知の障害物に対して衝突を防止するための制御が行われることにない値に設定されてもよい。図7の場合には、例えば、既知の障害物に関する距離閾値は、「0」に設定されてもよい。既知の障害物はあらかじめ位置が分かっているため、通常、その障害物を避けるように移動経路等が探索されたり、設定されたりすることになり、既知の障害物に対して停止や減速を行わなかったとしても、適切に移動制御が行われている場合には、移動体1が既知の障害物に衝突する可能性はないと考えられる。したがって、既知の障害物に対して衝突を防止するための制御が行われなかったとしても、問題になる可能性は低いと考えられる。 Moreover, although the case where the mobile body 1 may stop or decelerate in response to detection of a known obstacle has been described, this may not be the case. When a known obstacle is detected, the movement control unit 17 may not perform control for preventing a collision with the obstacle. Specifically, in the above description, the distance threshold for the known obstacle may be set to the lowest value, ie, a value that is not to be subjected to control for preventing a collision against the known obstacle. . In the case of FIG. 7, for example, the distance threshold for known obstacles may be set to “0”. Since known obstacles are known in advance, the movement route etc. is usually searched or set so as to avoid the obstacles, and stop and deceleration are performed for known obstacles. Even if not, it is considered that there is no possibility that the mobile body 1 collides with a known obstacle if movement control is properly performed. Therefore, even if control to prevent a collision is not performed for a known obstacle, it is considered that the possibility of becoming a problem is low.
(B)異なる方法によって障害物への衝突を防止する場合
 この場合には、移動制御部17は、例えば、検知された障害物が既知のものであるときには、ポテンシャル法によって障害物の回避を行うように移動機構11を制御し、検知された障害物が未知のものであるときには、減速または停止するように移動機構11を制御してもよい。障害物を回避するとは、障害物の位置以外を通過することであってもよい。ポテンシャル法では、各障害物から斥力が生じるとして経路生成を行うため、移動体1は、停止されず、各障害物を迂回して、または各障害物に近づかないで目的地に向かうことになる。したがって、既知の障害物の検知によって移動体1が減速したり停止したりしないようにすることができ、目的地への到達を優先することができる。一方、未知の障害物は、人間などである可能性があるため、安全を確保するため、衝突の防止を優先することが好適である。そのため、移動制御部17が、既知の障害物が検知された場合にはポテンシャル法を用いて回避を行い、未知の障害物が検知された場合には減速または停止を行うことは適切な制御であると考えられる。また、例えば、現在位置の取得が、周囲の物体までの距離の測定結果を用いた自己位置同定によって行われている場合には、現在位置にある程度の誤差が存在することになる。一方、ポテンシャル法を用いた場合には、障害物からできるだけ離れた経路が生成されるため、現在位置にそのような誤差が存在しても、移動体1が実移動時に既知の障害物に衝突する可能性は低いと考えられる。したがって、その観点からも、既知の障害物の回避にポテンシャル法を用いることは好適であると考えられる。なお、既知の障害物の迂回方法として、ポテンシャル法以外の方法が用いられてもよい。例えば、既知の障害物が検知された場合には、移動制御部17は、RRT(Rapidly exploring Random Trees)や、ダイクストラ法、A*アルゴリズムなどを用いて、検知された既知の障害物の位置を避ける経路を取得し、移動体1がその経路によって移動するように移動機構11を制御してもよい。
(B) In the case where collision with an obstacle is prevented by a different method In this case, for example, when the detected obstacle is known, the movement control unit 17 avoids the obstacle by the potential method. As described above, the moving mechanism 11 may be controlled to control the moving mechanism 11 so as to decelerate or stop when the detected obstacle is unknown. To avoid the obstacle may be to pass other than the position of the obstacle. In the potential method, since the path generation is performed assuming that each obstacle generates a repulsive force, the mobile body 1 is not stopped, and bypasses each obstacle or does not approach each obstacle and goes to the destination . Therefore, the mobile object 1 can be prevented from decelerating or stopping by detection of a known obstacle, and priority can be given to reaching the destination. On the other hand, since an unknown obstacle may be a human or the like, in order to ensure safety, it is preferable to give priority to the prevention of the collision. Therefore, the movement control unit 17 performs avoidance using the potential method when a known obstacle is detected, and performs deceleration or stop when an unknown obstacle is detected by appropriate control. It is believed that there is. Also, for example, when the acquisition of the current position is performed by self-positioning using the measurement result of the distance to the surrounding object, a certain degree of error exists in the current position. On the other hand, when the potential method is used, a path as far as possible from the obstacle is generated, so even if such an error exists at the current position, the mobile body 1 collides with the known obstacle at the time of actual movement. The possibility of doing so is considered to be low. Therefore, also from this point of view, it is considered preferable to use the potential method to avoid known obstacles. In addition, methods other than the potential method may be used as a detour method of a known obstacle. For example, when a known obstacle is detected, the movement control unit 17 detects the position of the known obstacle detected using Rapidly exploring Random Trees (RRT), the Dijkstra method, the A * algorithm, or the like. A route to be avoided may be obtained, and the moving mechanism 11 may be controlled so that the mobile unit 1 moves along the route.
 なお、上記説明では、検知された障害物が既知のものであるときに、ポテンシャル法やRRT等を用いた障害物の迂回によって障害物との衝突が防止され、検知された障害物が未知のものであるときに、減速または停止によって障害物との衝突が防止される場合について説明したが、そうでなくてもよい。例えば、検知された障害物が既知のものであるときに、ポテンシャル法を用いた障害物の回避によって障害物との衝突が防止され、検知された障害物が未知のものであるときに、ポテンシャル法以外のRRTや、ダイクストラ法、A*アルゴリズムなどを用いた障害物を迂回する経路の取得、及びその経路に沿った移動(すなわち、障害物を迂回する移動)によって障害物との衝突が防止されるようにしてもよい。 In the above description, when the detected obstacle is known, the collision with the obstacle is prevented by the bypass of the obstacle using the potential method or RRT, etc., and the detected obstacle is unknown. Although the case where a collision with an obstacle is prevented by decelerating or stopping when it is a thing was described, it may not be so. For example, when the detected obstacle is known, the collision with the obstacle is prevented by avoiding the obstacle using the potential method, and the potential is detected when the detected obstacle is unknown. The collision with the obstacle is prevented by the acquisition of the route that bypasses the obstacle using non-legal RRT, Dijkstra method, A * algorithm, etc., and the movement along the route (that is, the movement to bypass the obstacle) It may be done.
 次に、移動体1の動作について図2のフローチャートを用いて説明する。
 (ステップS101)移動制御部17は、移動体1の移動の制御を行う。この移動の制御は、例えば、目的地に向かう移動の制御であってもよい。このステップS101の移動の制御が繰り返して行われることによって、移動体1は、出発地から目的地に到達してもよい。
Next, the operation of the mobile unit 1 will be described using the flowchart of FIG.
(Step S101) The movement control unit 17 controls the movement of the movable body 1. The control of the movement may be, for example, control of the movement toward the destination. The mobile unit 1 may reach the destination from the departure place by repeatedly performing the control of the movement in step S101.
 (ステップS102)障害物検知部13は、障害物を検知したかどうか判断する。そして、障害物を検知した場合には、ステップS103に進み、そうでない場合には、ステップS101に戻る。 (Step S102) The obstacle detection unit 13 determines whether an obstacle has been detected. And when an obstruction is detected, it progresses to step S103, and when that is not right, it returns to step S101.
 (ステップS103)判断部16は、ワールド座標系とローカル座標系との間での変換を行う。上記のように、例えば、ワールド座標系の地図上の障害物の位置を、移動体1のローカル座標系の位置に変換してもよく、移動体1のローカル座標系において検知された障害物の位置を、ワールド座標系の地図上の位置に変換してもよい。 (Step S103) The determination unit 16 performs conversion between the world coordinate system and the local coordinate system. As described above, for example, the position of the obstacle on the map of the world coordinate system may be converted to the position of the local coordinate system of the mobile 1, and the position of the obstacle detected in the local coordinate system of the mobile 1 The position may be converted to a position on the map of the world coordinate system.
 (ステップS104)判断部16は、ステップS103における変換後の障害物の位置を用いて、検知された障害物が既知のものであるのか未知のものであるのかを判断する。そして、既知の障害物が検知された場合には、ステップS105に進み、未知の障害物が検知された場合には、ステップS106に進む。 (Step S104) The determination unit 16 determines whether the detected obstacle is known or unknown, using the position of the obstacle after conversion in step S103. Then, if a known obstacle is detected, the process proceeds to step S105, and if an unknown obstacle is detected, the process proceeds to step S106.
 (ステップS105)移動制御部17は、既知の障害物の検知に応じた移動制御を行う。そして、ステップS101に戻る。この移動制御は、上記のように、例えば、移動体1の減速や停止などであってもよく、ポテンシャル法などを用いた障害物の迂回であってもよい。また、検知された既知の障害物までの距離が距離閾値よりも大きい場合には、移動制御部17は、障害物の検知に応じた制御を行わなくてもよい。また、既知の障害物の検知に応じて移動体1を減速させた場合には、移動制御部17は、移動速度の上限を減速後のものに制限した上で、ステップS101に戻って移動を継続してもよい。その場合には、障害物が検知されなくなったとき(ステップS102でNOと判断されたとき)に、移動速度の上限の制限を解除してもよい。また、既知の障害物の検知に応じて移動体1を停止させた場合には、移動制御部17は、障害物が検知されなくなるまで停止を継続し、障害物が検知されなくなってから、ステップS101に戻って移動を再開してもよい。 (Step S105) The movement control unit 17 performs movement control according to detection of a known obstacle. Then, the process returns to step S101. As described above, this movement control may be, for example, deceleration or stop of the moving body 1 or bypassing of an obstacle using the potential method or the like. In addition, when the distance to the detected known obstacle is larger than the distance threshold, the movement control unit 17 may not perform control according to the detection of the obstacle. When the moving object 1 is decelerated according to the detection of a known obstacle, the movement control unit 17 restricts the upper limit of the movement speed to one after decelerating, and then returns to step S101 to perform movement. You may continue. In that case, when the obstacle is not detected (when it is determined NO in step S102), the upper limit of the moving speed may be released. In addition, when the moving object 1 is stopped in response to the detection of a known obstacle, the movement control unit 17 continues the stop until the obstacle is not detected, and after the obstacle is not detected, the step is performed. It may return to S101 and resume movement.
 (ステップS106)移動制御部17は、未知の障害物の検知に応じた移動制御を行う。そして、ステップS101に戻る。この移動制御は、上記のように、例えば、移動体1の減速や停止などであってもよい。また、検知された未知の障害物までの距離が距離閾値よりも大きい場合には、移動制御部17は、障害物の検知に応じた制御を行わなくてもよい。また、未知の障害物の検知に応じて移動体1を減速させた場合には、移動制御部17は、移動速度の上限を減速後のものに制限した上で、ステップS101に戻って移動を継続してもよい。その場合には、障害物が検知されなくなったとき(ステップS102でNOと判断されたとき)に、移動速度の上限の制限を解除してもよい。また、未知の障害物の検知に応じて移動体1を停止させた場合には、移動制御部17は、障害物が検知されなくなるまで停止を継続し、障害物が検知されなくなってから、ステップS101に戻って移動を再開してもよい。 (Step S106) The movement control unit 17 performs movement control according to the detection of an unknown obstacle. Then, the process returns to step S101. This movement control may be, for example, deceleration or stop of the moving body 1 as described above. In addition, when the distance to the detected unknown obstacle is larger than the distance threshold, the movement control unit 17 may not perform control according to the detection of the obstacle. When the moving object 1 is decelerated in response to the detection of an unknown obstacle, the movement control unit 17 restricts the upper limit of the movement speed to one after deceleration, and then returns to step S101 to move. You may continue. In that case, when the obstacle is not detected (when it is determined NO in step S102), the upper limit of the moving speed may be released. In addition, when the moving object 1 is stopped in response to the detection of an unknown obstacle, the movement control unit 17 continues the stop until the obstacle is not detected, and after the obstacle is not detected, the step is performed. It may return to S101 and resume movement.
 なお、図2のフローチャートでは、障害物検知において1個の障害物が検知される場合について説明したが、障害物検知において2個以上の障害物が同時に検知されることもあり得る。その場合には、例えば、検知された障害物ごとに、ステップS104~S106と同様に、既知かどうかの判断と、その判断結果に応じた移動制御の特定とを行ってもよい。なお、この場合には、移動制御部17は、各障害物に対応する移動制御を障害物ごとに特定し、その特定した複数の移動制御から、最も安全性の高い移動制御を選択して、その移動制御を行うように移動機構11を制御してもよい。最も安全性の高い移動制御とは、障害物に衝突する可能性が最も低い移動制御である。例えば、特定した移動制御が、移動体1の減速と、移動体1の停止と、検知された障害物の迂回とであった場合には、移動制御部17は、最も安全性の高い移動体1の停止を選択し、移動体1が停止するように移動機構11を制御してもよい。また、移動制御部17は、特定された複数の移動制御からいずれかを選択するのではなく、それらを組み合わせてもよい。例えば、特定した移動制御が、移動体1の減速と、検知された障害物の迂回とであった場合には、移動制御部17は、移動体1が減速し、かつ、検知された障害物を迂回するように、移動機構11を制御してもよい。また、図2のフローチャートにおける処理の順序は一例であり、同様の結果を得られるのであれば、各ステップの順序を変更してもよい。また、図2のフローチャートには含まれていないが、測距センサ12による測距や現在位置取得部14による現在位置の取得は、繰り返して行われているものとする。また、図2のフローチャートにおいて、移動体1が目的地に到達したこと、または電源オフや処理終了の割り込みにより処理は終了する。 In addition, although the case where one obstacle was detected in obstacle detection was explained in the flow chart of Drawing 2, two or more obstacles may be detected simultaneously in obstacle detection. In that case, for example, for each detected obstacle, as in steps S104 to S106, it may be determined whether it is known or not and movement control may be specified according to the determination result. In this case, the movement control unit 17 specifies movement control corresponding to each obstacle for each obstacle, selects the safest movement control from among the plurality of movement controls thus specified, The moving mechanism 11 may be controlled to perform the movement control. The safest movement control is movement control that is the least likely to collide with an obstacle. For example, if the identified movement control is the deceleration of the moving body 1, the stopping of the moving body 1, and the detouring of the detected obstacle, the movement control unit 17 determines that the moving body with the highest degree of safety. The stop of 1 may be selected, and the moving mechanism 11 may be controlled to stop the moving body 1. In addition, the movement control unit 17 may combine them instead of selecting any one of the plurality of movement controls identified. For example, if the identified movement control is deceleration of the moving body 1 and detouring of the detected obstacle, the movement control unit 17 decelerates the moving body 1 and detects the detected obstacle. The movement mechanism 11 may be controlled to bypass the Moreover, the order of the process in the flowchart of FIG. 2 is an example, and the order of each step may be changed as long as the same result can be obtained. Although not included in the flowchart of FIG. 2, distance measurement by the distance measurement sensor 12 and acquisition of the current position by the current position acquisition unit 14 are assumed to be repeatedly performed. Further, in the flowchart of FIG. 2, the processing is ended by the arrival of the moving object 1 at the destination, or the interruption of the power-off or the processing end.
 図8は、本実施の形態による移動体1の移動の具体例について説明するための図である。図8を参照して、移動体1は、移動体1-0の位置から出発し、移動体1-1,1-2,1-3の各位置を順番に移動するものとする(ステップS101)。その移動において、障害物B2,B3の間の通路を通る際や、障害物B1,B3の間の通路を通る際に、障害物検知部13は、障害物B1~B3をそれぞれ障害物として検知するが(ステップS102)、判断部16によって、それらの障害物B1~B3は、既知のものであると判断されることになる(ステップS103,S104)。その結果、短い距離閾値が用いられたり、ポテンシャル法による障害物の迂回が行われたりすることなどによって、移動体1は、図8で示されるように移動を継続することができる(ステップS105)。なお、その移動の途中において人間などの未知の障害物が検知された場合には(ステップS102~S104)、それに応じて移動体1の減速や停止が行われることによって、安全性も確保されることになる。 FIG. 8 is a diagram for describing a specific example of movement of the mobile unit 1 according to the present embodiment. Referring to FIG. 8, mobile unit 1 starts from the position of mobile unit 1-0 and sequentially moves each position of mobile units 1-1, 1-2, and 1-3 (step S101). ). In the movement, when passing through the passage between the obstacles B2 and B3 or passing through the passage between the obstacles B1 and B3, the obstacle detection unit 13 detects the obstacles B1 to B3 as obstacles respectively. However, the determining unit 16 determines that the obstacles B1 to B3 are known (steps S103 and S104). As a result, the mobile unit 1 can continue to move as shown in FIG. 8 by using a short distance threshold or bypassing an obstacle according to the potential method (step S105). . In addition, when an unknown obstacle such as a human being is detected in the middle of the movement (steps S102 to S104), safety is also ensured by performing deceleration or stop of the mobile body 1 accordingly. It will be.
 以上のように、本実施の形態による移動体1によれば、検知した障害物が既知のものである場合と、未知のものである場合とで異なる移動制御を行うことによって、既知の障害物や未知の障害物に対して、適切な移動を行うことができるようになる。具体的には、既知の障害物が検知されたことに応じて移動体1が減速されたり停止されたりする可能性を低減することができ、既知の障害物が検知されたとしても、移動体1のより円滑な移動を継続することができるようになる。また、未知の障害物が検知された場合には、その検知に応じて移動体1が減速されたり停止されたりすることによって、安全性を確保することもできるようになる。 As described above, according to the mobile object 1 of the present embodiment, the known obstacle is obtained by performing different movement control in the case where the detected obstacle is known and the case where the detected obstacle is unknown. And appropriate obstacles can be made for unknown obstacles. Specifically, the possibility that the moving body 1 is decelerated or stopped in response to detection of a known obstacle can be reduced, and even if a known obstacle is detected, the moving body Smoother movement of 1 will be able to be continued. In addition, when an unknown obstacle is detected, safety can be ensured by decelerating or stopping the moving body 1 according to the detection.
 なお、本実施の形態では、判断部16が、移動体1のローカル座標系、または、地図に対応するワールド座標系において、検知された障害物が既知のものか、未知のものかを判断する場合について説明したが、そうでなくてもよい。判断部16は、移動体1のローカル座標系でもなく、地図のワールド座標系でもない第3の座標系において、その判断を行ってもよい。その場合には、ローカル座標系において検知された障害物の位置が第3の座標系に変換され、地図上の障害物の位置も第3の座標系に変換され、それらの変換結果を用いて、その判断が行われてもよい。 In the present embodiment, determination unit 16 determines whether the detected obstacle is known or unknown in the local coordinate system of mobile unit 1 or the world coordinate system corresponding to the map. Although the case has been described, it does not have to be. The determination unit 16 may make the determination in a third coordinate system that is neither the local coordinate system of the mobile body 1 nor the world coordinate system of the map. In that case, the position of the obstacle detected in the local coordinate system is converted to the third coordinate system, the position of the obstacle on the map is also converted to the third coordinate system, and the conversion results are used. The judgment may be made.
 また、本実施の形態では、測距センサ12による測定結果を用いた障害物検知のみを行う場合について説明したが、それ以外の障害物検知を行ってもよい。例えば、接触センサを用いた障害物検知を行うようにしてもよい。その場合には、接触センサによって障害物が検知された際に、移動制御部17は、移動体1を停止させるなどの移動制御を行ってもよい。 Moreover, although the case where only the obstacle detection using the measurement result by the distance measurement sensor 12 is performed is described in the present embodiment, obstacle detection other than that may be performed. For example, obstacle detection may be performed using a contact sensor. In that case, when an obstacle is detected by the contact sensor, the movement control unit 17 may perform movement control such as stopping the moving body 1.
 また、上記実施の形態において、各処理または各機能は、単一の装置または単一のシステムによって集中処理されることによって実現されてもよく、または、複数の装置または複数のシステムによって分散処理されることによって実現されてもよい。 Also, in the above embodiment, each processing or each function may be realized by centralized processing by a single device or a single system, or distributed processing by a plurality of devices or a plurality of systems. It may be realized by
 また、上記実施の形態において、各構成要素間で行われる情報の受け渡しは、例えば、その情報の受け渡しを行う2個の構成要素が物理的に異なるものである場合には、一方の構成要素による情報の出力と、他方の構成要素による情報の受け付けとによって行われてもよく、または、その情報の受け渡しを行う2個の構成要素が物理的に同じものである場合には、一方の構成要素に対応する処理のフェーズから、他方の構成要素に対応する処理のフェーズに移ることによって行われてもよい。 Further, in the above embodiment, the transfer of information performed between the components is performed by, for example, one of the components if the two components performing the transfer of information are physically different. It may be performed by the output of the information and the reception of the information by the other component, or if the two components that exchange the information are physically the same, one of the components It may be performed by moving from the phase of processing corresponding to to the phase of processing corresponding to the other component.
 また、上記実施の形態において、各構成要素が実行する処理に関係する情報、例えば、各構成要素が受け付けたり、取得したり、選択したり、生成したり、送信したり、受信したりした情報や、各構成要素が処理で用いる閾値や数式、アドレス等の情報等は、上記説明で明記していなくても、図示しない記録媒体において、一時的に、または長期にわたって保持されていてもよい。また、その図示しない記録媒体への情報の蓄積を、各構成要素、または、図示しない蓄積部が行ってもよい。また、その図示しない記録媒体からの情報の読み出しを、各構成要素、または、図示しない読み出し部が行ってもよい。 Further, in the above embodiment, information related to processing executed by each component, for example, information received, acquired, selected, generated, transmitted, or received by each component Also, information such as threshold values, mathematical expressions, addresses and the like used by each component in processing may be held temporarily or for a long time in a recording medium (not shown), even if not specified in the above description. Further, each component or a storage unit (not shown) may store information in the recording medium (not shown). Each component or a reading unit (not shown) may read information from the recording medium (not shown).
 また、上記実施の形態において、各構成要素等で用いられる情報、例えば、各構成要素が処理で用いる閾値やアドレス、各種の設定値等の情報がユーザによって変更されてもよい場合には、上記説明で明記していなくても、ユーザが適宜、それらの情報を変更できるようにしてもよく、または、そうでなくてもよい。それらの情報をユーザが変更可能な場合には、その変更は、例えば、ユーザからの変更指示を受け付ける図示しない受付部と、その変更指示に応じて情報を変更する図示しない変更部とによって実現されてもよい。その図示しない受付部による変更指示の受け付けは、例えば、入力デバイスからの受け付けでもよく、通信回線を介して送信された情報の受信でもよく、所定の記録媒体から読み出された情報の受け付けでもよい。 Further, in the above embodiment, when the information used in each component or the like, for example, information such as a threshold or an address used in processing by each component or various setting values may be changed by the user, Although not explicitly stated in the description, the user may or may not be able to change the information as appropriate. When the user can change such information, the change is realized, for example, by a receiving unit (not shown) that receives a change instruction from the user and a change unit (not shown) that changes the information according to the change instruction. May be The acceptance of the change instruction by the acceptance unit (not shown) may be, for example, acceptance from an input device, reception of information transmitted via a communication line, or acceptance of information read from a predetermined recording medium .
 また、上記実施の形態において、移動体1に含まれる2以上の構成要素が通信デバイスや入力デバイス等を有する場合に、2以上の構成要素が物理的に単一のデバイスを有してもよく、または、別々のデバイスを有してもよい。 Further, in the above embodiment, when two or more components included in the mobile unit 1 have a communication device, an input device, etc., the two or more components may have a physically single device. Or may have separate devices.
 また、上記実施の形態において、各構成要素は専用のハードウェアにより構成されてもよく、または、ソフトウェアにより実現可能な構成要素については、プログラムを実行することによって実現されてもよい。例えば、ハードディスクや半導体メモリ等の記録媒体に記録されたソフトウェア・プログラムをCPU等のプログラム実行部が読み出して実行することによって、各構成要素が実現され得る。その実行時に、プログラム実行部は、記憶部や記録媒体にアクセスしながらプログラムを実行してもよい。また、そのプログラムは、サーバなどからダウンロードされることによって実行されてもよく、所定の記録媒体(例えば、光ディスクや磁気ディスク、半導体メモリなど)に記録されたプログラムが読み出されることによって実行されてもよい。また、このプログラムは、プログラムプロダクトを構成するプログラムとして用いられてもよい。また、そのプログラムを実行するコンピュータは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、または分散処理を行ってもよい。 Further, in the above embodiment, each component may be configured by dedicated hardware, or a component that can be realized by software may be realized by executing a program. For example, each component can be realized by a program execution unit such as a CPU reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory. At the time of the execution, the program execution unit may execute the program while accessing the storage unit or the recording medium. The program may be executed by being downloaded from a server or the like, or may be executed by being read out of a program recorded on a predetermined recording medium (for example, an optical disc, a magnetic disc, a semiconductor memory, etc.) Good. Also, this program may be used as a program that constitutes a program product. Also, the computer that executes the program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
 また、本発明は、以上の実施の形態に限定されることなく、種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることは言うまでもない。 Further, it is needless to say that the present invention is not limited to the above embodiments, and various modifications are possible, which are also included in the scope of the present invention.
 以上より、本発明による移動体によれば、未知の障害物にも既知の障害物にも適切に対応することができるという効果が得られ、自律的に移動する移動体として有用である。 As mentioned above, according to the mobile by this invention, the effect that it can respond appropriately also to an unknown obstacle and a known obstacle is acquired, and it is useful as a mobile which moves autonomously.

Claims (6)

  1. 自律的に移動する移動体であって、
    複数方向に関して周囲の物体までの距離を測定する測距センサと、
    前記測距センサによる測定結果を用いて障害物を検知する障害物検知部と、
    前記移動体を移動させる移動機構と、
    前記障害物検知部によって検知された障害物への衝突を防ぐように前記移動機構を制御する移動制御部と、
    ワールド座標系における障害物の位置を示す地図が記憶される地図記憶部と、
    前記移動体の現在位置を取得する現在位置取得部と、
    前記現在位置を用いて、前記障害物検知部によって検知された障害物が、前記地図によって示される既知のものかどうかを判断する判断部と、を備え、
    前記移動制御部は、前記判断部の判断結果に応じて、障害物に関して異なる制御を行う、移動体。
    It is a mobile that moves autonomously,
    A distance measuring sensor that measures the distance to surrounding objects in multiple directions;
    An obstacle detection unit that detects an obstacle using the measurement result of the distance measurement sensor;
    A moving mechanism for moving the moving body;
    A movement control unit that controls the movement mechanism to prevent a collision with an obstacle detected by the obstacle detection unit;
    A map storage unit in which a map indicating the position of the obstacle in the world coordinate system is stored;
    A current position acquisition unit that acquires a current position of the mobile object;
    A determination unit that determines whether an obstacle detected by the obstacle detection unit is a known one indicated by the map using the current position;
    The mobile control unit performs different control on an obstacle according to the determination result of the determination unit.
  2. 前記移動制御部は、検知された障害物までの距離が距離閾値より短い場合に、衝突を防止するための制御を行うものであり、
    検知された既知の障害物に関する距離閾値は、検知された未知の障害物に関する距離閾値よりも短い、請求項1記載の移動体。
    The movement control unit performs control for preventing a collision when the distance to the detected obstacle is shorter than the distance threshold,
    The mobile according to claim 1, wherein the distance threshold for the detected known obstacle is shorter than the distance threshold for the detected unknown obstacle.
  3. 前記移動制御部は、検知された障害物が既知のものである場合には、ポテンシャル法によって障害物の回避を行う、請求項1記載の移動体。 The mobile unit according to claim 1, wherein the movement control unit performs avoidance of the obstacle by the potential method when the detected obstacle is known.
  4. 前記障害物検知部は、前記移動体のローカル座標系において障害物を検知するものであり、
    前記判断部は、前記地図によって示されるワールド座標系における障害物の位置をローカル座標系の位置に変換し、ローカル座標系において前記判断を行う、請求項1から請求項3のいずれか記載の移動体。
    The obstacle detection unit detects an obstacle in a local coordinate system of the moving body,
    The movement according to any one of claims 1 to 3, wherein the determination unit converts the position of the obstacle in the world coordinate system indicated by the map into the position of the local coordinate system, and performs the determination in the local coordinate system. body.
  5. 前記障害物検知部は、前記移動体のローカル座標系において障害物を検知するものであり、
    前記判断部は、前記障害物検知部によって検知されたローカル座標系における障害物の位置をワールド座標系の位置に変換し、ワールド座標系において前記判断を行う、請求項1から請求項3のいずれか記載の移動体。
    The obstacle detection unit detects an obstacle in a local coordinate system of the moving body,
    The said judgment part converts the position of the obstacle in the local coordinate system detected by the said obstacle detection part into the position of a world coordinate system, and performs the said judgment in a world coordinate system. Or mobile listed.
  6. 前記判断部は、前記障害物検知部によって検知された障害物と、前記地図によって示される障害物とが誤差閾値より近い場合に、当該障害物が既知のものであると判断する、請求項1から請求項5のいずれか記載の移動体。 The judgment unit judges that the obstacle is known when the obstacle detected by the obstacle detection unit and the obstacle shown by the map are closer than an error threshold. The mobile according to any one of claims 5 to 10.
PCT/JP2018/046500 2017-12-19 2018-12-18 Moving body WO2019124343A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017243037A JP2019109773A (en) 2017-12-19 2017-12-19 Moving object
JP2017-243037 2017-12-19

Publications (1)

Publication Number Publication Date
WO2019124343A1 true WO2019124343A1 (en) 2019-06-27

Family

ID=66993539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046500 WO2019124343A1 (en) 2017-12-19 2018-12-18 Moving body

Country Status (2)

Country Link
JP (1) JP2019109773A (en)
WO (1) WO2019124343A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021189863A1 (en) * 2020-03-27 2021-09-30 珠海格力电器股份有限公司 Cleaning robot operation control method, apparatus, and system, and computer readable storage medium
CN116381698A (en) * 2023-06-05 2023-07-04 蘑菇车联信息科技有限公司 Road remains detection method and device and electronic equipment
WO2023236642A1 (en) * 2022-06-07 2023-12-14 速感科技(北京)有限公司 Autonomous mobile device, autonomous mobile device operation method and system, and storage medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7367421B2 (en) * 2019-09-19 2023-10-24 株式会社豊田自動織機 Autonomous running body and control method for autonomous running body
CN113885506B (en) * 2021-10-18 2023-07-07 武汉联影智融医疗科技有限公司 Robot obstacle avoidance method and device, electronic equipment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188809A (en) * 1989-01-17 1990-07-24 Mitsubishi Electric Corp Controller for avoiding obstacle of traveling object
JP2009080527A (en) * 2007-09-25 2009-04-16 Panasonic Electric Works Co Ltd Autonomous mobile device
WO2011064821A1 (en) * 2009-11-27 2011-06-03 トヨタ自動車株式会社 Autonomous moving object and control method
JP2011118591A (en) * 2009-12-02 2011-06-16 Murata Machinery Ltd Autonomous moving apparatus
JP2011175393A (en) * 2010-02-24 2011-09-08 Toyota Motor Corp Route planning apparatus, autonomous mobile robot, and method for planning movement path

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3359008B2 (en) * 1999-08-20 2002-12-24 三菱重工業株式会社 Travel control system for automatic guided vehicles
JP2007148595A (en) * 2005-11-25 2007-06-14 Yaskawa Electric Corp Moving object
JP5595030B2 (en) * 2009-12-17 2014-09-24 三菱重工業株式会社 MOBILE BODY CONTROL SYSTEM, CONTROL DEVICE, CONTROL METHOD, PROGRAM, AND RECORDING MEDIUM
JP5560978B2 (en) * 2010-07-13 2014-07-30 村田機械株式会社 Autonomous mobile
JP6711138B2 (en) * 2016-05-25 2020-06-17 村田機械株式会社 Self-position estimating device and self-position estimating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188809A (en) * 1989-01-17 1990-07-24 Mitsubishi Electric Corp Controller for avoiding obstacle of traveling object
JP2009080527A (en) * 2007-09-25 2009-04-16 Panasonic Electric Works Co Ltd Autonomous mobile device
WO2011064821A1 (en) * 2009-11-27 2011-06-03 トヨタ自動車株式会社 Autonomous moving object and control method
JP2011118591A (en) * 2009-12-02 2011-06-16 Murata Machinery Ltd Autonomous moving apparatus
JP2011175393A (en) * 2010-02-24 2011-09-08 Toyota Motor Corp Route planning apparatus, autonomous mobile robot, and method for planning movement path

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021189863A1 (en) * 2020-03-27 2021-09-30 珠海格力电器股份有限公司 Cleaning robot operation control method, apparatus, and system, and computer readable storage medium
WO2023236642A1 (en) * 2022-06-07 2023-12-14 速感科技(北京)有限公司 Autonomous mobile device, autonomous mobile device operation method and system, and storage medium
CN116381698A (en) * 2023-06-05 2023-07-04 蘑菇车联信息科技有限公司 Road remains detection method and device and electronic equipment
CN116381698B (en) * 2023-06-05 2024-03-12 蘑菇车联信息科技有限公司 Road remains detection method and device and electronic equipment

Also Published As

Publication number Publication date
JP2019109773A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
WO2019124343A1 (en) Moving body
JP5080333B2 (en) Object recognition device for autonomous mobile objects
JP5830533B2 (en) Autonomous mobile system
JP2017021791A (en) Map generation method, mobile robot, and map generation system
JP6709055B2 (en) Mobile unit and server
JP2011054082A (en) Autonomous moving apparatus
RU2740229C1 (en) Method of localizing and constructing navigation maps of mobile service robot
JP2009080527A (en) Autonomous mobile device
JP7054339B2 (en) Mobile
WO2019124342A1 (en) Moving body
WO2019054206A1 (en) Moving body guidance system
WO2018179960A1 (en) Mobile body and local position estimation device
JP2012168990A (en) Autonomous mobile device
JP2019114129A (en) Movable object
JP2008276731A (en) Routing apparatus for autonomous mobile unit
JP7054340B2 (en) Mobile
WO2021074660A1 (en) Object recognition method and object recognition device
JP7121489B2 (en) moving body
JP2019109770A (en) Moving object
JP7138041B2 (en) moving body
JP6745111B2 (en) Moving body
JP7018303B2 (en) Mobile
Almanza-Ojeda et al. Occupancy map construction for indoor robot navigation
JP6751469B2 (en) Map creation system
JP7021929B2 (en) Mobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893150

Country of ref document: EP

Kind code of ref document: A1