WO2019124277A1 - 情報処理装置 - Google Patents

情報処理装置 Download PDF

Info

Publication number
WO2019124277A1
WO2019124277A1 PCT/JP2018/046192 JP2018046192W WO2019124277A1 WO 2019124277 A1 WO2019124277 A1 WO 2019124277A1 JP 2018046192 W JP2018046192 W JP 2018046192W WO 2019124277 A1 WO2019124277 A1 WO 2019124277A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
feature
white line
information processing
vehicle
Prior art date
Application number
PCT/JP2018/046192
Other languages
English (en)
French (fr)
Inventor
加藤 正浩
良樹 轡
淑子 加藤
一聡 田中
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2019561058A priority Critical patent/JPWO2019124277A1/ja
Publication of WO2019124277A1 publication Critical patent/WO2019124277A1/ja
Priority to JP2022018354A priority patent/JP2022065044A/ja
Priority to JP2023187396A priority patent/JP2023181415A/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/68Devices characterised by the determination of the time taken to traverse a fixed distance using optical means, i.e. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems

Definitions

  • the present invention relates to an information processing apparatus that performs predetermined processing based on a detection result of a detection unit that detects a feature around a moving object.
  • an automatic travel system grasps the situation by recognizing an object present around the vehicle, generates an optimal target track, and controls the vehicle to travel along the target track. Do. At this time, if the self-position estimation accuracy of the vehicle is poor, there is a possibility that the actual traveling track deviates from the target track, which reduces the safety of automatic traveling. Accurate self-positioning is one of the important factors to ensure the safety of automatic driving.
  • the self-position estimation in the conventional car navigation system often uses GNSS (Global Navigation Satellite System). Therefore, there is a problem that the accuracy is deteriorated in an environment where multiple paths such as an unreceivable place such as in a tunnel or a valley of a building are frequent.
  • GNSS Global Navigation Satellite System
  • a so-called dead reckoning technique that estimates the vehicle position based on the traveling state of the vehicle (for example, the vehicle speed and the yaw rate). Then, in order to improve the estimation accuracy of the vehicle position by dead reckoning, it is necessary to accurately acquire the traveling state of the vehicle such as the above-described vehicle speed.
  • Patent Document 1 corrects an arithmetic expression for obtaining a traveling speed based on a relationship between a count value Cp of an output pulse of a wheel speed sensor counted between two features and a distance D between two features. It has been described that.
  • One of the problems to be solved by the present invention is, as an example, accurate acquisition of the vehicle speed as described above.
  • the invention according to claim 1 made in order to solve the above-mentioned subject matter is the feature in the predetermined detection area which moves with the moving object among the detection results of the detecting section which detects the feature around the moving object.
  • a calculating unit that calculates the velocity of the moving object based on the temporal change of the extracted position information.
  • the invention according to claim 9 is a detection unit for detecting a feature around a moving object, and detection results of the detection unit for detecting the feature within a predetermined detection area moving with the moving object.
  • the position information in the movement direction of the mobile of the feature portion of the feature in the detection area is extracted from the acquiring unit which successively acquires the result at predetermined time intervals and the plurality of acquired detection results.
  • a calculating unit configured to calculate the velocity of the moving object based on a temporal change in the extracted position information.
  • the invention according to claim 10 is an information processing method executed by an information processing apparatus that performs a predetermined process based on a detection result of a detection unit that detects a feature around a moving body, Among the detection results of the unit, from the acquisition step of continuously acquiring the detection result of the feature in the predetermined detection area moving together with the movable body at predetermined time intervals, and from the plurality of acquired detection results, The velocity of the moving body is calculated based on the extraction step of extracting the position information of the feature portion of the feature in the detection area in the moving direction of the moving body, and the temporal change of the extracted position information. And calculating step.
  • the invention according to claim 11 is characterized in that the information processing method according to claim 10 is executed by a computer.
  • the detection unit detects, among detection results of the detection unit that detects a feature around the moving body, a detection result of the feature within a predetermined detection area moving with the moving body Are continuously acquired at predetermined time intervals, and the extraction unit extracts position information in the moving direction of the mobile of the feature portion of the feature in the detection area from the plurality of detection results acquired by the acquisition unit. . Then, the calculation unit calculates the speed of the moving object based on the temporal change of the extracted position information. By doing this, it is possible to calculate the velocity based on the position information of the feature portion such as the boundary portion of the feature such as a road marking in the detection region of the detection unit such as the lidar, for example. Can be accurately calculated and acquired.
  • the feature portion of the feature may be one end of the feature.
  • the temporal change of the position information may be an elapsed time from the start of detection of the feature portion to the end of detection. By doing this, it is possible to calculate the velocity of the moving body based on the time during which the feature portion has been detected.
  • the length corresponding to the moving direction of the moving object of the feature is known, and the feature portion of the feature may be one end and the other end of the feature.
  • the temporal change of the position information may be an elapsed time from the detection start of the one end to the detection start of the other end, or an elapsed time from the detection end of the one end to the detection end of the other end .
  • the detection area may be two places separated by a predetermined distance before and after the moving direction of the moving body, and the feature portion of the feature may be one end of the feature.
  • the temporal change of the position information may be an elapsed time from the end of detection in the detection area on the front side of the feature portion to the start of detection in the detection area on the rear side.
  • the detection area may be a rectangular area set within the detectable range of the detection unit. By doing this, it is possible to use only a portion that may detect a feature as a detection region. Therefore, for example, it is possible to prevent a decrease in accuracy of speed calculation due to noise due to detection of an object such as a feature other than the target object for which detection is assumed.
  • the detection apparatus concerning one Embodiment of this invention is equipped with the detection part which detects the terrestrial feature around a mobile. And an acquisition part acquires continuously a detection result of a terrestrial feature in a predetermined detection field which moves with a mobile object by a predetermined time interval, and an extraction part is based on a plurality of detection results acquired by acquisition means. The position information in the moving direction of the mobile of the feature portion of the feature in the detection area is extracted. Then, the calculation unit calculates the speed of the moving object based on the temporal change of the extracted position information.
  • the speed can be calculated by detecting position information of a feature portion such as a boundary portion of a feature such as a road marking within the detection area. This makes it possible to calculate and acquire the velocity of the moving object with high accuracy.
  • the acquisition step of the detection results of the detection unit for detecting the ground object around the mobile object, the ground object in the predetermined detection area moving with the mobile object.
  • the detection results are continuously acquired at predetermined time intervals, and in the extraction step, position information in the movement direction of the mobile of the feature portion of the feature in the detection area is obtained from the plurality of detection results acquired in the acquisition step. Extract. Then, in the calculation step, the velocity of the moving object is calculated based on the temporal change of the extracted position information.
  • an information processing program that causes a computer to execute the above-described information processing method may be used. By doing this, it becomes possible to calculate the speed by detecting the position information of the feature portion such as the boundary portion of the feature such as the road marking in the detection area of the detection unit using the computer, and the movement The speed of the body can be accurately calculated and acquired.
  • FIGS. 1 to 11 An information processing apparatus according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 11.
  • the information processing apparatus according to the present embodiment is included in the detection device 1 and moves together with a vehicle as a moving body.
  • the detection device 1 includes a sensor group 11, a storage unit 12, a control unit 15, and an output unit 16.
  • the sensor group 11 includes a rider 21, a vehicle speed sensor 22, an acceleration sensor 23, a gyro sensor 24, an inclination sensor 25, a temperature sensor 26, and a GPS receiver 27.
  • the lidar 21 as a detection unit emits laser light in a pulse shape to discretely measure the distance to an object present in the outside world.
  • the lidar 21 outputs a point cloud of measurement points indicated by a combination of the distance to the object from which the laser light is reflected and the emission angle of the laser light.
  • the lidar 21 is used to detect features present around the vehicle.
  • a feature is a concept that includes all natural or artificial objects present on the ground. Examples of features include path features located on the vehicle's path (i.e., the road) and peripheral features located on the periphery of the road.
  • the route top feature a road sign, a traffic light, a guardrail, a footbridge, etc. may be mentioned, and the road itself is also included. That is, characters and figures drawn on the road surface, and the shape of the road (road width and curvature) are also included in the route features.
  • examples of the peripheral features include buildings (houses, stores) and billboards located along the road.
  • the vehicle speed sensor 22 measures a pulse (also referred to as an “axle rotation pulse”) formed of a pulse signal generated along with the rotation of a wheel of the vehicle to detect the vehicle speed.
  • the acceleration sensor 23 detects an acceleration in the traveling direction of the vehicle.
  • the gyro sensor 24 detects the angular velocity of the vehicle when changing the direction of the vehicle.
  • the tilt sensor 25 detects a tilt angle (also referred to as a "slope angle”) in the pitch direction with respect to the horizontal plane of the vehicle.
  • the temperature sensor 26 detects the temperature around the acceleration sensor 23.
  • a GPS (Global Positioning System) receiver 27 detects an absolute position of the vehicle by receiving radio waves including positioning data from a plurality of GPS satellites. The output of each sensor of the sensor group 11 is supplied to the control unit 15.
  • the storage unit 12 stores an information processing program executed by the control unit 15, information required for the control unit 15 to execute a predetermined process, and the like.
  • the storage unit 12 stores a map database (DB) 10 including road data and feature information.
  • map DB10 may be updated regularly.
  • the control unit 15 receives partial map information related to the area to which the vehicle position belongs from an external server device that manages map information via a communication unit (not shown), and causes the map DB 10 to reflect it.
  • a server device that can communicate with the detection device 1 may store the map DB 10.
  • the control unit 15 communicates with an external server device to acquire necessary feature information and the like from the map DB 10.
  • the output unit 16 outputs, for example, the speed information calculated by the control unit 15 to a control device for automatic driving or another vehicle-mounted device such as a meter.
  • the control unit 15 includes a CPU (Central Processing Unit) or the like that executes a program, and controls the entire detection device 1.
  • the control unit 15 includes an acquisition unit 15a, an extraction unit 15b, and a calculation unit 15c. In the present embodiment, the control unit 15 calculates the speed of the vehicle based on the features detected by the rider 21.
  • the acquisition unit 15a continuously acquires detection results in a window described later at predetermined time intervals.
  • the extraction unit 15 b extracts positional information in the moving direction of the vehicle of the feature portion of the feature in the window from the detection result acquired by the acquisition unit 15 a.
  • the calculating unit 15c calculates the speed of the vehicle based on the temporal change of the position information extracted by the extracting unit 15b.
  • control part 15 functions as an information processor concerning this example among detection devices 1 of composition of having mentioned above.
  • the detection of the white line in the present embodiment will be described with reference to FIG. In FIG. 2, it is assumed that the vehicle C is traveling from left to right in the figure.
  • the rider 21L is installed on the left side of the front of the vehicle C, and the rider 21R is installed on the right side of the front of the vehicle C in the same manner.
  • a window W which is a rectangular area is set in the detection range A.
  • the window W is set at a position where the white line D1 and the white line D2 can be easily detected in the detection range A.
  • This window W is a detection area which moves with the moving body in the present embodiment.
  • the rider 21 installed in front of the vehicle C will be described, but the rider installed behind the vehicle C may be used. Furthermore, only one of the riders 21L and 21R may be used.
  • the lidar 21 outputs the distance to the object and the emission angle of the laser light as described above. That is, the distance to the measurement object, and the horizontal angle and the vertical angle of the measurement object are output.
  • an axis in the longitudinal direction of the vehicle C is xb
  • an axis in the lateral direction of the vehicle C is yb
  • an axis in the vertical direction of the vehicle C is zb.
  • the lidar 21 in this embodiment scans an object by emitting pulsed light sequentially from one side to the other side in the horizontal direction. Therefore, as shown in the upper part of FIG. 4, the scan locus is linear when viewed from above. Therefore, the acquiring unit 15a acquires information from the lidar 21 at intervals of the scanned lines. That is, the acquisition unit 15a continuously acquires the detection result of the feature at predetermined time intervals.
  • a beam scanning in the horizontal direction is vertically moved up and down to obtain a plurality of lines, or a plurality of optical systems scanning in the horizontal direction are vertically arranged to obtain a plurality of lines There is. It is known that the scan interval of such a type of rider spreads with distance from the vehicle C (see also FIG. 5). This is because the angle between the rider 21 and the feature (road surface) becomes shallower as it goes away from the vehicle C.
  • each line is ⁇ (i), ⁇ (i + 1), ⁇ (i + 2), ⁇ (i + 3), and the distance from the emission point to each line is r (i), r Line spacings d (i), d (i + 1) and d (i + 2) when (i + 1), r (i + 2) and r (i + 3) are expressed as in the following equations (2) to (4) Be done.
  • the speed of the vehicle C is calculated based on the fact that the white line passes through the range of the window W and one end of one of the lines constituting the broken white line is detected.
  • description will be made using the symbol of the line and the symbol of the line interval shown in FIG.
  • line S 1, S 2 is the detected one end of the white line D1.
  • the lines S 1 to S 4 detect the white line D 1 after the time ⁇ t has elapsed.
  • the movement distance x (k) at this time is expressed by the following equation (5)
  • the speed v (k) of the vehicle C at this time is expressed by the equation (6).
  • (5) (6) d 2/2, d 4/2 , etc. in the expression when the position of the end portion of the white line D1 as shown in FIG. 7 is between scans, the exact position It is considered to be 1/2 of the scan interval because it is unknown. Therefore, the closer the scan interval is, the smaller the error between this half and the actual position becomes.
  • the speed is calculated by detecting the end of the white line D1 closer to the vehicle C, but as shown in FIG. 8, the speed is detected by detecting the end of the white line D1 farther from the vehicle C
  • the speed can also be calculated.
  • control unit 15 information processing apparatus
  • FIGS. 9 to 11 the operation (information processing method) of the control unit 15 (information processing apparatus) configured as described above will be described with reference to the flowcharts of FIGS. 9 to 11. Further, these flowcharts can be configured as an information processing program executed by a computer by configuring the control unit 15 as a computer having a CPU or the like.
  • step S101 it is determined whether the extraction unit 15b detects the beginning of the white line D1 in the window W. If not detected (No), this step is repeated. If detected (Yes), the step is repeated.
  • step S102 speed calculation processing is performed.
  • the detection of the start end of the white line D1 indicates, for example, the state shown in the upper part of FIG.
  • the speed calculation process will be described later. That is, in the case of FIG. 7, the starting end (one end portion) of the white line D1 is the feature portion of the feature. Note that, as described above, the start point of the white line D1 is the start of one line that constitutes a broken line.
  • step S103 the extraction unit 15b determines whether or not the detection of the beginning of the white line D1 is lost in the window W. If the detection of the beginning does not disappear (in the case of No), the process returns to step S102. If the detection is lost (in the case of Yes), the speed calculation processing is ended on the assumption that the end of the white line D1 has been detected.
  • the state in which the detection of the start end of the white line D1 disappears in the window W means, for example, a state in which one end of the white line D1 can not be detected in the window W because time further passes from the lower part of FIG. In this state, one end that is a characteristic portion of the white line D1 can not be detected, and the speed calculation process is ended.
  • steps S101 and S103 from the plurality of detection results acquired by the acquisition unit 15a, positional information in the moving direction of the vehicle C (mobile body) of the feature portion of the feature in the window W (detection area) is extracted There is.
  • step S102 the speed calculation process (step S102) of FIG. 9 will be described with reference to the flowchart of FIG.
  • This flowchart is executed by the calculation unit 15c.
  • step S201 the movement distance x (k) is calculated from the line number of one cycle before and the current line number.
  • the preceding cycle line number for example, FIG. 7 upper line S 2, and the current line number is 7 middle line S 4, for example. Therefore, the movement distance between the lines S 2 to S 4 is as shown in equation (5).
  • one cycle indicates ⁇ t in the case of calculating the speed at time ⁇ t intervals.
  • step S202 the velocity v (k) is calculated from the movement distance x (k) and the scan cycle ⁇ t.
  • step S203 k speeds are averaged to obtain a speed v. Since the speed calculation process shown in FIG. 10 is executed a plurality of times based on the determination in step S103 as described in the flowchart of FIG. 9, steps S201 and S202 are substantially executed a plurality of times and are executed. Every time it is averaged in step S203. That is, the flow chart (step S102) of FIG. 10 calculates the speed of the vehicle C (moving object) based on the temporal change of the extracted position information. In addition, the velocity calculation process is repeated until it is determined No in step S103, so that the velocity v that is finally calculated indicates that the temporal change in the position information is from the detection start of the feature portion to the detection end. It will be calculated based on the elapsed time.
  • step S101 functions as an acquisition step and an extraction step
  • step S102 functions as a calculation step
  • step S103 functions as an extraction step.
  • step S301 it is determined whether the extraction unit 15b detects the end of the white line D1 in the window W. If not detected (No), this step is repeated. If detected (Yes), the step is repeated.
  • step S302 speed calculation processing is performed.
  • the end of the white line D1 indicates, for example, the state shown in the upper part of FIG.
  • the speed calculation process is the process shown in the flowchart of FIG. That is, in the case of FIG. 8, the end (one end) of the white line D1 is a feature of the feature.
  • step S303 the extraction unit 15b determines whether the end of the white line D1 has not been detected in the window W. If the detection of the end does not disappear (in the case of No), the process returns to step S302. If the detection is lost (in the case of Yes), the speed calculation processing is ended on the assumption that the end of the white line D1 has been detected.
  • the state in which the detection of the end of the white line D1 in the window W is lost means, for example, a state in which the white line D1 is not detected in the window W since time further passes from the lower side of FIG. In this state, one end that is a characteristic portion of the white line D1 can not be detected, and the speed calculation process is ended.
  • the control unit 15 detects the detection result of the white line D1 in the window W moving with the vehicle C among the detection results of the lidar 21 that detects the feature around the vehicle C, at the time interval of ⁇ t.
  • the line position of the scan of the lidar 21 in the moving direction of the vehicle C at one end of the white line D1 is detected from these detection results.
  • the velocity v of the vehicle C is calculated based on the temporal change in the position of the detected scan line.
  • the detection area is a rectangular window W set within the detection range A of the lidar 21.
  • FIGS. 12 to 15 The same parts as those of the first embodiment described above are designated by the same reference numerals and the description thereof will be omitted.
  • the present embodiment is a method of calculating the speed of the vehicle C when the configuration is the same as that of FIG. 1 but the length of one of the lines forming the broken line that is a white line is known.
  • the length of the first line (hereinafter referred to as the length of the white line) is often determined by law depending on the type of road. Therefore, the speed can be calculated by using the length of the white line which is the known information. In the present embodiment, it is assumed that the length of the white line is included in the map DB 10.
  • FIG. 12 shows a state in which the window W moving together with the vehicle C detects the white line D1.
  • scanning is performed at an interval of, for example, ⁇ t to detect the white line D1.
  • the length of the detection portion when the first end of the white line D1 is first detected is a1
  • the movement distance between each time (per ⁇ t) is x 1 to x 8
  • the end of the white line D1 is first detected
  • the feature portion of the feature is one end (start of white line D1) and the other end (end of white line D1) of the feature.
  • a1 is S 1 ⁇ S 2 shown in FIG. 7 for example, and detects the white line D1, the d 1 + d 2/2.
  • b1 is S 3 ⁇ S 10 shown likewise in FIG. 8, for example when the detected white lines D1, becomes d 1 + d 2/2.
  • the equation (16) indicates the amount of scan movement for eight times. Therefore, the velocity v can be calculated by the following equation (17) which divides L ⁇ a1 + b1 by eight scanning times.
  • N indicates the number of scans. That is, the temporal change of the position information is an elapsed time from the start of detection of one end (start of white line D1) to the start of detection of the other end (end of white line D1). Further, by obtaining the velocity v in this manner, it is not necessary to obtain the moving distance x (k) or the like for each scan.
  • a1 was made into the length immediately after the detection of the front end of the white line D1, the detection value of a little after may be sufficient.
  • b1 is a length immediately after detection of the end of the white line D1, it may be a detection value slightly after.
  • a1 becomes a large value, but the number of times of scanning N decreases by one, resulting in similar values Calculated Also, for example, if b1 is a length after one hour from immediately after the detection of the end of the white line D1, b1 is a large value, but the number of scans increases by one, and as a result, similar values are calculated.
  • FIG. 13 shows an example of the case where the white line D1 is missing from the window W.
  • the velocity can be calculated by the same idea as that of FIG. That is, the length of the white line undetected portion when the start end of the white line D1 is detected last is a2, the movement distance between each time is x 1 to x 8 , and the end of the white line D1 is detected last Assuming that the length is b2 and the length of the white line D is L, the following equation (18) is established.
  • a2 and b2 can be calculated based on what has been described with reference to FIGS. 7 and 8 in the same manner as described with reference to FIG.
  • equation (19) indicates the amount of scan movement for eight times. Therefore, the velocity v can be calculated by the following equation (20) which divides L + a2-b2 by eight scanning times.
  • N indicates the number of scans.
  • a2 and b2 may not be the last detected value, but may be a value one time before. Even if a2 or b2 becomes a large value, the number of scans is increased or decreased, so similar results are calculated.
  • step S401 the extraction unit 15b initializes the number of scans N to "0".
  • step S402 it is determined whether the extraction unit 15b detects the beginning of the white line D1 in the window W. If not (in the case of No), this step is repeated and in the case of detection (in the case of Yes)
  • step S403 the length a1 of the detection portion when the calculation unit 15c first detects the start end of the white line D1 is obtained.
  • the detection of the start end of the white line D1 indicates a state in which one end of the white line D1 closer to the vehicle is detected as in the second stage from the top of FIG. 12, for example.
  • step S404 the extraction unit 15b counts up the number of scans N, and in step S405 determines whether the extraction unit 15b has detected the end of the white line D1 in the window and detects the end of the white line D1. If not, the process returns to step S404, and if the end of the white line D1 is detected, the length b1 of the undetected portion when the calculation unit 15c first detects the end of the white line D1 is obtained in step S406.
  • the detection of the end of the white line D1 indicates, for example, a state where one end of the white line D1 far from the vehicle is detected as shown in the lowermost stage of FIG.
  • step S407 the calculation unit 15c acquires the length of the white line (the length of the white line D1) L from the map DB 10, and in step S408, the calculation unit 15c calculates the velocity v by equation (17).
  • step S501 the extraction unit 15b initializes the number of scans N to “0”.
  • step S502 the extraction unit 15b determines whether or not the white line D1 is detected in the window W. If it is not detected (in the case of No), this step is repeated, and if it is detected (in the case of Yes) The process proceeds to step S503.
  • the detection of the white line D1 indicates, for example, a state in which one or more scan lines in the window W detect the white line D1 as in the top row of FIG.
  • step S503 the extraction unit 15b determines whether the detection of the leading end of the white line D1 has disappeared, and if the detection of the leading end does not disappear (in the case of No), this step is repeated and the detection of the leading end is lost
  • step S504 the calculation unit 15c obtains the length a2 of the immediately preceding white line undetected portion.
  • the absence of the detection of the start end of the white line D1 means that, for example, the second end from the top of FIG.
  • step S505 the extraction unit 15b counts up the number of scans N, and in step S506, the extraction unit 15b determines whether the end of the white line D1 has not been detected in the window W, and the end is detected. If it does not disappear, the process returns to step S505, and if the end is not detected, the length b2 of the detection portion of the white line D1 immediately before the calculation unit 15c is obtained in step S507.
  • the absence of the detection of the end of the white line D1 means, for example, a state in which the white line D1 is not detected from the window W since time has further elapsed from the lowermost stage of FIG.
  • step S508 the calculation unit 15c acquires the length (the length of the white line D1) of the broken line from the map DB 10, and in step S509, the calculation unit 15c calculates the velocity v by equation (20).
  • the length corresponding to the moving direction of the broken line (white line D1) is known, and the feature of the feature is one end and the other end of the white line D1.
  • the temporal change of the position information is the elapsed time from the detection start of one end to the detection start of the other end, or the elapsed time from the last detection of one end to the last detection of the other end, that is, N It is the scan time of the batch. By doing this, it is possible to calculate the speed of the vehicle C based on the time during which the characteristic portion has been detected.
  • the window W is set only in front or rear of the vehicle C, but in the present embodiment, as shown in FIG. 16, the front window WF and the rear window WR Is set. That is, it is set in two places separated by a predetermined distance before and after the moving direction of the moving body.
  • the rider 21FL is installed on the left side of the front of the vehicle C, and the rider 21FR is installed on the right side of the front of the vehicle C in the same manner. Further, a rider 21RL is installed on the left side of the rear portion of the vehicle C, and a rider 21RR is installed on the right side of the rear portion of the vehicle C in the same manner. In the present embodiment, the riders are installed on the left and right of the vehicle, but may be installed only on the right side or the left side.
  • the window WF is set to the detection range AF.
  • the window WR is set to the detection range AR.
  • the windows WF and WR are set at positions where the white line D1 and the white line D2 can be easily detected in the detection range A.
  • FIG. 17 shows a state in which the windows WF and WR moving together with the vehicle C detect the white line D1.
  • scanning is performed at an interval of, for example, ⁇ t to detect the white line D1.
  • the length of the portion at which the end of the white line D1 in the front window WF was last detected is a3
  • the movement distance between each time (per ⁇ t) is x 1 to x 10
  • the white line D1 in the rear window is Assuming that the length of the undetected portion when the end is first detected is b3 and the gap (interval) between the front window WF and the rear window WR is G, the following equation (21) is established.
  • the gap G is a value that can be obtained in advance from the installation position of each rider, the detection range of the rider, and the like.
  • a3 and b3 can be calculated based on what has been described with reference to FIGS. 7 and 8 in the same manner as described with reference to FIG. That is, in the present embodiment, the feature portion of the feature is one end portion (end of the white line) of the feature.
  • the equation (22) indicates the amount of scan movement for 10 times. Therefore, the velocity v can be calculated by the following equation (23) which divides G + a3 + b3 by 10 scan times.
  • N indicates the number of scans. That is, the temporal change of the position information is an elapsed time from the last detection in the front detection area (window WF) of the feature portion to the start of detection in the rear detection area (window WR).
  • the velocity v can be calculated for the case where the length of the broken line (white line) is not known.
  • processing may be started from detection before the end in the front detection area, or processing from the beginning to the rear in the rear detection area may be performed.
  • processing from the beginning to the rear in the rear detection area may be performed.
  • the scan count number N may increase, and as a result, similar values are calculated.
  • step S601 the extraction unit 15b initializes the number of scans N to "0".
  • step S602 the extraction unit 15b determines whether the white line D1 has been detected in the front window WF. If not detected (No), this step is repeated and detected (Yes)
  • step S603 the extraction unit 15b determines whether the detection of the end of the white line D1 is lost in the front window WF. If the detection of the end does not disappear (in the case of No), this step is repeated to detect the end If L disappears, in step S604, the calculating unit 15c obtains the length a3 of the immediately preceding white line detection portion.
  • detecting the end of the white line D1 in the front window WF indicates a state in which one or more scan lines detect the white line D1 in the front window WF as in the top row of FIG.
  • detection of the end of the white line D1 in the front window WF means that one end of the white line D1 far from the vehicle in the front window WF in the front window WF such as the second and subsequent rows from the top of FIG. Indicates that the unit has not been detected.
  • step S605 the extraction unit 15b counts up the number N of scans, and in step S606, the extraction unit 15b determines whether the end of the white line D1 is detected in the rear window WR. If the end is not detected, the process returns to step S605, and if the end of the white line D1 is detected, the calculation unit 15c obtains the length b3 of the undetected portion of the white line D1 in step S607.
  • the detection of the end of the white line D1 indicates, for example, a state where one end of the white line D1 close to the vehicle is detected as shown in the lowermost stage of FIG.
  • step S608 the calculation unit 15c acquires the gap G between the front window WF and the rear window WR, and in step S609, the calculation unit 15c calculates the velocity v according to equation (22).
  • FIG. 19 shows a state in which the windows WF and WR moving together with the vehicle C detect the white line D1, as in FIG. Further, also in FIG. 19, it is assumed that the white line D1 is detected by scanning at an interval of, for example, ⁇ t as in the first embodiment.
  • the length of the white line undetected portion when the start end of the white line D1 in the front window WF is finally detected is a4
  • the movement distance between each time (per ⁇ t) is x 1 to x 10
  • the rear window Assuming that the length of a detection portion when detecting the start end of the white line D1 in the first is b4, and the gap (interval) between the front window WF and the rear window WR is G, the following equation (24) is established.
  • the gap G is a value that can be obtained in advance from the installation position of each rider, the detection range of the rider, and the like.
  • a4 and b4 can be calculated based on what has been described with reference to FIGS. 7 and 8 in the same manner as described with reference to FIG. That is, in the present embodiment, the feature portion of the feature is one end portion of the feature (starting end of the white line).
  • the equation (25) indicates the amount of scan movement for 10 times. Therefore, the velocity v can be calculated by the following equation (26) which divides G + a4 + b4 by 10 scan times.
  • N indicates the number of scans. That is, the temporal change of the position information is an elapsed time from the last detection in the front detection area (window WF) of the feature portion to the start of detection in the rear detection area (window WR). Further, in the case of this example, the velocity v can be calculated for the case where the length of the broken line (white line) is not known.
  • processing may be started from detection before the end in the front detection area, or processing from the beginning to the rear in the rear detection area may be performed.
  • a4 and b4 become large values, the scan count number N also increases, and as a result, similar values are calculated.
  • step S701 the extraction unit 15b initializes the number of scans N to "0".
  • step S702 the extraction unit 15b determines whether the white line D1 has been detected in the front window WF. If not detected (No), this step is repeated and detected (Yes)
  • step S703 the extraction unit 15b determines whether the detection of the beginning of the white line D1 is lost in the front window WF in step S703. If the detection of the beginning does not disappear (No), this step is repeated to detect the beginning If L disappears, in step S704, the calculation unit 15c obtains the length a4 of the white line undetected portion immediately before.
  • detecting the beginning of the white line D1 in the front window WF indicates a state in which one or more scan lines detect the white line D1 in the front window WF as in the top row of FIG.
  • detection of the start of the white line D1 in the front window WF means that one end of the white line D1 close to the vehicle in the front window WF, such as the second and subsequent rows from the top of FIG. Indicates that the unit has not been detected.
  • step S705 the extraction unit 15b counts up the number N of scans, and in step S706, it is determined whether the extraction unit 15b detects the beginning of the white line D1 in the rear window WR. If the start end is not detected, the process returns to step S705. If the start end of the white line D1 is detected, the calculation unit 15c determines the length b4 of the detection portion of the white line D1 in step S707.
  • the detection of the start end of the white line D1 indicates, for example, a state in which one end near the vehicle of the white line D1 is detected as shown in the lowermost stage of FIG.
  • step S708 the calculation unit 15c acquires the gap G between the front window WF and the rear window WR, and in step S709, the calculation unit 15c calculates the velocity v according to equation (26).
  • the feature of the feature is one end of the white line D1.
  • the temporal change of the position information is an elapsed time from the last detection in the detection area on the front side of the feature portion to the start of detection in the detection area on the rear side, that is, a scan time for N times.
  • the embodiments described above may be combined. Since the vehicle is subject to vertical vibration, pitching, and rolling depending on the conditions of the road surface on which the vehicle is traveling, the method of one embodiment contains an error. Therefore, for example, the velocity calculated by the method of each embodiment may be averaged to obtain the final velocity. Further, since the accuracy of the calculated speed is higher when the line spacing is smaller, the weight of the speed calculated using the portion where the line spacing is smaller may be increased.
  • the broken lines (white lines) of the lane lines are described, but in the case of the first and third embodiments, other features such as road markings and signs may be used.
  • the lidar has been described as the detection unit in the above description, an on-vehicle camera may be used.
  • the present invention is not limited to the above embodiment. That is, those skilled in the art can carry out various modifications without departing from the gist of the present invention in accordance with conventionally known findings. As long as the configuration of the information processing apparatus of the present invention is provided even by such a modification, it is of course included in the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

車両速度を精度良く取得することができる情報処理装置を提供する。制御部(15)は、車両Cの周辺の地物を検出するライダ(21)の検出結果のうち、車両Cとともに移動するウィンドウW内における白線D1の検出結果を、Δtの時間間隔で連続的に取得し、これら複数の検出結果から、白線D1の一端部の車両Cの移動方向におけるラインの位置を検出する。そして、検出ラインの位置の時間的な変化に基づいて、車両Cの平均速度vを算出する。

Description

情報処理装置
 本発明は、移動体の周辺の地物を検出する検出部の検出結果に基づいて所定の処理を行う情報処理装置に関する。
 例えば、近年開発が進められている自動走行システムは、車両周辺に存在する物体の認識による状況把握を行い、最適な目標軌道を生成し、その目標軌道に沿って走行するように車両の制御を行う。この時、もし車両の自己位置推定精度が悪いと、実走行軌道が目標軌道から逸脱する可能性が生じ自動走行の安全性を低下させてしまう。自動走行の安全性を確保するためには、精度の良い自己位置推定は重要な要素のひとつである。
 従来のカーナビゲーションシステムにおける自己位置推定はGNSS(Global Navigation Satellite System)を用いることが多い。そのため、トンネル内などの受信不能な場所やビルの谷間などのマルチパスが多発する環境下では精度が悪化するという問題があった。
 そこで、車両の走行状態(例えば車両速度及びヨーレート)に基づいて車両位置を推定するいわゆるデッドレコニング技術が知られている。そして、デッドレコニングによる車両位置の推定精度を向上させるためには、上記した車両速度等の車両の走行状態を精度良く取得する必要がある。
 車両速度を精度良く取得する技術としては、例えば特許文献1に記載されているような車速パルスを補正することが知られている。特許文献1は、2つの地物間でカウントされた車輪速センサの出力パルスのカウント値Cpと、2つの地物間距離Dとの関係に基づいて、走行速度を求める際の演算式を補正することが記載されている。
特開2008‐8783号公報
 特許文献1に記載の発明では、2つの地物間距離Dに基づいて演算式を補正しているため、2つの地物間距離Dの精度が低いと演算式の補正の精度も低下する場合がある。そのため、算出される車両速度の精度も低下することがある。
 本発明が解決しようとする課題としては、上述したような車両速度を精度良く取得することが一例として挙げられる。
 上記課題を解決するためになされた請求項1に記載の発明は、移動体の周辺の地物を検出する検出部の検出結果のうち、前記移動体とともに移動する所定検出領域内における前記地物の検出結果を、所定の時間間隔で連続的に取得する取得部と、前記取得された複数の検出結果から、前記検出領域内における前記地物の特徴部分の前記移動体の移動方向における位置情報を抽出する抽出部と、抽出された位置情報の時間的な変化に基づいて、前記移動体の速度を算出する算出部と、を備えることを特徴としている。
 また、請求項9に記載の発明は、移動体の周辺の地物を検出する検出部と、前記検出部の検出結果のうち、前記移動体とともに移動する所定検出領域内における前記地物の検出結果を、所定の時間間隔で連続的に取得する取得部と、前記取得された複数の検出結果から、前記検出領域内における前記地物の特徴部分の前記移動体の移動方向における位置情報を抽出する抽出部と、抽出された位置情報の時間的な変化に基づいて、前記移動体の速度を算出する算出部と、を備えることを特徴としている。
 また、請求項10に記載の発明は、移動体の周辺の地物を検出する検出部の検出結果に基づいて所定の処理を行う情報処理装置で実行される情報処理方法であって、前記検出部の検出結果のうち、前記移動体とともに移動する所定検出領域内における前記地物の検出結果を、所定の時間間隔で連続的に取得する取得工程と、前記取得された複数の検出結果から、前記検出領域内における前記地物の特徴部分の前記移動体の移動方向における位置情報を抽出する抽出工程と、抽出された位置情報の時間的な変化に基づいて、前記移動体の速度を算出する算出工程と、を含むことを特徴としている。
 また、請求項11に記載の発明は、請求項10に記載の情報処理方法を、コンピュータにより実行させることを特徴としている。
本発明の第1の実施例にかかる情報処理装置を有する検出装置の構成である。 図1に示された検出装置の白線の検出について説明図である。 図1に示された検出装置における計測値の座標変換の説明図である。 図1に示されたライダにおけるスキャン角度についての説明図である。 図1に示されたライダにおけるスキャン間隔についての説明図である。 図1に示されたライダにおける垂直角についての説明図である。 図1に示された制御部における速度算出方法についての説明図である。 図1に示された制御部における速度算出方法についての説明図である。 図7に示された速度算出方法のフローチャートである。 図9に示された速度計算処理のフローチャートである。 図8に示された速度算出方法のフローチャートである。 本発明の第2の実施例にかかる制御部における速度算出方法についての説明図である。 本発明の第2の実施例にかかる制御部における速度算出方法についての説明図である。 図12に示された速度算出方法のフローチャートである。 図13に示された速度算出方法のフローチャートである。 本発明の第3の実施例にかかる白線の検出について説明図である。 図16に示された制御部における速度算出方法についての説明図である。 図17に示された速度算出方法のフローチャートである。 図16に示された制御部における他の速度算出方法についての説明図である。 図19に示された速度算出方法のフローチャートである。
 以下、本発明の一実施形態にかかる情報処理装置を説明する。本発明の一実施形態にかかる情報処理装置は、取得部が、移動体の周辺の地物を検出する検出部の検出結果のうち、移動体とともに移動する所定検出領域内における地物の検出結果を、所定の時間間隔で連続的に取得し、抽出部が、取得手段により取得された複数の検出結果から、検出領域内における地物の特徴部分の移動体の移動方向における位置情報を抽出する。そして、算出部が、抽出された位置情報の時間的な変化に基づいて、移動体の速度を算出する。このようにすることにより、例えばライダ等の検出部の検出領域内における道路標示等の地物の境界部分などの特徴部分の位置情報に基づいて速度を算出することが可能となり、移動体の速度を精度良く算出して取得することができる。
 また、地物の特徴部分は、当該地物の一端部であってもよい。このようにすることにより、地物の一端部という1か所における特徴部分の検出によって速度を検出することが可能となる。したがって、他の地物との距離の精度考慮する必要がなくなり、移動体の速度を精度良く算出することができる。
 また、位置情報の時間的な変化は、特徴部分の検出開始から検出終了までの経過時間であってもよい。このようにすることにより、特徴部分が検出されていた時間により移動体の速度を算出することができる。
 また、当該地物の移動体の移動方向に対応する長さが既知であって、地物の特徴部分は、当該地物の一端部と他端部であってもよい。このようにすることにより、地物の移動方向に対応する長さが既知である場合に、当該長さに基づいて移動体の速度を検出することができる。
 また、位置情報の時間的な変化は、一端部の検出開始から他端部の検出開始までの経過時間、あるいは一端部の検出終了から他端部の検出終了までの経過時間であってもよい。このようにすることにより、特徴部分が検出されていた時間により移動体の速度を算出することができる。
 また、検出領域は、移動体の移動方向の前後に所定距離を隔てて2箇所であり、地物の特徴部分は、当該地物の一端部であってもよい。このようにすることにより、所定距離が既知であるので、移動方向に対応する長さが既知でない地物であっても移動体の速度を算出することができる。
 また、位置情報の時間的な変化は、特徴部分の前側の検出領域での検出終了から後側の検出領域での検出開始までの経過時間であってもよい。このようにすることにより、特徴部分が検出されていた時間により移動体の速度を算出することができる。
 また、検出領域は、検出部の検出可能範囲内に設定された矩形状の領域であってもよい。このようにすることにより、地物を検出する可能性がある部分のみを検出領域とすることができる。そのため、例えば検出を想定している対象物以外の地物等の物体の検出によるノイズによって速度算出の精度低下を防止することができる。
 また、本発明の一実施形態にかかる検出装置は、移動体の周辺の地物を検出する検出部を備えている。そして、取得部が、移動体とともに移動する所定検出領域内における地物の検出結果を、所定の時間間隔で連続的に取得し、抽出部が、取得手段により取得された複数の検出結果から、検出領域内における地物の特徴部分の移動体の移動方向における位置情報を抽出する。そして、算出部が、抽出された位置情報の時間的な変化に基づいて、移動体の速度を算出する。このようにすることにより、例えばライダ等の検出部を備える検出装置において、検出領域内における道路標示等の地物の境界部分などの特徴部分の位置情報を検出することにより速度を算出することが可能となり、移動体の速度を精度良く算出して取得することができる。
 また、本発明の一実施形態にかかる情報処理方法は、取得工程で、移動体の周辺の地物を検出する検出部の検出結果のうち、移動体とともに移動する所定検出領域内における地物の検出結果を、所定の時間間隔で連続的に取得し、抽出工程で、取得工程において取得された複数の検出結果から、検出領域内における地物の特徴部分の移動体の移動方向における位置情報を抽出する。そして、算出工程で、抽出された位置情報の時間的な変化に基づいて、移動体の速度を算出する。このようにすることにより、例えばライダ等の検出部の検出領域内における道路標示等の地物の境界部分などの特徴部分の位置情報を検出することにより速度を算出することが可能となり、移動体の速度を精度良く算出して取得することができる。
 また、上述した情報処理方法をコンピュータにより実行させる情報処理プログラムとしてもよい。このようにすることにより、コンピュータを用いて、検出部の検出領域内における道路標示等の地物の境界部分などの特徴部分の位置情報を検出することにより速度を算出することが可能となり、移動体の速度を精度良く算出して取得することができる。
 本発明の第1の実施例にかかる情報処理装置を図1~図11を参照して説明する。本実施例にかかる情報処理装置は検出装置1 に含まれ、移動体としての車両と共に移動する。
 本実施形態にかかる検出装置1の概略ブロック構成を図1に示す。検出装置1は、センサ群11と、記憶部12と、制御部15と、出力部16と、を備えている。
 センサ群11は、ライダ21、車速センサ22、加速度センサ23、ジャイロセンサ24と、傾斜センサ25と、温度センサ26と、GPS受信機27と、を備えている。
 検出部としてのライダ21は、パルス状にレーザ光を出射することで、外界に存在する物体までの距離を離散的に測定する。ライダ21は、レーザ光が反射された物体までの距離と、当該レーザ光の出射角度との組により示された計測点の点群を出力する。本実施例では、ライダ21は、車両の周辺に存在する地物の検出に用いられる。地物とは、地上に存在する天然または人工のあらゆる物体を含む概念である。地物の例としては、車両の経路(即ち道路)上に位置する経路上地物と、道路の周辺に位置する周辺地物と、が含まれる。経路上地物の例としては、道路標識や信号機、ガードレール、歩道橋等が挙げられ、道路そのものも含まれる。即ち、路面に描写された文字や図形、及び、道路の形状(道幅や曲率)も経路上地物に含まれる。また、周辺地物の例としては、道路に沿って位置する建築物(住宅、店舗)や看板等が挙げられる。
 車速センサ22は、車両の車輪の回転に伴って発生されているパルス信号からなるパルス(「車軸回転パルス」とも呼ぶ。)を計測し、車速を検出する。加速度センサ23は、車両の進行方向における加速度を検出する。ジャイロセンサ24は、車両の方向変換時における車両の角速度を検出する。傾斜センサ25は、車両の水平面に対するピッチ方向での傾斜角(「勾配角」とも呼ぶ。)を検出する。温度センサ26は、加速度センサ23の周辺での温度を検出する。GPS(Global Positioning System)受信機27は、複数のGPS衛星から、測位用データを含む電波を受信することで、車両の絶対的な位置を検出する。センサ群11の各センサの出力は、制御部15に供給される。
 記憶部12は、制御部15が実行する情報処理プログラムや、制御部15が所定の処理を実行するのに必要な情報等を記憶する。本実施例では、記憶部12は、道路データ及び地物の情報を含む地図データベース(DB)10を記憶する。なお、地図DB10は、定期的に更新されてもよい。この場合、例えば、制御部15は、図示しない通信部を介し、地図情報を管理する外部のサーバ装置から、自車位置が属するエリアに関する部分地図情報を受信し、地図DB10に反映させる。なお、記憶部12が地図DB10を記憶する代わりに、検出装置1と通信可能なサーバ装置が地図DB10を記憶してもよい。この場合、制御部15は、外部のサーバ装置と通信を行うことにより、地図DB10から必要な地物の情報等を取得する。
 出力部16は、例えば、制御部15で算出された速度情報を、自動運転の制御装置や、メータ等の他の車載機器に出力する。
 制御部15は、プログラムを実行するCPU(Central Processing Unit)などを含み、検出装置1の全体を制御する。制御部15は、取得部15aと、抽出部15bと、算出部15cと、を備えている。本実施例では、制御部15は、ライダ21で検出された地物に基づいて車両の速度を算出する。
 取得部15aは、ライダ21が検出した地物の検出結果のうち、後述するウィンドウにおける検出結果を所定の時間間隔で連続的に取得する。
 抽出部15bは、取得部15aが取得した検出結果から、ウィンドウ内における地物の特徴部分の車両の移動方向における位置情報を抽出する。
 算出部15cは、抽出部15bで抽出された位置情報の時間的な変化に基づいて、車両の速度を算出する。
 そして、上述した構成の検出装置1のうち制御部15が本実施例にかかる情報処理装置として機能する。
 次に、上述した構成の検出装置1の制御部15(情報処理装置)における速度検出の方法について説明する。以下の説明では地物として破線状の車線境界線(いわゆる白線)を利用して行う。白線は再帰性反射材が塗布されているため、反射強度が高くライダによる検出が容易である。
 本実施例における白線の検出について図2を参照して説明する。図2において車両Cは、図中左から右へ向かって走行しているとする。そして、車両Cの前方部左側にはライダ21Lが設置され、同様に車両Cの前方部右側にはライダ21Rが設置されている。
 そして、ライダ21L、21Rの検出範囲をAとすると、その検出範囲Aに矩形状の領域であるウィンドウWが設定される。このウィンドウWは、検出範囲Aの中で白線D1及び白線D2が検出し易い位置に設定される。このウィンドウWが本実施例における移動体とともに移動する検出領域となる。なお、本実施例では、車両Cの前方に設置したライダ21により説明するが、車両Cの後方に設置したライダであってもよい。さらに、ライダ21L、21Rのいずれかのみであってもよい。
 次に、ライダ21による計測値の座標変換について図3を参照して説明する。ライダ21は、上述したように物体までの距離と、レーザ光の出射角度を出力する。つまり、計測対象までの距離と、計測対象の水平角度及び垂直角度を出力する。ここで、図3左側に示したように、車両Cの前後方向の軸をxb、車両Cの左右方向の軸をyb、車両Cの垂直方向の軸をzbとする。このとき、図3右側に示したように、車両Cの重心位置から計測対象までの距離をr、計測対象までの水平角度をα、計測対象までの垂直角度をβとすると、計測対象の位置Z(i)は次の(1)式によって表される。
Figure JPOXMLDOC01-appb-M000001
 次に、ライダ21のスキャン間隔について説明する。本実施例におけるライダ21は、水平方向の一方から他方に沿って順次パルス光を発光することにより物体をスキャンする。そのため、図4の上段に示したように、上から見るとスキャン軌跡がライン状になる。したがって、取得部15aは、このスキャンされたラインの間隔でライダ21から情報を取得する。即ち、取得部15aは、地物の検出結果を、所定の時間間隔で連続的に取得している。
 また、一般的なライダとして、水平方向にスキャンするビームを垂直方向に上下動させて複数のラインを得るものや、水平方向にスキャンする光学系を垂直方向に複数個並べて複数のラインを得るものがある。このようなタイプのライダのスキャン間隔は、車両Cからみて離れるにしたがって広がることが知られている(図5も参照)。これは、ライダ21と地物(路面)との角度が車両Cからみて離れるにしたがって浅くなるためである。
 ここで、図5に示すように、ウィンドウW内のスキャンのラインを車両Cから離れた位置から近づくにしたがってS、S、…、S10とし、各ラインの間隔をd、d、…、dとする。また、図6に示すように、各ラインの垂直角度がβ(i)、β(i+1)、β(i+2)、β(i+3)、出射点から各ラインまでの距離がr(i)、r(i+1)、r(i+2)、r(i+3)としたときのラインの間隔d(i)、d(i+1)、d(i+2)は、次の(2)~(4)式のように表される。
Figure JPOXMLDOC01-appb-M000002
 そして、このウィンドウWの範囲を白線が通過したことにより当該白線である破線を構成する一の線の一端部が検出されることに基づいて車両Cの速度を算出する。以下、図5に示したラインの符号及びラインの間隔の符号を用いて説明する。
 まず、図7上段に示したように、ラインS、Sが白線D1の一端部を検出したとする。そして、図7中段に示したように、時間Δt経過後にラインS~Sが白線D1を検出したとする。このときの移動距離x(k)は次の(5)式で表され、このときの車両Cの速度v(k)は(6)式で表される。ここで、(5)式(6)式におけるd/2、d/2等は、図7のように白線D1の端部の位置がスキャンの間にある場合には、正確な位置が不明のためスキャン間隔の1/2と見做しているのである。そのため、スキャン間隔が密になるほどこの1/2と実際の位置との誤差が小さくなる。
Figure JPOXMLDOC01-appb-M000003
 次に、図7下段に示したように、時間Δt経過後にラインS~Sが白線D1を検出したとする。このときの移動距離x(k+1)は次の(7)式で表され、このときの車両Cの速度v(k+1)は(8)式で表される。
Figure JPOXMLDOC01-appb-M000004
 したがって、上記速度v(k)と速度v(k+1)を平均した速度vは次の(9)式で表される。
Figure JPOXMLDOC01-appb-M000005
 なお、図7では、白線D1の車両Cに近い方の端部の検出で速度を算出していたが、図8に示したように、白線D1の車両Cから遠い方の端部の検出で速度を算出することもできる。
 まず、図8上段に示したように、ラインS~S10が白線D1を検出したとする。そして、図8中段に示したように、時間Δt経過後にラインS~S10が白線D1を検出したとする。このときの移動距離x(k)は次の(10)式で表され、このときの車両Cの速度v(k)は(11)式で表される。
Figure JPOXMLDOC01-appb-M000006
 次に、図8下段に示したように、時間Δt経過後にラインS~S10が白線D1を検出したとする。このときの移動距離x(k+1)は次の(12)式で表され、このときの車両Cの速度v(k+1)は(13)式で表される。
Figure JPOXMLDOC01-appb-M000007
 したがって、上記速度v(k)と速度v(k+1)を平均した速度vは次の(14)式で表される。
Figure JPOXMLDOC01-appb-M000008
 次に、上述した構成の制御部15(情報処理装置)の動作(情報処理方法)について図9~図11のフローチャートを参照して説明する。また、これらのフローチャートは制御部15がCPU等を有するコンピュータとして構成することで、コンピュータで実行される情報処理プログラムとして構成することができる。
 まず、図7で説明した速度算出処理について図9のフローチャートを参照して説明する。ステップS101において、抽出部15bがウィンドウW内で白線D1の始端を検出したか否かを判断し、検出しない場合(Noの場合)は本ステップを繰り返し、検出した場合(Yesの場合)はステップS102において速度計算処理を行う。白線D1の始端の検出とは、例えば図7上段のような状態を示す。なお、速度計算処理については後述する。即ち、図7の場合においては白線D1の始端(一端部)が地物の特徴部分となる。なお、この白線D1の始端とは、上述したように、破線を構成する一の線の始まりである。
 次に、ステップS103において、抽出部15bがウィンドウW内で白線D1の始端の検出が無くなったか否かを判断し、始端の検出が無くならない場合(Noの場合)はステップS102に戻り、始端の検出が無くなった場合(Yesの場合)は白線D1の端部の検出が終了したとして速度算出処理を終了する。ウィンドウW内で白線D1の始端の検出が無くなった状態とは、例えば図7下段から更に時間が経過してウィンドウW内において白線D1の一端部が検出できなくなった状態をいう。この状態では、白線D1の特徴部分である一端部が検出できないので速度算出処理を終了させる。即ち、ステップS101及びS103において、取得部15aが取得した複数の検出結果から、ウィンドウW(検出領域)内における地物の特徴部分の車両C(移動体)の移動方向における位置情報を抽出している。
 次に、図9の速度計算処理(ステップS102)について図10のフローチャートを参照して説明する。このフローチャートは算出部15cで実行される。まず、ステップS201において、1周期前のライン番号と、今回のライン番号から移動距離x(k)を計算する。1周期前のライン番号とは、例えば図7上段のラインSであり、今回のライン番号とは、例えば図7中段のラインSである。したがって、ラインS~Sまでの移動距離である(5)式のとおりとなる。また、1周期とは、時間Δt間隔で速度を算出する場合のΔtを示す。
 次に、ステップS202において、移動距離x(k)とスキャン周期Δtから速度v(k)を算出する。
 そして、ステップS203において、k個の速度を平均して速度vを求める。図10に示した速度計算処理は、図9のフローチャートで説明したように、ステップS103の判断によって複数回実行されるため、ステップS201、S202は実質的に複数回実行されることとなり、実行される度にステップS203で平均化される。即ち、図10のフローチャート(ステップS102)が、抽出された位置情報の時間的な変化に基づいて、車両C(移動体)の速度を算出している。また、速度計算処理は、ステップS103でNoと判断されるまで繰り返されることで、最終的に算出される速度vは、位置情報の時間的な変化が、特徴部分の検出開始から検出終了までの経過時間に基づいて算出されることとなる。
 即ち、ステップS101が取得工程、抽出工程として機能し、ステップS102が算出工程として機能し、ステップS103が抽出工程として機能する。
 次に、図8で説明した速度算出処理について図11のフローチャートを参照して説明する。ステップS301において、抽出部15bがウィンドウW内で白線D1の終端を検出したか否かを判断し、検出しない場合(Noの場合)は本ステップを繰り返し、検出した場合(Yesの場合)はステップS302において速度計算処理を行う。白線D1の終端とは、例えば図8上段のような状態を示す。速度計算処理は図10のフローチャートに示した処理である。即ち、図8の場合においては白線D1の終端(一端部)が地物の特徴部分となる。
 次に、ステップS303において、抽出部15bがウィンドウW内で白線D1の終端の検出が無くなったか否かを判断し、終端の検出が無くならない場合(Noの場合)はステップS302に戻り、終端の検出が無くなった場合(Yesの場合)は白線D1の端部の検出が終了したとして速度算出処理を終了する。ウィンドウW内から白線D1の終端の検出が無くなった状態とは、例えば図8下段から更に時間が経過してウィンドウWから白線D1が検出されなくなった状態をいう。この状態では、白線D1の特徴部分である一端部が検出できないので速度算出処理を終了させる。
 本実施例によれば、制御部15は、車両Cの周辺の地物を検出するライダ21の検出結果のうち、車両Cとともに移動するウィンドウW内における白線D1の検出結果を、Δtの時間間隔で連続的に取得し、これらの検出結果から、白線D1の一端部の車両Cの移動方向におけるライダ21のスキャンのライン位置を検出する。そして、検出されたスキャンのラインの位置の時間的な変化に基づいて、車両Cの速度vを算出する。このようにすることにより、例えばライダ等の検出部に設定したウィンドウW内における白線D1等の地物の境界部分といった特徴部分の位置に基づいて速度を算出することが可能となる。また、特徴部分が検出されていた時間により移動体の速度を算出することができる。よって、移動体の速度を精度良く算出して取得することができる。
 また、白線D1の地物の一端部という1か所における特徴部分の検出によって速度を検出することが可能となる。したがって、他の地物との距離の精度を考慮する必要がなくなる。
 また、検出領域は、ライダ21の検出範囲A内に設定された矩形状のウィンドウWとしている。このようにすることにより、白線D1を検出する可能性がある部分のみを検出領域とすることができる。そのため、例えば検出を想定している白線D1以外の物体の検出によるノイズによって速度算出の精度低下を防止することができる。
 次に、本発明の第2の実施例にかかる検出装置及び情報処理装置を図12~図15を参照して説明する。なお、前述した第1の実施例と同一部分には、同一符号を付して説明を省略する。
 本実施例は、構成は図1と同様であるが、白線となる破線を構成する一の線の長さが既知である場合の車両Cの速度算出方法である。この一の線の長さ(以下、白線の長さという)は、道路の種類によって法令等で定められていることが多い。そこで、その既知の情報である白線の長さを利用することで、速度を算出することができる。本実施例においては、白線の長さは地図DB10に含まれているものとする。
 次に、速度算出の具体例を図12及び図13を参照して説明する。図12は、車両Cとともに移動するウィンドウWが白線D1を検出する状態を示したものである。図12においては、第1の実施例と同様に例えばΔt間隔でスキャンを行って白線D1の検出を行っているものとする。このときの、白線D1の始端を最初に検出したときの検出部分の長さをa1、各時刻間(Δtあたり)の移動距離をx~x、白線D1の終端を最初に検出したときの未検出部分の長さをb1、白線Dの長さをLとすると、次の(15)式が成立する。即ち、本実施例では、地物の特徴部分は、当該地物の一端部(白線D1の始端)と他端部(白線D1の終端)となっている。
Figure JPOXMLDOC01-appb-M000009
 ここで、a1は例えば図7に示したS~Sが白線D1を検出したとすると、d+d/2となる。また、b1も同様に例えば図8に示したS~S10が白線D1を検出したとすると、d+d/2となる。
 (15)式を変形すると次の(16)式となる。
Figure JPOXMLDOC01-appb-M000010
 したがって、(16)式は8回分のスキャン移動量を示している。よって、L-a1+b1を8回分のスキャン時間で除算する次の(17)式により速度vを算出することができる。(17)式においてNはスキャン回数を示している。即ち、位置情報の時間的な変化は、一端部(白線D1の始端)の検出開始から他端部(白線D1の終端)の検出開始までの経過時間となっている。また、このようにして速度vを求めることで毎スキャンの移動距離x(k)等を求める必要がなくなる。
Figure JPOXMLDOC01-appb-M000011
 なお、a1を白線D1の始端の検出直後の長さとしたが、少し後の検出値でも良い。またb1を白線D1の終端の検出直後の長さとしたが、少し後の検出値でも良い。例えば、白線D1の始端の検出直後から1時刻経過後の長さを検出してa1とした場合、a1は大きな値となるが、スキャン回数Nが1回減るために、結果として同様の値が計算される。また、例えばb1を白線D1の終端の検出直後から1時刻経過後の長さとした場合、b1は大きな値となるが、スキャン回数が1回増えるために、結果として同様の値が計算される。
 図13は、ウィンドウWから白線D1が抜けていく場合の例である。この場合も図12と同様の考え方により速度を算出することができる。つまり、白線D1の始端を最後に検出したときの白線未検出部分の長さをa2、各時刻間の移動距離をx~x、白線D1の終端を最後に検出したときの検出部分の長さをb2、白線Dの長さをLとすると、次の(18)式が成立する。
Figure JPOXMLDOC01-appb-M000012
 ここで、a2やb2は図12で説明したのと同様に、図7や図8で説明したことに基づいて算出することができる。
 (18)式を変形すると次の(19)式となる。
Figure JPOXMLDOC01-appb-M000013
 したがって、(19)式は8回分のスキャン移動量を示している。よって、L+a2-b2を8回分のスキャン時間で除算する次の(20)式により速度vを算出することができる。(20)式においてNはスキャン回数を示している。また、図13の場合、ウィンドウの後方(車両Cに近い方)ではラインの間隔が密であるため(図5を参照)、a2やb2の算出(計測)精度が高くなり、結果として速度vの精度が向上する。
Figure JPOXMLDOC01-appb-M000014
 なお、この場合も、a2やb2は最後に検出した値ではなく、1時刻前の値であっても良い。a2やb2が大きな値となっても、スキャン回数が増減されるため、同様の結果が計算される。
 次に、図12で説明した速度算出処理について図14のフローチャートを参照して説明する。まず、ステップS401において、抽出部15bがスキャン回数Nを“0”に初期化する。次に、ステップS402において、抽出部15bがウィンドウW内の白線D1の始端を検出したか否かを判断し、検出しない場合(Noの場合)は本ステップを繰り返し、検出した場合(Yesの場合)はステップS403において、算出部15cが白線D1の始端を最初に検出したときの検出部分の長さa1を求める。白線D1の始端を検出したとは、例えば図12の上から2段目のように白線D1の車両に近い側の一端部が検出された状態を示す。
 次に、ステップS404において、抽出部15bがスキャン回数Nをカウントアップし、ステップS405において、抽出部15bがウィンドウ内で白線D1の終端を検出したか否かを判断し、白線D1の終端を検出しない場合はステップS404に戻り、白線D1の終端を検出した場合はステップS406において、算出部15cが白線D1の終端を最初に検出したときの未検出部分の長さb1を求める。白線D1の終端を検出したとは、例えば図12の最下段のように白線D1の車両に遠い側の一端部が検出された状態を示す。
 そして、ステップS407において、算出部15cが地図DB10から白線の長さ(白線D1の長さ)Lを取得し、ステップS408において、算出部15cが速度vを(17)式により算出する。
 次に、図13で説明した速度算出処理について図15のフローチャートを参照して説明する。まず、ステップS501において、抽出部15bがスキャン回数Nを“0”に初期化する。次に、ステップS502において、抽出部15bがウィンドウW内で白線D1を検出したか否かを判断し、検出しない場合(Noの場合)は本ステップを繰り返し、検出した場合(Yesの場合)はステップS503に進む。白線D1を検出したとは、例えば図13の最上段のようにウィンドウW内において1以上のスキャンのラインが白線D1を検出している状態を示す。
 次に、ステップS503において、抽出部15bが白線D1の始端の検出が無くなったか否かを判断し、始端の検出が無くならない場合(Noの場合)は本ステップを繰り返し、始端の検出が無くなった場合はステップS504において、算出部15cが直前の白線未検出部分の長さa2を求める。白線D1の始端の検出が無くなったとは、例えば図13の上から2段目のように、ウィンドウW内から白線D1の車両側に近い側の一端部分が検出されていない状態を示す。
 次に、ステップS505において、抽出部15bがスキャン回数Nをカウントアップし、ステップS506において、抽出部15bがウィンドウW内で白線D1の終端の検出が無くなったか否かを判断し、終端の検出が無くならない場合はステップS505に戻り、終端の検出が無くなった場合はステップS507において、算出部15c直前の白線D1の検出部分の長さb2を求める。白線D1の終端の検出が無くなったとは、例えば図13の最下段から更に時間が経過してウィンドウWから白線D1が検出されなくなった状態をいう。
 そして、ステップS508において、算出部15cが地図DB10から破線の長さ(白線D1の長さ)Lを取得し、ステップS509において、算出部15cが速度vを(20)式により算出する。
 本実施例によれば、破線(白線D1)の移動方向に対応する長さが既知であって、地物の特徴部分は、白線D1の一端部と他端部である。このようにすることにより、白線D1の移動方向に対応する長さが既知である場合に、当該長さに基づいて車両Cの速度を検出することができる。
 また、位置情報の時間的な変化は、一端部の検出開始から他端部の検出開始までの経過時間、あるいは一端部の最後の検出から他端部の最後の検出までの経過時間、即ちN回分のスキャン時間である。このようにすることにより、特徴部分が検出されていた時間により車両Cの速度を算出することができる。
 次に、本発明の第3の実施例にかかる検出装置及び情報処理装置を図16~図20を参照して説明する。なお、前述した第1、第2の実施例と同一部分には、同一符号を付して説明を省略する。
 本実施例は、構成は図1と同様である。上述した第1、第2の実施例ではウィンドウWは車両Cの前方又は後方のみに設定されていたが、本実施例は、図16に示したように、前側ウィンドウWFと後側ウィンドウWRとが設定されている。即ち、移動体の移動方向の前後に所定距離を隔てて2箇所設定されている。
 本実施例では、車両Cの前方部左側にはライダ21FLが設置され、同様に車両Cの前方部右側にはライダ21FRが設置されている。さらに、車両Cの後方部左側にはライダ21RLが設置され、同様に車両Cの後方部右側にはライダ21RRが設置されている。なお、本実施例では、車両の左右にライダが設置されているが右側又は左側のみに設置されていてもよい。
 そして、ライダ21FL、21FRの検出範囲をAFとすると、その検出範囲AFにウィンドウWFを設定する。さらに、ライダ21RL、21RRの検出範囲をARとすると、その検出範囲ARにウィンドウWRを設定する。これらのウィンドウWF、WRは検出範囲Aの中で白線D1及び白線D2が検出し易い位置に設定される。
 次に、速度算出の具体例を図17を参照して説明する。図17は、車両Cとともに移動するウィンドウWF、WRが白線D1を検出する状態を示したものである。図17においては、第1の実施例と同様に例えばΔt間隔でスキャンを行って白線D1の検出を行っているものとする。このときの、前側ウィンドウWF内の白線D1の終端を最後に検出した部分の長さをa3、各時刻間(Δtあたり)の移動距離をx~x10、後側ウィンドウ内の白線D1の終端を最初に検出した時の未検出部分の長さをb3、前側ウィンドウWFと後側ウィンドウWRとのギャップ(間隔)をGとすると、次の(21)式が成立する。なお、ギャップGは、各ライダの設置位置やライダの検出範囲等から予め求めることができる値である。
Figure JPOXMLDOC01-appb-M000015
 ここで、a3やb3は図12で説明したのと同様に、図7や図8で説明したことに基づいて算出することができる。即ち、本実施例では、地物の特徴部分は、当該地物の一端部(白線の終端)となっている。
(21)式を変形すると次の(22)式となる。
Figure JPOXMLDOC01-appb-M000016
 したがって、(22)式は10回分のスキャン移動量を示している。よって、G+a3+b3を10回分のスキャン時間で除算する次の(23)式により速度vを算出することができる。(23)式においてNはスキャン回数を示している。即ち、位置情報の時間的な変化は、特徴部分の前側の検出領域(ウィンドウWF)での最後の検出から後側の検出領域(ウィンドウWR)での検出開始までの経過時間となっている。また、本実施例の場合、破線(白線)の長さが既知でない場合も対象にして速度vを算出することができる。
Figure JPOXMLDOC01-appb-M000017
 なお、前側の検出領域での最後より手前の検出から処理を開始しても良く、また、後側の検出領域での最初より後段までを処理してもよい。その場合はa3やb3が大きな値となるが、スキャンカウント数Nも増加するので、結果としては同様の値が計算される。
 次に、図17で説明した速度算出処理について図18のフローチャートを参照して説明する。まず、ステップS601において、抽出部15bがスキャン回数Nを“0”に初期化する。次に、ステップS602において、抽出部15bが前側ウィンドウWF内で白線D1を検出したか否かを判断し、検出しない場合(Noの場合)は本ステップを繰り返し、検出した場合(Yesの場合)はステップS603において、抽出部15bが前側ウィンドウWF内で白線D1の終端の検出が無くなったか否かを判断し、終端の検出が無くならない場合(Noの場合)は本ステップを繰り返し、終端の検出が無くなった場合はステップS604において、算出部15cが直前の白線検出部分の長さa3を求める。ここで、前側ウィンドウWF内で白線D1の終端を検出したとは、図17の最上段のような前側ウィンドウWF内において1以上のスキャンのラインが白線D1を検出している状態を示す。また、前側ウィンドウWF内で白線D1の終端の検出が無くなったとは、図17の上から2段目以降のような前側ウィンドウWF内において全てのスキャンのラインが白線D1の車両に遠い側の一端部を検出しなくなった状態を示す。
 次に、ステップS605において、抽出部15bがスキャン回数Nをカウントアップし、ステップS606において、抽出部15bが後側ウィンドウWR内で白線D1の終端を検出したか否かを判断し、白線D1の終端を検出しない場合はステップS605に戻り、白線D1の終端を検出した場合はステップS607において、算出部15cが白線D1の未検出部分の長さb3を求める。白線D1の終端を検出したとは、例えば図17の最下段のように白線D1の車両に近い側の一端部が検出された状態を示す。
 そして、ステップS608において、算出部15cが前側ウィンドウWFと後側ウィンドウWRとのギャップGを取得し、ステップS609において、算出部15cが速度vを(22)式により算出する。
 次に、本実施例における速度検出の他の具体例を図19を参照して説明する。図19は、車両Cとともに移動するウィンドウWF、WRが白線D1を検出する状態を示したものであることは図17と同様である。また、図19においても、第1の実施例と同様に例えばΔt間隔でスキャンを行って白線D1の検出を行っているものとする。このときの、前側ウィンドウWF内の白線D1の始端を最後に検出したときの白線未検出部分の長さをa4、各時刻間(Δtあたり)の移動距離をx~x10、後側ウィンドウ内の白線D1の始端を最初に検出した時の検出部分の長さをb4、前側ウィンドウWFと後側ウィンドウWRとのギャップ(間隔)をGとすると、次の(24)式が成立する。なお、ギャップGは、各ライダの設置位置やライダの検出範囲等から予め求めることができる値である。
Figure JPOXMLDOC01-appb-M000018
 ここで、a4やb4は図12で説明したのと同様に、図7や図8で説明したことに基づいて算出することができる。即ち、本実施例では、地物の特徴部分は、当該地物の一端部(白線の始端)となっている。
(24)式を変形すると次の(25)式となる。
Figure JPOXMLDOC01-appb-M000019
 したがって、(25)式は10回分のスキャン移動量を示している。よって、G+a4+b4を10回分のスキャン時間で除算する次の(26)式により速度vを算出することができる。(26)式においてNはスキャン回数を示している。即ち、位置情報の時間的な変化は、特徴部分の前側の検出領域(ウィンドウWF)での最後の検出から後側の検出領域(ウィンドウWR)での検出開始までの経過時間となっている。また、本例の場合、破線(白線)の長さが既知でない場合も対象にして速度vを算出することができる。
Figure JPOXMLDOC01-appb-M000020
 なお、前側の検出領域での最後より手前の検出から処理を開始しても良く、また、後側の検出領域での最初より後段までを処理してもよい。その場合はa4やb4が大きな値となるが、スキャンカウント数Nも増加するので、結果としては同様の値が計算される。
 次に、図19で説明した速度算出処理について図20のフローチャートを参照して説明する。まず、ステップS701において、抽出部15bがスキャン回数Nを“0”に初期化する。次に、ステップS702において、抽出部15bが前側ウィンドウWF内で白線D1を検出したか否かを判断し、検出しない場合(Noの場合)は本ステップを繰り返し、検出した場合(Yesの場合)はステップS703において、抽出部15bが前側ウィンドウWF内で白線D1の始端の検出が無くなったか否かを判断し、始端の検出が無くならない場合(Noの場合)は本ステップを繰り返し、始端の検出が無くなった場合はステップS704 において、算出部15cが直前の白線未検出部分の長さa4を求める。ここで、前側ウィンドウWF内で白線D1の始端を検出したとは、図19の最上段のような前側ウィンドウWF内において1以上のスキャンのラインが白線D1を検出している状態を示す。また、前側ウィンドウWF内で白線D1の始端の検出が無くなったとは、図19の上から2段目以降のような前側ウィンドウWF内において全てのスキャンのラインが白線D1の車両に近い側の一端部を検出しなくなった状態を示す。
 次に、ステップS705において、抽出部15bがスキャン回数Nをカウントアップし、ステップS706において、抽出部15bが後側ウィンドウWR内で白線D1の始端を検出したか否かを判断し、白線D1の始端を検出しない場合はステップS705に戻り、白線D1の始端を検出した場合はステップS707 において、算出部15cが白線D1の検出部分の長さb4を求める。白線D1の始端を検出したとは、例えば図19の最下段のように白線D1の車両に近い側の一端部が検出された状態を示す。
 そして、ステップS708において、算出部15cが前側ウィンドウWFと後側ウィンドウWRとのギャップGを取得し、ステップS709において、算出部15cが速度vを(26)式により算出する。
 本実施例によれば、検出領域は、車両Cの移動方向の前後にギャップGを隔てて2箇所であり、地物の特徴部分は、白線D1の一端部である。このようにすることにより、ギャップGが既知であるので、移動方向に対応する長さが既知でない地物であっても車両Cの速度を算出することができる。
 また、位置情報の時間的な変化は、特徴部分の前側の検出領域での最後の検出から後側の検出領域での検出開始までの経過時間、即ちN回分のスキャン時間である。このようにすることにより、前側ウィンドウ、後側ウィンドウともにライン間隔が密で精度の高い部分検出することができ、特徴部分が検出されていた時間により車両Cの速度を算出することができる。
 なお、上述した実施例を組み合わせてもよい。車両は走行する路面の状況により上下振動、ピッチング、ローリングが生じるため1つの実施例の方法のみでは誤差を含んでいる。そこで、例えば各実施例の方法で算出した速度を平均して最終的な速度としてもよい。また、ライン間隔が密な方が算出される速度の精度が高くなるため、ライン間隔が密な部分を用いて算出した速度の重み付けを大きくするようにしてもよい。
 なお、上述した説明では、車線区画線の破線(白線)で説明したが、第1及び第3の実施例の場合は、他の道路標示や標識等の地物であってもよい。さらに、上述した説明では、検出部としてライダで説明したが、車載カメラであってもよい。
 また、本発明は上記実施例に限定されるものではない。即ち、当業者は、従来公知の知見に従い、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。かかる変形によってもなお本発明の情報処理装置の構成を具備する限り、勿論、本発明の範疇に含まれるものである。
  1    検出装置
  15   制御部(情報処理装置)
  15a  取得部
  15b  抽出部
  15c  算出部
  21   ライダ(検出部)
  S101 ウィンドウ内で白線の始端を検出(取得工程、抽出工程)
  S102 速度計算処理(算出工程)
  S103 ウィンドウ内全てが白線(抽出工程)

Claims (11)

  1.  移動体の周辺の地物を検出する検出部の検出結果のうち、前記移動体とともに移動する所定検出領域内における前記地物の検出結果を、所定の時間間隔で連続的に取得する取得部と、
     前記取得された複数の検出結果から、前記検出領域内における前記地物の特徴部分の前記移動体の移動方向における位置情報を抽出する抽出部と、
     抽出された位置情報の時間的な変化に基づいて、前記移動体の速度を算出する算出部と、
    を備えることを特徴とする情報処理装置。
  2.  前記地物の特徴部分は、当該地物の一端部であることを特徴とする請求項1に記載の情報処理装置。
  3.  前記位置情報の時間的な変化は、前記特徴部分の検出開始から検出終了までの経過時間であることを特徴とする請求項2に記載の情報処理装置。
  4.  当該地物の前記移動体の移動方向に対応する長さが既知であって、前記地物の特徴部分は、当該地物の一端部と他端部であることを特徴とする請求項1に記載の情報処理装置。
  5.  前記位置情報の時間的な変化は、前記一端部の検出開始から他端部の検出開始までの経過時間、及び一端部の検出終了から他端部の検出終了までの経過時間の少なくとも一方であることを特徴とする請求項4に記載の情報処理装置。
  6.  前記検出領域は、前記移動体の移動方向の前後に所定距離を隔てて2箇所であり、前記地物の特徴部分は、当該地物の一端部であることを特徴とする請求項1に記載の情報処理装置。
  7.  前記位置情報の時間的な変化は、前記特徴部分の前側の前記検出領域での検出終了から後側の前記検出領域での検出開始までの経過時間であることを特徴とする請求項6に記載の情報処理装置。
  8.  前記検出領域は、前記検出部の検出可能範囲内に設定された矩形状の領域であることを特徴とする請求項1から7のうちいずれか一項に記載の情報処理装置。
  9.  移動体の周辺の地物を検出する検出部と、
     前記検出部の検出結果のうち、前記移動体とともに移動する所定検出領域内における前記地物の検出結果を、所定の時間間隔で連続的に取得する取得部と、
     前記取得された複数の検出結果から、前記検出領域内における前記地物の特徴部分の前記移動体の移動方向における位置情報を抽出する抽出部と、
     抽出された位置情報の時間的な変化に基づいて、前記移動体の速度を算出する算出部と、
    を備えることを特徴とする検出装置。
  10.  移動体の周辺の地物を検出する検出部の検出結果に基づいて所定の処理を行う情報処理装置で実行される情報処理方法であって、
     前記検出部の検出結果のうち、前記移動体とともに移動する所定検出領域内における前記地物の検出結果を、所定の時間間隔で連続的に取得する取得工程と、
     前記取得された複数の検出結果から、前記検出領域内における前記地物の特徴部分の前記移動体の移動方向における位置情報を抽出する抽出工程と、
     抽出された位置情報の時間的な変化に基づいて、前記移動体の速度を算出する算出工程と、
    を含むことを特徴とする情報処理方法。
  11.  請求項10に記載の情報処理方法を、コンピュータにより実行させることを特徴とする情報処理プログラム。
PCT/JP2018/046192 2017-12-19 2018-12-14 情報処理装置 WO2019124277A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019561058A JPWO2019124277A1 (ja) 2017-12-19 2018-12-14 情報処理装置
JP2022018354A JP2022065044A (ja) 2017-12-19 2022-02-09 情報処理装置
JP2023187396A JP2023181415A (ja) 2017-12-19 2023-11-01 情報処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-242744 2017-12-19
JP2017242744 2017-12-19

Publications (1)

Publication Number Publication Date
WO2019124277A1 true WO2019124277A1 (ja) 2019-06-27

Family

ID=66992976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046192 WO2019124277A1 (ja) 2017-12-19 2018-12-14 情報処理装置

Country Status (2)

Country Link
JP (3) JPWO2019124277A1 (ja)
WO (1) WO2019124277A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7556922B2 (ja) 2022-09-02 2024-09-26 本田技研工業株式会社 外界認識装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55179363U (ja) * 1979-06-12 1980-12-23
JPH06160132A (ja) * 1992-11-24 1994-06-07 Olympus Optical Co Ltd 距離・速度予知装置
JPH08285554A (ja) * 1995-04-14 1996-11-01 Minato Electron Kk レーザドップラ法を利用した搬送中における直方体の物品の進入角度と側辺の実長の測定法とその装置
JP2006024146A (ja) * 2004-07-09 2006-01-26 Foundation For The Promotion Of Industrial Science 画像処理による移動物体計測方法及び装置
JP2008523417A (ja) * 2004-12-14 2008-07-03 アーデーツエー・オートモテイブ・デイスタンス・コントロール・システムズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 車両速度を求める方法及び装置
JP2010019640A (ja) * 2008-07-09 2010-01-28 Nissan Motor Co Ltd 速度計測装置および速度計測方法
JP2014035197A (ja) * 2012-08-07 2014-02-24 Ricoh Co Ltd 移動部材検出装置及び画像形成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55179363U (ja) * 1979-06-12 1980-12-23
JPH06160132A (ja) * 1992-11-24 1994-06-07 Olympus Optical Co Ltd 距離・速度予知装置
JPH08285554A (ja) * 1995-04-14 1996-11-01 Minato Electron Kk レーザドップラ法を利用した搬送中における直方体の物品の進入角度と側辺の実長の測定法とその装置
JP2006024146A (ja) * 2004-07-09 2006-01-26 Foundation For The Promotion Of Industrial Science 画像処理による移動物体計測方法及び装置
JP2008523417A (ja) * 2004-12-14 2008-07-03 アーデーツエー・オートモテイブ・デイスタンス・コントロール・システムズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 車両速度を求める方法及び装置
JP2010019640A (ja) * 2008-07-09 2010-01-28 Nissan Motor Co Ltd 速度計測装置および速度計測方法
JP2014035197A (ja) * 2012-08-07 2014-02-24 Ricoh Co Ltd 移動部材検出装置及び画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7556922B2 (ja) 2022-09-02 2024-09-26 本田技研工業株式会社 外界認識装置

Also Published As

Publication number Publication date
JPWO2019124277A1 (ja) 2020-12-03
JP2023181415A (ja) 2023-12-21
JP2022065044A (ja) 2022-04-26

Similar Documents

Publication Publication Date Title
CN110709890B (zh) 地图数据修正方法及装置
KR102128851B1 (ko) 제1 랜드마크의 글로벌 위치를 결정하는 방법 및 시스템
EP2372304B1 (en) Vehicle position recognition system
EP3137850B1 (en) Method and system for determining a position relative to a digital map
CN108351216B (zh) 估计装置、控制方法、程序以及存储介质
JP7052543B2 (ja) 自車位置推定装置
JP6806891B2 (ja) 情報処理装置、制御方法、プログラム及び記憶媒体
EP3872454A1 (en) Measurement accuracy calculation device, host position estimation device, control method, program, and storage medium
US10836385B2 (en) Lane keeping assistance system
JP2023075184A (ja) 出力装置、制御方法、プログラム及び記憶媒体
EP3693702A1 (en) Method for localizing a vehicle
JP2020032986A (ja) 姿勢推定装置、制御方法、プログラム及び記憶媒体
JP2023164553A (ja) 位置推定装置、推定装置、制御方法、プログラム及び記憶媒体
JP2023118751A (ja) 自己位置推定装置
JP2023181415A (ja) 情報処理装置
WO2018212302A1 (ja) 自己位置推定装置、制御方法、プログラム及び記憶媒体
JP6604052B2 (ja) 走路境界推定装置及び走路境界推定方法
US12140697B2 (en) Self-position estimation device, self-position estimation method, program, and recording medium
KR102603534B1 (ko) Ldm 정보와 환경 센서를 이용한 차량의 측위 개선 방법 및 장치
US20240053440A1 (en) Self-position estimation device, self-position estimation method, program, and recording medium
WO2019124278A1 (ja) 情報処理装置
WO2019124279A1 (ja) 情報処理装置
JP2023022232A (ja) 速度算出装置
US20220290990A1 (en) Measuring method, measuring apparatus and program
JP2024161585A (ja) 自己位置推定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18891484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019561058

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18891484

Country of ref document: EP

Kind code of ref document: A1