WO2019123719A1 - デュアル光周波数コム生成光学系、レーザー装置、計測装置 - Google Patents
デュアル光周波数コム生成光学系、レーザー装置、計測装置 Download PDFInfo
- Publication number
- WO2019123719A1 WO2019123719A1 PCT/JP2018/031344 JP2018031344W WO2019123719A1 WO 2019123719 A1 WO2019123719 A1 WO 2019123719A1 JP 2018031344 W JP2018031344 W JP 2018031344W WO 2019123719 A1 WO2019123719 A1 WO 2019123719A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- waveguide
- frequency comb
- optical frequency
- light
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
Definitions
- the present invention relates to a dual optical frequency comb generation optical system that outputs two optical frequency combs, and a laser apparatus and a measurement apparatus that include the dual optical frequency comb generation optical system.
- a dual optical frequency comb generation optical system that outputs two optical frequency combs
- a laser apparatus and a measurement apparatus that include the dual optical frequency comb generation optical system.
- optical frequency comb The light whose spectral intensity is precisely and equally spaced in a comb shape on the frequency axis.
- an optical frequency comb For example, in the spectral distribution of a mode-locked laser which is an ultrashort pulse laser, a large number of optical frequency mode trains arranged at equal intervals appear. That is, the optical frequency comb is emitted from the mode-locked laser.
- Optical frequency combs having a comb-like spectral intensity are widely used as precise measures of time, space and frequency.
- the spacing of the optical frequency mode sequence in the optical frequency domain is called the repetition frequency.
- Non-Patent Document 1 by performing multi-heterodyne detection of two optical frequency combs having different repetition frequencies, it is possible to take out information of molecules and atoms in the optical frequency domain.
- Two optical frequency combs having different repetition frequencies are called dual optical frequency combs.
- two mode-locked lasers that output dual optical frequency combs it is possible to perform broadband measurement with high accuracy and high resolution.
- Non-Patent Document 1 when two laser devices such as mode-locked lasers are used to generate a dual optical frequency comb, these laser devices are different from each other in environmental disturbance and mechanical Be subject to The two laser devices are subjected to different environmental disturbances and mechanical disturbances, thereby reducing the signal-to-noise ratio (SN ratio) of the interference signal obtained at the time of multiheterodyne detection.
- SN ratio signal-to-noise ratio
- the present invention takes the above-mentioned circumstances into consideration, and is a dual optical frequency comb capable of enhancing the signal-to-noise ratio of optical frequency combs having different repetition frequencies and miniaturizing the optical system and the entire apparatus.
- a generation optical system a laser device, and a measurement device.
- a dual optical frequency comb generation optical system comprises: a first waveguide for guiding and amplifying a first laser beam along a first direction and a second direction opposite to the first direction; (2) A base provided with a second waveguide for guiding and amplifying a second laser beam along a third direction and a fourth direction opposite to the third direction; A first introducing portion introduced into the first waveguide, a second introducing portion introducing the second laser beam into the second waveguide, and an end on the back side of the base in the first direction And is connected to the first waveguide and reflects a portion of the first laser beam guided by the first waveguide along the first direction along the second direction. And emitting the remaining portion of the first laser beam guided by the first waveguide along the first direction along the first direction.
- the optical path length of the first laser beam propagating between the first reflecting portion and the third reflecting portion, and the optical path of the second laser beam propagating between the second reflecting portion and the third reflecting portion is different.
- the polarization direction of the first laser light and the polarization direction of the second laser light may be different from each other.
- the first waveguide section guides and amplifies the first laser light while maintaining the polarization direction of the first laser light, and the second waveguide transmits the polarization direction of the second laser light.
- the second laser beam may be guided and amplified while being held.
- the length of the first waveguide along the traveling direction of the first laser beam and the length of the second waveguide in the traveling direction of the second laser beam May be different from one another.
- the first waveguide and the second waveguide are respectively provided around a first core and the first core, and have a lower refraction than the first core.
- a first waveguide may be provided having a first cladding having a modulus.
- the length of the first waveguide in the first waveguide and the length of the first waveguide in the second waveguide may be different from each other.
- the first waveguide portion is provided with a first core and a first cladding provided around the first core and having a lower refractive index than the first core. You may provide the 1st waveguide to have.
- the second waveguide has a second core having a refractive index different from that of the first core, and a second cladding provided around the second core and having a refractive index lower than that of the second core.
- a second waveguide may be provided.
- the first laser beam is irradiated to the third reflecting portion at a position where the first laser beam is emitted from the first waveguide portion along the second direction. Between the first position and the second position, and the second laser light is emitted from the second waveguide portion along the fourth direction.
- the distance to which the second laser beam propagates may be different from the position irradiated to the reflecting portion.
- the third reflecting portion may be connected directly or indirectly to the base.
- an end on the front side of the first direction of the first waveguide and an end on the front side of the third direction of the second waveguide and the second A first light collecting portion and a second light collecting portion are provided between the third light reflecting portion, and the first light collecting portion is the first light emitted from the first waveguide portion along the second direction.
- the laser light is imaged on the third reflecting portion, and the first laser light reflected by the third reflecting portion is made incident on the first waveguide along the first direction, and the second collection is performed.
- the light unit causes the second laser beam emitted from the second waveguide unit along the fourth direction to form an image on the third reflecting unit, and the second reflected by the third reflecting unit.
- Laser light is made incident on the second waveguide along the third direction, and the first light collecting portion and the second light collecting portion It may be configured in one piece.
- the position where the first laser light is emitted from the first waveguide along the second direction, and the first laser light irradiates the first light collector.
- a distance through which the first laser light propagates between the first position and the second position, a position where the second laser light is emitted from the second waveguide along the fourth direction, and the second The distance traveled by the second laser light may be different from the distance at which the second light collecting portion is irradiated.
- the first light collecting portion, the second light collecting portion, and the third reflecting portion may be connected to the base directly or indirectly.
- a laser apparatus includes the above-described dual optical frequency comb generation optical system, and a light source connected to the first introducing unit and the second introducing unit and emitting the first laser beam and the second laser beam. ing.
- the laser apparatus is connected to the above-described dual optical frequency comb generation optical system, the first introducing unit, and a first light source that emits the first laser light, and is connected to the second introducing unit. And 2) a second light source for emitting a laser beam.
- the measuring apparatus includes at least one of the laser device described above, a first optical frequency comb derived from the laser device, and a second optical frequency comb having a repetition frequency different from the first optical frequency comb.
- An interference unit disposed on the back side in the traveling direction of the first optical frequency comb and the second optical frequency comb from the sample disposed in the second optical frequency comb and causing the first optical frequency comb and the second optical frequency comb to be measured to interfere
- a sample information extraction unit disposed on the back side in the traveling direction of the interference signal obtained by the interference unit and extracting information of the sample from the interference signal.
- the relative SN ratio of optical frequency combs having different repetition frequencies can be increased, and the optical system can be miniaturized.
- FIG. 2 is a cross-sectional view of the laser device shown in FIG. 1 as viewed in the direction of arrows YY. It is a top view of a measuring device of a 1st embodiment of the present invention. It is a top view of the laser apparatus of 2nd Embodiment of this invention. It is a top view of the laser apparatus of 3rd Embodiment of this invention.
- FIG. 6 is a cross-sectional view of the laser device shown in FIG. 5 as viewed in the direction of arrows ZZ. It is a top view of the laser apparatus of 4th Embodiment of this invention.
- FIG. 8 is a cross-sectional view of the laser device shown in FIG. 7 taken along the line Y'-Y '; It is a top view of the laser apparatus of 5th Embodiment of this invention. It is a top view of the laser equipment of a 6th embodiment of the present invention. It is a top view of the laser apparatus of 7th Embodiment of this invention. It is a top view of the laser apparatus of 8th Embodiment of this invention. It is a top view of the laser apparatus of 9th Embodiment of this invention.
- FIG. 7 shows a modified example of the laser device shown in FIG. 1 and corresponds to a cross-sectional view taken along line YY in FIG.
- a laser apparatus 160A includes a light source 150, a polarization maintaining optical fiber 151, a polarization separation element 152, polarization maintaining optical fibers 153A and 153B, dual optical frequencies.
- a comb generation optical system 110A is provided.
- One end of the polarization maintaining optical fiber 151 is connected to the light source 150.
- the other end of the polarization maintaining optical fiber 151 is connected to the polarization separation element 152.
- One end of each of the polarization maintaining optical fibers 153A and 153B is connected to the polarization separation element 152.
- the other end of each of the polarization maintaining optical fibers 153A and 153B is connected to the dual optical frequency comb generating optical system 110A.
- the light source 150 is at least a laser beam (first laser beam) S1 whose polarization direction is the first direction P1 with respect to the optical axis A, and a laser whose polarization direction is the second direction with respect to the optical axis A It emits laser light including light (second laser light) S2.
- the optical axis A indicates the traveling direction of light. Assuming that the optical axis A is in a direction perpendicular to the paper surface of FIG. 1, the first direction P1 is a direction facing the upper side and the lower side of the paper, and the second direction P2 is a direction facing the left side and the right is there. Note that the first direction P1 and the second direction P2 may point in any directions as long as they are different from each other.
- the laser beams S1 and S2 may be guided with the slow axis and the fast axis of the polarization maintaining optical fiber 151 as the first direction P1 and the second direction P2.
- the light source 150 according to the first embodiment emits laser beams S1 and S2 and laser beams having any direction different from the first direction P1 and the second direction P2 with respect to the optical axis A. It is composed of a semiconductor laser.
- the polarization separation element 152 extracts only the laser beam S1 from the laser light emitted from the light source 150 to the polarization maintaining optical fiber 153A, and extracts only the laser beam S2 to the polarization maintaining optical fiber 153B.
- the polarization separation element 152 is configured of a polarization maintaining optical coupler.
- the polarization axis of the cladding of the polarization maintaining optical fiber 153A centered on the optical axis A is set so that only the laser beam S1 can be guided by the polarization maintaining optical fiber 153A.
- the polarization axis of the cladding of the polarization maintaining optical fiber 153B centered on the optical axis A is set so that only the laser beam S2 can be guided by the polarization maintaining optical fiber 153B.
- the dual optical frequency comb generation optical system 110A includes a first introduction unit 161, a second introduction unit 162, a first waveguide unit 141, a first reflection unit 121, a second waveguide unit 142, a second reflection unit 122, and light collection.
- a portion (a first light collecting portion, a second light collecting portion) 180 and a third reflecting portion 190 are provided.
- the first introducing unit 161 is connected to the other end of the polarization maintaining optical fiber 153A.
- the second introducing unit 162 is connected to the other end of the polarization maintaining optical fiber 153B.
- the first waveguide portion 141 and the first reflecting portion 121 are provided on the back side in the D1 direction along the D1 direction (first direction) from the first introducing portion 161.
- the second waveguide portion 142 and the second reflecting portion 122 are provided on the back side in the D3 direction along the D3 direction (third direction) from the second introducing portion 162.
- the light collecting section 180 is provided on the near side in the D1 direction from the first introducing part 161 and on the near side in the D3 direction from the second introducing part 162.
- the third reflecting portion 190 is provided on the near side in the D1 direction from the light collecting portion 180.
- the other end side of each of the polarization maintaining optical fibers 153A and 153B is curved so as to merge in the directions D1 and D3 from the laser light introducing direction, and reaches the first introducing portion 161 and the second introducing portion 162.
- the first mode synchronization shift unit E1 is configured.
- the first laser light L1 shifts to the mode synchronization state by the first mode synchronization shift unit E1.
- a second mode synchronization transition unit E2 is configured by the second introduction unit 162, the second waveguide unit 142, the second reflection unit 122, and the portion through which the second laser light passes in the light collection unit 180 and the third reflection unit. Ru.
- the second laser light L2 shifts to the mode synchronization state by the second mode synchronization shift unit E2.
- the first mode synchronization transition portion E1 and the second mode synchronization transition portion E2 are at least partially integrated and extend in the D1 and D3 directions.
- the first introducing portion 161 is configured of an emitting end 165A and a dichroic coating 174.
- the dichroic coatings 174 are provided at intervals on the back side in the D2 direction opposite to the D1 direction.
- the second introducing unit 162 is configured of an emitting end 165 B and a dichroic coating 174.
- the dichroic coating 174 reflects the laser beams S1 and S2 introduced from the first introducing part 161 and the second introducing part 162 into the dual optical frequency comb generating optical system 110A.
- the dichroic coating 174 transmits the laser lights S1 and S2 (hereinafter, referred to as laser amplification lights L1 and L2) amplified by the first waveguide 141 and the second waveguide 142.
- the wavelengths of the laser amplification lights L1 and L2 are different from the wavelengths of the laser lights S1 and S2 before being amplified by the first waveguide 141 and the second waveguide 142.
- the dichroic coating 174 is provided on the end surface of the emission end 165A on the back side in the D1 direction and the end surface of the emission end 165B on the rear side in the D3 direction.
- the position of the dichroic coating 174 is not particularly limited.
- the first waveguide portion 141 is connected to the end on the back side in the D1 direction of the emission end 165A, and guides the laser beam S1 and the laser amplified beam (first laser beam) L1 along the D1 and D2 directions. To amplify.
- the second waveguide 142 is connected to the end on the back side in the D3 direction of the emission end 165B, and along the D4 direction opposite to the D3 direction and the D3 direction, the laser light S2 and the laser amplified light (second laser Light) Wave guide and amplify L2.
- the first waveguide portion 141 is configured of an optical amplification fiber (first waveguide) 143A.
- the second waveguide 142 is configured of an optical amplification fiber (second waveguide) 143B.
- Examples of the optical amplification fibers 143A and 143B of the first embodiment include a polarization-maintaining rare earth-doped optical fiber. As shown in FIG. 2, each of the optical amplification fibers 143A and 143B has a core (first core) 201 and a clad (first clad) 211 provided around the core 201. The cladding 211 has a lower refractive index than the core 201.
- Examples of the rare earth element added to the core 201 of the rare earth-doped optical fiber include erbium (Er), ytterbium (Yb), thulium (Tm) and the like.
- the rare earth element added to the rare earth-doped optical fiber has a wavelength (hereinafter referred to as a first wavelength) of the laser light S1 or S2 before amplification and a wavelength (hereinafter referred to as a second wavelength) of the laser amplification light L1 or L2 It is selected appropriately in consideration.
- the two light amplification fibers 143A and 143B are provided on a common base 130.
- the base 130 is a rectangular solid having substantially the same dimensions as the first waveguide 141 and the second waveguide 142 in the longitudinal direction.
- the first waveguide 141 and the second waveguide 142 are two light amplification fibers 143A and 143B.
- two V-shaped grooves 131 ⁇ / b> A and 131 ⁇ / b> B are formed on the upper surface 130 a of the base 130.
- the grooves 131A and 131B are formed spaced apart from each other in the width direction of the base 130.
- the width direction of the base 130 is a direction parallel to the paper surface of FIG.
- the light amplification fiber 143A is fitted in the groove 131A
- the light amplification fiber 143B is fitted in the groove 131B.
- the material of the base 130 is, for example, metal, resin or the like, but is not particularly limited.
- the optical amplification fibers 143A and 143B have substantially the same length.
- the rear end of the light amplification fibers 143A and 143B in the D1 and D3 directions overlaps the rear end of the base 130 in the D1 and D3 directions.
- the end of the optical amplification fibers 143A and 143B in the near side in the D1 and D3 directions extends further from the end face on the near side in the D1 and D3 directions of the base 130 and is connected to the outgoing ends 165A and 165B. .
- the first reflecting portion 121 and the second reflecting portion 122 are provided on the end surface (end portion) of the base 130 on the back side in the D1 direction.
- the first reflecting portion 121 is connected to the first waveguide portion 141, and reflects a portion of the laser amplified light L1 guided by the first waveguide portion 141 along the D1 direction along the D2 direction.
- the first reflection portion 121 emits the remaining portion of the laser amplified light L1 guided by the first waveguide portion 141 along the D1 direction along the D1 direction.
- the second reflection portion 122 is connected to the second waveguide portion 142, and reflects a portion of the laser amplified light L2 guided by the second waveguide portion 142 along the D3 direction along the D4 direction.
- the second reflector 122 emits the remaining portion of the second laser amplified light L2 guided by the second waveguide 142 along the D3 direction along the D3 direction.
- the power ratios of the laser amplification lights L1 and L2 reflected along the D2 and D4 directions and the laser amplification lights L1 and L2 emitted along the D1 and D3 directions in the first reflection unit 121 and the second reflection unit 122 are Assuming that the total of the laser amplified lights L1 and L2 irradiated to the first reflecting portion 121 and the second reflecting portion 122 is 100, for example, it is about 1:99.
- the polarization maintaining optical fibers 134A and 134B are connected to end portions on the back side in the D1 and D3 directions of the first reflecting portion 121 and the second reflecting portion 122, respectively.
- the polarization maintaining optical fibers 134A and 134B include the optical frequency combs C1 and C2 (first optical frequency comb, second optical frequency comb, see FIG. 3) emitted from the first reflecting portion 121 and the second reflecting portion 122. I will guide.
- the first reflecting portion 121 is configured of the end surface mirror 127A by applying mirror coating to the end surface of the light amplification fiber 143A at the back side in the D1 direction.
- the end surface mirror 127A is integral with the first waveguide 141 and the base 130, and can not be removed from the base 130.
- the mirror coating is applied to the end face of the light amplification fiber 143B on the back side in the D3 direction, so that the second reflection part 122 is configured by the end face mirror 127B.
- the end surface mirror 127B is integral with the second waveguide 142 and the base 130, and can not be removed from the base 130.
- the condensing part 180 is provided with the 1st condensing part 180A and the 2nd condensing part 180B.
- the first light collecting portion 180A and the second light collecting portion 180B are integrated, and their positions are aligned in the second and fourth directions.
- the first light collecting portion 180A and the second light collecting portion 180B are aligned with each other in the second direction and the fourth direction.
- the first condensing unit 180A focuses the laser amplification light L1 emitted from the first introduction unit 161 along the direction D2 on the third reflection unit 190, and the laser amplification light L2 reflected by the third reflection unit 190. Is made incident on the first introduction portion 161 along the direction D1.
- the second light collecting unit 180B focuses the laser amplification light L2 emitted from the second introduction unit 162 along the direction D4 on the third reflection unit 190, and the laser amplification light L2 reflected by the third reflection unit 190. Is made incident on the second introducing portion 162 along the direction D3.
- the condenser unit 180 is configured of two gradient index (GRIN) lenses 182 and 184 spaced apart from each other in the D2 and D4 directions.
- the GRIN lenses 182 and 184 respectively collimate the laser amplified lights L1 and L2 incident on the end surfaces 182c and 184c at the end surfaces 182d and 184d.
- the first mode synchronization transition unit E1 in the GRIN lenses 182 and 184 functions as the first light collector 180A.
- the first mode synchronization transition unit E1 is configured of a portion through which the laser amplification light L1 passes and the vicinity thereof.
- the second mode synchronization transition unit E2 in the GRIN lenses 182 and 184 functions as a second light collector 180B.
- the second mode synchronization transition portion E2 is configured of a portion through which the laser amplification light L2 passes and the vicinity thereof.
- the third reflection portion 190 is provided apart from the end on the near side in the D1 direction of the first waveguide 141 and the end on the near side in the D3 direction of the second waveguide 142.
- the third reflection portion 190 is disposed in the light collection portion 180 near a position spaced apart from the GRIN lens 184 by the focal distance on the front side in the D1 and D3 directions.
- the third reflection portion 190 reflects at least a part of the laser amplified light L1 emitted from the first waveguide portion 141 along the D2 direction, and emits the laser light from the second waveguide portion 142 along the D4 direction. At least a part of the amplified light L2 is reflected.
- the third reflection unit 190 causes the reflected laser amplification light L1 to be incident on the first waveguide 141, and causes the reflected laser amplification light L2 to be incident on the second waveguide 142.
- the reflectances of the laser amplification lights L1 and L2 change according to the powers of the laser amplification lights L1 and L2 irradiated in the condensed state.
- a saturable absorption mirror SAM: Saturable Absorber Mirror
- the SAM is composed of a Distributed Bragg Reflector (DBR) and a saturable absorber.
- DBR Distributed Bragg Reflector
- the DBR is configured of a laminate in which high refractive index materials and low refractive index materials are alternately stacked in the thickness direction.
- the thickness direction is the D1-D4 direction when the DBR is disposed in the dual optical frequency comb generation optical system 110A.
- the absorption by the saturable absorber becomes strong. In this case, most of the laser amplification lights L1 and L2 are absorbed by the saturable absorber, and the laser amplification lights L1 and L2 of a slight power are reflected by the SAM.
- the power of the laser amplification lights L1 and L2 irradiated to the SAM becomes equal to or more than a predetermined value, the absorption in the saturable absorber is saturated. In this case, most of the laser amplification lights L1 and L2 pass through the saturable absorber and are reflected by the DBR, and the high power laser amplification lights L1 and L2 are reflected by the SAM.
- the laser light emitted from the light source 150 is guided to the polarization maintaining optical fiber 151 and enters the polarization separating element 152.
- the polarization separation element 152 separates the laser beams S1 and S2, only the laser beam S1 is guided to the polarization maintaining optical fiber 153A, and only the laser beam S2 is guided to the polarization maintaining optical fiber 153B. .
- the laser beam S1 guided through the polarization maintaining optical fiber 153A passes the emitting end 165A along the direction D2, and is reflected by the dichroic coating 174.
- the laser beam S1 reflected by the dichroic coating 174 passes through the emitting end 165A again, and enters the light amplification fiber 143A along the direction D1.
- the laser beam S2 guided through the polarization maintaining optical fiber 153B passes through the emitting end 165B along the D4 direction and is reflected by the dichroic coating 174.
- the laser beam S2 reflected by the dichroic coating 174 passes through the emitting end 165B again, and enters the light amplification fiber 143B along the direction D3.
- the laser beams S1 and S2 incident on the light amplification fibers 143A and 143B are guided and amplified along the directions D1 and D3. By this, the laser amplified lights L1 and L2 are generated. If the optical amplification fibers 143A and 143B are rare earth-doped optical fibers, the second wavelength is different from the first wavelength.
- the laser amplification light L1 guided by the light amplification fiber 143A along the D1 direction is reflected by the end surface mirror 127A, and is guided by the light amplification fiber 143A along the D2 direction.
- the laser amplification light L2 guided by the light amplification fiber 143B along the D3 direction is reflected by the end face mirror 127B, and is guided by the light amplification fiber 143B along the D4 direction.
- the laser amplification lights L1 and L2 guided by the light amplification fibers 143A and 143B along the directions D2 and D4 pass through the emission ends 165A and 165B and pass through the dichroic coating 174.
- the laser amplified lights L1 and L2 emitted from the dichroic coating 174 along the directions D2 and D4 diffuse in free space and enter the GRIN lens 182.
- the laser amplified lights L1 and L2 incident on the GRIN lens 182 along the directions D2 and D4 are collimated, and then collected by the GRIN lens 184 and incident on the saturable absorption mirror 192.
- a large loss is imparted to the laser amplification lights L1 and L2 incident on the saturable absorption mirror 192 if the power of the collected laser amplification lights L1 and L2 is lower than a predetermined value. If the power of the collected laser amplification lights L1 and L2 is equal to or higher than a predetermined value, a slight loss is given to the laser amplification lights L1 and L2.
- the laser amplified lights L1 and L2 given the loss are reflected by the saturable absorption mirror 192, travel along the directions D1 and D3 and diffuse, and enter the GRIN lens 184.
- the laser amplified lights L1 and L2 incident on the GRIN lens 184 along the D1 and D3 directions are collimated and condensed by the GRIN lens 182.
- the laser amplification lights L1 and L2 collected by the GRIN lens 182 pass through the dichroic coating 174, pass through the emission ends 165A and 165B, and enter the light amplification fibers 143A and 143B.
- the laser amplification lights L1 and L2 incident on the light amplification fibers 143A and 143B along the directions D1 and D3 are repeatedly amplified by the light amplification fibers 143A and 143B.
- the dual optical frequency comb generation optical system 110A and the laser device 160A operate in a state where the laser amplification lights L1 and L2 are continuous lights.
- the dual optical frequency comb generation optical system 110A and the laser device 160A operate in a state where the laser amplification lights L1 and L2 are pulse lights.
- the mode is shifted to the mode synchronization state, and the optical frequency combs C1 and C2 (see FIG. 3) is generated.
- the optical frequency comb C ⁇ b> 1 is led from the first reflector 121 to the polarization maintaining optical fiber 134 ⁇ / b> A.
- the optical frequency comb C2 is led out of the second reflection section 122 to the polarization maintaining optical fiber 134B.
- the repetition frequency f rep1 of the optical frequency comb C1 is determined by the resonator length of the first mode synchronization transition section E1.
- the resonator length of the first mode synchronization transition portion E1 is referred to as a first resonator length.
- the first resonator length corresponds to the length of the light amplification fiber 143A and the length from the near end of the emission end 165A in the D2 direction to the back surface of the saturable absorption mirror 192 in the D2 direction.
- the repetition frequency f rep2 of the optical frequency comb C2 is determined by the resonator length of the second mode synchronization transition portion E2.
- the resonator length of the second mode synchronization transition portion E2 is referred to as a second resonator length.
- the second resonator length corresponds to the length of the light amplification fiber 143B and the length from the near end of the emission end 165B in the D4 direction to the back surface of the saturable absorption mirror 192 in the D4 direction.
- the optical path length of the laser amplification light L1 in the resonator of the first mode synchronization transition portion E1 is determined by the refractive index of the laser amplification light L1 and the first resonator length.
- the optical path length of the laser amplification light L2 in the resonator of the second mode synchronization transition portion E2 is determined by the refractive index of the laser amplification light L2 and the second resonator length.
- the first resonator length and the second resonator length are equal to each other.
- the direction of polarization of the laser amplification light L1 is the first direction P1
- the direction of polarization of the laser amplification light L2 is the second direction P2
- the refractive index of the laser amplification lights L1 and L2 is Different from each other. Therefore, according to the refractive index difference ⁇ n of the laser amplification lights L1 and L2, the optical path length of the laser amplification light L1 with respect to the light amplification fiber 143A of the first mode synchronization transition portion E1 and the light amplification fiber of the second mode synchronization transition portion E2.
- the optical path lengths of the laser amplified light L2 with respect to 143B are different from each other. Assuming that the optical path length difference between the first mode synchronization shift unit E1 and the second mode synchronization shift unit E2 is ⁇ L, the repetition frequency f rep2 is represented by (f rep1 + ⁇ f rep ). The repetition frequency difference ⁇ f rep depends on the optical path length difference ⁇ L.
- the laser amplified light L1 including pulsed light with high intensity is guided along the D1 direction to the polarization maintaining optical fiber 134A .
- the laser amplified light L2 including the pulsed light with high intensity is guided along the D3 direction to the polarization maintaining optical fiber 134B.
- the lengths of the optical amplification fibers 143A and 143B are the repetition of the desired resonator length of the laser amplification lights L1 and L2 and the optical path length difference ⁇ L.
- the frequency is set to correspond to the frequencies f rep1 and f rep2 .
- the laser amplification light L1 is resonated while being shifted to the mode synchronization state at the first mode synchronization transition unit E1.
- the laser amplification light L2 is resonated while being shifted to the mode synchronization state at the second mode synchronization transition unit E2.
- the refractive indexes of the laser amplification lights L1 and L2 are different, and the optical path length of the laser amplification light L1 and the second mode synchronization in the first mode synchronization transition portion E1.
- the optical path lengths of the laser amplified light L2 at the transition portion E2 are different from each other.
- the refractive indexes of the laser amplification lights L1 and L2 are made different from each other by using the laser lights S1 and S2 and the laser amplification lights L1 and L2 having different polarization directions.
- the first resonator length and the second resonator length can be made different from each other.
- the first waveguide portion 141 and the second waveguide portion 142 are provided on the common base 130, and the first mode synchronization transition portion E1 and the second mode synchronization transition The part E2 shares the light collecting part 180 and the third reflecting part 190.
- environmental disturbances and mechanical disturbances received by the mode-locked laser that is, the configuration related to mode synchronization of the laser amplified lights L1 and L2
- Environmental disturbance and mechanical disturbance can be easily removed as common noise between the first mode synchronization transition unit E1 and the second mode synchronization transition unit E2, and the relative SN ratio of the optical frequency combs C1 and C2 can be increased. . By this, it is possible to increase the SN ratio of the interference signal by the optical frequency combs C1 and C2 and to increase the measurement accuracy.
- the first waveguide portion 141 and the second waveguide portion 142 are provided on the common base 130, and the first mode synchronization transition portion E1 and the second mode synchronization transition The part E2 shares the light collecting part 180 and the third reflecting part 190.
- the measurement apparatus 200 includes a laser device 160A having a dual optical frequency comb generation optical system 110A, an interference unit 59, and a sample information extraction unit 58.
- the interference unit 59 causes the polarization maintaining optical fibers 134A and 134B for output and the optical frequency combs C1 and C2 to interfere with each other.
- the sample information extraction unit 58 extracts the information of the sample from the interference signals of the optical frequency combs C1 and C2 which are interfered by the interference unit 59.
- the optical frequency comb C1 generated by the laser device 160A is emitted from the emission end 91 through the polarization maintaining optical fiber 134A.
- the optical frequency comb C2 generated by the laser device 160A is emitted from the emission end 92 through the polarization maintaining optical fiber 134B.
- the sample S to be measured by the measuring apparatus 200 is disposed on the path X36 of the optical frequency comb C2.
- a mirror 55 is provided along the path X35 of the optical frequency comb C1 to turn the path X35 toward the interference unit 59.
- the interference unit 59 causes the optical frequency comb C1 and the optical frequency comb C2 including the information of the sample S to interfere with each other.
- the optical frequency comb C2 including the information of the sample S is referred to as an optical frequency comb C3.
- the interference unit 59 is disposed on the back side of the traveling direction of the optical frequency comb C3 with respect to the sample S, and is configured of a light beam splitter or a half mirror. In the first embodiment, the polarization directions of the optical frequency combs C1 and C2 are different from each other.
- the mirror 55 and the interference unit 59 are preferably polarization maintaining.
- polarization maintaining the polarization maintaining optical fiber 134A or the polarization maintaining optical fiber 134B is temporarily cut halfway and the polarization is maintained
- the optical fibers 134A or the polarization-maintaining optical fibers 134B may be aligned and fused so that their slow or fast axes are orthogonal in cross section.
- the output end 91 may be set to be rotated by 90 ° with respect to the polarization maintaining optical fiber 134A.
- the output end 92 may be installed rotated 90 degrees with respect to the polarization maintaining optical fiber 134B.
- the sample information extraction unit 58 is disposed at the back side in the traveling direction of the multiheterodyne signal (interference signal) generated when the optical frequency combs C1 and C3 interfere with each other in the interference unit 59.
- the sample information extraction unit 58 is capable of acquiring information on the sample S from the multiheterodyne signal, and is configured of a generally known optical system. As such an optical system, an apparatus etc. which convert into an electric signal by a light receiver are mentioned, for example.
- the optical frequency comb C2 travels along the path X36 and passes through the sample S.
- optical information possessed by the sample S is added to the optical frequency comb C2 to become an optical frequency comb C3.
- the optical frequency comb C1 travels along the path X35 and is turned back by the mirror 55.
- the optical frequency comb C3 traveling along the path X36 and the optical frequency comb C1 traveling along the path X35 are combined in the interference unit 59 and interfere with each other. Interference of the optical frequency combs C1, C3 produces a multiheterodyne signal.
- the multiheterodyne signal travels along the path X 37 and enters the sample information extraction unit 58.
- the sample information extraction unit 58 the multiheterodyne signal is converted into a mode decomposition spectrum of a high frequency band by, for example, Fast Fourier Transform (FFT).
- FFT Fast Fourier Transform
- Optical information of the sample S is extracted from the waveform W of the mode decomposition spectrum.
- the waveform W is shown by a broken line.
- the frequency interval between adjacent spectra on the frequency axis in the mode decomposition spectrum corresponds to the repetition frequency difference ⁇ f rep .
- optical information of the sample S can be added to the optical frequency comb C2 traveling on the path X36.
- the interference unit 59 eliminates the environmental disturbance and mechanical disturbance commonly included in the optical frequency combs C1 and C3 by causing the optical frequency combs C1 and C3 to interfere with each other, and can be easily observed in the high frequency band.
- a mode resolved spectrum can be obtained.
- the sample information extraction unit 58 can extract the information of the sample S from the waveform W of the spectrum distribution of the obtained mode decomposition spectrum. Therefore, according to the measuring apparatus 200 according to the present invention, since the optical frequency combs C1 and C2 having a high SN ratio are used, the information of the sample S can be acquired with high accuracy.
- the measuring device is achieved by bringing the component parts of the waveguide close to each other and fixing them to the common base 130 and sharing the components of the free space system. 200 can be miniaturized.
- a laser apparatus 160B includes a dual optical frequency comb generation optical system 110B in place of the dual optical frequency comb generation optical system 110A of the first embodiment.
- the configuration from the light source 150 to the emitting end (first introducing portion, second introducing portion) 165C in the laser device 160B is the first introducing portion 161 to the second introducing portion from the light source 150 in the laser device 160A described in the first embodiment. It is similar to the configuration up to 162.
- the emission ends 165A and 165B in the dual optical frequency comb generation optical system 110A are replaced with the emission end 165C.
- the GRIN lenses 182 and 184 in the dual optical frequency comb generation optical system 110 A are replaced with a convex lens 186. That is, the first introducing portion 161 and the second introducing portion 162 of the dual optical frequency comb generation optical system 110A are configured by the emission end 165C of the dual optical frequency comb generation optical system 110B.
- the condensing part 180 of the dual optical frequency comb generation optical system 110A is configured by the convex lens 186 of the dual optical frequency comb generation optical system 110B.
- the emitting end 165C is connected to the other end of each of the polarization maintaining optical fibers 153A and 153B.
- the emitting end 165C is configured as the polarization maintaining optical fibers 153A and 153B attached to one collimator lens.
- the emitting end 165C collimates the laser amplified lights L1 and L2 incident from the front side in the D2 and D4 directions, and emits obliquely toward the back side in the D2 and D4 directions.
- the emitting end 165C brings the laser amplified lights L1 and L2 emitted apart from each other in a plane including the directions D2 and D4 close to each other. Thereafter, the emission ends 165C are separated at a predetermined position T after being crossed.
- An example of the emitting end 165C is Dual Fiber Collimator (commercially available: AFR (Advanced Fiber Resources, Ltd.), model number: C-1.8-2-55, etc.).
- the laser amplified lights L1 and L2 overlap with each other at the predetermined position T and then travel away from each other again to the far side in the D2 and D4 directions.
- the convex lens 186 returns the traveling direction of the laser amplification lights L1 and L2 to be parallel to the D2 and D4 directions.
- the convex lens 186 causes the third reflected portion 190 to focus the laser amplified lights L1 and L2.
- the third reflective portion 190 is disposed in the vicinity of the focal length of the convex lens 186.
- the laser amplified lights L1 and L2 enter the emission end 165C from the near side in the D2 and D4 directions, are collimated, and are on the far side in the D2 and D4 directions. Directly to emit.
- the laser amplified lights L1 and L2 are separated from each other in a plane including the directions D2 and D4 and are emitted from the emission end 165C, crossed at a predetermined position T, and then separated from each other. After that, the laser amplification lights L1 and L2 are condensed by the convex lens 186 and enter the saturable absorption mirror 192.
- the laser amplified lights L1 and L2 are reflected by the DBR of the saturable absorbing mirror 192, and travel in the same path as when entering the saturable absorbing mirror 192 in the opposite direction to that when entering.
- the laser device 160B basically has the same effect as the laser device 160A because it has the dual optical frequency comb generation optical system 110B.
- the light collecting unit 180 is configured of a single convex lens 186.
- the configuration of the light collecting unit 180 includes all the configurations capable of irradiating the third reflection unit with the laser amplification lights L1 and L2 in a collected state.
- the condensing part 180 is not limited to the GRIN lenses 182 and 184 and the convex lens 186.
- the measurement device of the second embodiment includes a laser device 160B shown in FIG. 4 instead of the laser device 160A of the measurement device 200 shown in FIG.
- the configuration of the measurement apparatus according to the second embodiment other than the laser apparatus is the same as that of the measurement apparatus 200.
- optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fibers 134A and 134B as in the laser device 160A.
- the measuring device of the second embodiment operates in the same manner as the measuring device 200, and exhibits the same effects as the measuring device 200. According to the laser device 160B, the repetition frequency difference ⁇ f rep between the optical frequency combs C1 and C2 can be easily controlled.
- the laser apparatus 160C of the third embodiment to which the present invention is applied is replaced by the dual optical frequency comb generation optical system 110A described in the first embodiment, and the dual optical frequency comb generation optical system 110C is used.
- the configuration from the light source 150 to the emitting end (first introducing portion, second introducing portion) 165A, 165B in the laser device 160C is the first introducing portion 161 and the second introducing portion 161 from the light source 150 in the laser device 160A described in the first embodiment.
- the configuration is similar to that of the introduction unit 162.
- the first waveguide portion 141 is configured of an optical amplification fiber 143A and an optical fiber 144A.
- the near end of the optical fiber 144A in the D1 direction is connected to the far end of the light amplification fiber 143A in the D1 direction.
- the second waveguide 142 is configured of an optical amplification fiber 143B and an optical fiber 144B.
- the near end of the optical fiber 144B in the D3 direction is connected to the far end of the light amplification fiber 143B in the D3 direction.
- No rare earth element is added to the core 202 (see FIG. 6) of each of the optical fibers 144A and 144B.
- the optical fiber 144A only guides the laser amplification light L1 and does not amplify it.
- the optical fiber 144B only guides the laser amplification light L2 and does not amplify it.
- the D1 direction and the D3 direction are parallel to each other.
- the length of the light amplification fiber 143A in the first waveguide portion 141 is longer than the light amplification fiber 143B in the second waveguide portion 142 by the length ⁇ F. Since the length of the optical fiber 144A is shorter than the length of the optical fiber 144B by the length ⁇ F, the first waveguide 141 and the second waveguide 142 have substantially the same length.
- the two optical fibers 144A and 144B are provided on a common base 130 with the two optical amplification fibers 143A and 143B.
- the base 130 has substantially the same dimensions as the first waveguide 141 and the second waveguide 142 in the longitudinal direction.
- the optical fiber 144A is fitted in the groove 131A
- the optical fiber 144B is fitted in the groove 131B.
- the end surface mirror 127A of the first reflecting portion 121 is connected to the end on the back side in the D1 direction of the optical fiber 144A.
- the end surface mirror 127B of the second reflecting portion 122 is connected to the end on the back side in the D3 direction of the optical fiber 144B.
- the rear end of the optical fibers 144A and 144B in the D1 and D3 directions overlaps the rear end of the base 130 in the D1 and D3 directions.
- the polarization direction of the laser beam S1 and the polarization direction of the laser beam S2 do not necessarily have to be different from each other.
- the light source 150 may emit laser beams S1 and S2 whose polarization direction with respect to the optical axis A is only the first direction P1.
- the laser beams S1 and S2 can be guided by aligning the polarization direction only with the slow axis or only with the fast axis of the polarization maintaining optical fiber 151.
- the light source 150 of the third embodiment is configured of a semiconductor laser that emits at least laser beams S1 and S2.
- the laser amplification light L1 is guided through the optical fiber 144A. Thereafter, the laser amplification light L1 is reflected by the end face mirror 127A, guided through the optical fiber 144A along the direction D2, and guided through the optical amplification fiber 143A and amplified.
- the laser amplified light L2 is guided through the optical fiber 144B. Thereafter, the laser amplification light L2 is reflected by the end face mirror 127B, and after being guided through the optical fiber 144B along the direction D4, is guided through the optical amplification fiber 143B.
- the first resonator length and the second resonator length are equal to each other.
- the direction of polarization of the laser amplification lights L1 and L2 may be the common first direction P1
- the lengths of the light amplification fibers 143A and 143B differ by ⁇ F.
- the optical path length of the laser amplification light L1 with respect to the optical amplification fiber 143A of the first mode synchronization transition portion E1 and the optical path length of the laser amplification light L2 with respect to the optical amplification fiber 143B of the second mode synchronization transition portion E2 are different from each other.
- the optical path length difference ⁇ L between the first mode synchronization transition portion E1 and the second mode synchronization transition portion E2 is determined by the length ⁇ F.
- the repetition frequency f rep2 is represented by (f rep1 + ⁇ f rep ).
- the repetition frequency difference ⁇ f rep depends on the optical path length difference ⁇ L.
- the laser amplified light L1 including pulsed light with high intensity is guided along the D1 direction to the polarization maintaining optical fiber 134A .
- the laser amplified light L2 including high intensity pulsed light is guided to the polarization maintaining optical fiber 134B along the D3 direction.
- the length ⁇ F is set such that the resonator length of the laser amplification lights L1 and L2 and the optical path length difference ⁇ L correspond to desired repetition frequencies f rep1 and f rep2 .
- the refractive index of the core of the optical fibers 144A and 144B at a wavelength of 1550 nm is about 1.468
- the refractive index of the core of the optical amplification fibers 143A and 143B at a wavelength of 1550 nm is about 1.48.
- the cores of the optical amplification fibers 143A and 143B absorb the rare earth atoms, the above-described refractive index changes depending on the doping concentration of the rare earth atoms and the power of the excitation light.
- the length of the space in the dual optical frequency comb generation optical system 110C is fixed to 10 cm
- the length of the optical fiber 144A is 10 cm
- the length of the optical amplification fiber 143A is 20 cm.
- the length of the space in the dual optical frequency comb generation optical system 110C is the distance between the end face on the back side in the D2 and D4 directions of the base 130 and the reflecting surface of the third reflecting portion 190.
- the length of the optical fiber 144B is 15 cm
- the length of the optical amplification fiber 143B is 15 cm.
- the physical lengths of the first waveguide 141 and the second waveguide 142 are equal to each other and 40 cm.
- the optical path length of the first waveguide 141 and the optical path length of the second waveguide 142 differ by 0.6 mm.
- Such an optical path length difference means that the length ⁇ F is 0.05 mm. If the length ⁇ F is 0.05 mm, the repetition frequency f rep1 becomes 552.3946024 MHz, the repetition frequency f rep2 becomes 552.9185872 MHz, and the ⁇ f rep becomes about 0.611 MHz.
- the laser device 160C basically has the same effect as the laser device 160A because it has the dual light frequency comb generation optical system 110C.
- the length ⁇ F is a parameter fixed at the time of manufacturing the optical amplification fibers 143A and 143B. Therefore, the length ⁇ F can be adjusted with high accuracy compared to parameters (such as the wavelength of the laser amplification lights L1 and L2 and the direction of polarization) that are easily influenced by the environment around the dual optical frequency comb generation optical system 110C. That is, it is possible to design correctly in advance and is stable.
- the repetition frequency difference ⁇ f rep between the optical frequency combs C1 and C2 can be controlled by the length ⁇ F.
- the length ⁇ F By changing the length ⁇ F, the dispersion amount of the optical frequency combs C1 and C2 can be changed.
- the width of the spectrum of the optical frequency combs C1 and C2 can be changed.
- the measurement device of the third embodiment includes a laser device 160C shown in FIG. 5 instead of the laser device 160A of the measurement device 200 shown in FIG.
- the configuration of the measurement device of the third embodiment other than the laser device 160C is the same as that of the measurement device 200.
- the directions of polarization of the laser amplified lights L1 and L2 may be the same in the first direction P1. Therefore, the mirror 55 and the interference unit 59 do not have to be of the polarization maintaining type.
- the mirror 55 and the interference unit 59 may be configured by an optical component or the like that does not hold the direction of polarization of the optical frequency combs C1 and C3.
- optical frequency combs C1 and C2 are obtained from the polarization maintaining optical fibers 134A and 134B as in the laser device 160A.
- the measuring device of the third embodiment operates in the same manner as the measuring device 200, and exhibits the same effects as the measuring device 200.
- the repetition frequency difference ⁇ f rep between the light frequency combs C1 and C2 can be easily and accurately controlled. By this, it is possible to control the frequency interval between adjacent spectra on the frequency axis in the mode decomposition spectrum with high accuracy.
- the measuring apparatus of the third embodiment the measurement resolution can be easily and accurately adjusted.
- the width of the spectrum of the optical frequency combs C1 and C2 can be adjusted in the laser device 160C, and the measurement band can be easily and accurately adjusted.
- a laser apparatus 160A ' according to the fourth embodiment of the present invention replaces the dual optical frequency comb generation optical system 110A described in the first embodiment with a dual optical frequency comb generation optical system 110A'.
- the configuration from the light source 150 to the emission end (first introducing portion, second introducing portion) 165A, 165B in the laser device 160A ′ is the same as the configuration from the light source 150 in the laser device 160A described in the first embodiment.
- the configuration is the same as that of the second introduction unit 162.
- the dual optical frequency comb generation optical system 110A ′ is an optical system in which the optical amplification fiber 143B of the second waveguide 142 in the dual optical frequency comb generation optical system 110A is replaced with an optical amplification fiber (second waveguide) 143C.
- the optical amplification fiber 143 ⁇ / b> C has a core (second core) 202 and a clad (second clad) 212 provided around the core 202.
- the core 202 has a refractive index different from that of the core 201 of the light amplification fibers 143A and 143B of the first embodiment.
- the cladding 212 has a lower refractive index than the core 202.
- the rare earth element added to the core 202 is preferably the same as the rare earth element added to the core 201.
- the types of rare earth elements to be added are the same in the cores 201 and 202.
- the addition concentrations to which the rare earth elements are added are different from one another.
- the addition concentration of the rare earth element to each of the cores 201 and 202 may be the same, and the diameters of the cores 201 and 202 may be different from each other.
- the cladding 212 may be composed of the same composition as the cladding 211 of the optical amplification fibers 143A and 143B, or may be composed of a composition different from that of the cladding 211 as long as it has a refractive index lower than that of the core 202.
- the direction of polarization of the laser beam S1 and the direction of polarization of the laser beam S2 do not necessarily have to be different from each other.
- the light source 150 may emit laser beams S1 and S2 whose polarization direction is only the first direction P1 with respect to the optical axis A.
- the laser beams S1 and S2 can be guided with only the slow axis or only the fast axis of the polarization maintaining optical fiber 151 in the first direction P1.
- the laser amplification light L2 that has passed through the emission end 165B along the D3 direction is guided through the light amplification fiber 143C and amplified.
- the laser amplification light L2 is reflected by the end face mirror 127B, is guided through the light amplification fiber 143C along the direction D4, is amplified, and passes through the emission end 165B again.
- the first resonator length and the second resonator length are equal, and the polarization directions of the laser amplified lights L1 and L2 may be the first direction P1 in common.
- the refractive index of the core 201 of the optical amplification fiber 143A and the refractive index of the core 202 of the optical amplification fiber 143C differ by ⁇ n.
- the optical path length of the laser amplification light L1 with respect to the optical amplification fiber 143A of the first mode synchronization transition portion E1 and the optical path length of the laser amplification light L2 with respect to the optical amplification fiber 143B of the second mode synchronization transition portion E2 are different from each other.
- the optical path length difference ⁇ L between the first mode synchronization transition portion E1 and the second mode synchronization transition portion E2 is determined by the refractive index difference ⁇ n.
- the repetition frequency f rep2 is represented by (f rep1 + ⁇ f rep ).
- the repetition frequency difference ⁇ f rep depends on the optical path length difference ⁇ L.
- the laser amplification light L1 including pulsed light with high intensity is guided to the polarization maintaining optical fiber 134A along the D1 direction. Be done.
- the laser amplified light L2 including high intensity pulsed light is guided to the polarization maintaining optical fiber 134B along the D3 direction.
- the length ⁇ F is set such that the resonator length of the laser amplification lights L1 and L2 and the optical path length difference ⁇ L correspond to desired repetition frequencies f rep1 and f rep2 .
- the optical amplification fiber 143A and the optical amplification fiber 143C have a nonlinear refractive index of 0.4 ⁇ 10 -16 cm 2 / W different.
- the refractive index difference ⁇ n can be set as 0.4 ⁇ 10 ⁇ 16 cm 2 / W.
- the length ⁇ n is a parameter fixed at the time of manufacture of the optical amplification fibers 143A and 143C, and a parameter (wavelengths of the laser amplification lights L1 and L2) susceptible to the environment around the dual optical frequency comb generation optical system 110A ′. And can be adjusted with high accuracy as compared with the direction of polarization, etc., and can be designed accurately in advance and is stable.
- the repetition frequency difference ⁇ f rep between the optical frequency combs C1 and C2 can be controlled by the length ⁇ F that can be adjusted with high accuracy.
- the laser amplification lights L1, L1 in the cores 201, 202 are made different from each other by making the addition concentrations of the rare earth elements in the cores 201, 202 different to change the refractive index difference ⁇ n.
- the amount of absorption of L2 can be changed to change the amount of dispersion of the optical frequency combs C1 and C2.
- the width of the spectrum of the optical frequency combs C1 and C2 can be changed.
- the measurement device of the fourth embodiment includes a laser device 160A ′ shown in FIG. 7 in place of the laser device 160A of the measurement device 200 shown in FIG.
- the configuration of the measurement device of the fourth embodiment other than the laser device 160A ′ is the same as that of the measurement device 200.
- the directions of polarization of the laser amplified lights L1 and L2 may be the same in the first direction P1. Therefore, the mirror 55 and the interference unit 59 do not have to be of the polarization maintaining type.
- the mirror 55 and the interference unit 59 may be configured by an optical component or the like that does not hold the direction of polarization of the optical frequency combs C1 and C3.
- the optical frequency combs C1 and C2 are emitted from the polarization maintaining optical fibers 134A and 134B as in the laser device 160A.
- the measuring device of the fourth embodiment operates in the same manner as the measuring device 200, and exhibits the same effects as the measuring device 200.
- the frequency interval between adjacent spectra on the frequency axis in the mode decomposition spectrum can be made highly accurate. It can control.
- the measurement resolution can be easily and accurately adjusted.
- the measurement band can be easily and accurately adjusted by adjusting the width of the spectrum of the optical frequency combs C1 and C2 in the laser device 160A ′.
- the laser apparatus 160D of the fifth embodiment to which the present invention is applied is replaced with the dual optical frequency comb generation optical system 110A described in the first embodiment, and the dual optical frequency comb generation optical system 110D is used.
- the configuration from the light source 150 to the emission end (first introducing portion, second introducing portion) 165A, 165B in the laser device 160D is the first introducing portion 161 and the second introducing portion 161 from the light source 150 in the laser device 160A described in the first embodiment.
- the configuration is similar to that of the introduction unit 162.
- the GRIN lens 182 is configured of GRIN lens portions 182A and 182B integrated with each other. Being integrated with one another means that the relative position of the GRIN lens portions 182A and 182B is fixed.
- the GRIN lens portion 182A functioning as the first light collecting portion 180A and the GRIN lens portion 182B functioning as the second light collecting portion 180B have substantially the same length in the D2 direction or the D4 direction, but in the D2 and D4 directions The positions at the positions are shifted by a length .DELTA.M. In the D2 and D4 directions, the distance from the rear end of the dichroic coating 174 to the front end 182c of the GRIN lens portion 182A and the rear end of the dichroic coating 174 from the rear end of the GRIN lens 182B The distance to the end face 182c of the two differs by a length ⁇ M.
- the GRIN lens 184 is composed of GRIN lens portions 184A and 184B integrated with each other. Being integrated with one another means that the relative position of the GRIN lens portions 184A and 184B is fixed.
- the GRIN lens portion 184A functioning as the first light collecting portion 180A and the GRIN lens portion 184B functioning as the second light collecting portion 180B have substantially the same length in the D2 and D4 directions, but in the D2 and D4 directions The position is shifted by a length ⁇ M '.
- the distance to the end face 184 d of the two differs by a length ⁇ M ′.
- positions irradiated with each of the laser amplification lights L1 and L2 on the end face of the saturable absorption mirror 192 in the D2 and D4 directions are shifted by a length ⁇ J in the D2 direction or D4 direction.
- the distance between the position where the laser amplification light L2 is emitted from the end face on the back side of the dichroic coating 174 in the direction and the position where the laser amplification light L2 is irradiated to the end face on the near side of the saturable absorption mirror 192 is It differs by ⁇ J.
- the direction of polarization of the laser beam S1 and the direction of polarization of the laser beam S2 do not necessarily have to be different from each other.
- the light source 150 may emit laser beams S1 and S2 whose polarization direction is common to the optical axis A and which has only the first direction P1.
- the laser beams S1 and S2 can be guided with only the slow axis or only the fast axis of the polarization maintaining optical fiber 151 in the first direction P1.
- the first resonator length and the second resonator length are equal to each other, and the polarization directions of the laser amplification lights L1 and L2 are the same in the first direction P1.
- the positions of the GRIN lens portions 182A and 182B differ by the length ⁇ M in the D2 and D4 directions, and the positions of the GRIN lens portions 184A and 184B are the length ⁇ M ′
- the position where the laser amplification lights L1 and L2 are irradiated to the saturable absorption mirror 192 differs by a length ⁇ J.
- the optical path length difference ⁇ L between the first mode synchronization transition portion E1 and the second mode synchronization transition portion E2 is determined by the lengths ⁇ M, ⁇ M ′ and ⁇ J.
- the repetition frequency f rep2 is represented by (f rep1 + ⁇ f rep ). The repetition frequency difference ⁇ f rep depends on the optical path length difference ⁇ L.
- the laser amplification light L1 including pulsed light with high intensity is guided along the D1 direction to the polarization maintaining optical fiber 134A .
- the laser amplified light L2 including high intensity pulsed light is guided to the polarization maintaining optical fiber 134B along the D3 direction.
- the lengths .DELTA.M , .DELTA.M ' and .DELTA.J are set such that the resonator length of the laser amplification lights L1 and L2 and the optical path length difference .DELTA.L correspond to the desired repetition frequencies f rep1 and f rep2 .
- the lengths ⁇ M, ⁇ M ′, and ⁇ J are small lengths, and are caused by manufacturing errors that occur when arranging each component of the dual optical frequency comb generation optical system 110D, when manufacturing the laser device 160D, etc. It may occur or may occur intentionally.
- the laser device 160D basically has the same effect as the laser device 160A because it has the dual optical frequency comb generation optical system 110D.
- the lengths ⁇ M, ⁇ M ′ and ⁇ J are parameters fixed at the time of construction of the dual optical frequency comb generation optical system 110D, and parameters (laser amplified light) that are easily affected by the environment and the like of the dual optical frequency comb generation optical system 110D It can be adjusted with high accuracy as compared with the wavelengths of L1 and L2 and the direction of polarization, etc., and can be designed in advance accurately and is stable.
- the repetition frequency difference ⁇ f rep between the optical frequency combs C1 and C2 can be controlled by the lengths ⁇ M, ⁇ M ′, ⁇ J that can be adjusted with high accuracy.
- the measurement device of the fifth embodiment includes a laser device 160D shown in FIG. 9 in place of the laser device 160A of the measurement device 200 shown in FIG.
- the configuration of the measurement device of the fifth embodiment other than the laser device 160D is the same as that of the measurement device 200.
- the directions of polarization of the laser amplified lights L1 and L2 may be the same in the first direction P1. Therefore, the mirror 55 and the interference unit 59 need not be of the polarization maintaining type.
- the mirror 55 and the interference unit 59 may be configured by an optical component or the like that does not hold the direction of polarization of the optical frequency combs C1 and C3.
- optical frequency combs C1 and C2 are emitted from the polarization maintaining optical fibers 134A and 134B as in the laser device 160A.
- the measuring device of the fifth embodiment operates in the same manner as the measuring device 200, and exhibits the same effects as the measuring device 200.
- the repetition frequency difference ⁇ f rep between the optical frequency combs C1 and C2 can be easily and accurately controlled. Therefore, in the mode decomposition spectrum, the frequency interval between adjacent spectra on the frequency axis can be controlled with high precision.
- the measuring apparatus of the fifth embodiment the measurement resolution can be easily and accurately adjusted.
- the positions of the GRIN lens portions 182A and 182B are shifted by the length ⁇ M, the relative positions of the GRIN lens portions 184A and 184B are even, and the saturable absorbing mirror 192
- the positions of the end faces on the near side in the D2 direction or the D4 direction may be aligned.
- the length ⁇ M is set such that the resonator length of the laser amplification lights L1 and L2 and the optical path length difference ⁇ L correspond to the desired repetition frequency ⁇ f rep .
- the position of the laser amplification lights L1 and L2 is deviated by the length ⁇ J due to the deviation of the end surface of the saturable absorption mirror 192 in the D2 direction or the D4 direction, the relative position of the GRIN lens portions 182A and 182B, and GRIN
- the relative positions of the lens portions 184A and 184B may be aligned.
- the length ⁇ J is set such that the resonator length of the laser amplification lights L1 and L2 and the optical path length difference ⁇ L correspond to the desired repetition frequency ⁇ f rep .
- positions where the portion that configures the first mode synchronization transition portion E1 of the GRIN lens 184 and the portion that configures the second mode synchronization transition portion E2 differ from each other in the D2 and D4 directions. It may be misplaced.
- a laser apparatus 160E includes a dual optical frequency comb generation optical system 110E in place of the dual optical frequency comb generation optical system 110A described in the first embodiment.
- the configuration from the light source 150 to the emitting end (first introducing portion, second introducing portion) 165A, 165B in the laser device 160E is the first introducing portion 161 and the second introducing portion 161 from the light source 150 in the laser device 160A described in the first embodiment.
- the configuration is similar to that of the introduction unit 162.
- the position of the reflecting surface on the near side in the D1 and D3 directions of the end surface mirror 127A and the position of the reflecting surface on the near side in the D1 and D3 directions of the end surface mirror 127B are It differs by the length ⁇ G.
- the length of the light amplification fiber 143A along the D1 and D2 directions and the length of the light amplification fiber 143B along the D3 and D4 directions are different from each other. In the configuration example shown in FIG. 10, the length of the light amplification fiber 143A is shorter than the length of the light amplification fiber 143B by the length ⁇ G.
- the end surface mirror 127B is disposed on the near side of the end surface on the back side in the direction D1 of the base 130.
- a groove is formed on the upper surface of the base 130 along the height direction of the base 130.
- the end surface mirror 127 B is fitted in the groove and is perpendicular to the top surface of the base 130.
- the end face on the near side in the D1 direction of the end face mirror 127B is in contact with the end face on the back side in the D1 direction of the light amplification fiber 143B.
- the direction of polarization of the laser beam S1 and the direction of polarization of the laser beam S2 do not necessarily have to be different from each other.
- the light source 150 may emit laser beams S1 and S2 whose polarization direction with respect to the optical axis A is only the first direction P1.
- the laser beams S1 and S2 can be guided with only the slow axis or only the fast axis of the polarization maintaining optical fiber 151 in the first direction P1.
- the polarization directions of the laser amplification lights L1 and L2 may be the first direction P1 in common.
- the length of the light amplification fiber 143A in the D1 and D3 directions and the length of the light amplification fiber 143B in the D2 and D4 directions differ by a length ⁇ G.
- the first resonator length and the second resonator length differ by a length ⁇ G.
- the optical path length difference ⁇ L between the first mode synchronization transition portion E1 and the second mode synchronization transition portion E2 is directly determined by the length ⁇ G.
- the repetition frequency f rep2 is represented by (f rep1 + ⁇ f rep ).
- the repetition frequency difference ⁇ f rep depends on the optical path length difference ⁇ L.
- the laser amplification light L1 including pulsed light with high intensity is guided along the D1 direction to the polarization maintaining optical fiber 134A .
- the laser amplified light L2 including high intensity pulsed light is guided to the polarization maintaining optical fiber 134B along the D3 direction.
- the length ⁇ G is set such that the resonator length of the laser amplification lights L1 and L2 and the optical path length difference ⁇ L correspond to the desired repetition frequencies f rep1 and f rep2 .
- the length of the space is fixed at 10 cm.
- the distance between the end face on the back side in the D 2 and D 4 directions of the base 130 and the reflecting surface of the third reflecting portion 190 is 10 cm.
- the refractive index of the core of each of the optical amplification fibers 143A and 143B is assumed to be 1.48. In such a case, if the length of the optical amplification fiber 143A is 1 m, the length of the optical amplification fiber 143B is 1.001 m, and the length ⁇ G is 1 mm, the repetition frequency difference ⁇ f rep is 0.178 MHz.
- the length ⁇ G is a parameter fixed at the time of installation of the end face mirror 127B on the base 130, and a parameter (wavelength of the laser amplification lights L1 and L2) susceptible to the environment around the dual optical frequency comb generation optical system 110E And can be adjusted with high accuracy as compared with the direction of polarization, etc., and can be designed accurately in advance and is stable.
- the repetition frequency difference ⁇ f rep between the optical frequency combs C1 and C2 can be controlled by the length ⁇ G that can be adjusted with high accuracy.
- the length ⁇ G By changing the length ⁇ G, the dispersion amount of the optical frequency combs C1 and C2 can be made different according to the length ⁇ G.
- the spectrum width of the optical frequency combs C1 and C2 can be changed by changing the dispersion amount of the optical frequency combs C1 and C2.
- the measurement device of the sixth embodiment includes a laser device 160E shown in FIG. 10 in place of the laser device 160A of the measurement device 200 shown in FIG.
- the configuration of the measurement device of the sixth embodiment other than the laser device 160E is the same as that of the measurement device 200.
- the directions of polarization of the laser amplified lights L1 and L2 may be the same in the first direction P1. Therefore, the mirror 55 and the interference unit 59 do not have to be of the polarization maintaining type.
- the mirror 55 and the interference unit 59 may be configured by an optical component or the like that does not hold the direction of polarization of the optical frequency combs C1 and C3.
- the optical frequency combs C1 and C2 are emitted from the polarization maintaining optical fibers 134A and 134B.
- the measuring device of the sixth embodiment operates in the same manner as the measuring device 200, and exhibits the same effects as the measuring device 200.
- the laser device 160E since the repetition frequency difference ⁇ f rep between the optical frequency combs C1 and C2 can be easily and accurately controlled, the frequency interval between adjacent spectra on the frequency axis in the mode decomposition spectrum is accurately controlled. it can.
- the measurement resolution can be easily and accurately adjusted.
- the measurement band can be easily and accurately adjusted by adjusting the width of the spectrum of the optical frequency combs C1 and C2 in the laser device 160E.
- the laser apparatus 160F of the seventh embodiment to which the present invention is applied is replaced by the dual optical frequency comb generation optical system 110A described in the first embodiment, and the dual optical frequency comb generation optical system 110F is used.
- the configuration from the light source 150 to the emitting end (first introducing portion, second introducing portion) 165A, 165B in the laser device 160F is the first introducing portion 161 and the second introducing portion 161 from the light source 150 in the laser device 160A described in the first embodiment.
- the configuration is similar to that of the introduction unit 162.
- the dual optical frequency comb generation optical system 110F is an optical system in which the end face mirrors 127A and 127B in the dual optical frequency comb generation optical system 110A are replaced with fiber Bragg gratings (FBG) 128A and 128B.
- the FBGs 128A and 128B are detachably disposed to the optical amplification fibers 143A and 143B on the near side in the D1 direction or the D2 direction using a connector (not illustrated) or the like.
- the FBGs 128A and 128B are detachably disposed to the polarization maintaining optical fibers 134A and 134B on the back side in the D1 direction or the D2 direction using a connector (not shown) or the like.
- the laser device 160F basically has the same effect as the laser device 160A because it has the dual optical frequency comb generation optical system 110F.
- the FBGs 128A and 128B instead of the end face mirrors 127A and 127B, the first reflecting portion 121 and the second reflecting portion 122 can be made attachable to and detachable from the first waveguide 141 and the second waveguide 142. it can. This facilitates handling and maintenance of the dual optical frequency comb generation optical system 110F and the laser device 160F.
- the measurement device of the seventh embodiment includes a laser device 160F shown in FIG. 11 in place of the laser device 160A of the measurement device 200 shown in FIG.
- the configuration of the measurement device of the seventh embodiment other than the laser device 160F is the same as that of the measurement device 200.
- the optical frequency combs C1 and C2 are emitted from the polarization maintaining optical fibers 134A and 134B.
- the measuring device of the seventh embodiment operates in the same manner as the measuring device 200, and exhibits the same effects as the measuring device 200. According to the laser device 160F, the repetition frequency difference ⁇ f rep between the optical frequency combs C1 and C2 can be easily controlled.
- the FBGs 128A and 128B can be attached to and detached from the optical amplification fibers 143A and 143B and the polarization maintaining optical fibers 134A and 134B, respectively, the first reflecting portion 121 and the second reflecting portion 122 Handling and maintenance can be facilitated.
- a laser apparatus 160G has all the configurations of the dual optical frequency comb generation optical system 110A described in the first embodiment, and further includes a base 133.
- emission ends 165 A and 165 B, a dichroic coating 174, GRIN lenses 182 and 184, and a saturable absorption mirror 192 are provided on a base 133.
- the emission ends 165A and 165B, the dichroic coating 174, the GRIN lenses 182 and 184, and the saturable absorption mirror 192 are respectively mounted on a holder (not shown) or the like and fixed to the base 133 together with the holder.
- the material of the base 133 is the same as the material of the base 130 and is not particularly limited. Examples of the material include metals and resins.
- the bases 130 and 133 may be bonded by an adhesive or the like, or may be made of the same material and be integral. At least the GRIN lenses 182 and 184 and the saturable absorption mirror 192 may be directly connected to the base 130 by forming the base 130 and the base 133 as the same member. At least the GRIN lenses 182 and 184 and the saturable absorption mirror 192 may be indirectly connected by bonding the base 133 to the base 130 with an adhesive or the like. GRIN lenses 182 and 184 and saturable absorption mirror 192 which constitute an optical system in the free space of the first mode synchronization transition portion E1 and the second mode synchronization transition portion E2 by these configurations are optical amplification fibers as waveguides. It is directly or indirectly connected to 143A and 143B and end surface mirrors 127A and 127B.
- the laser device 160G basically has the same effect as the laser device 160A since it has the dual optical frequency comb generation optical system 110G. Further, by connecting at least the GRIN lenses 182 and 184 and the saturable absorption mirror 192 to the base 130, the optical system in the free space of the first mode synchronization transition unit E1 and the second mode synchronization transition unit E2 Third reflecting portion 190 is connected to the base 130. As compared with the case where the third reflection unit 190 is not connected to the base 130, environmental disturbance and mechanical disturbance that the first mode synchronization transition unit E1 and the second mode synchronization transition unit E2 receive can be surely shared in common. . As a result, the difference between environmental disturbances and mechanical disturbances contained in the optical frequency combs C1 and C2 can be suppressed, and the SN ratio of the optical frequency combs C1 and C2 can be further enhanced.
- the measurement apparatus of the eighth embodiment includes a laser apparatus 160G shown in FIG. 12 instead of the laser apparatus 160A of the measurement apparatus 200 shown in FIG.
- the configuration of the measurement apparatus according to the eighth embodiment other than the laser device 160G is the same as that of the measurement apparatus 200.
- the optical frequency combs C1 and C2 are emitted from the polarization maintaining optical fibers 134A and 134B as in the laser device 160A.
- the measuring device of the eighth embodiment operates in the same manner as the measuring device 200, and exhibits the same effects as the measuring device 200.
- the SN ratio of the optical frequency combs C1 and C2 can be increased. According to the measuring apparatus of the eighth embodiment, it is possible to carry out highly accurate measurement using the optical frequency combs C1 and C2 having a relatively high SN ratio.
- the ninth embodiment Next, a dual optical frequency comb generation optical system, a laser apparatus, and a measurement apparatus according to a ninth embodiment of the present invention will be described.
- a laser apparatus 160H is a dual light source in which the light source 150 of the dual optical frequency comb generation optical system 110A described in the first embodiment is replaced by two light sources 150A and 150B.
- the frequency comb generation optical system 110H is provided, and the polarization maintaining optical fiber 151 and the polarization separation element 152 are not provided.
- the end (one end) of the incident side of the polarization-maintaining optical fiber 153A described in the first embodiment is directly connected to the light source (first light source) 150A.
- the light source (second light source) 150B is directly connected to the end (one end) of the incident side of the polarization-maintaining optical fiber 153B described in the first embodiment.
- the light sources 150A and 150B are configured by semiconductor lasers.
- the light source 150A emits only the laser beam S1, and the light source 150B emits only the laser beam S2.
- the end (other end) of the output side of the polarization maintaining optical fiber 153A is connected to the output end 165A from the near side in the D2 direction.
- the end (the other end) on the output side of the polarization maintaining optical fiber 153B is connected to the output end 165B from the near side in the D4 direction.
- the laser beams S1 and S2 are individually introduced from the light sources 150A and 150B to the first mode synchronization transition unit E1 and the second mode synchronization transition unit E2, respectively.
- the laser device 160H has the dual optical frequency comb generation optical system 110H, basically the same effect as the laser device 160A is exerted.
- the laser beams S1 and S2 are generated by the different light sources 150A and 150B.
- the laser beams S1 and S2 are individually introduced to the first mode synchronization transition unit E1 and the second mode synchronization transition unit E2, respectively. By this, the laser beams S1 and S2 can be individually controlled, and the characteristics of the optical frequency combs C1 and C2 can be easily and accurately adjusted.
- the laser device 160H and the dual optical frequency comb generation optical system 110H only the repetition frequency f rep1 of the optical frequency comb C1 or the repetition frequency f rep2 of the optical frequency comb C2 can be modulated and controlled, and the optical frequency comb C1 or the optical frequency comb The phase of the optical frequency of only C2 can be controlled.
- the measurement apparatus of the ninth embodiment includes a laser apparatus 160H shown in FIG. 13 instead of the laser apparatus 160A of the measurement apparatus 200 shown in FIG.
- the configuration of the measurement device of the ninth embodiment other than the laser device 160H is the same as that of the measurement device 200.
- the optical frequency combs C1 and C2 are emitted from the polarization maintaining optical fibers 134A and 134B as in the laser device 160A.
- the measurement apparatus of the ninth embodiment operates in the same manner as the measurement apparatus 200, and exhibits the same effects as the measurement apparatus 200.
- the phase of at least one of the optical frequencies of the optical frequency comb C1 and the optical frequency comb C2 can be controlled.
- the laser envelope 160H can be used to control the carrier envelope offset frequency.
- the absolute frequency of the optical frequency comb mode can be determined, and the range of measurement can be expanded.
- the optical amplification fiber may not be fitted in the groove formed in the base, as described in the above embodiments.
- a clad 211 common to the first waveguide 141 and the second waveguide 142 is provided on the entire top of the base 130 made of silicon or the like, and the first waveguide 141 and the second waveguide are provided.
- the cores 201 of the wave portions 142 may be embedded in the cladding 211 at intervals.
- the first waveguide 141 and the second waveguide 142 may be configured as a planar lightwave circuit (PLC).
- the lengths in the D1 and D3 directions of the optical amplification fibers 143A and 143B are made different from each other, and as described in the fifth embodiment, the GRIN lens portion 182A of the GRIN lens 182, The position of 182B may be made different.
- the repetition frequency difference ⁇ f rep of the optical frequency combs C1 and C2 depends on the optical path length difference ⁇ L and is determined by the lengths ⁇ F and ⁇ M.
- the traveling directions of the laser amplified lights L1 and L2 are parallel to each other, but the traveling directions of the laser amplified lights L1 and L2 may not necessarily be parallel to each other.
- the traveling direction of either of the laser amplified lights L1 and L2 may be curved or meandered, etc., as long as miniaturization of the dual optical frequency comb generation optical system is not hindered.
- the dual optical frequency comb generation optical system, the laser apparatus, and the measurement apparatus according to the present invention can be widely applied in the field using optical frequency combs C1 and C2 having different repetition frequencies. Further, according to the dual optical frequency comb generation optical system, the laser device, and the measurement apparatus of the present invention, optical frequency combs C1 and C2 having high SN ratios can be obtained. As a result, the dual optical frequency comb generation optical system, the laser apparatus, and the measurement apparatus of the present invention can be applied to spectroscopic measurement, signal analysis, and the like which require high measurement accuracy.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Analytical Chemistry (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Lasers (AREA)
- Optical Couplings Of Light Guides (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本発明のデュアル光周波数コム生成光学系では、第1導波部141、第2導波部142、第1導入部161、第2導入部162、第1反射部121及び第2反射部122が共通の基台130に設けられている。レーザー増幅光L1をD1方向に反射すると共にレーザー増幅光L2をD3方向に反射する第3反射部が第1導波部及び第2導波部から離間している。第1反射部と第3反射部との間を伝搬するレーザー増幅光L1の光路長と、第2反射部と第3反射部との間を伝搬するレーザー増幅光L2の光路長は、異なる。
Description
本発明は、2つの光周波数コムを出力するデュアル光周波数コム生成光学系、及び該デュアル光周波数コム生成光学系を備えるレーザー装置及び計測装置に関する。本願は、2017年12月22日に、日本に出願された特願2017-246805号に基づき優先権を主張し、その内容をここに援用する。
周波数軸上においてスペクトル強度が櫛状に精密且つ等間隔に並べられた光は、光周波数コムと呼ばれている。例えば、超短パルスレーザーであるモード同期レーザーのスペクトル分布には、等間隔に並ぶ多数の光周波数モード列が現れる。すなわち、モード同期レーザーから光周波数コムが出射される。櫛状のスペクトル強度を有する光周波数コムは、時間、空間、周波数の精密なものさしとして広く活用されている。光周波数領域における光周波数モード列の間隔は、繰り返し周波数と呼ばれている。
例えば、非特許文献1に記載されているように、繰り返し周波数が互いに異なる2つの光周波数コムのマルチヘテロダイン検出を行うことによって、光周波数領域における分子や原子の情報を取り出すことができる。繰り返し周波数が互いに異なる2つの光周波数コムは、デュアル光周波数コムと呼ばれている。デュアル光周波数コムを出力するモード同期レーザーを2台用いて、広帯域、高精度且つ高分解能な分光計測が可能である。
I. Coddington, N. Newbury and W. Swann, "Dual-comb spectroscopy," Optica, Vol. 3, No. 4, pp. 414-426 (2016).
しかしながら、上述の非特許文献1に開示されているように、デュアル光周波数コムを生成するためにモード同期レーザー等のレーザー装置を2台用いると、これらのレーザー装置が互いに異なる環境外乱や機械的な擾乱を受ける。2台のレーザー装置が互いに異なる環境外乱や機械的な擾乱を受けることによって、マルチヘテロダイン検出時に得られる干渉信号の信号対雑音比(Signal- to noise ratio:SN比)が低くなる。一方、干渉信号のSN比を高くしようとすると、2台のレーザー装置を相対的に位相同期させるための大規模な光学系が必要となり、レーザー装置が大型になる。
本発明は、上述の事情を勘案したものであって、互いに繰り返し周波数が異なる光周波数コムの信号対雑音比を高め、且つ光学系や装置全体の小型化を図ることが可能なデュアル光周波数コム生成光学系、レーザー装置及び計測装置を提供する。
本発明のデュアル光周波数コム生成光学系は、第1方向及び前記第1方向とは逆向きの第2方向に沿って第1レーザー光を導波すると共に増幅する第1導波部と、第2レーザー光を第3方向及び前記第3方向とは逆向きの第4方向に沿って導波すると共に増幅する第2導波部とが設けられた基台と、前記第1レーザー光を前記第1導波部に導入する第1導入部と、前記第2レーザー光を前記第2導波部に導入する第2導入部と、前記基台の前記第1方向の奥側の端部に設けられると共に前記第1導波部に接続され、前記第1方向に沿って前記第1導波部で導波された前記第1レーザー光の一部を前記第2方向に沿って反射すると共に、前記第1方向に沿って前記第1導波部で導波された前記第1レーザー光の残部を前記第1方向に沿って出射する第1反射部と、前記基台の前記第3方向の奥側の端部に設けられると共に前記第2導波部に接続され、前記第3方向に沿って前記第2導波部で導波された前記第1レーザー光の一部を前記第4方向に沿って反射すると共に、前記第3方向に沿って前記2導波部で導波された前記第2レーザー光の残部を前記第3方向に沿って出射する第2反射部と、前記第1導波部の前記第1方向の手前側の端部及び前記第2導波部の前記第3方向の手前側の端部から離間して設けられ、前記第1導波部から第2方向に沿って出射された前記第1レーザー光の少なくとも一部を反射すると共に、前記第2導波部から第4方向に沿って出射された前記第2レーザー光の少なくとも一部を反射し、反射した前記第1レーザー光を前記第1導波部に入射させ、且つ反射した前記第2レーザー光を前記第2導波部に入射させる第3反射部と、を備えている。前記第1反射部と前記第3反射部との間を伝搬する前記第1レーザー光の光路長と前記第2反射部と前記第3反射部との間を伝搬する前記第2レーザー光の光路長とは、異なる。
本発明のデュアル光周波数コム生成光学系において、前記第1レーザー光の偏光の向きと前記第2レーザー光の偏光の向きが互いに異なっていてもよい。前記第1導波部は前記第1レーザー光の偏光の向きを保持しつつ前記第1レーザー光を導波すると共に増幅し、前記第2導波部は前記第2レーザー光の偏光の向きを保持しつつ前記第2レーザー光を導波すると共に増幅してもよい。
本発明のデュアル光周波数コム生成光学系において、前記第1レーザー光の進行方向に沿った前記第1導波部の長さと前記第2レーザー光の進行方向における前記第2導波部の長さが互いに異なってもよい。
本発明のデュアル光周波数コム生成光学系において、前記第1導波部及び前記第2導波部はそれぞれ、第1コアと、前記第1コアの周囲に設けられ、前記第1コアより低い屈折率を有する第1クラッドとを有する第1導波路を備えてもよい。前記第1導波部における前記第1導波路の長さと前記第2導波部における前記第1導波路の長さが互いに異なってもよい。
本発明のデュアル光周波数コム生成光学系において、前記第1導波部は、第1コアと、前記第1コアの周囲に設けられ、前記第1コアより低い屈折率を有する第1クラッドとを有する第1導波路を備えてもよい。前記第2導波部は、前記第1コアとは異なる屈折率を有する第2コアと、前記第2コアの周囲に設けられ、前記第2コアより低い屈折率を有する第2クラッドとを有する第2導波路を備えてもよい。
本発明のデュアル光周波数コム生成光学系において、前記第1レーザー光が前記第1導波部から第2方向に沿って出射される位置と前記第1レーザー光が前記第3反射部に照射される位置との間で前記第1レーザー光が伝搬する距離と、前記第2レーザー光が前記第2導波部から第4方向に沿って出射される位置と前記第2レーザー光が前記第3反射部に照射される位置との間で前記第2レーザー光が伝搬する距離とは、互いに異なってもよい。
本発明のデュアル光周波数コム生成光学系において、前記第3反射部は前記基台に直接、又は、間接的に接続されてもよい。
本発明のデュアル光周波数コム生成光学系において、前記第1導波部の前記第1方向の手前側の端部及び前記第2導波部の前記第3方向の手前側の端部と前記第3反射部との間に第1集光部及び第2集光部が設けられ、前記第1集光部は、前記第1導波部から前記第2方向に沿って出射された前記第1レーザー光を前記第3反射部に結像させると共に、前記第3反射部によって反射された前記第1レーザー光を前記第1方向に沿って前記第1導波部に入射させ、前記第2集光部は、前記第2導波部から前記第4方向に沿って出射された前記第2レーザー光を前記第3反射部に結像させると共に、前記第3反射部によって反射された前記第2レーザー光を前記第3方向に沿って前記第2導波部に入射させ、前記第1集光部及び前記第2集光部は一体に構成されてもよい。
本発明のデュアル光周波数コム生成光学系において、前記第1レーザー光が前記第1導波部から第2方向に沿って出射される位置と前記第1レーザー光が前記第1集光部に照射される位置との間で前記第1レーザー光が伝搬する距離と、前記第2レーザー光が前記第2導波部から第4方向に沿って出射される位置と前記第2レーザー光が前記第2集光部に照射される位置との間で前記第2レーザー光が伝搬する距離とは、互いに異なってもよい。
本発明のデュアル光周波数コム生成光学系において、前記第1集光部、前記第2集光部、前記第3反射部は前記基台に直接、又は、間接的に接続されてもよい。
本発明のレーザー装置は、上述のデュアル光周波数コム生成光学系と、前記第1導入部及び第2導入部に接続され、前記第1レーザー光及び前記第2レーザー光を発する光源と、を備えている。
本発明のレーザー装置は、上述のデュアル光周波数コム生成光学系と、前記第1導入部に接続され、前記第1レーザー光を発する第1光源と、前記第2導入部に接続され、前記第2レーザー光を発する第2光源と、を備えている。
本発明の計測装置は、上述のレーザー装置と、前記レーザー装置から導出される第1光周波数コム及び前記第1光周波数コムとは異なる繰り返し周波数を有する第2光周波数コムの少なくとも一方の進路上に配置された試料より前記第1光周波数コム及び前記第2光周波数コムの進行方向の奥側に配置され、測定対象の前記第1光周波数コム及び前記第2光周波数コムを干渉させる干渉部と、前記干渉部で得られる干渉信号の進行方向の奥側に配置され、前記干渉信号から前記試料の情報を抽出する試料情報抽出部と、を備えている。
本発明のデュアル光周波数コム生成光学系、レーザー装置、計測装置によれば、互いに繰り返し周波数が異なる光周波数コムの相対的なSN比を高め、且つ光学系の小型化を図ることができる。
以下、本発明のデュアル光周波数コム生成光学系、レーザー装置、計測装置の実施形態について、図面を参照して説明する。
(第1実施形態)
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
図1に示すように、本発明の第1実施形態のレーザー装置160Aは、光源150、偏波保持型光ファイバ151、偏波分離素子152、偏波保持型光ファイバ153A,153B、デュアル光周波数コム生成光学系110Aを備える。偏波保持型光ファイバ151の一方の端部は、光源150に接続されている。偏波保持型光ファイバ151の他方の端部は、偏波分離素子152に接続されている。偏波保持型光ファイバ153A,153Bのそれぞれの一方の端部は、偏波分離素子152に接続されている。偏波保持型光ファイバ153A,153Bのそれぞれの他方の端部は、デュアル光周波数コム生成光学系110Aに接続されている。
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
図1に示すように、本発明の第1実施形態のレーザー装置160Aは、光源150、偏波保持型光ファイバ151、偏波分離素子152、偏波保持型光ファイバ153A,153B、デュアル光周波数コム生成光学系110Aを備える。偏波保持型光ファイバ151の一方の端部は、光源150に接続されている。偏波保持型光ファイバ151の他方の端部は、偏波分離素子152に接続されている。偏波保持型光ファイバ153A,153Bのそれぞれの一方の端部は、偏波分離素子152に接続されている。偏波保持型光ファイバ153A,153Bのそれぞれの他方の端部は、デュアル光周波数コム生成光学系110Aに接続されている。
光源150は、少なくとも、光軸Aに対して偏光の向きが第1の向きP1であるレーザー光(第1レーザー光)S1と、光軸Aに対して偏光の向きが第2方向であるレーザー光(第2レーザー光)S2とを含むレーザー光を発する。光軸Aは、光の進行方向を示している。光軸Aが図1の紙面に垂直な方向を向くとすると、第1の向きP1は紙面の上側及び下側を向く方向であり、第2の向きP2は紙面の左側及び右側を向く方向である。なお、第1の向きP1と第2の向きP2は、互いに異なれば、それぞれ任意の方向に向いていてよい。例えば、偏波保持型光ファイバ151の遅軸と速軸を第1の向きP1と第2の向きP2としてレーザー光S1,S2を導波してもよい。第1実施形態の光源150は、レーザー光S1,S2と、光軸Aに対して偏光の向きが第1の向きP1及び第2の向きP2とは異なる任意の方向であるレーザー光とを発する半導体レーザーで構成されている。
偏波分離素子152は、光源150から発せられたレーザー光からレーザー光S1のみを偏波保持型光ファイバ153Aに取り出し、レーザー光S2のみを偏波保持型光ファイバ153Bに取り出す。偏波分離素子152は、偏波保持型光カプラで構成されている。光軸Aを中心とする偏波保持型光ファイバ153Aのクラッドの偏光軸は、レーザー光S1のみを偏波保持型光ファイバ153Aで導波可能とするように設定されている。光軸Aを中心とする偏波保持型光ファイバ153Bのクラッドの偏光軸は、レーザー光S2のみを偏波保持型光ファイバ153Bで導波可能とするように設定されている。
デュアル光周波数コム生成光学系110Aは、第1導入部161、第2導入部162、第1導波部141、第1反射部121、第2導波部142、第2反射部122、集光部(第1集光部,第2集光部)180、第3反射部190を備えている。第1導入部161は、偏波保持型光ファイバ153Aの他方の端部に接続されている。第2導入部162は、偏波保持型光ファイバ153Bの他方の端部に接続されている。第1導波部141及び第1反射部121は、第1導入部161からD1方向(第1方向)に沿って、D1方向の奥側に設けられている。第2導波部142及び第2反射部122は、第2導入部162からD3方向(第3方向)に沿って、D3方向の奥側に設けられている。集光部180は、第1導入部161よりD1方向の手前側、且つ第2導入部162よりD3方向の手前側に設けられている。第3反射部190は、集光部180よりD1方向の手前側に設けられている。
第1実施形態では、光源150、偏波保持型光ファイバ151、偏波分離素子152が図1の紙面に平行な面内でD1,D3方向に略直交する方向(以下、レーザー光導入方向、という)に沿って配置されている。偏波保持型光ファイバ153A,153Bのそれぞれの他方の端部側は、レーザー光導入方向からD1,D3方向に合流するように湾曲し、第1導入部161及び第2導入部162に至る。デュアル光周波数コム生成光学系110Aでは、第1導入部161、第1導波部141、第1反射部121、集光部180及び第3反射部において第1レーザー光L1が通過する部分によって、第1モード同期移行部E1が構成される。第1モード同期移行部E1によって、第1レーザー光L1はモード同期状態に移行する。第2導入部162、第2導波部142、第2反射部122と、集光部180及び第3反射部において第2レーザー光が通過する部分によって、第2モード同期移行部E2が構成される。第2モード同期移行部E2によって、第2レーザー光L2はモード同期状態に移行する。第1モード同期移行部E1と第2モード同期移行部E2は、少なくとも部分的に一体化され、D1,D3方向に延在している。
第1導入部161は、出射端165Aと、二色性コーティング174で構成されている。二色性コーティング174は、D1方向とは逆向きのD2方向の奥側に間隔をおいて設けられている。第2導入部162は、出射端165Bと、二色性コーティング174で構成されている。二色性コーティング174は、第1導入部161及び第2導入部162からデュアル光周波数コム生成光学系110Aに導入されたレーザー光S1,S2を反射する。二色性コーティング174は、第1導波部141及び第2導波部142によって増幅されたレーザー光S1,S2(以下、レーザー増幅光L1,L2という)を透過させる。レーザー増幅光L1,L2の波長は、第1導波部141及び第2導波部142によって増幅される前のレーザー光S1,S2の波長とは異なる。
第1実施形態では、二色性コーティング174は、出射端165AのD1方向の奥側の端面及び出射端165BのD3方向の奥側の端面に設けられる。しかしながら、二色性コーティング174によって反射されたレーザー光S1,S2を第1導波部141及び第2導波部142に入射させることができれば、二色性コーティング174の位置は特に限定されない。
第1導波部141は、出射端165AのD1方向の奥側の端部に接続され、D1,D2方向に沿ってレーザー光S1及びレーザー増幅光(第1レーザー光)L1を導波すると共に増幅する。第2導波部142は、出射端165BのD3方向の奥側の端部に接続され、D3方向及びD3方向とは逆向きのD4方向に沿ってレーザー光S2及びレーザー増幅光(第2レーザー光)L2を導波すると共に増幅する。第1導波部141は、光増幅ファイバ(第1導波路)143Aで構成されている。第2導波部142は、光増幅ファイバ(第2導波路)143Bで構成されている。
第1実施形態の光増幅ファイバ143A,143Bとしては、例えば偏波保持型の希土類添加光ファイバが挙げられる。図2に示すように、光増幅ファイバ143A,143Bはそれぞれ、コア(第1コア)201と、コア201の周囲に設けられたクラッド(第1クラッド)211と、を有する。クラッド211は、コア201より低い屈折率を有する。希土類添加光ファイバのコア201に添加される希土類元素としては、エルビウム(Er)、イッテルビウム(Yb)、ツリウム(Tm)等が挙げられる。希土類添加光ファイバに添加される希土類元素は、増幅される前のレーザー光S1,S2の波長(以下、第1波長という)及びレーザー増幅光L1,L2の波長(以下、第2波長という)を考慮して適宜選定される。
図1及び図2に示すように、2本の光増幅ファイバ143A,143Bは、共通の基台130に設けられている。基台130は、長手方向において第1導波部141及び第2導波部142と略同等の寸法を有する直方体である。第1実施形態では、第1導波部141及び第2導波部142は、2本の光増幅ファイバ143A,143Bである。図2に示すように、基台130の上面130aには、2つのV字状の溝131A,131Bが形成されている。溝131A,131Bは、基台130の幅方向で互いに間隔をあけて形成されている。基台130の幅方向は、図2の紙面に平行な方向である。光増幅ファイバ143Aは溝131Aに嵌まり、光増幅ファイバ143Bは溝131Bに嵌まっている。基台130の素材は、例えば金属、樹脂等であるが、特に限定されない。
第1実施形態では、光増幅ファイバ143A,143Bは、略同等の長さを有する。平面視では、光増幅ファイバ143A,143BのD1,D3方向の奥側の端部は、基台130のD1,D3方向の奥側の端面と重なる。光増幅ファイバ143A,143BのD1,D3方向の手前側の端部は、基台130のD1,D3方向の手前側の端面からさらに手前側に延出し、出射端165A,165Bに接続している。
図1に示すように、第1反射部121及び第2反射部122は、基台130のD1方向の奥側の端面(端部)に設けられている。第1反射部121は、第1導波部141に接続され、D1方向に沿って第1導波部141で導波されたレーザー増幅光L1の一部をD2方向に沿って反射する。第1反射部121は、D1方向に沿って第1導波部141で導波されたレーザー増幅光L1の残部をD1方向に沿って出射する。第2反射部122は、第2導波部142に接続され、D3方向に沿って第2導波部142で導波されたレーザー増幅光L2の一部をD4方向に沿って反射する。第2反射部122は、D3方向に沿って第2導波部142で導波された第2レーザー増幅光L2の残部をD3方向に沿って出射する。
第1反射部121及び第2反射部122において、D2,D4方向に沿って反射するレーザー増幅光L1,L2と、D1,D3方向に沿って出射されるレーザー増幅光L1,L2のパワー比は、第1反射部121及び第2反射部122に照射されるレーザー増幅光L1,L2の全体を100とすると、例えば1:99程度である。第1反射部121及び第2反射部122のぞれぞれのD1,D3方向の奥側の端部には、偏波保持型光ファイバ134A,134Bが接続されている。偏波保持型光ファイバ134A,134Bは、第1反射部121及び第2反射部122から出射された光周波数コムC1,C2(第1光周波数コム、第2光周波数コム、図3参照)を導波する。
第1実施形態では、光増幅ファイバ143AのD1方向の奥側の端面にミラーコーティングが施されることによって、第1反射部121は、端面ミラー127Aで構成されている。端面ミラー127Aは、第1導波部141及び基台130と一体になっており、基台130から取り外せない。光増幅ファイバ143BのD3方向の奥側の端面にミラーコーティングが施されることによって、第2反射部122は、端面ミラー127Bで構成されている。端面ミラー127Bは、第2導波部142及び基台130と一体になっており、基台130から取り外せない。
集光部180は、第1集光部180Aと第2集光部180Bとを備える。第1実施形態では、第1集光部180Aと第2集光部180Bは一体であり、第2方向及び第4方向において互いの位置が揃っている。以下では、第1実施形態のように、第2方向及び第4方向において第1集光部180Aと第2集光部180Bの位置が互いに揃う実施形態の説明及び図面では、第1集光部180Aと第2集光部180Bをまとめて集光部180という場合がある。第1集光部180Aは、第1導入部161からD2方向に沿って出射されたレーザー増幅光L1を第3反射部190に結像させ、第3反射部190によって反射されたレーザー増幅光L2をD1方向に沿って第1導入部161に入射させる。第2集光部180Bは、第2導入部162からD4方向に沿って出射されたレーザー増幅光L2を第3反射部190に結像させ、第3反射部190によって反射されたレーザー増幅光L2をD3方向に沿って第2導入部162に入射させる。
集光部180は、D2,D4方向において互いに間隔をあけて設けられた2つの屈折率分布型(Gradient Index:GRIN)レンズ182,184で構成されている。GRINレンズ182,184はそれぞれ、端面182c,184cに入射したレーザー増幅光L1,L2を端面182d,184dでコリメートする。第1実施形態では、GRINレンズ182,184における第1モード同期移行部E1が第1集光部180Aとして機能する。第1モード同期移行部E1は、レーザー増幅光L1が通過する部分及びその近傍で構成される。GRINレンズ182,184における第2モード同期移行部E2が第2集光部180Bとして機能する。第2モード同期移行部E2は、レーザー増幅光L2が通過する部分及びその近傍で構成される。
第3反射部190は、第1導波部141のD1方向の手前側の端部、及び、第2導波部142のD3方向の手前側の端部から離間して設けられている。第3反射部190は、集光部180において、GRINレンズ184からD1,D3方向の手前側に焦点距離だけ離れた位置の近傍に配置されている。第3反射部190は、第1導波部141からD2方向に沿って出射されたレーザー増幅光L1の少なくとも一部を反射し、第2導波部142からD4方向に沿って出射されたレーザー増幅光L2の少なくとも一部を反射する。第3反射部190は、反射したレーザー増幅光L1を第1導波部141に入射させ、反射したレーザー増幅光L2を第2導波部142に入射させる。
第3反射部190では、集光状態で照射されるレーザー増幅光L1,L2のパワーに応じて、レーザー増幅光L1,L2の反射率が変化する。第3反射部190としては、例えば、可飽和吸収ミラー(SAM:Saturable Absorber Mirror)が挙げられる。SAMは、分布ブラッグ反射鏡(DBR:Distributed Bragg Reflector)と可飽和吸収体で構成されている。DBRは、厚み方向において高屈折率材料と低屈折率材料が交互に積層された積層体で構成されている。厚み方向は、デュアル光周波数コム生成光学系110AにDBRを配置した際のD1-D4方向である。SAMに照射されるレーザー増幅光L1,L2のパワーが所定値より低いときには、可飽和吸収体での吸収が強くなる。この場合、レーザー増幅光L1,L2の大部分が可飽和吸収体に吸収され、僅かなパワーのレーザー増幅光L1,L2がSAMによって反射される。一方、SAMに照射されるレーザー増幅光L1,L2のパワーが所定値以上になると、可飽和吸収体での吸収が飽和する。この場合、レーザー増幅光L1,L2の大部分が可飽和吸収体を透過すると共にDBRによって反射され、高パワーのレーザー増幅光L1,L2がSAMによって反射される。
[デュアル光周波数コム生成光学系及びレーザー装置の動作]
次に、デュアル光周波数コム生成光学系110A及びレーザー装置160Aの動作と、デュアル光周波数コム生成光学系110A及びレーザー装置160Aを用いて光周波数コムC1,C2を生成する動作原理について説明する。
次に、デュアル光周波数コム生成光学系110A及びレーザー装置160Aの動作と、デュアル光周波数コム生成光学系110A及びレーザー装置160Aを用いて光周波数コムC1,C2を生成する動作原理について説明する。
光源150から発せられたレーザー光は、偏波保持型光ファイバ151に導波され、偏波分離素子152に入射する。偏波分離素子152によって、レーザー光S1,S2が分離され、レーザー光S1のみが偏波保持型光ファイバ153Aに導波され、レーザー光S2のみが偏波保持型光ファイバ153Bに導波される。
偏波保持型光ファイバ153Aを導波したレーザー光S1は、D2方向に沿って出射端165Aを通り、二色性コーティング174によって反射される。二色性コーティング174で反射されたレーザー光S1は、再び出射端165Aを通り、D1方向に沿って光増幅ファイバ143Aに入射する。偏波保持型光ファイバ153Bを導波したレーザー光S2は、D4方向に沿って出射端165Bを通り、二色性コーティング174によって反射される。二色性コーティング174で反射されたレーザー光S2は、再び出射端165Bを通り、D3方向に沿って光増幅ファイバ143Bに入射する。
光増幅ファイバ143A,143Bに入射したレーザー光S1,S2はD1,D3方向に沿って導波すると共に増幅される。このことによって、レーザー増幅光L1,L2が生成される。光増幅ファイバ143A,143Bが希土類添加光ファイバであると、第2波長は、第1波長とは異なる。
D1方向に沿って光増幅ファイバ143Aで導波されたレーザー増幅光L1は、端面ミラー127Aによって反射され、D2方向に沿って光増幅ファイバ143Aを導波する。D3方向に沿って光増幅ファイバ143Bで導波されたレーザー増幅光L2は、端面ミラー127Bによって反射され、D4方向に沿って光増幅ファイバ143Bを導波する。
D2,D4方向に沿って光増幅ファイバ143A,143Bで導波されたレーザー増幅光L1,L2は、出射端165A,165Bを通り、二色性コーティング174を透過する。二色性コーティング174からD2,D4方向に沿って出射されたレーザー増幅光L1,L2は、自由空間内で拡散し、GRINレンズ182に入射する。D2,D4方向に沿ってGRINレンズ182に入射したレーザー増幅光L1,L2は、コリメートされた後、GRINレンズ184によって集光され、可飽和吸収ミラー192に入射する。
可飽和吸収ミラー192に入射したレーザー増幅光L1,L2には、集光したレーザー増幅光L1,L2のパワーが所定値より低ければ大きな損失が付与される。集光したレーザー増幅光L1,L2のパワーが所定値以上であれば、レーザー増幅光L1,L2には僅かな損失が付与される。損失が与えられたレーザー増幅光L1,L2は可飽和吸収ミラー192によって反射され、D1,D3方向に沿って進行すると共に拡散し、GRINレンズ184に入射する。D1,D3方向に沿ってGRINレンズ184に入射したレーザー増幅光L1,L2は、コリメートされ、GRINレンズ182によって集光する。GRINレンズ182によって集光したレーザー増幅光L1,L2は、二色性コーティング174を透過し、出射端165A,165Bを通り、光増幅ファイバ143A,143Bに入射する。
D1,D3方向に沿って光増幅ファイバ143A,143Bに入射したレーザー増幅光L1,L2は、光増幅ファイバ143A,143Bによって繰り返し増幅される。
第1反射部121又は第2反射部122と第3反射部190との間の往復回数が所定の回数より少ないときは、レーザー増幅光L1,L2のパワーが低いので、第1モード同期移行部E1や第2モード同期移行部E2における利得は小さい。この場合、デュアル光周波数コム生成光学系110A及びレーザー装置160Aは、レーザー増幅光L1,L2が連続光である状態で動作する。第1反射部121又は第2反射部122と第3反射部190との間の往復回数が所定の回数以上になり、レーザー増幅光L1,L2のパワーが所定のパワーより高くなると、第1モード同期移行部E1や第2モード同期移行部E2における利得は非常に大きくなる。この場合、デュアル光周波数コム生成光学系110A及びレーザー装置160Aは、レーザー増幅光L1,L2がパルス光である状態で動作する。
デュアル光周波数コム生成光学系110A及びレーザー装置160Aでは、レーザー増幅光L1,L2がそれぞれ連続光又はパルス光である状態で発振する間にモード同期状態に移行し、光周波数コムC1,C2(図3参照)が生成される。光周波数コムC1は、第1反射部121から偏波保持型光ファイバ134Aに導出される。光周波数コムC2は、第2反射部122から偏波保持型光ファイバ134Bに導出される。
光周波数コムC1の繰り返し周波数frep1は、第1モード同期移行部E1の共振器長によって決まる。以下、第1モード同期移行部E1の共振器長を第1共振器長という。第1共振器長は、光増幅ファイバ143Aの長さと、出射端165AのD2方向の手前側の端部から可飽和吸収ミラー192のD2方向の奥側の面までの長さに相当する。一方、光周波数コムC2の繰り返し周波数frep2は、第2モード同期移行部E2の共振器長によって決まる。以下、第2モード同期移行部E2の共振器長を第2共振器長という。第2共振器長は、光増幅ファイバ143Bの長さと、出射端165BのD4方向の手前側の端部から可飽和吸収ミラー192のD4方向の奥側の面までの長さに相当する。デュアル光周波数コム生成光学系110Aでは、第1モード同期移行部E1の共振器におけるレーザー増幅光L1の光路長は、レーザー増幅光L1の屈折率と第1共振器長によって決まる。第2モード同期移行部E2の共振器におけるレーザー増幅光L2の光路長は、レーザー増幅光L2の屈折率と第2共振器長によって決まる。
第1実施形態では、第1共振器長と第2共振器長は互いに等しい。しかしながら、レーザー増幅光L1の偏光の向きが第1の向きP1であるのに対し、レーザー増幅光L2の偏光の向きが第2の向きP2であるため、レーザー増幅光L1,L2の屈折率は互いに異なる。したがって、レーザー増幅光L1,L2の屈折率差Δnに応じて、第1モード同期移行部E1の光増幅ファイバ143Aに対するレーザー増幅光L1の光路長と、第2モード同期移行部E2の光増幅ファイバ143Bに対するレーザー増幅光L2の光路長は、互いに異なる。第1モード同期移行部E1と第2モード同期移行部E2との光路長差をΔLとすると、繰り返し周波数frep2は、(frep1+Δfrep)で表される。繰り返し周波数差Δfrepは、光路長差ΔLに依存する。
上述の動作原理に基づき、デュアル光周波数コム生成光学系110A及びレーザー装置160Aでは、強度の大きいパルス光を含むレーザー増幅光L1がD1方向に沿って偏波保持型光ファイバ134Aに導波される。一方、強度の大きいパルス光を含むレーザー増幅光L2がD3方向に沿って偏波保持型光ファイバ134Bに導波される。レーザー増幅光L1,L2のそれぞれの屈折率及び第2波長等を考慮し、光増幅ファイバ143A,143Bの長さは、レーザー増幅光L1,L2の共振器長及び光路長差ΔLが所望の繰り返し周波数frep1,frep2に相当するように設定されている。
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
デュアル光周波数コム生成光学系110A及びレーザー装置160Aでは、レーザー増幅光L1を第1モード同期移行部E1でモード同期状態に移行させつつ、共振させる。同時に、レーザー増幅光L2を第2モード同期移行部E2でモード同期状態に移行させつつ、共振させる。この際、レーザー増幅光L1,L2の偏光の向きが互いに異なるので、レーザー増幅光L1,L2の屈折率が異なり、第1モード同期移行部E1におけるレーザー増幅光L1の光路長と第2モード同期移行部E2におけるレーザー増幅光L2の光路長が互いに異なる。このことによって、第1モード同期移行部E1から、偏光の向きが第1の向きP1であり且つ繰り返し周波数frep1を有する光周波数コムC1を得ることができる。同時に、第2モード同期移行部E2から、偏光の向きが第2の向きP2であり、且つ光周波数コムC1とは異なる繰り返し周波数frep2を有する光周波数コムC2を得ることができる。
デュアル光周波数コム生成光学系110A及びレーザー装置160Aでは、レーザー増幅光L1を第1モード同期移行部E1でモード同期状態に移行させつつ、共振させる。同時に、レーザー増幅光L2を第2モード同期移行部E2でモード同期状態に移行させつつ、共振させる。この際、レーザー増幅光L1,L2の偏光の向きが互いに異なるので、レーザー増幅光L1,L2の屈折率が異なり、第1モード同期移行部E1におけるレーザー増幅光L1の光路長と第2モード同期移行部E2におけるレーザー増幅光L2の光路長が互いに異なる。このことによって、第1モード同期移行部E1から、偏光の向きが第1の向きP1であり且つ繰り返し周波数frep1を有する光周波数コムC1を得ることができる。同時に、第2モード同期移行部E2から、偏光の向きが第2の向きP2であり、且つ光周波数コムC1とは異なる繰り返し周波数frep2を有する光周波数コムC2を得ることができる。
デュアル光周波数コム生成光学系110A及びレーザー装置160Aでは、偏光の向きが互いに異なるレーザー光S1,S2及びレーザー増幅光L1,L2を用いることで、レーザー増幅光L1,L2の屈折率を互いに異ならせ、第1共振器長と第2共振器長を互いに異ならせることができる。このことによって、第1モード同期移行部E1及び第2モード同期移行部E2を備える1台のモード同期レーザーで繰り返し周波数が異なる光周波数コムC1,C2を発生させることができる。デュアル光周波数コム生成光学系110A及びレーザー装置160Aでは、第1導波部141及び第2導波部142が共通の基台130に設けられ、第1モード同期移行部E1及び第2モード同期移行部E2が集光部180及び第3反射部190を共有する。このことによって、モード同期レーザー(すなわち、レーザー増幅光L1,L2のモード同期に係る構成)が受ける環境外乱や機械的な擾乱を、第1モード同期移行部E1と第2モード同期移行部E2で共通にすることができる。このことによって、光周波数コムC1,C2のそれぞれに含まれる環境外乱や機械的な擾乱の差を抑えることができる。環境外乱や機械的な擾乱を第1モード同期移行部E1と第2モード同期移行部E2の共通雑音として容易に除去し、光周波数コムC1,C2の相対的なSN比を高くすることができる。このことによって、光周波数コムC1,C2による干渉信号のSN比を高くし、測定精度を高くすることができる。デュアル光周波数コム生成光学系110A及びレーザー装置160Aでは、第1導波部141及び第2導波部142が共通の基台130に設けられ、第1モード同期移行部E1及び第2モード同期移行部E2が集光部180及び第3反射部190を共有する。このことによって、従来のように光周波数コムC1,C2を生成するモード同期レーザーを個別に用意する場合に比べて、デュアル光周波数コム生成光学系110A及びレーザー装置160Aの小型化を図ることができる。
[計測装置の構成]
次に、本発明の第1実施形態の計測装置200の構成について説明する。図3に示すように、計測装置200は、デュアル光周波数コム生成光学系110Aを有するレーザー装置160A、干渉部59、試料情報抽出部58を備える。干渉部59は、出力用の偏波保持型光ファイバ134A,134B、光周波数コムC1,C2同士を干渉させる。試料情報抽出部58は、干渉部59で干渉した光周波数コムC1,C2の干渉信号から試料の情報を抽出する。
次に、本発明の第1実施形態の計測装置200の構成について説明する。図3に示すように、計測装置200は、デュアル光周波数コム生成光学系110Aを有するレーザー装置160A、干渉部59、試料情報抽出部58を備える。干渉部59は、出力用の偏波保持型光ファイバ134A,134B、光周波数コムC1,C2同士を干渉させる。試料情報抽出部58は、干渉部59で干渉した光周波数コムC1,C2の干渉信号から試料の情報を抽出する。
計測装置200では、レーザー装置160Aで生成された光周波数コムC1は、偏波保持型光ファイバ134Aを通って、出射端91から出射される。レーザー装置160Aで生成された光周波数コムC2は、偏波保持型光ファイバ134Bを通って、出射端92から出射される。光周波数コムC1,C2の進路X35,X36のうち、光周波数コムC2の進路X36上に、計測装置200の測定対象の試料Sが配置されている。光周波数コムC1の進路X35に沿って、進路X35を干渉部59に向けて折り返すためのミラー55が設けられている。
干渉部59は、光周波数コムC1と試料Sの情報を含む光周波数コムC2とを干渉させる。以下、試料Sの情報を含む光周波数コムC2を光周波数コムC3とする。干渉部59は、試料Sより光周波数コムC3の進行方向の奥側に配置され、光ビームスプリッタやハーフミラーで構成されている。第1実施形態では、光周波数コムC1,C2の偏光の向きが互いに異なっている。ミラー55及び干渉部59は、偏波保持型であることが好ましい。
第1実施形態において、ミラー55及び干渉部59が偏波保持型でない場合、偏波保持型光ファイバ134A又は偏波保持型光ファイバ134Bを途中で一旦切断し、切断された箇所の偏波保持型光ファイバ134A又は偏波保持型光ファイバ134B同士を、互いの遅軸又は速軸が断面視で直交するように合わせ、融着してもよい。別の方法として、出射端91を偏波保持型光ファイバ134Aに対して90°回転させた状態で設置してもよい。他の方法として、出射端92を偏波保持型光ファイバ134Bに対して90°回転させた状態で設置してもよい。
試料情報抽出部58は、干渉部59で光周波数コムC1,C3が互いに干渉することで発生するマルチヘテロダイン信号(干渉信号)の進行方向の奥側に配置されている。試料情報抽出部58は、マルチヘテロダイン信号から試料Sに関する情報を取得可能であって、一般に知られている光学系で構成されている。このような光学系として、例えば受光器で電気信号に変換する装置等が挙げられる。
[計測装置を用いた計測方法]
計測装置200では、偏波保持型光ファイバ134A,134Bから出射された光周波数コムC1,C2のうち光周波数コムC2は進路X36に沿って進行し、試料Sを通過する。試料Sを通過する際に、光周波数コムC2に試料Sが有する光学的な情報が付加され、光周波数コムC3になる。一方、光周波数コムC1は進路X35に沿って進行し、ミラー55によって折り返される。
計測装置200では、偏波保持型光ファイバ134A,134Bから出射された光周波数コムC1,C2のうち光周波数コムC2は進路X36に沿って進行し、試料Sを通過する。試料Sを通過する際に、光周波数コムC2に試料Sが有する光学的な情報が付加され、光周波数コムC3になる。一方、光周波数コムC1は進路X35に沿って進行し、ミラー55によって折り返される。
進路X36に沿って進行する光周波数コムC3と進路X35に沿って進行する光周波数コムC1は、干渉部59で合わさり、互いに干渉する。光周波数コムC1,C3の干渉によって、マルチヘテロダイン信号が生じる。マルチヘテロダイン信号は進路X37に沿って進行し、試料情報抽出部58に入射する。図3に示すように、試料情報抽出部58において、マルチヘテロダイン信号は、例えば高速フーリエ変換(Fast Fourier Transform:FFT)によって、高周波数帯域のモード分解スペクトルに変換される。モード分解スペクトルの波形Wから、試料Sの光学的な情報が抽出される。図3では、波形Wを破線で示している。モード分解スペクトルにおいて周波数軸上で隣り合うスペクトル同士の周波数間隔は、繰り返し周波数差Δfrepに相当する。
[計測装置の作用効果]
計測装置200では、進路X36上を進行する光周波数コムC2に試料Sの光学的な情報を付加できる。干渉部59では、光周波数コムC1,C3を互いに干渉させることによって、光周波数コムC1,C3に共通して含まれる環境外乱や機械的な擾乱を除去し、高周波数帯域で容易に観測可能なモード分解スペクトルを得ることができる。試料情報抽出部58では、得られたモード分解スペクトルのスペクトル分布の波形Wから試料Sの情報を抽出できる。したがって、本発明に係る計測装置200によれば、高SN比の光周波数コムC1,C2を用いるので、試料Sの情報を高精度に取得できる。計測装置200において光周波数コムC1,C2の発生に関する構成を共通化しているので、従来のように光周波数コムC1,C2を生成する光学系をそれぞれ個別のスペースに用意する必要がない。すなわち、光周波数コムC1,C2の発生に係る構成のうち、導波路の構成部分を互いに近接させて共通の基台130に固定し、自由空間系の構成部分を互いに共有することによって、計測装置200の小型化を図ることができる。
計測装置200では、進路X36上を進行する光周波数コムC2に試料Sの光学的な情報を付加できる。干渉部59では、光周波数コムC1,C3を互いに干渉させることによって、光周波数コムC1,C3に共通して含まれる環境外乱や機械的な擾乱を除去し、高周波数帯域で容易に観測可能なモード分解スペクトルを得ることができる。試料情報抽出部58では、得られたモード分解スペクトルのスペクトル分布の波形Wから試料Sの情報を抽出できる。したがって、本発明に係る計測装置200によれば、高SN比の光周波数コムC1,C2を用いるので、試料Sの情報を高精度に取得できる。計測装置200において光周波数コムC1,C2の発生に関する構成を共通化しているので、従来のように光周波数コムC1,C2を生成する光学系をそれぞれ個別のスペースに用意する必要がない。すなわち、光周波数コムC1,C2の発生に係る構成のうち、導波路の構成部分を互いに近接させて共通の基台130に固定し、自由空間系の構成部分を互いに共有することによって、計測装置200の小型化を図ることができる。
(第2実施形態)
次に、本発明の第2実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。第2実施形態以降の各実施形態に関する説明及び図面において、第1実施形態のデュアル光周波数コム生成光学系110A、レーザー装置160A及び計測装置200と共通する構成要素には同一の符号を付し、その説明を省略する。第2実施形態以降の各実施形態では、基本的に第1実施形態と異なる構成及び作用について説明し、説明する構成及び作用以外は第1実施形態と共通する。
次に、本発明の第2実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。第2実施形態以降の各実施形態に関する説明及び図面において、第1実施形態のデュアル光周波数コム生成光学系110A、レーザー装置160A及び計測装置200と共通する構成要素には同一の符号を付し、その説明を省略する。第2実施形態以降の各実施形態では、基本的に第1実施形態と異なる構成及び作用について説明し、説明する構成及び作用以外は第1実施形態と共通する。
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
図4に示すように、本発明の第2実施形態のレーザー装置160Bは、第1実施形態のデュアル光周波数コム生成光学系110Aに替えて、デュアル光周波数コム生成光学系110Bを備えている。レーザー装置160Bにおける光源150から出射端(第1導入部、第2導入部)165Cまでの構成は、第1実施形態で説明したレーザー装置160Aにおける光源150から第1導入部161及び第2導入部162までの構成と同様である。
図4に示すように、本発明の第2実施形態のレーザー装置160Bは、第1実施形態のデュアル光周波数コム生成光学系110Aに替えて、デュアル光周波数コム生成光学系110Bを備えている。レーザー装置160Bにおける光源150から出射端(第1導入部、第2導入部)165Cまでの構成は、第1実施形態で説明したレーザー装置160Aにおける光源150から第1導入部161及び第2導入部162までの構成と同様である。
デュアル光周波数コム生成光学系110Bでは、デュアル光周波数コム生成光学系110Aにおける出射端165A,165Bが出射端165Cに置き換えられている。デュアル光周波数コム生成光学系110Bでは、デュアル光周波数コム生成光学系110AにおけるGRINレンズ182,184が凸レンズ186に置き換えられている。すなわち、デュアル光周波数コム生成光学系110Aの第1導入部161及び第2導入部162がデュアル光周波数コム生成光学系110Bの出射端165Cで構成されている。デュアル光周波数コム生成光学系110Aの集光部180がデュアル光周波数コム生成光学系110Bの凸レンズ186で構成されている。
出射端165Cは、偏波保持型光ファイバ153A,153Bのそれぞれの他方の端部に接続されている。出射端165Cは、偏波保持型光ファイバ153A,153Bを1つのコリメータレンズに取り付けたものとして構成されている。出射端165Cは、D2,D4方向の手前側から入射したレーザー増幅光L1,L2をコリメートしてD2,D4方向の奥側に向けて斜めに出射する。出射端165Cは、D2,D4方向を含む平面において互いに離間して出射したレーザー増幅光L1,L2を互いに近づかせる。その後、出射端165Cは、所定の位置Tでクロスさせた後、互いに離間させる。出射端165Cの一例は、Dual Fiber Collimator(販売元:AFR(Advanced Fiber Resources, Ltd.)、型番:C-1.8-2-55等)である。
レーザー増幅光L1,L2は、所定の位置Tで重なった後に再び互いに離間しつつ、D2,D4方向の奥側に進行する。凸レンズ186は、レーザー増幅光L1,L2の進行方向をD2,D4方向に対して平行に戻す。凸レンズ186は、レーザー増幅光L1,L2を第3反射部190で集光させる。第3反射部190は、凸レンズ186の焦点距離近傍に配置されている。
[デュアル光周波数コム生成光学系及びレーザー装置の動作]
デュアル光周波数コム生成光学系110B及びレーザー装置160Bでは、第1実施形態で説明した内容と同様の光の導波、伝搬及び動作原理によって、偏波保持型光ファイバ134A,134Bから、互いに繰り返し周波数の異なる光周波数コムC1,C2(図2参照)が出射される。
デュアル光周波数コム生成光学系110B及びレーザー装置160Bでは、第1実施形態で説明した内容と同様の光の導波、伝搬及び動作原理によって、偏波保持型光ファイバ134A,134Bから、互いに繰り返し周波数の異なる光周波数コムC1,C2(図2参照)が出射される。
但し、デュアル光周波数コム生成光学系110B及びレーザー装置160Bでは、レーザー増幅光L1,L2は、D2,D4方向の手前側から出射端165Cに入射し、コリメートされ、D2,D4方向の奥側に向けて斜めに出射する。レーザー増幅光L1,L2は、D2,D4方向を含む平面において互いに離間して出射端165Cから出射し、所定の位置Tでクロスした後、互いに離間する。その後、レーザー増幅光L1,L2は、凸レンズ186によって集光されると共に、可飽和吸収ミラー192に入射する。
レーザー増幅光L1,L2は、可飽和吸収ミラー192のDBRによって反射され、可飽和吸収ミラー192への入射時と同じ経路を、入射時とは逆向きに進行する。
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
レーザー装置160Bは、デュアル光周波数コム生成光学系110Bを有するので、基本的にレーザー装置160Aと同様の効果を奏する。デュアル光周波数コム生成光学系110B及びレーザー装置160Bでは、集光部180が単体の凸レンズ186で構成される。このことによって、デュアル光周波数コム生成光学系110B及びレーザー装置160Bのうち、特に自由空間系の構成部分の小型化を図ることができる。
レーザー装置160Bは、デュアル光周波数コム生成光学系110Bを有するので、基本的にレーザー装置160Aと同様の効果を奏する。デュアル光周波数コム生成光学系110B及びレーザー装置160Bでは、集光部180が単体の凸レンズ186で構成される。このことによって、デュアル光周波数コム生成光学系110B及びレーザー装置160Bのうち、特に自由空間系の構成部分の小型化を図ることができる。
第2実施形態では、集光部180の構成は、レーザー増幅光L1,L2を第3反射部に集光状態で照射させることができる構成を全て含む。集光部180は、GRINレンズ182,184や、凸レンズ186に限定されない。
[計測装置の構成、動作、及び作用効果]
図示していないが、第2実施形態の計測装置は、図3に示す計測装置200のレーザー装置160Aに替えて、図4に示すレーザー装置160Bを備えている。レーザー装置以外の第2実施形態の計測装置の構成は、計測装置200と同様である。レーザー装置160Bでは、レーザー装置160Aと同様に偏波保持型光ファイバ134A,134Bから光周波数コムC1,C2が得られる。第2実施形態の計測装置は、計測装置200と同様に動作し、計測装置200と同様の効果を奏する。レーザー装置160Bによれば、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを容易に制御できる。このことによって、モード分解スペクトルにおいて周波数軸上で隣り合うスペクトル同士の周波数間隔を容易に制御すると共に、第2実施形態の計測装置の測定分解能を容易に調整できる。レーザー装置160Bによれば、集光部180が小型になるので、第2実施形態の計測装置全体の小型化を図ることができる。
図示していないが、第2実施形態の計測装置は、図3に示す計測装置200のレーザー装置160Aに替えて、図4に示すレーザー装置160Bを備えている。レーザー装置以外の第2実施形態の計測装置の構成は、計測装置200と同様である。レーザー装置160Bでは、レーザー装置160Aと同様に偏波保持型光ファイバ134A,134Bから光周波数コムC1,C2が得られる。第2実施形態の計測装置は、計測装置200と同様に動作し、計測装置200と同様の効果を奏する。レーザー装置160Bによれば、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを容易に制御できる。このことによって、モード分解スペクトルにおいて周波数軸上で隣り合うスペクトル同士の周波数間隔を容易に制御すると共に、第2実施形態の計測装置の測定分解能を容易に調整できる。レーザー装置160Bによれば、集光部180が小型になるので、第2実施形態の計測装置全体の小型化を図ることができる。
(第3実施形態)
次に、本発明を適用した第3実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
次に、本発明を適用した第3実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
図5に示すように、本発明を適用した第3実施形態のレーザー装置160Cは、第1実施形態で説明したデュアル光周波数コム生成光学系110Aに替えて、デュアル光周波数コム生成光学系110Cを備える。レーザー装置160Cにおける光源150から出射端(第1導入部、第2導入部)165A,165Bまでの構成は、第1実施形態で説明したレーザー装置160Aにおける光源150から第1導入部161及び第2導入部162までの構成と同様である。
図5に示すように、本発明を適用した第3実施形態のレーザー装置160Cは、第1実施形態で説明したデュアル光周波数コム生成光学系110Aに替えて、デュアル光周波数コム生成光学系110Cを備える。レーザー装置160Cにおける光源150から出射端(第1導入部、第2導入部)165A,165Bまでの構成は、第1実施形態で説明したレーザー装置160Aにおける光源150から第1導入部161及び第2導入部162までの構成と同様である。
デュアル光周波数コム生成光学系110Cでは、第1導波部141は、光増幅ファイバ143Aと光ファイバ144Aで構成されている。光ファイバ144AのD1方向の手前側の端部は、光増幅ファイバ143AのD1方向の奥側の端部に接続されている。第2導波部142は、光増幅ファイバ143Bと光ファイバ144Bで構成されている。光ファイバ144BのD3方向の手前側の端部は、光増幅ファイバ143BのD3方向の奥側の端部に接続されている。光ファイバ144A,144Bのそれぞれのコア202(図6参照)に対して希土類元素は添加されていない。光ファイバ144Aは、レーザー増幅光L1を導波するのみで、増幅しない。光ファイバ144Bは、レーザー増幅光L2を導波するのみで、増幅しない。
D1方向とD3方向は、互いに平行になっている。第1導波部141における光増幅ファイバ143Aの長さは、第2導波部142における光増幅ファイバ143Bより長さΔFだけ長い。光ファイバ144Aの長さが光ファイバ144Bの長さより長さΔFだけ短いので、第1導波部141及び第2導波部142は略同等の長さを有する。
2本の光ファイバ144A,144Bは、2本の光増幅ファイバ143A,143Bと共通の基台130に設けられている。第3実施形態では、基台130は、長手方向において第1導波部141及び第2導波部142と略同等の寸法を有する。図6に示すように、光ファイバ144Aは溝131Aに嵌められ、光ファイバ144Bは溝131Bに嵌められている。
光ファイバ144AのD1方向の奥側の端部に、第1反射部121の端面ミラー127Aが接続されている。光ファイバ144BのD3方向の奥側の端部に、第2反射部122の端面ミラー127Bが接続されている。平面視では、光ファイバ144A,144BのD1,D3方向の奥側の端部は、基台130のD1,D3方向の奥側の端面と重なる。
第3実施形態では、レーザー光S1の偏光の向きとレーザー光S2の偏光の向きが必ずしも互いに異なる必要はない。図5に示すように、光源150は、光軸Aに対して偏光の向きが第1の向きP1のみであるレーザー光S1,S2を発してもよい。例えば、偏波保持型光ファイバ151の遅軸のみ、又は速軸のみに偏光の向きを合わせてレーザー光S1,S2を導波できる。第3実施形態の光源150は、少なくともレーザー光S1,S2を発する半導体レーザーで構成されている。
[デュアル光周波数コム生成光学系及びレーザー装置の動作]
デュアル光周波数コム生成光学系110C及びレーザー装置160Cでは、第1実施形態で説明した内容と同様の光の導波、伝搬及び動作原理によって、偏波保持型光ファイバ134A,134Bから、互いに繰り返し周波数の異なる光周波数コムC1,C2(図2参照)が得られる。
デュアル光周波数コム生成光学系110C及びレーザー装置160Cでは、第1実施形態で説明した内容と同様の光の導波、伝搬及び動作原理によって、偏波保持型光ファイバ134A,134Bから、互いに繰り返し周波数の異なる光周波数コムC1,C2(図2参照)が得られる。
デュアル光周波数コム生成光学系110C及びレーザー装置160Cでは、レーザー増幅光L1は、光ファイバ144Aを導波する。その後、レーザー増幅光L1は、端面ミラー127Aによって反射され、D2方向に沿って光ファイバ144Aを導波した後に、光増幅ファイバ143Aを導波し、増幅される。レーザー増幅光L2は、光ファイバ144Bを導波する。その後、レーザー増幅光L2は、端面ミラー127Bによって反射され、D4方向に沿って光ファイバ144Bを導波した後に、光増幅ファイバ143Bを導波する。
第1共振器長と第2共振器長は、互いに等しい。レーザー増幅光L1,L2の偏光の向きが共通の第1の向きP1であってもよいが、光増幅ファイバ143A,143Bの長さはΔFだけ異なる。第1モード同期移行部E1の光増幅ファイバ143Aに対するレーザー増幅光L1の光路長と、第2モード同期移行部E2の光増幅ファイバ143Bに対するレーザー増幅光L2の光路長は、互いに異なる。第1モード同期移行部E1と第2モード同期移行部E2との光路長差ΔLは、長さΔFによって決まる。繰り返し周波数frep2は、(frep1+Δfrep)で表される。繰り返し周波数差Δfrepは、光路長差ΔLに依存する。
上述の動作原理に基づき、デュアル光周波数コム生成光学系110C及びレーザー装置160Cでは、強度の大きいパルス光を含むレーザー増幅光L1がD1方向に沿って偏波保持型光ファイバ134Aに導波される。強度の大きいパルス光を含むレーザー増幅光L2は、D3方向に沿って偏波保持型光ファイバ134Bに導波される。長さΔFは、レーザー増幅光L1,L2の共振器長及び光路長差ΔLが所望の繰り返し周波数frep1,frep2に相当するように設定されている。一例として、波長1550nmにおける光ファイバ144A,144Bのコアの屈折率は、1.468程度であり、波長1550nmにおける光増幅ファイバ143A,143Bのコアの屈折率は、1.48程度である。但し、光増幅ファイバ143A,143Bのコアでは希土類原子の吸収があるため、希土類原子の添加濃度及び励起光のパワーによって前述の屈折率は変化する。例えば、デュアル光周波数コム生成光学系110Cにおける空間部の長さを10cmに固定し、光ファイバ144Aの長さを10cm、光増幅ファイバ143Aの長さを20cmとする。デュアル光周波数コム生成光学系110Cにおける空間部の長さは、基台130のD2,D4方向の奥側の端面と第3反射部190の反射面との距離である。光ファイバ144Bの長さを15cm、光増幅ファイバ143Bの長さを15cmとする。この場合、第1導波部141と第2導波部142のそれぞれの物理長は互いに等しく、40cmである。しかしながら、第1導波部141の光路長と、第2導波部142の光路長は、0.6mm異なる。このような光路長の差は、長さΔFが0.05mmであることを意味する。長さΔFが0.05mmであれば、繰り返し周波数frep1は552.3964024MHzになり、繰り返し周波数frep2は552.9185872MHzになり、Δfrepは約0.611MHzになる。
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
レーザー装置160Cは、デュアル光周波数コム生成光学系110Cを有するので、基本的にレーザー装置160Aと同様の効果を奏する。長さΔFは光増幅ファイバ143A,143Bの製造時に固定されるパラメータである。そのため、長さΔFは、デュアル光周波数コム生成光学系110Cの周囲の環境等に影響を受けやすいパラメータ(レーザー増幅光L1,L2の波長や偏波の向き等)に比べて高精度に調整可能であって、予め正確に設計可能であり、安定している。デュアル光周波数コム生成光学系110C及びレーザー装置160Cでは、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを、長さΔFによって制御できる。長さΔFを変えることによって光周波数コムC1,C2の分散量を変えることができる。光周波数コムC1,C2の分散量を変えることで、光周波数コムC1,C2のスペクトルの幅を変えることができる。
レーザー装置160Cは、デュアル光周波数コム生成光学系110Cを有するので、基本的にレーザー装置160Aと同様の効果を奏する。長さΔFは光増幅ファイバ143A,143Bの製造時に固定されるパラメータである。そのため、長さΔFは、デュアル光周波数コム生成光学系110Cの周囲の環境等に影響を受けやすいパラメータ(レーザー増幅光L1,L2の波長や偏波の向き等)に比べて高精度に調整可能であって、予め正確に設計可能であり、安定している。デュアル光周波数コム生成光学系110C及びレーザー装置160Cでは、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを、長さΔFによって制御できる。長さΔFを変えることによって光周波数コムC1,C2の分散量を変えることができる。光周波数コムC1,C2の分散量を変えることで、光周波数コムC1,C2のスペクトルの幅を変えることができる。
[計測装置の構成、動作、及び作用効果]
図示していないが、第3実施形態の計測装置は、図3に示す計測装置200のレーザー装置160Aに替えて、図5に示すレーザー装置160Cを備える。レーザー装置160C以外の第3実施形態の計測装置の構成は、計測装置200と同様である。第3実施形態では、レーザー増幅光L1,L2の偏光の向きが共通して第1の向きP1であってもよいので、ミラー55及び干渉部59は、偏波保持型である必要はない。レーザー増幅光L1,L2の偏光の向きが共通している場合、ミラー55及び干渉部59は、光周波数コムC1,C3の偏光の向きを保持しない光学部品等で構成されてもよい。
図示していないが、第3実施形態の計測装置は、図3に示す計測装置200のレーザー装置160Aに替えて、図5に示すレーザー装置160Cを備える。レーザー装置160C以外の第3実施形態の計測装置の構成は、計測装置200と同様である。第3実施形態では、レーザー増幅光L1,L2の偏光の向きが共通して第1の向きP1であってもよいので、ミラー55及び干渉部59は、偏波保持型である必要はない。レーザー増幅光L1,L2の偏光の向きが共通している場合、ミラー55及び干渉部59は、光周波数コムC1,C3の偏光の向きを保持しない光学部品等で構成されてもよい。
レーザー装置160Cでは、レーザー装置160Aと同様に偏波保持型光ファイバ134A,134Bから光周波数コムC1,C2が得られる。第3実施形態の計測装置は、計測装置200と同様に動作し、計測装置200と同様の効果を奏する。レーザー装置160Cによれば、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを容易且つ高精度に制御できる。このことによって、モード分解スペクトルにおいて周波数軸上で隣り合うスペクトル同士の周波数間隔を高精度に制御できる。第3実施形態の計測装置によれば、測定分解能を容易に且つ高精度に調整できる。第3実施形態の計測装置によれば、レーザー装置160Cにおいて光周波数コムC1,C2のスペクトルの幅を調整し、測定帯域を容易に且つ高精度に調整できる。
(第4実施形態)
次に、本発明を適用した第4実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
次に、本発明を適用した第4実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
図7に示すように、本発明の第4実施形態のレーザー装置160A´は、第1実施形態で説明したデュアル光周波数コム生成光学系110Aに替えて、デュアル光周波数コム生成光学系110A´を備える。レーザー装置160A´における光源150から出射端(第1導入部、第2導入部)165A,165Bまでの構成は、第1実施形態で説明したレーザー装置160Aにおける光源150から第1導入部161及び第2導入部162までの構成と同様である。
図7に示すように、本発明の第4実施形態のレーザー装置160A´は、第1実施形態で説明したデュアル光周波数コム生成光学系110Aに替えて、デュアル光周波数コム生成光学系110A´を備える。レーザー装置160A´における光源150から出射端(第1導入部、第2導入部)165A,165Bまでの構成は、第1実施形態で説明したレーザー装置160Aにおける光源150から第1導入部161及び第2導入部162までの構成と同様である。
デュアル光周波数コム生成光学系110A´は、デュアル光周波数コム生成光学系110Aにおける第2導波部142の光増幅ファイバ143Bを光増幅ファイバ(第2導波路)143Cに置き換えた光学系である。
図8に示すように、光増幅ファイバ143Cは、コア(第2コア)202と、コア202の周囲に設けられたクラッド(第2クラッド)212と、を有する。コア202は、第1実施形態の光増幅ファイバ143A,143Bのコア201とは異なる屈折率を有する。クラッド212は、コア202より低い屈折率を有する。後で説明する第4実施形態の計測装置において、光周波数コムC1,C2を干渉させてマルチヘテロダイン検出を行うので、レーザー増幅光L1,L2の波長は、互いに同一であることが好ましい。このことから、コア202に添加される希土類元素は、コア201に添加される希土類元素と同一であることが好ましい。レーザー増幅光L1にとってのコア201の屈折率とレーザー増幅光L2にとってのコア202の屈折率が異なるようにするために、コア201,202では、添加される希土類元素の種類は互いに同一であるが、その希土類元素が添加される添加濃度が互いに異なっている。但し、コア201,202のそれぞれへの希土類元素の添加濃度は同一であり、かつコア201,202の直径が互いに異なってもよい。クラッド212は、光増幅ファイバ143A,143Bのクラッド211と同一の組成で構成されてもよく、コア202より低い屈折率を有すればクラッド211とは異なる組成で構成されてもよい。
第4実施形態では、第3実施形態と同様に、レーザー光S1の偏光の向きとレーザー光S2の偏光の向きが必ずしも互いに異なる必要はない。図7に示すように、光源150は、光軸Aに対して偏光の向きが第1の向きP1のみであるレーザー光S1,S2を発してもよい。例えば、偏波保持型光ファイバ151の遅軸のみ、又は速軸のみを第1の向きP1に合わせてレーザー光S1,S2を導波できる。
[デュアル光周波数コム生成光学系及びレーザー装置の動作]
デュアル光周波数コム生成光学系110A´及びレーザー装置160A´では、第1実施形態で説明した内容と同様の光の導波、伝搬及び動作原理によって、偏波保持型光ファイバ134A,134Bから、図3に示すように互いに繰り返し周波数の異なる光周波数コムC1,C2が出射される。
デュアル光周波数コム生成光学系110A´及びレーザー装置160A´では、第1実施形態で説明した内容と同様の光の導波、伝搬及び動作原理によって、偏波保持型光ファイバ134A,134Bから、図3に示すように互いに繰り返し周波数の異なる光周波数コムC1,C2が出射される。
デュアル光周波数コム生成光学系110A´及びレーザー装置160A´では、D3方向に沿って出射端165Bを通ったレーザー増幅光L2は、光増幅ファイバ143Cを導波し、増幅される。その後、レーザー増幅光L2は、端面ミラー127Bによって反射され、D4方向に沿って光増幅ファイバ143Cを導波し、増幅され、再び出射端165Bを通る。
第4実施形態では、第1共振器長及び第2共振器長は同等であり、レーザー増幅光L1,L2の偏光の向きが共通して第1の向きP1であってもよい。その場合、光増幅ファイバ143Aのコア201の屈折率と、光増幅ファイバ143Cのコア202の屈折率は、Δnだけ異なる。その結果、第1モード同期移行部E1の光増幅ファイバ143Aに対するレーザー増幅光L1の光路長と、第2モード同期移行部E2の光増幅ファイバ143Bに対するレーザー増幅光L2の光路長は、互いに異なる。第1モード同期移行部E1と第2モード同期移行部E2との光路長差ΔLは、屈折率差Δnによって決まる。繰り返し周波数frep2は、(frep1+Δfrep)で表される。繰り返し周波数差Δfrepは、光路長差ΔLに依存する。
上述の動作原理に基づき、デュアル光周波数コム生成光学系110A´及びレーザー装置160A´では、強度の大きいパルス光を含むレーザー増幅光L1がD1方向に沿って偏波保持型光ファイバ134Aに導波される。強度の大きいパルス光を含むレーザー増幅光L2は、D3方向に沿って偏波保持型光ファイバ134Bに導波される。長さΔFは、レーザー増幅光L1,L2の共振器長及び光路長差ΔLが所望の繰り返し周波数frep1,frep2に相当するように、設定されている。例えば、コア径が4μmのEDFを光増幅ファイバ143Aに用い、且つコア径が8μmのEDFを光増幅ファイバ143Cに用いると、光増幅ファイバ143Aと光増幅ファイバ143Cでは非線形屈折率が0.4×10-16cm2/W異なる。その場合、屈折率差Δnを0.4×10-16cm2/Wとして設定できる。
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
レーザー装置160A´は、デュアル光周波数コム生成光学系110A´を有するので、基本的にレーザー装置160Aと同様の効果を奏する。長さΔnは、光増幅ファイバ143A,143Cの製造時に固定されるパラメータであり、デュアル光周波数コム生成光学系110A´の周囲の環境等に影響を受けやすいパラメータ(レーザー増幅光L1,L2の波長や偏波の向き等)に比べて高精度に調整可能であって、予め正確に設計可能であり、安定している。デュアル光周波数コム生成光学系110A´及びレーザー装置160A´では、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを、高精度に調整可能な長さΔFによって制御できる。デュアル光周波数コム生成光学系110C及びレーザー装置160Cでは、屈折率差Δnを変えるためにコア201,202への希土類元素の添加濃度を互いに異ならせることによって、コア201,202におけるレーザー増幅光L1,L2の吸収量を変化させ、光周波数コムC1,C2の分散量を変えることができる。光周波数コムC1,C2の分散量を変えることで、光周波数コムC1,C2のスペクトルの幅を変えることができる。
レーザー装置160A´は、デュアル光周波数コム生成光学系110A´を有するので、基本的にレーザー装置160Aと同様の効果を奏する。長さΔnは、光増幅ファイバ143A,143Cの製造時に固定されるパラメータであり、デュアル光周波数コム生成光学系110A´の周囲の環境等に影響を受けやすいパラメータ(レーザー増幅光L1,L2の波長や偏波の向き等)に比べて高精度に調整可能であって、予め正確に設計可能であり、安定している。デュアル光周波数コム生成光学系110A´及びレーザー装置160A´では、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを、高精度に調整可能な長さΔFによって制御できる。デュアル光周波数コム生成光学系110C及びレーザー装置160Cでは、屈折率差Δnを変えるためにコア201,202への希土類元素の添加濃度を互いに異ならせることによって、コア201,202におけるレーザー増幅光L1,L2の吸収量を変化させ、光周波数コムC1,C2の分散量を変えることができる。光周波数コムC1,C2の分散量を変えることで、光周波数コムC1,C2のスペクトルの幅を変えることができる。
[計測装置の構成、動作、及び作用効果]
図示していないが、第4実施形態の計測装置は、図3に示す計測装置200のレーザー装置160Aに替えて、図7に示すレーザー装置160A´を備える。レーザー装置160A´以外の第4実施形態の計測装置の構成は、計測装置200と同様である。第4実施形態では、レーザー増幅光L1,L2の偏光の向きが共通して第1の向きP1であってもよいので、ミラー55及び干渉部59は、偏波保持型である必要はない。レーザー増幅光L1,L2の偏光の向きが共通している場合、ミラー55及び干渉部59は、光周波数コムC1,C3の偏光の向きを保持しない光学部品等で構成されてもよい。
図示していないが、第4実施形態の計測装置は、図3に示す計測装置200のレーザー装置160Aに替えて、図7に示すレーザー装置160A´を備える。レーザー装置160A´以外の第4実施形態の計測装置の構成は、計測装置200と同様である。第4実施形態では、レーザー増幅光L1,L2の偏光の向きが共通して第1の向きP1であってもよいので、ミラー55及び干渉部59は、偏波保持型である必要はない。レーザー増幅光L1,L2の偏光の向きが共通している場合、ミラー55及び干渉部59は、光周波数コムC1,C3の偏光の向きを保持しない光学部品等で構成されてもよい。
レーザー装置160A´では、レーザー装置160Aと同様に偏波保持型光ファイバ134A,134Bから光周波数コムC1,C2が出射される。第4実施形態の計測装置は、計測装置200と同様に動作し、計測装置200と同様の効果を奏する。レーザー装置160A´によれば、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを容易且つ高精度に制御できるので、モード分解スペクトルにおいて周波数軸上で隣り合うスペクトル同士の周波数間隔を高精度に制御できる。第4実施形態の計測装置によれば、測定分解能を容易に且つ高精度に調整できる。第4実施形態の計測装置によれば、レーザー装置160A´において光周波数コムC1,C2のスペクトルの幅を調整することによって、測定帯域を容易に且つ高精度に調整できる。
(第5実施形態)
次に、本発明の第5実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
次に、本発明の第5実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
図9に示すように、本発明を適用した第5実施形態のレーザー装置160Dは、第1実施形態で説明したデュアル光周波数コム生成光学系110Aに替えて、デュアル光周波数コム生成光学系110Dを備える。レーザー装置160Dにおける光源150から出射端(第1導入部、第2導入部)165A,165Bまでの構成は、第1実施形態で説明したレーザー装置160Aにおける光源150から第1導入部161及び第2導入部162までの構成と同様である。
図9に示すように、本発明を適用した第5実施形態のレーザー装置160Dは、第1実施形態で説明したデュアル光周波数コム生成光学系110Aに替えて、デュアル光周波数コム生成光学系110Dを備える。レーザー装置160Dにおける光源150から出射端(第1導入部、第2導入部)165A,165Bまでの構成は、第1実施形態で説明したレーザー装置160Aにおける光源150から第1導入部161及び第2導入部162までの構成と同様である。
デュアル光周波数コム生成光学系110D及びレーザー装置160Dでは、GRINレンズ182は、互いに一体化されたGRINレンズ部182A,182Bで構成される。互いに一体化されているとは、GRINレンズ部182A,182B同士の相対位置が固定されていることを意味する。
第1集光部180Aとして機能するGRINレンズ部182Aと、第2集光部180Bとして機能するGRINレンズ部182Bは、D2方向又はD4方向において互いに略同一の長さを有するが、D2,D4方向における位置が長さΔMだけずれて配置される。D2,D4方向において、二色性コーティング174の奥側の端面からGRINレンズ部182Aの手前側の端面182cまでの距離と、二色性コーティング174の奥側の端面からGRINレンズ部182Bの手前側の端面182cまでの距離は、長さΔMだけ異なる。
GRINレンズ184は、互いに一体化されたGRINレンズ部184A,184Bで構成される。互いに一体化されているとは、GRINレンズ部184A,184B同士の相対位置が固定されていることを意味する。第1集光部180Aとして機能するGRINレンズ部184Aと、第2集光部180Bとして機能するGRINレンズ部184Bは、D2,D4方向において互いに略同一の長さを有するが、D2,D4方向における位置が長さΔM´だけずれて配置される。D2,D4方向において、二色性コーティング174の奥側の端面からGRINレンズ部184Aの手前側の端面184dまでの距離と、二色性コーティング174の奥側の端面からGRINレンズ部184Bの手前側の端面184dまでの距離は、長さΔM´だけ異なる。
平面視において、可飽和吸収ミラー192のD2,D4方向の手前側の端面においてレーザー増幅光L1,L2のそれぞれが照射される位置同士は、D2方向又はD4方向において長さΔJだけずれている。
D2方向において二色性コーティング174の奥側の端面からレーザー増幅光L1が出射される位置と可飽和吸収ミラー192の手前側の端面にレーザー増幅光L1が照射される位置までの距離と、D4方向において二色性コーティング174の奥側の端面からレーザー増幅光L2が出射される位置と可飽和吸収ミラー192の手前側の端面にレーザー増幅光L2が照射される位置までの距離は、長さΔJだけ異なる。
D2方向において二色性コーティング174の奥側の端面からレーザー増幅光L1が出射される位置と可飽和吸収ミラー192の手前側の端面にレーザー増幅光L1が照射される位置までの距離と、D4方向において二色性コーティング174の奥側の端面からレーザー増幅光L2が出射される位置と可飽和吸収ミラー192の手前側の端面にレーザー増幅光L2が照射される位置までの距離は、長さΔJだけ異なる。
第5実施形態では、第3実施形態と同様に、レーザー光S1の偏光の向きとレーザー光S2の偏光の向きが必ずしも互いに異なる必要はない。図9に示すように、光源150は、光軸Aに対して偏光の向きが共通して第1の向きP1のみであるレーザー光S1,S2を発してもよい。例えば、偏波保持型光ファイバ151の遅軸のみ、又は速軸のみを第1の向きP1に合わせてレーザー光S1,S2を導波できる。
[デュアル光周波数コム生成光学系及びレーザー装置の動作]
デュアル光周波数コム生成光学系110D及びレーザー装置160Dでは、第1実施形態で説明した内容と同様の光の導波、伝搬及び動作原理によって、偏波保持型光ファイバ134A,134Bから、互いに繰り返し周波数の異なる光周波数コムC1,C2(図2参照)が出射される。
デュアル光周波数コム生成光学系110D及びレーザー装置160Dでは、第1実施形態で説明した内容と同様の光の導波、伝搬及び動作原理によって、偏波保持型光ファイバ134A,134Bから、互いに繰り返し周波数の異なる光周波数コムC1,C2(図2参照)が出射される。
デュアル光周波数コム生成光学系110D及びレーザー装置160Dでは、第1共振器長及び第2共振器長は互いに等しく、レーザー増幅光L1,L2の偏光の向きが共通して第1の向きP1であってもよい。デュアル光周波数コム生成光学系110D及びレーザー装置160Dでは、D2,D4方向において、GRINレンズ部182A,182B同士の位置が長さΔMだけ異なり、GRINレンズ部184A,184B同士の位置が長さΔM´だけ異なり、レーザー増幅光L1,L2が可飽和吸収ミラー192に照射される位置が長さΔJだけ異なる。このことによって、第1モード同期移行部E1の光増幅ファイバ143Aに対するレーザー増幅光L1の光路長と、第2モード同期移行部E2の光増幅ファイバ143Bに対するレーザー増幅光L2の光路長は、互いに異なる。第1モード同期移行部E1と第2モード同期移行部E2との光路長差ΔLは、長さΔM,ΔM´,ΔJによって決まる。繰り返し周波数frep2は、(frep1+Δfrep)で表される。繰り返し周波数差Δfrepは、光路長差ΔLに依存する。
上述の動作原理に基づき、デュアル光周波数コム生成光学系110D及びレーザー装置160Dでは、強度の大きいパルス光を含むレーザー増幅光L1がD1方向に沿って偏波保持型光ファイバ134Aに導波される。強度の大きいパルス光を含むレーザー増幅光L2は、D3方向に沿って偏波保持型光ファイバ134Bに導波される。長さΔM,ΔM´,ΔJは、レーザー増幅光L1,L2の共振器長及び光路長差ΔLが所望の繰り返し周波数frep1,frep2に相当するように、設定されている。長さΔM,ΔM´,ΔJは、前述したように僅かな長さであり、デュアル光周波数コム生成光学系110Dの各構成要素の配置時やレーザー装置160Dの製造時等に発生する製造誤差によって生じてもよく、意図的に生じさせてもよい。
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
レーザー装置160Dは、デュアル光周波数コム生成光学系110Dを有するので、基本的にレーザー装置160Aと同様の効果を奏する。長さΔM,ΔM´,ΔJはデュアル光周波数コム生成光学系110Dの構築時に固定されるパラメータであり、デュアル光周波数コム生成光学系110Dの周囲の環境等に影響を受けやすいパラメータ(レーザー増幅光L1,L2の波長や偏波の向き等)に比べて高精度に調整可能であり、予め正確に設計可能であり、安定している。デュアル光周波数コム生成光学系110A´及びレーザー装置160A´では、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを、高精度に調整可能な長さΔM,ΔM´,ΔJによって制御できる。
レーザー装置160Dは、デュアル光周波数コム生成光学系110Dを有するので、基本的にレーザー装置160Aと同様の効果を奏する。長さΔM,ΔM´,ΔJはデュアル光周波数コム生成光学系110Dの構築時に固定されるパラメータであり、デュアル光周波数コム生成光学系110Dの周囲の環境等に影響を受けやすいパラメータ(レーザー増幅光L1,L2の波長や偏波の向き等)に比べて高精度に調整可能であり、予め正確に設計可能であり、安定している。デュアル光周波数コム生成光学系110A´及びレーザー装置160A´では、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを、高精度に調整可能な長さΔM,ΔM´,ΔJによって制御できる。
[計測装置の構成、動作、及び作用効果]
図示していないが、第5実施形態の計測装置は、図3に示す計測装置200のレーザー装置160Aに替えて、図9に示すレーザー装置160Dを備える。レーザー装置160D以外の第5実施形態の計測装置の構成は、計測装置200と同様である。第5実施形態では、レーザー増幅光L1,L2の偏光の向きが共通して第1の向きP1であってもよいので、ミラー55及び干渉部59は、偏波保持型である必要はない。レーザー増幅光L1,L2の偏光の向きが共通している場合、ミラー55及び干渉部59は、光周波数コムC1,C3の偏光の向きを保持しない光学部品等で構成されてもよい。
図示していないが、第5実施形態の計測装置は、図3に示す計測装置200のレーザー装置160Aに替えて、図9に示すレーザー装置160Dを備える。レーザー装置160D以外の第5実施形態の計測装置の構成は、計測装置200と同様である。第5実施形態では、レーザー増幅光L1,L2の偏光の向きが共通して第1の向きP1であってもよいので、ミラー55及び干渉部59は、偏波保持型である必要はない。レーザー増幅光L1,L2の偏光の向きが共通している場合、ミラー55及び干渉部59は、光周波数コムC1,C3の偏光の向きを保持しない光学部品等で構成されてもよい。
レーザー装置160Dでは、レーザー装置160Aと同様に偏波保持型光ファイバ134A,134Bから光周波数コムC1,C2が出射される。第5実施形態の計測装置は、計測装置200と同様に動作し、計測装置200と同様の効果を奏する。レーザー装置160Dによれば、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを容易且つ高精度に制御できる。そのため、モード分解スペクトルにおいて周波数軸上で隣り合うスペクトル同士の周波数間隔を高精度に制御できる。第5実施形態の計測装置によれば、測定分解能を容易に且つ高精度に調整できる。
デュアル光周波数コム生成光学系110D及びレーザー装置160Dでは、GRINレンズ部182A,182B同士の位置が長さΔMだけずれ、GRINレンズ部184A,184B同士の相対位置は揃い、且つ可飽和吸収ミラー192のD2方向又はD4方向の手前側の端面の位置が揃っていても構わない。その場合、長さΔMは、レーザー増幅光L1,L2の共振器長及び光路長差ΔLが所望の繰り返し周波数Δfrepに相当するように、設定されている。
可飽和吸収ミラー192のD2方向又はD4方向の手前側の端面のずれによってレーザー増幅光L1,L2が照射される位置が長さΔJだけずれ、GRINレンズ部182A,182B同士の相対位置、及びGRINレンズ部184A,184B同士の相対位置が揃っていてもよい。その場合、長さΔJは、レーザー増幅光L1,L2の共振器長及び光路長差ΔLが所望の繰り返し周波数Δfrepに相当するように、設定されている。つまり、GRINレンズ部182A,182Bの相対位置のずれ、GRINレンズ部184A,184Bの相対位置のずれ、可飽和吸収ミラー192の端面の段差のうち少なくとも1つが生じれば、上述した第5実施形態の作用効果が得られる。
デュアル光周波数コム生成光学系110D及びレーザー装置160Dでは、GRINレンズ184の第1モード同期移行部E1を構成する部分と第2モード同期移行部E2を構成する部分がD2,D4方向において互いに異なる位置にずれていてもよい。
(第6実施形態)
次に、本発明の第6実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
次に、本発明の第6実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
図10に示すように、本発明の第6実施形態のレーザー装置160Eは、第1実施形態で説明したデュアル光周波数コム生成光学系110Aに替えて、デュアル光周波数コム生成光学系110Eを備える。レーザー装置160Eにおける光源150から出射端(第1導入部、第2導入部)165A,165Bまでの構成は、第1実施形態で説明したレーザー装置160Aにおける光源150から第1導入部161及び第2導入部162までの構成と同様である。
図10に示すように、本発明の第6実施形態のレーザー装置160Eは、第1実施形態で説明したデュアル光周波数コム生成光学系110Aに替えて、デュアル光周波数コム生成光学系110Eを備える。レーザー装置160Eにおける光源150から出射端(第1導入部、第2導入部)165A,165Bまでの構成は、第1実施形態で説明したレーザー装置160Aにおける光源150から第1導入部161及び第2導入部162までの構成と同様である。
デュアル光周波数コム生成光学系110D及びレーザー装置160Dでは、端面ミラー127AのD1,D3方向の手前側の反射面の位置と、端面ミラー127BのD1,D3方向の手前側の反射面の位置は、長さΔGだけ異なる。D1,D2方向に沿った光増幅ファイバ143Aの長さと、D3,D4方向に沿った光増幅ファイバ143Bの長さは、互いに異なる。図10に示す構成例では、光増幅ファイバ143Aの長さは、光増幅ファイバ143Bの長さより長さΔGだけ短い。端面ミラー127Bは、基台130のD1方向の奥側の端面より手前側に配置されている。例えば、基台130の上面には、基台130の高さ方向に沿って溝が形成されている。端面ミラー127Bは、その溝に嵌められ、基台130の上面に対して直角をなしている。端面ミラー127BのD1方向の手前側の端面は、光増幅ファイバ143BのD1方向の奥側の端面に接している。
第6実施形態では、第3実施形態と同様に、レーザー光S1の偏光の向きとレーザー光S2の偏光の向きが必ずしも互いに異なる必要はない。図10に示すように、光源150は、光軸Aに対して偏光の向きが第1の向きP1のみであるレーザー光S1,S2を発してもよい。例えば、偏波保持型光ファイバ151の遅軸のみ、又は速軸のみを第1の向きP1に合わせてレーザー光S1,S2を導波できる。
[デュアル光周波数コム生成光学系及びレーザー装置の動作]
デュアル光周波数コム生成光学系110E及びレーザー装置160Eでは、第1実施形態で説明した内容と同様の光の導波、伝搬及び動作原理によって、偏波保持型光ファイバ134A,134Bから、互いに繰り返し周波数の異なる光周波数コムC1,C2(図2参照)が出射される。
デュアル光周波数コム生成光学系110E及びレーザー装置160Eでは、第1実施形態で説明した内容と同様の光の導波、伝搬及び動作原理によって、偏波保持型光ファイバ134A,134Bから、互いに繰り返し周波数の異なる光周波数コムC1,C2(図2参照)が出射される。
デュアル光周波数コム生成光学系110E及びレーザー装置160Eでは、レーザー増幅光L1,L2の偏光の向きが共通して第1の向きP1であってもよい。デュアル光周波数コム生成光学系110E及びレーザー装置160Eでは、D1,D3方向における光増幅ファイバ143Aの長さと、D2,D4方向における光増幅ファイバ143Bの長さは、長さΔGだけ異なる。そのことによって、第1共振器長と第2共振器長は、長さΔGだけ異なる。第1モード同期移行部E1と第2モード同期移行部E2との光路長差ΔLは、長さΔGによって直接決まる。繰り返し周波数frep2は、(frep1+Δfrep)で表される。繰り返し周波数差Δfrepは、光路長差ΔLに依存する。
上述の動作原理に基づき、デュアル光周波数コム生成光学系110E及びレーザー装置160Eでは、強度の大きいパルス光を含むレーザー増幅光L1がD1方向に沿って偏波保持型光ファイバ134Aに導波される。強度の大きいパルス光を含むレーザー増幅光L2は、D3方向に沿って偏波保持型光ファイバ134Bに導波される。長さΔGは、レーザー増幅光L1,L2の共振器長及び光路長差ΔLが所望の繰り返し周波数frep1,frep2に相当するように、設定されている。例えば、空間部の長さを10cmに固定する。基台130のD2,D4方向の奥側の端面と第3反射部190の反射面との距離は、10cmになる。光増幅ファイバ143A,143Bのそれぞれのコアの屈折率は、1.48と仮定する。このような場合、光増幅ファイバ143Aの長さを1mとし、光増幅ファイバ143Bの長さを1.001mとし、長さΔGを1mmに設定すると、繰り返し周波数差Δfrepは0.178MHzとなる。
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
レーザー装置160Eは、デュアル光周波数コム生成光学系110Eを有するので、基本的にレーザー装置160Aと同様の効果を奏する。長さΔGは端面ミラー127Bの基台130への設置時に固定されるパラメータであり、デュアル光周波数コム生成光学系110Eの周囲の環境等に影響を受けやすいパラメータ(レーザー増幅光L1,L2の波長や偏波の向き等)に比べて高精度に調整可能であって、予め正確に設計可能であり、安定している。デュアル光周波数コム生成光学系110E及びレーザー装置160Eでは、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを、高精度に調整可能な長さΔGによって制御できる。長さΔGを変えることによって、光周波数コムC1,C2の分散量を長さΔGに応じて異ならせることができる。光周波数コムC1,C2の分散量を変えることによって、光周波数コムC1,C2のスペクトルの幅を変えることができる。
レーザー装置160Eは、デュアル光周波数コム生成光学系110Eを有するので、基本的にレーザー装置160Aと同様の効果を奏する。長さΔGは端面ミラー127Bの基台130への設置時に固定されるパラメータであり、デュアル光周波数コム生成光学系110Eの周囲の環境等に影響を受けやすいパラメータ(レーザー増幅光L1,L2の波長や偏波の向き等)に比べて高精度に調整可能であって、予め正確に設計可能であり、安定している。デュアル光周波数コム生成光学系110E及びレーザー装置160Eでは、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを、高精度に調整可能な長さΔGによって制御できる。長さΔGを変えることによって、光周波数コムC1,C2の分散量を長さΔGに応じて異ならせることができる。光周波数コムC1,C2の分散量を変えることによって、光周波数コムC1,C2のスペクトルの幅を変えることができる。
[計測装置の構成、動作、及び作用効果]
図示していないが、第6実施形態の計測装置は、図3に示す計測装置200のレーザー装置160Aに替えて、図10に示すレーザー装置160Eを備える。レーザー装置160E以外の第6実施形態の計測装置の構成は、計測装置200と同様である。第6実施形態では、レーザー増幅光L1,L2の偏光の向きが共通して第1の向きP1であってもよいので、ミラー55及び干渉部59は、偏波保持型である必要はない。レーザー増幅光L1,L2の偏光の向きが共通している場合は、ミラー55及び干渉部59は、光周波数コムC1,C3の偏光の向きを保持しない光学部品等で構成されてもよい。
図示していないが、第6実施形態の計測装置は、図3に示す計測装置200のレーザー装置160Aに替えて、図10に示すレーザー装置160Eを備える。レーザー装置160E以外の第6実施形態の計測装置の構成は、計測装置200と同様である。第6実施形態では、レーザー増幅光L1,L2の偏光の向きが共通して第1の向きP1であってもよいので、ミラー55及び干渉部59は、偏波保持型である必要はない。レーザー増幅光L1,L2の偏光の向きが共通している場合は、ミラー55及び干渉部59は、光周波数コムC1,C3の偏光の向きを保持しない光学部品等で構成されてもよい。
レーザー装置160Eでは、レーザー装置160Aと同様に偏波保持型光ファイバ134A,134Bから光周波数コムC1,C2が出射される。第6実施形態の計測装置は、計測装置200と同様に動作し、計測装置200と同様の効果を奏する。レーザー装置160Eによれば、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを容易且つ高精度に制御できるので、モード分解スペクトルにおいて周波数軸上で隣り合うスペクトル同士の周波数間隔を高精度に制御できる。第6実施形態の計測装置によれば、測定分解能を容易に且つ高精度に調整できる。第6実施形態の計測装置では、レーザー装置160Eにおいて光周波数コムC1,C2のスペクトルの幅を調整することによって、測定帯域を容易に且つ高精度に調整できる。
(第7実施形態)
次に、本発明の第7実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
次に、本発明の第7実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
図11に示すように、本発明を適用した第7実施形態のレーザー装置160Fは、第1実施形態で説明したデュアル光周波数コム生成光学系110Aに替えて、デュアル光周波数コム生成光学系110Fを備える。レーザー装置160Fにおける光源150から出射端(第1導入部、第2導入部)165A,165Bまでの構成は、第1実施形態で説明したレーザー装置160Aにおける光源150から第1導入部161及び第2導入部162までの構成と同様である。
図11に示すように、本発明を適用した第7実施形態のレーザー装置160Fは、第1実施形態で説明したデュアル光周波数コム生成光学系110Aに替えて、デュアル光周波数コム生成光学系110Fを備える。レーザー装置160Fにおける光源150から出射端(第1導入部、第2導入部)165A,165Bまでの構成は、第1実施形態で説明したレーザー装置160Aにおける光源150から第1導入部161及び第2導入部162までの構成と同様である。
デュアル光周波数コム生成光学系110Fは、デュアル光周波数コム生成光学系110Aにおける端面ミラー127A,127Bをファイバブラッググレーティング(Fiber Bragg Grating:FBG)128A,128Bに置き換えた光学系である。FBG128A,128Bは、不図示のコネクタ等を用いて、D1方向又はD2方向の手前側で光増幅ファイバ143A,143Bに対して着脱可能に配置されている。同様に、FBG128A,128Bは、不図示のコネクタ等を用いて、D1方向又はD2方向の奥側で偏波保持型光ファイバ134A,134Bに対して着脱可能に配置されている。
[デュアル光周波数コム生成光学系及びレーザー装置の動作]
デュアル光周波数コム生成光学系110F及びレーザー装置160Fでは、第1実施形態で説明した内容と同様の光の導波、伝搬及び動作原理によって、偏波保持型光ファイバ134A,134Bから、互いに繰り返し周波数の異なる光周波数コムC1,C2(図2参照)が出射される。
デュアル光周波数コム生成光学系110F及びレーザー装置160Fでは、第1実施形態で説明した内容と同様の光の導波、伝搬及び動作原理によって、偏波保持型光ファイバ134A,134Bから、互いに繰り返し周波数の異なる光周波数コムC1,C2(図2参照)が出射される。
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
レーザー装置160Fは、デュアル光周波数コム生成光学系110Fを有するので、基本的にレーザー装置160Aと同様の効果を奏する。端面ミラー127A,127Bに替えてFBG128A,128Bを用いることで、第1反射部121及び第2反射部122を第1導波部141及び第2導波部142に対して着脱可能にすることができる。このことによって、デュアル光周波数コム生成光学系110F及びレーザー装置160Fの取り扱いやメンテナンスを容易にすることができる。
レーザー装置160Fは、デュアル光周波数コム生成光学系110Fを有するので、基本的にレーザー装置160Aと同様の効果を奏する。端面ミラー127A,127Bに替えてFBG128A,128Bを用いることで、第1反射部121及び第2反射部122を第1導波部141及び第2導波部142に対して着脱可能にすることができる。このことによって、デュアル光周波数コム生成光学系110F及びレーザー装置160Fの取り扱いやメンテナンスを容易にすることができる。
[計測装置の構成、動作、及び作用効果]
図示していないが、第7実施形態の計測装置は、図3に示す計測装置200のレーザー装置160Aに替えて、図11に示すレーザー装置160Fを備える。レーザー装置160F以外の第7実施形態の計測装置の構成は、計測装置200と同様である。レーザー装置160Fでは、レーザー装置160Aと同様に偏波保持型光ファイバ134A,134Bから光周波数コムC1,C2が出射される。第7実施形態の計測装置は、計測装置200と同様に動作し、計測装置200と同様の効果を奏する。レーザー装置160Fによれば、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを容易に制御できる。レーザー装置160Fによれば、光増幅ファイバ143A,143Bと、偏波保持型光ファイバ134A,134Bに対して、FBG128A,128Bがそれぞれ着脱可能であるので、第1反射部121及び第2反射部122の取り扱いやメンテナンスを容易にすることができる。
図示していないが、第7実施形態の計測装置は、図3に示す計測装置200のレーザー装置160Aに替えて、図11に示すレーザー装置160Fを備える。レーザー装置160F以外の第7実施形態の計測装置の構成は、計測装置200と同様である。レーザー装置160Fでは、レーザー装置160Aと同様に偏波保持型光ファイバ134A,134Bから光周波数コムC1,C2が出射される。第7実施形態の計測装置は、計測装置200と同様に動作し、計測装置200と同様の効果を奏する。レーザー装置160Fによれば、光周波数コムC1,C2同士の繰り返し周波数差Δfrepを容易に制御できる。レーザー装置160Fによれば、光増幅ファイバ143A,143Bと、偏波保持型光ファイバ134A,134Bに対して、FBG128A,128Bがそれぞれ着脱可能であるので、第1反射部121及び第2反射部122の取り扱いやメンテナンスを容易にすることができる。
(第8実施形態)
次に、本発明の第8実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
次に、本発明の第8実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
図12に示すように、本発明の第8実施形態のレーザー装置160Gは、第1実施形態で説明したデュアル光周波数コム生成光学系110Aの構成を全て備え、基台133をさらに備える。
図12に示すように、本発明の第8実施形態のレーザー装置160Gは、第1実施形態で説明したデュアル光周波数コム生成光学系110Aの構成を全て備え、基台133をさらに備える。
デュアル光周波数コム生成光学系110Gでは、出射端165A,165B、二色性コーティング174、GRINレンズ182,184、可飽和吸収ミラー192が基台133に設けられている。出射端165A,165B、二色性コーティング174、GRINレンズ182,184、可飽和吸収ミラー192はそれぞれ、不図示の専用ホルダ等に装着され、専用ホルダと共に基台133に固定されている。基台133の素材は、基台130の素材と同様であり、特に限定されず、例えば金属、樹脂等である。基台130,133は、接着剤等によって接着されてもよく、同一の素材から構成されて一体であってもよい。少なくともGRINレンズ182,184、可飽和吸収ミラー192はそれぞれ、基台130と基台133が同一の部材として形成されることによって基台130に直接接続されてもよい。少なくともGRINレンズ182,184、可飽和吸収ミラー192はそれぞれ、基台133が基台130と接着剤等によって接着されることによって間接的に接続されてもよい。これらの構成によって、第1モード同期移行部E1及び第2モード同期移行部E2の自由空間内の光学系を構成するGRINレンズ182,184、可飽和吸収ミラー192は、導波路である光増幅ファイバ143A,143Bや端面ミラー127A,127Bと直接、又は、間接的に接続される。
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
レーザー装置160Gは、デュアル光周波数コム生成光学系110Gを有するので、基本的にレーザー装置160Aと同様の効果を奏する。また、少なくともGRINレンズ182,184、可飽和吸収ミラー192が基台130に接続されることによって、第1モード同期移行部E1及び第2モード同期移行部E2の自由空間内の光学系で構成される第3反射部190が基台130に接続される。第3反射部190が基台130に接続されない場合に比べて、第1モード同期移行部E1と第2モード同期移行部E2が受ける環境外乱や機械的な擾乱を確実に共通にすることができる。このことによって、光周波数コムC1,C2に含まれる環境外乱や機械的な擾乱の差を抑え、光周波数コムC1,C2のSN比をさらに高めることができる。
レーザー装置160Gは、デュアル光周波数コム生成光学系110Gを有するので、基本的にレーザー装置160Aと同様の効果を奏する。また、少なくともGRINレンズ182,184、可飽和吸収ミラー192が基台130に接続されることによって、第1モード同期移行部E1及び第2モード同期移行部E2の自由空間内の光学系で構成される第3反射部190が基台130に接続される。第3反射部190が基台130に接続されない場合に比べて、第1モード同期移行部E1と第2モード同期移行部E2が受ける環境外乱や機械的な擾乱を確実に共通にすることができる。このことによって、光周波数コムC1,C2に含まれる環境外乱や機械的な擾乱の差を抑え、光周波数コムC1,C2のSN比をさらに高めることができる。
[計測装置の構成、動作、及び作用効果]
図示していないが、第8実施形態の計測装置は、図3に示す計測装置200のレーザー装置160Aに替えて、図12に示すレーザー装置160Gを備える。レーザー装置160G以外の第8実施形態の計測装置の構成は、計測装置200と同様である。レーザー装置160Gでは、レーザー装置160Aと同様に偏波保持型光ファイバ134A,134Bから光周波数コムC1,C2が出射される。第8実施形態の計測装置は、計測装置200と同様に動作し、計測装置200と同様の効果を奏する。レーザー装置160Gによれば、光周波数コムC1,C2のSN比を高めることができる。第8実施形態の計測装置によれば、相対的に高SN比の光周波数コムC1,C2を用いた精度の高い計測を実施できる。
図示していないが、第8実施形態の計測装置は、図3に示す計測装置200のレーザー装置160Aに替えて、図12に示すレーザー装置160Gを備える。レーザー装置160G以外の第8実施形態の計測装置の構成は、計測装置200と同様である。レーザー装置160Gでは、レーザー装置160Aと同様に偏波保持型光ファイバ134A,134Bから光周波数コムC1,C2が出射される。第8実施形態の計測装置は、計測装置200と同様に動作し、計測装置200と同様の効果を奏する。レーザー装置160Gによれば、光周波数コムC1,C2のSN比を高めることができる。第8実施形態の計測装置によれば、相対的に高SN比の光周波数コムC1,C2を用いた精度の高い計測を実施できる。
(第9実施形態)
次に、本発明の第9実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
次に、本発明の第9実施形態のデュアル光周波数コム生成光学系、レーザー装置及び計測装置について説明する。
[デュアル光周波数コム生成光学系及びレーザー装置の構成]
図13に示すように、本発明の第9実施形態のレーザー装置160Hは、第1実施形態で説明したデュアル光周波数コム生成光学系110Aの光源150を2つの光源150A,150Bに替えたデュアル光周波数コム生成光学系110Hを備え、偏波保持型光ファイバ151及び偏波分離素子152を備えていない。光源(第1光源)150Aには、第1実施形態で説明した偏波保持型光ファイバ153Aの入射側の端部(一方の端部)が直接接続されている。光源(第2光源)150Bには、第1実施形態で説明した偏波保持型光ファイバ153Bの入射側の端部(一方の端部)が直接接続されている。
図13に示すように、本発明の第9実施形態のレーザー装置160Hは、第1実施形態で説明したデュアル光周波数コム生成光学系110Aの光源150を2つの光源150A,150Bに替えたデュアル光周波数コム生成光学系110Hを備え、偏波保持型光ファイバ151及び偏波分離素子152を備えていない。光源(第1光源)150Aには、第1実施形態で説明した偏波保持型光ファイバ153Aの入射側の端部(一方の端部)が直接接続されている。光源(第2光源)150Bには、第1実施形態で説明した偏波保持型光ファイバ153Bの入射側の端部(一方の端部)が直接接続されている。
光源150A,150Bは、光源150と同様、半導体レーザーで構成されている。光源150Aはレーザー光S1のみを発し、光源150Bはレーザー光S2のみを発する。偏波保持型光ファイバ153Aの出射側の端部(他方の端部)は、D2方向の手前側から出射端165Aに接続されている。偏波保持型光ファイバ153Bの出射側の端部(他方の端部)は、D4方向の手前側から出射端165Bに接続されている。レーザー装置160Hでは、第1モード同期移行部E1と第2モード同期移行部E2のそれぞれに対して光源150A,150Bのそれぞれから個別にレーザー光S1,S2が導入される。
[デュアル光周波数コム生成光学系及びレーザー装置の動作]
デュアル光周波数コム生成光学系110H及びレーザー装置160Hでは、第1実施形態で説明した内容と同様の光の導波、伝搬及び動作原理によって、偏波保持型光ファイバ134A,134Bから、互いに繰り返し周波数の異なる光周波数コムC1,C2(図2参照)が出射される。第1モード同期移行部E1には、光源150Aから偏波保持型光ファイバ153A及び出射端165Aを介して、レーザー光S1が導入される。第2モード同期移行部E2には、光源150Bから偏波保持型光ファイバ153B及び出射端165Bを介して、レーザー光S2が導入される。
デュアル光周波数コム生成光学系110H及びレーザー装置160Hでは、第1実施形態で説明した内容と同様の光の導波、伝搬及び動作原理によって、偏波保持型光ファイバ134A,134Bから、互いに繰り返し周波数の異なる光周波数コムC1,C2(図2参照)が出射される。第1モード同期移行部E1には、光源150Aから偏波保持型光ファイバ153A及び出射端165Aを介して、レーザー光S1が導入される。第2モード同期移行部E2には、光源150Bから偏波保持型光ファイバ153B及び出射端165Bを介して、レーザー光S2が導入される。
[デュアル光周波数コム生成光学系及びレーザー装置の作用効果]
レーザー装置160Hは、デュアル光周波数コム生成光学系110Hを有するので、基本的にレーザー装置160Aと同様の効果を奏する。レーザー装置160Hでは、レーザー光S1,S2を互いに異なる光源150A,150Bで発生させる。レーザー装置160Hでは、第1モード同期移行部E1と第2モード同期移行部E2のそれぞれに対してレーザー光S1,S2のそれぞれを個別に導入させる。このことによって、レーザー光S1,S2を個別に制御し、光周波数コムC1,C2の特性を容易且つ高精度に調整できる。レーザー装置160H及びデュアル光周波数コム生成光学系110Hによれば、光周波数コムC1の繰り返し周波数frep1あるいは光周波数コムC2の繰り返し周波数frep2のみを変調及び制御でき、光周波数コムC1あるいは光周波数コムC2のみの光周波数の位相を制御できる。
レーザー装置160Hは、デュアル光周波数コム生成光学系110Hを有するので、基本的にレーザー装置160Aと同様の効果を奏する。レーザー装置160Hでは、レーザー光S1,S2を互いに異なる光源150A,150Bで発生させる。レーザー装置160Hでは、第1モード同期移行部E1と第2モード同期移行部E2のそれぞれに対してレーザー光S1,S2のそれぞれを個別に導入させる。このことによって、レーザー光S1,S2を個別に制御し、光周波数コムC1,C2の特性を容易且つ高精度に調整できる。レーザー装置160H及びデュアル光周波数コム生成光学系110Hによれば、光周波数コムC1の繰り返し周波数frep1あるいは光周波数コムC2の繰り返し周波数frep2のみを変調及び制御でき、光周波数コムC1あるいは光周波数コムC2のみの光周波数の位相を制御できる。
[計測装置の構成、動作、及び作用効果]
図示していないが、第9実施形態の計測装置は、図3に示す計測装置200のレーザー装置160Aに替えて、図13に示すレーザー装置160Hを備える。レーザー装置160H以外の第9実施形態の計測装置の構成は、計測装置200と同様である。レーザー装置160Hではレーザー装置160Aと同様に偏波保持型光ファイバ134A,134Bから光周波数コムC1,C2が出射される。第9実施形態の計測装置は、計測装置200と同様に動作し、計測装置200と同様の効果を奏する。レーザー装置160Hによれば、光周波数コムC1及び光周波数コムC2の少なくとも一方の光周波数の位相を制御できる。例えば、レーザー装置160Hを用いてキャリアエンベロープオフセット周波数を制御できる。第9実施形態の計測装置では、光周波数コム・モードの絶対周波数を決定できるようになり、計測の範囲を拡げることができる。
図示していないが、第9実施形態の計測装置は、図3に示す計測装置200のレーザー装置160Aに替えて、図13に示すレーザー装置160Hを備える。レーザー装置160H以外の第9実施形態の計測装置の構成は、計測装置200と同様である。レーザー装置160Hではレーザー装置160Aと同様に偏波保持型光ファイバ134A,134Bから光周波数コムC1,C2が出射される。第9実施形態の計測装置は、計測装置200と同様に動作し、計測装置200と同様の効果を奏する。レーザー装置160Hによれば、光周波数コムC1及び光周波数コムC2の少なくとも一方の光周波数の位相を制御できる。例えば、レーザー装置160Hを用いてキャリアエンベロープオフセット周波数を制御できる。第9実施形態の計測装置では、光周波数コム・モードの絶対周波数を決定できるようになり、計測の範囲を拡げることができる。
以上、本発明の好ましい実施形態について詳述したが、本発明は上述の特定の実施形態に限定されない。本発明は、特許請求の範囲内に記載された本発明の要旨の範囲内において、変更可能である。
例えば、光増幅ファイバは、上述の各実施形態で説明したように、基台に形成された溝に嵌められていなくてもよい。図14に示すように、シリコン等からなる基台130の上部全体に第1導波部141及び第2導波部142に共通するクラッド211が設けられ、第1導波部141及び第2導波部142のそれぞれのコア201が互いに間隔をあけてクラッド211に埋設されていてもよい。第1導波部141及び第2導波部142は、平面光波回路(Planar Lightwave Circuit:PLC)として構成されてもよい。
上述した各実施形態の構成は、適宜組み合わせられる。例えば、第3実施形態で説明したように光増幅ファイバ143A,143BのD1,D3方向の長さを互いに異ならせ、且つ、第5実施形態で説明したようにGRINレンズ182のGRINレンズ部182A,182Bの位置を異ならせてもよい。この場合、光周波数コムC1,C2の繰り返し周波数差Δfrepは、光路長差ΔLに依存し、長さΔF,ΔMによって決まる。
上述の各実施形態では、レーザー増幅光L1,L2の進行方向が互いに平行になっているが、必ずしもレーザー増幅光L1,L2の進行方向は互いに平行になっていなくてもよい。デュアル光周波数コム生成光学系の小型化が妨げられない範囲で、レーザー増幅光L1,L2の何れかの進行方向が湾曲又は蛇行等してもよい。
本発明に係るデュアル光周波数コム生成光学系、レーザー装置、計測装置は、互いに繰り返し周波数が異なる光周波数コムC1,C2を用いる分野で広く応用可能である。また、本発明のデュアル光周波数コム生成光学系、レーザー装置、計測装置によれば、高SN比を有する光周波数コムC1,C2が得られる。このことによって、本発明のデュアル光周波数コム生成光学系、レーザー装置、計測装置は、計測精度の高さを求められる分光計測や信号解析等に応用可能である。
110A,110A´,110B,110C,110D,110E,110F,110G,110H…デュアル光周波数コム生成光学系
121…第1反射部
122…第2反射部
130…基台
141…第1導波部
142…第2導波部
150,150A,150B…光源
160A,160A´,160B,160C,160D,160E,160F,160G,160H…レーザー装置
161…第1導入部
162 第2導入部
190…第3反射部
200…計測装置
D1…第1方向
D2…第2方向
D3…第3方向
D4…第4方向
121…第1反射部
122…第2反射部
130…基台
141…第1導波部
142…第2導波部
150,150A,150B…光源
160A,160A´,160B,160C,160D,160E,160F,160G,160H…レーザー装置
161…第1導入部
162 第2導入部
190…第3反射部
200…計測装置
D1…第1方向
D2…第2方向
D3…第3方向
D4…第4方向
Claims (13)
- 第1方向及び前記第1方向とは逆向きの第2方向に沿って第1レーザー光を導波すると共に増幅する第1導波部と、第2レーザー光を第3方向及び前記第3方向とは逆向きの第4方向に沿って導波すると共に増幅する第2導波部とが設けられた基台と、
前記第1レーザー光を前記第1導波部に導入する第1導入部と、
前記第2レーザー光を前記第2導波部に導入する第2導入部と、
前記基台の前記第1方向の奥側の端部に設けられると共に前記第1導波部に接続され、前記第1方向に沿って前記第1導波部で導波された前記第1レーザー光の一部を前記第2方向に沿って反射すると共に、前記第1方向に沿って前記第1導波部で導波された前記第1レーザー光の残部を前記第1方向に沿って出射する第1反射部と、
前記基台の前記第3方向の奥側の端部に設けられると共に前記第2導波部に接続され、前記第3方向に沿って前記第2導波部で導波された前記第1レーザー光の一部を前記第4方向に沿って反射すると共に、前記第3方向に沿って前記第2導波部で導波された前記第2レーザー光の残部を前記第3方向に沿って出射する第2反射部と、
前記第1導波部の前記第1方向の手前側の端部及び前記第2導波部の前記第3方向の手前側の端部から離間して設けられ、前記第1導波部から第2方向に沿って出射された前記第1レーザー光の少なくとも一部を反射すると共に、前記第2導波部から第4方向に沿って出射された前記第2レーザー光の少なくとも一部を反射し、反射した前記第1レーザー光を前記第1導波部に入射させ、且つ反射した前記第2レーザー光を前記第2導波部に入射させる第3反射部と、
を備え、
前記第1反射部と前記第3反射部との間を伝搬する前記第1レーザー光の光路長と前記第2反射部と前記第3反射部との間を伝搬する前記第2レーザー光の光路長が異なる、
デュアル光周波数コム生成光学系。 - 前記第1レーザー光の偏光の向きと前記第2レーザー光の偏光の向きが互いに異なり、
前記第1導波部は前記第1レーザー光の偏光の向きを保持しつつ前記第1レーザー光を導波すると共に増幅し、
前記第2導波部は前記第2レーザー光の偏光の向きを保持しつつ前記第2レーザー光を導波すると共に増幅する、
請求項1に記載のデュアル光周波数コム生成光学系。 - 前記第1レーザー光の進行方向に沿った前記第1導波部の長さと前記第2レーザー光の進行方向における前記第2導波部の長さが互いに異なる、
請求項1又は2に記載のデュアル光周波数コム生成光学系。 - 前記第1導波部及び前記第2導波部はそれぞれ、第1コアと、前記第1コアの周囲に設けられ、前記第1コアより低い屈折率を有する第1クラッドとを有する第1導波路を備え、
前記第1導波部における前記第1導波路の長さと前記第2導波部における前記第1導波路の長さが互いに異なる、
請求項1から3の何れか一項に記載のデュアル光周波数コム生成光学系。 - 前記第1導波部は、
第1コアと、
前記第1コアの周囲に設けられ、前記第1コアより低い屈折率を有する第1クラッドとを有する第1導波路を備え、
前記第2導波部は、
前記第1コアとは異なる屈折率を有する第2コアと、
前記第2コアの周囲に設けられ、前記第2コアより低い屈折率を有する第2クラッドとを有する第2導波路を備える、
請求項1から3の何れか一項に記載のデュアル光周波数コム生成光学系。 - 前記第1レーザー光が前記第1導波部から第2方向に沿って出射される位置と前記第1レーザー光が前記第3反射部に照射される位置との間で前記第1レーザー光が伝搬する距離と、前記第2レーザー光が前記第2導波部から第4方向に沿って出射される位置と前記第2レーザー光が前記第3反射部に照射される位置との間で前記第2レーザー光が伝搬する距離とは、互いに異なる、
請求項1から5の何れか一項に記載のデュアル光周波数コム生成光学系。 - 前記第3反射部は前記基台に直接、又は、間接的に接続される、
請求項1から6の何れか一項に記載のデュアル光周波数コム生成光学系。 - 前記第1導波部の前記第1方向の手前側の端部及び前記第2導波部の前記第3方向の手前側の端部と前記第3反射部との間に第1集光部及び第2集光部が設けられ、
前記第1集光部は、前記第1導波部から前記第2方向に沿って出射された前記第1レーザー光を前記第3反射部に結像させると共に、前記第3反射部によって反射された前記第1レーザー光を前記第1方向に沿って前記第1導波部に入射させ、
前記第2集光部は、前記第2導波部から前記第4方向に沿って出射された前記第2レーザー光を前記第3反射部に結像させると共に、前記第3反射部によって反射された前記第2レーザー光を前記第3方向に沿って前記第2導波部に入射させ、
前記第1集光部及び前記第2集光部は一体に構成されている、
請求項1から7の何れか一項に記載のデュアル光周波数コム生成光学系。 - 前記第1レーザー光が前記第1導波部から第2方向に沿って出射される位置と前記第1レーザー光が前記第1集光部に照射される位置との間で前記第1レーザー光が伝搬する距離と、前記第2レーザー光が前記第2導波部から第4方向に沿って出射される位置と前記第2レーザー光が前記第2集光部に照射される位置との間で前記第2レーザー光が伝搬する距離とは、互いに異なる、
請求項8に記載のデュアル光周波数コム生成光学系。 - 前記第1集光部、前記第2集光部、及び、前記第3反射部は前記基台に直接、又は、間接的に接続される、
請求項8又は9の何れか一項に記載のデュアル光周波数コム生成光学系。 - 請求項1から請求項10の何れか一項に記載のデュアル光周波数コム生成光学系と、
前記第1導入部及び前記第2導入部に接続され、前記第1レーザー光及び前記第2レーザー光を発する光源と、を備える、
レーザー装置。 - 請求項1から請求項10の何れか一項に記載のデュアル光周波数コム生成光学系と、
前記第1導入部に接続され、前記第1レーザー光を発する第1光源と、
前記第2導入部に接続され、前記第2レーザー光を発する第2光源と、を備える、
レーザー装置。 - 請求項11又は12に記載のレーザー装置と、
前記レーザー装置から導出される第1光周波数コム及び前記第1光周波数コムとは異なる繰り返し周波数を有する第2光周波数コムの少なくとも一方の進路上に配置された試料より前記第1光周波数コム及び前記第2光周波数コムの進行方向の奥側に配置され、測定対象の前記第1光周波数コム及び前記第2光周波数コムを干渉させる干渉部と、
前記干渉部で得られる干渉信号の進行方向の奥側に配置され、前記干渉信号から前記試料の情報を抽出する試料情報抽出部と、
を備える、
計測装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019508985A JP7210025B2 (ja) | 2017-12-22 | 2018-08-24 | デュアル光周波数コム生成光学系、レーザー装置、計測装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017246805 | 2017-12-22 | ||
JP2017-246805 | 2017-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019123719A1 true WO2019123719A1 (ja) | 2019-06-27 |
Family
ID=66993278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/031344 WO2019123719A1 (ja) | 2017-12-22 | 2018-08-24 | デュアル光周波数コム生成光学系、レーザー装置、計測装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7210025B2 (ja) |
WO (1) | WO2019123719A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111624169A (zh) * | 2020-06-03 | 2020-09-04 | 华东师范大学 | 基于外差探测的紫外双光梳吸收光谱测量的装置及方法 |
WO2021019918A1 (ja) * | 2019-07-31 | 2021-02-04 | パナソニックIpマネジメント株式会社 | デュアル光周波数コム発光装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008311629A (ja) * | 2007-05-11 | 2008-12-25 | National Institute Of Advanced Industrial & Technology | 超短光パルスの増幅方法及び超短光パルス増幅装置、並びに広帯域コム発生装置 |
WO2015012915A2 (en) * | 2013-04-22 | 2015-01-29 | Cornell University | Parametric comb generation via nonlinear wave mixing in high-q optical resonator coupled to built-in laser resonator |
WO2015045266A1 (ja) * | 2013-09-24 | 2015-04-02 | 国立大学法人東京農工大学 | 測定装置 |
WO2015064957A1 (en) * | 2013-10-28 | 2015-05-07 | Korea Research Institute Of Standards And Science | Dual optical-comb femtosecond optical fiber laser |
JP2015156452A (ja) * | 2014-02-21 | 2015-08-27 | 大学共同利用機関法人自然科学研究機構 | 受動モードロックファイバレーザ装置 |
WO2017047712A1 (ja) * | 2015-09-16 | 2017-03-23 | 国立大学法人東京大学 | レーザー発振器及びレーザー発振器を備えた分光装置、光コヒーレンストモグラフィ装置、非同期光サンプリング装置、長距離絶対距離計測装置、cwレーザー高速高分解能分光装置 |
JP2017138129A (ja) * | 2016-02-01 | 2017-08-10 | 学校法人慶應義塾 | デュアルコム分光法を用いた偏光計測装置及び偏光計測方法 |
-
2018
- 2018-08-24 JP JP2019508985A patent/JP7210025B2/ja active Active
- 2018-08-24 WO PCT/JP2018/031344 patent/WO2019123719A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008311629A (ja) * | 2007-05-11 | 2008-12-25 | National Institute Of Advanced Industrial & Technology | 超短光パルスの増幅方法及び超短光パルス増幅装置、並びに広帯域コム発生装置 |
WO2015012915A2 (en) * | 2013-04-22 | 2015-01-29 | Cornell University | Parametric comb generation via nonlinear wave mixing in high-q optical resonator coupled to built-in laser resonator |
WO2015045266A1 (ja) * | 2013-09-24 | 2015-04-02 | 国立大学法人東京農工大学 | 測定装置 |
WO2015064957A1 (en) * | 2013-10-28 | 2015-05-07 | Korea Research Institute Of Standards And Science | Dual optical-comb femtosecond optical fiber laser |
JP2015156452A (ja) * | 2014-02-21 | 2015-08-27 | 大学共同利用機関法人自然科学研究機構 | 受動モードロックファイバレーザ装置 |
WO2017047712A1 (ja) * | 2015-09-16 | 2017-03-23 | 国立大学法人東京大学 | レーザー発振器及びレーザー発振器を備えた分光装置、光コヒーレンストモグラフィ装置、非同期光サンプリング装置、長距離絶対距離計測装置、cwレーザー高速高分解能分光装置 |
JP2017138129A (ja) * | 2016-02-01 | 2017-08-10 | 学校法人慶應義塾 | デュアルコム分光法を用いた偏光計測装置及び偏光計測方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021019918A1 (ja) * | 2019-07-31 | 2021-02-04 | パナソニックIpマネジメント株式会社 | デュアル光周波数コム発光装置 |
JP7561349B2 (ja) | 2019-07-31 | 2024-10-04 | パナソニックIpマネジメント株式会社 | デュアル光周波数コム発光装置 |
CN111624169A (zh) * | 2020-06-03 | 2020-09-04 | 华东师范大学 | 基于外差探测的紫外双光梳吸收光谱测量的装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019123719A1 (ja) | 2020-10-22 |
JP7210025B2 (ja) | 2023-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6618152B2 (en) | Optical coherence tomography apparatus using optical-waveguide structure which reduces pulse width of low-coherence light | |
JP7405175B2 (ja) | 光測定用光源装置、分光測定装置及び分光測定方法 | |
US20080212091A1 (en) | Light source unit and spectrum analyzer | |
US6766078B1 (en) | Grating structure and optical devices | |
JP2020511634A (ja) | パルス群を放出するためのレーザ光源 | |
Rahnama et al. | Ultracompact Lens‐Less “Spectrometer in Fiber” Based on Chirped Filament‐Array Gratings | |
WO2019123719A1 (ja) | デュアル光周波数コム生成光学系、レーザー装置、計測装置 | |
JP2022519693A (ja) | 損失媒体を通した超短パルスレーザー通信のための方法及び装置 | |
JP7181613B2 (ja) | デュアル光周波数コム生成光学系、レーザー装置、計測装置 | |
US20120237162A1 (en) | Transverse mode filter for waveguides | |
EP2608327B1 (en) | System for generating a beat signal | |
JP2011106990A (ja) | 誘導ラマン分光ガス分析装置 | |
US20200006912A1 (en) | An optical plural-comb generator, a method of generating an optical plural comb, and a plurality of mode locked lasers that are mechanically coupled and optically independent | |
JP2004523764A (ja) | 高いスペクトル解像度を有している集積型分光器および特に高速通信と高速測定とのための集積型分光器ならびにその製造方法 | |
Jin et al. | A 16-element multiplexed heterodyning fiber grating laser sensor array | |
CN114088688B (zh) | 全光纤结构的自动准直后向cars探测系统及方法 | |
US9459403B2 (en) | Generation of azimuthally or radially polarized radiation in optical waveguides | |
CN112014927A (zh) | 波长选择滤光器 | |
JP2007121232A (ja) | 波長モニタ | |
US20040101240A1 (en) | Method to reduce birefringence and polarization mode dispersion in fiber gratings | |
CN117073731B (zh) | 基于长周期光纤光栅的光纤迈克尔逊干涉装置及制备方法 | |
Otto et al. | Flexible manufacturing method for long-period fibre gratings with arbitrary index modulation profiles | |
US20230333010A1 (en) | Light source apparatus | |
Tiess et al. | All-fiber time-delay spectrometer for simultaneous spectral and temporal laser pulse characterization in the nanosecond range | |
AU767482B2 (en) | Method of writing grating structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019508985 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18892476 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18892476 Country of ref document: EP Kind code of ref document: A1 |