WO2019123696A1 - Paddy field work machine - Google Patents

Paddy field work machine Download PDF

Info

Publication number
WO2019123696A1
WO2019123696A1 PCT/JP2018/024389 JP2018024389W WO2019123696A1 WO 2019123696 A1 WO2019123696 A1 WO 2019123696A1 JP 2018024389 W JP2018024389 W JP 2018024389W WO 2019123696 A1 WO2019123696 A1 WO 2019123696A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
power
work
traveling
transmitted
Prior art date
Application number
PCT/JP2018/024389
Other languages
French (fr)
Japanese (ja)
Inventor
福永究
米田達弘
安田真
國安恒寿
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017244958A external-priority patent/JP6943751B2/en
Priority claimed from JP2017247838A external-priority patent/JP7027158B2/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to CN201880079524.0A priority Critical patent/CN111465314A/en
Priority to KR1020207013196A priority patent/KR20200097686A/en
Publication of WO2019123696A1 publication Critical patent/WO2019123696A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/02Transplanting machines for seedlings
    • A01C11/025Transplanting machines using seedling trays; Devices for removing the seedlings from the trays
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/02Transplanting machines for seedlings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C7/00Sowing
    • A01C7/08Broadcast seeders; Seeders depositing seeds in rows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/02Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/06Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0246Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by initiating reverse gearshift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • B60Y2200/22Agricultural vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Definitions

  • the present invention relates to a paddy field work machine that supplies agricultural materials such as seedlings, seeds, fertilizers, drugs and the like to a dredger scene, such as a riding type rice planter and a riding type direct seeding machine.
  • Patent Document 1 Some riding type rice planters, which are an example of a paddy field work machine, have a configuration as disclosed in Patent Document 1.
  • the power of the engine (corresponding to the driving unit) is transmitted to the transmission, the power of the transmission is branched in parallel, and transmitted to the traveling wheels and the seedling planting device (corresponding to the work device). It is done.
  • the seedlings are planted in the weir scene by the seedling planting apparatus between the stocks (corresponding to the supply amount) set in advance along the traveling direction of the machine, and the transmission is operated to make the traveling speed of the machine Even if it changes, the power transmitted to the seedling planting device is also the power of the transmission, so the stock spacing by the seedling planting device is maintained at a constant interval.
  • the motive power of the transmission is transmitted to the seedling planting apparatus through the inter-train transmission, and by operating the inter-stock transmission, it is possible to set the desired spacing between the plants by the seedling planting apparatus.
  • the supply amount of seedlings supplied to the dredging scene is changed.
  • JP2014-070653A Japanese Patent Laid-Open Publication No. 2014-070653
  • the inter-train transmission is a transmission having a plurality of gear shift positions of a gear shift type.
  • a continuously variable transmission such as a hydrostatic continuously variable transmission may be provided instead of the gear shift transmission.
  • the power of the engine (corresponding to the drive unit) is transmitted to the transmission, and the power of the transmission is branched in parallel to the traveling transmission system and the work transmission system, and the traveling transmission system is used for traveling wheels.
  • the power of the work transmission system is transmitted to the work device through the continuously variable transmission such as the aforementioned hydrostatic stepless transmission. If such a configuration is adopted, the power of various speeds output by the continuously variable transmission is transmitted to the work device, and the supply amount of agricultural materials is finely and appropriately adapted to the condition of the paddy field or agricultural materials, etc. It will be possible to set it to
  • the transmission of the transmission works as the paddy work machine moves backward.
  • the output shaft rotates in the reverse rotation direction opposite to the forward rotation direction
  • power of the reverse rotation is transmitted not only to the traveling drive system but also to the work transmission system.
  • the planting arm of a seedling planting apparatus reversely rotates, a planting arm may fly away in the direction which is not intended.
  • An object of the present invention is to prevent agricultural materials from being skipped in an unintended direction even when the traveling direction of the vehicle is switched between forward and reverse in a paddy field work machine.
  • the inter-shaft transmission is a gear transmission, and power is directly transmitted to the work device not only in the forward rotation transmission state but also in the reverse rotation transmission state.
  • the working device is not equipped with a special control device, the amount of agricultural material supplied to the dredging scene is changed and set according to the condition of the field or agricultural material without any risk of damage to the working device. It is demanded to be able to do it.
  • the solution means corresponding to [Problem 1] is as follows.
  • the power output from the transmission is branched in parallel to the traveling transmission system and the work transmission system at the branching portion, and the power of the traveling transmission system is transmitted to the wheels for traveling, and the power of the work transmission system is absent.
  • a power adjustment mechanism capable of adjusting the power transmitted from the transmission to the work transmission system is provided on the work transmission system side with respect to the branch portion,
  • the power output from the transmission is the forward power for driving the traveling wheels forward by the operation of the power adjustment mechanism, the forward power is transmitted to the work device and output from the transmission
  • the paddy field work machine which does not transmit the said backward movement power to the said working apparatus, when the driving force is reverse movement power which makes the wheel for driving
  • the power of the work transmission system is transmitted to the work device through the continuously variable transmission. That is, power of various speeds output from the continuously variable transmission is transmitted to the work device.
  • the supply amount of agricultural materials can be set finely and appropriately according to the condition of the paddy field or agricultural materials, etc., and the working accuracy of the paddy field work machine can be improved.
  • the power of the transmission is branched in parallel to the traveling transmission system and the work transmission system at the branching portion, and the power of the traveling transmission system is transmitted to the wheels for traveling, and the power of the work transmission system is the work device (for example, a seedling
  • the work device for example, a seedling
  • the work device may be driven in the reverse direction, and the work device may perform an unintended work. For example, when the planting arm of the seedling planting device as the working device is reversely rotated, there is a possibility that the seedling may be blown in an unintended direction.
  • the power adjustment mechanism capable of adjusting the power transmitted from the transmission to the work transmission system on the work transmission system side of the branch part, the power adjustment mechanism operates to output power from the transmission
  • the power to be driven is forward power for driving the traveling wheels forward
  • the forward power is transmitted to the work device
  • the power output from the transmission is reverse power for driving the traveling wheels backward.
  • forward power can not be transmitted to the working device. That is, in the paddy field work machine, even if the traveling direction of the airframe is switched between forward and reverse, agricultural materials can be prevented from being skipped in unintended directions.
  • the continuously variable transmission is a hydrostatic continuously variable transmission including a hydraulic pump and a hydraulic motor
  • the power adjustment mechanism includes at least one of an actuator for adjusting an inclination angle of a pump swash plate of the hydraulic pump and an actuator for adjusting an inclination angle of a motor swash plate of the hydraulic motor.
  • the continuously variable transmission is a hydrostatic continuously variable transmission
  • the continuously variable transmission is a hydrostatic continuously variable transmission
  • a fine shift such as shifting the power output from the output unit to a slightly higher speed side or shifting to a slightly lower speed side can be performed without difficulty.
  • the inclination angle of at least one of the pump swash plate and the motor swash plate of the hydrostatic continuously variable transmission it is possible to realize the function of the power adjustment mechanism that does not transmit power to the working device.
  • the power adjustment mechanism is provided downstream of the branch portion and upstream of the continuously variable transmission, and forward movement of the output shaft of the transmission when the traveling wheels are forwardly rotated. It has a clutch configured to transmit a driving force to the continuously variable transmission and not to transmit a backward driving force of an output shaft of the transmission to rotate the traveling wheels backward. .
  • the clutch may be in one of a state in which the forward drive force of the output shaft of the transmission is transmitted to the continuously variable transmission and in a state in which the reverse drive force of the output shaft of the transmission is not transmitted to the continuously variable transmission.
  • the output shaft of the transmission and the input shaft of the continuously variable transmission are coaxially arranged.
  • the output shaft of the transmission and the continuously variable transmission are coaxially disposed by coaxially arranging the output shaft of the transmission and the input shaft of the continuously variable transmission to which the power output from the transmission is transmitted.
  • the effect of reducing the weight of the device, the effect of reducing the cost of the device, and the effect of facilitating the assembly of the device can be obtained.
  • the branch portion is provided in the middle of the output shaft of the transmission.
  • the transmission since the power output from the transmission is branched in parallel to the traveling transmission system and the work transmission system in the middle of the output shaft of the transmission, the transmission can transmit power to the traveling transmission system and the work transmission system.
  • the configuration to be transmitted is relatively simple.
  • the work device intermittently supplies the agricultural material to the dredger at feed intervals preset along the traveling direction of the vehicle.
  • the supply interval can be set finely and appropriately according to the condition of the dredging scene, agricultural materials, etc., and the working accuracy of the paddy field work machine can be improved.
  • the working device is provided with a sowing device for point-seeding a seed as an agricultural material on a weir scene at a supply interval previously set along the traveling direction of the airframe.
  • the working device is provided with a seedling planting device that supplies seedlings as agricultural material to a grazing scene at a supply interval set in advance along the traveling direction of the machine body.
  • the solution means corresponding to [Problem 2] is as follows.
  • the second transmission is provided with a check mechanism that allows the normal transmission power of the power of the work transmission system to be transmitted to the work device, and also has a check mechanism that suppresses the reverse power to be transmitted to the work device. Paddy working machine being operated.
  • the power of the work transmission system of the first transmission is transmitted to the work device through the second transmission, and by operating the second transmission, the shift operation of the second transmission is performed. It is possible to change and set the supply amount of agricultural materials to be supplied to the dredging scene within the range.
  • the second transmission outputs the reverse power. If it is changed to "1", there is a risk that the working device will not operate properly.
  • the second transmission is a hydrostatic stepless transmission.
  • the said check mechanism is comprised by the contact member which carries out contact check control that the shift arm which operates the trunnion axis
  • the second transmission is configured as a hydrostatic stepless transmission
  • the power of the work transmission system can be shifted steplessly.
  • the supply amount can be set finely and appropriately according to the condition of the dredging scene, agricultural materials, etc., and the working accuracy of the paddy field work machine can be improved.
  • the hydrostatic continuously variable transmission can steplessly shift not only the forward rotation power but also the reverse rotation power. Therefore, the transmission arm for operating the trunnion shaft is contact-restrained by the contact member so that the trunnion shaft is operated in the reverse operation area. By mechanically constraining in this manner, it can be reliably avoided that the reverse power is transmitted to the working device.
  • the contact member may be any member that restricts the gear shift arm and can be of a simple structure. Also, for example, when adopting a configuration in which the transmission arm is operated by the actuator, the reverse rotation power is obtained even if the actuator is operated excessively due to a factor such as a detection error of a sensor that detects the operation state of the trunnion axis. Can be reliably restrained from being transmitted to the working device.
  • a gearshift operating tool for changing and operating a gearshift state of the first transmission.
  • a control device is provided for switching the second transmission to a neutral state when the gearshift operating tool is operated to the reverse travel side.
  • the second shift operation is switched to the neutral state.
  • the shift operation tool is operated to the lowest speed position (position corresponding to the neutral state) in the operation area on the forward travel side
  • the shift operation tool is positioned at the neutral operation position
  • the lowest speed position position corresponding to the neutral state
  • the second transmission is switched to the neutral state based on the operation with high probability of being switched to the reverse transmission state before the shift operation tool is actually switched to the reverse transmission state, a slight time delay to the switching operation Even if there is a problem, it can be avoided that the reverse power is transmitted to the working device, and damage to the working device can be prevented.
  • the work device intermittently supplies the agricultural material to the dredger at feed intervals preset along the traveling direction of the vehicle.
  • the work device intermittently supplies the agricultural material to the dredging scene while leaving an interval as the airframe travels.
  • the supply amount is changed by changing and setting the interval at which the working device supplies the agricultural material.
  • the entire supply amount can be changed without changing the amount of agricultural materials to be supplied at one time, so the adjustment operation of the supply amount is unnecessary and the correspondence becomes easy.
  • the working device is provided with a seedling planting device that supplies seedlings as agricultural material to a grazing scene at a supply interval set in advance along the traveling direction of the machine body.
  • the working device is provided with a sowing device for point-seeding a seed as an agricultural material on a weir scene at a supply interval previously set along the traveling direction of the airframe.
  • a riding type rice transplanter is an example of a paddy field work machine that performs a planting operation in a field (paddy field).
  • the front-rear direction and the left-right direction are described as follows.
  • the forward traveling direction is "front”
  • the reverse traveling direction is "rear”.
  • the direction corresponding to the right side with respect to the forward posture in the front-rear direction is "right”
  • the direction corresponding to the left side is "left”.
  • the riding type rice transplanter has an airframe provided with right and left front wheels 1 (corresponding to traveling wheels) and right and left rear wheels 2 (corresponding to traveling wheels).
  • a hydraulic cylinder 4 for driving the link mechanism 3 and the link mechanism 3 up and down is provided at the rear of 11 and a seedling planting device 5 (corresponding to a work device) is supported at the rear of the link mechanism 3.
  • the seedling planting device 5 includes a planting transmission case 6 disposed at a predetermined interval in the left-right direction, a rotation case 7 rotatably supported at the rear right and left portions of the planting transmission case 6, and a rotation case 7 A pair of planting arms 8, a float 9, and a seedling platform 10, etc. are provided at both ends of the vehicle.
  • Right and left markers 12 are provided on the right and left lateral sides of the seedling planting device 5.
  • the marker 12 is changeable to an action posture (see FIG. 1) to be in contact with the field surface and a storage position away from the field surface, and the rotating body 12a is rotatably supported at the tip of the marker 12.
  • the action posture of the marker 12 the rotary body 12a of the marker 12 is in contact with the field, and as the airframe 11 travels, the rotary body 12a of the marker 12 forms an index on the field while rotating.
  • the fuselage 11 is provided with a driver's seat 13 and a steering handle 14 for steering the front wheel 1.
  • Right and left support frames 16 are provided on the right and left portions of the front of the fuselage 11, and a spare seedling platform 15 is supported on the support frame 16.
  • a support frame 17 is connected across the top of the right and left support frames 16.
  • a measuring device 18 is attached to a portion of the support frame 17 located at the left and right center CL of the airframe 11 in a plan view.
  • the measuring device 18 is provided with a receiving device (not shown) for acquiring position information by a satellite positioning system, and an inertial measurement device (not shown) for detecting the inclination (pitch angle, roll angle) of the airframe 11.
  • the measuring device 18 outputs positioning data indicating the position of the airframe 11.
  • an inertial measurement device 19 that measures inertial information is attached to a portion located on the left and right center CL of the vehicle body 11 in plan view.
  • the inertial measurement of the inertial measurement device 19 and the measurement device 18 is configured by an IMU (Inertial Measurement Unit).
  • GPS Global Positioning System
  • the GPS is a receiving device of the measuring device 18 using a plurality of GPS satellites orbiting the earth over the earth, a control station performing tracking and control of the GPS satellites, and a receiving device provided with an object (airframe 11) to be measured. It measures the position of
  • the inertial measurement device 19 includes a gyro sensor (not shown) capable of detecting the angular velocity of the yaw angle of the vehicle body 11, and an acceleration sensor (not shown) capable of detecting acceleration in three axial directions orthogonal to each other.
  • the inertial information measured by the inertial measurement device 19 includes direction change information detected by the gyro sensor and position change information detected by the acceleration sensor. Thereby, the position of the airframe 11 and the orientation of the airframe 11 are detected by the measuring device 18 and the inertia measuring device 19.
  • a front axle case 21 is supported at the front of the airframe 11 and is connected to the right and left lateral sides of the transmission case 20. Is supported.
  • a rear axle case 22 is supported at the rear of the fuselage 11, and the right and left rear wheels 2 are supported by the rear axle case 22.
  • an engine 23 (corresponding to a driving unit) is supported at the front of the transmission case 20.
  • a hydrostatic-type continuously variable transmission 24 (corresponding to a transmission) is connected to the left lateral side of the transmission case 20, and the power of the engine 23 is input to the continuously variable transmission 24 via the transmission belt 25. It is transmitted to the shaft 24a.
  • the continuously variable transmission 24 is configured to be continuously and continuously variable-changeable to a neutral position, forward and reverse sides, and operates the continuously variable transmission 24 by a shift lever 30 provided on the left side of the steering handle 14 Do.
  • a pump 26 is connected to the right lateral side of the transmission case 20, and the pump 26 supplies hydraulic oil to the hydraulic cylinder 4.
  • the input shaft 24 a of the continuously variable transmission 24 enters the transmission case 20, and the transmission shaft 27 is connected to the input shaft 26 a of the pump 26 and the input shaft 24 a of the continuously variable transmission 24.
  • the transmission shafts 28 and 29 are supported along the left-right direction inside the transmission case 20, and the output shaft 24b of the continuously variable transmission 24 is connected to the end of the transmission shaft 28.
  • a gear-change-type auxiliary transmission 31 is provided across the transmission shafts 28 and 29.
  • the auxiliary transmission 31 includes a low speed gear 32 and a high speed gear 33 connected to the transmission shaft 28, and a shift gear 34 fitted on the transmission shaft 29 integrally rotatably and slidably by a spline structure.
  • the shift gear 34 can be slide operated by an auxiliary shift lever (not shown) provided in the vicinity of the driver's seat 13.
  • the auxiliary transmission 31 when the shift gear 34 is engaged with the low speed gear 32, the power of the transmission shaft 28 is transmitted to the transmission shaft 29 at low speed, and when the shift gear 34 is engaged with the high speed gear 33, the power of the transmission shaft 28 is It is transmitted to the transmission shaft 29 at high speed.
  • the auxiliary transmission 31 When the planting work is performed in the paddy field, the auxiliary transmission 31 is operated at a low speed, and when traveling at high speed on a road or the like, the auxiliary transmission 31 is operated at a high speed.
  • the right and left front axles 35 for transmitting power to the right and left front wheels 1 are supported across the transmission case 20 and the front axle case 21, and between the right and left front axles 35, a front wheel differential device 36 are provided.
  • the transmission gear 37 connected to the transmission shaft 29 and the transmission gear 38 connected to the case 36 a of the front wheel differential device 36 are engaged with each other.
  • An output shaft 39 is supported at the rear of the transmission case 20 along the front-rear direction, and a bevel gear 40 connected to the case 36 a of the front wheel differential device 36 and a bevel gear 39 a formed at the front of the output shaft 39 I have an occlusion.
  • the transmission shaft 41 is connected to the rear of the output shaft 39 via a universal joint (not shown), and the rear of the transmission shaft 41 is a universal joint (not shown) , And is connected to an input shaft (not shown) of the rear axle case 22.
  • the power transmitted by the continuously variable transmission 24 is transmitted from the output shaft 24b of the continuously variable transmission 24 to the transmission shaft 28, the auxiliary transmission 31, the transmission shaft 29, the transmission gears 37 and 38, and the front wheel differential device. It is transmitted to the right and left front wheels 1 via 36 and the front axle 35.
  • the power transmitted to front wheel differential device 36 is transmitted to right and left rear wheels 2 via bevel gear 40, output shaft 39, transmission shaft 41, and a transmission shaft (not shown) inside rear axle case 22. Ru.
  • a multi-plate type brake 42 is externally fitted to the output shaft 39, and the pressing member 85 operates by stepping on the brake pedal 43 shown in FIG. 2 and the brake 42 pressed by the pressing member 85 is It can be operated in the braking state.
  • the output shaft 39 By braking the output shaft 39 with the brake 42, the front wheel 1 and the rear wheel 2 can be braked.
  • the output shaft 39 is rotatably held by a bearing 87.
  • the bearing 87 has an inner cylindrical portion 87a for holding the output shaft 39, and an outer cylindrical portion 87b positioned on the outer peripheral side of the inner cylindrical portion 87a via a plurality of balls.
  • a collar 88 is provided between the bearing 87 and the component on the pressing member 85 side.
  • the inner cylindrical portion 87a of the bearing 87 comes in contact with the parts on the pressing member 85 side via the collar 88, but the thickness of the collar 88 is between the outer cylindrical portion 87b of the bearing 87 and the parts on the pressing member 85 side.
  • the gap is formed by the length of
  • the diff lock member 44 is fitted on the left front axle 35 integrally rotatably and slidably by a key structure. By stepping on the diff lock pedal (not shown) provided on the lower side of the driver's seat 13, the diff lock member 44 is slide operated to engage the case 36a of the front wheel diff device 36, whereby the front wheel diff device 36 is It can be operated in the differential lock state.
  • the power of the continuously variable transmission 24 (transmission) is branched in parallel to the travel transmission system and the work transmission system, and the power of the travel transmission system is the front wheels 1 and the rear wheels 2 (wheels for travel) It will be transmitted to the
  • a hydrostatic continuously variable transmission 45 (corresponding to a continuously variable transmission) is connected to the right lateral side of the transmission case 20, and an input of the hydrostatic continuously variable transmission 45 is provided.
  • the shaft 45a and the transmission shaft 28 are connected.
  • the input shaft 45a of the hydrostatic stepless transmission 45 projects to the opposite side of the transmission case 20, and the fan 46 for sending the cooling air to the hydrostatic stepless transmission 45 is the same as that of the hydrostatic stepless transmission 45. It is connected to the projection of the input shaft 45a.
  • a transmission shaft 47 is connected to the output shaft 45 b of the hydrostatic continuously variable transmission 45.
  • the transmission shafts 48 and 49 are supported along the left-right direction in the transmission case 20, and the end of the transmission shaft 49 is supported so as to be relatively coaxial with the transmission shaft 47.
  • a speed reduction mechanism is provided downstream of the output shaft 45 b (output unit) of the hydrostatic continuously variable transmission 45.
  • the reduction gear mechanism is configured using the transmission gear 50 and the transmission gear 51.
  • a transmission gear 50 having two sets of gears is rotatably fitted on the outside of the transmission shaft 48.
  • the transmission gear 47a formed on the transmission shaft 47 and the large diameter gear portion 50a of the transmission gear 50 are engaged, and the transmission gear 51 connected to the transmission shaft 49 and the small diameter gear portion 50b of the transmission gear 50 are engaged.
  • the output of the hydrostatic continuously variable transmission 45 is set by appropriately setting the gear ratio of the transmission gear 47a and the large diameter gear portion 50a and the gear ratio of the small diameter gear portion 50b and the transmission gear 51.
  • the rotational speed of the shaft 45 b is reduced and transmitted to the transmission shaft 49.
  • the hydrostatic continuously variable transmission 45 If it is necessary to lower the rotational speed of the power output by the hydrostatic continuously variable transmission 45 in accordance with the low rotational speed, for example, if the rotational speed is low, for example, if the rotational speed is low.
  • the power of low torque and low speed rotation is output from the output shaft 45 b of the hydrostatic continuously variable transmission 45. In that case, if it is the power of low torque and low speed rotation to be transmitted to the seedling planting device 5, the driving resistance of the seedling planting device 5 may cause the driving of the seedling planting device 5 to stop. is there.
  • the reduction mechanism transmission gear 50 and transmission gear 51
  • the hydrostatic stepless transmission 45 is provided downstream of the output shaft 45b of the hydrostatic stepless transmission 45.
  • the rotational speed of the power output from the output shaft 45b of the vehicle is increased, the power of appropriate torque and rotational speed can be transmitted to the seedling planting device 5 after being decelerated by the reduction mechanism.
  • the traveling speed is low or the seedling planting device 5 Even when the rotation speed required in the above is low, power can be transmitted to the seedling planting device 5 reliably (the planting arm 8 can be reliably driven).
  • An unequal speed transmission 52 is provided downstream of the reduction mechanism (transmission gear 50 and transmission gear 51) to change the angular velocity of the output power relative to the input power.
  • the transmission case 48 is provided with a gear-shift-type unequal-speed transmission 52 in the inside of the transmission case 20, and the first bevel gear 53 is connected to the transmission shaft 48.
  • the output shaft 54 is supported along the longitudinal direction at the rear of the transmission case 20, and the second bevel gear 55 is externally fitted to the front of the output shaft 54 via the planting clutch 56, and the bevel gears 53 and 55 are engaged. ing.
  • the transmission shaft 48 (first shaft) supported in the transmission case 20, and the output shaft 54 (the second shaft) disposed downstream of the transmission shaft 48 in a direction intersecting the transmission shaft 48 in plan view Axis) is provided.
  • the bevel gears 53 and 55 have a first bevel gear 53 provided on the transmission shaft 48 and a second bevel gear 55 provided on the output shaft 54 and meshing with the first bevel gear 53.
  • the transmission case 20 is formed with an opening AP into which at least the upstream end of the output shaft 54 is inserted, and the diameter of the second bevel gear 55 is set smaller than the diameter of the opening AP.
  • the diameter of the second bevel gear 55 is set smaller than the opening AP formed in the transmission case 20, so that the second bevel gear 55 and the output shaft 54 can be used without damaging the transmission case 20. Can be taken out of the transmission case 20 through the opening AP.
  • bevel gears 53 and 55 for converting the power transmission direction are provided in the work transmission system, and the bevel gears 53 and 55 are provided separately from the reduction mechanism (transmission gear 50 and transmission gear 51). That is, since the bevel gears 53 and 55 do not need to perform shifting (acceleration and deceleration), the diameter of the bevel gears 53 and 55 can be prevented from increasing. Further, bevel gears 53 and 55 are provided on the downstream side of the hydrostatic continuously variable transmission 45 and the reduction mechanism (the transmission gear 50 and the transmission gear 51), and the power transmission direction is changed. That is, the mechanism in which the gear shift is performed by the hydrostatic continuously variable transmission 45 and the reduction mechanism (transmission gear 50 and transmission gear 51) and the mechanism in which the power transmission direction is converted by the bevel gears 53 and 55 may be divided. it can.
  • the transmission shaft 57 is connected to the rear of the output shaft 54 via a universal joint (not shown), and the rear of the transmission shaft 57 is a universal joint (not shown) , And is connected to the input shaft (not shown) of the seedling planting device 5.
  • the power shifted by the continuously variable transmission 24 is output from the output shaft 24 b of the continuously variable transmission 24 through the transmission shaft 28 and the input shaft 45 a of the hydrostatic continuously variable transmission 45. It is transmitted to the continuously variable transmission 45.
  • the power shifted by the hydrostatic stepless transmission 45 is transmitted from the output shaft 45b of the hydrostatic stepless transmission 45 to the transmission shaft 47 (transmission gear 47a), transmission gears 50, 51, transmission shaft 49, unequal It is transmitted to the seedling planting device 5 via the speed change gear 52, the transmission shaft 48, the bevel gears 53 and 55, the planting clutch 56, the output shaft 54, and the transmission shaft 57.
  • the planting clutch 56 transmits power transmission between the second bevel gear 55 and the output shaft 54, or interrupts transmission of power between the second bevel gear 55 and the output shaft 54. Can be switched.
  • FIG. 5 is a view for explaining a state in which power output from the transmission (stepless transmission 24) is transmitted to the traveling transmission system and the work transmission system.
  • the specific configuration of the continuously variable transmission 24 is not shown.
  • the command is transmitted to the control device 63. Then, based on the command, operation control of the continuously variable transmission 24 and the hydrostatic continuously variable transmission 45 is performed.
  • the control device 63 when the control device 63 receives the forward command issued by the shift lever 30, the output shaft 24b of the continuously variable transmission 24 rotates in the forward rotation direction and at a predetermined rotation speed. As described above, the tilt angle of the pump swash plate of, for example, the hydraulic pump of the continuously variable transmission 24 is adjusted by the actuator. On the other hand, when the control device 63 receives the reverse command issued by the shift lever 30, the output shaft 24b of the continuously variable transmission 24 rotates in the reverse direction to the reverse direction in the forward direction and in the reverse direction. The tilt angle of the pump swash plate of, for example, the hydraulic pump of the continuously variable transmission 24 is adjusted by the actuator so as to rotate at the rotational speed. The power output from the output shaft 24b of the continuously variable transmission 24 is transmitted to the traveling wheels (front wheel 1 and rear wheel 2) via the auxiliary transmission 31 and the like.
  • the branch transmission D at which the power output from the output shaft 24b of the continuously variable transmission 24 is branched in parallel to the traveling transmission system and the work transmission system is provided with the sub transmission 31. It is a site.
  • the power of the transmission shaft 28 is branched to the transmission shaft 29 (travel transmission system) by the auxiliary transmission 31, and the power of the transmission shaft 28 is the input shaft 45a of the hydrostatic stepless transmission 45 (work transmission system Is also transmitted to Since the output shaft 24b of the continuously variable transmission 24 and the transmission shaft 28 are coaxial and can be regarded as coaxial, the branch D is provided in the middle of the output shaft 24b of the continuously variable transmission 24.
  • the output shaft 24b of the continuously variable transmission 24 and the input shaft 45a of the hydrostatic continuously variable transmission 45 are arranged coaxially (coaxially). Since the output shaft 24 b of the continuously variable transmission 24 and the input shaft 45 a of the hydrostatic continuously variable transmission 45 to which the power output from the continuously variable transmission 24 is transmitted are coaxially arranged, The output shaft 24b of the transmission 24 and the input shaft 45a of the hydrostatic stepless transmission 45 need not be connected using, for example, gears. As a result, by reducing the number of parts, the effect of reducing the weight of the device, the effect of reducing the cost of the device, and the effect of facilitating the assembly of the device can be obtained.
  • the hydrostatic stepless transmission 45 includes a hydraulic pump 80 and a hydraulic motor 82.
  • the hydraulic pump 80 is provided with a pump swash plate 81
  • the hydraulic motor 82 is provided with a motor swash plate 83.
  • the inclination angle of the pump swash plate 81 of the hydraulic pump 80 can be adjusted by the actuator 67, and the inclination angle of the motor swash plate 83 is fixed.
  • the control device 63 controls the operation of the actuator 67 (that is, adjusts the inclination angle of the pump swash plate 81), whereby the rotational speed of the input shaft 45a in the hydrostatic continuously variable transmission device 45 produces the output shaft 45b.
  • a shift to the rotational speed of the the power output from the output shaft 45 b of the hydrostatic continuously variable transmission 45 is transmitted to the seedling planting device 5 via the transmission shaft 47 and the like.
  • the operator sets (selects) one of a plurality of set stocks by the setting unit (not shown). Then, when the planting work is started in a state where one stock is set by the setting unit, the control device 63 outputs an operation signal corresponding to the set stock, and the hydrostatic stepless is output according to the operation signal. A shift operation by the transmission 45 is performed.
  • the planting clutch 56 When the planting clutch 56 is operated to the power transmission state, power is transmitted to the seedling planting device 5, and the seedling planting device 5 is operated.
  • the rotary case 7 When the seedling planting device 5 is operated, the rotary case 7 is rotationally driven counterclockwise in the plane of FIG. 1 as the seedling platform 10 is driven to reciprocate laterally to the left and right, and two sets of planting arms 8 takes out seedlings (corresponding to agricultural materials) alternately from the lower part of the seedling platform 10 and plant it on the field as a mochi scene.
  • the seedlings are intermittently planted and supplied on the field in the supply amount set in advance, that is, between the set stocks (corresponding to the supply interval).
  • the planting clutch 56 When the planting clutch 56 is operated in the shutoff state, the power to the seedling planting device 5 is shut off, the seedling planting device 5 is stopped, and the seedling platform 10 and the rotation case 7 are stopped.
  • the power of the continuously variable transmission 24 (transmission) is branched in parallel to the traveling transmission system and the work transmission system, and the power of the work transmission system is the hydrostatic continuously variable transmission 45 and the unequal speed.
  • the transmission 52 is in a state of being transmitted to the seedling planting device 5 (working device).
  • the output shaft 24b of the continuously variable transmission 24 rotates in the reverse rotation direction, which is opposite to the forward rotation direction. Therefore, when power to rotate in the rotational direction at the time of backward travel is transmitted to the work transmission system, the seedling planting device 5 is also driven in the reverse direction, and for example, the planting arm 8 of the seedling planting device 5 Reverse rotation may cause the seedlings to fly in unintended directions.
  • the paddy field work machine is provided with a power adjustment mechanism capable of adjusting the power transmitted from the continuously variable transmission 24 to the work transmission system on the work transmission system side with respect to the branch portion D.
  • the power adjustment mechanism is realized using an actuator 67 that adjusts the inclination angle of the pump swash plate 81 that the hydraulic pump 80 has. That is, by adjusting the inclination angle of the pump swash plate 81 of the hydrostatic continuously variable transmission 45, the function of the power adjustment mechanism that does not transmit power from the hydrostatic continuously variable transmission 45 to the seedling planting device 5 is realizable.
  • the control device 63 operates by the above-mentioned power adjustment mechanism.
  • the forward power is transmitted to the seedling planting device 5 and the power output from the continuously variable transmission 24 is a reverse power to drive the traveling wheels (front wheel 1 and rear wheel 2) backward, the above power
  • the adjustment mechanism it is possible to transmit no advancing power to the seedling planting device 5 thereafter. That is, in the paddy field work machine, even if the traveling direction of the airframe 11 is switched between forward and reverse, agricultural materials such as seedlings can be prevented from being skipped in unintended directions.
  • the output shaft 45b of the hydrostatic stepless transmission 45 rotates in the forward rotation direction and at a predetermined rotation speed.
  • the inclination angle of the pump swash plate 81 of the hydraulic pump 80 of the hydrostatic continuously variable transmission 45 is adjusted by the actuator 67 as follows.
  • the output shaft 45b of the hydrostatic stepless transmission 45 does not rotate or only a very small torque is applied.
  • the inclination angle of the pump swash plate 81 of the hydraulic pump 80 of the continuously variable transmission 45 is adjusted by the actuator 67.
  • the unequal speed transmission 52 includes a constant speed gear 58 and an unequal speed gear 59 connected to the transmission shaft 49, and a constant speed gear 60 externally fitted to the transmission shaft 48 in a relatively rotatable manner.
  • the inconstant speed gear 61 is provided, and the constant speed gears 58 and 60 are engaged, and the inconstant speed gears 59 and 61 are engaged.
  • a key-like speed changing member 62 is slidably supported inside the transmission shaft 48, and the speed changing member 62 is slidably operated to be engaged with one of the constant speed gear 60 and the unequal speed gear 61.
  • the constant velocity gear 60 and the inconstant velocity gear 61 with the transmission member 62 engaged can be connected to the transmission shaft 48.
  • the constant velocity gears 58 and 60 are circular gears and have the same diameter. Thus, when the transmission member 62 is engaged with the constant velocity gear 60, the power of one rotation of the transmission shaft 49 is transmitted to the transmission shaft 48 as the power of one rotation at the constant velocity state of the angular velocity.
  • the nonuniform gears 59, 61 are elliptical gears, eccentric gears or non-circular gears.
  • the inconstant speed gears 59 and 61 are eccentric gears, a plurality of dislocations of the gear teeth are set in one eccentric gear, and the dislocations are set to be different depending on the gear teeth. As a result, it is possible to reduce the variation in backlash of the inconstant speed gears 59 and 61, and the transmission of power by the inconstant speed gears 59 and 61 can be made smooth.
  • the rotational speed of the transmission shaft 48 corresponding to the output portion of the unequal speed transmission 52 is the same as the rotational speeds of the output shaft 54 and the transmission shaft 57 transmitted to the seedling planting device 5.
  • the rotational speed of the transmission shaft 48 does not change while being transmitted to the seedling planting device 5 via the bevel gears 53 and 55, the planting clutch 56, the output shaft 54, and the transmission shaft 57.
  • This is an effect obtained by installing the inconstant speed transmission 52 downstream of the speed reduction mechanism (the transmission gear 50 and the transmission gear 51) and not performing the gear shift downstream of the inconstant speed transmission 52. .
  • the state is transmitted to the transmission shaft 57 and the seedling planting device 5 as it is.
  • the operation speed of the planting arm 8 of the seedling planting device 5 at the moment when the seedling is supplied to the field can be set to an appropriate value.
  • the planting clutch 56 can shift from the disconnection state to the transmission state only once, that is, once at 360 °, while the second bevel gear 55 and the output shaft 54 make one relative rotation.
  • the output shaft 54 is provided with one claw portion
  • the member provided with the second bevel gear 55 is provided with one hollow portion. Then, while the second bevel gear 55 and the output shaft 54 rotate relative to each other relative to each other, the claws of the output shaft 54 may be fitted into one recessed portion in the member provided with the second bevel gear 55 only once. It is in such a positional relationship that it can shift to the power transmission state.
  • the planting clutch 56 is in the transmission state.
  • the timing at which the angular velocity changes to high and low among the one rotation on the transmission shaft 48 by the unequal speed transmission 52 and the timing (velocity distribution) at which the angular velocity changes to high and low among one rotation of the planting arm 8 It can be synchronized.
  • the rotational speed of the shaft is constant between the transmission shaft 48 corresponding to the output portion of the inconstant speed transmission 52 and the seedling planting device 5 (for example, the rotation cycle of the transmission shaft 48 and planting)
  • the rotation cycle of the arm 8 is the same), and the rotational phase of the shaft is also constant.
  • the paddy field work machine of the second embodiment differs from the first embodiment in the configuration of the power adjustment mechanism. Although the paddy field work machine of a 2nd embodiment is explained below, explanation is omitted about the same composition as the above-mentioned embodiment.
  • FIG. 6 is a diagram for explaining a state in which the power output from the transmission (stepless transmission 24) is transmitted to the traveling transmission system and the work transmission system.
  • the specific configuration of the continuously variable transmission 24 is not shown.
  • the command is transmitted to the control device 63.
  • the continuously variable transmission 24 is rotated such that the output shaft 24b of the continuously variable transmission 24 rotates in the forward rotation direction at a predetermined rotation speed. For example, the inclination angle of the pump swash plate of the hydraulic pump 24 is adjusted by the actuator.
  • the control device 63 receives the reverse command issued by the shift lever 30, the output shaft 24b of the continuously variable transmission 24 rotates in the reverse direction to the reverse direction in the forward direction and in the reverse direction.
  • the tilt angle of the pump swash plate of, for example, the hydraulic pump of the continuously variable transmission 24 is adjusted by the actuator so as to rotate at the rotational speed.
  • the hydrostatic stepless transmission is provided in the middle of the transmission shaft 28 coaxially (coaxially) with the output shaft 24b of the continuously variable transmission 24, that is, downstream of the branch portion D.
  • the forward drive force of the output shaft 24b of the continuously variable transmission 24 is transmitted to the hydrostatic stepless transmission 45 upstream of 45 for forward rotation of the traveling wheels (front wheel 1, rear wheel 2),
  • a clutch 84 configured not to transmit the reverse drive force of the output shaft 24b of the continuously variable transmission 24 in the case of rotating the traveling wheels (front wheel 1, rear wheel 2) backwardly to the hydrostatic stepless transmission 45. Is provided as a power adjustment mechanism.
  • the clutch 84 provided on the transmission shaft 28 can be realized using a one-way clutch. That is, when the clutch 84 is a one-way clutch, when the output shaft 24b of the continuously variable transmission 24 is rotating in the forward rotation direction, the rotation is transmitted to the input shaft 45a of the hydrostatic continuously variable transmission 45 If the output shaft 24b of the continuously variable transmission 24 rotates in the reverse rotation direction opposite to the forward rotation direction, the rotation is transmitted to the input shaft 45a of the hydrostatic continuously variable transmission 45. I will not.
  • the paddy field work machine is a riding type rice transplanter that carries out the planting work in a field (paddy field), but the paddy field working machine may be a riding direct type seeding machine.
  • the example provided with the seedling planting apparatus 5 which supplies a seedling as an agricultural material to a grazing scene was demonstrated as a working apparatus at the supply interval preset along the running direction of the fuselage 11,
  • the work device may be another device.
  • the work device may be a sowing device that seeds seeds as agricultural materials at a feed interval set in advance along the traveling direction of the fuselage 11 in a weir scene.
  • the continuously variable transmission 24 is provided on the right side of the transmission case 20
  • the hydrostatic stepless transmission 45 is provided on the left side of the transmission case 20. Good.
  • a transmission (not shown) having a plurality of gear shift positions may be provided.
  • a belt continuously variable type continuously variable transmission 45 may be provided.
  • the transmission shafts 28, 29, 47, 48, 49, etc. may be arranged not in the lateral direction but in the longitudinal direction.
  • an electric motor (not shown) may be used as a driving unit.
  • the power adjustment mechanism is realized using the actuator 67 for adjusting the inclination angle of the pump swash plate 81 of the hydraulic pump 80.
  • the function can also be realized by another device.
  • the power adjustment mechanism includes at least one of an actuator for adjusting the inclination angle of a pump swash plate of a hydraulic pump of the hydrostatic continuously variable transmission 45 and an actuator for adjusting the inclination angle of a motor swash plate of a hydraulic motor.
  • an actuator may be provided to adjust the inclination angle of the motor swash plate 83, and the power adjustment mechanism may be realized by the actuator.
  • an actuator for adjusting the inclination angle of the motor swash plate 83 is provided, and the power adjustment mechanism It may be realized.
  • the clutch 84 may be a clutch of the other structure which can switch the state which transmits motive power, and the state which does not transmit.
  • a friction clutch or a claw clutch may be employed as the clutch 84.
  • the controller 63 responds to the forward command to drive the forward drive force of the output shaft 24b of the continuously variable transmission 24 into the hydrostatic stepless transmission.
  • the control device 63 responds to the reverse command to output the output shaft 24b of the continuously variable transmission 24.
  • the clutch 84 may be operated in the disengaged state so as not to transmit the reverse drive force of the above to the hydrostatic continuously variable transmission 45.
  • the riding type rice transplanter is an example of a paddy work machine.
  • the front-rear direction and the left-right direction are described as follows.
  • the traveling direction on the forward side during traveling of the traveling vehicle body 111 (corresponding to the vehicle) is "front”, and the traveling direction on the reverse side is “rear”.
  • the direction corresponding to the right side with respect to the forward posture in the front-rear direction is "right", and the direction corresponding to the left side is "left”. That is, the direction shown by the code (F) in FIGS. 7 and 8 is the machine front side, and the direction shown by the code (B) in FIGS. 7 and 8 is the machine rear side.
  • the direction indicated by the symbol (L) in FIG. 8 is the left side of the machine, and the direction indicated by the symbol (R) in FIG. 8 is the right side of the machine.
  • the riding type rice transplanter is equipped with a right and left front wheel 101 (corresponding to a traveling wheel) and a right and left rear wheel 102 (corresponding to a traveling wheel).
  • a link mechanism 103 and a hydraulic cylinder 104 for driving the link mechanism 103 up and down are provided at the rear of the machine body 111, and a seedling planting device 105 (corresponding to a work device) is supported at the rear of the link mechanism 103.
  • the seedling planting apparatus 105 includes a planting transmission case 106 disposed at a predetermined interval in the left-right direction, a rotation case 107 rotatably supported at the rear right and left portions of the planting transmission case 106, and a rotation case 107
  • a pair of planting arms 108, a float 109, and a seedling platform 110 are provided at both ends of the
  • Right and left markers 112 are provided on the right and left lateral sides of the seedling planting device 105.
  • the marker 112 is changeable to a working posture (refer to FIG. 7) to be in contact with the crawling scene G and a storage posture away from the crawling scene G, and the rotating body 112a is rotatably supported by the tip of the marker 112 ing.
  • the rotating body 112a of the marker 112 is in contact with the overhead scene G, and the rotating body 112a of the marker 112 forms an index in the overhead scene G while rotating as the traveling vehicle body 111 travels. .
  • the traveling vehicle body 111 is provided with a driver's seat 113 and a steering handle 114 for steering the front wheel 101.
  • Right and left vertical support frames 116 are provided on the right and left portions of the front of the traveling vehicle body 111, and a backup seedling platform 115 is supported on the vertical support frames 116.
  • Horizontally oriented support frames 117 are connected across the top of the right and left vertically oriented support frames 116.
  • a position measurement device 118 is attached to a portion of the laterally oriented support frame 117 located at the left and right center CL of the traveling vehicle body 111 in a plan view.
  • the position measurement device 118 includes a reception device (not shown) for acquiring position information by a satellite positioning system, and an inertial measurement device (not shown) for detecting the inclination (pitch angle, roll angle) of the traveling vehicle body 111.
  • the position measurement device 118 outputs positioning data indicating the position of the traveling vehicle body 111.
  • an inertial measurement device 119 for measuring inertial information is attached to a portion located in the left and right center CL of the traveling vehicle body 111 in plan view.
  • the inertial measurement of the inertial measurement device 119 and the position measurement device 118 is configured by an IMU (Inertial Measurement Unit).
  • GPS Global Positioning System
  • the GPS uses a plurality of GPS satellites orbiting the earth, a control station that performs tracking and control of the GPS satellites, and a receiver that is provided with an object to be measured (traveling vehicle body 111). It measures the position of the receiving device.
  • the inertial measurement device 119 includes a gyro sensor (not shown) capable of detecting the angular velocity of the yaw angle of the traveling vehicle body 111, and an acceleration sensor (not shown) capable of detecting acceleration in three axial directions orthogonal to each other. .
  • the inertial information measured by the inertial measurement device 119 includes orientation change information detected by the gyro sensor and position change information detected by the acceleration sensor. As a result, the position measurement device 118 and the inertia measurement device 119 detect the position of the traveling body 111 and the orientation of the traveling body 111.
  • a transmission case 120 is supported at the front of the traveling vehicle body 111, and right and left front wheels 101 are supported by a front axle case 121 connected to the right and left lateral sides of the transmission case 120.
  • a rear axle case 122 is supported at the rear of the traveling airframe 111, and the right and left rear wheels 102 are supported by the rear axle case 122.
  • an engine 123 (corresponding to a driving unit) is supported.
  • a first transmission 124 composed of a hydrostatic stepless transmission is connected to the left lateral side of the transmission case 120, and the power of the engine 123 is input to the first transmission 124 via the transmission belt 125. It is transmitted to the shaft 124a.
  • the first transmission 124 is configured to be continuously steplessly variable on the neutral position, forward and reverse sides, and is provided on the left lateral side of the steering handle 114 (equivalent to a shift operation tool) Thus, the first transmission 124 is operated.
  • the first transmission 124 integrally accommodates the axial plunger type hydraulic pump 124P and the axial plunger type hydraulic motor 124M in a casing 124C. It is comprised by the hydrostatic continuously variable transmission of a well-known structure.
  • a main transmission lever 130 and a transmission arm 124d for operating a trunnion shaft 124c for operating the swash plate of the hydraulic pump 124P are interlocked and linked by a linkage mechanism 130R.
  • a linkage mechanism 130R By changing the inclination of the swash plate of the hydraulic pump 124P by operating the main shift lever 130, it is possible to steplessly shift the rotational power.
  • the main shift lever 130 can be rocked in the front-rear direction, and a forward operation area is set on the front side from the neutral position N of the front and rear intermediate portion, and a reverse operation area on the rear side from the neutral position N Is set.
  • the forward travel speed is increased as the main shift lever 130 is pivoted forward from the neutral position N in the forward operation area.
  • the reverse travel speed is increased.
  • the forward operation area and the reverse operation area are shifted in the left-right direction, and the main shift lever 130 can be shifted in the left-right direction between the forward neutral position and the reverse neutral position at the neutral position N. Therefore, it is not possible to swing from the forward operation type to the reverse operation area at once.
  • a hydraulic pump 126 is connected to the right lateral side of the transmission case 120, and the hydraulic pump 126 supplies hydraulic oil to hydraulic cylinders 104 and the like.
  • the input shaft 124 a of the first transmission 124 enters the transmission case 120, and the transmission shaft 127 is connected to the input shaft 126 a of the hydraulic pump 126 and the input shaft 124 a of the first transmission 124.
  • the transmission shaft 128 (corresponding to a branch) and the transmission shaft 129 are supported along the left-right direction in the transmission case 120, and the output shaft 124b of the first transmission 124 is connected to the end of the transmission shaft 128 There is.
  • a gear-change-type auxiliary transmission 131 is provided across the transmission shafts 128 and 129.
  • the auxiliary transmission 131 includes a low speed gear 132 and a high speed gear 133 connected to the transmission shaft 128, and a shift gear 134 externally fitted integrally rotatably and slidably with the transmission shaft 129 by a spline structure.
  • the shift gear 134 can be slid by an auxiliary shift lever (not shown) provided near the driver's seat 113.
  • the auxiliary transmission 131 when the shift gear 134 is engaged with the low speed gear 132, the power of the transmission shaft 128 is transmitted to the transmission shaft 129 at low speed, and when the shift gear 134 is engaged with the high speed gear 133, the power of the transmission shaft 128 is transmitted. It is transmitted to the transmission shaft 129 at high speed.
  • the auxiliary transmission 131 When the planting work is performed in the paddy field, the auxiliary transmission 131 is operated at a low speed, and when traveling at a high speed on a road or the like, the auxiliary transmission 131 is operated at a high speed.
  • the transmission gear 137 connected to the transmission shaft 129 and the transmission gear 138 connected to the case 136 a of the front wheel differential gear 136 are engaged with each other.
  • An output shaft 139 is supported at the rear of the transmission case 120 along the front-rear direction, and a bevel gear 140 connected to the case 136 a of the front wheel differential device 136 and a bevel gear 139 a formed at the front of the output shaft 139 I have an occlusion.
  • the transmission shaft 141 is connected to the rear of the output shaft 139 via a universal joint (not shown), and the rear of the transmission shaft 141 is via the universal joint (not shown) , And an input shaft (not shown) of the rear axle case 122.
  • the power transmitted by the first transmission 124 is transmitted from the output shaft 124b of the first transmission 124 to the transmission shaft 128, the auxiliary transmission 131, the transmission shaft 129, the transmission gears 137 and 138, and the front wheel differential device. It is transmitted to the right and left front wheels 101 via 136 and the front axle 135.
  • the power transmitted to front wheel differential gear 136 is transmitted to right and left rear wheels 102 via bevel gear 140, output shaft 139, transmission shaft 141, and a transmission shaft (not shown) inside rear axle case 122. Ru.
  • the multi-plate type brake 142 is externally fitted to the output shaft 139, and the brake 142 can be operated to the braking state by stepping on the brake pedal 143 shown in FIG.
  • the front wheel 101 and the rear wheel 102 can be braked by braking the output shaft 139 with the brake 142.
  • a diff lock member 144 is externally rotatably and slidably fitted on the left front axle 135 by a key structure. By stepping on the diff lock pedal (not shown) provided on the lower side of the driver's seat 113, the diff lock member 144 is slide operated to engage the case 136a of the front wheel diff device 136, whereby the front wheel diff device 136 It can be operated in the differential lock state.
  • the power of the first transmission 124 is branched in parallel to the travel transmission system and the work transmission system at the transmission shaft 128, and the power of the travel transmission system passes through the auxiliary transmission 131 to the front wheels 101 and It is in a state of being transmitted to the rear wheel 102 (wheel for traveling).
  • the transmission shaft 128 constitutes a branch.
  • the right transmission side of the transmission case 120 is connected to a second transmission 145 which is a hydrostatic stepless transmission.
  • the second transmission 145 is well known in which an axial plunger type hydraulic pump 145P and an axial plunger type hydraulic motor 145M are integrally housed in a casing 145C. It is constituted by a hydrostatic continuously variable transmission of structure. By changing the inclination of a swash plate (not shown) provided in the hydraulic pump 145P, it is possible to steplessly change the rotational power.
  • the input shaft 145a of the second transmission 145 and the transmission shaft 128 are connected.
  • the input shaft 145a of the second transmission 145 protrudes to the opposite side of the transmission case 120, and the exhaust heat fan 146 for sending the cooling air to the second transmission 145 projects the input shaft 145a of the second transmission 145 It is connected to the department. That is, the fan 146 is provided to rotate integrally with the hydraulic pump 145P.
  • the transmission shaft 147 is connected to the output shaft 145 b of the second transmission 145.
  • the transmission shafts 148 and 149 are supported in the left-right direction inside the transmission case 120, and the end of the transmission shaft 149 is relatively rotatably supported coaxially with the transmission shaft 147.
  • a transmission gear 150 having two sets of gears is rotatably fitted on the outside of the transmission shaft 148.
  • the transmission gear 147a formed on the transmission shaft 147 is engaged with the large diameter gear portion of the transmission gear 150, and the transmission gear 151 connected to the transmission shaft 149 is engaged with the small diameter gear portion of the transmission gear 150. .
  • a gear-shift-type unequal speed transmission 152 is provided across the transmission shafts 148 and 149, and a bevel gear 153 is connected to the transmission shaft 148.
  • the output shaft 154 is supported along the longitudinal direction at the rear of the transmission case 120, and the bevel gear 155 is externally fitted to the front of the output shaft 154 via the planting clutch 156, and the bevel gears 153 and 155 are engaged. .
  • the transmission shaft 157 is connected to the rear of the output shaft 154 via a universal joint (not shown), and the rear of the transmission shaft 157 is via a universal joint (not shown) , And an input shaft (not shown) of the seedling planting apparatus 105.
  • the power transmitted by the first transmission 124 is transmitted from the output shaft 124 b of the first transmission 124 to the second transmission 145 via the transmission shaft 128 and the input shaft 145 a of the second transmission 145. Transmitted to
  • the power transmitted by the second transmission 145 is transmitted from the output shaft 145b of the second transmission 145 to the transmission shaft 147 (transmission gear 147a), transmission gears 150 and 151, transmission shaft 149, unequal speed transmission 152, transmission
  • the power is transmitted to the seedling planting device 105 via the shaft 148, bevel gears 153 and 155, the planting clutch 156, the output shaft 154, and the transmission shaft 157.
  • the planting clutch 156 When the planting clutch 156 is operated in the transmission state, power is transmitted to the seedling planting device 105, and the seedling planting device 105 is operated.
  • the seedling planting device 105 When the seedling planting device 105 is operated, as shown in FIG. 11, as the seedling platform 110 is driven to reciprocate laterally to the left and right, the rotating case 107 is rotationally driven counterclockwise in FIG. A set of planting arms 108 alternately take out the seedlings A (corresponding to agricultural materials) from the lower part of the seedling platform 110 and plant them on the weir scene G.
  • the seedlings A are intermittently planted in the drought scene G along the set direction L1 (corresponding to the supply interval) set in advance along the traveling direction F1 of the traveling machine body 111.
  • the planting clutch 156 When the planting clutch 156 is operated in the shutoff state, the power to the seedling planting device 105 is shut off, the seedling planting device 105 is stopped, and the seedling platform 110 and the rotation case 107 are stopped.
  • the power of the first transmission 124 (transmission) is branched in parallel to the traveling transmission system and the work transmission system, and the power of the work transmission system is the second transmission 145 and the unequal speed transmission 152 Of the seedling planting device 105 (working device).
  • the unequal speed transmission 152 has an equal speed gear 158 connected to the transmission shaft 149, three unequal speed gears 159, and an equal speed externally fitted to the transmission shaft 148 so as to be relatively rotatable.
  • the gear 160 and the three unequal-speed gears 161 are provided, the constant-velocity gears 158 and 160 are engaged, and the three unequal-speed gears 159 and 161 are engaged with each other.
  • a key-like speed changing member 162 is slidably supported inside the transmission shaft 148, and the speed changing member 162 is slid to engage with the constant speed gear 160 and one of the three unequal speed gears 161.
  • the transmission member 148 By coupling the transmission member 148, any one of the constant velocity gear 160 and the three unequal velocity gears 161 engaged with the transmission member 162 can be connected to the transmission shaft 148.
  • the constant velocity gears 158 and 160 are circular gears and have the same diameter. Thus, when the transmission member 162 is engaged with the constant velocity gear 160, the power of one rotation of the transmission shaft 149 is transmitted to the transmission shaft 148 as the power of one rotation at the constant velocity state of the angular velocity.
  • the unequal speed gears 159 and 161 are an elliptical gear, an eccentric gear or a non-circular gear.
  • the unequal speed gears 159 and 161 are eccentric gears, a plurality of dislocations of gear teeth are set in one eccentric gear, and the dislocations are set to be different depending on the gear teeth. As a result, it is possible to reduce the variation in backlash of the inconstant speed gears 159 and 161, and the power transmission by the inconstant speed gears 159 and 161 can be made smooth.
  • the traveling body 111 is provided with a control device 163.
  • a setting unit 164 for setting the set stock L1 is provided in the vicinity of the driver's seat 113 or the steering handle 114, and an operation signal of the setting unit 164 is input to the control device 163.
  • the setting unit 164 is a type of operation lever operated by the operator artificially, and the operator arbitrarily sets (selects) the set interval L1 steplessly between the maximum interval L11 and the minimum interval L12. Can.
  • the gear toothed rotary body 149a is connected to the transmission shaft 149 so as to rotate integrally.
  • a work rotation speed detection unit 165 of a pickup sensor type is provided for the rotating body 149 a, and a detection value of the work rotation speed detection unit 165 is input to the control device 163.
  • the transmission system (transmission shaft 149) between the second transmission 145 and the unequal speed transmission 152
  • the number of revolutions is detected by the work revolution number detection unit 165 as the number of revolutions of the power from the second transmission 145, and is input to the control device 163.
  • a gear toothed rotor 128 a is connected to the transmission shaft 128 so as to rotate integrally with the transmission shaft 128.
  • a traveling rotation speed detection unit 166 of a pickup sensor type is provided for the rotating body 128 a of the transmission shaft 128, and a detection value of the traveling rotation speed detection unit 166 is input to the control device 163.
  • the traveling rotation speed detection unit 166 that detects the number of rotations of the transmission system between the traveling transmission system and the branch portion (transmission shaft 128) of the operation transmission system and the auxiliary transmission 131. Is in the state of being prepared.
  • a drive mechanism 167 which operates the second transmission 145 by changing the angle of a swash plate (not shown) of the hydraulic pump 145P in the second transmission 145.
  • the operation signal is output to the drive mechanism 167 from the
  • the second transmission 145 is provided with a shift arm 145 d for operating a trunnion shaft 145 c for swash plate operation.
  • the drive mechanism 167 is provided with an electric motor 167A with a reduction gear, a drive arm 167B pivoted by the electric motor 167A, and a rod 167C pivotally connecting the drive arm 167B and the transmission arm 145d.
  • the transmission arm 145d swings by being pushed and pulled by the rod 167C, and a shift operation is performed.
  • a potentiometer type detection sensor for detecting the swing operation position of the drive arm 167 B is provided, and the detection value of the detection sensor is input to the control device 163.
  • the control unit 163 includes a slip ratio detection unit 168, a control unit 169, a timer 170, a first travel distance detection unit 171, a second travel distance detection unit 172, and a supply interval detection unit 173 as software.
  • the timer 170 detects a first time point and a second time point after the set time has elapsed from the first time point. From the first time point to the second time point, based on the detection of the position of the traveling vehicle body 111 and the orientation of the traveling vehicle body 111 by the position measurement device 118 and the inertia measurement device 119, the first traveling distance detection unit 171 actually performs the traveling vehicle body 111 Travel distance is detected. In this case, the detection value of the first traveling distance detection unit 171 includes the slip of the front wheel 101 and the rear wheel 102.
  • the second traveling distance detection unit 172 is determined by the outer diameters of the front wheel 101 and the rear wheel 102 and the detection value of the traveling rotation speed detection unit 166 (rotation speed of the front wheel 101 and the rear wheel 102).
  • the traveling distance of the traveling vehicle body 111 is detected (calculated).
  • the front wheel 101 and the rear wheel 102 do not include slips in the detection value of the second traveling distance detection unit 172.
  • the slip ratio detection unit 168 compares the detection value of the first travel distance detection unit 171 with the detection value of the second travel distance detection unit 172.
  • the detection value of the first travel distance detection unit 171 is smaller than the detection value of the second travel distance detection unit 172, and the first travel distance detection unit
  • the difference between the detection values of the second travel distance detection unit 172 and the second travel distance detection unit 172 increases, it can be determined that more slippage of the front wheel 101 and the rear wheel 102 is generated.
  • the slip ratio detection unit 168 detects the slip ratios of the front wheel 101 and the rear wheel 102.
  • the slip ratio of the front wheel 101 and the rear wheel 102 from the first time point to the second time point is detected, the slip ratio of the front wheel 101 and the rear wheel 102 from the second time point to the next third time point when the set time has elapsed
  • the detection of the slip ratio of the front wheel 101 and the rear wheel 102 is continuously repeated.
  • the shift position of the second transmission 145 is uniquely determined, and the second transmission 145 is set to the shift position corresponding to the set stock interval L1. Is operated.
  • the rotation speed of the output shaft 145b of the second transmission 145 is slightly lower than the rotation speed at the shift position corresponding to the set stock interval L1
  • the actual inter-stock Lx (corresponding to the supply interval) may be slightly larger than the set inter-stock L1 by this amount.
  • the rotational speed of the output shaft 145b of the second transmission 145 corresponds to the set stock L1 interval based on the detection value of the work rotational speed detector 165 (the rotational speed of the output shaft 145b of the second transmission 145).
  • the second transmission 145 is finely adjusted by the drive mechanism 167 in a state where the second transmission 145 is operated to the shift position corresponding to the set stock interval L1 so that the rotational speed is achieved.
  • the slip ratio detection unit 168 causes the slip ratio of the front wheel 101 and the rear wheel 102 as the planting operation progresses. Is detected, and the second transmission 145 is automatically operated as described below so that the actual inter-share Lx becomes the inter-set L1.
  • the supply interval detection unit 173 detects an actual inter-strain Lx. Specifically, a length corresponding to the slip ratio of the front wheel 101 and the rear wheel 102 is calculated, and a length corresponding to the slip of the front wheel 101 and the rear wheel 102 is subtracted from the set stock L1 to obtain an actual stock Lx is detected.
  • An operation signal is output from the control unit 169 to the drive mechanism 167 so that the actual inter-stock Lx detected by the supply interval detection unit 173 becomes the set-interval stock L1, and the second transmission 145 is operated by the drive mechanism 167.
  • the non-uniform speed gears 159 and 161 suitable for the set stock L1 set by the setting unit 164 may be selected (only connected to the transmission shaft 148).
  • the planting arm 108 takes out the seedlings A from the seedling stand 110,
  • the rotational speed of the rotating case 107 becomes too slow in the area until the planting of the seedling A to the chewing scene G by the attachment arm 108. Therefore, if the inconstant speed gears 159 and 161 suitable for the set stock L1 are selected, the rotational speed of the rotation case 107 can be slightly increased by the inequal speed transmission 152 in the above-mentioned area, and the seedling A is It can be made to plant on the surface G appropriately.
  • the picking scene G of the seedling A by the planting arm 108 is taken from the removal of the seedling A from the seedling platform 110 by the planting arm 108.
  • the rotational speed of the rotating case 107 becomes too high in the area up to planting. Therefore, if the inconstant speed gears 159, 161 suitable for the set stock L1 are selected, the rotational speed of the rotation case 107 can be slightly reduced by the inequal speed transmission 152 in the above-mentioned area, and the seedlings A It can be made to plant on the surface G appropriately.
  • the second transmission device 145 permits the normal transmission power of the work transmission system to be transmitted to the seedling planting device 105, and controls the reverse power to be transmitted to the seedling planting device 105.
  • a check mechanism K is provided.
  • the check control mechanism K is configured by a contact member 174 that performs a contact check on the shift arm 145d that operates the trunnion shaft 145c in the second transmission 145 so as to be operated in the reverse operation range. That is, as shown in FIG. 11, when the shift arm 145d swings from the neutral position in a predetermined direction (right direction in FIG. 11), the shift to the forward operation range is made. When the shift arm 145 d swings from the neutral position in the direction opposite to the predetermined direction (left direction in FIG. 11), the shift operation region is switched to. In the second transmission 145, the speed change arm 145d is switched to the normal rotation operation region, and the speed of the normal rotation power increases as the swing angle increases. The second transmission 145 can shift such that the speed of the reverse rotation power increases as the shift arm 145d switches to the reverse rotation operation region and the swing angle increases.
  • the contact member 174 is provided at a position where the shift arm 145 d swings from the neutral position to the reverse operation area, and the contact member 174 causes the shift arm 145 d to move to the reverse operation area. It is configured to mechanically contact and check. Therefore, only the forward rotation power is transmitted from the second transmission 145 to the seedling planting device 105, and the reverse rotation power is not transmitted.
  • control device 163 is configured to control the drive mechanism 167 so as to switch the second transmission 145 to the neutral state when the main shift lever 130 is operated to the reverse travel side.
  • a lever position sensor 175 comprising a potentiometer for detecting the swing operation position of the main shift lever 130 is provided at the swing fulcrum position of the main shift lever 130. The detection result of the lever position sensor 175 is input to the control device 163.
  • the control device 163 When the control device 163 detects that the main transmission lever 130 has been operated to the neutral position based on the detection value of the lever position sensor 175, the control device 163 operates the drive mechanism 167 so that the second transmission 145 switches to the neutral state.
  • the neutral position N of the main shift lever 130 may be any one of the lowest speed position N1 of the forward operation area, the lowest speed position N2 of the reverse operation type, or an intermediate position thereof.
  • the main shift lever 130 is manipulated from the state of being operated in the forward operation area toward the reverse travel side and switched to the neutral position N, the second transmission 145 is switched to the neutral state.
  • the check mechanism K is configured by the contact member 174 that performs the contact check on the shift arm 145 d being operated to the reverse operation area, the configuration is replaced with this configuration
  • the drive arm 167B may be brought into contact with the transmission arm 145d and the rod 167c in an interlocking manner so as to control the operation of the drive arm 167B in the reverse operation area.
  • the check mechanism K is not limited to a configuration in which the shift arm 145d and the drive arm 167B are brought into contact with and regulated, and may be configured as follows.
  • the rotating body for output when the rotating body for output rotates in the forward direction, its rotational power is transmitted to the transmission lower side, and when the rotating body for output rotates in the reverse direction, It may be configured to have a one-way rotation restricting mechanism that does not freely rotate and transmit the power to the transmission lower side.
  • the working device intermittently supplies the agricultural material (seedling) to the dredger scene at a supply interval set in advance along the traveling direction of the machine.
  • the working device may be configured to continuously supply the agricultural material to the dredging scene along the traveling direction of the airframe. As described above, when agricultural materials are continuously supplied, it is possible to change and adjust the amount of agricultural materials supplied per unit time when the agricultural materials are continuously supplied by the shift of the second transmission 145.
  • the seedling planting device 105 as a working device is provided at the rear of the traveling machine body, but instead of this configuration, a field where seedlings are planted by the seedling planting device 105 A fertilizer application device for supplying fertilizer to the surface may be separately provided. And in providing a fertilization apparatus in this way, it is necessary to supply the motive power for a fertilization apparatus in parallel with a seedling planting apparatus. Therefore, the transmission mechanism for driving the fertilization apparatus may be provided inside the transmission case 120.
  • this invention sets beforehand along the traveling direction of an aircraft as a working apparatus.
  • the present invention can be applied to a paddy field work machine (ride type direct seeding machine) equipped with a sowing device for point-seeding seeds as agricultural material at a grazing scene at the supplied intervals.
  • a paddy field work machine ride type direct seeding machine
  • sowing device for point-seeding seeds as agricultural material at a grazing scene at the supplied intervals.
  • First and second embodiments 1 front wheel (wheel for traveling) 2: Rear wheel (wheel for traveling) 5: Seedling planting device (working device) 11: Airframe 23: Engine (motor) 24: Continuously variable transmission (transmission) 24b: Output shaft (output shaft of transmission) 45: Static hydraulic continuously variable transmission (continuously variable transmission) 45a: Input shaft (input shaft of continuously variable transmission) 67: Actuator (power adjustment mechanism) 80: Hydraulic pump 81: Pump swash plate 82: Hydraulic motor 83: Motor swash plate 84: Clutch (power adjustment mechanism) D: Branch
  • Third Embodiment 101 front wheel (wheel for traveling) 102: Rear wheel (wheel for traveling) 105: Seedling planting device (working device) 111: Traveling machine (airframe) 123: Engine (motor part) 124: First transmission 128: Transmission shaft (branch) 130: Transmission operating tool 145: Second transmission 145c: Trunnion shaft 145d: Transmission arm 163: Control device 174: Contact member K: Check mechanism

Abstract

Disclosed is a paddy field work machine wherein motive power output from a transmission 24 is branched in parallel by a branching unit D to a travel transmission system and a work transmission system, the motive power of the travel transmission system is transferred to traveling wheels 1, 2, and the motive power of the work transmission system is transferred to a work device 5 via a continuously variable transmission 45. A motive power adjustment mechanism 67 capable of adjusting the motive power transferred from the transmission 24 to the work transmission system is provided on the side closer to the work transmission system than the branching unit D. The motive power adjustment mechanism 67 operates so that when the motive power output from the transmission 24 is forward motive power for driving the traveling wheels 1, 2 forward, the forward motive power is transferred to the work device 5, and when the motive power output from the transmission 24 is reverse motive power for driving the wheels 1, 2 backward, the reverse motive power is not transmitted to the work device 5.

Description

水田作業機Paddy work machine
 本発明は、乗用型田植機や乗用型直播機等のように、苗や種子、肥料や薬剤等の農用資材を圃場面に供給する水田作業機に関する。 BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a paddy field work machine that supplies agricultural materials such as seedlings, seeds, fertilizers, drugs and the like to a dredger scene, such as a riding type rice planter and a riding type direct seeding machine.
 水田作業機の一例である乗用型田植機では、特許文献1に開示されているような構成を備えたものがある。特許文献1では、エンジン(原動部に相当)の動力が変速装置に伝達され、変速装置の動力が並列的に分岐されて、走行用の車輪及び苗植付装置(作業装置に相当)に伝達されている。 Some riding type rice planters, which are an example of a paddy field work machine, have a configuration as disclosed in Patent Document 1. In Patent Document 1, the power of the engine (corresponding to the driving unit) is transmitted to the transmission, the power of the transmission is branched in parallel, and transmitted to the traveling wheels and the seedling planting device (corresponding to the work device). It is done.
 これにより、機体の走行方向に沿って事前に設定された株間(供給量に相当)で、苗植付装置により苗が圃場面に植え付けられるのであり、変速装置が操作されて機体の走行速度が変化しても、苗植付装置に伝達される動力も変速装置の動力であるので、苗植付装置による株間は一定間隔に維持される。 As a result, the seedlings are planted in the weir scene by the seedling planting apparatus between the stocks (corresponding to the supply amount) set in advance along the traveling direction of the machine, and the transmission is operated to make the traveling speed of the machine Even if it changes, the power transmitted to the seedling planting device is also the power of the transmission, so the stock spacing by the seedling planting device is maintained at a constant interval.
 そして、変速装置の動力が、株間変速装置を通って苗植付装置に伝達されており、株間変速装置を操作することによって、苗植付装置による株間を所望の間隔に設定できる。株間を変更することにより、圃場面に供給される苗の供給量が変更される。 And the motive power of the transmission is transmitted to the seedling planting apparatus through the inter-train transmission, and by operating the inter-stock transmission, it is possible to set the desired spacing between the plants by the seedling planting apparatus. By changing between stocks, the supply amount of seedlings supplied to the dredging scene is changed.
日本国特開2014-070653号公報(JP2014-070653A)Japanese Patent Laid-Open Publication No. 2014-070653 (JP2014-070653A)
[課題1]
 特許文献1では、株間変速装置が、ギヤ変速型式の複数段の変速位置を備えた変速装置である。近年では、圃場面や農用資材の状態等に応じて、圃場面に対する農用資材の供給量を適切に設定したいという要望が高まっている。
 例えば、ギヤ変速型式の変速装置に代えて、静油圧式無段変速装置などの無段変速装置を設けることもできる。この場合、エンジン(原動部に相当)の動力が変速装置に伝達され、その変速装置の動力が走行伝動系及び作業伝動系に並列的に分岐されて、走行伝動系の動力が走行用の車輪に伝達され、作業伝動系の動力が上述した静油圧式無段変速装置などの無段変速装置を通って作業装置に伝達されるような構成を想定できる。このような構成を採用すれば、作業装置に対してその無段変速装置が出力する多様な速度の動力を伝達し、水田や農用資材の状態等に応じて、農用資材の供給量を細かく適切に設定できるようになると考えられる。
[Problem 1]
In Patent Document 1, the inter-train transmission is a transmission having a plurality of gear shift positions of a gear shift type. In recent years, there has been a growing demand to appropriately set the supply amount of agricultural materials for the dredging scene according to the status of the dredging scene, agricultural materials and the like.
For example, a continuously variable transmission such as a hydrostatic continuously variable transmission may be provided instead of the gear shift transmission. In this case, the power of the engine (corresponding to the drive unit) is transmitted to the transmission, and the power of the transmission is branched in parallel to the traveling transmission system and the work transmission system, and the traveling transmission system is used for traveling wheels. It can be assumed that the power of the work transmission system is transmitted to the work device through the continuously variable transmission such as the aforementioned hydrostatic stepless transmission. If such a configuration is adopted, the power of various speeds output by the continuously variable transmission is transmitted to the work device, and the supply amount of agricultural materials is finely and appropriately adapted to the condition of the paddy field or agricultural materials, etc. It will be possible to set it to
 しかしながら、変速装置の動力が並列的に分岐されて、走行用の車輪と、苗植付装置(作業装置に相当)に伝達されている場合、水田作業機を後進させるのに伴って変速装置の出力軸が前進時の回転方向とは逆の後進時の回転方向で回転すると、走行駆動系だけでなく、作業伝動系にもその逆回転(後進時の回転)の動力が伝達される。そして、苗植付装置の植付アームが逆回転すると、植付アームによって苗が意図しない方向に飛ばされる可能性がある。 However, when the power of the transmission is branched in parallel and transmitted to the wheels for traveling and the seedling planting device (corresponding to the work device), the transmission of the transmission works as the paddy work machine moves backward. When the output shaft rotates in the reverse rotation direction opposite to the forward rotation direction, power of the reverse rotation (rotation at reverse) is transmitted not only to the traveling drive system but also to the work transmission system. And when the planting arm of a seedling planting apparatus reversely rotates, a planting arm may fly away in the direction which is not intended.
 本発明は、水田作業機において、機体の走行方向を前進及び後進に切り替えても、農用資材が意図しない方向に飛ばされることのないようにすることを目的としている。 An object of the present invention is to prevent agricultural materials from being skipped in an unintended direction even when the traveling direction of the vehicle is switched between forward and reverse in a paddy field work machine.
[課題2] [Problem 2]
 上記従来構成においては、主変速装置は変速後の動力を走行用の車輪に伝達するので、前進走行だけでなく後進走行にも対応するように、正転伝動状態と逆転伝動状態の両方の伝動状態がある。しかし、上記従来構成では、株間変速装置がギヤ変速式の変速装置であり、正転伝動状態だけでなく逆転伝動状態においても、そのまま作業装置に動力が伝達される。 In the above-described conventional configuration, since the main transmission transmits power after gear shifting to the wheels for traveling, transmissions in both forward and reverse transmission states are possible to cope with not only forward traveling but also backward traveling. There is a state. However, in the above-described conventional configuration, the inter-shaft transmission is a gear transmission, and power is directly transmitted to the work device not only in the forward rotation transmission state but also in the reverse rotation transmission state.
 従来より、機体後進時には、作業装置への動力伝達を断続する作業クラッチを切り状態に切り換えて、逆転動力が伝達されないようにする等の対策を講じている。しかし、例えば、作業クラッチの切操作が遅れたり、誤作動するような場合には、逆転動力が作業装置に伝達され、適正な作動が行われず損傷のおそれがある。そして、損傷を防止するためには、作業装置側で逆転動力を規制するための特別な装置を備えておく必要があった。 Heretofore, at the time of backward movement of the vehicle body, a measure has been taken such as switching the working clutch for intermittently transferring power to the working device to the off state so that the reverse rotation power is not transmitted. However, for example, in the case where the disconnection operation of the working clutch is delayed or malfunctions, the reverse rotation power is transmitted to the working device, and proper operation is not performed, which may cause damage. And in order to prevent damage, it was necessary to equip the work apparatus side with a special device for regulating the reverse rotation power.
 そこで、作業装置に特別な規制用の装置を備えなくても、作業装置の損傷のおそれがない状態で、圃場や農用資材の状態等に応じて、圃場面に対する農用資材の供給量を変更設定できるようにすることが要望されている。 Therefore, even if the working device is not equipped with a special control device, the amount of agricultural material supplied to the dredging scene is changed and set according to the condition of the field or agricultural material without any risk of damage to the working device. It is demanded to be able to do it.
[解決手段1]
 [課題1]に対応する解決手段は、以下の通りである。
 原動部の動力が伝達される変速装置と、
 機体の走行方向に沿って事前に設定された供給量で、農用資材を圃場面に供給する作業装置とが備えられ、
 前記変速装置から出力される動力が分岐部で走行伝動系及び作業伝動系に並列的に分岐されて、前記走行伝動系の動力が走行用の車輪に伝達され、前記作業伝動系の動力が無段変速装置を通って前記作業装置に伝達され、
 前記分岐部よりも前記作業伝動系側で、前記変速装置から前記作業伝動系に伝達される動力を調節できる動力調節機構が設けられ、
 前記動力調節機構の動作により、前記変速装置から出力される動力が前記走行用の車輪を前進駆動させる前進動力である場合には当該前進動力を前記作業装置に伝達し、前記変速装置から出力される動力が前記走行用の車輪を後進駆動させる後進動力である場合には当該後進動力を前記作業装置に伝達しない水田作業機。
[Solution 1]
The solution means corresponding to [Problem 1] is as follows.
A transmission to which the power of the driving unit is transmitted;
There is provided a working device for supplying agricultural material to the dredging scene with the supply amount set in advance along the traveling direction of the vehicle.
The power output from the transmission is branched in parallel to the traveling transmission system and the work transmission system at the branching portion, and the power of the traveling transmission system is transmitted to the wheels for traveling, and the power of the work transmission system is absent. Transmitted to the working device through a step change gear,
A power adjustment mechanism capable of adjusting the power transmitted from the transmission to the work transmission system is provided on the work transmission system side with respect to the branch portion,
When the power output from the transmission is the forward power for driving the traveling wheels forward by the operation of the power adjustment mechanism, the forward power is transmitted to the work device and output from the transmission The paddy field work machine which does not transmit the said backward movement power to the said working apparatus, when the driving force is reverse movement power which makes the wheel for driving | running | working drive backward.
 本構成によると、作業伝動系の動力が無段変速装置を通って作業装置に伝達される。つまり、作業装置には、無段変速装置が出力する多様な速度の動力が伝達される。それにより、水田や農用資材の状態等に応じて、農用資材の供給量を細かく適切に設定できるようになって、水田作業機の作業精度を向上させることができる。 According to this configuration, the power of the work transmission system is transmitted to the work device through the continuously variable transmission. That is, power of various speeds output from the continuously variable transmission is transmitted to the work device. As a result, the supply amount of agricultural materials can be set finely and appropriately according to the condition of the paddy field or agricultural materials, etc., and the working accuracy of the paddy field work machine can be improved.
 尚、変速装置の動力が分岐部で走行伝動系及び作業伝動系に並列的に分岐されて、走行伝動系の動力が走行用の車輪に伝達され、作業伝動系の動力が作業装置(例えば苗植付装置など)に伝達されている場合、水田作業機を後進させるのに伴って変速装置の出力軸が逆回転すると、走行駆動系だけでなく、作業伝動系にもその逆回転の動力が伝達される。そして、作業装置も逆方向に駆動されて、意図しない作業を作業装置が行う可能性もある。例えば、作業装置としての苗植付装置の植付アームが逆回転することで、苗が意図しない方向に飛ばされる可能性がある。
 ところが本発明のように、分岐部よりも作業伝動系側で、変速装置から作業伝動系に伝達される動力を調節できる動力調節機構を設けることで、動力調節機構の動作により、変速装置から出力される動力が走行用の車輪を前進駆動させる前進動力である場合にはその前進動力を作業装置に伝達し、変速装置から出力される動力が走行用の車輪を後進駆動させる後進動力である場合にはその後進動力を作業装置に伝達しないことができる。つまり、水田作業機において、機体の走行方向を前進及び後進に切り替えても、農用資材が意図しない方向に飛ばされることのないようにできる。
The power of the transmission is branched in parallel to the traveling transmission system and the work transmission system at the branching portion, and the power of the traveling transmission system is transmitted to the wheels for traveling, and the power of the work transmission system is the work device (for example, a seedling When it is transmitted to the planting equipment etc., when the output shaft of the transmission reverses as the paddy field work machine moves backward, not only the traveling drive system but also the power of the reverse rotation not only to the work transmission system It is transmitted. Then, the work device may be driven in the reverse direction, and the work device may perform an unintended work. For example, when the planting arm of the seedling planting device as the working device is reversely rotated, there is a possibility that the seedling may be blown in an unintended direction.
However, as in the present invention, by providing the power adjustment mechanism capable of adjusting the power transmitted from the transmission to the work transmission system on the work transmission system side of the branch part, the power adjustment mechanism operates to output power from the transmission When the power to be driven is forward power for driving the traveling wheels forward, the forward power is transmitted to the work device, and the power output from the transmission is reverse power for driving the traveling wheels backward. After that, forward power can not be transmitted to the working device. That is, in the paddy field work machine, even if the traveling direction of the airframe is switched between forward and reverse, agricultural materials can be prevented from being skipped in unintended directions.
 一好適実施形態では、前記無段変速装置が、油圧ポンプ及び油圧モータを備える静油圧式無段変速装置であり、
 前記動力調節機構は、前記油圧ポンプが有するポンプ斜板の傾斜角度を調節するアクチュエータ及び前記油圧モータが有するモータ斜板の傾斜角度を調節するアクチュエータの少なくともいずれか一方を備える。
In one preferred embodiment, the continuously variable transmission is a hydrostatic continuously variable transmission including a hydraulic pump and a hydraulic motor,
The power adjustment mechanism includes at least one of an actuator for adjusting an inclination angle of a pump swash plate of the hydraulic pump and an actuator for adjusting an inclination angle of a motor swash plate of the hydraulic motor.
 本構成によると、無段変速装置が静油圧式無段変速装置であるので、静油圧式無段変速装置のポンプ斜板及びモータ斜板の少なくとも何れか一方の傾斜角度を調節することで、その出力部から出力される動力を少しだけ高速側に変速したり、少しだけ低速側に変速したりというような、細かな変速を無理なく行うことができる。更に、静油圧式無段変速装置のポンプ斜板及びモータ斜板の少なくとも何れか一方の傾斜角度を調節することで、作業装置に動力を伝達させない動力調節機構の機能を実現できる。 According to this configuration, since the continuously variable transmission is a hydrostatic continuously variable transmission, by adjusting the inclination angle of at least one of the pump swash plate and the motor swash plate of the hydrostatic continuously variable transmission, A fine shift such as shifting the power output from the output unit to a slightly higher speed side or shifting to a slightly lower speed side can be performed without difficulty. Furthermore, by adjusting the inclination angle of at least one of the pump swash plate and the motor swash plate of the hydrostatic continuously variable transmission, it is possible to realize the function of the power adjustment mechanism that does not transmit power to the working device.
 一好適実施形態では、前記動力調節機構は、前記分岐部よりも下流且つ前記無段変速装置よりも上流に設けられ、前記走行用の車輪を前進回転させる場合の前記変速装置の出力軸の前進駆動力を前記無段変速装置に伝達し、前記走行用の車輪を後進回転させる場合の前記変速装置の出力軸の後進駆動力を前記無段変速装置に伝達しないように構成されるクラッチを備える。 In one preferred embodiment, the power adjustment mechanism is provided downstream of the branch portion and upstream of the continuously variable transmission, and forward movement of the output shaft of the transmission when the traveling wheels are forwardly rotated. It has a clutch configured to transmit a driving force to the continuously variable transmission and not to transmit a backward driving force of an output shaft of the transmission to rotate the traveling wheels backward. .
 本構成によると、変速装置の出力軸の前進駆動力を無段変速装置に伝達する状態と、変速装置の出力軸の後進駆動力を無段変速装置に伝達しない状態との何れかにクラッチの状態を切り替えることで動力調節機構の機能を実現できる。 According to this configuration, the clutch may be in one of a state in which the forward drive force of the output shaft of the transmission is transmitted to the continuously variable transmission and in a state in which the reverse drive force of the output shaft of the transmission is not transmitted to the continuously variable transmission. By switching the state, the function of the power adjustment mechanism can be realized.
 一好適実施形態では、前記変速装置の出力軸と前記無段変速装置の入力軸とが同軸上に配置されている。 In one preferred embodiment, the output shaft of the transmission and the input shaft of the continuously variable transmission are coaxially arranged.
 本構成によると、変速装置の出力軸と、変速装置から出力される動力が伝達される無段変速装置の入力軸とを同軸上に配置することで、変速装置の出力軸と無段変速装置の入力軸とを例えばギヤなどを用いて連結しなくてもよくなる。その結果、部品点数が減少することで、装置重量が減少するという効果、装置コストが減少するという効果、装置の組み立てが容易になるという効果が得られる。 According to this configuration, the output shaft of the transmission and the continuously variable transmission are coaxially disposed by coaxially arranging the output shaft of the transmission and the input shaft of the continuously variable transmission to which the power output from the transmission is transmitted. For example, it is not necessary to connect the input shaft with the input shaft using a gear or the like. As a result, by reducing the number of parts, the effect of reducing the weight of the device, the effect of reducing the cost of the device, and the effect of facilitating the assembly of the device can be obtained.
 一好適実施形態では、前記変速装置の出力軸の途中に前記分岐部が設けられる。 In one preferred embodiment, the branch portion is provided in the middle of the output shaft of the transmission.
 本構成によると、変速装置の出力軸の途中で変速装置から出力される動力が走行伝動系及び作業伝動系に並列的に分岐されるので、変速装置から走行伝動系及び作業伝動系に動力を伝達させる構成が比較的簡素になる。 According to this configuration, since the power output from the transmission is branched in parallel to the traveling transmission system and the work transmission system in the middle of the output shaft of the transmission, the transmission can transmit power to the traveling transmission system and the work transmission system. The configuration to be transmitted is relatively simple.
 一好適実施形態では、前記作業装置が、機体の走行方向に沿って事前に設定された供給間隔で、農用資材を圃場面に間欠的に供給する。 In one preferred embodiment, the work device intermittently supplies the agricultural material to the dredger at feed intervals preset along the traveling direction of the vehicle.
 本構成によると、無段変速装置を操作することにより、無段変速委装置の最高速位置と最低速位置との間において、多くの供給間隔を設定できる。
 これにより、圃場面や農用資材の状態等に応じて、供給間隔を細かく適切に設定できるようになって、水田作業機の作業精度を向上させることができる。
According to this configuration, by operating the continuously variable transmission, it is possible to set many supply intervals between the highest speed position and the lowest speed position of the continuously variable transmission device.
As a result, the supply interval can be set finely and appropriately according to the condition of the dredging scene, agricultural materials, etc., and the working accuracy of the paddy field work machine can be improved.
 一好適実施形態では、前記作業装置として、機体の走行方向に沿って事前に設定された供給間隔で、農用資材としての種子を圃場面に点播する播種装置が備えられている。 In a preferred embodiment, the working device is provided with a sowing device for point-seeding a seed as an agricultural material on a weir scene at a supply interval previously set along the traveling direction of the airframe.
 本構成によると、事前に設定された供給間隔で種子を圃場面に供給できる。 According to this configuration, it is possible to supply seeds to the weir scene at predetermined supply intervals.
 一好適実施形態では、前記作業装置として、機体の走行方向に沿って事前に設定された供給間隔で、農用資材としての苗を圃場面に供給する苗植付装置が備えられている。 In a preferred embodiment, the working device is provided with a seedling planting device that supplies seedlings as agricultural material to a grazing scene at a supply interval set in advance along the traveling direction of the machine body.
 本構成によると、事前に設定された供給間隔で苗を圃場面に供給できる。 According to this configuration, it is possible to supply the seedlings to the dredging scene at a previously set supply interval.
[解決手段2]
 [課題2]に対応する解決手段は、以下の通りである。
 原動部の動力が伝達される第1変速装置と、
 機体の走行方向に沿って事前に設定された供給量で、農用資材を圃場面に供給する作業装置と、
 前記第1変速装置の動力を走行伝動系及び作業伝動系に分岐する分岐部と、
 前記走行伝動系の動力が伝達される走行用の車輪と、
 前記作業伝動系の動力を変速して前記作業装置に伝達する第2変速装置とが備えられ、
 前記第2変速装置に、前記作業伝動系の動力のうち正転動力が前記作業装置に伝達されることを許容し、且つ、逆転動力が前記作業装置に伝達することを牽制する牽制機構が備えられている水田作業機。
[Solution 2]
The solution means corresponding to [Problem 2] is as follows.
A first transmission to which power of a driving unit is transmitted;
A working device for supplying agricultural material to a bird's-eye view with a supply amount set in advance along the traveling direction of the vehicle;
A branch portion that branches the power of the first transmission into a traveling transmission system and a work transmission system;
A traveling wheel to which power of the traveling transmission system is transmitted;
A second transmission configured to shift the power of the work transmission system and transmit the power to the work device;
The second transmission is provided with a check mechanism that allows the normal transmission power of the power of the work transmission system to be transmitted to the work device, and also has a check mechanism that suppresses the reverse power to be transmitted to the work device. Paddy working machine being operated.
 本構成によれば、第一変速装置の作業伝動系の動力が第二変速装置を通って作業装置に伝達されるのであり、第二変速装置を操作することにより、第二変速装置の変速操作範囲内において圃場面に供給する農用資材の供給量を変更設定することができる。 According to this configuration, the power of the work transmission system of the first transmission is transmitted to the work device through the second transmission, and by operating the second transmission, the shift operation of the second transmission is performed. It is possible to change and set the supply amount of agricultural materials to be supplied to the dredging scene within the range.
 例えば、第一変速装置の変速動力が正転状態に設定されて、機体が前進走行しながら作業装置が農用資材の供給作業を行っているときに、第二変速装置が逆転動力を出力する状態に変更されると、作業装置において適正な作動が行われないおそれがある。 For example, when the shift power of the first transmission is set to the normal rotation state, and the work device is performing the supply operation of the agricultural material while the machine body travels forward, the second transmission outputs the reverse power. If it is changed to "1", there is a risk that the working device will not operate properly.
 しかし、本構成によれば、第二変速装置に備えられた牽制機構によって、第二変速装置から逆転動力が作業装置に伝達されることが牽制される。その結果、作業装置に逆転動力が出力されることはなく、作業装置側で逆転動力を規制するための特別な装置を用いることなく、正転動力だけを伝達することができる。 However, according to the present configuration, it is possible to prevent the reverse transmission power from being transmitted from the second transmission to the working device by the check mechanism provided in the second transmission. As a result, no reverse power is output to the working device, and only the normal power can be transmitted without using a special device for restricting the reverse power on the working device side.
 従って、作業装置に特別な規制用の装置を備えなくても、作業装置の損傷のおそれがない状態で、圃場田や農用資材の状態等に応じて、圃場面に対する農用資材の供給量を変更設定できるようにすることが可能となった。 Therefore, even if the work device is not equipped with a special control device, the supply amount of agricultural material to the dredged scene is changed according to the condition of the agricultural field and agricultural material without any risk of damage to the work device. It became possible to set it.
 一好適実施形態では、前記第2変速装置が静油圧式無段変速装置にて構成され、
 前記牽制機構が、前記静油圧式無段変速装置におけるトラニオン軸を操作する変速アームが逆転操作域に操作されるのを接当牽制する接当部材にて構成されている。
In one preferred embodiment, the second transmission is a hydrostatic stepless transmission.
The said check mechanism is comprised by the contact member which carries out contact check control that the shift arm which operates the trunnion axis | shaft in the said hydrostatic continuously variable transmission is operated by reverse rotation operation area.
 本構成によれば、第二変速装置が静油圧式無段変速装置にて構成されるから、作業伝動系の動力を無段階に変速可能である。このように無段階に変速することで、圃場面に対する農用資材の供給量を作業状況に応じて、無段変速装置の最高速位置と最低速位置との間において任意の供給量を設定することができる。その結果、圃場面や農用資材の状態等に応じて、供給量を細かく適切に設定することができるようになって、水田作業機の作業精度を向上させることができる。 According to this configuration, since the second transmission is configured as a hydrostatic stepless transmission, the power of the work transmission system can be shifted steplessly. In this manner, by continuously changing the speed, it is possible to set an arbitrary supply amount between the highest speed position and the lowest speed position of the continuously variable transmission according to the working condition, according to the working condition. Can. As a result, the supply amount can be set finely and appropriately according to the condition of the dredging scene, agricultural materials, etc., and the working accuracy of the paddy field work machine can be improved.
 静油圧式無段変速装置は、正転動力だけでなく、逆転動力についても無段階に変速可能である。そこで、トラニオン軸を操作する変速アームを接当部材によって接当規制することにより、トラニオン軸が逆転操作域に操作されることを牽制するようにした。このように機械的に牽制することで、逆転動力が作業装置に伝達されることを確実に回避させることができる。 The hydrostatic continuously variable transmission can steplessly shift not only the forward rotation power but also the reverse rotation power. Therefore, the transmission arm for operating the trunnion shaft is contact-restrained by the contact member so that the trunnion shaft is operated in the reverse operation area. By mechanically constraining in this manner, it can be reliably avoided that the reverse power is transmitted to the working device.
 接当部材は、変速アームを接当規制するものであればよく簡単な構造のもので対応できる。又、例えば、変速アームをアクチュエータで操作する構成を採用した場合に、トラニオン軸の操作状態を検出するセンサの検出誤差等の要因でアクチュエータが過剰に操作するようなことがあっても、逆転動力が作業装置に伝達されることを確実に牽制することができる。 The contact member may be any member that restricts the gear shift arm and can be of a simple structure. Also, for example, when adopting a configuration in which the transmission arm is operated by the actuator, the reverse rotation power is obtained even if the actuator is operated excessively due to a factor such as a detection error of a sensor that detects the operation state of the trunnion axis. Can be reliably restrained from being transmitted to the working device.
 一好適実施形態では、前記第1変速装置の変速状態を変更操作する変速操作具と、
 前記変速操作具が後進走行側に操作されると、前記第2変速装置を中立状態に切り換える制御装置が備えられている。
In one preferred embodiment, a gearshift operating tool for changing and operating a gearshift state of the first transmission.
A control device is provided for switching the second transmission to a neutral state when the gearshift operating tool is operated to the reverse travel side.
 本構成によれば、変速操作具が前進走行側の操作域から後進走行側に操作されると、第二変速操作が中立状態に切り換えられる。後進走行側への操作としては、例えば、変速操作具が、前進走行側の操作域における最低速位置(中立状態に相当する位置)まで操作されたこと、変速操作具が中立操作位置に位置していること、後進走行側の操作域における最低速位置(中立状態に相当する位置)に位置していること、等がある。 According to this configuration, when the gearshift operating tool is operated from the operation area on the forward travel side to the reverse travel side, the second shift operation is switched to the neutral state. As the operation to the reverse travel side, for example, the shift operation tool is operated to the lowest speed position (position corresponding to the neutral state) in the operation area on the forward travel side, the shift operation tool is positioned at the neutral operation position And the lowest speed position (position corresponding to the neutral state) in the reverse travel side operation area.
 このように変速操作具が、実際に後進伝動状態に切り換えられる前に、後進伝動状態に切り換えられる蓋然性が高い操作に基づいて、第二変速装置を中立状態に切り換えるので、切り換え動作に少し時間遅れがあったとしても、作業装置に逆転動力が伝達されることを回避でき、作業装置の損傷を防止できる。 Thus, since the second transmission is switched to the neutral state based on the operation with high probability of being switched to the reverse transmission state before the shift operation tool is actually switched to the reverse transmission state, a slight time delay to the switching operation Even if there is a problem, it can be avoided that the reverse power is transmitted to the working device, and damage to the working device can be prevented.
 一好適実施形態では、前記作業装置が、機体の走行方向に沿って事前に設定された供給間隔で、農用資材を圃場面に間欠的に供給する。 In one preferred embodiment, the work device intermittently supplies the agricultural material to the dredger at feed intervals preset along the traveling direction of the vehicle.
 本構成によれば、作業装置は、機体の走行に伴って、間隔をあけた状態で間欠的に農用資材を圃場面に供給する。第二変速装置が変速することにより、作業装置が農用資材を供給する間隔を変更設定することによって供給量を変更することになる。この構成では、1回に供給する農用資材の量を変更せずに、全体の供給量を変更できるので、供給量の調整作業が不要で対応が簡単になる。 According to this configuration, the work device intermittently supplies the agricultural material to the dredging scene while leaving an interval as the airframe travels. As the second transmission shifts, the supply amount is changed by changing and setting the interval at which the working device supplies the agricultural material. In this configuration, the entire supply amount can be changed without changing the amount of agricultural materials to be supplied at one time, so the adjustment operation of the supply amount is unnecessary and the correspondence becomes easy.
 一好適実施形態では、前記作業装置として、機体の走行方向に沿って事前に設定された供給間隔で、農用資材としての苗を圃場面に供給する苗植付装置が備えられている。 In a preferred embodiment, the working device is provided with a seedling planting device that supplies seedlings as agricultural material to a grazing scene at a supply interval set in advance along the traveling direction of the machine body.
 本構成によれば、機体を走行させながら苗植付装置によって圃場面に苗を植え付けることができ、苗植付け作業において苗の植付間隔を精度よく管理し易いものになる。 According to this configuration, it is possible to plant seedlings in a weir scene by the seedling planting device while traveling the machine body, and it becomes easy to manage the planting interval of the seedlings with high accuracy in the seedling planting operation.
 一好適実施形態では、前記作業装置として、機体の走行方向に沿って事前に設定された供給間隔で、農用資材としての種子を圃場面に点播する播種装置が備えられている。 In a preferred embodiment, the working device is provided with a sowing device for point-seeding a seed as an agricultural material on a weir scene at a supply interval previously set along the traveling direction of the airframe.
 本構成によれば、機体を走行させながら播種装置によって圃場面に種子を点播することができ、播種作業において種子の点播の間隔を精度よく管理し易いものになる。 According to this configuration, it is possible to point-seed the seeds to the sorrel scene by the sowing device while running the machine body, and it becomes easy to manage the intervals of the point-seeding of the seeds accurately in the sowing operation.
 その他の特徴及びこれから奏する利点については、以下の説明から明らかになるだろう。 Other features and advantages to be achieved will become apparent from the following description.
第1実施形態を示す図であって(以下、図5まで同じ)水田作業機の一例である乗用型田植機の全体側面図It is a figure which shows 1st Embodiment, and is a whole side view of the riding type rice transplanter which is an example of a paddy field working machine (it is the same as the following to FIG. 5). 乗用型田植機の全体平面図Overall plan view of the riding type rice transplanter 走行伝動系の構成を示す図Diagram showing the configuration of a traveling transmission system 作業伝動系の構成を示す図Diagram showing the configuration of work transmission system 変速装置から出力される動力が走行伝動系及び作業伝動系に伝達される状態について説明する図The figure explaining the state to which the motive power output from a transmission is transmitted to a traveling transmission system and a work transmission system 第2実施形態を示す図であって、図5に対応する図It is a figure which shows 2nd Embodiment, Comprising: The figure corresponding to FIG. 第3実施形態を示す図であって(以下、図11まで同じ)水田作業機の一例である乗用型田植機の全体側面図It is a figure which shows 3rd Embodiment, and is a whole side view of the riding type rice transplanter which is an example of a paddy field working machine (it is the same as the following until 11). 乗用型田植機の全体平面図Overall plan view of the riding type rice transplanter 伝動構造を示す縦断背面図Longitudinal back view showing transmission structure 伝動構造を示す縦断背面図Longitudinal back view showing transmission structure 制御構成を示すブロック図Block diagram showing the control configuration
[第1実施形態]
 以下、図1~図5を参照しながら、本発明の第1実施形態を説明する。この実施形態においては、乗用型田植機が、圃場(水田)で植付作業を行う水田作業機の一例である。
 特段の説明がない限り、前後方向及び左右方向は、以下のように記載している。機体11の走行時における前進側の進行方向が「前」であり、後進側の進行方向が「後」である。前後方向での前向き姿勢を基準として右側に相当する方向が「右」であり、左側に相当する方向が「左」である。
First Embodiment
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 to 5. In this embodiment, a riding type rice transplanter is an example of a paddy field work machine that performs a planting operation in a field (paddy field).
Unless stated otherwise, the front-rear direction and the left-right direction are described as follows. When the aircraft 11 travels, the forward traveling direction is "front", and the reverse traveling direction is "rear". The direction corresponding to the right side with respect to the forward posture in the front-rear direction is "right", and the direction corresponding to the left side is "left".
(乗用型田植機の全体構成)
 図1及び図2に示すように、乗用型田植機は、右及び左の前輪1(走行用の車輪に相当)、右及び左の後輪2(走行用の車輪に相当)を備えた機体11の後部に、リンク機構3及びリンク機構3を昇降駆動する油圧シリンダ4が備えられ、リンク機構3の後部に苗植付装置5(作業装置に相当)が支持されている。
(Overall configuration of riding type rice transplanter)
As shown in FIG. 1 and FIG. 2, the riding type rice transplanter has an airframe provided with right and left front wheels 1 (corresponding to traveling wheels) and right and left rear wheels 2 (corresponding to traveling wheels). A hydraulic cylinder 4 for driving the link mechanism 3 and the link mechanism 3 up and down is provided at the rear of 11 and a seedling planting device 5 (corresponding to a work device) is supported at the rear of the link mechanism 3.
 苗植付装置5は、左右方向に所定間隔を置いて配置された植付伝動ケース6、植付伝動ケース6の後部の右及び左側部に回転自在に支持された回転ケース7、回転ケース7の両端に備えられた一対の植付アーム8、フロート9及び苗のせ台10等を備えている。 The seedling planting device 5 includes a planting transmission case 6 disposed at a predetermined interval in the left-right direction, a rotation case 7 rotatably supported at the rear right and left portions of the planting transmission case 6, and a rotation case 7 A pair of planting arms 8, a float 9, and a seedling platform 10, etc. are provided at both ends of the vehicle.
 右及び左のマーカー12が、苗植付装置5の右及び左の横側部に備えられている。マーカー12は、田面に接地する作用姿勢(図1参照)、及び田面から上方に離れた格納姿勢に変更自在であり、マーカー12の先端部に回転体12aが回転自在に支持されている。マーカー12の作用姿勢において、マーカー12の回転体12aが田面に接地するのであり、機体11の走行に伴ってマーカー12の回転体12aが、回転しながら田面に指標を形成する。 Right and left markers 12 are provided on the right and left lateral sides of the seedling planting device 5. The marker 12 is changeable to an action posture (see FIG. 1) to be in contact with the field surface and a storage position away from the field surface, and the rotating body 12a is rotatably supported at the tip of the marker 12. In the action posture of the marker 12, the rotary body 12a of the marker 12 is in contact with the field, and as the airframe 11 travels, the rotary body 12a of the marker 12 forms an index on the field while rotating.
(運転部の付近の構成)
 図1及び図2に示すように、機体11に、運転座席13、及び前輪1を操向操作する操縦ハンドル14が備えられている。
(Configuration around the driving unit)
As shown in FIGS. 1 and 2, the fuselage 11 is provided with a driver's seat 13 and a steering handle 14 for steering the front wheel 1.
 機体11の前部の右部及び左部に右及び左の支持フレーム16が備えられており、支持フレーム16に予備苗のせ台15が支持されている。右及び左の支持フレーム16の上部に亘って、支持フレーム17が連結されている。 Right and left support frames 16 are provided on the right and left portions of the front of the fuselage 11, and a spare seedling platform 15 is supported on the support frame 16. A support frame 17 is connected across the top of the right and left support frames 16.
 支持フレーム17において、平面視で機体11の左右中央CLに位置する部分に、計測装置18が取り付けられている。計測装置18には、衛星測位システムにより位置情報を取得する受信装置(図示せず)、機体11の傾き(ピッチ角、ロール角)を検出する慣性計測装置(図示せず)が備えられており、計測装置18は機体11の位置を示す測位データを出力する。 A measuring device 18 is attached to a portion of the support frame 17 located at the left and right center CL of the airframe 11 in a plan view. The measuring device 18 is provided with a receiving device (not shown) for acquiring position information by a satellite positioning system, and an inertial measurement device (not shown) for detecting the inclination (pitch angle, roll angle) of the airframe 11. The measuring device 18 outputs positioning data indicating the position of the airframe 11.
 右及び左の後輪2を支持する後車軸ケース22において、平面視で機体11の左右中央CLに位置する部分に、慣性情報を計測する慣性計測装置19が取り付けられている。慣性計測装置19及び計測装置18の慣性計測は、IMU(Inertial Measurement Unit)により構成されている。 In a rear axle case 22 that supports the right and left rear wheels 2, an inertial measurement device 19 that measures inertial information is attached to a portion located on the left and right center CL of the vehicle body 11 in plan view. The inertial measurement of the inertial measurement device 19 and the measurement device 18 is configured by an IMU (Inertial Measurement Unit).
 前述の衛星測位システム(GNSS:Global Navigation Satellite System)には、代表的なものとしてGPS(Global Positioning System)が挙げられる。GPSは、地球の上空を周回する複数のGPS衛星や、GPS衛星の追跡と管制を行う管制局や、測位を行う対象(機体11)が備える受信装置を使用して、計測装置18の受信装置の位置を計測するものである。 Among the above-mentioned satellite navigation systems (GNSS: Global Navigation Satellite System), GPS (Global Positioning System) can be mentioned as a typical example. The GPS is a receiving device of the measuring device 18 using a plurality of GPS satellites orbiting the earth over the earth, a control station performing tracking and control of the GPS satellites, and a receiving device provided with an object (airframe 11) to be measured. It measures the position of
 慣性計測装置19は、機体11のヨー角度の角速度を検出可能なジャイロセンサー(図示せず)、及び、互いに直交する3軸方向の加速度を検出する加速度センサー(図示せず)を備えている。慣性計測装置19により計測される慣性情報には、ジャイロセンサーにより検出される方位変化情報と、加速度センサーにより検出される位置変化情報とが含まれている。
 これにより、計測装置18及び慣性計測装置19によって、機体11の位置及び機体11の方位が検出される。
The inertial measurement device 19 includes a gyro sensor (not shown) capable of detecting the angular velocity of the yaw angle of the vehicle body 11, and an acceleration sensor (not shown) capable of detecting acceleration in three axial directions orthogonal to each other. The inertial information measured by the inertial measurement device 19 includes direction change information detected by the gyro sensor and position change information detected by the acceleration sensor.
Thereby, the position of the airframe 11 and the orientation of the airframe 11 are detected by the measuring device 18 and the inertia measuring device 19.
(ミッションケースの付近の構成)
 図1に示すように、機体11の前部に、ミッションケース20が支持されており、ミッションケース20の右及び左の横側部に連結された前車軸ケース21に、右及び左の前輪1が支持されている。機体11の後部に、後車軸ケース22が支持されており、後車軸ケース22に右及び左の後輪2が支持されている。
(Configuration around the mission case)
As shown in FIG. 1, a front axle case 21 is supported at the front of the airframe 11 and is connected to the right and left lateral sides of the transmission case 20. Is supported. A rear axle case 22 is supported at the rear of the fuselage 11, and the right and left rear wheels 2 are supported by the rear axle case 22.
 図1に示すように、ミッションケース20の前部に、エンジン23(原動部に相当)が支持されている。ミッションケース20の左の横側部に、静油圧型式の無段変速装置24(変速装置に相当)が連結されており、エンジン23の動力が伝動ベルト25を介して無段変速装置24の入力軸24aに伝達される。 As shown in FIG. 1, an engine 23 (corresponding to a driving unit) is supported at the front of the transmission case 20. A hydrostatic-type continuously variable transmission 24 (corresponding to a transmission) is connected to the left lateral side of the transmission case 20, and the power of the engine 23 is input to the continuously variable transmission 24 via the transmission belt 25. It is transmitted to the shaft 24a.
 無段変速装置24は、中立位置、前進側及び後進側に無段階に変速自在に構成されており、操縦ハンドル14の左の横側に備えられた変速レバー30により無段変速装置24を操作する。 The continuously variable transmission 24 is configured to be continuously and continuously variable-changeable to a neutral position, forward and reverse sides, and operates the continuously variable transmission 24 by a shift lever 30 provided on the left side of the steering handle 14 Do.
(前輪及び後輪への走行伝動系の構成)
 図3に示すように、ミッションケース20の右の横側部に、ポンプ26が連結されており、ポンプ26は油圧シリンダ4に作動油を供給する。無段変速装置24の入力軸24aがミッションケース20に入り込んでおり、ポンプ26の入力軸26aと、無段変速装置24の入力軸24aとに亘って伝動軸27が連結されている。
(Configuration of traveling transmission system to front and rear wheels)
As shown in FIG. 3, a pump 26 is connected to the right lateral side of the transmission case 20, and the pump 26 supplies hydraulic oil to the hydraulic cylinder 4. The input shaft 24 a of the continuously variable transmission 24 enters the transmission case 20, and the transmission shaft 27 is connected to the input shaft 26 a of the pump 26 and the input shaft 24 a of the continuously variable transmission 24.
 ミッションケース20の内部に、伝動軸28,29が左右方向に沿って支持されて、無段変速装置24の出力軸24bが伝動軸28の端部に連結されている。ミッションケース20の内部において、伝動軸28,29に亘って、ギヤ変速型式の副変速装置31が備えられている。 The transmission shafts 28 and 29 are supported along the left-right direction inside the transmission case 20, and the output shaft 24b of the continuously variable transmission 24 is connected to the end of the transmission shaft 28. Inside the transmission case 20, a gear-change-type auxiliary transmission 31 is provided across the transmission shafts 28 and 29.
 副変速装置31は、伝動軸28に連結された低速ギヤ32及び高速ギヤ33、スプライン構造により伝動軸29に一体回転及びスライド自在に外嵌されたシフトギヤ34を備えている。運転座席13の近傍に備えられた副変速レバー(図示せず)により、シフトギヤ34をスライド操作できる。 The auxiliary transmission 31 includes a low speed gear 32 and a high speed gear 33 connected to the transmission shaft 28, and a shift gear 34 fitted on the transmission shaft 29 integrally rotatably and slidably by a spline structure. The shift gear 34 can be slide operated by an auxiliary shift lever (not shown) provided in the vicinity of the driver's seat 13.
 副変速装置31において、シフトギヤ34を低速ギヤ32に咬合させると、伝動軸28の動力が低速状態で伝動軸29に伝達され、シフトギヤ34を高速ギヤ33に咬合させると、伝動軸28の動力が高速状態で伝動軸29に伝達される。
 水田において植付作業を行う場合、副変速装置31を低速状態に操作するのであり、路上等において高速で走行する場合に、副変速装置31を高速状態に操作する。
In the auxiliary transmission 31, when the shift gear 34 is engaged with the low speed gear 32, the power of the transmission shaft 28 is transmitted to the transmission shaft 29 at low speed, and when the shift gear 34 is engaged with the high speed gear 33, the power of the transmission shaft 28 is It is transmitted to the transmission shaft 29 at high speed.
When the planting work is performed in the paddy field, the auxiliary transmission 31 is operated at a low speed, and when traveling at high speed on a road or the like, the auxiliary transmission 31 is operated at a high speed.
 右及び左の前輪1に動力を伝達する右及び左の前車軸35が、ミッションケース20及び前車軸ケース21に亘って支持されており、右及び左の前車軸35の間に、前輪デフ装置36が備えられている。伝動軸29に連結された伝動ギヤ37と、前輪デフ装置36のケース36aに連結された伝動ギヤ38とが、咬合している。 The right and left front axles 35 for transmitting power to the right and left front wheels 1 are supported across the transmission case 20 and the front axle case 21, and between the right and left front axles 35, a front wheel differential device 36 are provided. The transmission gear 37 connected to the transmission shaft 29 and the transmission gear 38 connected to the case 36 a of the front wheel differential device 36 are engaged with each other.
 ミッションケース20の後部に出力軸39が前後方向に沿って支持されており、前輪デフ装置36のケース36aに連結されたベベルギヤ40と、出力軸39の前部に形成されたベベルギヤ39aとが、咬合している。 An output shaft 39 is supported at the rear of the transmission case 20 along the front-rear direction, and a bevel gear 40 connected to the case 36 a of the front wheel differential device 36 and a bevel gear 39 a formed at the front of the output shaft 39 I have an occlusion.
 図1及び図3に示すように、出力軸39の後部に、伝動軸41が自在継手(図示せず)を介して連結されており、伝動軸41の後部が、自在継手(図示せず)を介して、後車軸ケース22の入力軸(図示せず)に連結されている。 As shown in FIGS. 1 and 3, the transmission shaft 41 is connected to the rear of the output shaft 39 via a universal joint (not shown), and the rear of the transmission shaft 41 is a universal joint (not shown) , And is connected to an input shaft (not shown) of the rear axle case 22.
 以上の構成により、無段変速装置24で変速された動力が、無段変速装置24の出力軸24bから、伝動軸28、副変速装置31、伝動軸29、伝動ギヤ37,38、前輪デフ装置36及び前車軸35を介して、右及び左の前輪1に伝達される。
 前輪デフ装置36に伝達された動力が、ベベルギヤ40、出力軸39、伝動軸41、後車軸ケース22の内部の伝動軸(図示せず)を介して、右及び左の後輪2に伝達される。
With the above configuration, the power transmitted by the continuously variable transmission 24 is transmitted from the output shaft 24b of the continuously variable transmission 24 to the transmission shaft 28, the auxiliary transmission 31, the transmission shaft 29, the transmission gears 37 and 38, and the front wheel differential device. It is transmitted to the right and left front wheels 1 via 36 and the front axle 35.
The power transmitted to front wheel differential device 36 is transmitted to right and left rear wheels 2 via bevel gear 40, output shaft 39, transmission shaft 41, and a transmission shaft (not shown) inside rear axle case 22. Ru.
 出力軸39に、多板型式のブレーキ42が外嵌されており、図2に示すブレーキペダル43を踏み操作することにより押圧部材85が作動して、その押圧部材85により押圧されるブレーキ42を制動状態に操作できる。ブレーキ42により出力軸39に制動を掛けることによって、前輪1及び後輪2に制動を掛けることができる。 A multi-plate type brake 42 is externally fitted to the output shaft 39, and the pressing member 85 operates by stepping on the brake pedal 43 shown in FIG. 2 and the brake 42 pressed by the pressing member 85 is It can be operated in the braking state. By braking the output shaft 39 with the brake 42, the front wheel 1 and the rear wheel 2 can be braked.
 出力軸39は、回転自在な状態でベアリング87によって保持されている。ベアリング87は、出力軸39を保持する内筒部87aと、複数のボールを介して内筒部87aの外周側に位置する外筒部87bとを有する。ベアリング87と押圧部材85側の部品との間にはカラー88が設けられている。このカラー88を介してベアリング87の内筒部87aと押圧部材85側の部品とは接触するが、ベアリング87の外筒部87bと押圧部材85側の部品との間にはそのカラー88の厚さの分だけ隙間が形成される。 The output shaft 39 is rotatably held by a bearing 87. The bearing 87 has an inner cylindrical portion 87a for holding the output shaft 39, and an outer cylindrical portion 87b positioned on the outer peripheral side of the inner cylindrical portion 87a via a plurality of balls. A collar 88 is provided between the bearing 87 and the component on the pressing member 85 side. The inner cylindrical portion 87a of the bearing 87 comes in contact with the parts on the pressing member 85 side via the collar 88, but the thickness of the collar 88 is between the outer cylindrical portion 87b of the bearing 87 and the parts on the pressing member 85 side. The gap is formed by the length of
 デフロック部材44が、キー構造により左の前車軸35に一体回転及びスライド自在に外嵌されている。運転座席13の下側に備えられたデフロックペダル(図示せず)を踏み操作することにより、デフロック部材44をスライド操作して前輪デフ装置36のケース36aに咬合させることにより、前輪デフ装置36をデフロック状態に操作できる。 The diff lock member 44 is fitted on the left front axle 35 integrally rotatably and slidably by a key structure. By stepping on the diff lock pedal (not shown) provided on the lower side of the driver's seat 13, the diff lock member 44 is slide operated to engage the case 36a of the front wheel diff device 36, whereby the front wheel diff device 36 is It can be operated in the differential lock state.
 以上の構成により、無段変速装置24(変速装置)の動力が走行伝動系及び作業伝動系に並列的に分岐されて、走行伝動系の動力が前輪1及び後輪2(走行用の車輪)に伝達される状態となっている。 With the above configuration, the power of the continuously variable transmission 24 (transmission) is branched in parallel to the travel transmission system and the work transmission system, and the power of the travel transmission system is the front wheels 1 and the rear wheels 2 (wheels for travel) It will be transmitted to the
(苗植付装置への作業伝動系の構成)
 図4に示すように、ミッションケース20の右の横側部に、静油圧式無段変速装置45(無段変速装置に相当)が連結されており、静油圧式無段変速装置45の入力軸45aと伝動軸28とが連結されている。静油圧式無段変速装置45の入力軸45aがミッションケース20の反対側に突出しており、静油圧式無段変速装置45に冷却風を送るファン46が、静油圧式無段変速装置45の入力軸45aの突出部に連結されている。
(Configuration of work transmission system to seedling planting device)
As shown in FIG. 4, a hydrostatic continuously variable transmission 45 (corresponding to a continuously variable transmission) is connected to the right lateral side of the transmission case 20, and an input of the hydrostatic continuously variable transmission 45 is provided. The shaft 45a and the transmission shaft 28 are connected. The input shaft 45a of the hydrostatic stepless transmission 45 projects to the opposite side of the transmission case 20, and the fan 46 for sending the cooling air to the hydrostatic stepless transmission 45 is the same as that of the hydrostatic stepless transmission 45. It is connected to the projection of the input shaft 45a.
 静油圧式無段変速装置45の出力軸45bに伝動軸47が連結されている。ミッションケース20の内部に、伝動軸48,49が左右方向に沿って支持されており、伝動軸49の端部が伝動軸47と同芯状に相対回転自在に支持されている。 A transmission shaft 47 is connected to the output shaft 45 b of the hydrostatic continuously variable transmission 45. The transmission shafts 48 and 49 are supported along the left-right direction in the transmission case 20, and the end of the transmission shaft 49 is supported so as to be relatively coaxial with the transmission shaft 47.
 静油圧式無段変速装置45の出力軸45b(出力部)よりも下流に減速機構が設けられている。本実施形態では、減速機構は、伝動ギヤ50と伝動ギヤ51とを用いて構成される。具体的には、2組のギヤを備えた伝動ギヤ50が、伝動軸48の外側に回転自在に外嵌されている。伝動軸47に形成された伝動ギヤ47aと、伝動ギヤ50の大径ギヤ部分50aとが咬合し、伝動軸49に連結された伝動ギヤ51と、伝動ギヤ50の小径ギヤ部分50bとが咬合している。そして、伝動ギヤ47aと大径ギヤ部分50aとのギヤ比、及び、小径ギヤ部分50bと伝動ギヤ51とのギヤ比の組み合わせを適切に設定することにより、静油圧式無段変速装置45の出力軸45bの回転速度が減速されて伝動軸49に伝達される。 A speed reduction mechanism is provided downstream of the output shaft 45 b (output unit) of the hydrostatic continuously variable transmission 45. In the present embodiment, the reduction gear mechanism is configured using the transmission gear 50 and the transmission gear 51. Specifically, a transmission gear 50 having two sets of gears is rotatably fitted on the outside of the transmission shaft 48. The transmission gear 47a formed on the transmission shaft 47 and the large diameter gear portion 50a of the transmission gear 50 are engaged, and the transmission gear 51 connected to the transmission shaft 49 and the small diameter gear portion 50b of the transmission gear 50 are engaged. ing. The output of the hydrostatic continuously variable transmission 45 is set by appropriately setting the gear ratio of the transmission gear 47a and the large diameter gear portion 50a and the gear ratio of the small diameter gear portion 50b and the transmission gear 51. The rotational speed of the shaft 45 b is reduced and transmitted to the transmission shaft 49.
 苗植付装置5で必要とする動力の速度、例えば回転速度が低い場合、その低い回転速度に合わせて静油圧式無段変速装置45が出力する動力の回転速度も低くしなければならないとすると、静油圧式無段変速装置45の出力軸45bからは低トルク・低速回転の動力が出力されることになる。その場合、苗植付装置5に伝達されるのが低トルク・低速回転の動力であれば、苗植付装置5の駆動抵抗により、苗植付装置5の駆動が停止してしまう可能性がある。ところが本実施形態のように、静油圧式無段変速装置45の出力軸45bよりも下流に減速機構(伝動ギヤ50及び伝動ギヤ51)が設けられていると、静油圧式無段変速装置45の出力軸45bから出力される動力の回転速度を高くしても、減速機構で減速した上で苗植付装置5に適切なトルク・回転速度の動力を伝達できる。このように、静油圧式無段変速装置45の出力軸45bの回転速度を設定回転速度以上にして、減速機構での減速比を大きくとることで、走行速度が低い場合や苗植付装置5で必要とする回転速度が低い場合でも、苗植付装置5には確実に動力が伝わる(植付アーム8を確実に駆動させる)ことができる。 If it is necessary to lower the rotational speed of the power output by the hydrostatic continuously variable transmission 45 in accordance with the low rotational speed, for example, if the rotational speed is low, for example, if the rotational speed is low. The power of low torque and low speed rotation is output from the output shaft 45 b of the hydrostatic continuously variable transmission 45. In that case, if it is the power of low torque and low speed rotation to be transmitted to the seedling planting device 5, the driving resistance of the seedling planting device 5 may cause the driving of the seedling planting device 5 to stop. is there. However, as in the present embodiment, when the reduction mechanism (transmission gear 50 and transmission gear 51) is provided downstream of the output shaft 45b of the hydrostatic stepless transmission 45, the hydrostatic stepless transmission 45 is provided. Even if the rotational speed of the power output from the output shaft 45b of the vehicle is increased, the power of appropriate torque and rotational speed can be transmitted to the seedling planting device 5 after being decelerated by the reduction mechanism. Thus, by setting the rotational speed of the output shaft 45b of the hydrostatic continuously variable transmission 45 at or above the set rotational speed and increasing the reduction ratio in the reduction mechanism, the traveling speed is low or the seedling planting device 5 Even when the rotation speed required in the above is low, power can be transmitted to the seedling planting device 5 reliably (the planting arm 8 can be reliably driven).
 減速機構(伝動ギヤ50及び伝動ギヤ51)よりも下流には、入力される動力に対して出力される動力の角速度を変化させる不等速変速装置52が備えられている。本実施形態では、ミッションケース20の内部において、伝動軸48,49に亘って、ギヤ変速型式の不等速変速装置52が備えられており、伝動軸48に第1ベベルギヤ53が連結されている。ミッションケース20の後部に出力軸54が前後方向に沿って支持され、第2ベベルギヤ55が出力軸54の前部に植付クラッチ56を介して外嵌されており、ベベルギヤ53,55が咬合している。 An unequal speed transmission 52 is provided downstream of the reduction mechanism (transmission gear 50 and transmission gear 51) to change the angular velocity of the output power relative to the input power. In the present embodiment, the transmission case 48 is provided with a gear-shift-type unequal-speed transmission 52 in the inside of the transmission case 20, and the first bevel gear 53 is connected to the transmission shaft 48. . The output shaft 54 is supported along the longitudinal direction at the rear of the transmission case 20, and the second bevel gear 55 is externally fitted to the front of the output shaft 54 via the planting clutch 56, and the bevel gears 53 and 55 are engaged. ing.
 言い換えると、ミッションケース20内に支持された伝動軸48(第1軸)と、その伝動軸48の下流に平面視で伝動軸48と交差する方向に沿って配置された出力軸54(第2軸)とが設けられている。ベベルギヤ53,55は、伝動軸48に設けられる第1ベベルギヤ53と、出力軸54に設けられ且つ第1ベベルギヤ53に噛み合う第2ベベルギヤ55とを有する。加えて、ミッションケース20に出力軸54の少なくとも上流側端部が挿入される開口部APが形成され、第2ベベルギヤ55の直径が開口部APの直径よりも小さく設定されている。このように、第2ベベルギヤ55の直径が、ミッションケース20に形成される開口部APよりも小さく設定されていることで、ミッションケース20を破損させずに、第2ベベルギヤ55及び出力軸54を、ミッションケース20から開口部APを通して取り出すことができる。 In other words, the transmission shaft 48 (first shaft) supported in the transmission case 20, and the output shaft 54 (the second shaft) disposed downstream of the transmission shaft 48 in a direction intersecting the transmission shaft 48 in plan view Axis) is provided. The bevel gears 53 and 55 have a first bevel gear 53 provided on the transmission shaft 48 and a second bevel gear 55 provided on the output shaft 54 and meshing with the first bevel gear 53. In addition, the transmission case 20 is formed with an opening AP into which at least the upstream end of the output shaft 54 is inserted, and the diameter of the second bevel gear 55 is set smaller than the diameter of the opening AP. Thus, the diameter of the second bevel gear 55 is set smaller than the opening AP formed in the transmission case 20, so that the second bevel gear 55 and the output shaft 54 can be used without damaging the transmission case 20. Can be taken out of the transmission case 20 through the opening AP.
 また、作業伝動系に動力の伝達方向を変換するベベルギヤ53,55が設けられ、ベベルギヤ53,55は減速機構(伝動ギヤ50及び伝動ギヤ51)とは別途に設けられている。つまり、ベベルギヤ53,55では変速(増速、減速)を行わなくてもよいため、ベベルギヤ53,55の径が大きくなることを回避できる。また、静油圧式無段変速装置45及び減速機構(伝動ギヤ50及び伝動ギヤ51)よりも下流側にベベルギヤ53,55が設けられて、動力の伝達方向の変換が行われる。つまり、静油圧式無段変速装置45及び減速機構(伝動ギヤ50及び伝動ギヤ51)により変速が行われる機構と、ベベルギヤ53,55により動力の伝達方向の変換が行われる機構とを分けることができる。 Further, bevel gears 53 and 55 for converting the power transmission direction are provided in the work transmission system, and the bevel gears 53 and 55 are provided separately from the reduction mechanism (transmission gear 50 and transmission gear 51). That is, since the bevel gears 53 and 55 do not need to perform shifting (acceleration and deceleration), the diameter of the bevel gears 53 and 55 can be prevented from increasing. Further, bevel gears 53 and 55 are provided on the downstream side of the hydrostatic continuously variable transmission 45 and the reduction mechanism (the transmission gear 50 and the transmission gear 51), and the power transmission direction is changed. That is, the mechanism in which the gear shift is performed by the hydrostatic continuously variable transmission 45 and the reduction mechanism (transmission gear 50 and transmission gear 51) and the mechanism in which the power transmission direction is converted by the bevel gears 53 and 55 may be divided. it can.
 図1及び図4に示すように、出力軸54の後部に、伝動軸57が自在継手(図示せず)を介して連結されており、伝動軸57の後部が、自在継手(図示せず)を介して、苗植付装置5の入力軸(図示せず)に連結されている。 As shown in FIGS. 1 and 4, the transmission shaft 57 is connected to the rear of the output shaft 54 via a universal joint (not shown), and the rear of the transmission shaft 57 is a universal joint (not shown) , And is connected to the input shaft (not shown) of the seedling planting device 5.
 以上の構成により、無段変速装置24で変速された動力が、無段変速装置24の出力軸24bから、伝動軸28及び静油圧式無段変速装置45の入力軸45aを介して、静油圧式無段変速装置45に伝達される。 With the above configuration, the power shifted by the continuously variable transmission 24 is output from the output shaft 24 b of the continuously variable transmission 24 through the transmission shaft 28 and the input shaft 45 a of the hydrostatic continuously variable transmission 45. It is transmitted to the continuously variable transmission 45.
 静油圧式無段変速装置45で変速された動力が、静油圧式無段変速装置45の出力軸45bから、伝動軸47(伝動ギヤ47a)、伝動ギヤ50,51、伝動軸49、不等速変速装置52、伝動軸48、ベベルギヤ53,55、植付クラッチ56、出力軸54、伝動軸57を介して、苗植付装置5に伝達される。植付クラッチ56は、第2ベベルギヤ55と出力軸54との間での動力の伝達を伝動状態にするか、或いは、第2ベベルギヤ55と出力軸54との間での動力の伝達を遮断状態にするかを切り替えることができる。 The power shifted by the hydrostatic stepless transmission 45 is transmitted from the output shaft 45b of the hydrostatic stepless transmission 45 to the transmission shaft 47 (transmission gear 47a), transmission gears 50, 51, transmission shaft 49, unequal It is transmitted to the seedling planting device 5 via the speed change gear 52, the transmission shaft 48, the bevel gears 53 and 55, the planting clutch 56, the output shaft 54, and the transmission shaft 57. The planting clutch 56 transmits power transmission between the second bevel gear 55 and the output shaft 54, or interrupts transmission of power between the second bevel gear 55 and the output shaft 54. Can be switched.
 図5は変速装置(無段変速装置24)から出力される動力が走行伝動系及び作業伝動系に伝達される状態について説明する図である。尚、無段変速装置24の具体的な構成については図示を省略している。図示するように、前進側及び後進側での変速指令が変速レバー30により行われると、その指令は制御装置63に伝達される。そして、その指令に基づいて無段変速装置24及び静油圧式無段変速装置45の動作制御が行われる。 FIG. 5 is a view for explaining a state in which power output from the transmission (stepless transmission 24) is transmitted to the traveling transmission system and the work transmission system. The specific configuration of the continuously variable transmission 24 is not shown. As shown in the drawing, when the shift command on the forward and reverse sides is issued by the shift lever 30, the command is transmitted to the control device 63. Then, based on the command, operation control of the continuously variable transmission 24 and the hydrostatic continuously variable transmission 45 is performed.
 具体例を挙げて説明すると、制御装置63は、変速レバー30により行われた前進指令を受けると、無段変速装置24の出力軸24bが前進時の回転方向で且つ所定の回転速度で回転するように無段変速装置24の例えば油圧ポンプのポンプ斜板の傾斜角度をアクチュエータにより調節する。それに対して、制御装置63は、変速レバー30により行われた後進指令を受けると、無段変速装置24の出力軸24bが前進時の回転方向とは逆の後進時の回転方向で且つ所定の回転速度で回転するように無段変速装置24の例えば油圧ポンプのポンプ斜板の傾斜角度をアクチュエータにより調節する。そして、無段変速装置24の出力軸24bから出力される動力は副変速装置31などを介して走行用の車輪(前輪1、後輪2)に伝達される。 Describing the specific example, when the control device 63 receives the forward command issued by the shift lever 30, the output shaft 24b of the continuously variable transmission 24 rotates in the forward rotation direction and at a predetermined rotation speed. As described above, the tilt angle of the pump swash plate of, for example, the hydraulic pump of the continuously variable transmission 24 is adjusted by the actuator. On the other hand, when the control device 63 receives the reverse command issued by the shift lever 30, the output shaft 24b of the continuously variable transmission 24 rotates in the reverse direction to the reverse direction in the forward direction and in the reverse direction. The tilt angle of the pump swash plate of, for example, the hydraulic pump of the continuously variable transmission 24 is adjusted by the actuator so as to rotate at the rotational speed. The power output from the output shaft 24b of the continuously variable transmission 24 is transmitted to the traveling wheels (front wheel 1 and rear wheel 2) via the auxiliary transmission 31 and the like.
 また、本実施形態では、無段変速装置24の出力軸24bから出力される動力が走行伝動系及び作業伝動系に並列的に分岐される分岐部Dは、副変速装置31が設けられている部位である。この部位では、伝動軸28の動力が副変速装置31によって伝動軸29(走行伝動系)へと分岐され、伝動軸28の動力は静油圧式無段変速装置45の入力軸45a(作業伝動系)へも伝達される。無段変速装置24の出力軸24bと伝動軸28とは同芯であり、両者は同軸と見なすことができるので、無段変速装置24の出力軸24bの途中に分岐部Dが設けられた構成になっているとも言える。加えて、無段変速装置24の出力軸24bと静油圧式無段変速装置45の入力軸45aとが同軸上(同芯上)に配置された構成になっている。無段変速装置24の出力軸24bと、無段変速装置24から出力される動力が伝達される静油圧式無段変速装置45の入力軸45aとが同軸上に配置されることで、無段変速装置24の出力軸24bと静油圧式無段変速装置45の入力軸45aとを例えばギヤなどを用いて連結しなくてもよくなる。その結果、部品点数が減少することで、装置重量が減少するという効果、装置コストが減少するという効果、装置の組み立てが容易になるという効果が得られる。 Further, in the present embodiment, the branch transmission D at which the power output from the output shaft 24b of the continuously variable transmission 24 is branched in parallel to the traveling transmission system and the work transmission system is provided with the sub transmission 31. It is a site. In this portion, the power of the transmission shaft 28 is branched to the transmission shaft 29 (travel transmission system) by the auxiliary transmission 31, and the power of the transmission shaft 28 is the input shaft 45a of the hydrostatic stepless transmission 45 (work transmission system Is also transmitted to Since the output shaft 24b of the continuously variable transmission 24 and the transmission shaft 28 are coaxial and can be regarded as coaxial, the branch D is provided in the middle of the output shaft 24b of the continuously variable transmission 24. It can be said that In addition, the output shaft 24b of the continuously variable transmission 24 and the input shaft 45a of the hydrostatic continuously variable transmission 45 are arranged coaxially (coaxially). Since the output shaft 24 b of the continuously variable transmission 24 and the input shaft 45 a of the hydrostatic continuously variable transmission 45 to which the power output from the continuously variable transmission 24 is transmitted are coaxially arranged, The output shaft 24b of the transmission 24 and the input shaft 45a of the hydrostatic stepless transmission 45 need not be connected using, for example, gears. As a result, by reducing the number of parts, the effect of reducing the weight of the device, the effect of reducing the cost of the device, and the effect of facilitating the assembly of the device can be obtained.
 図5に示すように、静油圧式無段変速装置45は油圧ポンプ80及び油圧モータ82を備えている。油圧ポンプ80にはポンプ斜板81が設けられ、油圧モータ82にはモータ斜板83が設けられる。本実施形態では、油圧ポンプ80が有するポンプ斜板81の傾斜角度をアクチュエータ67によって調節でき、モータ斜板83の傾斜角度は固定である。そして、制御装置63が、アクチュエータ67の動作を制御する(即ち、ポンプ斜板81の傾斜角度を調節する)ことで、静油圧式無段変速装置45において入力軸45aの回転速度から出力軸45bの回転速度への変速が行われる。そして、静油圧式無段変速装置45の出力軸45bから出力される動力は、伝動軸47などを介して苗植付装置5に伝達される。 As shown in FIG. 5, the hydrostatic stepless transmission 45 includes a hydraulic pump 80 and a hydraulic motor 82. The hydraulic pump 80 is provided with a pump swash plate 81, and the hydraulic motor 82 is provided with a motor swash plate 83. In this embodiment, the inclination angle of the pump swash plate 81 of the hydraulic pump 80 can be adjusted by the actuator 67, and the inclination angle of the motor swash plate 83 is fixed. Then, the control device 63 controls the operation of the actuator 67 (that is, adjusts the inclination angle of the pump swash plate 81), whereby the rotational speed of the input shaft 45a in the hydrostatic continuously variable transmission device 45 produces the output shaft 45b. A shift to the rotational speed of the Then, the power output from the output shaft 45 b of the hydrostatic continuously variable transmission 45 is transmitted to the seedling planting device 5 via the transmission shaft 47 and the like.
 例えば、水田において植付作業を行う場合、以下のような操作が行われる。
 植付作業の開始時において、作業者は、設定部(図示せず)により複数の設定株間のうちの一つを設定(選択)する。そして、設定部により一つの株間が設定された状態において植付作業を開始すると、設定された株間に対応して制御装置63が操作信号を出力し、その操作信号に応じて静油圧式無段変速装置45による変速動作が実施される。
For example, when carrying out a planting work in a paddy field, the following operations are performed.
At the start of the planting operation, the operator sets (selects) one of a plurality of set stocks by the setting unit (not shown). Then, when the planting work is started in a state where one stock is set by the setting unit, the control device 63 outputs an operation signal corresponding to the set stock, and the hydrostatic stepless is output according to the operation signal. A shift operation by the transmission 45 is performed.
 植付クラッチ56を伝動状態に操作すると、苗植付装置5に動力が伝達されて、苗植付装置5が作動する。
 苗植付装置5が作動すると、苗のせ台10が左右に往復横送り駆動されるのに伴って、回転ケース7が図1の紙面の反時計方向に回転駆動され、2組の植付アーム8が、苗のせ台10の下部から交互に苗(農用資材に相当)を取り出して圃場面としての田面に植え付ける。これにより、機体11の走行方向に沿って、事前に設定された供給量、即ち設定株間(供給間隔に相当)で、苗が田面に間欠的に植え付け供給される。
 植付クラッチ56を遮断状態に操作すると、苗植付装置5への動力が遮断されて、苗植付装置5が停止し、苗のせ台10及び回転ケース7が停止する。
When the planting clutch 56 is operated to the power transmission state, power is transmitted to the seedling planting device 5, and the seedling planting device 5 is operated.
When the seedling planting device 5 is operated, the rotary case 7 is rotationally driven counterclockwise in the plane of FIG. 1 as the seedling platform 10 is driven to reciprocate laterally to the left and right, and two sets of planting arms 8 takes out seedlings (corresponding to agricultural materials) alternately from the lower part of the seedling platform 10 and plant it on the field as a mochi scene. As a result, along the traveling direction of the fuselage 11, the seedlings are intermittently planted and supplied on the field in the supply amount set in advance, that is, between the set stocks (corresponding to the supply interval).
When the planting clutch 56 is operated in the shutoff state, the power to the seedling planting device 5 is shut off, the seedling planting device 5 is stopped, and the seedling platform 10 and the rotation case 7 are stopped.
 以上の構成により、無段変速装置24(変速装置)の動力が走行伝動系及び作業伝動系に並列的に分岐されて、作業伝動系の動力が静油圧式無段変速装置45及び不等速変速装置52を通って、苗植付装置5(作業装置)に伝達される状態となっている。 With the above configuration, the power of the continuously variable transmission 24 (transmission) is branched in parallel to the traveling transmission system and the work transmission system, and the power of the work transmission system is the hydrostatic continuously variable transmission 45 and the unequal speed. The transmission 52 is in a state of being transmitted to the seedling planting device 5 (working device).
 以上のような構成の水田作業機では、水田作業機を後進させるのに伴って無段変速装置24の出力軸24bが前進の回転方向とは逆の後進時の回転方向に回転する。そのため、作業伝動系に対してその後進時の回転方向で回転する動力が伝達されると、苗植付装置5も逆方向に駆動されて、例えば、苗植付装置5の植付アーム8が逆回転することで、苗が意図しない方向に飛ばされる可能性がある。 In the paddy field construction machine having the above-described configuration, as the paddy field construction machine is moved backward, the output shaft 24b of the continuously variable transmission 24 rotates in the reverse rotation direction, which is opposite to the forward rotation direction. Therefore, when power to rotate in the rotational direction at the time of backward travel is transmitted to the work transmission system, the seedling planting device 5 is also driven in the reverse direction, and for example, the planting arm 8 of the seedling planting device 5 Reverse rotation may cause the seedlings to fly in unintended directions.
 ところが、水田作業機には、分岐部Dよりも作業伝動系側で、無段変速装置24から作業伝動系に伝達される動力を調節できる動力調節機構を設けている。本実施形態では、動力調節機構は、油圧ポンプ80が有するポンプ斜板81の傾斜角度を調節するアクチュエータ67を用いて実現される。つまり、静油圧式無段変速装置45のポンプ斜板81の傾斜角度を調節することで、その静油圧式無段変速装置45から苗植付装置5に動力を伝達させない動力調節機構の機能を実現できる。 However, the paddy field work machine is provided with a power adjustment mechanism capable of adjusting the power transmitted from the continuously variable transmission 24 to the work transmission system on the work transmission system side with respect to the branch portion D. In the present embodiment, the power adjustment mechanism is realized using an actuator 67 that adjusts the inclination angle of the pump swash plate 81 that the hydraulic pump 80 has. That is, by adjusting the inclination angle of the pump swash plate 81 of the hydrostatic continuously variable transmission 45, the function of the power adjustment mechanism that does not transmit power from the hydrostatic continuously variable transmission 45 to the seedling planting device 5 is realizable.
 そして、制御装置63は、無段変速装置24から出力される動力が走行用の車輪(前輪1、後輪2)を前進駆動させる前進動力である場合には、上記動力調節機構の動作により、その前進動力を苗植付装置5に伝達し、無段変速装置24から出力される動力が走行用の車輪(前輪1、後輪2)を後進駆動させる後進動力である場合には、上記動力調節機構の動作により、その後進動力を苗植付装置5に伝達しないことができる。つまり、水田作業機において、機体11の走行方向を前進及び後進に切り替えても、苗などの農用資材が意図しない方向に飛ばされることのないようにできる。 Then, when the power output from the continuously variable transmission 24 is the forward power for driving the traveling wheels (the front wheel 1 and the rear wheel 2) forward, the control device 63 operates by the above-mentioned power adjustment mechanism. When the forward power is transmitted to the seedling planting device 5 and the power output from the continuously variable transmission 24 is a reverse power to drive the traveling wheels (front wheel 1 and rear wheel 2) backward, the above power By the operation of the adjustment mechanism, it is possible to transmit no advancing power to the seedling planting device 5 thereafter. That is, in the paddy field work machine, even if the traveling direction of the airframe 11 is switched between forward and reverse, agricultural materials such as seedlings can be prevented from being skipped in unintended directions.
 具体的には、制御装置63は、変速レバー30により行われた前進指令を受けた場合、静油圧式無段変速装置45の出力軸45bが前進時の回転方向で且つ所定の回転速度で回転するように静油圧式無段変速装置45の油圧ポンプ80のポンプ斜板81の傾斜角度をアクチュエータ67により調節する。それに対して、制御装置63は、変速レバー30により行われた後進指令を受けた場合、静油圧式無段変速装置45の出力軸45bが回転しない或いは非常に小さいトルクしか加わらないように静油圧式無段変速装置45の油圧ポンプ80のポンプ斜板81の傾斜角度をアクチュエータ67により調節する。 Specifically, when the control device 63 receives the forward command issued by the shift lever 30, the output shaft 45b of the hydrostatic stepless transmission 45 rotates in the forward rotation direction and at a predetermined rotation speed. The inclination angle of the pump swash plate 81 of the hydraulic pump 80 of the hydrostatic continuously variable transmission 45 is adjusted by the actuator 67 as follows. On the other hand, when the control device 63 receives the reverse command issued by the shift lever 30, the output shaft 45b of the hydrostatic stepless transmission 45 does not rotate or only a very small torque is applied. The inclination angle of the pump swash plate 81 of the hydraulic pump 80 of the continuously variable transmission 45 is adjusted by the actuator 67.
(不等速変速装置の構成)
 図4に示すように、不等速変速装置52は、伝動軸49に連結された等速ギヤ58及び不等速ギヤ59、伝動軸48に相対回転自在に外嵌された等速ギヤ60及び不等速ギヤ61を備えており、等速ギヤ58,60が咬合し、不等速ギヤ59,61が咬合している。
(Configuration of unequal speed transmission)
As shown in FIG. 4, the unequal speed transmission 52 includes a constant speed gear 58 and an unequal speed gear 59 connected to the transmission shaft 49, and a constant speed gear 60 externally fitted to the transmission shaft 48 in a relatively rotatable manner. The inconstant speed gear 61 is provided, and the constant speed gears 58 and 60 are engaged, and the inconstant speed gears 59 and 61 are engaged.
 キー状の変速部材62が伝動軸48の内部にスライド自在に支持されており、変速部材62をスライド操作して、等速ギヤ60及び不等速ギヤ61のうちの一つに係合させることにより、変速部材62を係合させた等速ギヤ60及び不等速ギヤ61を伝動軸48に連結状態とできる。 A key-like speed changing member 62 is slidably supported inside the transmission shaft 48, and the speed changing member 62 is slidably operated to be engaged with one of the constant speed gear 60 and the unequal speed gear 61. Thus, the constant velocity gear 60 and the inconstant velocity gear 61 with the transmission member 62 engaged can be connected to the transmission shaft 48.
 等速ギヤ58,60は、円形ギヤで同径である。これにより、変速部材62を等速ギヤ60に係合させると、伝動軸49の1回転の動力が、角速度の等速状態で1回転の動力として伝動軸48に伝達される。 The constant velocity gears 58 and 60 are circular gears and have the same diameter. Thus, when the transmission member 62 is engaged with the constant velocity gear 60, the power of one rotation of the transmission shaft 49 is transmitted to the transmission shaft 48 as the power of one rotation at the constant velocity state of the angular velocity.
 不等速ギヤ59,61は、楕円ギヤ、偏芯ギヤ又は非円形ギヤである。これにより、変速部材62を不等速ギヤ61のうちの一つに係合させると、伝動軸49の1回転の動力が1回転の動力として伝動軸48に伝達されるのであるが、1回転のうち角速度が高低に変化する。 The nonuniform gears 59, 61 are elliptical gears, eccentric gears or non-circular gears. Thereby, when the transmission member 62 is engaged with one of the unequal-speed gears 61, the power of one rotation of the transmission shaft 49 is transmitted to the transmission shaft 48 as the power of one rotation. The angular velocity changes to high and low.
 不等速ギヤ59,61が偏芯ギヤである場合、一つの偏芯ギヤにおいてギヤ歯の転位が複数設定されており、ギヤ歯によって転位が異なるものに設定されている。これにより、不等速ギヤ59,61のバックラッシのバラ付きを少なくすることができて、不等速ギヤ59,61による動力の伝達が滑らかなものにできる。 When the inconstant speed gears 59 and 61 are eccentric gears, a plurality of dislocations of the gear teeth are set in one eccentric gear, and the dislocations are set to be different depending on the gear teeth. As a result, it is possible to reduce the variation in backlash of the inconstant speed gears 59 and 61, and the transmission of power by the inconstant speed gears 59 and 61 can be made smooth.
 加えて、不等速変速装置52の出力部に対応する伝動軸48の回転速度は、苗植付装置5に伝達される出力軸54及び伝動軸57の回転速度と同じである。言い換えると、伝動軸48の回転速度は、ベベルギヤ53,55、植付クラッチ56、出力軸54、伝動軸57を介して、苗植付装置5に伝達される間に変化しない。これは、減速機構(伝動ギヤ50及び伝動ギヤ51)よりも下流に不等速変速装置52が設置され、不等速変速装置52よりも下流では変速が行われないことにより得られる効果である。このような構成により、不等速変速装置52によって、伝動軸48に1回転のうち角速度が高低に変化する状態を作り出すと、その状態が伝動軸57及び苗植付装置5にもそのまま伝達され、苗が田面に供給される瞬間での苗植付装置5の植付アーム8の作動速度が適切な値となるようにできる。 In addition, the rotational speed of the transmission shaft 48 corresponding to the output portion of the unequal speed transmission 52 is the same as the rotational speeds of the output shaft 54 and the transmission shaft 57 transmitted to the seedling planting device 5. In other words, the rotational speed of the transmission shaft 48 does not change while being transmitted to the seedling planting device 5 via the bevel gears 53 and 55, the planting clutch 56, the output shaft 54, and the transmission shaft 57. This is an effect obtained by installing the inconstant speed transmission 52 downstream of the speed reduction mechanism (the transmission gear 50 and the transmission gear 51) and not performing the gear shift downstream of the inconstant speed transmission 52. . With such a configuration, when a state in which the angular velocity changes to high or low in one rotation of the transmission shaft 48 is created by the unequal speed transmission 52, the state is transmitted to the transmission shaft 57 and the seedling planting device 5 as it is. The operation speed of the planting arm 8 of the seedling planting device 5 at the moment when the seedling is supplied to the field can be set to an appropriate value.
 更に、本実施形態では、植付クラッチ56は、第2ベベルギヤ55と出力軸54とが相対的に1回転する間に1回だけ、即ち360°に1回だけ遮断状態から伝動状態に移行できるように構成されている。例えば、出力軸54には1つの爪部が設けられ、第2ベベルギヤ55が設けられた部材には1つの窪み部が設けられている。そして、第2ベベルギヤ55と出力軸54とが相対的に1回転する間に、出力軸54の爪部は1回だけ第2ベベルギヤ55が設けられた部材には1つの窪み部に嵌まることで伝動状態に移行できるような位置関係になっている。このように、第2ベベルギヤ55と出力軸54とが特定の位置関係にあるタイミングでのみ植付クラッチ56が伝動状態に移行できるように構成にすることで、植付クラッチ56が伝動状態である間は、不等速変速装置52により伝動軸48に1回転のうち角速度が高低に変化するタイミングと、植付アーム8の1回転のうち角速度が高低に変化するタイミング(速度分布)とを常に同期させることができる。以上のように、不等速変速装置52の出力部に対応する伝動軸48から苗植付装置5の間では、軸の回転速度は一定であり(例えば、伝動軸48の回転周期と植付アーム8の回転周期とが同じ)、且つ、軸の回転位相も一定である。その結果、植付クラッチ56が伝動状態及び遮断状態に何度切り替えられても、伝動軸48の1回転のうち角速度が高低に変化するタイミングと、植付アーム8の1回転のうち角速度が高低に変化するタイミング(速度分布)とは同じになる。 Furthermore, in the present embodiment, the planting clutch 56 can shift from the disconnection state to the transmission state only once, that is, once at 360 °, while the second bevel gear 55 and the output shaft 54 make one relative rotation. Is configured as. For example, the output shaft 54 is provided with one claw portion, and the member provided with the second bevel gear 55 is provided with one hollow portion. Then, while the second bevel gear 55 and the output shaft 54 rotate relative to each other relative to each other, the claws of the output shaft 54 may be fitted into one recessed portion in the member provided with the second bevel gear 55 only once. It is in such a positional relationship that it can shift to the power transmission state. Thus, by configuring the planting clutch 56 to shift to the transmission state only when the second bevel gear 55 and the output shaft 54 have a specific positional relationship, the planting clutch 56 is in the transmission state. During the interval, the timing at which the angular velocity changes to high and low among the one rotation on the transmission shaft 48 by the unequal speed transmission 52 and the timing (velocity distribution) at which the angular velocity changes to high and low among one rotation of the planting arm 8 It can be synchronized. As described above, the rotational speed of the shaft is constant between the transmission shaft 48 corresponding to the output portion of the inconstant speed transmission 52 and the seedling planting device 5 (for example, the rotation cycle of the transmission shaft 48 and planting) The rotation cycle of the arm 8 is the same), and the rotational phase of the shaft is also constant. As a result, even if the planting clutch 56 is switched to the transmission state and the disconnection state any number of times, the timing at which the angular velocity changes to high or low within one rotation of the transmission shaft 48, and the angular velocity from high to low within one rotation of the planting arm 8 Is the same as the timing (velocity distribution) changing to.
[第2実施形態]
 第2実施形態の水田作業機は、動力調節機構の構成が上記第1実施形態と異なっている。以下に第2実施形態の水田作業機について説明するが、上記実施形態と同様の構成については説明を省略する。
Second Embodiment
The paddy field work machine of the second embodiment differs from the first embodiment in the configuration of the power adjustment mechanism. Although the paddy field work machine of a 2nd embodiment is explained below, explanation is omitted about the same composition as the above-mentioned embodiment.
 図6は、変速装置(無段変速装置24)から出力される動力が走行伝動系及び作業伝動系に伝達される状態について説明する図である。尚、無段変速装置24の具体的な構成については図示を省略している。本実施形態でも、前進側及び後進側での変速指令が変速レバー30により行われると、その指令は制御装置63に伝達される。そして、制御装置63は、変速レバー30により行われた前進指令を受けると、無段変速装置24の出力軸24bが前進時の回転方向で且つ所定の回転速度で回転するように無段変速装置24の例えば油圧ポンプのポンプ斜板の傾斜角度をアクチュエータにより調節する。それに対して、制御装置63は、変速レバー30により行われた後進指令を受けると、無段変速装置24の出力軸24bが前進時の回転方向とは逆の後進時の回転方向で且つ所定の回転速度で回転するように無段変速装置24の例えば油圧ポンプのポンプ斜板の傾斜角度をアクチュエータにより調節する。 FIG. 6 is a diagram for explaining a state in which the power output from the transmission (stepless transmission 24) is transmitted to the traveling transmission system and the work transmission system. The specific configuration of the continuously variable transmission 24 is not shown. Also in the present embodiment, when the shift command on the forward and reverse sides is issued by the shift lever 30, the command is transmitted to the control device 63. Then, when the control device 63 receives the forward movement command performed by the shift lever 30, the continuously variable transmission 24 is rotated such that the output shaft 24b of the continuously variable transmission 24 rotates in the forward rotation direction at a predetermined rotation speed. For example, the inclination angle of the pump swash plate of the hydraulic pump 24 is adjusted by the actuator. On the other hand, when the control device 63 receives the reverse command issued by the shift lever 30, the output shaft 24b of the continuously variable transmission 24 rotates in the reverse direction to the reverse direction in the forward direction and in the reverse direction. The tilt angle of the pump swash plate of, for example, the hydraulic pump of the continuously variable transmission 24 is adjusted by the actuator so as to rotate at the rotational speed.
 加えて、本実施形態では、無段変速装置24の出力軸24bと同軸上(同芯上)にある伝動軸28の途中に、即ち、分岐部Dよりも下流且つ静油圧式無段変速装置45よりも上流に、走行用の車輪(前輪1、後輪2)を前進回転させる場合の無段変速装置24の出力軸24bの前進駆動力を静油圧式無段変速装置45に伝達し、走行用の車輪(前輪1、後輪2)を後進回転させる場合の無段変速装置24の出力軸24bの後進駆動力を静油圧式無段変速装置45に伝達しないように構成されるクラッチ84を、動力調節機構として設けている。 In addition, in the present embodiment, the hydrostatic stepless transmission is provided in the middle of the transmission shaft 28 coaxially (coaxially) with the output shaft 24b of the continuously variable transmission 24, that is, downstream of the branch portion D. The forward drive force of the output shaft 24b of the continuously variable transmission 24 is transmitted to the hydrostatic stepless transmission 45 upstream of 45 for forward rotation of the traveling wheels (front wheel 1, rear wheel 2), A clutch 84 configured not to transmit the reverse drive force of the output shaft 24b of the continuously variable transmission 24 in the case of rotating the traveling wheels (front wheel 1, rear wheel 2) backwardly to the hydrostatic stepless transmission 45. Is provided as a power adjustment mechanism.
 例えば、伝動軸28に設けられるクラッチ84はワンウェイクラッチを用いて実現できる。つまり、このクラッチ84がワンウェイクラッチの場合、無段変速装置24の出力軸24bが前進時の回転方向で回転している場合はその回転が静油圧式無段変速装置45の入力軸45aに伝達され、無段変速装置24の出力軸24bが前進時の回転方向とは逆の後進時の回転方向で回転している場合はその回転が静油圧式無段変速装置45の入力軸45aに伝達されない。このように、無段変速装置24の出力軸24bの前進駆動力を静油圧式無段変速装置45の入力軸45aに伝達する状態と、無段変速装置24の出力軸24bの後進駆動力を静油圧式無段変速装置45の入力軸45aに伝達しない状態との何れかにクラッチ84の状態が切り替わることで、動力調節機構の機能が実現される。 For example, the clutch 84 provided on the transmission shaft 28 can be realized using a one-way clutch. That is, when the clutch 84 is a one-way clutch, when the output shaft 24b of the continuously variable transmission 24 is rotating in the forward rotation direction, the rotation is transmitted to the input shaft 45a of the hydrostatic continuously variable transmission 45 If the output shaft 24b of the continuously variable transmission 24 rotates in the reverse rotation direction opposite to the forward rotation direction, the rotation is transmitted to the input shaft 45a of the hydrostatic continuously variable transmission 45. I will not. As described above, a state in which the forward drive force of the output shaft 24b of the continuously variable transmission 24 is transmitted to the input shaft 45a of the hydrostatic continuously variable transmission 45, and the reverse drive force of the output shaft 24b of the continuously variable transmission 24 The function of the power adjustment mechanism is realized by switching the state of the clutch 84 to any of the states where it does not transmit to the input shaft 45 a of the hydrostatic continuously variable transmission 45.
[第1及び第2実施形態の別実施形態]
(1)第1及び第2実施形態では、水田作業機は圃場(水田)で植付作業を行う乗用型田植機であったが、水田作業機は乗用型直播機でもよい。
 また、作業装置として、機体11の走行方向に沿って事前に設定された供給間隔で、農用資材としての苗を圃場面に供給する苗植付装置5が備えられている例を説明したが、作業装置は、別の装置でもよい。
 例えば、作業装置は、機体11の走行方向に沿って事前に設定された供給間隔で、農用資材としての種子を圃場面に点播する播種装置でもよい。
[Another Embodiment of the First and Second Embodiments]
(1) In the first and second embodiments, the paddy field work machine is a riding type rice transplanter that carries out the planting work in a field (paddy field), but the paddy field working machine may be a riding direct type seeding machine.
Moreover, although the example provided with the seedling planting apparatus 5 which supplies a seedling as an agricultural material to a grazing scene was demonstrated as a working apparatus at the supply interval preset along the running direction of the fuselage 11, The work device may be another device.
For example, the work device may be a sowing device that seeds seeds as agricultural materials at a feed interval set in advance along the traveling direction of the fuselage 11 in a weir scene.
(2)ミッションケース20において、ミッションケース20の右の横側部に、無段変速装置24を設け、ミッションケース20の左の横側部に、静油圧式無段変速装置45を設けてもよい。 (2) In the transmission case 20, the continuously variable transmission 24 is provided on the right side of the transmission case 20, and the hydrostatic stepless transmission 45 is provided on the left side of the transmission case 20. Good.
(3)無段変速装置24に代えて、ギヤ変速型式の複数段の変速位置を備えた変速装置(図示せず)を設けてもよい。静油圧式無段変速装置45に代えて、ベルト無段型式の無段変速装置45を設けてもよい。 (3) Instead of the continuously variable transmission 24, a transmission (not shown) having a plurality of gear shift positions may be provided. In place of the hydrostatic continuously variable transmission 45, a belt continuously variable type continuously variable transmission 45 may be provided.
(4)ミッションケース20の内部において、伝動軸28,29,47,48,49等を、左右方向ではなく前後方向に配置するように構成してもよい。
 エンジン23に代えて、電動モータ(図示せず)を原動部として使用してもよい。
(4) Inside the transmission case 20, the transmission shafts 28, 29, 47, 48, 49, etc. may be arranged not in the lateral direction but in the longitudinal direction.
Instead of the engine 23, an electric motor (not shown) may be used as a driving unit.
(5)第1及び第2実施形態では、動力調節機構が、油圧ポンプ80が有するポンプ斜板81の傾斜角度を調節するアクチュエータ67を用いて実現される例を説明したが、動力調節機構の機能を他の装置により実現することもできる。
 例えば、動力調節機構は、静油圧式無段変速装置45の油圧ポンプが有するポンプ斜板の傾斜角度を調節するアクチュエータ及び油圧モータが有するモータ斜板の傾斜角度を調節するアクチュエータの少なくとも何れか一方を備えていればよい。
 つまり、モータ斜板83の傾斜角度を調節するアクチュエータを設け、そのアクチュエータにより動力調節機構が実現されてもよい。或いは、静油圧式無段変速装置45のポンプ斜板81の傾斜角度を調節するアクチュエータ67に加えて、モータ斜板83の傾斜角度を調節するアクチュエータを設け、それら両方のアクチュエータにより動力調節機構が実現されてもよい。
(5) In the first and second embodiments, an example has been described in which the power adjustment mechanism is realized using the actuator 67 for adjusting the inclination angle of the pump swash plate 81 of the hydraulic pump 80. The function can also be realized by another device.
For example, the power adjustment mechanism includes at least one of an actuator for adjusting the inclination angle of a pump swash plate of a hydraulic pump of the hydrostatic continuously variable transmission 45 and an actuator for adjusting the inclination angle of a motor swash plate of a hydraulic motor. As long as you have
That is, an actuator may be provided to adjust the inclination angle of the motor swash plate 83, and the power adjustment mechanism may be realized by the actuator. Alternatively, in addition to the actuator 67 for adjusting the inclination angle of the pump swash plate 81 of the hydrostatic continuously variable transmission 45, an actuator for adjusting the inclination angle of the motor swash plate 83 is provided, and the power adjustment mechanism It may be realized.
(6)第2実施形態では、クラッチ84がワンウェイクラッチである場合を例示したが、クラッチ84は、動力を伝達する状態及び伝達しない状態を切り替えることができる他の構成のクラッチでも構わない。例えば、摩擦クラッチやツメクラッチなどをクラッチ84として採用してもよい。この場合、変速レバー30により前進指令(変速指令)が行われると、制御装置63がその前進指令に応じて、無段変速装置24の出力軸24bの前進駆動力を静油圧式無段変速装置45に伝達するようにクラッチ84を伝動状態に動作させ、変速レバー30により後進指令(変速指令)が行われると、制御装置63がその後進指令に応じて、無段変速装置24の出力軸24bの後進駆動力を静油圧式無段変速装置45に伝達しないようにクラッチ84を遮断状態に動作させればよい。 (6) Although the case where the clutch 84 is a one-way clutch was illustrated in 2nd Embodiment, the clutch 84 may be a clutch of the other structure which can switch the state which transmits motive power, and the state which does not transmit. For example, a friction clutch or a claw clutch may be employed as the clutch 84. In this case, when a forward command (shift command) is issued by the shift lever 30, the controller 63 responds to the forward command to drive the forward drive force of the output shaft 24b of the continuously variable transmission 24 into the hydrostatic stepless transmission. When the clutch 84 is operated to transmit power to the transmission 45 and a reverse command (shift command) is issued by the shift lever 30, the control device 63 responds to the reverse command to output the output shaft 24b of the continuously variable transmission 24. The clutch 84 may be operated in the disengaged state so as not to transmit the reverse drive force of the above to the hydrostatic continuously variable transmission 45.
[第3実施形態]
 以下、図7~図11を参照しながら、第3実施形態について説明する。この実施形態においても、乗用型田植機が水田作業機の一例である。
 特段の説明がない限り、前後方向及び左右方向は、以下のように記載している。走行機体111(機体に相当)の走行時における前進側の進行方向が「前」であり、後進側の進行方向が「後」である。前後方向での前向き姿勢を基準として右側に相当する方向が「右」であり、左側に相当する方向が「左」である。すなわち、図7及び図8に符号(F)で示す方向が機体前側、図7及び図8に符号(B)で示す方向が機体後側である。図8に符号(L)で示す方向が機体左側、図8に符号(R)で示す方向が機体右側である。
Third Embodiment
The third embodiment will be described below with reference to FIGS. 7 to 11. Also in this embodiment, the riding type rice transplanter is an example of a paddy work machine.
Unless stated otherwise, the front-rear direction and the left-right direction are described as follows. The traveling direction on the forward side during traveling of the traveling vehicle body 111 (corresponding to the vehicle) is "front", and the traveling direction on the reverse side is "rear". The direction corresponding to the right side with respect to the forward posture in the front-rear direction is "right", and the direction corresponding to the left side is "left". That is, the direction shown by the code (F) in FIGS. 7 and 8 is the machine front side, and the direction shown by the code (B) in FIGS. 7 and 8 is the machine rear side. The direction indicated by the symbol (L) in FIG. 8 is the left side of the machine, and the direction indicated by the symbol (R) in FIG. 8 is the right side of the machine.
(乗用型田植機の全体構成)
 図7及び図8に示すように、乗用型田植機は、右及び左の前輪101(走行用の車輪に相当)、右及び左の後輪102(走行用の車輪に相当)を備えた走行機体111の後部に、リンク機構103及びリンク機構103を昇降駆動する油圧シリンダ104が備えられ、リンク機構103の後部に苗植付装置105(作業装置に相当)が支持されている。
(Overall configuration of riding type rice transplanter)
As shown in FIG. 7 and FIG. 8, the riding type rice transplanter is equipped with a right and left front wheel 101 (corresponding to a traveling wheel) and a right and left rear wheel 102 (corresponding to a traveling wheel). A link mechanism 103 and a hydraulic cylinder 104 for driving the link mechanism 103 up and down are provided at the rear of the machine body 111, and a seedling planting device 105 (corresponding to a work device) is supported at the rear of the link mechanism 103.
 苗植付装置105は、左右方向に所定間隔を置いて配置された植付伝動ケース106、植付伝動ケース106の後部の右及び左側部に回転自在に支持された回転ケース107、回転ケース107の両端に備えられた一対の植付アーム108、フロート109及び苗のせ台110等を備えている。 The seedling planting apparatus 105 includes a planting transmission case 106 disposed at a predetermined interval in the left-right direction, a rotation case 107 rotatably supported at the rear right and left portions of the planting transmission case 106, and a rotation case 107 A pair of planting arms 108, a float 109, and a seedling platform 110 are provided at both ends of the
 右及び左のマーカー112が、苗植付装置105の右及び左の横側部に備えられている。マーカー112は、圃場面Gに接地する作用姿勢(図7参照)、及び圃場面Gから上方に離れた格納姿勢に変更自在であり、マーカー112の先端部に回転体112aが回転自在に支持されている。マーカー112の作用姿勢において、マーカー112の回転体112aが圃場面Gに接地するのであり、走行機体111の走行に伴ってマーカー112の回転体112aが、回転しながら圃場面Gに指標を形成する。 Right and left markers 112 are provided on the right and left lateral sides of the seedling planting device 105. The marker 112 is changeable to a working posture (refer to FIG. 7) to be in contact with the crawling scene G and a storage posture away from the crawling scene G, and the rotating body 112a is rotatably supported by the tip of the marker 112 ing. In the action posture of the marker 112, the rotating body 112a of the marker 112 is in contact with the overhead scene G, and the rotating body 112a of the marker 112 forms an index in the overhead scene G while rotating as the traveling vehicle body 111 travels. .
(運転部の付近の構成)
 図7及び図8に示すように、走行機体111に、運転座席113、及び前輪101を操向操作する操縦ハンドル114が備えられている。
(Configuration around the driving unit)
As shown in FIGS. 7 and 8, the traveling vehicle body 111 is provided with a driver's seat 113 and a steering handle 114 for steering the front wheel 101.
 走行機体111の前部の右部及び左部に右及び左の縦向き支持フレーム116が備えられており、縦向き支持フレーム116に予備苗のせ台115が支持されている。右及び左の縦向き支持フレーム116の上部に亘って、横向き支持フレーム117が連結されている。 Right and left vertical support frames 116 are provided on the right and left portions of the front of the traveling vehicle body 111, and a backup seedling platform 115 is supported on the vertical support frames 116. Horizontally oriented support frames 117 are connected across the top of the right and left vertically oriented support frames 116.
 横向き支持フレーム117において、平面視で走行機体111の左右中央CLに位置する部分に、位置計測装置118が取り付けられている。位置計測装置118には、衛星測位システムにより位置情報を取得する受信装置(図示せず)、走行機体111の傾き(ピッチ角、ロール角)を検出する慣性計測装置(図示せず)が備えられており、位置計測装置118は走行機体111の位置を示す測位データを出力する。 A position measurement device 118 is attached to a portion of the laterally oriented support frame 117 located at the left and right center CL of the traveling vehicle body 111 in a plan view. The position measurement device 118 includes a reception device (not shown) for acquiring position information by a satellite positioning system, and an inertial measurement device (not shown) for detecting the inclination (pitch angle, roll angle) of the traveling vehicle body 111. The position measurement device 118 outputs positioning data indicating the position of the traveling vehicle body 111.
 右及び左の後輪102を支持する後車軸ケース122において、平面視で走行機体111の左右中央CLに位置する部分に、慣性情報を計測する慣性計測装置119が取り付けられている。慣性計測装置119及び位置計測装置118の慣性計測は、IMU(Inertial Measurement Unit)により構成されている。 In a rear axle case 122 supporting the right and left rear wheels 102, an inertial measurement device 119 for measuring inertial information is attached to a portion located in the left and right center CL of the traveling vehicle body 111 in plan view. The inertial measurement of the inertial measurement device 119 and the position measurement device 118 is configured by an IMU (Inertial Measurement Unit).
 前述の衛星測位システム(GNSS:Global Navigation Satellite System)には、代表的なものとしてGPS(Global Positioning System)が挙げられる。GPSは、地球の上空を周回する複数のGPS衛星や、GPS衛星の追跡と管制を行う管制局や、測位を行う対象(走行機体111)が備える受信装置を使用して、位置計測装置118の受信装置の位置を計測するものである。 Among the above-mentioned satellite navigation systems (GNSS: Global Navigation Satellite System), GPS (Global Positioning System) can be mentioned as a typical example. The GPS uses a plurality of GPS satellites orbiting the earth, a control station that performs tracking and control of the GPS satellites, and a receiver that is provided with an object to be measured (traveling vehicle body 111). It measures the position of the receiving device.
 慣性計測装置119は、走行機体111のヨー角度の角速度を検出可能なジャイロセンサー(図示せず)、及び、互いに直交する3軸方向の加速度を検出する加速度センサー(図示せず)を備えている。慣性計測装置119により計測される慣性情報には、ジャイロセンサーにより検出される方位変化情報と、加速度センサーにより検出される位置変化情報とが含まれている。これにより、位置計測装置118及び慣性計測装置119によって、走行機体111の位置及び走行機体111の方位が検出される。 The inertial measurement device 119 includes a gyro sensor (not shown) capable of detecting the angular velocity of the yaw angle of the traveling vehicle body 111, and an acceleration sensor (not shown) capable of detecting acceleration in three axial directions orthogonal to each other. . The inertial information measured by the inertial measurement device 119 includes orientation change information detected by the gyro sensor and position change information detected by the acceleration sensor. As a result, the position measurement device 118 and the inertia measurement device 119 detect the position of the traveling body 111 and the orientation of the traveling body 111.
(ミッションケースの付近の構成)
 走行機体111の前部に、ミッションケース120が支持されており、ミッションケース120の右及び左の横側部に連結された前車軸ケース121に、右及び左の前輪101が支持されている。走行機体111の後部に、後車軸ケース122が支持されており、後車軸ケース122に右及び左の後輪102が支持されている。
(Configuration around the mission case)
A transmission case 120 is supported at the front of the traveling vehicle body 111, and right and left front wheels 101 are supported by a front axle case 121 connected to the right and left lateral sides of the transmission case 120. A rear axle case 122 is supported at the rear of the traveling airframe 111, and the right and left rear wheels 102 are supported by the rear axle case 122.
 ミッションケース120の前部に、エンジン123(原動部に相当)が支持されている。ミッションケース120の左の横側部に、静油圧式の無段変速装置からなる第1変速装置124が連結されており、エンジン123の動力が伝動ベルト125を介して第1変速装置124の入力軸124aに伝達される。 At the front of the transmission case 120, an engine 123 (corresponding to a driving unit) is supported. A first transmission 124 composed of a hydrostatic stepless transmission is connected to the left lateral side of the transmission case 120, and the power of the engine 123 is input to the first transmission 124 via the transmission belt 125. It is transmitted to the shaft 124a.
 第1変速装置124は、中立位置、前進側及び後進側に無段階に変速自在に構成されており、操縦ハンドル114の左の横側に備えられた主変速レバー130(変速操作具に相当)により第1変速装置124を操作する。説明を加えると、図9に示すように、第1変速装置124は、アーキシャルプランジャー型の油圧ポンプ124Pと、アーキシャルプランジャー型の油圧モータ124Mとを、ケーシング124Cにて一体的に収容した、周知構造の静油圧式の無段変速装置にて構成されている。 The first transmission 124 is configured to be continuously steplessly variable on the neutral position, forward and reverse sides, and is provided on the left lateral side of the steering handle 114 (equivalent to a shift operation tool) Thus, the first transmission 124 is operated. To add the description, as shown in FIG. 9, the first transmission 124 integrally accommodates the axial plunger type hydraulic pump 124P and the axial plunger type hydraulic motor 124M in a casing 124C. It is comprised by the hydrostatic continuously variable transmission of a well-known structure.
 図11に示すように、主変速レバー130と、油圧ポンプ124Pの斜板操作用のトラニオン軸124cを操作するための変速アーム124dとが連係機構130Rにより連動連係されている。主変速レバー130を操作して、油圧ポンプ124Pの斜板の傾きを変更することにより、回転動力を無段階に変速することができる。 As shown in FIG. 11, a main transmission lever 130 and a transmission arm 124d for operating a trunnion shaft 124c for operating the swash plate of the hydraulic pump 124P are interlocked and linked by a linkage mechanism 130R. By changing the inclination of the swash plate of the hydraulic pump 124P by operating the main shift lever 130, it is possible to steplessly shift the rotational power.
 図11に示すように、主変速レバー130は、前後方向に揺動操作可能であり、前後中間部の中立位置Nから前側に前進操作域が設定され、中立位置Nから後側に後進操作域が設定されている。主変速レバー130を中立位置Nから前進操作域を前側に揺動させるほど、前進走行速度が増速する。主変速レバー130を中立位置Nから後進操作域を後側に揺動させるほど、後進走行速度が増速する。前進操作域と後進操作域とが左右方向にずれており、主変速レバー130は、中立位置Nにおいて、前進側中立位置と後進側中立位置とに左右方向に位置をずらすことができる。従って、前進操作式から一気に後進操作域にそのまま揺動操作することはできない。 As shown in FIG. 11, the main shift lever 130 can be rocked in the front-rear direction, and a forward operation area is set on the front side from the neutral position N of the front and rear intermediate portion, and a reverse operation area on the rear side from the neutral position N Is set. The forward travel speed is increased as the main shift lever 130 is pivoted forward from the neutral position N in the forward operation area. As the main shift lever 130 is swung rearward from the neutral position N, the reverse travel speed is increased. The forward operation area and the reverse operation area are shifted in the left-right direction, and the main shift lever 130 can be shifted in the left-right direction between the forward neutral position and the reverse neutral position at the neutral position N. Therefore, it is not possible to swing from the forward operation type to the reverse operation area at once.
(前輪及び後輪への走行伝動系の構成)
 図9に示すように、ミッションケース120の右の横側部に、油圧ポンプ126が連結されており、油圧ポンプ126は油圧シリンダ104等に作動油を供給する。第1変速装置124の入力軸124aがミッションケース120に入り込んでおり、油圧ポンプ126の入力軸126aと、第1変速装置124の入力軸124aとに亘って伝動軸127が連結されている。
(Configuration of traveling transmission system to front and rear wheels)
As shown in FIG. 9, a hydraulic pump 126 is connected to the right lateral side of the transmission case 120, and the hydraulic pump 126 supplies hydraulic oil to hydraulic cylinders 104 and the like. The input shaft 124 a of the first transmission 124 enters the transmission case 120, and the transmission shaft 127 is connected to the input shaft 126 a of the hydraulic pump 126 and the input shaft 124 a of the first transmission 124.
 ミッションケース120の内部に、伝動軸128(分岐部に相当)及び伝動軸129が左右方向に沿って支持されて、第1変速装置124の出力軸124bが伝動軸128の端部に連結されている。ミッションケース120の内部において、伝動軸128,129に亘って、ギヤ変速型式の副変速装置131が備えられている。 The transmission shaft 128 (corresponding to a branch) and the transmission shaft 129 are supported along the left-right direction in the transmission case 120, and the output shaft 124b of the first transmission 124 is connected to the end of the transmission shaft 128 There is. Inside the transmission case 120, a gear-change-type auxiliary transmission 131 is provided across the transmission shafts 128 and 129.
 副変速装置131は、伝動軸128に連結された低速ギヤ132及び高速ギヤ133、スプライン構造により伝動軸129に一体回転及びスライド自在に外嵌されたシフトギヤ134を備えている。運転座席113の近傍に備えられた副変速レバー(図示せず)により、シフトギヤ134をスライド操作することができる。 The auxiliary transmission 131 includes a low speed gear 132 and a high speed gear 133 connected to the transmission shaft 128, and a shift gear 134 externally fitted integrally rotatably and slidably with the transmission shaft 129 by a spline structure. The shift gear 134 can be slid by an auxiliary shift lever (not shown) provided near the driver's seat 113.
 副変速装置131において、シフトギヤ134を低速ギヤ132に咬合させると、伝動軸128の動力が低速状態で伝動軸129に伝達され、シフトギヤ134を高速ギヤ133に咬合させると、伝動軸128の動力が高速状態で伝動軸129に伝達される。
 水田において植付作業を行う場合、副変速装置131を低速状態に操作するのであり、路上等において高速で走行する場合に、副変速装置131を高速状態に操作する。
In the auxiliary transmission 131, when the shift gear 134 is engaged with the low speed gear 132, the power of the transmission shaft 128 is transmitted to the transmission shaft 129 at low speed, and when the shift gear 134 is engaged with the high speed gear 133, the power of the transmission shaft 128 is transmitted. It is transmitted to the transmission shaft 129 at high speed.
When the planting work is performed in the paddy field, the auxiliary transmission 131 is operated at a low speed, and when traveling at a high speed on a road or the like, the auxiliary transmission 131 is operated at a high speed.
 右及び左の前輪101に動力を伝達する右及び左の前車軸135が、ミッションケース120及び前車軸ケース121に亘って支持されており、右及び左の前車軸135の間に、前輪デフ装置136が備えられている。伝動軸129に連結された伝動ギヤ137と、前輪デフ装置136のケース136aに連結された伝動ギヤ138とが、咬合している。 The right and left front axles 135, which transmit power to the right and left front wheels 101, are supported across the transmission case 120 and the front axle case 121, and between the right and left front axles 135 136 are provided. The transmission gear 137 connected to the transmission shaft 129 and the transmission gear 138 connected to the case 136 a of the front wheel differential gear 136 are engaged with each other.
 ミッションケース120の後部に出力軸139が前後方向に沿って支持されており、前輪デフ装置136のケース136aに連結されたベベルギヤ140と、出力軸139の前部に形成されたベベルギヤ139aとが、咬合している。 An output shaft 139 is supported at the rear of the transmission case 120 along the front-rear direction, and a bevel gear 140 connected to the case 136 a of the front wheel differential device 136 and a bevel gear 139 a formed at the front of the output shaft 139 I have an occlusion.
 図7に示すように、出力軸139の後部に、伝動軸141が自在継手(図示せず)を介して連結されており、伝動軸141の後部が、自在継手(図示せず)を介して、後車軸ケース122の入力軸(図示せず)に連結されている。 As shown in FIG. 7, the transmission shaft 141 is connected to the rear of the output shaft 139 via a universal joint (not shown), and the rear of the transmission shaft 141 is via the universal joint (not shown) , And an input shaft (not shown) of the rear axle case 122.
 以上の構成により、第1変速装置124で変速された動力が、第1変速装置124の出力軸124bから、伝動軸128、副変速装置131、伝動軸129、伝動ギヤ137,138、前輪デフ装置136及び前車軸135を介して、右及び左の前輪101に伝達される。
 前輪デフ装置136に伝達された動力が、ベベルギヤ140、出力軸139、伝動軸141、後車軸ケース122の内部の伝動軸(図示せず)を介して、右及び左の後輪102に伝達される。
With the above configuration, the power transmitted by the first transmission 124 is transmitted from the output shaft 124b of the first transmission 124 to the transmission shaft 128, the auxiliary transmission 131, the transmission shaft 129, the transmission gears 137 and 138, and the front wheel differential device. It is transmitted to the right and left front wheels 101 via 136 and the front axle 135.
The power transmitted to front wheel differential gear 136 is transmitted to right and left rear wheels 102 via bevel gear 140, output shaft 139, transmission shaft 141, and a transmission shaft (not shown) inside rear axle case 122. Ru.
 出力軸139に、多板型式のブレーキ142が外嵌されており、図8に示すブレーキペダル143を踏み操作することにより、ブレーキ142を制動状態に操作することができる。ブレーキ142により出力軸139に制動を掛けることによって、前輪101及び後輪102に制動を掛けることができる。 The multi-plate type brake 142 is externally fitted to the output shaft 139, and the brake 142 can be operated to the braking state by stepping on the brake pedal 143 shown in FIG. The front wheel 101 and the rear wheel 102 can be braked by braking the output shaft 139 with the brake 142.
 デフロック部材144が、キー構造により左の前車軸135に一体回転及びスライド自在に外嵌されている。運転座席113の下側に備えられたデフロックペダル(図示せず)を踏み操作することにより、デフロック部材144をスライド操作して前輪デフ装置136のケース136aに咬合させることにより、前輪デフ装置136をデフロック状態に操作することができる。 A diff lock member 144 is externally rotatably and slidably fitted on the left front axle 135 by a key structure. By stepping on the diff lock pedal (not shown) provided on the lower side of the driver's seat 113, the diff lock member 144 is slide operated to engage the case 136a of the front wheel diff device 136, whereby the front wheel diff device 136 It can be operated in the differential lock state.
 以上の構成により、第1変速装置124の動力が伝動軸128において走行伝動系及び作業伝動系に並列的に分岐されて、走行伝動系の動力が、副変速装置131を通って、前輪101及び後輪102(走行用の車輪)に伝達される状態となっている。従って、伝動軸128が分岐部を構成する。 With the above configuration, the power of the first transmission 124 is branched in parallel to the travel transmission system and the work transmission system at the transmission shaft 128, and the power of the travel transmission system passes through the auxiliary transmission 131 to the front wheels 101 and It is in a state of being transmitted to the rear wheel 102 (wheel for traveling). Thus, the transmission shaft 128 constitutes a branch.
(苗植付装置への作業伝動系の構成)
 図10に示すように、ミッションケース120の右の横側部に、静油圧型式の無段変速装置からなる第2変速装置145が連結されている。第2変速装置145は、第1変速装置124と同様に、アーキシャルプランジャー型の油圧ポンプ145Pと、アーキシャルプランジャー型の油圧モータ145Mとを、ケーシング145Cにて一体的に収容した、周知構造の静油圧式の無段変速装置にて構成されている。油圧ポンプ145Pに備えられた斜板(図示せず)の傾きを変更することにより、回転動力を無段階に変速することができる。
(Configuration of work transmission system to seedling planting device)
As shown in FIG. 10, the right transmission side of the transmission case 120 is connected to a second transmission 145 which is a hydrostatic stepless transmission. Similar to the first transmission 124, the second transmission 145 is well known in which an axial plunger type hydraulic pump 145P and an axial plunger type hydraulic motor 145M are integrally housed in a casing 145C. It is constituted by a hydrostatic continuously variable transmission of structure. By changing the inclination of a swash plate (not shown) provided in the hydraulic pump 145P, it is possible to steplessly change the rotational power.
 第2変速装置145の入力軸145aと伝動軸128とが連結されている。第2変速装置145の入力軸145aがミッションケース120の反対側に突出しており、第2変速装置145に冷却風を送る排熱用のファン146が、第2変速装置145の入力軸145aの突出部に連結されている。つまり、ファン146は油圧ポンプ145Pと一体回転する状態で備えられている。 The input shaft 145a of the second transmission 145 and the transmission shaft 128 are connected. The input shaft 145a of the second transmission 145 protrudes to the opposite side of the transmission case 120, and the exhaust heat fan 146 for sending the cooling air to the second transmission 145 projects the input shaft 145a of the second transmission 145 It is connected to the department. That is, the fan 146 is provided to rotate integrally with the hydraulic pump 145P.
 第2変速装置145の出力軸145bに伝動軸147が連結されている。ミッションケース120の内部に、伝動軸148,149が左右方向に沿って支持されており、伝動軸149の端部が伝動軸147と同芯状に相対回転自在に支持されている。 The transmission shaft 147 is connected to the output shaft 145 b of the second transmission 145. The transmission shafts 148 and 149 are supported in the left-right direction inside the transmission case 120, and the end of the transmission shaft 149 is relatively rotatably supported coaxially with the transmission shaft 147.
 2組のギヤを備えた伝動ギヤ150が、伝動軸148の外側に回転自在に外嵌されている。伝動軸147に形成された伝動ギヤ147aと、伝動ギヤ150の大径ギヤ部分とが咬合し、伝動軸149に連結された伝動ギヤ151と、伝動ギヤ150の小径ギヤ部分とが咬合している。 A transmission gear 150 having two sets of gears is rotatably fitted on the outside of the transmission shaft 148. The transmission gear 147a formed on the transmission shaft 147 is engaged with the large diameter gear portion of the transmission gear 150, and the transmission gear 151 connected to the transmission shaft 149 is engaged with the small diameter gear portion of the transmission gear 150. .
 ミッションケース120の内部において、伝動軸148,149に亘って、ギヤ変速型式の不等速変速装置152が備えられており、伝動軸148にベベルギヤ153が連結されている。ミッションケース120の後部に出力軸154が前後方向に沿って支持され、ベベルギヤ155が出力軸154の前部に植付クラッチ156を介して外嵌されており、ベベルギヤ153,155が咬合している。 Inside the transmission case 120, a gear-shift-type unequal speed transmission 152 is provided across the transmission shafts 148 and 149, and a bevel gear 153 is connected to the transmission shaft 148. The output shaft 154 is supported along the longitudinal direction at the rear of the transmission case 120, and the bevel gear 155 is externally fitted to the front of the output shaft 154 via the planting clutch 156, and the bevel gears 153 and 155 are engaged. .
 図7に示すように、出力軸154の後部に、伝動軸157が自在継手(図示せず)を介して連結されており、伝動軸157の後部が、自在継手(図示せず)を介して、苗植付装置105の入力軸(図示せず)に連結されている。 As shown in FIG. 7, the transmission shaft 157 is connected to the rear of the output shaft 154 via a universal joint (not shown), and the rear of the transmission shaft 157 is via a universal joint (not shown) , And an input shaft (not shown) of the seedling planting apparatus 105.
 以上の構成により、第1変速装置124で変速された動力が、第1変速装置124の出力軸124bから、伝動軸128及び第2変速装置145の入力軸145aを介して、第2変速装置145に伝達される。 With the above configuration, the power transmitted by the first transmission 124 is transmitted from the output shaft 124 b of the first transmission 124 to the second transmission 145 via the transmission shaft 128 and the input shaft 145 a of the second transmission 145. Transmitted to
 第2変速装置145で変速された動力が、第2変速装置145の出力軸145bから、伝動軸147(伝動ギヤ147a)、伝動ギヤ150,151、伝動軸149、不等速変速装置152、伝動軸148、ベベルギヤ153,155、植付クラッチ156、出力軸154、伝動軸157を介して、苗植付装置105に伝達される。 The power transmitted by the second transmission 145 is transmitted from the output shaft 145b of the second transmission 145 to the transmission shaft 147 (transmission gear 147a), transmission gears 150 and 151, transmission shaft 149, unequal speed transmission 152, transmission The power is transmitted to the seedling planting device 105 via the shaft 148, bevel gears 153 and 155, the planting clutch 156, the output shaft 154, and the transmission shaft 157.
 植付クラッチ156を伝動状態に操作すると、苗植付装置105に動力が伝達されて、苗植付装置105が作動する。
 苗植付装置105が作動すると、図11に示すように、苗のせ台110が左右に往復横送り駆動されるのに伴って、回転ケース107が図11の反時計方向に回転駆動され、2組の植付アーム108が、苗のせ台110の下部から交互に苗A(農用資材に相当)を取り出して圃場面Gに植え付ける。これにより、走行機体111の走行方向F1に沿って、事前に設定された設定株間L1(供給間隔に相当)で、苗Aが圃場面Gに間欠的に植え付けられる。
 植付クラッチ156を遮断状態に操作すると、苗植付装置105への動力が遮断されて、苗植付装置105が停止し、苗のせ台110及び回転ケース107が停止する。
When the planting clutch 156 is operated in the transmission state, power is transmitted to the seedling planting device 105, and the seedling planting device 105 is operated.
When the seedling planting device 105 is operated, as shown in FIG. 11, as the seedling platform 110 is driven to reciprocate laterally to the left and right, the rotating case 107 is rotationally driven counterclockwise in FIG. A set of planting arms 108 alternately take out the seedlings A (corresponding to agricultural materials) from the lower part of the seedling platform 110 and plant them on the weir scene G. As a result, the seedlings A are intermittently planted in the drought scene G along the set direction L1 (corresponding to the supply interval) set in advance along the traveling direction F1 of the traveling machine body 111.
When the planting clutch 156 is operated in the shutoff state, the power to the seedling planting device 105 is shut off, the seedling planting device 105 is stopped, and the seedling platform 110 and the rotation case 107 are stopped.
 以上の構成により、第1変速装置124(変速装置)の動力が走行伝動系及び作業伝動系に並列的に分岐されて、作業伝動系の動力が第2変速装置145及び不等速変速装置152を通って、苗植付装置105(作業装置)に伝達される状態となっている。 With the above configuration, the power of the first transmission 124 (transmission) is branched in parallel to the traveling transmission system and the work transmission system, and the power of the work transmission system is the second transmission 145 and the unequal speed transmission 152 Of the seedling planting device 105 (working device).
(不等速変速装置の構成)
 図10に示すように、不等速変速装置152は、伝動軸149に連結された等速ギヤ158及び3個の不等速ギヤ159、伝動軸148に相対回転自在に外嵌された等速ギヤ160及び3個の不等速ギヤ161を備えており、等速ギヤ158,160が咬合し、3個の不等速ギヤ159,161同士が咬合している。
(Configuration of unequal speed transmission)
As shown in FIG. 10, the unequal speed transmission 152 has an equal speed gear 158 connected to the transmission shaft 149, three unequal speed gears 159, and an equal speed externally fitted to the transmission shaft 148 so as to be relatively rotatable. The gear 160 and the three unequal-speed gears 161 are provided, the constant-velocity gears 158 and 160 are engaged, and the three unequal-speed gears 159 and 161 are engaged with each other.
 キー状の変速部材162が伝動軸148の内部にスライド自在に支持されており、変速部材162をスライド操作して、等速ギヤ160及び3個の不等速ギヤ161のうちの一つに係合させることにより、変速部材162を係合させた等速ギヤ160及び3個の不等速ギヤ161のいずれかを伝動軸148に連結状態とすることができる。 A key-like speed changing member 162 is slidably supported inside the transmission shaft 148, and the speed changing member 162 is slid to engage with the constant speed gear 160 and one of the three unequal speed gears 161. By coupling the transmission member 148, any one of the constant velocity gear 160 and the three unequal velocity gears 161 engaged with the transmission member 162 can be connected to the transmission shaft 148.
 等速ギヤ158,160は、円形ギヤで同径である。これにより、変速部材162を等速ギヤ160に係合させると、伝動軸149の1回転の動力が、角速度の等速状態で1回転の動力として伝動軸148に伝達される。 The constant velocity gears 158 and 160 are circular gears and have the same diameter. Thus, when the transmission member 162 is engaged with the constant velocity gear 160, the power of one rotation of the transmission shaft 149 is transmitted to the transmission shaft 148 as the power of one rotation at the constant velocity state of the angular velocity.
 不等速ギヤ159,161は、楕円ギヤ、偏芯ギヤ又は非円形ギヤである。これにより、変速部材162を不等速ギヤ161のうちの一つに係合させると、伝動軸149の1回転の動力が1回転の動力として伝動軸148に伝達されるのであるが、1回転のうち角速度が高低に変化する。 The unequal speed gears 159 and 161 are an elliptical gear, an eccentric gear or a non-circular gear. Thereby, when the transmission member 162 is engaged with one of the unequal-speed gears 161, the power of one rotation of the transmission shaft 149 is transmitted to the transmission shaft 148 as the power of one rotation. The angular velocity changes to high and low.
 不等速ギヤ159,161が偏芯ギヤである場合、一つの偏芯ギヤにおいてギヤ歯の転位が複数設定されており、ギヤ歯によって転位が異なるものに設定されている。これにより、不等速ギヤ159,161のバックラッシのバラ付きを少なくすることができて、不等速ギヤ159,161による動力の伝達が滑らかなものにすることができる。 When the unequal speed gears 159 and 161 are eccentric gears, a plurality of dislocations of gear teeth are set in one eccentric gear, and the dislocations are set to be different depending on the gear teeth. As a result, it is possible to reduce the variation in backlash of the inconstant speed gears 159 and 161, and the power transmission by the inconstant speed gears 159 and 161 can be made smooth.
(無段変速装置を操作する制御系の構成)
 図11に示すように、走行機体111に制御装置163が備えられている。設定株間L1を設定する設定部164が運転座席113又は操縦ハンドル114の近傍に備えられて、設定部164の操作信号が制御装置163に入力されている。
(Configuration of control system for operating the continuously variable transmission)
As shown in FIG. 11, the traveling body 111 is provided with a control device 163. A setting unit 164 for setting the set stock L1 is provided in the vicinity of the driver's seat 113 or the steering handle 114, and an operation signal of the setting unit 164 is input to the control device 163.
 設定部164は作業者が人為的に操作する操作レバーの型式であり、最大間隔L11と最小間隔L12との間において、作業者が、設定株間L1を無段階に任意に設定(選択)することができる。 The setting unit 164 is a type of operation lever operated by the operator artificially, and the operator arbitrarily sets (selects) the set interval L1 steplessly between the maximum interval L11 and the minimum interval L12. Can.
 図10に示すように、ギヤ歯状の回転体149aが一体回転するように伝動軸149に連結されている。回転体149aに対してピックアップセンサー型式の作業回転数検出部165が備えられており、作業回転数検出部165の検出値が制御装置163に入力されている。 As shown in FIG. 10, the gear toothed rotary body 149a is connected to the transmission shaft 149 so as to rotate integrally. A work rotation speed detection unit 165 of a pickup sensor type is provided for the rotating body 149 a, and a detection value of the work rotation speed detection unit 165 is input to the control device 163.
 これにより、第2変速装置145の下流側で、且つ、不等速変速装置152の上流側において、第2変速装置145と不等速変速装置152との間の伝動系(伝動軸149)の回転数が、第2変速装置145からの動力の回転数として作業回転数検出部165によって検出されて、制御装置163に入力される。 Thereby, on the downstream side of the second transmission 145 and on the upstream side of the unequal speed transmission 152, the transmission system (transmission shaft 149) between the second transmission 145 and the unequal speed transmission 152 The number of revolutions is detected by the work revolution number detection unit 165 as the number of revolutions of the power from the second transmission 145, and is input to the control device 163.
 図10に示すように、ギヤ歯状の回転体128aが、伝動軸128と一体で回転するように伝動軸128に連結されている。伝動軸128の回転体128aに対して、ピックアップセンサー型式の走行回転数検出部166が備えられており、走行回転数検出部166の検出値が制御装置163に入力されている。 As shown in FIG. 10, a gear toothed rotor 128 a is connected to the transmission shaft 128 so as to rotate integrally with the transmission shaft 128. A traveling rotation speed detection unit 166 of a pickup sensor type is provided for the rotating body 128 a of the transmission shaft 128, and a detection value of the traveling rotation speed detection unit 166 is input to the control device 163.
 これにより、副変速装置131の上流側において、走行伝動系及び作業伝動系の分岐部(伝動軸128)と副変速装置131との間の伝動系の回転数を検出する走行回転数検出部166が備えられた状態となっている。 As a result, on the upstream side of the auxiliary transmission 131, the traveling rotation speed detection unit 166 that detects the number of rotations of the transmission system between the traveling transmission system and the branch portion (transmission shaft 128) of the operation transmission system and the auxiliary transmission 131. Is in the state of being prepared.
 図11に示すように、第2変速装置145における油圧ポンプ145Pの斜板(図示せず)の角度を変更して第2変速装置145を操作する駆動機構167が備えられており、制御装置163から駆動機構167に操作信号が出力される。第2変速装置145には、斜板操作用のトラニオン軸145cを操作するための変速アーム145dが備えられている。駆動機構167は、減速機付き電動モータ167Aと、電動モータ167Aによって揺動操作される駆動アーム167Bと、この駆動アーム167Bと変速アーム145dとを枢支連結するロッド167Cとが備えられている。駆動アーム167Bを揺動することで、ロッド167Cで押し引きして変速アーム145dが揺動し、変速操作される。尚、図示はしないが、駆動アーム167Bの揺動操作位置を検出するポテンショメータ式の検出センサが設けられ、検出センサの検出値は制御装置163に入力されている。 As shown in FIG. 11, a drive mechanism 167 is provided which operates the second transmission 145 by changing the angle of a swash plate (not shown) of the hydraulic pump 145P in the second transmission 145. The operation signal is output to the drive mechanism 167 from the The second transmission 145 is provided with a shift arm 145 d for operating a trunnion shaft 145 c for swash plate operation. The drive mechanism 167 is provided with an electric motor 167A with a reduction gear, a drive arm 167B pivoted by the electric motor 167A, and a rod 167C pivotally connecting the drive arm 167B and the transmission arm 145d. By swinging the drive arm 167B, the transmission arm 145d swings by being pushed and pulled by the rod 167C, and a shift operation is performed. Although not shown, a potentiometer type detection sensor for detecting the swing operation position of the drive arm 167 B is provided, and the detection value of the detection sensor is input to the control device 163.
 制御装置163に、スリップ率検出部168、制御部169、タイマー170、第1走行距離検出部171、第2走行距離検出部172、供給間隔検出部173が、ソフトウェアとして備えられている。 The control unit 163 includes a slip ratio detection unit 168, a control unit 169, a timer 170, a first travel distance detection unit 171, a second travel distance detection unit 172, and a supply interval detection unit 173 as software.
(前輪及び後輪のスリップ率の検出)
 水田において植付作業を行う場合、前輪101及び後輪102にスリップが発生するので、スリップ率検出部168において、以下の説明のように前輪101及び後輪102のスリップ率が検出される。
(Detection of slip ratio of front and rear wheels)
When the planting operation is performed in the paddy field, since the slip occurs on the front wheel 101 and the rear wheel 102, the slip rate of the front wheel 101 and the rear wheel 102 is detected in the slip rate detection unit 168 as described below.
 この場合、前輪101及び後輪102のスリップが発生した状態とは、前輪101及び後輪102が空転するような状態となり、前輪101及び後輪102が回転している割に、走行機体111が前進していない状態である。 In this case, when the front wheel 101 and the rear wheel 102 slip, the front wheel 101 and the rear wheel 102 are idled, and the traveling machine body 111 is rotated while the front wheel 101 and the rear wheel 102 are rotating. It has not advanced.
 植付作業において、ある第1時点と、第1時点から設定時間が経過した次の第2時点とが、タイマー170により検出される。
 第1時点から第2時点において、位置計測装置118及び慣性計測装置119による走行機体111の位置及び走行機体111の方位の検出に基づいて、第1走行距離検出部171により、走行機体111の実際の走行距離が検出される。この場合、第1走行距離検出部171の検出値には、前輪101及び後輪102のスリップが含まれている。
In the planting operation, the timer 170 detects a first time point and a second time point after the set time has elapsed from the first time point.
From the first time point to the second time point, based on the detection of the position of the traveling vehicle body 111 and the orientation of the traveling vehicle body 111 by the position measurement device 118 and the inertia measurement device 119, the first traveling distance detection unit 171 actually performs the traveling vehicle body 111 Travel distance is detected. In this case, the detection value of the first traveling distance detection unit 171 includes the slip of the front wheel 101 and the rear wheel 102.
 第1時点から第2時点において、前輪101及び後輪102の外径と、走行回転数検出部166の検出値(前輪101及び後輪102の回転数)とによって、第2走行距離検出部172により、走行機体111の走行距離が検出(演算)される。この場合に、第2走行距離検出部172の検出値には、前輪101及び後輪102にスリップは含まれていない。 From the first time point to the second time point, the second traveling distance detection unit 172 is determined by the outer diameters of the front wheel 101 and the rear wheel 102 and the detection value of the traveling rotation speed detection unit 166 (rotation speed of the front wheel 101 and the rear wheel 102). Thus, the traveling distance of the traveling vehicle body 111 is detected (calculated). In this case, the front wheel 101 and the rear wheel 102 do not include slips in the detection value of the second traveling distance detection unit 172.
 スリップ率検出部168により、第1走行距離検出部171の検出値と、第2走行距離検出部172の検出値とが比較される。
 前輪101及び後輪102のスリップが発生していると、第1走行距離検出部171の検出値が、第2走行距離検出部172の検出値よりも小さくなるのであり、第1走行距離検出部171及び第2走行距離検出部172の検出値の差が大きくなるほど、前輪101及び後輪102のスリップが多く発生していると判断できる。
The slip ratio detection unit 168 compares the detection value of the first travel distance detection unit 171 with the detection value of the second travel distance detection unit 172.
When the front wheel 101 and the rear wheel 102 are slipped, the detection value of the first travel distance detection unit 171 is smaller than the detection value of the second travel distance detection unit 172, and the first travel distance detection unit As the difference between the detection values of the second travel distance detection unit 172 and the second travel distance detection unit 172 increases, it can be determined that more slippage of the front wheel 101 and the rear wheel 102 is generated.
 これにより、第1走行距離検出部171の検出値と、第2走行距離検出部172の検出値とに基づいて、スリップ率検出部168により前輪101及び後輪102のスリップ率が検出される。
 第1時点から第2時点までの前輪101及び後輪102のスリップ率が検出されると、第2時点から設定時間が経過した次の第3時点までの前輪101及び後輪102のスリップ率が検出されるのであり、前輪101及び後輪102のスリップ率の検出が連続的に繰り返して行われる。
Thereby, based on the detection value of the first travel distance detection unit 171 and the detection value of the second travel distance detection unit 172, the slip ratio detection unit 168 detects the slip ratios of the front wheel 101 and the rear wheel 102.
When the slip ratio of the front wheel 101 and the rear wheel 102 from the first time point to the second time point is detected, the slip ratio of the front wheel 101 and the rear wheel 102 from the second time point to the next third time point when the set time has elapsed The detection of the slip ratio of the front wheel 101 and the rear wheel 102 is continuously repeated.
(植付作業の開始時における株間の設定)
 水田において植付作業を行う場合、以下のような操作が行われる。
 植付作業の開始時において、作業者は、設定部164により設定株間L1を設定(選択)する。設定部164により株間L1が設定された状態において、植付作業を開始すると、設定株間L1に対応して、制御部169から駆動機構167に操作信号が出力され、駆動機構167により第2変速装置145が操作される。このとき、検出センサの検出値に基づいて駆動アームの位置を制御するようにしている。
(Setting between stocks at the start of planting work)
When planting work in a paddy field, the following operations are performed.
At the start of the planting operation, the operator sets (selects) the set inter-strain L1 by the setting unit 164. When the planting operation is started in a state where the inter-share L1 is set by the setting unit 164, an operation signal is output from the control unit 169 to the drive mechanism 167 corresponding to the inter-set share L1, and the second transmission 145 is operated. At this time, the position of the drive arm is controlled based on the detection value of the detection sensor.
 この段階では、前輪101及び後輪102のスリップは考慮されていないので、第2変速装置145の変速位置は一義的に決まるのであり、設定株間L1に対応した変速位置に、第2変速装置145が操作される。 At this stage, since the slip of the front wheel 101 and the rear wheel 102 is not taken into consideration, the shift position of the second transmission 145 is uniquely determined, and the second transmission 145 is set to the shift position corresponding to the set stock interval L1. Is operated.
 第2変速装置145では作動油のリークが生じることがあるので、第2変速装置145の出力軸145bの回転数が、設定株間L1に対応する変速位置での回転数よりも少し低速になり、この分だけ実際の株間Lx(供給間隔に相当)は設定株間L1よりも少し大きくなることがある。 Since hydraulic fluid may leak in the second transmission 145, the rotation speed of the output shaft 145b of the second transmission 145 is slightly lower than the rotation speed at the shift position corresponding to the set stock interval L1, The actual inter-stock Lx (corresponding to the supply interval) may be slightly larger than the set inter-stock L1 by this amount.
 この場合、作業回転数検出部165の検出値(第2変速装置145の出力軸145bの回転数)に基づいて、第2変速装置145の出力軸145bの回転数が、設定株間L1に対応する回転数となるように、第2変速装置145が、設定株間L1に対応する変速位置に操作された状態で、駆動機構167により微調節される。 In this case, the rotational speed of the output shaft 145b of the second transmission 145 corresponds to the set stock L1 interval based on the detection value of the work rotational speed detector 165 (the rotational speed of the output shaft 145b of the second transmission 145). The second transmission 145 is finely adjusted by the drive mechanism 167 in a state where the second transmission 145 is operated to the shift position corresponding to the set stock interval L1 so that the rotational speed is achieved.
(植付作業において前輪及び後輪のスリップ率の検出に基づく株間の調節)
 上述したように、第2変速装置145が設定株間L1に対応する変速位置に操作された状態において、植付作業の進行に伴って、スリップ率検出部168により前輪101及び後輪102のスリップ率が検出され、実際の株間Lxが設定株間L1となるように、第2変速装置145が以下の説明のように自動的に操作される。
(Adjustment between stocks based on detection of front and rear wheel slip ratio in planting work)
As described above, when the second transmission 145 is operated to the shift position corresponding to the set stock interval L1, the slip ratio detection unit 168 causes the slip ratio of the front wheel 101 and the rear wheel 102 as the planting operation progresses. Is detected, and the second transmission 145 is automatically operated as described below so that the actual inter-share Lx becomes the inter-set L1.
 作業回転数検出部165の検出値(第2変速装置145の出力軸145bの回転数)と、走行回転数検出部166の検出値(前輪101及び後輪102の回転数)とに基づいて、供給間隔検出部173により、実際の株間Lxが検出される。
 具体的には、前輪101及び後輪102のスリップ率に相当する長さが演算されて、設定株間L1から、前輪101及び後輪102のスリップに相当する長さが差し引かれて、実際の株間Lxが検出される。
Based on the detection value of the work rotation speed detection unit 165 (the rotation speed of the output shaft 145 b of the second transmission 145) and the detection value of the traveling rotation speed detection unit 166 (the rotation speeds of the front wheel 101 and the rear wheel 102) The supply interval detection unit 173 detects an actual inter-strain Lx.
Specifically, a length corresponding to the slip ratio of the front wheel 101 and the rear wheel 102 is calculated, and a length corresponding to the slip of the front wheel 101 and the rear wheel 102 is subtracted from the set stock L1 to obtain an actual stock Lx is detected.
 供給間隔検出部173により検出される実際の株間Lxが設定株間L1となるように、制御部169から駆動機構167に操作信号が出力され、駆動機構167により第2変速装置145が操作される。 An operation signal is output from the control unit 169 to the drive mechanism 167 so that the actual inter-stock Lx detected by the supply interval detection unit 173 becomes the set-interval stock L1, and the second transmission 145 is operated by the drive mechanism 167.
(設定株間に基づく不等速変速装置の操作)
 設定部164により設定された設定株間L1が、特に大きなものではなく、特に小さなものではない場合、作業者は、不等速変速装置152において、等速ギヤ158,160による動力が伝達される状態を設定しておけばよい。
(Operation of variable speed transmission based on set stock)
When the set interval L1 set by the setting unit 164 is not particularly large and not particularly small, the operator is in a state in which the power by the constant velocity gears 158 and 160 is transmitted in the inconstant speed transmission 152 You may set it.
 設定部164により設定された設定株間L1が、特に大きなものに設定されていたり、特に小さなものに設定されていた場合、作業者は、不等速変速装置152において変速部材をスライド操作して、不等速ギヤ159,161のうち、設定部164により設定された設定株間L1に適した不等速ギヤ159,161を選択すればよい(伝動軸148に連結状態とすればよい)。 When the set interval L1 set by the setting unit 164 is set to a particularly large one or a particularly small one, the operator slides the speed change member in the inconstant speed transmission 152, Among the non-uniform speed gears 159 and 161, the non-uniform speed gears 159 and 161 suitable for the set stock L1 set by the setting unit 164 may be selected (only connected to the transmission shaft 148).
 設定部164により設定された設定株間L1が、特に大きなものに設定されていた場合、等速ギヤ158,160を用いると、植付アーム108による苗のせ台110からの苗Aの取り出しから、植付アーム108による苗Aの圃場面Gへの植え付けまでの領域において、回転ケース107の回転速度が低速になり過ぎる。そこで、設定株間L1に適した不等速ギヤ159,161を選択すると、前述の領域において、不等速変速装置152により回転ケース107の回転速度を少し高速にすることができ、苗Aが圃場面Gに適切に植え付けられるようにすることができる。 When the set strain L1 set by the setting unit 164 is set to a particularly large one, if the constant velocity gears 158 and 160 are used, the planting arm 108 takes out the seedlings A from the seedling stand 110, The rotational speed of the rotating case 107 becomes too slow in the area until the planting of the seedling A to the chewing scene G by the attachment arm 108. Therefore, if the inconstant speed gears 159 and 161 suitable for the set stock L1 are selected, the rotational speed of the rotation case 107 can be slightly increased by the inequal speed transmission 152 in the above-mentioned area, and the seedling A is It can be made to plant on the surface G appropriately.
 設定部164により設定された設定株間L1が、特に小さなものに設定されていた場合、植付アーム108による苗のせ台110からの苗Aの取り出しから、植付アーム108による苗Aの圃場面Gへの植え付けまでの領域において、回転ケース107の回転速度が高速になり過ぎる。そこで、設定株間L1に適した不等速ギヤ159,161を選択すると、前述の領域において、不等速変速装置152により回転ケース107の回転速度を少し低速にすることができ、苗Aが圃場面Gに適切に植え付けられるようにすることができる。 When the setting strain L1 set by the setting unit 164 is set to a particularly small one, the picking scene G of the seedling A by the planting arm 108 is taken from the removal of the seedling A from the seedling platform 110 by the planting arm 108. The rotational speed of the rotating case 107 becomes too high in the area up to planting. Therefore, if the inconstant speed gears 159, 161 suitable for the set stock L1 are selected, the rotational speed of the rotation case 107 can be slightly reduced by the inequal speed transmission 152 in the above-mentioned area, and the seedlings A It can be made to plant on the surface G appropriately.
(第2変速装置を牽制する構成)
 第2変速装置145に、作業伝動系の動力のうち正転動力が苗植付装置105に伝達されることを許容し、且つ、逆転動力が苗植付装置105に伝達されることを牽制する牽制機構Kが備えられている。
(Configuration to check the second transmission)
The second transmission device 145 permits the normal transmission power of the work transmission system to be transmitted to the seedling planting device 105, and controls the reverse power to be transmitted to the seedling planting device 105. A check mechanism K is provided.
 具体的には、牽制機構Kは、第2変速装置145におけるトラニオン軸145cを操作する変速アーム145dが逆転操作域に操作されるのを接当牽制する接当部材174にて構成されている。すなわち、図11に示すように、変速アーム145dが、中立位置から所定方向(図11の右方向)に揺動すると、正転操作域に切り換わる。変速アーム145dが、中立位置から所定方向と反対方向(図11の左方向)に揺動すると、逆転操作域に切り換わる。第2変速装置145は、変速アーム145dが正転操作域に切り換わり、揺動角が大きいほど正転動力の速度が大きくなる。第2変速装置145は、変速アーム145dが逆転操作域に切り換わり、揺動角が大きいほど逆転動力の速度が大きくなるように変速することが可能である。 Specifically, the check control mechanism K is configured by a contact member 174 that performs a contact check on the shift arm 145d that operates the trunnion shaft 145c in the second transmission 145 so as to be operated in the reverse operation range. That is, as shown in FIG. 11, when the shift arm 145d swings from the neutral position in a predetermined direction (right direction in FIG. 11), the shift to the forward operation range is made. When the shift arm 145 d swings from the neutral position in the direction opposite to the predetermined direction (left direction in FIG. 11), the shift operation region is switched to. In the second transmission 145, the speed change arm 145d is switched to the normal rotation operation region, and the speed of the normal rotation power increases as the swing angle increases. The second transmission 145 can shift such that the speed of the reverse rotation power increases as the shift arm 145d switches to the reverse rotation operation region and the swing angle increases.
 しかし、変速アーム145dが中立位置から逆転操作域に亘って揺動する箇所に、接当部材174が備えられており、この接当部材174により、変速アーム145dが逆転操作域に移動することを機械的に接当して牽制する構成となっている。従って、第2変速装置145から正転動力のみ苗植付装置105に伝達され、逆転動力が伝達されることはない。 However, the contact member 174 is provided at a position where the shift arm 145 d swings from the neutral position to the reverse operation area, and the contact member 174 causes the shift arm 145 d to move to the reverse operation area. It is configured to mechanically contact and check. Therefore, only the forward rotation power is transmitted from the second transmission 145 to the seedling planting device 105, and the reverse rotation power is not transmitted.
 又、制御装置163は、主変速レバー130が後進走行側に操作されると、第2変速装置145を中立状態に切り換えるように駆動機構167を制御するように構成されている。
 図11に示すように、主変速レバー130の揺動支点位置に主変速レバー130の揺動操作位置を検出するポテンショメータからなるレバー位置センサ175が設けられている。このレバー位置センサ175の検出結果は制御装置163に入力されている。
Further, the control device 163 is configured to control the drive mechanism 167 so as to switch the second transmission 145 to the neutral state when the main shift lever 130 is operated to the reverse travel side.
As shown in FIG. 11, a lever position sensor 175 comprising a potentiometer for detecting the swing operation position of the main shift lever 130 is provided at the swing fulcrum position of the main shift lever 130. The detection result of the lever position sensor 175 is input to the control device 163.
 制御装置163は、レバー位置センサ175の検出値により主変速レバー130が中立位置に操作されたことを検出すると、第2変速装置145が中立状態に切り換わるように駆動機構167を作動させる。主変速レバー130の中立位置Nは、前進操作域の最低速位置N1、後進操作式の最低速位置N2、あるいは、その中間位置のいずれでもよい。主変速レバー130が前進操作域にて操作されている状態から後進走行側に向けて操作され、中立位置Nに切り換えられると、第2変速装置145を中立状態に切り換えることになる。 When the control device 163 detects that the main transmission lever 130 has been operated to the neutral position based on the detection value of the lever position sensor 175, the control device 163 operates the drive mechanism 167 so that the second transmission 145 switches to the neutral state. The neutral position N of the main shift lever 130 may be any one of the lowest speed position N1 of the forward operation area, the lowest speed position N2 of the reverse operation type, or an intermediate position thereof. When the main shift lever 130 is manipulated from the state of being operated in the forward operation area toward the reverse travel side and switched to the neutral position N, the second transmission 145 is switched to the neutral state.
[第3実施形態の別実施形態]
(1)上記実施形態では、牽制機構Kが、変速アーム145dが逆転操作域に操作されるのを接当牽制する接当部材174にて構成されるものを示したが、この構成に代えて、変速アーム145dとロッド167cを介して連動連結される駆動アーム167Bに接当作用して、駆動アーム167Bが逆転操作域に操作されるのを牽制する構成としてもよい。又、牽制機構Kとしては、変速アーム145dや駆動アーム167Bに接当して規制する構成に限らず、次のように構成してもよい。例えば、第2変速装置145の出力部において、出力用回転体が正転方向に回転する際にその回転動力を伝動下手側に伝達し、出力用回転体が逆転方向に回転する際には、空回りしてその動力を伝動下手側に伝達させない一方向回転規制機構を備える構成でもよい。
[Another Embodiment of the Third Embodiment]
(1) In the above embodiment, although the check mechanism K is configured by the contact member 174 that performs the contact check on the shift arm 145 d being operated to the reverse operation area, the configuration is replaced with this configuration The drive arm 167B may be brought into contact with the transmission arm 145d and the rod 167c in an interlocking manner so as to control the operation of the drive arm 167B in the reverse operation area. Further, the check mechanism K is not limited to a configuration in which the shift arm 145d and the drive arm 167B are brought into contact with and regulated, and may be configured as follows. For example, in the output portion of the second transmission 145, when the rotating body for output rotates in the forward direction, its rotational power is transmitted to the transmission lower side, and when the rotating body for output rotates in the reverse direction, It may be configured to have a one-way rotation restricting mechanism that does not freely rotate and transmit the power to the transmission lower side.
(2)上記実施形態では、主変速レバー130が、後進走行側に操作されることの一例として、主変速レバー130が中立位置Nに操作されると、第2変速装置145を中立状態に切り換え制御する構成としたが、この構成に代えて、主変速レバー130が後進操作式に操作されると、第2変速装置145を中立状態に切り換え制御する構成としてもよい。 (2) In the above embodiment, as an example that the main shift lever 130 is operated to the reverse travel side, when the main shift lever 130 is operated to the neutral position N, the second transmission 145 is switched to the neutral state The configuration is such that control is performed, but instead of this configuration, the second transmission 145 may be switched to the neutral state and controlled when the main shift lever 130 is operated reversely.
(3)上記実施形態では、作業装置(苗植付装置105)が、機体の走行方向に沿って事前に設定された供給間隔で、農用資材(苗)を圃場面に間欠的に供給する構成としたが、この構成に代えて、作業装置が、機体の走行方向に沿って農用資材を圃場面に連続的に供給する構成としてもよい。このように連続的に農用資材を供給する場合、第2変速装置145の変速によって連続的に供給されるときの農用資材の単位時間あたりの供給量を変更調整することができる。 (3) In the above embodiment, the working device (seedling planting device 105) intermittently supplies the agricultural material (seedling) to the dredger scene at a supply interval set in advance along the traveling direction of the machine. However, instead of this configuration, the working device may be configured to continuously supply the agricultural material to the dredging scene along the traveling direction of the airframe. As described above, when agricultural materials are continuously supplied, it is possible to change and adjust the amount of agricultural materials supplied per unit time when the agricultural materials are continuously supplied by the shift of the second transmission 145.
(4)上記実施形態では、走行機体の後部に、作業装置としての苗植付装置105だけを備える構成としたが、この構成に代えて、苗植付装置105にて苗が植えられた圃場面に肥料を供給する施肥装置を別途させる構成としてもよい。そして、このように施肥装置を備えるにあたり、施肥装置用の動力を苗植付装置と並列状態で供給する必要がある。そこで、施肥装置駆動用の伝達機構をミッションケース120の内部に備える構成としてもよい。 (4) In the above embodiment, only the seedling planting device 105 as a working device is provided at the rear of the traveling machine body, but instead of this configuration, a field where seedlings are planted by the seedling planting device 105 A fertilizer application device for supplying fertilizer to the surface may be separately provided. And in providing a fertilization apparatus in this way, it is necessary to supply the motive power for a fertilization apparatus in parallel with a seedling planting apparatus. Therefore, the transmission mechanism for driving the fertilization apparatus may be provided inside the transmission case 120.
(5)上記実施形態では、作業装置として苗植付装置105が備えられる乗用型田植機に適用したものを示したが、本発明は、作業装置として、機体の走行方向に沿って事前に設定された供給間隔で、農用資材としての種子を圃場面に点播する播種装置が備えられた水田作業機(乗用型直播機)に適用することができる。このように乗用型直播機に適用する場合には、第2変速装置の変速操作により、圃場面に種子を点播するときの走行方向に沿う点播する間隔を変更することができる。 (5) In the said embodiment, although what applied to the riding type rice transplanter provided with the seedling planting apparatus 105 as a working apparatus was shown, this invention sets beforehand along the traveling direction of an aircraft as a working apparatus. The present invention can be applied to a paddy field work machine (ride type direct seeding machine) equipped with a sowing device for point-seeding seeds as agricultural material at a grazing scene at the supplied intervals. As described above, in the case of application to a passenger-type direct seeding machine, it is possible to change the point seeding interval along the traveling direction when seeding the seed in the weir scene by the speed change operation of the second transmission.
(6)上記実施形態では、農用資材として苗又は種子を供給するものを示したが、農用資材としては、それ以外に、肥料や薬剤等を圃場面に供給する構成としてもよい。 (6) In the said embodiment, although what showed supply of a seedling or a seed | species as an agricultural material was shown, it is good also as a structure which supplies a fertilizer, a chemical | medical agent, etc. to an indigo scene besides it.
[第1及び第2実施形態]
1   :前輪(走行用の車輪)
2   :後輪(走行用の車輪)
5   :苗植付装置(作業装置)
11  :機体
23  :エンジン(原動部)
24  :無段変速装置(変速装置)
24b :出力軸(変速装置の出力軸)
45  :静油圧式無段変速装置(無段変速装置)
45a :入力軸(無段変速装置の入力軸)
67  :アクチュエータ(動力調節機構)
80  :油圧ポンプ
81  :ポンプ斜板
82  :油圧モータ
83  :モータ斜板
84  :クラッチ(動力調節機構)
D   :分岐部
First and second embodiments
1: front wheel (wheel for traveling)
2: Rear wheel (wheel for traveling)
5: Seedling planting device (working device)
11: Airframe 23: Engine (motor)
24: Continuously variable transmission (transmission)
24b: Output shaft (output shaft of transmission)
45: Static hydraulic continuously variable transmission (continuously variable transmission)
45a: Input shaft (input shaft of continuously variable transmission)
67: Actuator (power adjustment mechanism)
80: Hydraulic pump 81: Pump swash plate 82: Hydraulic motor 83: Motor swash plate 84: Clutch (power adjustment mechanism)
D: Branch
[第3実施形態]
101 :前輪(走行用の車輪)
102 :後輪(走行用の車輪)
105 :苗植付装置(作業装置)
111 :走行機体(機体)
123 :エンジン(原動部)
124 :第1変速装置
128 :伝動軸(分岐部)
130 :変速操作具
145 :第2変速装置
145c:トラニオン軸
145d:変速アーム
163 :制御装置
174 :接当部材
K   :牽制機構
Third Embodiment
101: front wheel (wheel for traveling)
102: Rear wheel (wheel for traveling)
105: Seedling planting device (working device)
111: Traveling machine (airframe)
123: Engine (motor part)
124: First transmission 128: Transmission shaft (branch)
130: Transmission operating tool 145: Second transmission 145c: Trunnion shaft 145d: Transmission arm 163: Control device 174: Contact member K: Check mechanism

Claims (14)

  1.  原動部の動力が伝達される変速装置と、
     機体の走行方向に沿って事前に設定された供給量で、農用資材を圃場面に供給する作業装置とが備えられ、
     前記変速装置から出力される動力が分岐部で走行伝動系及び作業伝動系に並列的に分岐されて、前記走行伝動系の動力が走行用の車輪に伝達され、前記作業伝動系の動力が無段変速装置を通って前記作業装置に伝達され、
     前記分岐部よりも前記作業伝動系側で、前記変速装置から前記作業伝動系に伝達される動力を調節できる動力調節機構が設けられ、
     前記動力調節機構の動作により、前記変速装置から出力される動力が前記走行用の車輪を前進駆動させる前進動力である場合には当該前進動力を前記作業装置に伝達し、前記変速装置から出力される動力が前記走行用の車輪を後進駆動させる後進動力である場合には当該後進動力を前記作業装置に伝達しない水田作業機。
    A transmission to which the power of the driving unit is transmitted;
    There is provided a working device for supplying agricultural material to the dredging scene with the supply amount set in advance along the traveling direction of the vehicle.
    The power output from the transmission is branched in parallel to the traveling transmission system and the work transmission system at the branching portion, and the power of the traveling transmission system is transmitted to the wheels for traveling, and the power of the work transmission system is absent. Transmitted to the working device through a step change gear,
    A power adjustment mechanism capable of adjusting the power transmitted from the transmission to the work transmission system is provided on the work transmission system side with respect to the branch portion,
    When the power output from the transmission is the forward power for driving the traveling wheels forward by the operation of the power adjustment mechanism, the forward power is transmitted to the work device and output from the transmission The paddy field work machine which does not transmit the said backward movement power to the said working apparatus, when the driving force is reverse movement power which makes the wheel for driving | running | working drive backward.
  2.  前記無段変速装置が、油圧ポンプ及び油圧モータを備える静油圧式無段変速装置であり、
     前記動力調節機構は、前記油圧ポンプが有するポンプ斜板の傾斜角度を調節するアクチュエータ及び前記油圧モータが有するモータ斜板の傾斜角度を調節するアクチュエータの少なくともいずれか一方を備える請求項1に記載の水田作業機。
    The continuously variable transmission is a hydrostatic continuously variable transmission including a hydraulic pump and a hydraulic motor,
    The power adjustment mechanism according to claim 1, wherein the power adjustment mechanism comprises at least one of an actuator for adjusting an inclination angle of a pump swash plate of the hydraulic pump and an actuator for adjusting an inclination angle of a motor swash plate of the hydraulic motor. Paddy working machine.
  3.  前記動力調節機構は、前記分岐部よりも下流且つ前記無段変速装置よりも上流に設けられ、前記走行用の車輪を前進回転させる場合の前記変速装置の出力軸の前進駆動力を前記無段変速装置に伝達し、前記走行用の車輪を後進回転させる場合の前記変速装置の出力軸の後進駆動力を前記無段変速装置に伝達しないように構成されるクラッチを備える請求項1に記載の水田作業機。 The power adjustment mechanism is provided downstream of the branch portion and upstream of the continuously variable transmission, and the forward drive force of the output shaft of the transmission when the traveling wheel is forwardly rotated is continuously variable. The clutch according to claim 1, further comprising: a clutch configured to transmit to the transmission and not transmit to the continuously variable transmission the reverse driving force of the output shaft of the transmission when rotating the traveling wheels backward. Paddy working machine.
  4.  前記変速装置の出力軸と前記無段変速装置の入力軸とが同軸上に配置されている請求項1~3のいずれか一項に記載の水田作業機。 The paddy field work machine according to any one of claims 1 to 3, wherein the output shaft of the transmission and the input shaft of the continuously variable transmission are coaxially disposed.
  5.  前記変速装置の出力軸の途中に前記分岐部が設けられる請求項1~4のいずれか一項に記載の水田作業機。 The paddy field work machine according to any one of claims 1 to 4, wherein the branch portion is provided in the middle of an output shaft of the transmission.
  6.  前記作業装置が、機体の走行方向に沿って事前に設定された供給間隔で、農用資材を圃場面に間欠的に供給する請求項1~5のいずれか1項に記載の水田作業機。 The paddy field work machine according to any one of claims 1 to 5, wherein the work device intermittently supplies the agricultural material to the gravel scene at a supply interval set in advance along the traveling direction of the vehicle.
  7.  前記作業装置として、機体の走行方向に沿って事前に設定された供給間隔で、農用資材としての種子を圃場面に点播する播種装置が備えられている請求項6に記載の水田作業機。 The paddy field work machine according to claim 6, further comprising: a sowing device for point-seeding a seed as an agricultural material on a grazing scene at a supply interval set in advance along the traveling direction of the fuselage as the working device.
  8.  前記作業装置として、機体の走行方向に沿って事前に設定された供給間隔で、農用資材としての苗を圃場面に供給する苗植付装置が備えられている請求項6に記載の水田作業機。 The paddy field work machine according to claim 6, further comprising: a seedling planting device for supplying a seedling as an agricultural material to a reed scene at a supply interval set in advance along the traveling direction of the vehicle as the work device. .
  9.  原動部の動力が伝達される第1変速装置と、
     機体の走行方向に沿って事前に設定された供給量で、農用資材を圃場面に供給する作業装置と、
     前記第1変速装置の動力を走行伝動系及び作業伝動系に分岐する分岐部と、
     前記走行伝動系の動力が伝達される走行用の車輪と、
     前記作業伝動系の動力を変速して前記作業装置に伝達する第2変速装置とが備えられ、
     前記第2変速装置に、前記作業伝動系の動力のうち正転動力が前記作業装置に伝達されることを許容し、且つ、逆転動力が前記作業装置に伝達することを牽制する牽制機構が備えられている水田作業機。
    A first transmission to which power of a driving unit is transmitted;
    A working device for supplying agricultural material to a bird's-eye view with a supply amount set in advance along the traveling direction of the vehicle;
    A branch portion that branches the power of the first transmission into a traveling transmission system and a work transmission system;
    A traveling wheel to which power of the traveling transmission system is transmitted;
    A second transmission configured to shift the power of the work transmission system and transmit the power to the work device;
    The second transmission is provided with a check mechanism that allows the normal transmission power of the power of the work transmission system to be transmitted to the work device, and also has a check mechanism that suppresses the reverse power to be transmitted to the work device. Paddy working machine being operated.
  10.  前記第2変速装置が静油圧式無段変速装置にて構成され、
     前記牽制機構が、前記静油圧式無段変速装置におけるトラニオン軸を操作する変速アームが逆転操作域に操作されるのを接当牽制する接当部材にて構成されている請求項9に記載の水田作業機。
    The second transmission is constituted by a hydrostatic stepless transmission;
    10. The contact control member according to claim 9, wherein said check mechanism comprises a contact check member for controlling that a shift arm for operating a trunnion shaft in said hydrostatic stepless transmission is operated in a reverse operation area. Paddy working machine.
  11.  前記第1変速装置の変速状態を変更操作する変速操作具と、
     前記変速操作具が後進走行側に操作されると、前記第2変速装置を中立状態に切り換える制御装置が備えられている請求項9又は10に記載の水田作業機。
    A shift operating tool for changing and operating the shift state of the first transmission;
    11. The paddy field work machine according to claim 9, further comprising: a control device for switching the second transmission to a neutral state when the gearshift operating tool is operated to the reverse travel side.
  12.  前記作業装置が、機体の走行方向に沿って事前に設定された供給間隔で、農用資材を圃場面に間欠的に供給する請求項9~11のいずれか1項に記載の水田作業機。 The paddy field work machine according to any one of claims 9 to 11, wherein the work device intermittently supplies the agricultural material to the gravel scene at a supply interval set in advance along the traveling direction of the vehicle.
  13.  前記作業装置として、機体の走行方向に沿って事前に設定された供給間隔で、農用資材としての苗を圃場面に供給する苗植付装置が備えられている請求項12に記載の水田作業機。 The paddy field work machine according to claim 12, further comprising: a seedling planting device for supplying a seedling as an agricultural material to a reed scene at a supply interval set in advance along the traveling direction of the machine as the work device. .
  14.  前記作業装置として、機体の走行方向に沿って事前に設定された供給間隔で、農用資材としての種子を圃場面に点播する播種装置が備えられている請求項12に記載の水田作業機。 The paddy field construction machine according to claim 12, further comprising: a sowing device for point-seeding a seed as an agricultural material on a grazing scene at a supply interval set in advance along the traveling direction of the fuselage as the working device.
PCT/JP2018/024389 2017-12-21 2018-06-27 Paddy field work machine WO2019123696A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880079524.0A CN111465314A (en) 2017-12-21 2018-06-27 Paddy field working machine
KR1020207013196A KR20200097686A (en) 2017-12-21 2018-06-27 Faucet work machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-244958 2017-12-21
JP2017244958A JP6943751B2 (en) 2017-12-21 2017-12-21 Paddy field work machine
JP2017-247838 2017-12-25
JP2017247838A JP7027158B2 (en) 2017-12-25 2017-12-25 Paddy field work machine

Publications (1)

Publication Number Publication Date
WO2019123696A1 true WO2019123696A1 (en) 2019-06-27

Family

ID=66994623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024389 WO2019123696A1 (en) 2017-12-21 2018-06-27 Paddy field work machine

Country Status (3)

Country Link
KR (1) KR20200097686A (en)
CN (1) CN111465314A (en)
WO (1) WO2019123696A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115163814B (en) * 2022-07-04 2023-12-01 易如(山东)智能科技有限公司 Control method of agricultural machinery HST automatic speed change system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160445A (en) * 2003-12-05 2005-06-23 Mitsubishi Agricult Mach Co Ltd Farm work machine
JP2012139113A (en) * 2010-12-28 2012-07-26 Iseki & Co Ltd Seedling planting apparatus
JP2015086995A (en) * 2013-11-01 2015-05-07 株式会社 神崎高級工機製作所 Drive control mechanism for work part of work vehicle
JP2015149942A (en) * 2014-02-14 2015-08-24 井関農機株式会社 seedling transplanting machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100236986B1 (en) * 1997-03-10 2000-01-15 미쯔이 고오헤이 Working vehicle
JP4110743B2 (en) * 2001-04-02 2008-07-02 井関農機株式会社 Fertilizer transplanter
JP4805973B2 (en) * 2008-05-09 2011-11-02 株式会社クボタ Lifting mechanism of the harvesting machine
JP5847050B2 (en) 2012-09-27 2016-01-20 株式会社クボタ Paddy field machine
JP6454212B2 (en) * 2014-10-15 2019-01-16 ヤンマー株式会社 Work vehicle
JP6611507B2 (en) * 2015-07-30 2019-11-27 株式会社クボタ Paddy field machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160445A (en) * 2003-12-05 2005-06-23 Mitsubishi Agricult Mach Co Ltd Farm work machine
JP2012139113A (en) * 2010-12-28 2012-07-26 Iseki & Co Ltd Seedling planting apparatus
JP2015086995A (en) * 2013-11-01 2015-05-07 株式会社 神崎高級工機製作所 Drive control mechanism for work part of work vehicle
JP2015149942A (en) * 2014-02-14 2015-08-24 井関農機株式会社 seedling transplanting machine

Also Published As

Publication number Publication date
CN111465314A (en) 2020-07-28
KR20200097686A (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6832719B2 (en) Work vehicle
JP2020103085A (en) Work vehicle
WO2019123696A1 (en) Paddy field work machine
WO2019123695A1 (en) Paddy field work machine
CN109923982B (en) Paddy field working machine
JP2014100127A (en) Seedling transplanter
JP7192064B2 (en) Paddy work machine
JP2023107830A (en) work vehicle
JP7033911B2 (en) Paddy field work machine
JP7027158B2 (en) Paddy field work machine
JP7181362B2 (en) Paddy work machine
JP2023016975A5 (en)
JP7109182B2 (en) Paddy work machine
JP7174497B2 (en) Paddy work machine
JP7068887B2 (en) Paddy field work machine
JP7029004B2 (en) Working machine
JP7246535B2 (en) work machine
JP6829184B2 (en) Work machine
JP3658875B2 (en) Automatic steering device for traveling body
JPH11123943A (en) Power control device for work machine
JP2000312514A (en) Seedling transplanter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890589

Country of ref document: EP

Kind code of ref document: A1