WO2019123570A1 - Parking position determination device and parking position determination program - Google Patents

Parking position determination device and parking position determination program Download PDF

Info

Publication number
WO2019123570A1
WO2019123570A1 PCT/JP2017/045726 JP2017045726W WO2019123570A1 WO 2019123570 A1 WO2019123570 A1 WO 2019123570A1 JP 2017045726 W JP2017045726 W JP 2017045726W WO 2019123570 A1 WO2019123570 A1 WO 2019123570A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
parking
obstacle
distance information
traveling direction
Prior art date
Application number
PCT/JP2017/045726
Other languages
French (fr)
Japanese (ja)
Inventor
村下 君孝
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2017/045726 priority Critical patent/WO2019123570A1/en
Publication of WO2019123570A1 publication Critical patent/WO2019123570A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger

Definitions

  • the present disclosure relates to a parking position determination device and a parking position determination program.
  • an appropriate target stop position it is difficult to determine an appropriate target stop position according to the attribute of the object that may exist in the space in the vehicle traveling direction.
  • the space in the vehicle traveling direction there may be an object having different attributes such as a parking frame or a ring, and an appropriate target stop position may be different depending on the attribute of the object.
  • the present invention aims to determine an appropriate target stop position according to the attribute of an object that may be present in the space in the vehicle traveling direction.
  • a storage unit that stores, for each attribute of an object, distance information representing a distance in the vehicle front-rear direction from the vehicle reference to the object in association with the attribute;
  • the distance information associated with the attribute of the object present in the space in the traveling direction of the vehicle is acquired from the storage unit based on the image of the camera obtained by imaging the periphery of the vehicle, and parking is completed using the acquired distance information
  • a parking position determination device includes a processing unit that determines a target stop position related to the front-rear direction of the vehicle.
  • FIG. 1 schematically shows an overall configuration of a vehicle system 1 according to an embodiment. It is a figure which shows an example of the functional block of the sensing control apparatus. It is explanatory drawing of the derivation
  • FIG. 1 is a diagram schematically showing an overall configuration of a vehicle system 1 according to an embodiment.
  • An example of a hardware configuration is schematically shown in FIG. 1 for a part of the configuration.
  • the vehicle system 1 is mounted on a vehicle.
  • the vehicle system 1 includes a sensing control device 10 (an example of a parking position determination device), a vehicle control device 12, a camera 14, a steering wheel control device 16, a brake / accelerator control device 18, and a monitor 19.
  • the sensing control device 10 is, for example, in the form of an electronic control unit (ECU), and has a hardware configuration as illustrated in FIG. 1, for example.
  • the sensing control device 10 includes a central processing unit (CPU) 110 (an example of a processing unit), a random access memory (RAM) 111, and a read only memory (ROM) 112 (storage An example of a part) etc.
  • CPU central processing unit
  • RAM random access memory
  • ROM read only memory
  • the vehicle control device 12, the camera 14, and the monitor 19 are connected to the sensing control device 10.
  • the vehicle control device 12 is connected to the sensing control device 10 via a CAN (controller area network), and the sensing control device 10 is monitored via an AVC-LAN (Audio-Visual Communication Local Area Network). 19 is connected.
  • CAN controller area network
  • AVC-LAN Anaudio-Visual Communication Local Area Network
  • the sensing control device 10 performs a parking position determination process of determining a target parking position and a target parking direction based on an image of the camera 14. The parking position determination process will be described later.
  • the sensing control device 10 provides the result of the parking position determination process to the steering wheel control device 16 and the brake / accelerator control device 18.
  • the vehicle control device 12 is, for example, in the form of an ECU like the sensing control device 10, and has a hardware configuration as shown in FIG. 1, for example.
  • a steering wheel control device 16 and a brake / accelerator control device 18 are connected to the vehicle control device 12.
  • the camera 14 is, for example, a monocular camera, and is attached to the rear of the vehicle.
  • the optical axis of the camera 14 in a fixed state (that is, the optical axis of the camera 14 is not variable).
  • the camera 14 images the rear of the vehicle.
  • the camera 14 gives the captured image to the sensing control device 10.
  • the camera 14 may be another type of camera such as a stereo camera.
  • the vehicle system 1 may further include another camera attached to the vehicle side or the front of the vehicle.
  • the steering wheel control device 16 rotates the turning wheels of the vehicle until the vehicle reaches the target parking position so that the vehicle becomes the target parking direction at the target parking position according to the result of the parking position determination process from the vehicle control device 12 Control the rudder direction (ie, the direction of travel of the vehicle).
  • the steering wheel control device 16 controls the turning direction of the turning wheels via a power steering device (not shown).
  • the brake / accelerator control device 18 causes the vehicle to reach the target parking position so that the vehicle moves to the target parking position and stops at the target parking position according to the result of the parking position determination process from the vehicle control device 12 Control the braking and driving force of the vehicle up to For example, the brake / accelerator control device 18 generates a braking force via a brake actuator (not shown) or generates a driving force via a driving force generator (for example, an engine, a motor, etc.) .
  • the functions of the vehicle control device 12, the steering wheel control device 16, and the brake / accelerator control device 18 may be integrally realized by one control device or partially realized by another control device. It is also good. For example, some or all of the functions of the vehicle control device 12 may be realized by the steering wheel control device 16 and / or the brake and accelerator control device 18. In addition, the vehicle control device 12 may be realized by a combination of a plurality of control devices.
  • the monitor 19 is provided in the vehicle compartment.
  • the monitor 19 may be a liquid crystal display or the like.
  • the monitor 19 may be realized by a display of a portable terminal that the user brings into the vehicle.
  • FIG. 2 is a diagram showing an example of a functional block of the sensing control device 10. As shown in FIG.
  • the sensing control device 10 includes an image dividing unit 101, a first object detecting unit 102, a first distance measuring unit 103, a predetermined object detecting unit 104, a second object detecting unit 105, and a second distance measuring unit 106. , And a target parking position calculation unit 107.
  • Each of the units 101 to 107 can be realized, for example, by the CPU 110 executing a program in the ROM 112.
  • the sensing control device 10 includes a definition table holding unit 108.
  • the definition table storage unit 108 can be realized by the ROM 112.
  • the definition table storage unit 108 may be realized by a flash memory, or an auxiliary storage device such as a hard disk drive (HDD) or a solid state drive (SSD).
  • HDD hard disk drive
  • SSD solid state drive
  • the image dividing unit 101 Based on steering angle information from a steering angle sensor (not shown), the image dividing unit 101 generates an image from the camera 14 as an image area (hereinafter referred to as “first image area”) relating to a space within the vehicle travel range. And an image area (hereinafter referred to as a "second image area”) related to a space outside the vehicle travel range.
  • the image area related to the space within the vehicle travel range is an image area related to the space where the vehicle is scheduled to pass based on the traveling direction of the vehicle, and is set in a mode to which a predetermined margin is added.
  • a space in which the vehicle is scheduled to pass based on the traveling direction of the vehicle can be derived based on the steering angle information.
  • the image dividing unit 101 may divide the image from the camera 14 into an image area related to the parking space and an image area related to the space outside the parking space.
  • the parking space is a space where a vehicle at the time of parking completion is to be present, and is set in a mode to which a predetermined margin is added.
  • the parking space may be set based on an image from the camera 14 or may be set based on another sensor (for example, an ultrasonic sensor).
  • the space in the vehicle travel range and the parking space are examples of the space in the vehicle traveling direction.
  • the first object detection unit 102 detects (recognizes) an object to be detected (hereinafter, referred to as an “object”) in the first image region, and detects (recognizes) an attribute (type) of the object. .
  • the attribute of the object includes a parking frame having a frame (for example, a white line painted on a road surface), an obstacle, and a loop.
  • An obstacle is an object that a vehicle should not hit or that is not desirable to hit, such as other vehicles, people, walls, fences, bicycles, two-wheeled vehicles, fixed objects with relatively high height, moving objects, etc. Therefore, for example, an object (a character, a sign, etc.) having no thickness on the road surface other than the parking frame, a bounce board of the time-type parking lot, and the like do not correspond to the obstacle. Note that these objects are not included in the object, but may be detected for other applications.
  • the first object detection unit 102 detects the presence or absence of an object, and the attribute of the object if it exists, using, for example, HoG (Histogram of oriented gradients) or deep learning.
  • HoG HoG of oriented gradients
  • the obstacle among the objects detected by the first object detection unit 102 is also referred to as a “first obstacle”.
  • the first distance measuring unit 103 measures the positional relationship of the vehicle with respect to the object. For example, the first distance measuring unit 103 derives the coordinate value of the object in a plane coordinate system in top view with the center of the rear wheel axle of the vehicle as the origin. For example, SFM (Structure from Motion) or moving stereo can be used to derive the coordinate values of the object.
  • SFM Structure from Motion
  • moving stereo can be used to derive the coordinate values of the object.
  • the first distance measuring unit 103 when using a monocular camera, the first distance measuring unit 103 first calculates the position (coordinates of the image) from the image center of the object (step S300), as schematically shown in FIGS. 3A and 3B, for example. Then, based on the lens distortion, an angle ⁇ (see FIG. 3B) from the optical axis to the contact position of the object is derived (step S301). Lens distortion is an internal parameter and is determined by the lens design of the camera 14.
  • the first distance measuring unit 103 uses, for example, a table (not shown) that defines the relationship between the distance (the number of pixels) from the image center and the angle from the camera optical axis to determine the angle from the optical axis. It may be derived.
  • the first distance measuring unit 103 derives the distance d of the contact position of the object based on the external parameter.
  • the external parameters are the mounting position (height) of the camera 14, the mounting angle (yaw, pitch, roll) of the camera 14, the physical mounting position of the camera 14, and are determined by the camera mounting design.
  • the predetermined object detection unit 104 detects a predetermined object in the second image area.
  • the predetermined object is in the form of a column extending in the vertical direction, and at least two or more objects are apart from each other in the direction crossing the traveling direction of the vehicle.
  • the predetermined object includes a pole 300 for passing a chain or a rope as shown in FIG. 4A, and a support 301 for supporting a net (fence) as shown in FIG. 4B. .
  • the pole 300 has a feature that the height is relatively low, pairs of two each form a pair, and a line segment connecting the pole 300 is perpendicular to the traveling direction of the vehicle in the parking frame.
  • the predetermined object detection unit 104 detects the pole 300 using such features.
  • the columns 301 are relatively high (e.g., higher than the average vehicle height), and are paired in pairs, and the line connecting the columns 301 is perpendicular to the vehicle traveling direction in the parking frame There is a feature.
  • the predetermined object detection unit 104 detects the pole 300 using such features.
  • the predetermined object detection unit 104 does not need to detect the pole 300 and the support column 301 in a distinguishable manner.
  • the pole 300 and the support column 301 are highly likely to be detected as a first obstacle by the first object detection unit 102.
  • the pole 300 and the support column 301 do not exist in the space in the vehicle traveling direction, the possibility that the predetermined object detection unit 104 detects a predetermined object is high.
  • the second object detection unit 105 is based on the detection result (detection result) of the predetermined object by the predetermined object detection unit 104, and is an obstacle that exists in the vehicle traveling direction and can not be recognized based on the image of the camera Therefore, it is presumed to detect “a second obstacle”).
  • An obstacle that can not be recognized based on the image of the camera 14 means an obstacle that can not be detected by the first object detection unit 102 or an obstacle that can not be detected with the required accuracy.
  • the second obstacle is a new object different from the first obstacle.
  • the second obstacle includes a rope or chain 320 (see FIG. 4A) provided between the poles 300 and a net 322 (see FIG. 4B) provided between the support columns 301.
  • These ropes and chains 320, etc. are objects significantly thinner than the pole 300 and the support column 301, and can not be detected by the first object detection unit 102 with high accuracy. This is because the area occupied by the rope in the image is less than 3%, and it is impossible to distinguish between the rope, the road surface pattern, and the road surface crack. The same applies to the chain 320 and the net 322.
  • the second object detection unit 105 detects that there is a second obstacle on a line connecting two or more predetermined objects in top view, and detects the second obstacle. Therefore, detection of the second obstacle by the second object detection unit 105 is based on estimation only.
  • the second ranging unit 106 measures the positional relationship of the vehicle with respect to the second obstacle. For example, the second distance measuring unit 106 derives the coordinate value of the second obstacle in the plane coordinate system in top view with the center of the rear wheel axle of the vehicle as the origin.
  • the coordinate values of the second obstacle may be expressed, for example, as coordinates on a line connecting two or more predetermined objects.
  • the target parking position calculation unit 107 determines a target parking position and a target stopping direction (target parking direction) based on the coordinate value of the object and the coordinate value of the second obstacle as the parking position determination processing.
  • the target parking position represents a target position to which the rear wheel axle center of the vehicle should reach.
  • the target parking position is derived in a plane coordinate system in top view with the center of the rear wheel axle of the vehicle as the origin. In this case, parking is completed when the target parking position reaches the origin.
  • the target parking position includes a target stop position and a target lateral position.
  • the target stop position is a target value of a position relating to the longitudinal direction of the vehicle at the time of parking completion
  • the target lateral position is a target value of a position relating to the lateral direction of the vehicle at the completion of parking.
  • the target stop direction is a target value of the direction of the vehicle when parking is completed.
  • the target lateral position may be set, for example, at the center between the parking frames on both sides in the lateral direction or at the center in the lateral direction of the parking space.
  • the target stopping direction may be set, for example, parallel to the parking frame on both sides in the lateral direction, or may be set parallel to the longitudinal direction of the parking space.
  • the definition table storage unit 108 stores distance information in association with an attribute for each attribute of the object.
  • FIG. 5A is an example of the definition table held by the definition table holding unit 108.
  • classification symbols a-1, a-2, a-3, b and c are given for each attribute of the object, and the vehicle standard and the distance from the object are defined for each attribute (definition ).
  • the classification symbol a-1 corresponds to the attribute of the parking frame
  • the classification symbol a-2 corresponds to the attribute of the first obstacle
  • the classification symbol a-3 corresponds to the attribute of the loop.
  • the classification symbol c corresponds to the attribute of the second obstacle.
  • the first obstacle and the second obstacle are treated as different attributes in FIG. 5A, they may be treated as the same attribute.
  • the vehicle reference is the rear end of the vehicle or the rear wheel axle of the vehicle
  • the distance information is the distance from the rear end of the vehicle or the rear wheel axle of the vehicle to the object in the longitudinal direction of the vehicle Represents the distance to be realized when the vehicle is stopped.
  • the frame line in the direction crossing the traveling direction of the vehicle and the rear end of the vehicle substantially match
  • the distance information associated with the parking frame for example, as schematically shown in FIG. 5B, the distance between the white line (an example of a frame line) and the rear end of the vehicle is “0 [cm]”.
  • the vehicle is shown in a state in which the distance from the rear end of the vehicle to the white line is 0 cm.
  • the distance may be set to be slightly larger than “0 [cm]”.
  • the distance information associated with the first obstacle is defined such that the vehicle does not hit the first obstacle. That is, the distance information associated with the first obstacle is defined so that the rear end of the vehicle is separated from the obstacle by a predetermined distance or more. In FIG. 5A, the distance information associated with the first obstacle is such that the distance from the rear end of the vehicle is “10 [cm] (an example of a predetermined distance)”.
  • the distance information associated with the first obstacle is not limited to "10 cm", and may be set according to a necessary margin or the like, or may be set by the user.
  • the distance information associated with the detent is defined such that the rear wheel of the vehicle (an example of the front wheel in the traveling direction of the vehicle) is in a predetermined positional relationship such that it contacts or nearly touches the detent.
  • the distance information from the rear wheel shaft is “30 [cm]” as the distance information associated with the loop.
  • the distance information associated with the clasping is not limited to "30 [cm]", and may be set according to the tire diameter and the like.
  • the distance information associated with the ringing may be defined by the distance from the rear end of the vehicle. This is because the distance between the rear end of the vehicle and the rear wheel shaft (the distance in the longitudinal direction of the vehicle) is constant (design value), and therefore, it can function based on either of them. Similarly, portions other than the rear end of the vehicle and the rear wheel of the vehicle may be used as a reference. The same applies to the distance information associated with the parking frame and the distance information associated with the first obstacle and the second obstacle. Also, from the same point of view, the vehicle reference may be an arbitrary position in a fixed relationship with the rear end of the vehicle.
  • the distance information associated with the second obstacle is defined such that the vehicle does not hit the second obstacle. That is, the distance information associated with the second obstacle is defined so that the rear end of the vehicle is separated from the obstacle by a predetermined distance or more. In FIG. 5A, the distance information associated with the second obstacle is such that the distance from the rear end of the vehicle is “10 [cm] (an example of a predetermined distance)”.
  • the distance information associated with the second obstacle is not limited to "10 cm", and may be set according to a necessary margin or the like, or may be set by the user.
  • line L1 etc. is a line orthogonal to a target parking direction by top view. 6 to 9 show a picture of the vehicle when going straight and moving backward, but the present invention is similarly applicable to moving backward with turning.
  • the target parking position calculation unit 107 acquires distance information associated with the attribute of the object present in the parking space from the definition table holding unit 108, and uses the acquired distance information to obtain the target stop position. decide.
  • FIG. 6 is an explanatory view of a method of determining the target stop position when the parking frame is detected, and is a schematic top view of the parking lot.
  • FIG. 6 shows a vehicle that is going to park in a backward movement to the parking space S6.
  • the target stop position is a predetermined distance from the parking frame 600 on the back side of the parking space S6.
  • Only the ⁇ is set on the entrance side of the parking space S6.
  • the line L1 indicates a position on the entrance side of the parking space S6 by a predetermined distance ⁇ from the parking frame 600 on the back side of the parking space S6.
  • the predetermined distance ⁇ is the distance from the rear end of the vehicle to the center of the rear wheel axle of the vehicle (the distance in the longitudinal direction of the vehicle).
  • the target stop position when the parking frame is detected is determined on the line L1.
  • FIG. 7 is an explanatory view of a method of determining the target stop position when the clasping is detected, and is a schematic top view of the parking lot.
  • FIG. 7 shows a vehicle which is going to park in a backward movement to the parking space S7.
  • the target stop position is "30 [cm]" parked from the clasp 700 It is set to the space S7 entrance side.
  • the line L2 indicates the position of the snap ring 700
  • the line L3 indicates a position on the entrance side of the parking space S7 by "30 cm” from the snap ring 700.
  • the target stop position when the snap ring 700 is detected is determined on the line L3.
  • FIG. 8 is an explanatory diagram of a method of determining the target stop position when the first obstacle is detected, and is a schematic top view of the parking lot.
  • FIG. 8 shows a vehicle which is going to park in a backward traveling to the parking space S8.
  • a first obstacle 800 is schematically shown in the parking space S8.
  • the first obstacle 800 is detected (see line L8).
  • the line L9 indicates a position at which the distance from the line L8 is “10 [cm]” based on the distance information associated with the first obstacle.
  • the target stop position is set on the entrance side of the parking space S8 by a predetermined distance ⁇ from the line L9.
  • Line L10 indicates a position on the entrance side of parking space S8 by a predetermined distance ⁇ from line L9.
  • the predetermined distance ⁇ is the distance from the rear end of the vehicle to the center of the rear wheel axle of the vehicle (the distance in the longitudinal direction of the vehicle). In this case, the target stop position when the first obstacle 800 is detected is determined on the line L10.
  • FIG. 9 is an explanatory diagram of a method of determining the target stop position when the second obstacle is detected, and is a schematic top view of the parking lot.
  • FIG. 9 shows a vehicle which is going to park in a backward traveling to the parking space S9.
  • Two poles 300 are schematically shown in FIG.
  • the two poles 300 exist in the space S61 outside the vehicle travel range, and do not exist in the space (and the parking space S9) within the vehicle travel range. Therefore, in this case, the two poles 300 are detected as a predetermined object, and the presence of the second obstacle is estimated between the two poles 300 (see line L4).
  • the line L5 indicates the position at which the distance from the line L4 is "10 cm", based on the distance information associated with the second obstacle.
  • the target stop position is set on the entrance side of the parking space S9 by a predetermined distance ⁇ from the line L5.
  • Line L6 indicates a position on the entrance side of parking space S9 by a predetermined distance ⁇ from line L5.
  • the predetermined distance ⁇ is the distance from the rear end of the vehicle to the center of the rear wheel axle of the vehicle (the distance in the longitudinal direction of the vehicle). In this case, the target stop position when the second obstacle is detected is determined on the line L6.
  • an appropriate target stop position can be determined according to the attribute of the object that may exist in the parking space. For example, it is possible to determine a target stop position where the rear end of the vehicle substantially matches the parking frame, or a target stop position where the rear wheel just touches or almost touches the loop. Also, the target stop position can be determined at a position separated by an appropriate distance from the first obstacle.
  • a second obstacle for example, a chain, a rope, a net or the like
  • a predetermined object such as a pole or a support.
  • FIG. 10 is an explanatory view of a method of determining the target stop position when objects of a plurality of different attributes are detected, and is a schematic top view of the parking lot.
  • FIG. 10 shows a vehicle which is going to park in a backward movement to the parking space S10.
  • the target stop position determined as described above is calculated as a candidate for each attribute, and the candidate on the parking space entrance side among the plurality of candidates is the target stop It is determined as a position.
  • the line L20 is a line on which the candidate of the target stop position obtained according to the method of determining the target stop position when the parking frame is detected is located.
  • the line L21 is a line on which candidates for the target stop position obtained according to the method of determining the target stop position when the loop is detected are located.
  • the line L22 is a line on which candidates for the target stop position obtained according to the method for determining the target stop position when the first obstacle is detected are located.
  • the line L23 is a line on which candidates for the target stop position obtained according to the method of determining the target stop position when the second obstacle is detected are located. In this case, the target stop position is determined on the candidate at the parking space entrance side, ie, the line L20.
  • the most safe candidate as the target stop position among the plurality of candidates for the target stop position.
  • the line on which the candidate for the target stop position based on the parking frame is located is behind the parking space than the line on which the candidate for the target stop position based on ringing is located.
  • the target stop position is determined on the line on which the candidate for the target stop position based on the parking frame is located, the rear wheel will get over the ringing by the time the vehicle reaches the target stop position, which is not preferable. According to the present embodiment, such inconvenience can be prevented.
  • FIG. 11 is a schematic flowchart showing an operation example of the sensing control device 10 according to the present embodiment.
  • step S1100 the image dividing unit 101 of the sensing control device 10 divides the image from the camera 14 into a first image area and a second image area.
  • step S1102 the sensing control device 10 performs a target stop position calculation process related to the object based on the first image area.
  • a target stop position calculation process related to the object based on the first image area.
  • step S1104 the predetermined object detection unit 104 of the sensing control device 10 performs processing for detecting a predetermined object in the second image area.
  • step S1106 the sensing control device 10 performs target stop position calculation processing relating to the second obstacle based on the processing result in step S1104.
  • target stop position calculation processing relating to the second obstacle based on the processing result in step S1104.
  • step S1108 the target parking position calculation unit 107 of the sensing control device 10 performs a parking position determination process. At this time, when there are a plurality of candidates for the target stop position, the target parking position calculation unit 107 determines the candidate closest to the parking space entrance as the target stop position (see FIG. 10).
  • FIG. 12 is a schematic flowchart showing an example of the target stop position calculation process (step S1102 in FIG. 11) related to the object.
  • step S1200 the first object detection unit 102 performs processing for detecting a parking frame in the first image area, and when a parking frame is detected, the process proceeds to step S1202. If the parking space is not detected, the process proceeds to step S1208.
  • the first distance measuring unit 103 measures the positional relationship of the vehicle with respect to the parking frame. For example, the first distance measuring unit 103 derives the coordinate value of the parking frame on the back side of the parking space in the plane coordinate system in top view with the center of the rear wheel shaft of the vehicle as the origin.
  • step S1204 the target parking position calculation unit 107 acquires, from the definition table storage unit 108, the distance information associated with the parking frame.
  • the target parking position calculation unit 107 is a candidate for a target stop position based on the parking frame based on the coordinate values of the parking frame on the back side of the parking space obtained in step S1202 and the distance information obtained in step S1204.
  • Calculate The calculation method of the candidate of the target stop position based on a parking frame is as above-mentioned (refer FIG. 6).
  • step S1208 the first object detection unit 102 performs a process of detecting the first obstacle in the first image region, and when the first obstacle is detected, the process proceeds to step S1210. If the first obstacle is not detected, the process proceeds to step S1216.
  • the first distance measuring unit 103 measures the positional relationship of the vehicle with respect to the first obstacle. For example, the first distance measuring unit 103 derives the coordinate value of the first obstacle (for example, the coordinate value on the near side of the parking space) in the plane coordinate system in top view with the center of the rear wheel axle of the vehicle as the origin.
  • the coordinate value of the first obstacle for example, the coordinate value on the near side of the parking space
  • step S1212 the target parking position calculation unit 107 acquires, from the definition table holding unit 108, distance information associated with the first obstacle.
  • step S1214 the target parking position calculation unit 107 selects a candidate for a target stop position based on the first obstacle based on the coordinate value of the first obstacle obtained in step S1210 and the distance information obtained in step S1212. calculate.
  • the calculation method of the candidate of the target stop position based on the first obstacle is as described above (see FIG. 8).
  • step S1216 the first object detection unit 102 performs a process of detecting looping in the first image region, and when looping is detected, the process proceeds to step S1218. If the ringing is not detected, the process ends as it is (the process proceeds to step S1104 in FIG. 11).
  • the first distance measuring unit 103 measures the positional relationship of the vehicle relative to the ring. For example, the first distance measuring unit 103 derives a coordinate value (for example, a coordinate value on the near side of the parking space) of the ringing in a plane coordinate system in top view with the center of the rear wheel axle of the vehicle as an origin.
  • a coordinate value for example, a coordinate value on the near side of the parking space
  • step S1220 the target parking position calculation unit 107 acquires, from the definition table storage unit 108, the distance information associated with the loop.
  • step S1222 the target parking position calculation unit 107 calculates a candidate for a target stop position based on the looping based on the looping coordinate values obtained in step S1218 and the distance information obtained in step S1220.
  • the calculation method of the candidate of the target stop position based on the clasp is as described above (see FIG. 7).
  • FIG. 13 is a schematic flowchart showing an example of the target stop position calculation process (step S1106 in FIG. 11) related to the second obstacle.
  • step S1300 the second object detection unit 105 determines whether the predetermined object detection unit 104 has detected a predetermined object. If the determination result is "YES”, the process proceeds to step S1302, and otherwise, the process ends as it is (process proceeds to step S1108 in FIG. 11).
  • step S1302 the second object detection unit 105 detects the second obstacle on a line connecting two or more predetermined objects.
  • the second distance measuring unit 106 measures the positional relationship of the vehicle with respect to the second object. For example, the second distance measuring unit 106 derives the coordinate value of the second object (for example, the coordinate value on the near side of the parking space) in the plane coordinate system in top view with the center of the rear wheel axle of the vehicle as the origin.
  • the coordinate value of the second object for example, the coordinate value on the near side of the parking space
  • step S1306 the target parking position calculation unit 107 acquires, from the definition table storage unit 108, distance information associated with the second obstacle.
  • step S1308 the target parking position calculation unit 107 selects a candidate for a target stop position based on the second obstacle based on the coordinate value of the second obstacle obtained in step S1304 and the distance information obtained in step S1306. calculate.
  • the method of calculating the candidate for the target stop position based on the second obstacle is as described above (see FIG. 9).
  • the second obstacle is detected as a preferred example, but the detection of the second obstacle is not essential.
  • the attribute of the object is three types of parking frame, ringing and obstacles, but four or more types may be set, and of the parking frame, ringing and obstacles There may be two types.
  • the definition table (distance information corresponding to the attribute) defined in the definition table storage unit 108 is fixed, but may be updated by learning or the like.
  • the same function can be realized by using an image obtained by the front camera instead of the camera 14.
  • the vehicle end on the front side in the vehicle traveling direction is the front end of the vehicle
  • the wheel on the front side in the vehicle traveling direction is a front wheel.
  • the target stop position determined as described above is used for automatic parking, but may be used for semi-automatic parking or parking assistance.
  • the target stop position determined as described above may be displayed on the monitor 19. Then, immediately before the vehicle reaches the target stop position, support information for prompting the brake operation may be displayed on the monitor 19 or may be output by voice or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Traffic Control Systems (AREA)

Abstract

Disclosed is a parking position determination device including: a storage unit that stores, for each attribute of an object of interest and in association with the attribute, the distance information representing the distance from a vehicle reference to the object of interest in the direction of the vehicle length; and a processing unit that acquires from the storage unit the distance information associated with the attribute of the object of interest which, according to a captured camera image of the vehicle surroundings, occupies a space in the direction of the vehicle length and uses the acquired distance information to determine a target stop position, along the direction of the vehicle length, at the completion of parking .

Description

駐車位置決定装置及び駐車位置決定プログラムParking position determination device and parking position determination program
 本開示は、駐車位置決定装置及び駐車位置決定プログラムに関する。 The present disclosure relates to a parking position determination device and a parking position determination program.
 従来から、駐車枠等をカメラで検出して駐車完了時の車両前後方向に係る目標停止位置(駐車完了時の車両前後方向に係る目標車両位置)を決定する技術が知られている。 2. Description of the Related Art Conventionally, there is known a technique of detecting a parking frame or the like with a camera to determine a target stop position (a target vehicle position related to the longitudinal direction of the vehicle at the completion of parking).
特開2009-202610号公報JP, 2009-202610, A 特開2002-154396号公報JP 2002-154396 A 特開2010-164349公報JP, 2010-164349, A
 しかしながら、上記のような従来技術では、車両進行方向の空間に存在しうる対象物の属性に応じて適切な目標停止位置を決定することが難しい。例えば、車両進行方向の空間には、駐車枠や輪留めのような属性の異なる対象物が存在する場合があり、対象物の属性に応じて適切な目標停止位置が異なる場合がある。 However, in the above-mentioned prior art, it is difficult to determine an appropriate target stop position according to the attribute of the object that may exist in the space in the vehicle traveling direction. For example, in the space in the vehicle traveling direction, there may be an object having different attributes such as a parking frame or a ring, and an appropriate target stop position may be different depending on the attribute of the object.
 そこで、1つの側面では、本発明は、車両進行方向の空間に存在しうる対象物の属性に応じて適切な目標停止位置を決定することを目的とする。 Therefore, in one aspect, the present invention aims to determine an appropriate target stop position according to the attribute of an object that may be present in the space in the vehicle traveling direction.
 本開示の一局面によれば、対象物の属性ごとに、属性に対応付けて、車両基準から対象物までの車両前後方向の距離を表す距離情報を記憶する記憶部と、
 車両周辺を撮像したカメラの画像に基づいて、車両進行方向の空間に存在する対象物の属性に対応付けられる前記距離情報を前記記憶部から取得し、取得した前記距離情報を用いて、駐車完了時の車両前後方向に係る目標停止位置を決定する処理部とを含む、駐車位置決定装置が提供される。
According to one aspect of the present disclosure, a storage unit that stores, for each attribute of an object, distance information representing a distance in the vehicle front-rear direction from the vehicle reference to the object in association with the attribute;
The distance information associated with the attribute of the object present in the space in the traveling direction of the vehicle is acquired from the storage unit based on the image of the camera obtained by imaging the periphery of the vehicle, and parking is completed using the acquired distance information A parking position determination device is provided that includes a processing unit that determines a target stop position related to the front-rear direction of the vehicle.
 本開示によれば、車両進行方向の空間に存在しうる対象物の属性に応じて適切な目標停止位置を決定することが可能となる。 According to the present disclosure, it is possible to determine an appropriate target stop position according to the attribute of an object that may exist in the space in the vehicle traveling direction.
一実施例による車両システム1の全体構成を概略的に示す図である。FIG. 1 schematically shows an overall configuration of a vehicle system 1 according to an embodiment. センシング制御装置10の機能ブロックの一例を示す図である。It is a figure which shows an example of the functional block of the sensing control apparatus. 対象物の距離の導出方法の説明図である。It is explanatory drawing of the derivation | leading-out method of the distance of a target object. 対象物の距離の導出方法の説明図である。It is explanatory drawing of the derivation | leading-out method of the distance of a target object. 所定物体(及び第2障害物)の一例を示す図である。It is a figure showing an example of a predetermined object (and the 2nd obstacle). 所定物体(及び第2障害物)の他の一例を示す図である。It is a figure which shows another example of a predetermined | prescribed object (and 2nd obstruction). 定義表(距離情報)の一例である。It is an example of a definition table (distance information). 駐車枠に対応付けられる距離情報の説明図である。It is explanatory drawing of the distance information matched with a parking frame. 輪留めに対応付けられる距離情報の説明図である。It is explanatory drawing of the distance information matched with a loop. 駐車枠に基づく目標停止位置の決定方法の説明図である。It is explanatory drawing of the determination method of the target stop position based on a parking frame. 輪留めに基づく目標停止位置の決定方法の説明図である。It is explanatory drawing of the determination method of the target stop position based on looping. 第1障害物に基づく目標停止位置の決定方法の説明図である。It is explanatory drawing of the determination method of the target stop position based on a 1st obstacle. 第2障害物に基づく目標停止位置の決定方法の説明図である。It is explanatory drawing of the determination method of the target stop position based on a 2nd obstacle. 複数の異なる属性の対象物が検出された場合の目標停止位置の決定方法の説明図である。It is explanatory drawing of the determination method of the target stop position when the target object of a several different attribute is detected. 本実施例によるセンシング制御装置10の動作例を示す概略フローチャートである。It is a schematic flowchart which shows the operation example of the sensing control apparatus 10 by a present Example. 対象物に係る目標停止位置算出処理の一例を示す概略フローチャートである。It is a schematic flowchart which shows an example of the target stop position calculation process which concerns on a target object. 第2障害物に係る目標停止位置算出処理の一例を示す概略フローチャートである。It is a schematic flowchart which shows an example of the target stop position calculation process which concerns on a 2nd obstruction.
 以下、添付図面を参照しながら各実施例について詳細に説明する。 Hereinafter, each example will be described in detail with reference to the attached drawings.
 図1は、一実施例による車両システム1の全体構成を概略的に示す図である。図1には、一部の構成について、ハードウェア構成の一例が模式的に示されている。 FIG. 1 is a diagram schematically showing an overall configuration of a vehicle system 1 according to an embodiment. An example of a hardware configuration is schematically shown in FIG. 1 for a part of the configuration.
 車両システム1は、車両に搭載される。車両システム1は、センシング制御装置10(駐車位置決定装置の一例)と、車両制御装置12と、カメラ14と、ハンドル制御装置16と、ブレーキ・アクセル制御装置18と、モニタ19とを含む。 The vehicle system 1 is mounted on a vehicle. The vehicle system 1 includes a sensing control device 10 (an example of a parking position determination device), a vehicle control device 12, a camera 14, a steering wheel control device 16, a brake / accelerator control device 18, and a monitor 19.
 センシング制御装置10は、例えばECU(Electronic Control Unit)の形態であり、例えば図1に示すようなハードウェア構成を有する。図1に示す例では、センシング制御装置10は、データバスで接続されたCPU(Central Processing Unit)110(処理部の一例)、RAM(Random Access Memory)111、ROM(Read Only Memory)112(記憶部の一例)等を有する。 The sensing control device 10 is, for example, in the form of an electronic control unit (ECU), and has a hardware configuration as illustrated in FIG. 1, for example. In the example illustrated in FIG. 1, the sensing control device 10 includes a central processing unit (CPU) 110 (an example of a processing unit), a random access memory (RAM) 111, and a read only memory (ROM) 112 (storage An example of a part) etc.
 センシング制御装置10には、車両制御装置12、カメラ14、及びモニタ19が接続される。例えば、センシング制御装置10には、CAN(controller area network)を介して、車両制御装置12が接続され、センシング制御装置10には、AVC-LAN(Audio-Visual Communication Local Area Network)を介してモニタ19が接続される。 The vehicle control device 12, the camera 14, and the monitor 19 are connected to the sensing control device 10. For example, the vehicle control device 12 is connected to the sensing control device 10 via a CAN (controller area network), and the sensing control device 10 is monitored via an AVC-LAN (Audio-Visual Communication Local Area Network). 19 is connected.
 センシング制御装置10は、カメラ14の画像に基づいて、目標駐車位置及び目標駐車方向を決定する駐車位置決定処理を行う。駐車位置決定処理については後述する。センシング制御装置10は、駐車位置決定処理の結果を、ハンドル制御装置16及びブレーキ・アクセル制御装置18に与える。 The sensing control device 10 performs a parking position determination process of determining a target parking position and a target parking direction based on an image of the camera 14. The parking position determination process will be described later. The sensing control device 10 provides the result of the parking position determination process to the steering wheel control device 16 and the brake / accelerator control device 18.
 車両制御装置12は、センシング制御装置10と同様、例えばECUの形態であり、例えば図1に示すようなハードウェア構成を有する。車両制御装置12には、ハンドル制御装置16及びブレーキ・アクセル制御装置18が接続される。 The vehicle control device 12 is, for example, in the form of an ECU like the sensing control device 10, and has a hardware configuration as shown in FIG. 1, for example. A steering wheel control device 16 and a brake / accelerator control device 18 are connected to the vehicle control device 12.
 カメラ14は、例えば単眼カメラであり、車両後部に取り付けられる。本実施例では、一例として、カメラ14が取り付けられた状態では、カメラ14の光軸は固定状態となる(即ちカメラ14の光軸が可変ではない)。カメラ14は、車両後方を撮像する。カメラ14は、撮像した画像をセンシング制御装置10に与える。尚、変形例では、カメラ14は、ステレオカメラのような他の形態のカメラであってもよい。また、車両システム1は、車両側部や車両前部に取り付けられる別のカメラを更に備えていてもよい。 The camera 14 is, for example, a monocular camera, and is attached to the rear of the vehicle. In this embodiment, as an example, in a state where the camera 14 is attached, the optical axis of the camera 14 is in a fixed state (that is, the optical axis of the camera 14 is not variable). The camera 14 images the rear of the vehicle. The camera 14 gives the captured image to the sensing control device 10. In a modification, the camera 14 may be another type of camera such as a stereo camera. Also, the vehicle system 1 may further include another camera attached to the vehicle side or the front of the vehicle.
 ハンドル制御装置16は、車両制御装置12からの駐車位置決定処理の結果に応じて、車両が目標駐車位置で目標駐車方向となるように、目標駐車位置に車両が至るまで車両の転舵輪の転舵方向(即ち、車両進行方向)を制御する。例えば、ハンドル制御装置16は、パワーステアリング装置(図示せず)を介して、転舵輪の転舵方向を制御する。 The steering wheel control device 16 rotates the turning wheels of the vehicle until the vehicle reaches the target parking position so that the vehicle becomes the target parking direction at the target parking position according to the result of the parking position determination process from the vehicle control device 12 Control the rudder direction (ie, the direction of travel of the vehicle). For example, the steering wheel control device 16 controls the turning direction of the turning wheels via a power steering device (not shown).
 ブレーキ・アクセル制御装置18は、車両制御装置12からの駐車位置決定処理の結果に応じて、目標駐車位置へと車両が移動しかつ目標駐車位置で停止するように、目標駐車位置に車両が至るまでの車両の制動力及び駆動力を制御する。例えば、ブレーキ・アクセル制御装置18は、ブレーキアクチュエータ(図示せず)を介して、制動力を発生させたり、駆動力発生装置(例えばエンジン、モータ等)を介して、駆動力を発生させたりする。 The brake / accelerator control device 18 causes the vehicle to reach the target parking position so that the vehicle moves to the target parking position and stops at the target parking position according to the result of the parking position determination process from the vehicle control device 12 Control the braking and driving force of the vehicle up to For example, the brake / accelerator control device 18 generates a braking force via a brake actuator (not shown) or generates a driving force via a driving force generator (for example, an engine, a motor, etc.) .
 尚、車両制御装置12、ハンドル制御装置16、及びブレーキ・アクセル制御装置18の各機能は、1つの制御装置により統合的に実現されてもよいし、一部が他の制御装置により実現されてもよい。例えば、車両制御装置12の一部又は全部の機能がハンドル制御装置16及び/又はブレーキ・アクセル制御装置18により実現されてもよい。また、車両制御装置12は、複数の制御装置の組み合わせにより実現されてもよい。 The functions of the vehicle control device 12, the steering wheel control device 16, and the brake / accelerator control device 18 may be integrally realized by one control device or partially realized by another control device. It is also good. For example, some or all of the functions of the vehicle control device 12 may be realized by the steering wheel control device 16 and / or the brake and accelerator control device 18. In addition, the vehicle control device 12 may be realized by a combination of a plurality of control devices.
 モニタ19は、車室内に設けられる。モニタ19は、液晶ディスプレイ等であってよい。モニタ19は、ユーザが車両に持ち込む携帯端末のディスプレイにより実現されてもよい。 The monitor 19 is provided in the vehicle compartment. The monitor 19 may be a liquid crystal display or the like. The monitor 19 may be realized by a display of a portable terminal that the user brings into the vehicle.
 図2は、センシング制御装置10の機能ブロックの一例を示す図である。 FIG. 2 is a diagram showing an example of a functional block of the sensing control device 10. As shown in FIG.
 センシング制御装置10は、画像分割部101と、第1物体検出部102と、第1測距部103と、所定物体検出部104と、第2物体検出部105と、第2測距部106と、目標駐車位置算出部107とを含む。各部101乃至107は、例えばCPU110がROM112内のプログラムを実行することで実現できる。 The sensing control device 10 includes an image dividing unit 101, a first object detecting unit 102, a first distance measuring unit 103, a predetermined object detecting unit 104, a second object detecting unit 105, and a second distance measuring unit 106. , And a target parking position calculation unit 107. Each of the units 101 to 107 can be realized, for example, by the CPU 110 executing a program in the ROM 112.
 また、センシング制御装置10は、定義表保持部108を含む。定義表保持部108は、ROM112により実現できる。変形例では、定義表保持部108は、フラッシュメモリや、HDD(Hard Disk Drive)、SSD(Solid State Drive)などの補助記憶装置により実現されてもよい。 Further, the sensing control device 10 includes a definition table holding unit 108. The definition table storage unit 108 can be realized by the ROM 112. In a modification, the definition table storage unit 108 may be realized by a flash memory, or an auxiliary storage device such as a hard disk drive (HDD) or a solid state drive (SSD).
 画像分割部101は、舵角センサ(図示せず)からの舵角情報に基づいて、カメラ14からの画像を、車両走行範囲内の空間に係る画像領域(以下、「第1画像領域」と称する)と車両走行範囲外の空間に係る画像領域(以下、「第2画像領域」と称する)とに分割する。車両走行範囲内の空間に係る画像領域は、車両進行方向に基づいて車両が通過することが予定される空間に係る画像領域であり、所定のマージンが付加される態様で設定される。車両進行方向に基づいて車両が通過することが予定される空間は、舵角情報に基づいて導出できる。 Based on steering angle information from a steering angle sensor (not shown), the image dividing unit 101 generates an image from the camera 14 as an image area (hereinafter referred to as “first image area”) relating to a space within the vehicle travel range. And an image area (hereinafter referred to as a "second image area") related to a space outside the vehicle travel range. The image area related to the space within the vehicle travel range is an image area related to the space where the vehicle is scheduled to pass based on the traveling direction of the vehicle, and is set in a mode to which a predetermined margin is added. A space in which the vehicle is scheduled to pass based on the traveling direction of the vehicle can be derived based on the steering angle information.
 尚、変形例では、画像分割部101は、カメラ14からの画像を、駐車空間に係る画像領域と、駐車空間外の空間に係る画像領域とに分割してもよい。駐車空間は、駐車完了時の車両が存在する予定の空間であり、所定のマージンが付加される態様で設定される。駐車空間は、カメラ14からの画像に基づいて設定されてもよいし、他のセンサ(例えば超音波センサ)に基づいて設定されてもよい。 In the modification, the image dividing unit 101 may divide the image from the camera 14 into an image area related to the parking space and an image area related to the space outside the parking space. The parking space is a space where a vehicle at the time of parking completion is to be present, and is set in a mode to which a predetermined margin is added. The parking space may be set based on an image from the camera 14 or may be set based on another sensor (for example, an ultrasonic sensor).
 尚、車両走行範囲内の空間及び駐車空間は、車両進行方向の空間の一例である。 The space in the vehicle travel range and the parking space are examples of the space in the vehicle traveling direction.
 第1物体検出部102は、第1画像領域において、検出対象の物体(以下、「対象物」と称する)を検出(認識)し、かつ、対象物の属性(種別)を検出(認識)する。 The first object detection unit 102 detects (recognizes) an object to be detected (hereinafter, referred to as an “object”) in the first image region, and detects (recognizes) an attribute (type) of the object. .
 本実施例では、一例として、対象物の属性は、枠線を有する駐車枠(例えば路面にペイントされた白線)、障害物、及び輪留めを含む。障害物とは、車両が当たってはいけない又は当たるのが好ましくない物体であり、例えば他車、人、壁、フェンス、自転車、二輪車、比較的高さのある固定物、移動物等である。従って、例えば、駐車枠以外の路面上の厚みの無い物体(文字・記号など)や、時間式駐車場の跳ね板などは、障害物に該当しない。尚、これらの物体は、対象物に含められないが、他の用途のために検出されてもよい。 In this embodiment, as an example, the attribute of the object includes a parking frame having a frame (for example, a white line painted on a road surface), an obstacle, and a loop. An obstacle is an object that a vehicle should not hit or that is not desirable to hit, such as other vehicles, people, walls, fences, bicycles, two-wheeled vehicles, fixed objects with relatively high height, moving objects, etc. Therefore, for example, an object (a character, a sign, etc.) having no thickness on the road surface other than the parking frame, a bounce board of the time-type parking lot, and the like do not correspond to the obstacle. Note that these objects are not included in the object, but may be detected for other applications.
 第1物体検出部102は、例えばHoG(Histogram of oriented gradients)や深層学習(Deep Learning)を用いて、対象物の有無、かつ、存在する場合は対象物の属性を検出する。以下、第1物体検出部102が検出した対象物のうちの障害物を、「第1障害物」とも称する。 The first object detection unit 102 detects the presence or absence of an object, and the attribute of the object if it exists, using, for example, HoG (Histogram of oriented gradients) or deep learning. Hereinafter, the obstacle among the objects detected by the first object detection unit 102 is also referred to as a “first obstacle”.
 第1測距部103は、対象物に対する車両の位置関係を測定する。例えば、第1測距部103は、車両の後輪軸中心を原点として、上面視の平面座標系で、対象物の座標値を導出する。対象物の座標値の導出には、例えばSFM(Structure from Motion)や移動ステレオ法などを用いることができる。 The first distance measuring unit 103 measures the positional relationship of the vehicle with respect to the object. For example, the first distance measuring unit 103 derives the coordinate value of the object in a plane coordinate system in top view with the center of the rear wheel axle of the vehicle as the origin. For example, SFM (Structure from Motion) or moving stereo can be used to derive the coordinate values of the object.
 例えば単眼カメラを用いる場合、例えば図3A及び図3Bに模式的に示すように、第1測距部103は、先ず、対象物の画像中心からの位置(画像の座標)を算出し(ステップS300)、次いで、レンズディストーションに基づいて、対象物の接地位置までの光軸からの角度α(図3B参照)を導出する(ステップS301)。レンズディストーションは、内部パラメータであり、カメラ14のレンズ設計により決められる。第1測距部103は、例えば、画像中心からの距離(画素数)とカメラ光軸からの角度のとの関係を定義したテーブル(図示せず)を利用して、光軸からの角度を導出してよい。次いで、第1測距部103は、外部パラメータに基づいて、対象物の接地位置の距離dを導出する。外部パラメータは、カメラ14の取り付け位置(高さ)、カメラ14の取り付け角度(ヨー、ピッチ、ロール)、カメラ14の物理的な取り付け位置であり、カメラ取り付け設計によって決められる。 For example, when using a monocular camera, the first distance measuring unit 103 first calculates the position (coordinates of the image) from the image center of the object (step S300), as schematically shown in FIGS. 3A and 3B, for example. Then, based on the lens distortion, an angle α (see FIG. 3B) from the optical axis to the contact position of the object is derived (step S301). Lens distortion is an internal parameter and is determined by the lens design of the camera 14. The first distance measuring unit 103 uses, for example, a table (not shown) that defines the relationship between the distance (the number of pixels) from the image center and the angle from the camera optical axis to determine the angle from the optical axis. It may be derived. Next, the first distance measuring unit 103 derives the distance d of the contact position of the object based on the external parameter. The external parameters are the mounting position (height) of the camera 14, the mounting angle (yaw, pitch, roll) of the camera 14, the physical mounting position of the camera 14, and are determined by the camera mounting design.
 所定物体検出部104は、第2画像領域において所定物体を検出する。所定物体は、上下方向に延在する柱状の形態であり、少なくとも2つ以上、車両進行方向に交差する方向に離れて存在する物体である。本実施例では、一例として、所定物体は、図4Aに示すように、チェーンやロープを渡すためのポール300や、図4Bに示すように、網(フェンス)を支持するための支柱301を含む。 The predetermined object detection unit 104 detects a predetermined object in the second image area. The predetermined object is in the form of a column extending in the vertical direction, and at least two or more objects are apart from each other in the direction crossing the traveling direction of the vehicle. In this embodiment, as an example, the predetermined object includes a pole 300 for passing a chain or a rope as shown in FIG. 4A, and a support 301 for supporting a net (fence) as shown in FIG. 4B. .
 ポール300は、高さが比較的低く、2本ずつでペアをなし、ポール300を結ぶ線分が駐車枠内での車両進行方向と直角であるという特徴がある。所定物体検出部104は、かかる特徴を利用して、ポール300を検出する。支柱301は、高さが比較的高く(例えば平均的な車高よりも高く)、2本ずつでペアをなし、支柱301を結ぶ線分が駐車枠内での車両進行方向と直角であるという特徴がある。所定物体検出部104は、かかる特徴を利用して、ポール300を検出する。尚、所定物体検出部104は、ポール300と支柱301とを識別できる態様で検出することは要しない。 The pole 300 has a feature that the height is relatively low, pairs of two each form a pair, and a line segment connecting the pole 300 is perpendicular to the traveling direction of the vehicle in the parking frame. The predetermined object detection unit 104 detects the pole 300 using such features. The columns 301 are relatively high (e.g., higher than the average vehicle height), and are paired in pairs, and the line connecting the columns 301 is perpendicular to the vehicle traveling direction in the parking frame There is a feature. The predetermined object detection unit 104 detects the pole 300 using such features. The predetermined object detection unit 104 does not need to detect the pole 300 and the support column 301 in a distinguishable manner.
 ここで、ポール300や支柱301が車両進行方向の空間に存在する場合は、ポール300や支柱301は、第1物体検出部102により第1障害物として検出される可能性が高い。そして、ポール300や支柱301が車両進行方向の空間に存在しない場合は、所定物体検出部104により所定物体として検出される可能性が高くなる。 Here, when the pole 300 and the support column 301 exist in the space in the vehicle traveling direction, the pole 300 and the support column 301 are highly likely to be detected as a first obstacle by the first object detection unit 102. When the pole 300 and the support column 301 do not exist in the space in the vehicle traveling direction, the possibility that the predetermined object detection unit 104 detects a predetermined object is high.
 第2物体検出部105は、所定物体検出部104による所定物体の検出結果(検出結果)に基づいて、車両進行方向に存在しかつカメラ14の画像に基づき認識不能な障害物(以下、区別のため、「第2障害物」とも称する)を推定的に検出する。カメラ14の画像に基づき認識不能な障害物とは、第1物体検出部102により検出不能な障害物又は必要とされる精度で検出できない障害物であることを意味する。従って、第2障害物は、第1障害物とは異なる新たな対象物である。 The second object detection unit 105 is based on the detection result (detection result) of the predetermined object by the predetermined object detection unit 104, and is an obstacle that exists in the vehicle traveling direction and can not be recognized based on the image of the camera Therefore, it is presumed to detect “a second obstacle”). An obstacle that can not be recognized based on the image of the camera 14 means an obstacle that can not be detected by the first object detection unit 102 or an obstacle that can not be detected with the required accuracy. Thus, the second obstacle is a new object different from the first obstacle.
 本実施例では、一例として、第2障害物は、ポール300間に設けられるロープやチェーン320(図4A参照)、及び、支柱301間に設けられる網322(図4B参照)を含む。これらのロープやチェーン320等は、ポール300や支柱301よりも有意に細い物体であり、第1物体検出部102により精度良く検出することが不能である。これは、画像の中でロープが占める面積は3%未満であり、ロープか、路面の模様、路面の罅(ひび)かの区別が不能であるためである。チェーン320や網322の場合も同様である。 In the present embodiment, as an example, the second obstacle includes a rope or chain 320 (see FIG. 4A) provided between the poles 300 and a net 322 (see FIG. 4B) provided between the support columns 301. These ropes and chains 320, etc. are objects significantly thinner than the pole 300 and the support column 301, and can not be detected by the first object detection unit 102 with high accuracy. This is because the area occupied by the rope in the image is less than 3%, and it is impossible to distinguish between the rope, the road surface pattern, and the road surface crack. The same applies to the chain 320 and the net 322.
 第2物体検出部105は、上面視で、2つ以上の所定物体を結んだ線上に、第2障害物が存在すると推定して、第2障害物を検出する。従って、第2物体検出部105による第2障害物の検出は、あくまでも推定に基づく。 The second object detection unit 105 detects that there is a second obstacle on a line connecting two or more predetermined objects in top view, and detects the second obstacle. Therefore, detection of the second obstacle by the second object detection unit 105 is based on estimation only.
 第2測距部106は、第2障害物に対する車両の位置関係を測定する。例えば、第2測距部106は、車両の後輪軸中心を原点として、上面視の平面座標系で、第2障害物の座標値を導出する。第2障害物の座標値は、例えば2つ以上の所定物体を結んだ線上の各座標として表現されてもよい。 The second ranging unit 106 measures the positional relationship of the vehicle with respect to the second obstacle. For example, the second distance measuring unit 106 derives the coordinate value of the second obstacle in the plane coordinate system in top view with the center of the rear wheel axle of the vehicle as the origin. The coordinate values of the second obstacle may be expressed, for example, as coordinates on a line connecting two or more predetermined objects.
 目標駐車位置算出部107は、駐車位置決定処理として、対象物の座標値及び第2障害物の座標値に基づいて、目標駐車位置及び目標停止方向(目標駐車方向)を決定する。以下では、一例として、目標駐車位置は、車両の後輪軸中心が至るべき目標位置を表すものとする。以下では、一例として、目標駐車位置は、車両の後輪軸中心を原点として、上面視の平面座標系で導出される。この場合、目標駐車位置が原点に至るときに駐車完了となる。 The target parking position calculation unit 107 determines a target parking position and a target stopping direction (target parking direction) based on the coordinate value of the object and the coordinate value of the second obstacle as the parking position determination processing. In the following, as an example, the target parking position represents a target position to which the rear wheel axle center of the vehicle should reach. In the following, as an example, the target parking position is derived in a plane coordinate system in top view with the center of the rear wheel axle of the vehicle as the origin. In this case, parking is completed when the target parking position reaches the origin.
 目標駐車位置は、目標停止位置及び目標横位置を含む。目標停止位置は、駐車完了時の車両前後方向に係る位置の目標値であり、目標横位置は、駐車完了時の車両横方向に係る位置の目標値である。尚、目標停止方向は、駐車完了時の車両の向きの目標値である。 The target parking position includes a target stop position and a target lateral position. The target stop position is a target value of a position relating to the longitudinal direction of the vehicle at the time of parking completion, and the target lateral position is a target value of a position relating to the lateral direction of the vehicle at the completion of parking. The target stop direction is a target value of the direction of the vehicle when parking is completed.
 目標停止位置の決定方法は、後に詳説する。目標横位置の決定方法は、任意であるが、目標横位置は、例えば横方向両側の駐車枠間の中心や、駐車空間の左右方向の中心に設定されてもよい。目標停止方向の決定方法は、任意であるが、目標停止方向は、例えば横方向両側の駐車枠に平行に設定されてもよいし、駐車空間の前後方向に平行に設定されてもよい。 The method of determining the target stop position will be described in detail later. Although the method of determining the target lateral position is arbitrary, the target lateral position may be set, for example, at the center between the parking frames on both sides in the lateral direction or at the center in the lateral direction of the parking space. Although the method of determining the target stopping direction is arbitrary, the target stopping direction may be set, for example, parallel to the parking frame on both sides in the lateral direction, or may be set parallel to the longitudinal direction of the parking space.
 定義表保持部108は、対象物の属性ごとに、属性に対応付けて距離情報が格納される。図5Aは、定義表保持部108で保持される定義表の一例である。図5Aでは、対象物の属性ごとに分類記号a-1,a-2,a-3、b、cが付与されており、属性ごとに、車両基準と、対象物からの距離が規定(定義)されている。例えば、分類記号a-1は、駐車枠の属性に対応し、分類記号a-2は、第1障害物の属性に対応し、分類記号a-3は、輪留めの属性に対応する。分類記号cは、第2障害物の属性に対応する。尚、図5Aでは、第1障害物及び第2障害物は、異なる属性として扱われているが、同一の属性と扱われてもよい。 The definition table storage unit 108 stores distance information in association with an attribute for each attribute of the object. FIG. 5A is an example of the definition table held by the definition table holding unit 108. In FIG. 5A, classification symbols a-1, a-2, a-3, b and c are given for each attribute of the object, and the vehicle standard and the distance from the object are defined for each attribute (definition ). For example, the classification symbol a-1 corresponds to the attribute of the parking frame, the classification symbol a-2 corresponds to the attribute of the first obstacle, and the classification symbol a-3 corresponds to the attribute of the loop. The classification symbol c corresponds to the attribute of the second obstacle. Although the first obstacle and the second obstacle are treated as different attributes in FIG. 5A, they may be treated as the same attribute.
 図5Aの定義表では、車両基準は、車両後端又は車両後輪軸であり、距離情報は、車両後端又は車両後輪軸から対象物までの車両前後方向の距離であって、駐車完了時(車両停止時)に実現されるべき距離を表す。 In the definition table of FIG. 5A, the vehicle reference is the rear end of the vehicle or the rear wheel axle of the vehicle, and the distance information is the distance from the rear end of the vehicle or the rear wheel axle of the vehicle to the object in the longitudinal direction of the vehicle Represents the distance to be realized when the vehicle is stopped.
 具体的には、駐車枠に対応付けられる距離情報は、車両進行方向に交差する方向の枠線と車両後端(車両進行方向で前側の車両端部の一例)が略一致する関係になるように規定される。図5Aでは、駐車枠に対応付けられる距離情報は、例えば図5Bに模式的に示すように、白線(枠線の一例)と車両後端との距離が"0[cm]"とされる。図5Bには、車両後端から白線までの距離が0[cm]となった状態で車両が示される。但し、変形例では、"0[cm]"よりも僅かに大きな距離に設定されてもよい。 Specifically, in the distance information associated with the parking frame, the frame line in the direction crossing the traveling direction of the vehicle and the rear end of the vehicle (an example of the vehicle end in the front side in the traveling direction of the vehicle) substantially match Defined in In FIG. 5A, as the distance information associated with the parking frame, for example, as schematically shown in FIG. 5B, the distance between the white line (an example of a frame line) and the rear end of the vehicle is “0 [cm]”. In FIG. 5B, the vehicle is shown in a state in which the distance from the rear end of the vehicle to the white line is 0 cm. However, in a modification, the distance may be set to be slightly larger than “0 [cm]”.
 第1障害物に対応付けられる距離情報は、車両が第1障害物に当たらない関係になるように規定される。即ち、第1障害物に対応付けられる距離情報は、車両後端が障害物に対して所定距離以上離れる関係になるように規定される。図5Aでは、第1障害物に対応付けられる距離情報は、車両後端からの距離が"10[cm](所定距離の一例)"とされる。第1障害物に対応付けられる距離情報は、"10[cm]"に限られず、必要なマージン等に応じて設定されてよいし、ユーザにより設定可能とされてもよい。 The distance information associated with the first obstacle is defined such that the vehicle does not hit the first obstacle. That is, the distance information associated with the first obstacle is defined so that the rear end of the vehicle is separated from the obstacle by a predetermined distance or more. In FIG. 5A, the distance information associated with the first obstacle is such that the distance from the rear end of the vehicle is “10 [cm] (an example of a predetermined distance)”. The distance information associated with the first obstacle is not limited to "10 cm", and may be set according to a necessary margin or the like, or may be set by the user.
 輪留めに対応付けられる距離情報は、車両後輪(車両進行方向で前側の車輪の一例)が輪留めに接するか、またはほぼ接するような所定の位置関係になるように規定される。図5Aでは、一例として、輪留めに対応付けられる距離情報は、例えば図5Cに模式的に示すように、後輪軸からの距離が"30[cm]"とされる。輪留めに対応付けられる距離情報は、"30[cm]"に限られず、タイヤ径等に応じて設定されてよい。 The distance information associated with the detent is defined such that the rear wheel of the vehicle (an example of the front wheel in the traveling direction of the vehicle) is in a predetermined positional relationship such that it contacts or nearly touches the detent. In FIG. 5A, as an example, as shown schematically in FIG. 5C, for example, the distance information from the rear wheel shaft is “30 [cm]” as the distance information associated with the loop. The distance information associated with the clasping is not limited to "30 [cm]", and may be set according to the tire diameter and the like.
 尚、変形例では、輪留めに対応付けられる距離情報は、車両後端からの距離で規定されてもよい。これは、車両後端と後輪軸との距離(車両前後方向の距離)は一定(設計値)であるため、いずれを基準としても機能するためである。同様に、車両後端及び車両後輪以外の部位が基準とされてもよい。これは、駐車枠に対応付けられる距離情報や第1障害物、第2障害物に対応付けられる距離情報についても同様である。また、同様の観点から、車両基準は、車両後端と一定の関係にある任意の位置であってもよい。 In the modification, the distance information associated with the ringing may be defined by the distance from the rear end of the vehicle. This is because the distance between the rear end of the vehicle and the rear wheel shaft (the distance in the longitudinal direction of the vehicle) is constant (design value), and therefore, it can function based on either of them. Similarly, portions other than the rear end of the vehicle and the rear wheel of the vehicle may be used as a reference. The same applies to the distance information associated with the parking frame and the distance information associated with the first obstacle and the second obstacle. Also, from the same point of view, the vehicle reference may be an arbitrary position in a fixed relationship with the rear end of the vehicle.
 第2障害物に対応付けられる距離情報は、車両が第2障害物に当たらない関係になるように規定される。即ち、第2障害物に対応付けられる距離情報は、車両後端が障害物に対して所定距離以上離れる関係になるように規定される。図5Aでは、第2障害物に対応付けられる距離情報は、車両後端からの距離が"10[cm](所定距離の一例)"とされる。第2障害物に対応付けられる距離情報は、"10[cm]"に限られず、必要なマージン等に応じて設定されてよいし、ユーザにより設定可能とされてもよい。 The distance information associated with the second obstacle is defined such that the vehicle does not hit the second obstacle. That is, the distance information associated with the second obstacle is defined so that the rear end of the vehicle is separated from the obstacle by a predetermined distance or more. In FIG. 5A, the distance information associated with the second obstacle is such that the distance from the rear end of the vehicle is “10 [cm] (an example of a predetermined distance)”. The distance information associated with the second obstacle is not limited to "10 cm", and may be set according to a necessary margin or the like, or may be set by the user.
 次に、図6乃至図9を参照して、目標停止位置の決定方法について説明する。尚、以下で説明するライン(ラインL1等)は、上面視で目標駐車方向に直交するラインである。尚、図6乃至図9では、直進で後退する際の車両の絵が示されるが、旋回を伴う後退に対しても同様に適用可能である。 Next, a method of determining the target stop position will be described with reference to FIGS. In addition, the line (line L1 etc.) demonstrated below is a line orthogonal to a target parking direction by top view. 6 to 9 show a picture of the vehicle when going straight and moving backward, but the present invention is similarly applicable to moving backward with turning.
 本実施例では、目標駐車位置算出部107は、駐車空間に存在する対象物の属性に対応付けられる距離情報を定義表保持部108から取得し、取得した距離情報を用いて、目標停止位置を決定する。 In the present embodiment, the target parking position calculation unit 107 acquires distance information associated with the attribute of the object present in the parking space from the definition table holding unit 108, and uses the acquired distance information to obtain the target stop position. decide.
 図6は、駐車枠が検出された際の目標停止位置の決定方法の説明図であり、駐車場の概略的な上面図である。図6には、駐車空間S6へと後退走行で駐車しようとしている車両が示される。 FIG. 6 is an explanatory view of a method of determining the target stop position when the parking frame is detected, and is a schematic top view of the parking lot. FIG. 6 shows a vehicle that is going to park in a backward movement to the parking space S6.
 この場合、駐車空間S6内には対象物として駐車枠600のみが存在するので、駐車枠に対応付けられる距離情報に基づいて、目標停止位置は、駐車空間S6奥側の駐車枠600から所定距離βだけ駐車空間S6入口側に設定される。ラインL1は、駐車空間S6奥側の駐車枠600から所定距離βだけ駐車空間S6入口側にある位置を示す。所定距離βは、車両後端から車両後輪軸中心までの距離(車両前後方向の距離)である。この場合、駐車枠が検出された際の目標停止位置は、ラインL1上に決定される。 In this case, only the parking frame 600 is present as an object in the parking space S6. Therefore, based on the distance information associated with the parking frame, the target stop position is a predetermined distance from the parking frame 600 on the back side of the parking space S6. Only the β is set on the entrance side of the parking space S6. The line L1 indicates a position on the entrance side of the parking space S6 by a predetermined distance β from the parking frame 600 on the back side of the parking space S6. The predetermined distance β is the distance from the rear end of the vehicle to the center of the rear wheel axle of the vehicle (the distance in the longitudinal direction of the vehicle). In this case, the target stop position when the parking frame is detected is determined on the line L1.
 図7は、輪留めが検出された際の目標停止位置の決定方法の説明図であり、駐車場の概略的な上面図である。図7には、駐車空間S7へと後退走行で駐車しようとしている車両が示される。 FIG. 7 is an explanatory view of a method of determining the target stop position when the clasping is detected, and is a schematic top view of the parking lot. FIG. 7 shows a vehicle which is going to park in a backward movement to the parking space S7.
 この場合、駐車空間S7内には対象物として輪留め700のみが存在するので、輪留めに対応付けられる距離情報に基づいて、目標停止位置は、輪留め700から"30[cm]"だけ駐車空間S7入口側に設定される。ラインL2は、輪留め700の位置を示し、ラインL3は、輪留め700から"30[cm]"だけ駐車空間S7入口側である位置を示す。この場合、輪留め700が検出された際の目標停止位置は、ラインL3上に決定される。 In this case, since only the clasp 700 exists as an object in the parking space S7, based on the distance information associated with the clasp, the target stop position is "30 [cm]" parked from the clasp 700 It is set to the space S7 entrance side. The line L2 indicates the position of the snap ring 700, and the line L3 indicates a position on the entrance side of the parking space S7 by "30 cm" from the snap ring 700. In this case, the target stop position when the snap ring 700 is detected is determined on the line L3.
 図8は、第1障害物が検出された際の目標停止位置の決定方法の説明図であり、駐車場の概略的な上面図である。図8には、駐車空間S8へと後退走行で駐車しようとしている車両が示される。図8には、駐車空間S8内に第1障害物800が模式的に示される。 FIG. 8 is an explanatory diagram of a method of determining the target stop position when the first obstacle is detected, and is a schematic top view of the parking lot. FIG. 8 shows a vehicle which is going to park in a backward traveling to the parking space S8. In FIG. 8, a first obstacle 800 is schematically shown in the parking space S8.
 この場合、第1障害物800が検出される(ラインL8参照)。ラインL9は、第1障害物に対応付けられる距離情報に基づいて、ラインL8からの距離が"10[cm]"となる位置を示す。目標停止位置は、ラインL9から所定距離βだけ駐車空間S8入口側に設定される。ラインL10は、ラインL9から所定距離βだけ駐車空間S8入口側にある位置を示す。所定距離βは、車両後端から車両後輪軸中心までの距離(車両前後方向の距離)である。この場合、第1障害物800が検出された際の目標停止位置は、ラインL10上に決定される。 In this case, the first obstacle 800 is detected (see line L8). The line L9 indicates a position at which the distance from the line L8 is “10 [cm]” based on the distance information associated with the first obstacle. The target stop position is set on the entrance side of the parking space S8 by a predetermined distance β from the line L9. Line L10 indicates a position on the entrance side of parking space S8 by a predetermined distance β from line L9. The predetermined distance β is the distance from the rear end of the vehicle to the center of the rear wheel axle of the vehicle (the distance in the longitudinal direction of the vehicle). In this case, the target stop position when the first obstacle 800 is detected is determined on the line L10.
 図9は、第2障害物が検出された際の目標停止位置の決定方法の説明図であり、駐車場の概略的な上面図である。図9には、駐車空間S9へと後退走行で駐車しようとしている車両が示される。図9には、2本のポール300が模式的に示される。 FIG. 9 is an explanatory diagram of a method of determining the target stop position when the second obstacle is detected, and is a schematic top view of the parking lot. FIG. 9 shows a vehicle which is going to park in a backward traveling to the parking space S9. Two poles 300 are schematically shown in FIG.
 この場合、2本のポール300は、車両走行範囲外の空間S61に存在し、車両走行範囲内の空間(及び駐車空間S9)には存在しない。従って、この場合、2本のポール300は、所定物体として検出され、2本のポール300間に第2障害物の存在が推定される(ラインL4参照)。ラインL5は、第2障害物に対応付けられる距離情報に基づいて、ラインL4からの距離が"10[cm]"となる位置を示す。目標停止位置は、ラインL5から所定距離βだけ駐車空間S9入口側に設定される。ラインL6は、ラインL5から所定距離βだけ駐車空間S9入口側にある位置を示す。所定距離βは、車両後端から車両後輪軸中心までの距離(車両前後方向の距離)である。この場合、第2障害物が検出された際の目標停止位置は、ラインL6上に決定される。 In this case, the two poles 300 exist in the space S61 outside the vehicle travel range, and do not exist in the space (and the parking space S9) within the vehicle travel range. Therefore, in this case, the two poles 300 are detected as a predetermined object, and the presence of the second obstacle is estimated between the two poles 300 (see line L4). The line L5 indicates the position at which the distance from the line L4 is "10 cm", based on the distance information associated with the second obstacle. The target stop position is set on the entrance side of the parking space S9 by a predetermined distance β from the line L5. Line L6 indicates a position on the entrance side of parking space S9 by a predetermined distance β from line L5. The predetermined distance β is the distance from the rear end of the vehicle to the center of the rear wheel axle of the vehicle (the distance in the longitudinal direction of the vehicle). In this case, the target stop position when the second obstacle is detected is determined on the line L6.
 このようにして、本実施例によれば、駐車空間に存在しうる対象物の属性に応じて適切な目標停止位置を決定できる。例えば、駐車枠に車両後端が略一致するような目標停止位置や、輪留めに後輪がちょうど接するか、またはほぼ接するような所定位置関係になるような目標停止位置を決定できる。また、第1障害物に対して適切な距離だけ離れた位置に目標停止位置を決定できる。 Thus, according to the present embodiment, an appropriate target stop position can be determined according to the attribute of the object that may exist in the parking space. For example, it is possible to determine a target stop position where the rear end of the vehicle substantially matches the parking frame, or a target stop position where the rear wheel just touches or almost touches the loop. Also, the target stop position can be determined at a position separated by an appropriate distance from the first obstacle.
 また、本実施例によれば、通常の画像認識では認識不能な第2障害物(例えばチェーン、ロープ、網等)を、ポールや支柱のような所定物体の検出結果に基づいて検出できる。これにより、第2障害物が存在するような駐車空間に対しても、適切な目標停止位置を決定できる。即ち、第2障害物に対して適切な距離だけ離れた位置に目標停止位置を決定できる。 Further, according to this embodiment, it is possible to detect a second obstacle (for example, a chain, a rope, a net or the like) which can not be recognized by ordinary image recognition, based on the detection result of a predetermined object such as a pole or a support. This makes it possible to determine an appropriate target stop position even for a parking space in which the second obstacle is present. That is, the target stop position can be determined at a position separated by an appropriate distance from the second obstacle.
 次に、図10を参照して、複数の異なる属性の対象物が検出された場合の目標停止位置の決定方法について説明する。 Next, with reference to FIG. 10, a method of determining the target stop position when objects of a plurality of different attributes are detected will be described.
 図10は、複数の異なる属性の対象物が検出された場合の目標停止位置の決定方法の説明図であり、駐車場の概略的な上面図である。図10には、駐車空間S10へと後退走行で駐車しようとしている車両が示される。 FIG. 10 is an explanatory view of a method of determining the target stop position when objects of a plurality of different attributes are detected, and is a schematic top view of the parking lot. FIG. 10 shows a vehicle which is going to park in a backward movement to the parking space S10.
 複数の異なる属性の対象物が検出された場合、属性ごとに上述のようにして決定した目標停止位置が候補として算出され、複数の候補のうちの、最も駐車空間入口側の候補が、目標停止位置として決定される。 When objects of a plurality of different attributes are detected, the target stop position determined as described above is calculated as a candidate for each attribute, and the candidate on the parking space entrance side among the plurality of candidates is the target stop It is determined as a position.
 図10では、ラインL20は、駐車枠が検出された際の目標停止位置の決定方法に従って得られた目標停止位置の候補が位置するラインである。ラインL21は、輪留めが検出された際の目標停止位置の決定方法に従って得られた目標停止位置の候補が位置するラインである。ラインL22は、第1障害物が検出された際の目標停止位置の決定方法に従って得られた目標停止位置の候補が位置するラインである。ラインL23は、第2障害物が検出された際の目標停止位置の決定方法に従って得られた目標停止位置の候補が位置するラインである。この場合、最も駐車空間入口側の候補、即ちラインL20上に目標停止位置が決定される。 In FIG. 10, the line L20 is a line on which the candidate of the target stop position obtained according to the method of determining the target stop position when the parking frame is detected is located. The line L21 is a line on which candidates for the target stop position obtained according to the method of determining the target stop position when the loop is detected are located. The line L22 is a line on which candidates for the target stop position obtained according to the method for determining the target stop position when the first obstacle is detected are located. The line L23 is a line on which candidates for the target stop position obtained according to the method of determining the target stop position when the second obstacle is detected are located. In this case, the target stop position is determined on the candidate at the parking space entrance side, ie, the line L20.
 これにより、複数の異なる属性の対象物が検出された場合、目標停止位置の複数の候補のうちから、最も安全側で最適な候補を目標停止位置として決定できる。例えば、駐車枠に基づく目標停止位置の候補が位置するラインが、輪留めに基づく目標停止位置の候補が位置するラインよりも、駐車空間の奥側である場合を想定する。この場合、駐車枠に基づく目標停止位置の候補が位置するライン上に目標停止位置を決定すると、車両が目標停止位置に至るまでに後輪が輪留めを乗り越えることになり、好ましくない。本実施例によれば、かかる不都合を防止できる。 As a result, when a plurality of targets of different attributes are detected, it is possible to determine the most safe candidate as the target stop position among the plurality of candidates for the target stop position. For example, it is assumed that the line on which the candidate for the target stop position based on the parking frame is located is behind the parking space than the line on which the candidate for the target stop position based on ringing is located. In this case, if the target stop position is determined on the line on which the candidate for the target stop position based on the parking frame is located, the rear wheel will get over the ringing by the time the vehicle reaches the target stop position, which is not preferable. According to the present embodiment, such inconvenience can be prevented.
 尚、図10の例では、4つの候補が算出されているが、2つや3つの候補が算出される場合も同様である。 Although four candidates are calculated in the example of FIG. 10, the same applies to the case where two or three candidates are calculated.
 次に、図11以降を参照して、本実施例によるセンシング制御装置10の動作例を、フローチャートを用いて説明する。 Next, with reference to FIG. 11 or later, an operation example of the sensing control device 10 according to the present embodiment will be described using a flowchart.
 図11は、本実施例によるセンシング制御装置10の動作例を示す概略フローチャートである。 FIG. 11 is a schematic flowchart showing an operation example of the sensing control device 10 according to the present embodiment.
 ステップS1100では、センシング制御装置10の画像分割部101は、カメラ14からの画像を、第1画像領域と第2画像領域とに分割する。 In step S1100, the image dividing unit 101 of the sensing control device 10 divides the image from the camera 14 into a first image area and a second image area.
 ステップS1102では、センシング制御装置10は、第1画像領域に基づいて、対象物に係る目標停止位置算出処理を行う。対象物に係る目標停止位置算出処理の一例は、図12を参照して、後述する。 In step S1102, the sensing control device 10 performs a target stop position calculation process related to the object based on the first image area. An example of the target stop position calculation process which concerns on a target object is later mentioned with reference to FIG.
 ステップS1104では、センシング制御装置10の所定物体検出部104は、第2画像領域に対して所定物体を検出するための処理を行う。 In step S1104, the predetermined object detection unit 104 of the sensing control device 10 performs processing for detecting a predetermined object in the second image area.
 ステップS1106では、センシング制御装置10は、ステップS1104での処理結果に基づいて、第2障害物に係る目標停止位置算出処理を行う。第2障害物に係る目標停止位置算出処理の一例は、図13を参照して、後述する。 In step S1106, the sensing control device 10 performs target stop position calculation processing relating to the second obstacle based on the processing result in step S1104. An example of the target stop position calculation process according to the second obstacle will be described later with reference to FIG.
 ステップS1108では、センシング制御装置10の目標駐車位置算出部107は、駐車位置決定処理を行う。この際、複数の目標停止位置の候補がある場合は、目標駐車位置算出部107は、最も駐車空間入口側の候補を、目標停止位置として決定する(図10参照)。 In step S1108, the target parking position calculation unit 107 of the sensing control device 10 performs a parking position determination process. At this time, when there are a plurality of candidates for the target stop position, the target parking position calculation unit 107 determines the candidate closest to the parking space entrance as the target stop position (see FIG. 10).
 図12は、対象物に係る目標停止位置算出処理(図11のステップS1102)の一例を示す概略フローチャートである。 FIG. 12 is a schematic flowchart showing an example of the target stop position calculation process (step S1102 in FIG. 11) related to the object.
 ステップS1200では、第1物体検出部102は、第1画像領域において駐車枠を検出する処理を行い、駐車枠を検出した場合は、ステップS1202に進む。駐車枠を検出しない場合は、ステップS1208に進む。 In step S1200, the first object detection unit 102 performs processing for detecting a parking frame in the first image area, and when a parking frame is detected, the process proceeds to step S1202. If the parking space is not detected, the process proceeds to step S1208.
 ステップS1202では、第1測距部103は、駐車枠に対する車両の位置関係を測定する。例えば、第1測距部103は、車両の後輪軸中心を原点として、上面視の平面座標系で、駐車空間奥側の駐車枠の座標値を導出する。 In step S1202, the first distance measuring unit 103 measures the positional relationship of the vehicle with respect to the parking frame. For example, the first distance measuring unit 103 derives the coordinate value of the parking frame on the back side of the parking space in the plane coordinate system in top view with the center of the rear wheel shaft of the vehicle as the origin.
 ステップS1204では、目標駐車位置算出部107は、定義表保持部108から、駐車枠に対応付けられた距離情報を取得する。 In step S1204, the target parking position calculation unit 107 acquires, from the definition table storage unit 108, the distance information associated with the parking frame.
 ステップS1206では、目標駐車位置算出部107は、ステップS1202で得た駐車空間奥側の駐車枠の座標値と、ステップS1204で得た距離情報とに基づいて、駐車枠に基づく目標停止位置の候補を算出する。駐車枠に基づく目標停止位置の候補の算出方法は、上述のとおりである(図6参照)。 In step S1206, the target parking position calculation unit 107 is a candidate for a target stop position based on the parking frame based on the coordinate values of the parking frame on the back side of the parking space obtained in step S1202 and the distance information obtained in step S1204. Calculate The calculation method of the candidate of the target stop position based on a parking frame is as above-mentioned (refer FIG. 6).
 ステップS1208では、第1物体検出部102は、第1画像領域において第1障害物を検出する処理を行い、第1障害物を検出した場合は、ステップS1210に進む。第1障害物を検出しない場合は、ステップS1216に進む。 In step S1208, the first object detection unit 102 performs a process of detecting the first obstacle in the first image region, and when the first obstacle is detected, the process proceeds to step S1210. If the first obstacle is not detected, the process proceeds to step S1216.
 ステップS1210では、第1測距部103は、第1障害物に対する車両の位置関係を測定する。例えば、第1測距部103は、車両の後輪軸中心を原点として、上面視の平面座標系で、第1障害物の座標値(例えば駐車空間手前側の座標値)を導出する。 In step S1210, the first distance measuring unit 103 measures the positional relationship of the vehicle with respect to the first obstacle. For example, the first distance measuring unit 103 derives the coordinate value of the first obstacle (for example, the coordinate value on the near side of the parking space) in the plane coordinate system in top view with the center of the rear wheel axle of the vehicle as the origin.
 ステップS1212では、目標駐車位置算出部107は、定義表保持部108から、第1障害物に対応付けられた距離情報を取得する。 In step S1212, the target parking position calculation unit 107 acquires, from the definition table holding unit 108, distance information associated with the first obstacle.
 ステップS1214では、目標駐車位置算出部107は、ステップS1210で得た第1障害物の座標値と、ステップS1212で得た距離情報とに基づいて、第1障害物に基づく目標停止位置の候補を算出する。第1障害物に基づく目標停止位置の候補の算出方法は、上述のとおりである(図8参照)。 In step S1214, the target parking position calculation unit 107 selects a candidate for a target stop position based on the first obstacle based on the coordinate value of the first obstacle obtained in step S1210 and the distance information obtained in step S1212. calculate. The calculation method of the candidate of the target stop position based on the first obstacle is as described above (see FIG. 8).
 ステップS1216では、第1物体検出部102は、第1画像領域において輪留めを検出する処理を行い、輪留めを検出した場合は、ステップS1218に進む。輪留めを検出しない場合は、そのまま終了する(図11のステップS1104に進む)。 In step S1216, the first object detection unit 102 performs a process of detecting looping in the first image region, and when looping is detected, the process proceeds to step S1218. If the ringing is not detected, the process ends as it is (the process proceeds to step S1104 in FIG. 11).
 ステップS1218では、第1測距部103は、輪留めに対する車両の位置関係を測定する。例えば、第1測距部103は、車両の後輪軸中心を原点として、上面視の平面座標系で、輪留めの座標値(例えば駐車空間手前側の座標値)を導出する。 In step S1218, the first distance measuring unit 103 measures the positional relationship of the vehicle relative to the ring. For example, the first distance measuring unit 103 derives a coordinate value (for example, a coordinate value on the near side of the parking space) of the ringing in a plane coordinate system in top view with the center of the rear wheel axle of the vehicle as an origin.
 ステップS1220では、目標駐車位置算出部107は、定義表保持部108から、輪留めに対応付けられた距離情報を取得する。 In step S1220, the target parking position calculation unit 107 acquires, from the definition table storage unit 108, the distance information associated with the loop.
 ステップS1222では、目標駐車位置算出部107は、ステップS1218で得た輪留めの座標値と、ステップS1220で得た距離情報とに基づいて、輪留めに基づく目標停止位置の候補を算出する。輪留めに基づく目標停止位置の候補の算出方法は、上述のとおりである(図7参照)。 In step S1222, the target parking position calculation unit 107 calculates a candidate for a target stop position based on the looping based on the looping coordinate values obtained in step S1218 and the distance information obtained in step S1220. The calculation method of the candidate of the target stop position based on the clasp is as described above (see FIG. 7).
 尚、図12では、駐車枠、第1障害物、及び輪留めの順に、各属性に係る目標停止位置の候補を算出しているが、処理順序は任意である。 In addition, in FIG. 12, although the candidate of the target stop position which concerns on each attribute is calculated in order of a parking frame, a 1st obstacle, and ringing, a processing order is arbitrary.
 図13は、第2障害物に係る目標停止位置算出処理(図11のステップS1106)の一例を示す概略フローチャートである。 FIG. 13 is a schematic flowchart showing an example of the target stop position calculation process (step S1106 in FIG. 11) related to the second obstacle.
 ステップS1300では、第2物体検出部105は、所定物体検出部104により所定物体が検出されたか否かを判定する。判定結果が"YES"の場合は、ステップS1302に進み、それ以外の場合は、そのまま終了する(図11のステップS1108に進む)。 In step S1300, the second object detection unit 105 determines whether the predetermined object detection unit 104 has detected a predetermined object. If the determination result is "YES", the process proceeds to step S1302, and otherwise, the process ends as it is (process proceeds to step S1108 in FIG. 11).
 ステップS1302では、第2物体検出部105は、2つ以上の所定物体を結んだ線上に、第2障害物を推定的に検出する。 In step S1302, the second object detection unit 105 detects the second obstacle on a line connecting two or more predetermined objects.
 ステップS1304では、第2測距部106は、第2対象物に対する車両の位置関係を測定する。例えば、第2測距部106は、車両の後輪軸中心を原点として、上面視の平面座標系で、第2対象物の座標値(例えば駐車空間手前側の座標値)を導出する。 In step S1304, the second distance measuring unit 106 measures the positional relationship of the vehicle with respect to the second object. For example, the second distance measuring unit 106 derives the coordinate value of the second object (for example, the coordinate value on the near side of the parking space) in the plane coordinate system in top view with the center of the rear wheel axle of the vehicle as the origin.
 ステップS1306では、目標駐車位置算出部107は、定義表保持部108から、第2障害物に対応付けられた距離情報を取得する。 In step S1306, the target parking position calculation unit 107 acquires, from the definition table storage unit 108, distance information associated with the second obstacle.
 ステップS1308では、目標駐車位置算出部107は、ステップS1304で得た第2障害物の座標値と、ステップS1306で得た距離情報とに基づいて、第2障害物に基づく目標停止位置の候補を算出する。第2障害物に基づく目標停止位置の候補の算出方法は、上述のとおりである(図9参照)。 In step S1308, the target parking position calculation unit 107 selects a candidate for a target stop position based on the second obstacle based on the coordinate value of the second obstacle obtained in step S1304 and the distance information obtained in step S1306. calculate. The method of calculating the candidate for the target stop position based on the second obstacle is as described above (see FIG. 9).
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。 As mentioned above, although each Example was explained in full detail, it is not limited to a specific example, A various deformation | transformation and change are possible within the range described in the claim. In addition, it is also possible to combine all or a plurality of the components of the above-described embodiment.
 例えば、上述した実施例では、好ましい例として、第2障害物を検出しているが、第2障害物の検出は必須ではない。 For example, in the embodiment described above, the second obstacle is detected as a preferred example, but the detection of the second obstacle is not essential.
 また、上述した実施例では、対象物の属性は、駐車枠と輪留めと障害物の3種類であるが、4種類以上設定されてもよいし、駐車枠と輪留めと障害物のうちの2種類であってもよい。 Also, in the embodiment described above, the attribute of the object is three types of parking frame, ringing and obstacles, but four or more types may be set, and of the parking frame, ringing and obstacles There may be two types.
 また、上述した実施例では、定義表保持部108に規定される定義表(属性に応じた距離情報)は、固定であるが、学習等により更新される構成であってもよい。 Further, in the above-described embodiment, the definition table (distance information corresponding to the attribute) defined in the definition table storage unit 108 is fixed, but may be updated by learning or the like.
 また、上述した実施例では、後退による駐車が例示されるが、前向き駐車にも適用可能である。この場合、カメラ14に代えて、前方カメラで得た画像を用いることで、同様の機能を実現できる。また、この場合、車両進行方向で前側の車両端部は、車両前端であり、車両進行方向で前側の車輪は、前輪となる。 In the above-mentioned embodiment, although parking by retreat is illustrated, it is applicable also to forward parking. In this case, the same function can be realized by using an image obtained by the front camera instead of the camera 14. Further, in this case, the vehicle end on the front side in the vehicle traveling direction is the front end of the vehicle, and the wheel on the front side in the vehicle traveling direction is a front wheel.
 また、上述した実施例では、上述のようにして決定された目標停止位置は、自動駐車に利用されるが、半自動駐車又は駐車支援に利用されてもよい。例えば、駆動力や制動力、操舵が運転者の操作により調整される駐車支援においては、上述のようにして決定された目標停止位置は、モニタ19に表示されてもよい。そして、車両が目標停止位置に至る直前でブレーキ操作を促す支援情報がモニタ19に表示されてもよいし、音声等により出力されてもよい。 Also, in the embodiment described above, the target stop position determined as described above is used for automatic parking, but may be used for semi-automatic parking or parking assistance. For example, in parking assistance in which the driving force, the braking force, and the steering are adjusted by the driver's operation, the target stop position determined as described above may be displayed on the monitor 19. Then, immediately before the vehicle reaches the target stop position, support information for prompting the brake operation may be displayed on the monitor 19 or may be output by voice or the like.
1 車両システム
10 センシング制御装置
12 車両制御装置
14 カメラ
16 ハンドル制御装置
18 ブレーキ・アクセル制御装置
19 モニタ
101 画像分割部
102 第1物体検出部
103 第1測距部
104 所定物体検出部
105 第2物体検出部
106 第2測距部
107 目標駐車位置算出部
108 定義表保持部
300 ポール
301 支柱
600 駐車枠
800 第1障害物
DESCRIPTION OF SYMBOLS 1 vehicle system 10 sensing control device 12 vehicle control device 14 camera 16 steering wheel control device 18 brake and accelerator control device 19 monitor 101 image dividing unit 102 first object detecting unit 103 first distance measuring unit 104 predetermined object detecting unit 105 second object Detection unit 106 Second ranging unit 107 Target parking position calculation unit 108 Definition table holding unit 300 Pole 301 Support column 600 Parking frame 800 First obstacle

Claims (10)

  1.  対象物の属性ごとに、属性に対応付けて、車両基準から対象物までの車両前後方向の距離を表す距離情報を記憶する記憶部と、
     車両周辺を撮像したカメラの画像に基づいて、車両進行方向の空間に存在する対象物の属性に対応付けられる前記距離情報を前記記憶部から取得し、取得した前記距離情報を用いて、駐車完了時の車両前後方向に係る目標停止位置を決定する処理部とを含む、駐車位置決定装置。
    A storage unit that stores, for each attribute of the object, distance information indicating a distance from the vehicle reference to the object in the vehicle front-rear direction in association with the attribute;
    The distance information associated with the attribute of the object present in the space in the traveling direction of the vehicle is acquired from the storage unit based on the image of the camera obtained by imaging the periphery of the vehicle, and parking is completed using the acquired distance information And a processing unit that determines a target stop position related to the front-rear direction of the vehicle.
  2.  前記車両基準は、車両後端又は後輪軸である、請求項1に記載の駐車位置決定装置。 The parking position determination device according to claim 1, wherein the vehicle reference is a rear end of a vehicle or a rear wheel axle.
  3.  対象物の属性は、枠線を有する駐車枠と、輪留めとを含み、
     前記駐車枠に対応付けられる前記距離情報は、車両進行方向に交差する方向の前記枠線と車両進行方向で前側の車両端部が略一致する関係になるように規定され、
     前記輪留めに対応付けられる前記距離情報は、車両後輪と前記輪留めとが所定の位置関係になるように規定される、請求項1に記載の駐車位置決定装置。
    The attributes of the object include a parking frame with a border and a ring connection,
    The distance information associated with the parking frame is defined such that the frame line in the direction intersecting the vehicle traveling direction substantially matches the front end of the vehicle in the vehicle traveling direction.
    The parking position determination device according to claim 1, wherein the distance information associated with the ring connection is defined such that a rear wheel of the vehicle and the ring connection have a predetermined positional relationship.
  4.  対象物の属性は、枠線を有する駐車枠と、輪留めと、障害物とを含み、
     前記駐車枠に対応付けられる前記距離情報は、車両進行方向に交差する方向の前記枠線と車両進行方向で前側の車両端部が略一致する関係になるように規定され、
     前記輪留めに対応付けられる前記距離情報は、車両進行方向で前側の車輪と前記輪留めとが所定の位置関係になるように規定され、
     前記障害物に対応付けられる前記距離情報は、車両進行方向で前側の車両端部が前記障害物に対して所定距離以上離れる関係になるように規定される、請求項1に記載の駐車位置決定装置。
    The attributes of the object include a parking frame with a border, a ring and an obstacle,
    The distance information associated with the parking frame is defined such that the frame line in the direction intersecting the vehicle traveling direction substantially matches the front end of the vehicle in the vehicle traveling direction.
    The distance information associated with the ringing is defined such that a front wheel in the vehicle traveling direction and the ringing have a predetermined positional relationship.
    The parking position determination according to claim 1, wherein the distance information associated with the obstacle is defined such that a vehicle end on the front side in the vehicle traveling direction is in a relationship of being separated from the obstacle by a predetermined distance or more. apparatus.
  5.  前記障害物は、車両進行方向の空間に存在しかつ前記カメラの画像に基づき認識可能な第1障害物と、車両進行方向の空間に存在しかつ前記カメラの画像に基づき認識不能な第2障害物とを含む、請求項4に記載の駐車位置決定装置。 The obstacle is present in a space in the vehicle traveling direction and can be recognized based on an image of the camera, and in a space in the vehicle traveling direction and can not be recognized based on an image of the camera The parking position determination apparatus according to claim 4, further comprising:
  6.  前記処理部は、車両進行方向の空間に存在しない所定物体の検出結果に基づいて、前記第2障害物を検出する、請求項5に記載の駐車位置決定装置。 The parking position determination device according to claim 5, wherein the processing unit detects the second obstacle based on a detection result of a predetermined object that does not exist in the space in the vehicle traveling direction.
  7.  前記所定物体は、上下方向に延在する柱状の形態であり、少なくとも2つ以上、車両進行方向に交差する方向に離れて存在し、
     前記第2障害物は、2つ以上の前記所定物体間に設けられるロープ、チェーン、及び網のうちの少なくともいずれか1つの形態である、請求項6に記載の駐車位置決定装置。
    The predetermined object is in the form of a column extending in the vertical direction, and at least two or more of the predetermined objects are separated in a direction intersecting the traveling direction of the vehicle,
    The parking position determination device according to claim 6, wherein the second obstacle is in the form of at least one of a rope, a chain, and a net provided between two or more of the predetermined objects.
  8.  前記処理部は、車両進行方向の空間に異なる属性の複数の対象物が存在する場合、属性ごとに目標停止位置の候補を算出し、算出した複数の前記候補のうちの、駐車方向で最も入口側の前記候補に基づいて、前記目標停止位置を決定する、請求項1~7のうちのいずれか1項に記載の駐車位置決定装置。 The processing unit calculates a candidate for a target stop position for each attribute when there are a plurality of objects with different attributes in the space in the vehicle traveling direction, and among the calculated plurality of candidates, the entrance is the most entrance in the parking direction The parking position determination device according to any one of claims 1 to 7, wherein the target stop position is determined based on the candidate on the side.
  9.  前記カメラは、車両後方を撮像するように車両に取り付けられる、請求項1~8のうちのいずれか1項に記載の駐車位置決定装置。 The parking position determination device according to any one of claims 1 to 8, wherein the camera is attached to a vehicle so as to image the rear of the vehicle.
  10.  車両周辺を撮像したカメラの画像を取得し、
     対象物の属性ごとに、属性に対応付けて、車両基準から対象物までの車両前後方向の距離を表す距離情報を記憶する記憶部から、前記画像に基づいて、車両進行方向の空間に存在する対象物の属性に対応付けられる前記距離情報を取得し、
     取得した前記距離情報を用いて、駐車完了時の車両前後方向に係る目標停止位置を決定する
     処理をコンピュータに実行させる駐車位置決定プログラム。
    Acquire an image of a camera that captures the surroundings of the vehicle,
    From the storage unit that stores distance information representing the distance from the vehicle reference to the object in the vehicle longitudinal direction in association with the attribute for each attribute of the object, the object exists in the space in the vehicle traveling direction based on the image Acquiring the distance information associated with the attribute of the object;
    The parking position determination program which makes a computer perform processing which determines the target stop position which concerns on the vehicle front-back direction at the time of parking completion using the acquired said distance information.
PCT/JP2017/045726 2017-12-20 2017-12-20 Parking position determination device and parking position determination program WO2019123570A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045726 WO2019123570A1 (en) 2017-12-20 2017-12-20 Parking position determination device and parking position determination program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045726 WO2019123570A1 (en) 2017-12-20 2017-12-20 Parking position determination device and parking position determination program

Publications (1)

Publication Number Publication Date
WO2019123570A1 true WO2019123570A1 (en) 2019-06-27

Family

ID=66994493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045726 WO2019123570A1 (en) 2017-12-20 2017-12-20 Parking position determination device and parking position determination program

Country Status (1)

Country Link
WO (1) WO2019123570A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299028A (en) * 2019-07-31 2019-10-01 深圳市捷顺科技实业股份有限公司 Method, apparatus, equipment and the readable storage medium storing program for executing of line detection are got in a kind of parking

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725019U (en) * 1993-10-14 1995-05-12 大成建設株式会社 Vehicle guide pole
JPH11105686A (en) * 1997-10-07 1999-04-20 Nissan Motor Co Ltd Automatic parking device
JP2000073322A (en) * 1998-08-31 2000-03-07 Naoharu Kitano Safety display tool for vehicle or the like, and barricade utilizing safety display tool
JP2005001570A (en) * 2003-06-12 2005-01-06 Equos Research Co Ltd Parking support device
JP2016084094A (en) * 2014-10-28 2016-05-19 アイシン精機株式会社 Parking assist apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725019U (en) * 1993-10-14 1995-05-12 大成建設株式会社 Vehicle guide pole
JPH11105686A (en) * 1997-10-07 1999-04-20 Nissan Motor Co Ltd Automatic parking device
JP2000073322A (en) * 1998-08-31 2000-03-07 Naoharu Kitano Safety display tool for vehicle or the like, and barricade utilizing safety display tool
JP2005001570A (en) * 2003-06-12 2005-01-06 Equos Research Co Ltd Parking support device
JP2016084094A (en) * 2014-10-28 2016-05-19 アイシン精機株式会社 Parking assist apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299028A (en) * 2019-07-31 2019-10-01 深圳市捷顺科技实业股份有限公司 Method, apparatus, equipment and the readable storage medium storing program for executing of line detection are got in a kind of parking

Similar Documents

Publication Publication Date Title
US8311729B2 (en) Traffic lane deviation preventing system for a vehicle
KR101498976B1 (en) Parking asistance system and parking asistance method for vehicle
EP2974909B1 (en) Periphery surveillance apparatus and program
US10179608B2 (en) Parking assist device
US10810446B2 (en) Parking space line detection method and device
JP3719095B2 (en) Behavior detection apparatus and gradient detection method
JPWO2018066712A1 (en) Traveling support device and computer program
JP4869745B2 (en) Depression angle calculation device, depression angle calculation method, depression angle calculation program, and image processing apparatus
US10068483B2 (en) Parking assistance device
JP2006175918A (en) Parking auxiliary device
EP3800111A1 (en) Periphery monitoring device
JP6337811B2 (en) Image processing apparatus and image processing method
CN112158197B (en) Vehicle blind area obstacle avoiding method, device and system
WO2018150642A1 (en) Surroundings monitoring device
JP2017147629A (en) Parking position detection system, and automatic parking system using the same
JP2012176656A (en) Parking support device
JP4769631B2 (en) Vehicle driving support device and vehicle driving support method
JP5695000B2 (en) Vehicle periphery monitoring device
JP2008213647A (en) Parking assist method and parking assist system
JP2015067030A (en) Driving assist system
WO2019123570A1 (en) Parking position determination device and parking position determination program
CN110546047A (en) Parking assist apparatus
CN112349091A (en) Specific area detecting device
JP2019077289A (en) Electronic device and parking assistance method
KR102150757B1 (en) Automatikon parking system and method based on vehicle information and parking lot size

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP