WO2019122689A1 - Systeme d'inspection de vitrage amélioré - Google Patents

Systeme d'inspection de vitrage amélioré Download PDF

Info

Publication number
WO2019122689A1
WO2019122689A1 PCT/FR2018/053373 FR2018053373W WO2019122689A1 WO 2019122689 A1 WO2019122689 A1 WO 2019122689A1 FR 2018053373 W FR2018053373 W FR 2018053373W WO 2019122689 A1 WO2019122689 A1 WO 2019122689A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
image
wash
control device
visual control
Prior art date
Application number
PCT/FR2018/053373
Other languages
English (en)
Inventor
Théo RYBARCZYK
Philippe Fayolle
Emerson GAGNON
Laurent REMEUR
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to CN201880004739.6A priority Critical patent/CN110178020A/zh
Publication of WO2019122689A1 publication Critical patent/WO2019122689A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod

Definitions

  • the present invention relates to the field of glass substrate inspection systems.
  • inspection systems are used as shown in FIG. 1. These inspection systems 1 presently comprise a conveying system 2 carrying the glass substrate S as a treadmill or a multitude of rolls on which the substrate moves.
  • a cleaning device 3 is arranged on this conveyor line.
  • Such a cleaning device is used to remove dust by using one or more ionized air blades and / or electrostatic brushes or not.
  • This cleaning device is followed by a machine vision device 4.
  • Such a device consists of an optical sensor such as a high resolution camera for detecting defects.
  • the cleaning is not perfect and contaminants (dust or other cleaning element) are still present after intervention of the cleaning device. These dusts can be interpreted by the visual control device as defects leading to the scrapping of the glass substrate.
  • the present invention therefore proposes to solve these disadvantages by providing a more efficient inspection system in the detection.
  • the invention relates to a system for inspecting a glass substrate comprising conveying means for scrolling said glass substrate, a cleaning device arranged to clean one or all of the faces of the glass substrate and a first visual control device, said first visual control device is positioned downstream of the cleaning device with respect to the scrolling of the substrate, said first visual control device comprising an optical sensor arranged to take a post-wash image of the cleaned surface (s).
  • said inspection system further comprises a second visual control device positioned upstream of the cleaning device with respect to the scrolling of the substrate, said second visual control device comprising an optical sensor arranged to take a pre-wash image of the cleaned surface (s) of the glass substrate, and in that said inspection system comprises comparison means for comparing the post-wash image with the pre-wash image.
  • the system according to the present invention has the advantage of allowing better inspection by inspecting the glass substrate before and after cleaning and comparing the results. This advantageously makes it possible to better identify the real defects and to avoid unnecessary disposals.
  • each visual control device is arranged to detect specific points, comparing the post-wash image to the pre-wash image using these specific points.
  • the specific points are characterized according to their position on the glass substrate and according to their size and according to the signature on the image, that is to say the signal received corresponding to the image area of the specific point and represented for example , by a set of pixels.
  • each visual control device comprises a control module, a link module comprising comparison means being connected to each of the control modules.
  • the visual control devices are controlled by a single control module comprising comparison means.
  • the cleaning device comprises at least one air knife and / or at least one brush.
  • the invention further relates to a method of inspecting a glass substrate by an inspection system according to one of the preceding claims, characterized in that it comprises the following steps:
  • the comparison step consists of:
  • the method further comprises, after the comparison step, a step of directing the glass substrate towards further processing or recycling according to the result of the comparison.
  • the method further comprises, after the comparison step, a step of directing the glass substrate towards further processing or recycling according to the result of the comparison, this step being performed just after the detection a defect on the glass substrate.
  • FIG. 1 is a schematic representation of an inspection system according to the prior art
  • FIG. 2 is a schematic representation of an inspection system according to the invention.
  • FIG. 3 is a schematic representation of a visual control device of the inspection system according to the invention.
  • -the figs. 4 and 5 are configurations of the inspection system according to the invention.
  • FIG. 6 is a schematic representation of the operation of the inspection system according to the invention.
  • FIG. 2 is shown an inspection system 100 of a substrate S according to the invention.
  • the substrate S is, for example, a wide glass substrate, such as a jumbo-sized flat glass sheet (6m x 3.21m) emerging from the float processes.
  • the inspection system of a substrate S according to the invention is adaptable to substrates of different sizes. This substrate is inspected before treatment.
  • This inspection system 100 comprises conveyor means 102 for transporting the glass substrates S.
  • Such conveying means 102 may be in the form of two parallel rails on which a frame provided with supports for the glass substrate are arranged. It can also be provided that the conveying means 102 are in the form of two parallel rails on which wheels are mounted allowing to the substrate to be mobile. Some wheels are then connected to a motor to allow the scrolling of the substrate.
  • the inspection system 100 includes a cleaning device 104.
  • a cleaning device 104 is used to remove dust, fibers, marks or other cleanable surface contaminants.
  • the cleaning device uses cleaning means 104 ', these cleaning means can take different forms.
  • the first cleaning device uses cleaning means 104 ', these cleaning means 104' can take different forms.
  • the cleaning means 104 ' are in the form of an air knife A.
  • An air knife is generated by an air injector which consists of a structure comprising a turbine generating an air jet. , said jet of air passing through a slot made in the structure to generate a jet of air in the form of a blade.
  • This air gap A is oriented toward the glass substrate S to remove impurities.
  • This blade of air A can be ionized.
  • the cleaning means 104 are under a brush.
  • a brush consists of a drum attached to a motor to be rotated. This drum is provided with a multitude of flexible strands. The rotation of the drum causes the strands to come into contact with the glass substrate to remove the dust. These strands can be ionized so as to attract to them impurities such as dust so as to clean the substrate S.
  • the cleaning device 104 may comprise one or more blades, one or more brushes or a combination of blade (s) and brush (s).
  • the cleaning device 104 may be arranged to clean the surface of the substrate facing the conveying means or the surface opposite this surface facing the conveying means.
  • a visual control device 103a Adjoining the cleaning device 104, a visual control device 103a is arranged.
  • This first visual control device 103a is arranged downstream of the cleaning device 104 with respect to the scrolling of the glass substrate so that the visual inspection operation is subsequent to the cleaning step.
  • Such a first visual control device 103a consists of a optical sensor 1030 as a high resolution camera.
  • This optical sensor 1030 is arranged above the conveying means so that the field of vision / detection of the optical sensor corresponds to the surface of the glass substrate.
  • the optical sensor 1030 is able to generate an image of said glass substrate S.
  • This visual control device 103 associates the optical sensor 1030 with a control module 1031 comprising a processing unit 1032 as visible in FIG. 3.
  • This processing unit 1032 is used for analyzing the image of said glass substrate generated by the sensor optical
  • the inspection system 100 further comprises a second visual control device 103b.
  • This second visual control device 103b is arranged upstream of the cleaning device 104 with respect to the scrolling of the glass substrate S so that the visual inspection operation is subsequent to the cleaning step.
  • This second visual control device 103b is similar to the visual control device arranged downstream of the cleaning device also called the first visual control device.
  • This second control device therefore consists of an optical sensor 1030 such as a high-resolution camera arranged overhanging the conveying means 102 so that the field of vision / detection of the optical sensor corresponds to the surface of the glass substrate.
  • the optical sensor is able to generate an image of said glass substrate.
  • the presence of two visual control devices 103a, 103b advantageously makes it possible to perform a verification step.
  • This verification step is used to determine if the remaining impurities after cleaning are impurities or are defects, in which case the glass substrate analyzed is out of line.
  • the inspection system 100 is, in a first configuration, designed so that each visual control device 103a, 103b comprises its own control module 1031, that is to say that each visual control device is controlled from independently.
  • a link module 105 comprising comparison means 1050 is connected to each of the control modules as shown in FIG. 4.
  • the inspection system 100 is designed to have only one control module 1031 for the control of the two visual control devices 103a, 103b.
  • This second configuration makes it possible to have a single control module for managing all the visual control devices.
  • This single control module 1031 comprises comparison means as can be seen in FIG.
  • the operation of the inspection system consists in a first step, at a time t1, in which a pre-wash image Ipi of a first glass substrate is produced.
  • This pre-washing image Ipi is made by passing, by the conveying means 102, said first glass substrate S under the second visual control device 103b.
  • This second visual control device 103b uses its optical sensor 1030 to take an image of the first glass substrate.
  • the optical sensor 1030 is designed, configured so that the image taken allows a rendering on the presence of defects, impurities on the surface of said substrate.
  • This second step consists in cleaning the first glass substrate S.
  • the conveying means 102 bring the first glass substrate to the level of the cleaning device 104.
  • the first glass substrate S is thus opposite the cleaning means: brush ( s) and / or blade (s) of air.
  • the conveying means 102 bring the first glass substrate under the first visual control device 103a.
  • This first visual control device then uses its optical sensor 1030 to, at a time t2, take a post-washing image I R2 of the first glass substrate.
  • the optical sensor 1030 is designed, configured so that the image taken allows a rendering on the presence of defects, impurities on the surface of said substrate.
  • the optical sensor 1030 of the first visual control device 103a and the optical sensor 1030 of the second visual control device 103b are identical and configured to obtain similar images.
  • Ip2 are compared. This comparison consists, in a first phase, in identifying, for the prewash image Ipi, the specific points Pi and for the post-wash image lp 2 , the specific points P'i. These specific points Pi, P'i are contrasting points on images from optical sensors. These specific points Pi, P'i are detected by each visual control device.
  • these specific points Pi, P'i are characterized, that is to say that the position and the size and an image signature of each specific point is recorded, measured, recorded.
  • This image signature corresponds to the received signal representative of the image area of the specific point and represented for example by a set of pixels.
  • the pre-wash images Ipi and post-wash I P2 are compared with each other.
  • This comparison consists in comparing the specific points P'i of the post-washing image I P2 , that is to say of the image generated by the first visual control device, with the specific points Pi of the image pre-wash l Pi .
  • the goal here is to determine several things. First, it is necessary to determine if the cleaning is effective by comparing the number of specific points. If this number is the same then the cleaning is inefficient or contaminants may be redeposited between the two images.
  • the purpose is also to determine the nature of the detected elements. Indeed, it is useful to know if these detected elements are impurities or defects.
  • each specific point P'i of the post-washing image I P2 is compared to the specific points Pi of the pre-washing image Ipi.
  • the positions of the specific points are compared. This initial comparison of positions comes from the assumption that the position of a defect is fixed whereas that of an impurity can vary. Therefore, for each specific point P'i of the post-wash image, its position is compared with the positions of the specific points Pi of the pre-wash image.
  • the presence of a specific point P'i, Pi having the same location on the post-washing image I R2 and on the pre-washing image Ipi means the presence of an impurity or a defect while the absence of a specific spot having the same location on the post-wash image Ip 2 and on the pre-wash image Ipi means that the specific point of the post-wash image is an impurity.
  • a synthesis is performed by the link module or the control module 1030. This synthesis consists of summarizing the third phase of comparison of the specific points. If the synthesis highlights the presence of defect then the glass substrate is put in a recycling circuit. If the synthesis highlights the presence of impurity but no defect then the glass substrate continues the normal cycle of treatment.
  • the detection method is designed to dispense with the synthesis phase.
  • the third phase is programmed so that the identification of a defect immediately causes the setting of the glass substrate in a recycling circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

La présente invention concerne un système d'inspection (100) d'un substrat verrier (S) comprenant des moyens de convoyage (102) pour faire défiler ledit substrat verrier, un dispositif de nettoyage (104) agencé pour nettoyer une ou les faces du substrat verrier et un premier dispositif de contrôle visuel (103a), ledit premier dispositif de contrôle visuel est positionné en aval du dispositif de nettoyage par rapport au défilement du substrat, ledit premier dispositif de contrôle visuel comportant un capteur optique (1030) agencé pour prendre une image post-lavage(IP2)de la ou des surfaces nettoyées du substrat verrier, caractérisé en ce que ledit système d'inspection comprend en outre un second dispositif de contrôle visuel (103b) positionné en amont du dispositif de nettoyage par rapport au défilement du substrat.

Description

SYSTEME D’INSPECTION DE VITRAGE AMÉLIORÉ
La présente invention est relative au domaine des systèmes d’inspection des substrats verriers.
ART ANTÉRIEUR
Actuellement, le contrôle qualité des substrats verriers nécessite une inspection automatique pour contrôler si les substrats présentent des défauts verriers ou liés aux différents processus industriels. Pour réaliser une telle inspection, il est utilisé des systèmes d’inspections comme visible à la figure 1. Ces systèmes d’inspection 1 comprennent actuellement un système de convoyage 2 transportant le substrat verrier S comme un tapis roulant ou une multitude de rouleau sur lesquels le substrat se déplace.
Sur cette ligne de convoyage, un dispositif de nettoyage 3 est agencé.
Un tel dispositif de nettoyage est utilisé pour enlever les poussières en utilisant une ou des lames d’air ionisées ou non et/ou des brosses électrostatiques ou non. Ce dispositif de nettoyage est suivi par un dispositif de vision industrielle 4. Un tel dispositif consiste en un capteur optique tel une caméra haute résolution permettant la détection de défauts.
Toutefois, ces systèmes d’inspection présentent l’inconvénient d’être sensibles à la contamination : une poussière, une fibre ou une marque nettoyable peut être visible sur les images, le plus souvent numériques, prises par le système.
En effet, le nettoyage n’est pas parfait et des contaminants (poussière ou autre élément nettoyable) sont encore présents après intervention du dispositif de nettoyage. Ces poussières peuvent être interprétées par le dispositif de contrôle visuel comme étant des défauts entraînant une mise au rebus du substrat verrier.
II existe donc un besoin pour un système d’inspection offrant une meilleure détection de défauts et son procédé de fonctionnement. RÉSUMÉ DE L’INVENTION
La présente invention se propose donc de résoudre ces inconvénients en fournissant un système d’inspection plus efficace dans la détection.
A cet effet, l’invention concerne un système d’inspection d’un substrat verrier comprenant des moyens de convoyage pour faire défiler ledit substrat verrier, un dispositif de nettoyage agencé pour nettoyer une ou l’ensemble des faces du substrat verrier et un premier dispositif de contrôle visuel, ledit premier dispositif de contrôle visuel est positionné en aval du dispositif de nettoyage par rapport au défilement du substrat, ledit premier dispositif de contrôle visuel comportant un capteur optique agencé pour prendre une image post-lavage de la ou des surfaces nettoyées du substrat verrier, caractérisé en ce que ledit système d’inspection comprend en outre un second dispositif de contrôle visuel positionné en amont du dispositif de nettoyage par rapport au défilement du substrat, ledit second dispositif de contrôle visuel comportant un capteur optique agencé pour prendre une image pré-lavage de la ou des surfaces nettoyées du substrat verrier, et en ce que ledit système d’inspection comprend des moyens de comparaison pour comparer l’image post-lavage à l’image pré- lavage.
Le système selon la présente invention a l’avantage de permettre une meilleure inspection en inspectant le substrat verrier avant et après le nettoyage et en comparant les résultats. Cela permet avantageusement de mieux repérer les vrais défauts et d’éviter les mises au rebus inutiles.
Selon un exemple, chaque dispositif de contrôle visuel est agencé pour détecter des points spécifiques, la comparaison de l’image post-lavage à l’image pré-lavage utilisant ces points spécifiques
Selon un exemple, les points spécifiques sont caractérisés selon leur position sur le substrat verrier et selon leur taille et selon la signature sur l’image c’est-à-dire le signal reçu correspondant à la surface imagée du point spécifique et représenté par exemple, par un ensemble de pixels.
Selon un exemple, chaque dispositif de contrôle visuel comprend un module de contrôle, un module de liaison comprenant des moyens de comparaison étant connecté à chacun des modules de contrôle. Selon un exemple, les dispositifs de contrôle visuel sont commandés par un seul module de contrôle comportant des moyens de comparaison.
Selon un exemple, le dispositif de nettoyage comprend au moins une lame d’air et/ou au moins une brosse.
L’invention concerne en outre un procédé d’inspection d’un substrat verrier par un système d’inspection selon l’une des revendications précédentes, caractérisé en ce qu’il comprend les étapes suivantes :
- prendre une image pré-lavage d’une face du substrat verrier par le second dispositif de contrôle visuel ;
- nettoyer ladite face du substrat verrier avec le dispositif de nettoyage;
- prendre une image post-lavage de la face nettoyé sur substrat verrier par le premier dispositif de contrôle visuel ;
- comparer l’image post-lavage à l’image pré-lavage.
Selon un exemple, l’étape de comparaison consiste en :
-identifier, pour l’image post-lavage et l’image pré-lavage, des points spécifiques
-caractériser les points spécifiques selon la position, la taille et le niveau de signal correspondant sur l’image ;
-confronter chaque point spécifique de l’image post-lavage avec les points spécifiques de l’image pré-lavage et ;
-déterminer la nature des points spécifiques de sorte que si la position et la taille d’un point spécifique de l’image post-lavage est identique la position, la taille et le niveau de signal associé d’un point spécifique de l’image pré-lavage, ce point spécifique correspond à un défaut, sinon ce point spécifique correspond à une impureté.
Selon un exemple, le procédé comprend en outre, après l’étape de comparaison, une étape consistant à diriger le substrat verrier vers la suite du traitement ou vers le recyclage en fonction du résultat de la comparaison.
Selon un exemple, le procédé comprend en outre, après l’étape de comparaison, une étape consistant à diriger le substrat verrier vers la suite du traitement ou vers le recyclage en fonction du résultat de la comparaison, cette étape étant opérer juste après la détection d’un défaut sur le substrat verrier. DESCRIPTION DES FIGURES
D’autres particularités et avantages ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels:
-la fig. 1 est une représentation schématique d’un système d’inspection selon l’art antérieur;
-la fig. 2 est une représentation schématique d’un système d’inspection selon de l’invention;
-la fig. 3 est une représentation schématique d’un dispositif de contrôle visuel du système d’inspection selon l’invention;
-les fig. 4 et 5 sont des configurations du système d’inspection selon l’invention;
-la fig. 6 est une représentation schématique du fonctionnement du système d’inspection selon de l’invention;
DESCRIPTION DETAILLEE DE L’INVENTION
A la figure 2 est représenté un système d’inspection 100 d’un substrat S selon l’invention. Le substrat S est, par exemple, un substrat verrier de grande largeur, tels qu’une feuille de verre plat de taille « jumbo » (6 m x 3,21 m) sortant des procédés de float. Bien sûr, le système d’inspection d’un substrat S selon l’invention est adaptable à des substrats de différentes tailles. Ce substrat est inspecté avant traitement.
Ce système d’inspection 100 comprend des moyens de convoyage 102 permettant le transport des substrats verriers S. De tels moyens de convoyage 102 peuvent se présenter sous la forme de deux rails parallèles sur lesquels un châssis munis de supports pour le substrat verrier sont agencés. Il peut être également prévu que les moyens de convoyage 102 se présentent sous la forme de deux rails parallèles sur lesquels sont montés des roues permettant au substrat d’être mobile. Certaines roues sont alors connectées à un moteur pour permettre le défilement du substrat.
Le système d’inspection 100 comprend un dispositif de nettoyage 104. Un tel dispositif de nettoyage 104 est utilisé pour enlever les poussières, les fibres, les marques ou autres contaminants de surface nettoyables. Pour cela, le dispositif de nettoyage utilise des moyens de nettoyage 104’, ces moyens de nettoyage pouvant prendre différentes formes.
Pour cela, le premier dispositif de nettoyage utilise des moyens de nettoyage 104’, ces moyens de nettoyage 104’ pouvant prendre différentes formes.
Sous une première forme, les moyens de nettoyage 104’ se présentent sous la forme de lame d’air A. Une lame d’air est générée par un injecteur d’air qui consiste en une structure comportant une turbine générant un jet d’air, ledit jet d’air passant au travers d’une fente réalisée dans la structure pour générer un jet d’air sous forme de lame. Cette lame d’air A est orientée en direction du substrat verrier S pour chasser les impuretés. Cette lame d’air A peut-être ionisée.
Sous une seconde forme, les moyens de nettoyage 104’ se présentent sous d’une brosse. Une telle brosse consiste en un tambour fixé à un moteur pour être mis en rotation. Ce tambour est muni d’une multitude de brins souples. La mise en rotation du tambour entraine la mise en contact des brins avec le substrat verrier pour enlever la poussière. Ces brins peuvent être ionisés de sorte à attirer à eux les impuretés comme les poussières de sorte à nettoyer le substrat S. Le dispositif de nettoyage 104 pourra comprendre une ou des lames, une ou des brosses ou une combinaison de lame(s) et brosse(s).
Le dispositif de nettoyage 104 peut être agencé pour nettoyer la surface du substrat en regard avec les moyens de convoyage ou la surface opposée à cette surface en regard des moyens de convoyage.
Jouxtant le dispositif de nettoyage 104, un dispositif de contrôle visuel 103a est agencé. Ce premier dispositif de contrôle visuel 103a est agencé en aval du dispositif de nettoyage 104 par rapport au défilement du substrat verrier de sorte que l’opération de contrôle visuel soit postérieure à l’étape de nettoyage. Un tel premier dispositif de contrôle visuel 103a consiste en un capteur optique 1030 tel une caméra haute résolution. Ce capteur optique 1030 est agencé en surplomb des moyens de convoyage de sorte que le champ de vision/détection du capteur optique corresponde à la surface du substrat verrier. Ainsi, le capteur optique 1030 est apte à générer une image dudit substrat verrier S.
Ce dispositif de contrôle visuel 103 a associe le capteur optique 1030 avec un module de contrôle 1031 comprenant une unité de traitement 1032 comme visible à la figure 3. Cette unité de traitement 1032 est utilisée pour analyser l’image dudit substrat verrier générée par le capteur optique
Astucieusement selon l’invention, le système d’inspection 100 comprend en outre un second dispositif de contrôle visuel 103b. Ce second dispositif de contrôle visuel 103b est agencé en amont du dispositif de nettoyage 104 par rapport au défilement du substrat verrier S de sorte que l’opération de contrôle visuel soit postérieure à l’étape de nettoyage. Ce second dispositif de contrôle visuel 103b est similaire au dispositif de contrôle visuel agencé en aval du dispositif de nettoyage aussi appelé premier dispositif de contrôle visuel. Ce second dispositif de contrôle consiste donc en un capteur optique 1030 tel une caméra haute résolution agencé en surplomb des moyens de convoyage 102 de sorte que le champ de vision/détection du capteur optique corresponde à la surface du substrat verrier. Ainsi, le capteur optique est apte à générer une image dudit substrat verrier.
La présence de deux dispositifs de contrôle visuel 103a, 103b permet avantageusement d’opérer une étape de vérification. Cette étape de vérification est utilisée pour déterminer si les impuretés restantes après nettoyage sont des impuretés ou sont des défauts, auquel cas le substrat verrier analysé est sorti de la ligne.
Pour cela, le système d’inspection 100 est, dans une première configuration, conçu pour que chaque dispositif de contrôle visuel 103a, 103b comprenne son propre module de contrôle 1031 c’est-à-dire que chaque dispositif de contrôle visuel est contrôlé de façon indépendante. Dans cette première configuration, un module de liaison 105 comprenant des moyens de comparaison 1050 est connecté à chacun des modules de contrôle comme visible à la figure 4. Dans une seconde configuration, le système d’inspection 100 est conçu pour n’avoir qu’un seul module de contrôle 1031 pour le contrôle des deux dispositifs de contrôle visuel 103a, 103b. Cette seconde configuration permet d’avoir un seul module de contrôle pour gérer l’ensemble des dispositifs de contrôle visuel. Cet unique module de contrôle 1031 comprend des moyens de comparaison comme visible à la figure 5.
Le fonctionnement du système d’inspection, visible à la figure 6, consiste dans une première étape, à un instant t1 , dans laquelle une image pré-lavage Ipi d’un premier substrat verrier est réalisée. Cette image pré-lavage Ipi est faite en faisant passer, par les moyens de convoyage 102, ledit premier substrat verrier S sous le second dispositif de contrôle visuel 103b. Ce second dispositif de contrôle visuel 103b utilise alors son capteur optique 1030 pour prendre une image du premier substrat verrier. Le capteur optique 1030 est conçu, configuré pour que l’image prise permette d’obtenu un rendu sur la présence de défauts, d’impuretés à la surface dudit substrat.
Suite à cela, une seconde étape est opérée. Cette seconde étape consiste à nettoyer le premier substrat verrier S. Pour cela, les moyens de convoyage 102 amènent le premier substrat verrier au niveau du dispositif de nettoyage 104. Le premier substrat verrier S se trouve ainsi en regard des moyens de nettoyage: brosse(s) et/ou lame(s) d’air.
Dans une troisième étape, les moyens de convoyage 102 amènent le premier substrat verrier sous le premier dispositif de contrôle visuel 103a. Ce premier dispositif de contrôle visuel utilise alors son capteur optique 1030 pour, à un instant t2, prendre une image post-lavage IR2 du premier substrat verrier. Le capteur optique 1030 est conçu, configuré pour que l’image prise permette d’obtenu un rendu sur la présence de défauts, d’impuretés à la surface dudit substrat. De préférence, le capteur optique 1030 du premier dispositif de contrôle visuel 103a et le capteur optique 1030 du second dispositif de contrôle visuel 103b sont identiques et configurés pour obtenir des images similaires.
Dans une quatrième étape, l’image pré-lavage Ipi et l’image post-lavage
Ip2 sont comparées. Cette comparaison consiste, dans une première phase, à identifier, pour l’image pré-lavage Ipi, les points spécifiques Pi et pour l’image post-lavage lp2, les points spécifiques P’i. Ces points spécifiques Pi, P’i sont des points faisant contrastes sur les images issues des capteurs optiques. Ces points spécifiques Pi, P’i sont détectés par chaque dispositif de contrôle visuel.
Dans une seconde phase, ces points spécifiques Pi, P’i sont caractérisés c’est-à-dire que la position et la taille et une signature sur image de chaque point spécifique est relevée, mesurée, enregistrée. Cette signature sur image correspond au signal reçu représentatif de la surface imagée du point spécifique et représenté par exemple, par un ensemble de pixels.
Dans une troisième phase, les images pré-lavage Ipi et post-lavage IP2 sont comparées entre elles. Cette comparaison consiste à comparer les points spécifiques P’i de l’image post-lavage IP2, c’est-à-dire de l’image générée par le premier dispositif de contrôle visuel, avec les points spécifiques Pi de l’image pré-lavage lPi . Le but ici est de déterminer plusieurs choses. Premièrement, il est nécessaire de déterminer si le nettoyage est efficace en comparant le nombre de points spécifiques. Si ce nombre est identique alors le nettoyage est inefficace ou des contaminants peuvent se redéposer entre la prise des deux images.
Deuxièmement, le but est aussi de déterminer la nature des éléments détectés. En effet, il est utile de savoir si ces éléments détectés sont des impuretés ou des défauts.
Pour cela, chaque point spécifique P’i de l’image post-lavage IP2 est comparé aux points spécifiques Pi de l’image pré-lavage Ipi . En premier lieu, les positions des points spécifiques sont comparées. Cette comparaison initiale des positions vient du postulat que la position d’un défaut est fixe alors que cette d’une impureté peut varier. Par conséquent, pour chaque point spécifique P’i de l’image post-lavage, on compare sa position avec les positions des points spécifiques Pi de l’image pré-lavage. Ainsi, la présence d’un point spécifique P’i, Pi ayant la même localisation sur l’image post-lavage IR2 et sur l’image pré- lavage Ipi signifie la présence d’une impureté ou d’un défaut alors que l’absence de point spécifique ayant la même localisation sur l’image post- lavage Ip2 et sur l’image pré-lavage Ipi signifie que le point spécifique de l’image post-lavage est une impureté.
Dans le cas ou un point spécifique P’i de l’image post-lavage IP2 aurait la même localisation qu’un point spécifique Pi de l’image pré-lavage Ipi, il faut déterminer si ce point correspond à une impureté ou à un défaut. Pour cela, la caractéristique de la taille est prise en compte. Effectivement, on considère qu’un défaut ne doit pas voir sa taille, ni sa structure interne variées suite à une opération de nettoyage alors que pour des impuretés, cela est possible. Ainsi, en cas de points spécifiques de l’image pré-lavage Ipi et de l’image post-lavage Ip2 ayant la même localisation, la taille de ces points spécifiques est comparée pour déterminer la nature dudit point.
Dans une quatrième phase, une synthèse est réalisée par le module de liaison ou le module de contrôle 1030. Cette synthèse consiste à faire le récapitulatif de la troisième phase de comparaison des points spécifiques. Si la synthèse met en lumière la présence de défaut alors le substrat verrier est mis dans un circuit de recyclage. Si la synthèse met en lumière la présence d’impureté mais pas de défaut alors le substrat verrier poursuit le cycle normal de traitement.
Dans une variante, le procédé de détection est conçu pour se passer de la phase de synthèse. Pour cela, la troisième phase est programmée pour que l’identification d’un défaut entraîne immédiatement la mise du substrat verrier dans un circuit de recyclage. Cette variante peut permettre de gagner du temps sur le procédé puisque si le premier point spécifique est identifié comme un défaut alors le substrat verrier part directement au recyclage sans que d’autres comparaisons doivent être effectuées.
Bien entendu, la présente invention ne se limite pas à l’exemple illustré mais est susceptible de diverses variantes et modifications qui apparaîtront à l’homme de l’art.

Claims

REVENDICATIONS
1. Système d’inspection (100) d’un substrat verrier (S) comprenant des moyens de convoyage (102) pour faire défiler ledit substrat verrier, un dispositif de nettoyage (104) agencé pour nettoyer au moins un surface du substrat verrier et un premier dispositif de contrôle visuel (103a) , ledit premier dispositif de contrôle visuel est positionné en aval du dispositif de nettoyage par rapport au défilement du substrat, ledit premier dispositif de contrôle visuel comportant un capteur optique (1030) agencé pour prendre une image post- lavage (IR2) de la au moins une surface nettoyée du substrat verrier, caractérisé en ce que ledit système d’inspection comprend en outre un second dispositif de contrôle visuel (103b) positionné en amont du dispositif de nettoyage par rapport au défilement du substrat, ledit second dispositif de contrôle visuel comportant un capteur optique agencé pour prendre une image pré-lavage (Ipi) de la au moins une surface nettoyée du substrat verrier, et en ce que ledit système d’inspection comprend des moyens de comparaison pour comparer l’image post-lavage à l’image pré-lavage.
2. Système d’inspection selon la revendication 1 , dans lequel chaque dispositif de contrôle visuel (103a, 103b) est agencé pour détecter des points spécifiques, la comparaison de l’image post-lavage à l’image pré-lavage utilisant ces points spécifiques
3. Système d’inspection selon la revendication 2, dans lequel les points spécifiques sont caractérisés selon leur position sur le substrat verrier (S), leur taille et selon le niveau de signal sur l’image du verre correspondant à la surface imagée du point spécifique.
4. Système d’inspection selon l’une des revendications précédentes, dans lequel chaque dispositif de contrôle visuel comprend un module de contrôle (1031 ), un module de liaison (150) comprenant des moyens de comparaison (1050) étant connecté à chacun des modules de contrôle.
5. Système d’inspection selon l’une des revendications précédentes, dans lequel les dispositifs de contrôle visuel (103a, 103b) sont commandés par un seul module de contrôle (1031 ) comportant des moyens de comparaison.
6. Système d’inspection selon l’une des revendications précédentes, dans lequel le dispositif de nettoyage (104) comprend au moins une lame d’air et/ou au moins une brosse.
7. Procédé d’inspection d’un substrat verrier par un système d’inspection selon l’une des revendications précédentes, caractérisé en ce qu’il comprend les étapes suivantes :
- prendre une image pré-lavage (Ipi) d’une face du substrat verrier par le second dispositif de contrôle visuel (103b);
- nettoyer ladite face du substrat verrier (S) avec le dispositif de nettoyage (104);
- prendre une image post-lavage (Ip2) de la face nettoyé sur substrat verrier par le premier dispositif de contrôle visuel (103a);
- comparer l’image post-lavage à l’image pré-lavage.
8. Procédé d’inspection selon la revendication précédente, caractérisé en ce que l’étape de comparaison consiste en :
-identifier, pour l’image post-lavage (Ip2) et l’image pré-lavage (Ipi), des points spécifiques (Pi, P’i);
-caractériser les points spécifiques (Pi, P’i)selon la position, la taille et selon le niveau de signal sur l’image du verre correspondant à la surface imagée du point spécifique
-confronter chaque point spécifique de l’image post-lavage (P’i) avec les points spécifiques de l’image pré-lavage (Pi) et ;
-déterminer la nature des points spécifiques de sorte que si la position, la taille et le niveau de signal d’un point spécifique (P’i) de l’image post-lavage est identique la position et la taille d’un point spécifique (Pi) de l’image pré-lavage, ce point spécifique correspond à un défaut, sinon ce point spécifique correspond à une impureté.
9. Procédé d’inspection selon l’une des revendications 7 à 8, caractérisé en ce qu’il comprend en outre, après l’étape de comparaison, une étape consistant à diriger le substrat verrier vers la suite du traitement ou vers le recyclage en fonction du résultat de la comparaison.
10. Procédé d’inspection selon la revendication 8, caractérisé en ce qu’il comprend en outre, après l’étape de comparaison, une étape consistant à diriger le substrat verrier (S) vers la suite du traitement ou vers le recyclage en fonction du résultat de la comparaison, cette étape étant opérer juste après la détection d’un défaut sur le substrat verrier
PCT/FR2018/053373 2017-12-19 2018-12-18 Systeme d'inspection de vitrage amélioré WO2019122689A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880004739.6A CN110178020A (zh) 2017-12-19 2018-12-18 改进的玻璃检查系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1762514 2017-12-19
FR1762514A FR3075374A1 (fr) 2017-12-19 2017-12-19 Systeme d'inspection de vitrage ameliore

Publications (1)

Publication Number Publication Date
WO2019122689A1 true WO2019122689A1 (fr) 2019-06-27

Family

ID=61599385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/053373 WO2019122689A1 (fr) 2017-12-19 2018-12-18 Systeme d'inspection de vitrage amélioré

Country Status (3)

Country Link
CN (1) CN110178020A (fr)
FR (1) FR3075374A1 (fr)
WO (1) WO2019122689A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111239163A (zh) * 2020-03-13 2020-06-05 苏州鑫睿益荣信息技术有限公司 基于机器视觉的挡风玻璃划痕接续检测装置和检测方法
CN112246675B (zh) * 2020-08-27 2022-10-28 晟光科技股份有限公司 一种lcd显示屏检测装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291225A (ja) * 1992-04-15 1993-11-05 Mitsubishi Electric Corp 洗浄能力評価方法
JP2001050907A (ja) * 1999-08-16 2001-02-23 Asahi Glass Co Ltd 基板の検査方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH686803A5 (de) * 1993-09-09 1996-06-28 Luwa Ag Zellweger Verfahren und Vorrichtung zur Detektion von Fremdstoffen in einem textilen Pruefgut.
US8502967B2 (en) * 2011-02-01 2013-08-06 Cooper S. K. Kuo Apparatus for optical inspection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291225A (ja) * 1992-04-15 1993-11-05 Mitsubishi Electric Corp 洗浄能力評価方法
JP2001050907A (ja) * 1999-08-16 2001-02-23 Asahi Glass Co Ltd 基板の検査方法

Also Published As

Publication number Publication date
FR3075374A1 (fr) 2019-06-21
CN110178020A (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
EP3097407B1 (fr) Procédé et dispositif pour la détection notamment de défauts refractants
FR2993662A1 (fr) Procede et installation pour la detection notamment de defauts refractants
EP0970367B1 (fr) Procede d'inspection de surface d'une bande en defilement par segmentation d'image en zones suspectes
US20110136265A1 (en) Method of Manufacturing Thin-Film Solar Panel and Laser Scribing Apparatus
JP5607734B2 (ja) 離散的な低剛性の透明又は半透明体の欠陥を検査する装置及び方法
EP3233460B1 (fr) Dispositif et procédé de contrôle de la qualité de boîtes pliables et installation de fabrication comprenant un tel dispositif de contrôle
WO2019122689A1 (fr) Systeme d'inspection de vitrage amélioré
US20140286563A1 (en) Accurate detection of low-contrast defects in transparent material
CN111837027A (zh) 用于检测玻璃片的设备和方法
TWI388820B (zh) 玻璃波紋檢測裝置以及其檢測方法
JP3184183B2 (ja) 扁平ワークの検査装置
JP4310616B2 (ja) 扁平錠剤の外観検査機
KR100953203B1 (ko) 기판 품질 검사장치
WO2020105368A1 (fr) Procédé de fabrication d'une plaque de verre, et dispositif pour la fabrication d'une plaque de verre
JP2001050907A5 (fr)
WO2019122690A1 (fr) Systeme d'inspection à nettoyage amélioré
JP4723894B2 (ja) ガラスびんのねじ部検査装置及び検査方法
WO2001055705A1 (fr) Installation et procede pour la detection de glacures
JPH09145624A (ja) 筒状物欠陥検出装置
FR2873206A1 (fr) Machine pour detecter des defauts d'un objet transparent ou translucide
FR2644250A3 (fr) Dispositif d'identification de defauts pour identifier des defauts sur des parties de materiau en deplacement
JP3682249B2 (ja) ガラスびんのねじ部検査装置
JP2002156339A (ja) スティックバー不良検査装置
JP2005010039A (ja) 外観検査装置
JP2005156416A (ja) ガラス基板の検査方法及びガラス基板の検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18833972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18833972

Country of ref document: EP

Kind code of ref document: A1