WO2019122654A1 - Procédé de production d'azote pur à partir d'un courant de gaz naturel contenant de l'azote - Google Patents

Procédé de production d'azote pur à partir d'un courant de gaz naturel contenant de l'azote Download PDF

Info

Publication number
WO2019122654A1
WO2019122654A1 PCT/FR2018/053332 FR2018053332W WO2019122654A1 WO 2019122654 A1 WO2019122654 A1 WO 2019122654A1 FR 2018053332 W FR2018053332 W FR 2018053332W WO 2019122654 A1 WO2019122654 A1 WO 2019122654A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
nitrogen
cooled
natural gas
gas
Prior art date
Application number
PCT/FR2018/053332
Other languages
English (en)
Inventor
Henri Paradowski
Sébastien LICHTLE
Marie MUHR
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to RU2020121255A priority Critical patent/RU2797978C9/ru
Priority to AU2018392159A priority patent/AU2018392159A1/en
Priority to US16/954,769 priority patent/US11604024B2/en
Publication of WO2019122654A1 publication Critical patent/WO2019122654A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0219Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. using a deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0295Start-up or control of the process; Details of the apparatus used, e.g. sieve plates, packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/32Compression of the product stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/08Internal refrigeration by flash gas recovery loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/66Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/88Quasi-closed internal refrigeration or heat pump cycle, if not otherwise provided

Definitions

  • the present invention relates to the field of liquefaction of natural gas.
  • the liquefaction of natural gas consists of condensing the natural gas and subcooling it to a temperature sufficiently low that it can remain liquid at atmospheric pressure. It is then transported in LNG carriers.
  • US 6,105,389 proposes a liquefaction process comprising two refrigerant mixtures flowing in two closed and independent circuits. Each of the circuits operates through a compressor communicating to the refrigerant mixture the power required to cool the natural gas. Each compressor is driven by a gas turbine which is selected from the standard ranges proposed in the trade. However, the power of currently available gas turbines is limited.
  • US 6,763,680 discloses a liquefaction process in which the pressurized liquefied natural gas is expanded in at least two stages so as to obtain at least two gaseous fractions.
  • the pressurized liquefied natural gas is cooled by reboiling a denitrogenation column. At the outlet of the column, a first liquid fraction depleted of nitrogen and a first gas fraction enriched in nitrogen are obtained.
  • This liquid fraction is expanded again to give a liquefied natural gas low in nitrogen and a second gaseous fraction. At least one gaseous fraction is re-compressed and then mixed with the natural gas before condensation.
  • a liquefaction process for natural gas as described in the prior art is not suitable when said natural gas to be liquefied comprises too high a nitrogen level.
  • One of the objects of the present invention is to allow a reduction in the investment cost required for a liquefaction plant.
  • Another object of the present invention is to achieve, under better conditions, a separation of the nitrogen that may be contained in the gas and to discharge a portion of the nitrogen contained in the natural gas to the atmosphere in the form of pure nitrogen.
  • Nitrogen is pure nitrogen containing between 50 ppm and 1% methane according to the legislation in force.
  • the inventors of the present invention have developed a solution for producing liquefied natural gas low in nitrogen from a feed stream of natural gas that may contain more than 4 mol% of nitrogen, while saving energy and while minimizing the cost of deploying this type of process.
  • the present invention relates to a method of liquefying a natural gas feed stream comprising the following steps:
  • step b) is used during step c) to cool said at least a portion of the nitrogen-enriched vapor stream from step b) into said heat exchanger.
  • the subject of the invention is also: A process as defined above, characterized in that during step a), said natural gas supply stream is cooled and a second refrigerant mixture by indirect heat exchange with at least a first refrigerant mixture to obtain a cooled natural gas and a cooled second refrigerant mixture, and then condensing and cooling the cooled natural gas by indirect heat exchange with the cooled second cooling mixture and with at least a portion of the gaseous stream obtained in step d) to obtain a liquefied natural gas.
  • a process as defined above characterized in that the stream enriched in nitrogen produced during stage e) contains less than 100 ppm molar methane and the liquid stream produced during stage e) contains less than 4% molar nitrogen.
  • step b) the stream from step a) is cooled in a means for reboiling said denitrogenation column to the temperature T2.
  • a process as defined above characterized in that the stream cooled to the temperature T2 is expanded in an expansion means prior to introduction into the denitrogenation column.
  • a process as defined above characterized in that at least a portion of the liquid stream from step d) is used as reflux at the top of the denitrogenation column.
  • a method as defined above characterized in that it comprises the following steps:
  • T1 is between -140 ° C and -120 ° C.
  • step a) wherein in step a) the mixture of natural gas and the second refrigerant mixture are cooled to a temperature between -70 ° C and -35 ° C by heat exchange with the first refrigerant mixture.
  • the method according to the invention makes it possible to substantially increase the production capacity by adding a limited number of additional equipment.
  • the method according to the invention is particularly advantageous when each of the refrigeration circuits uses a refrigerant mixture which is completely condensed, expanded and vaporized.
  • feed stream refers to any composition containing hydrocarbons including at least methane.
  • the heat exchanger may be any heat exchanger, unit or other arrangement adapted to allow the passage of a number of flows, and thus allow a direct or indirect heat exchange between one or more lines of refrigerant, and a or multiple feed streams.
  • a natural gas feed stream 1 is introduced into a heat exchange unit S1 at a temperature T1.
  • This unit S1 may comprise one or more heat exchangers E1, E2 and one or more refrigerant compressors K1, K2.
  • the feed stream 1 may contain methane, ethane, propane, hydrocarbons having at least four carbon atoms.
  • This stream may contain traces of contaminants, for example from 0 to 1 ppm of H2O,
  • the molar percentage of nitrogen in this feed stream may be greater than 4%.
  • the stream 1 of natural gas is introduced at a pressure P1 of between 4 MPa and 7 MPa and at a temperature between 0 ° C. and 60 ° C. in the unit S1. .
  • the main stream of natural gas 1 is mixed with the gas 50 to form a mixture of natural gas flowing in the unit S1.
  • the mixture thus formed liquefies from unit S1 via line 10 at a temperature which is preferably at least 10 ° C.
  • bubble temperature means the temperature at which the first vapor bubbles are formed in a liquid natural gas at a given pressure
  • P1b the pressure at which the first vapor bubbles are formed in a liquid natural gas at a given pressure
  • the natural gas leaves the unit S1 at a temperature of between -105 ° C. and -145 ° C. and at a pressure of between 4 MPa and 7 MPa. Under these conditions of temperature and pressure, the natural gas does not remain completely liquid after expansion to atmospheric pressure.
  • the natural gas flowing in the duct 10 is cooled in the reboiler E4 of a denitrogenation column C1.
  • the natural gas is cooled 12 by heating the bottom (25, 26) of the column C1 by indirect heat exchange, then is expanded in the expansion member V1.
  • the diphasic mixture 13 obtained at the output of the member V1 is introduced into the column C1 at a level N1.
  • a gaseous fraction 100 enriched in nitrogen is recovered.
  • the gaseous fraction 100 is separated into two parts 38 and 22.
  • a portion 22 is heated, compressed with the aid of the compressor K4 and sent to the network, which can serve as fuel gas, energy source for the operation of a plant. liquefaction.
  • the other part 38 is sent, to be cooled 39, in a heat exchanger E5, and then separated in a phase separator pot B2 in the form of a gaseous fraction 21 and a liquid fraction 40.
  • the liquid fraction 40 evacuated of pot B2 is used as reflux at the top of column C1.
  • the liquid fraction 31, depleted of nitrogen, discharged in column vessel C1 is separated into two parts 32 and 34.
  • a first part 32 is cooled in a heat exchanger E3, then is expanded in an expansion member 33 'at a pressure between 0.05MPa and 0.5MPa.
  • the second portion 34 of the liquid fraction 31 is expanded in an expansion member 34 'and then fed to a heat exchanger E5.
  • the vaporization of this stream 35 gives a current 36 and represents the majority of the refrigeration necessary for cooling the gas stream 38 from the head of the column C1 in the heat exchanger E5.
  • the expansion members such as V1, 33 'and 34' may be an expansion turbine, an expansion valve or a combination of a turbine and a valve.
  • the two-phase mixture obtained at the outlet of the expansion element 33 is separated in a phase separator pot B1 in the form of a gaseous fraction 41 and a liquid fraction 61.
  • the gaseous fraction 41 is introduced into the exchanger E3.
  • the gaseous fraction 41 cools the liquid fraction 32 coming from the liquid stream 31 recovered in the vat of the column C1, then is directed by the duct 42 into the compressor K3.
  • the gas mixture 49 leaving the compressor K3 is sent to a heat exchanger E103 to be cooled by air or water.
  • the gas mixture 50 leaving the exchanger E103 is then mixed with the stream 1 of natural gas flowing in the unit S1.
  • the liquid fraction 61 discharged from the flask B1 forms the liquefied natural gas (LNG) produced. More particularly, the denitrogenated LNG stream 31 produced at the bottom of the column CO is divided into two parts:
  • a first minority part, flow 34 is expanded in the valve 34 'to a low pressure P3 between 0.05 MPa and 0.5 MPa to give the flow 35 and feeds the exchanger E5.
  • the vaporization of this stream which gives the flow 36 provides the bulk of the refrigeration necessary for the cooling of the overhead steam in the exchanger E5.
  • a second majority part, stream 32, is countercurrently cooled with the flash gas, stream 41, to give the flow which is expanded 33 to the pressure P3 to be mixed with the stream 36 and to give the flow 37 which feeds the flash balloon LNG B1.
  • the gaseous fraction 21 discharged from the pot B2 is introduced, at the pressure P2, into a distillation column C2 producing, at the top, pure nitrogen 41 1 and, in the bottom, a liquid with a low nitrogen content 421, c '. that is to say containing less than 10 mol% of nitrogen, preferably less than 4%.
  • a flow portion 414 is compressed to a high pressure P4 in the multi-stage compressor K5 to form, after cooling to ambient temperature, the flow 418.
  • P4 is typically greater than 15 bar abs.
  • P2 is for example between 3 bar abs and 10 bar abs.
  • the flow 418 is then expanded for example in the valve V2 (or in a hydraulic turbine) and feeds the column C2 on the head plate. It constitutes a reflux.
  • a very minor portion of the stream 1 is taken to give the current 452 which is cooled in the exchanger E1 1.
  • This current 452 makes it possible to maintain, in the exchanger E1 1, temperature conditions that are compatible with the use of a plate heat exchanger.
  • additional refrigeration is provided by relaxing a portion of this current 452.
  • the current 421 is expanded by means of a valve V3.
  • the expanded stream 422 is introduced into the exchanger E1 1 against the current flow 418, then discharged 423 and finally mixed with the stream 37 which is introduced into the balloon B1.
  • the method according to the present invention thus makes it possible to produce a liquefied natural gas low in nitrogen by saving energy from a stream of natural gas containing a much larger quantity of nitrogen than the specifications allow.
  • the process according to the invention makes it possible to produce fuel gas whose nitrogen content is compatible with the specifications of the different equipment and pure nitrogen. Pure nitrogen nitrogen containing between 50 ppm molar and 1 mol% methane according to the legislation in force.
  • Natural gas arrives via line 01 at a pressure of 60 bar and a temperature of 15 ° C.
  • the composition of this gas in molar fraction is as follows:
  • the mixed refrigerant of the pre-cooling cycle (PR) is composed of 50% ethane and 50% propane, the flow rates are adapted to the needs.
  • the flow 22 sent to the gas network is intended to supply the turbines.
  • the nitrogen content of the gas on the network must be compatible with the operation of the gas turbines.
  • Stream 22 in the numerical example above contains 44 mol% of nitrogen.
  • the method according to the invention has the advantage of allowing a great deal of flexibility in the choice of the flow rate of the flow 22 in order to obtain the desired nitrogen content on the network by mixing with the feed gas or other gas sources intended to the network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Procédé de liquéfaction d'un courant de gaz naturel comprenant les étapes suivantes : Etape a) : Refroidissement du courant gazeux d'alimentation pour obtenir un courant de gaz naturel liquéfié à une température T1; Etape b) : Introduction du courant issu de l'étape a) dans une colonne de déazotation à une pression P2 et une température T2 inférieure à T1 pour produire, en cuve de ladite colonne, un courant de gaz naturel liquéfié déazoté et, en tête, un courant de vapeur enrichi en azote; Etape c) : Condensation du courant de vapeur enrichi en azote issu de l'étape b) dans un échangeur de chaleur; Etape d) : Introduction du courant issu de l'étape c) dans un pot séparateur de phases pour produire un courant liquide et un courant gazeux enrichi en azote; Etape e) : Introduction du courant gazeux issu de l'étape d) dans une colonne de distillation à la pression P2 produisant, en tête, un courant enrichi en azote contenant moins de 1% de méthane et, encuve, un courant liquide contenant moins de 10% d'azote; caractérisé en ce qu'au moins une partie du courant liquide issu de l'étape b) est utilisée durant l'étape c) pour refroidir le courant de vapeur enrichi en azote issu de l'étape b) dans ledit échangeur de chaleur.

Description

Procédé de production d’azote pur à partir d’un courant de gaz naturel contenant de l’azote
La présente invention a trait au domaine de la liquéfaction du gaz naturel. La liquéfaction du gaz naturel consiste à condenser le gaz naturel et à le sous refroidir jusqu'à une température suffisamment basse pour qu'il puisse rester liquide à la pression atmosphérique. Il est alors transporté dans des méthaniers.
A l'heure actuelle, le commerce international du gaz naturel liquide (GNL) se développe rapidement, mais l'ensemble de la chaîne de production du GNL requiert des investissements considérables. Réduire le niveau de ces investissements par tonne de GNL produit est donc un objectif prioritaire. Il est également important de réduire l’empreinte carbone en diminuant la consommation de combustible.
Le document US 6 105 389 propose un procédé de liquéfaction comportant deux mélanges réfrigérants circulant dans deux circuits fermés et indépendants. Chacun des circuits fonctionne grâce à un compresseur communiquant au mélange réfrigérant la puissance nécessaire pour refroidir le gaz naturel. Chaque compresseur est entraîné par une turbine à gaz qui est choisie parmi les gammes standards proposées dans le commerce. Cependant la puissance des turbines à gaz actuellement disponibles est limitée.
Le document US 6 763 680 décrit un procédé de liquéfaction où le gaz naturel liquéfié sous pression est détendu en au moins deux étapes de façon à obtenir au moins deux fractions gazeuses. Le gaz naturel liquéfié sous pression est refroidi en assurant le rebouillage d’une colonne de déazotation. En sortie de colonne, on obtient une première fraction liquide appauvrie en azote et une première fraction gazeuse enrichie en azote. Cette fraction liquide est détendue à nouveau pour donner un gaz naturel liquéfié pauvre en azote et une seconde fraction gazeuse. Au moins une fraction gazeuse est re-comprimée puis mélangée avec le gaz naturel avant condensation.
Par ailleurs, un procédé de liquéfaction de gaz naturel tel que décrit dans l’art antérieur ne convient pas lorsque ledit gaz naturel à liquéfier comprend un taux d’azote trop important.
De plus, il n’est pas toujours souhaitable d’utiliser du gaz trop concentré en azote pour le réseau, en particulier pour permettre le bon fonctionnement des turbines à gaz. Un des objets de la présente invention est de permettre une réduction du coût d'investissement requis pour une usine de liquéfaction. Un autre objet de la présente invention est de réaliser, dans de meilleures conditions, une séparation de l'azote pouvant être contenu dans le gaz et de rejeter une partie de l’azote contenu dans le gaz naturel à l’atmosphère sous forme d’azote pur. On appelle azote pur de l’azote contenant entre 50 ppm et 1 % de méthane selon la législation en vigueur.
Ainsi, les inventeurs de la présente invention ont mis au point une solution permettant de produire du gaz naturel liquéfié pauvre en azote à partir d’un courant d’alimentation de gaz naturel pouvant contenir plus de 4% molaire d’azote, tout en économisant de l’énergie et tout en minimisant les coûts nécessaires au déploiement de ce type de procédés.
La présente invention a pour objet un procédé de liquéfaction d’un courant d’alimentation de gaz naturel comprenant les étapes suivantes :
Etape a) : Refroidissement du courant gazeux d’alimentation pour obtenir un courant de gaz naturel liquéfié à une température T1 et une pression P1 b ;
Etape b) : Introduction du courant issu de l’étape a) dans une colonne de déazotation à une pression P2 et une température T2 inférieure à T1 pour produire, en cuve de ladite colonne, un courant de gaz naturel liquéfié déazoté et, en tête de ladite colonne, un courant de vapeur enrichi en azote ;
Etape c) : Condensation au moins partielle d’au moins une partie du courant de vapeur enrichi en azote issu de l’étape b) dans un échangeur de chaleur pour produire un courant diphasique ;
Etape d) : Introduction du courant diphasique issu de l’étape c) dans un pot séparateur de phases pour produire au moins deux phases dont un courant liquide et un courant gazeux enrichi en azote ;
Etape e) : Introduction du courant gazeux issu de l’étape d) dans une colonne de distillation à la pression P2 produisant, en tête, un courant enrichi en azote contenant moins de 1 % molaire de méthane et, en cuve, un courant liquide contenant moins de 10% molaire d’azote ;
caractérisé en ce qu’au moins une partie du courant liquide issu de l’étape b) est utilisée durant l’étape c) pour refroidir ladite au moins une partie du courant de vapeur enrichi en azote issu de l’étape b) dans ledit échangeur de chaleur.
Selon d’autres modes de réalisation, l’invention a aussi pour objet : Un procédé tel que défini ci-dessus, caractérisé en ce que lors de l’étape a), on refroidit ledit courant d’alimentation de gaz naturel et un deuxième mélange réfrigérant par échange de chaleur indirect avec au moins un premier mélange réfrigérant pour obtenir un gaz naturel refroidi et un deuxième mélange réfrigérant refroidi, puis on condense et on refroidit le gaz naturel refroidi par échange de chaleur indirect avec le deuxième mélange réfrigérant refroidi et avec au moins une partie du courant gazeux obtenu à l'étape d) pour obtenir un gaz naturel liquéfié.
Un procédé tel que défini ci-dessus, caractérisé en ce que le courant enrichi en azote produit lors de l’étape e) contient moins de 100ppm molaire de méthane et le courant liquide produit lors de l’étape e) contient moins de 4% molaire d’azote.
Un procédé tel que défini ci-dessus, caractérisé en ce que préalablement à l’étape b), le courant issu de l’étape a) est refroidi dans un moyen de rebouillage de ladite colonne de déazotation jusqu’à la température T2.
Un procédé tel que défini ci-dessus, caractérisé en ce que le courant refroidi à la température T2 est détendu dans un moyen de détente avant son introduction dans la colonne de déazotation.
Un procédé tel que défini ci-dessus, caractérisé en ce qu’au moins une partie du courant liquide issu de l’étape d) est utilisée comme reflux en tête de la colonne de déazotation.
Un procédé tel que défini ci-dessus, caractérisé en ce qu’il comprend les étapes suivantes :
Etape f) : on refroidit la partie du courant liquide issu de l’étape b) non utilisée durant l’étape c) par échange de chaleur indirect avec une deuxième fraction gazeuse obtenue à l'étape g) pour obtenir une fraction liquide refroidie et une deuxième fraction gazeuse réchauffée ;
Etape g) : on détend la fraction liquide refroidie obtenue à l'étape f), puis on l’introduit dans un deuxième pot séparateur de phases (B1 ) pour obtenir un gaz naturel liquéfié et la deuxième fraction gazeuse ;
Etape h) : on comprime jusqu’à une pression P1 au moins une partie de la deuxième fraction gazeuse réchauffée obtenue à l'étape g);
Etape i) : on refroidit au moins une partie du courant liquide issu de l’étape e) par échange de chaleur indirect ; Etape j) : on mélange le courant issu de l’étape i) avec le mélange détendu obtenu à l’étape g) avant introduction dans ledit deuxième pot séparateur de phases (B1 ).
Un procédé tel que défini ci-dessus, caractérisé en ce que la teneur en azote du courant gazeux enrichi en azote issu de l’étape e) est supérieure à 50% molaire.
Un procédé tel que défini ci-dessus, caractérisé en ce que T1 est comprise entre -140°C et -120°C.
Un procédé tel que défini ci-dessus, caractérisé en ce que P2 est comprise entre 3 bar abs et 10 bar abs.
Un procédé tel que défini ci-dessus, dans lequel à l'étape a) le mélange de gaz naturel et le deuxième mélange réfrigérant sont refroidis à une température comprise entre -70°C et -35°C par échange de chaleur avec le premier mélange réfrigérant.
Un procédé tel que défini ci-dessus, dans lequel le premier mélange réfrigérant comporte en fraction molaire les composants suivants :
o Ethane : 30% à 70%
o Propane : 30% à 70%
o Butane : 0% à 20%.
Un procédé tel que défini ci-dessus, dans lequel le deuxième mélange réfrigérant comporte en fraction molaire les composants suivants :
o Azote : 0% à 20%
o Méthane : 30% à 70%
o Ethane : 30% à 70%
o Propane : 0% à 10%.
Le procédé selon l'invention permet en effet d'augmenter sensiblement la capacité de production en ajoutant un nombre limité d'équipements supplémentaires.
Le procédé selon l'invention est particulièrement avantageux lorsque chacun des circuits de réfrigération met en œuvre un mélange réfrigérant qui est entièrement condensé, détendu et vaporisé.
L'expression "courant d’alimentation" telle qu'utilisée dans la présente demande se rapporte à toute composition contenant des hydrocarbures dont au moins du méthane. L'échangeur de chaleur peut être tout échangeur thermique, toute unité ou autre agencement adapté pour permettre le passage d'un certain nombre de flux, et ainsi permettre un échange de chaleur direct ou indirect entre une ou plusieurs lignes de fluide réfrigérant, et un ou plusieurs flux d'alimentation.
D'autres caractéristiques et avantages de l'invention seront mieux compris et apparaîtront clairement à la lecture de la description faites ci-après en se référant à la figure représentant schématiquement un procédé de liquéfaction selon l'invention.
Sur la figure, un courant d’alimentation de gaz naturel 1 est introduit dans une unité d’échange de chaleur S1 à une température T1 .
Cette unité S1 peut comprendre un ou plusieurs échangeurs de chaleurs E1 , E2 et un ou plusieurs compresseurs de réfrigérant K1 , K2.
Typiquement le courant d’alimentation 1 peut contenir du méthane, de l’éthane, du propane, des hydrocarbures ayant au moins quatre atomes de carbone. Ce courant peut contenir des traces de contaminants par exemple de 0 à 1 ppm de H2O,
4 ppm de H2S, 50 ppm de CO2... Le pourcentage molaire d’azote dans ce courant d’alimentation peut être supérieur à 4%.
Selon le procédé de liquéfaction de gaz naturel schématisé par la figure, le courant 1 de gaz naturel est introduit à une pression P1 comprise entre 4 MPa et 7 MPa et à une température comprise entre 0°C et 60°C dans l’unité S1 . Le courant principal de gaz naturel 1 est mélangé avec le gaz 50 pour former un mélange de gaz naturel circulant dans l’unité S1 . Le mélange ainsi formé, sort liquéfié de l’unité S1 par le conduit 10 à une température de préférence supérieure d'au moins 10°C par rapport à la température de bulle du gaz naturel liquéfié produit à pression atmosphérique (la température de bulle désigne la température à laquelle les premières bulles de vapeurs se forme dans un gaz naturel liquide à une pression donnée) et à une pression P1 b identique à la pression d'entrée P1 du gaz naturel, aux pertes de charge près.
Par exemple le gaz naturel sort de l’unité S1 à une température comprise entre - 105°C et -145°C et à une pression comprise entre 4 MPa à 7 MPa. Dans ces conditions de température et de pression, le gaz naturel ne reste pas entièrement liquide après une détente jusqu'à la pression atmosphérique.
Le gaz naturel circulant dans le conduit 10 est refroidi dans le rebouilleur E4 d’une colonne de déazotation C1 . Le gaz naturel est refroidi 12 en chauffant le fond (25, 26) de la colonne C1 par échange de chaleur indirecte, puis est détendu dans l'organe de détente V1 . Le mélange diphasique 13 obtenu en sortie de l'organe V1 est introduit dans la colonne C1 à un niveau N1 . En tête de la colonne C1 , on récupère une fraction gazeuse 100 enrichie en azote. La fraction gazeuse 100 est séparée en deux parties 38 et 22. Une partie 22 est réchauffée, comprimée à l’aide du compresseur K4 et envoyée au réseau, pouvant servir de gaz combustible, source d'énergie pour le fonctionnement d'une usine de liquéfaction.
L’autre partie 38 est envoyée, pour être refroidie 39, dans un échangeur de chaleur E5, puis séparée dans un pot séparateur de phases B2 sous forme d'une fraction gazeuse 21 et d'une fraction liquide 40. La fraction liquide 40 évacuée du pot B2 est utilisée comme reflux en tête de colonne C1 .
La fraction liquide 31 , appauvrie en azote, évacuée en cuve de colonne C1 est séparée en deux parties 32 et 34. Une première partie 32 est refroidie dans un échangeur de chaleur E3, puis est détendue dans un organe de détente 33’ à une pression comprise entre 0,05MPa et 0,5MPa. La deuxième partie 34 de la fraction liquide 31 est détendue 35 dans un organe de détente 34’ puis alimente un échangeur de chaleur E5. La vaporisation de ce courant 35 donne un courant 36 et représente la plus grande partie de la réfrigération nécessaire au refroidissement du courant gazeux 38 issu de la tête de la colonne C1 dans l’échangeur de chaleur E5.
Les organes de détente tels que V1 , 33’ et 34’ peuvent être une turbine de détente, une vanne de détente ou une combinaison d'une turbine et d'une vanne. Le mélange diphasique obtenu en sortie de l'organe de détente 33 est séparé dans un pot séparateur de phases B1 sous forme d'une fraction gazeuse 41 et d'une fraction liquide 61 . La fraction gazeuse 41 est introduite dans l'échangeur E3. Dans l'échangeur E3, la fraction gazeuse 41 refroidit la fraction liquide 32 issu du courant liquide 31 récupéré en cuve de la colonne C1 , puis est dirigée par le conduit 42 dans le compresseur K3. Le mélange gazeux 49 sortant du compresseur K3 est envoyé à un échangeur de chaleur E103 pour être refroidi par de l'air ou de l'eau. Le mélange gazeux 50 sortant de l'échangeur E103 est ensuite mélangé avec le courant 1 de gaz naturel circulant dans l’unité S1 .
La fraction liquide 61 évacuée du ballon B1 forme le gaz naturel liquéfié (GNL) produit. Plus particulièrement, le flux GNL déazoté 31 produit en pied de la colonne CO est divisé en deux parties :
• une première partie minoritaire, flux 34 est détendue dans la vanne 34’ jusqu’à une basse pression P3 comprise entre 0,05 MPa et 0,5 MPa pour donner le flux 35 et alimente l’échangeur E5. La vaporisation de ce flux qui donne le flux 36 fournit la plus grande partie de la réfrigération nécessaire au refroidissement de la vapeur de tête dans l’échangeur E5.
• Une seconde partie majoritaire, flux 32, est refroidie à contre-courant du gaz de flash, flux 41 , pour donner le flux qui est détendu 33 jusqu’à la pression P3 pour être mélangé au courant 36 et donner le flux 37 qui alimente le ballon de flash du GNL B1 .
La fraction gazeuse 21 évacuée du pot B2 est introduite, à la pression P2, dans une colonne de distillation C2 produisant, en tête, de l’azote pur 41 1 et, en fond, un liquide à faible teneur en azote 421 , c'est-à-dire contenant moins de 10% molaire d’azote, de préférence moins de 4%.
Le gaz de tête, flux 41 1 , de cette colonne C2, constitué d’azote pur, contenant par exemple moins de 1 % molaire de méthane, de préférence moins de 100 ppm molaire de méthane, est réchauffé dans l’échangeur de chaleur E1 1 jusqu’à une température proche de l’ambiante.
Une partie, flux 414, est comprimée jusqu’à une haute pression P4 dans le compresseur multi-étage K5 pour former après refroidissement à la température ambiante le flux 418. P4 est typiquement supérieure à 15 bar abs. P2 est par exemple comprise entre 3 bar abs et 10 bar abs.
Le flux 418 est ensuite détendu par exemple dans la vanne V2 (ou dans une turbine hydraulique) et alimente la colonne C2 sur le plateau de tête. Il constitue un reflux.
Une partie très minoritaire du courant 1 est prélevée pour donner le courant 452 qui est refroidi dans l’échangeur E1 1 . Ce courant 452 permet de conserver, dans l’échangeur E1 1 , des conditions de température compatibles avec l’utilisation d’échangeur à plaques. Au démarrage de l’installation un complément de réfrigération est fourni par détente d’une partie de ce courant 452. Le courant 421 est détendu au moyen d’une vanne V3. Le courant détendu 422 est introduit dans l’échangeur E1 1 à contre-courant du flux 418, puis est évacué 423 et enfin mélangé avec le courant 37 qui est introduit dans le ballon B1 .
Le procédé selon la présente invention permet donc de produire un gaz naturel liquéfié pauvre en azote en économisant de l’énergie à partir d’un courant de gaz naturel contenant une quantité d’azote beaucoup plus importante que ce que les spécifications permettent.
En outre, le procédé selon l’invention permet de produire du gaz combustible dont la teneur en azote est compatible avec les spécifications des différents équipements et de l’azote pur. On appelle azote pur de l’azote contenant entre 50 ppm molaire et 1 % molaire de méthane selon la législation en vigueur.
Afin d’illustrer davantage la mise en œuvre d’un procédé tel que schématisé sur la figure et tel que décrit précédemment, les données de mise en œuvre dudit procédé selon l’invention sont illustrées par l’exemple numérique suivant.
Ces données ont été rassemblées dans le tableau suivant.
Le gaz naturel arrive par la ligne 01 à une pression de 60 bar et une température de 15°C. La composition de ce gaz en fraction molaire est la suivante :
o Méthane : 90%
o Ethane : 2,5%
o Propane : 1 %
o Isobutane : 0,3%
o n-butane : 0,2%
o Azote : 6%.
Le réfrigérant en mélange du cycle de pré refroidissement (PR) est composé de 50% d’éthane et 50% de propane, les débits sont adaptés aux besoins.
Figure imgf000011_0001
Le flux 22 envoyé au réseau gaz est destiné à alimenter les turbines. La teneur en azote du gaz sur le réseau doit être compatible avec le fonctionnement des turbines à gaz. Le flux 22 dans l’exemple numérique ci-dessus contient 44% mol d’azote. Le procédé selon l’invention présente l’avantage de laisser beaucoup de flexibilité sur le choix du débit du flux 22 afin d’obtenir la teneur en azote souhaitée sur le réseau par mélange avec du gaz de charge ou d’autres sources de gaz destinées au réseau.

Claims

Revendications
1 . Procédé de liquéfaction d’un courant d’alimentation (1 ) de gaz naturel comprenant les étapes suivantes :
Etape a) : Refroidissement du courant gazeux d’alimentation (1 ) pour obtenir un courant de gaz naturel liquéfié (10) à une température T1 et une pression P1 b ;
Etape b) : Introduction du courant issu de l’étape a) dans une colonne de déazotation (C1 ) à une pression P2 et une température T2 inférieure à T1 pour produire, en cuve de ladite colonne, un courant de gaz naturel liquéfié déazoté (31 ) et, en tête de ladite colonne, un courant (100) de vapeur enrichi en azote ;
Etape c) : Condensation au moins partielle d’au moins une partie (38) du courant de vapeur enrichi en azote (100) issu de l’étape b) dans un échangeur de chaleur (E5) pour produire un courant diphasique (39) ;
Etape d) : Introduction du courant diphasique (39) issu de l’étape c) dans un pot séparateur de phases (B2) pour produire au moins deux phases dont un courant liquide (40) et un courant gazeux enrichi en azote (21 );
Etape e) : Introduction d’au moins une partie du courant gazeux (21 ) issu de l’étape d) dans une colonne de distillation (C2) à la pression P2 produisant, en tête, un courant (41 1 ) enrichi en azote contenant moins de 1 % molaire de méthane et, en cuve, un courant liquide (421 ) contenant moins de 10% molaire d’azote ;
caractérisé en ce qu’au moins une partie (34) du courant liquide (31 ) issu de l’étape b) est utilisée durant l’étape c) pour refroidir ladite au moins une partie (38) du courant de vapeur enrichi en azote (100) issu de l’étape b) dans ledit échangeur de chaleur (E5).
2. Procédé selon la revendication précédente caractérisé en ce que lors de l’étape a), on refroidit ledit courant d’alimentation de gaz naturel et un deuxième mélange réfrigérant par échange de chaleur indirect avec au moins un premier mélange réfrigérant pour obtenir un gaz naturel refroidi et un deuxième mélange réfrigérant refroidi, puis on condense et on refroidit le gaz naturel refroidi par échange de chaleur indirect avec au moins le deuxième mélange réfrigérant refroidi pour obtenir un gaz naturel liquéfié.
3. Procédé selon la revendication précédente, caractérisé en ce que le courant (41 1 ) enrichi en azote produit lors de l’étape e) contient moins de 10Oppm molaire de méthane et le courant liquide (421 ) produit lors de l’étape e) contient moins de 4% molaire d’azote.
4. Procédé selon la revendication précédente, caractérisé en ce que préalablement à l’étape b), le courant issu de l’étape a) est refroidi dans un moyen de rebouillage de ladite colonne de déazotation jusqu’à la température T2.
5. Procédé selon la revendication précédente, caractérisé en ce que le courant refroidi à la température T2 est détendu dans un moyen de détente avant son introduction dans la colonne de déazotation.
6. Procédé selon l’une des revendications 3 à 5 caractérisé en ce qu’au moins une partie du courant liquide (40) issu de l’étape d) est utilisée comme reflux en tête de la colonne de déazotation.
7. Procédé selon l’une des revendications 3 à 6, caractérisé en ce qu’il comprend les étapes suivantes :
Etape f) : on refroidit la partie du courant liquide issu de l’étape b) non utilisée durant l’étape c) par échange de chaleur indirect avec une deuxième fraction gazeuse obtenue à l'étape g) pour obtenir une fraction liquide refroidie et une deuxième fraction gazeuse réchauffée ;
Etape g) : on détend la fraction liquide refroidie obtenue à l'étape f), puis on l’introduit dans un deuxième pot séparateur de phases (B1 ) pour obtenir un gaz naturel liquéfié et la deuxième fraction gazeuse ;
Etape h) : on comprime jusqu’à une pression P1 au moins une partie de la deuxième fraction gazeuse réchauffée obtenue à l'étape g);
Etape i) : on refroidit au moins une partie du courant liquide issu de l’étape e) par échange de chaleur indirect ; Etape j) : on mélange le courant issu de l’étape i) avec le mélange détendu obtenu à l’étape g) avant introduction dans ledit deuxième pot séparateur de phases (B1 ).
8. Procédé selon l’une des revendications 3 à 7, caractérisé en ce que la teneur en azote du courant gazeux enrichi en azote issu de l’étape e) est supérieure à 50% molaire.
9. Procédé selon l’une des revendications 3 à 8, caractérisé en ce que T1 est comprise entre -140°C et -120°C.
10. Procédé selon l’une des revendications 3 à 9, caractérisé en ce que P2 est comprise entre 3 bar abs et 10 bar abs.
11. Procédé selon l'une des revendications 3 à 10, dans lequel à l'étape a) le mélange de gaz naturel et le deuxième mélange réfrigérant sont refroidis à une température comprise entre -70°C et -35°C par échange de chaleur avec le premier mélange réfrigérant.
12. Procédé selon la revendication précédente, dans lequel le premier mélange réfrigérant comporte en fraction molaire les composants suivants :
o Ethane : 30% à 70%
o Propane : 30% à 70%
o Butane : 0% à 20%.
13. Procédé selon l’une des revendications 11 et 12, dans lequel le deuxième mélange réfrigérant comporte en fraction molaire les composants suivants :
o Azote : 0% à 20%
o Méthane : 30% à 70%
o Ethane : 30% à 70%
o Propane : 0% à 10%.
PCT/FR2018/053332 2017-12-21 2018-12-17 Procédé de production d'azote pur à partir d'un courant de gaz naturel contenant de l'azote WO2019122654A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2020121255A RU2797978C9 (ru) 2017-12-21 2018-12-17 Способ получения чистого азота из потока природного газа, содержащего азот
AU2018392159A AU2018392159A1 (en) 2017-12-21 2018-12-17 Method for producing pure nitrogen from a natural gas stream containing nitrogen
US16/954,769 US11604024B2 (en) 2017-12-21 2018-12-17 Method for producing pure nitrogen from a natural gas stream containing nitrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1762735 2017-12-21
FR1762735A FR3075939B1 (fr) 2017-12-21 2017-12-21 Procede de production d'azote pur a partir d'un courant de gaz naturel contenant de l'azote

Publications (1)

Publication Number Publication Date
WO2019122654A1 true WO2019122654A1 (fr) 2019-06-27

Family

ID=61750340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/053332 WO2019122654A1 (fr) 2017-12-21 2018-12-17 Procédé de production d'azote pur à partir d'un courant de gaz naturel contenant de l'azote

Country Status (4)

Country Link
US (1) US11604024B2 (fr)
AU (1) AU2018392159A1 (fr)
FR (1) FR3075939B1 (fr)
WO (1) WO2019122654A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210140710A1 (en) * 2019-11-07 2021-05-13 Conocophillips Company Systems and methods for removing nitrogen during liquefaction of natural gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230076428A1 (en) * 2021-09-02 2023-03-09 Air Products And Chemicals, Inc. Integrated nitrogen rejection for liquefaction of natural gas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617741A (en) * 1995-02-10 1997-04-08 Air Products And Chemicals, Inc. Dual column process to remove nitrogen from natural gas
US6105389A (en) 1998-04-29 2000-08-22 Institut Francais Du Petrole Method and device for liquefying a natural gas without phase separation of the coolant mixtures
US6449984B1 (en) * 2001-07-04 2002-09-17 Technip Process for liquefaction of and nitrogen extraction from natural gas, apparatus for implementation of the process, and gases obtained by the process
US6763680B2 (en) 2002-06-21 2004-07-20 Institut Francais Du Petrole Liquefaction of natural gas with natural gas recycling
US20120090355A1 (en) * 2009-03-25 2012-04-19 Costain Oil, Gas & Process Limited Process and apparatus for separation of hydrocarbons and nitrogen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7850763B2 (en) * 2007-01-23 2010-12-14 Air Products And Chemicals, Inc. Purification of carbon dioxide
WO2010060735A2 (fr) 2008-11-03 2010-06-03 Shell Internationale Research Maatschappij B.V. Procede de rejet d'azote d'un flux d'hydrocarbure pour produire un flux de gaz combustible et appareil associe method of rejecting nitrogen from a hydrocarbon stream to provide a fuel gas stream and an apparatus therefor
DE102009036366A1 (de) 2009-08-06 2011-02-10 Linde Aktiengesellschaft Verfahren zum Abtrennen von Stickstoff

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617741A (en) * 1995-02-10 1997-04-08 Air Products And Chemicals, Inc. Dual column process to remove nitrogen from natural gas
US6105389A (en) 1998-04-29 2000-08-22 Institut Francais Du Petrole Method and device for liquefying a natural gas without phase separation of the coolant mixtures
US6449984B1 (en) * 2001-07-04 2002-09-17 Technip Process for liquefaction of and nitrogen extraction from natural gas, apparatus for implementation of the process, and gases obtained by the process
US6763680B2 (en) 2002-06-21 2004-07-20 Institut Francais Du Petrole Liquefaction of natural gas with natural gas recycling
US20120090355A1 (en) * 2009-03-25 2012-04-19 Costain Oil, Gas & Process Limited Process and apparatus for separation of hydrocarbons and nitrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210140710A1 (en) * 2019-11-07 2021-05-13 Conocophillips Company Systems and methods for removing nitrogen during liquefaction of natural gas

Also Published As

Publication number Publication date
RU2020121255A3 (fr) 2022-03-31
FR3075939A1 (fr) 2019-06-28
US11604024B2 (en) 2023-03-14
FR3075939B1 (fr) 2020-06-19
US20210088276A1 (en) 2021-03-25
AU2018392159A1 (en) 2020-07-09
RU2020121255A (ru) 2021-12-27

Similar Documents

Publication Publication Date Title
EP1352203B1 (fr) Procede de refrigeration de gaz liquefie et installation mettant en oeuvre celui-ci
EP2452140B1 (fr) Procédé de production d'un courant riche en méthane et d'un courant riche en hydrocarbures en c2+, et installation associée
EP2344821B1 (fr) Procédé de production de courants d'azote liquide et gazeux, d'un courant gazeux riche en hélium et d'un courant d'hydrocarbures déazoté et installation associée
AU2011201487B2 (en) Nitrogen removal from natural gas
EP1118827B1 (fr) Procédé de liquéfaction partielle d'un fluide contenant des hydrocarbures tel que du gaz naturel
WO2010122256A2 (fr) Procédé de production d'un courant riche en méthane et d'une coupe riche en hydrocarbures en c2+ à partir d'un courant de gaz naturel de charge, et installation associée
WO2009087308A2 (fr) Procede de liquefaction d'un gaz naturel avec fractionnement a haute pression
FR3043451A1 (fr) Methode pour optimiser la liquefaction de gaz naturel
FR3030026B1 (fr) Procede et appareil pour separer un gaz d'alimentation contenant au moins 20% mol. de co2 et au moins 20% mol de methane, par condensation partielle et/ou par distillation
WO2019122654A1 (fr) Procédé de production d'azote pur à partir d'un courant de gaz naturel contenant de l'azote
WO2009153427A2 (fr) Procede de liquefaction d'un gaz naturel avec pre-refroidissement du melange refrigerant
FR3088416A1 (fr) Procede et appareil de liquefaction d'un courant gazeux contenant du dioxyde de carbone
EP3252408B1 (fr) Procédé de purification de gaz naturel et de liquéfaction de dioxyde de carbone
EP3252406B1 (fr) Procédé de liquéfaction de dioxyde de carbone issu d'un courant de gaz naturel
WO2019122656A1 (fr) Procédé de liquéfaction d'un courant de gaz naturel contenant de l'azote
FR3052239A1 (fr) Procede de liquefaction de gaz naturel et de dioxyde de carbone
FR3043452A1 (fr) Procede de liquefaction de gaz naturel a l'aide d'un circuit de refrigeration en cycle ferme
RU2797978C9 (ru) Способ получения чистого азота из потока природного газа, содержащего азот
RU2797978C2 (ru) Способ получения чистого азота из потока природного газа, содержащего азот
FR3047552A1 (fr) Introduction optimisee d'un courant refrigerant mixte diphasique dans un procede de liquefaction de gaz naturel
WO2017098099A1 (fr) Procédé de liquéfaction de gaz naturel et d'azote
FR3082922A1 (fr) Procede de liquefaction de gaz naturel integre a un procede de production de liquides extraits d'un courant d'alimentation de gaz naturel
FR3014180A1 (fr) Procede et appareil de separation d’air par distillation a basse temperature
FR2986311A1 (fr) Procede et appareil de condensation ou de pseudocondensation d'un gaz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18833696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018392159

Country of ref document: AU

Date of ref document: 20181217

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18833696

Country of ref document: EP

Kind code of ref document: A1