WO2017098099A1 - Procédé de liquéfaction de gaz naturel et d'azote - Google Patents

Procédé de liquéfaction de gaz naturel et d'azote Download PDF

Info

Publication number
WO2017098099A1
WO2017098099A1 PCT/FR2016/052888 FR2016052888W WO2017098099A1 WO 2017098099 A1 WO2017098099 A1 WO 2017098099A1 FR 2016052888 W FR2016052888 W FR 2016052888W WO 2017098099 A1 WO2017098099 A1 WO 2017098099A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural gas
nitrogen
stream
liquefaction
unit
Prior art date
Application number
PCT/FR2016/052888
Other languages
English (en)
Inventor
Nicolas CHAMBRON
Richard Dubettier-Grenier
Loïc JOLY
Vianney MEUNIER
Christophe Szamlewski
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to CA3007571A priority Critical patent/CA3007571C/fr
Priority to US16/060,077 priority patent/US10890375B2/en
Priority to EA201891282A priority patent/EA034091B9/ru
Priority to CN201680077539.4A priority patent/CN108474613B/zh
Priority to EP16809967.9A priority patent/EP3387352A1/fr
Publication of WO2017098099A1 publication Critical patent/WO2017098099A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0234Integration with a cryogenic air separation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0236Heat exchange integration providing refrigeration for different processes treating not the same feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle

Definitions

  • the present invention relates to a process for liquefying a hydrocarbon stream such as natural gas in particular in a process for the production of liquefied natural gas and a stream of liquid nitrogen.
  • a hydrocarbon stream such as natural gas
  • refrigerant streams are used to produce cold at different levels of a main heat exchanger by vaporizing against the hydrocarbon stream to be liquefied (typically gas). natural).
  • the present invention is particularly well suited to a site where an air separation unit (ASU) and a natural gas liquefaction unit are present.
  • ASU air separation unit
  • natural gas liquefaction unit a natural gas liquefaction unit
  • natural gas can be stored and transported over long distances more easily in liquid form than in gaseous form, because it occupies a smaller volume for a given mass and does not need to be stored at high pressure.
  • EP 1435497 thermally combining an air separation unit with a natural gas liquefaction unit in which the cold required for the liquefaction of the natural gas is produced by the air separation unit via nitrogen liquid.
  • the disadvantage of such a system is that in general, the amount of liquid nitrogen produced by the air separation unit is not sufficient to avoid having to invest in a system of production of frigories ( turbo machinery for example) for the natural gas liquefaction unit.
  • the liquefaction of natural gas by liquid nitrogen is much less energetically effective than the use of refrigeration cycles such as the nitrogen cycle, based on the principle of the reverse Brayton cycle, or a cycle using mixed refrigerants, based on the vaporization of different hydrocarbon streams at different levels in the liquefaction exchanger
  • refrigeration cycles such as the nitrogen cycle, based on the principle of the reverse Brayton cycle, or a cycle using mixed refrigerants, based on the vaporization of different hydrocarbon streams at different levels in the liquefaction exchanger
  • the present invention relates to a process for producing liquefied natural gas and a liquid nitrogen stream comprising at least the following steps:
  • the subject of the invention is also:
  • the air separation unit comprises at least one so-called high-pressure column and at least one so-called low-pressure column, the nitrogen gas produced in step a) being produced in low pressure column head.
  • a method as described above, characterized in that said system for producing frigories comprises at least one compressor and at least one turbine-booster system.
  • the liquefaction unit comprises a refrigeration cycle supplied with a cooling stream containing at least one of the constituents chosen from nitrogen, methane, ethylene, ethane, butane and pentane.
  • the present invention also relates to a device for producing liquefied natural gas and liquid nitrogen comprising an air separation unit producing at least one gaseous stream of nitrogen and a liquefaction unit of natural gas, said liquefaction unit of natural gas comprising at least one main heat exchanger and a system for producing frigories characterized in that the frigory production system is adapted to and designed to liquefy both the nitrogen stream from the separation unit of air and the natural gas stream flowing through the natural gas liquefaction unit.
  • the subject of the invention is a device as described above, characterized in that said system for producing cold energy comprises at least one compressor and at least one turbine-booster system.
  • the object of the present invention is to thermally couple a liquefaction unit of a gas rich in hydrocarbons, typically natural gas, with an air separation unit (ASU).
  • ASU air separation unit
  • thermal coupling means for producing frigories to ensure the thermal balance of the two units, typically air compressor, refrigeration cycle compressor, and possibly a turbine / booster system.
  • turbine / blower system means a turbine mechanically coupled (via a common shaft) to a single-stage compressor. The power generated through the turbine being directly transmitted to the single stage compressor.
  • liquefaction unit Since the cooling requirement of a natural gas liquefaction unit is generally greater than the refrigeration requirement of an air separation unit, it is relevant to take advantage of the units (compressors and / or turbine / boosters) of the unit. liquefaction of natural gas to at least partially ensure the refrigeration needs of the air separation unit and in particular limit the investment in ASU machinery.
  • the incremental investment to increase the liquefaction capacity of a hydrocarbon liquefier is well below the incremental investment to increase the liquid production capacity of an air separation unit.
  • the invention is particularly applicable to an air separation unit producing one or more gaseous streams, including at least one stream of nitrogen gas.
  • This stream of nitrogen gas is sent to the main exchanger of the natural gas liquefaction unit and liquefies in parallel with the natural gas stream.
  • the cold necessary for the liquefaction of this stream of nitrogen gas is provided by the means for producing frigories of the liquefaction cycle of natural gas itself, typically the cycle compressor with possibly turbine / booster.
  • the stream of nitrogen gas may optionally be compressed before being sent into the liquefaction unit of natural gas to facilitate liquefaction.
  • the nitrogen stream is at least partially returned to the air separation unit, typically at the top of a low pressure column, to ensure the cooling balance.
  • One of the advantages of this solution is to take advantage of the refrigeration capacity of the natural gas liquefier to increase the oxygen and argon yield of the ASU while limiting its investment.
  • This solution also allows an ASU producing in its initial configuration almost only gaseous currents and very few liquids to produce liquid streams in greater quantity while limiting over-investment.
  • the nitrogen gas stream from the ASU will preferably be introduced upstream of the cycle compressor to be compressed thereby before being liquefied in the main exchanger of the liquefaction unit of natural gas.
  • the process according to the present invention is applicable to various hydrocarbon feed streams, it is particularly suitable for natural gas streams to be liquefied.
  • the liquefied natural gas can be further processed, if desired.
  • the liquefied natural gas obtained can be depressurized by means of a Joule-Thomson valve or by means of a turbine.
  • other intermediate treatment steps between the gas / liquid separation and the cooling can be carried out.
  • the hydrocarbon stream to be liquefied is usually a stream of natural gas obtained from natural gas fields or oil reservoirs.
  • the natural gas stream can also be obtained from another source, also including a synthetic source such as a Fischer-Tropsch process.
  • the flow of natural gas is essentially composed of methane.
  • the feed stream comprises at least 60 mol% of methane, preferably at least 80 mol% of methane.
  • natural gas may contain quantities of hydrocarbons heavier than methane, such as ethane, propane, butane and pentane, as well as some aromatic hydrocarbons.
  • the natural gas stream may also contain non-hydrocarbon products such as H 2 O, N 2 , CO 2 , H 2 S and other sulfur compounds, and the like.
  • the feed stream containing the natural gas can be pretreated before being introduced into the heat exchanger.
  • This pretreatment may include reducing and / or eliminating undesirable components such as CO2 and H 2 S, or other steps such as pre-cooling and / or pressurizing. Since these measurements are well known to those skilled in the art, they are not further detailed here.
  • natural gas refers to any composition containing hydrocarbons including at least methane. This includes a "raw” composition (prior to any treatment such as cleaning or washing), as well as any composition that has been partially, substantially, or wholly processed for the reduction and / or elimination of one or more compounds, including but not limited to limited to sulfur, carbon dioxide, water, and hydrocarbons having two or more carbon atoms.
  • the heat exchanger can be any column, unit or other arrangement adapted to allow the passage of a number of flows, and thus allow a direct or indirect heat exchange between one or more lines of refrigerant, and one or several feed streams.
  • the invention will be described in more detail with reference to the figure which illustrates the diagram of a particular embodiment of an implementation of a method according to the invention.
  • a stream of natural gas 1 is introduced into the main exchanger 2 of a unit 3 for liquefying natural gas to be liquefied.
  • a stream 20 of liquid natural gas is extracted from the liquefaction unit 3.
  • a cooling stream circulates in a closed cycle in this heat exchanger 2 to provide the cold necessary to liquefy said stream 1 of natural gas.
  • the present figure describes a liquefaction cycle using nitrogen.
  • liquefaction cycles of natural gas can be implemented, for example a reverse Brayton cycle (in particular fed with nitrogen) but it can also be used on the NG cycle itself) or a cycle based on one or more mixed refrigerants.
  • an air separation unit (ASU) 4 containing at least one so-called high pressure column 6 and a so-called low pressure column 5 produces a gas stream 7 of nitrogen.
  • This nitrogen stream 7 is introduced into the system 8 for producing frigories of the liquefaction unit 3 via a compressor 9.
  • the nitrogen stream is introduced into at least one supercharger 10 in series of the compressor.
  • At least a portion of the flow from this at least one booster 10 is connected to at least one turbine 1 1, a turbinel 1 connected to a booster 10 forming what is called herein a turbine / booster system.
  • the stream of nitrogen is introduced into the main heat exchanger 2 in order to be cooled in parallel with the stream 1 of liquefied natural gas in this exchanger 2.
  • Part 12 of the gaseous stream thus cooled is extracted. of the exchanger 2 at an intermediate level 13 to be introduced into the turbine 1 1 connected to the booster 10 from which the gas stream previously introduced into the exchanger 2 is fed.
  • the flow of Nitrogen is again introduced into the heat exchanger 2 at its coldest end (that is, an inlet 14 whose temperature level is the lowest of the temperature levels of the exchanger 2).
  • the stream of nitrogen thus introduced into the exchanger is then reheated to the outlet 15 of the exchanger 2 whose temperature level is the highest, then is sent to the compressor 9 to follow the same path as the current 7.
  • the other portion 16 of the nitrogen stream at the outlet of the booster 10 introduced into the heat exchanger 2, which is not extracted at the intermediate level 13, is liquefied in parallel with the stream 1 of natural gas.
  • a stream 17 of liquid nitrogen is separated into at least two streams 18 and 19.
  • the stream 18 of liquid nitrogen is recycled to the air separation unit 4 by being introduced at the top of the lower column. pressure 5 of the unit 4.
  • the flow of liquid nitrogen 19 is intended for production.
  • a variant of the process according to the invention consists in introducing at least a part 7 'of the stream of nitrogen gas 7 extracted from the air separation unit 4 directly into the main heat exchanger 2 in order to be liquefied in parallel of the stream 1 of natural gas and to be extracted in liquid form at an outlet 21 of the exchanger whose temperature level is the lowest and thus join the flow 19 for production.

Abstract

Procédé de production de gaz naturel liquéfié et d'un courant d'azote liquide comprenant au moins les étapes suivantes: Étape a): production d'azote gazeux par une unité de séparation d'air(ASU); Étape b): liquéfaction d'un courant de gaz naturel dans une unité de liquéfaction de gaz naturel comprenant un échangeur de chaleur principal et un système de production de frigories; Étape c): liquéfaction du courant d'azote issu de l'étape a) dans ledit échangeur principal de l'unité de liquéfaction de gaz naturel en parallèle du gaz naturel liquéfié à l'étape b); caractérisé en ce que tout le froid nécessaire à la liquéfaction du courant d'azote et à la liquéfaction du gaz naturel est fourni par ledit système de production de frigories de l'unité de liquéfaction de gaz naturel.

Description

Procédé de liquéfaction de gaz naturel et d'azote
La présente invention concerne un procédé de liquéfaction d'un courant d'hydrocarbures tel que le gaz naturel en particulier dans un procédé pour la production de gaz naturel liquéfié et d'un courant d'azote liquide. Sur des usines de liquéfaction de gaz naturel typiques utilisant un cycle de réfrigérant mixte, des courants réfrigérants sont utilisés pour produire le froid à différents niveaux d'un échangeur de chaleur principal en se vaporisant contre le courant d'hydrocarbures à liquéfier (typiquement le gaz naturel).
La présente invention est particulièrement bien adaptée sur un site où une unité de séparation d'air (ASU) et une unité de liquéfaction de gaz naturel sont présentes.
II est souhaitable de liquéfier le gaz naturel pour un certain nombre de raisons. A titre d'exemple, le gaz naturel peut être stocké et transporté sur de longues distances plus facilement à l'état liquide que sous forme gazeuse, car il occupe un volume plus petit pour une masse donnée et n'a pas besoin d'être stocké à une pression élevée.
II est connu de l'état de la technique, en particulier de la demande de brevet
EP 1435497, de combiner thermiquement une unité de séparation d'air avec une unité de liquéfaction de gaz naturel dans laquelle le froid nécessaire pour la liquéfaction du gaz naturel est produit par l'unité de séparation d'air par l'intermédiaire d'azote liquide.
L'inconvénient d'un tel système est qu'en général, la quantité d'azote liquide produit par l'unité de séparation d'air n'est pas suffisante pour éviter d'avoir à investir dans un système de production de frigories (turbo machinerie par exemple) pour l'unité de liquéfaction de gaz naturel.
Par ailleurs, la liquéfaction de gaz naturel par azote liquide est beaucoup moins efficace énergiquement que l'emploi de cycles de réfrigération tels que le cycle Azote, basé sur le principe du cycle de Brayton inverse, ou un cycle utilisant des réfrigérants mixtes, basé sur la vaporisation de différents courants d'hydrocarbures à différents niveaux dans l'échangeur de liquéfaction Les inventeurs de la présente invention ont alors mis au point une solution permettant de résoudre le problème soulevé ci-dessus, à savoir minimiser l'investissement dans un système de production de frigories dans l'unité de séparation d'air et donc d'optimiser les dépenses d'investissement tout en gardant une efficacité optimale pour la liquéfaction du gaz naturel dans l'unité de liquéfaction.
La présente invention a pour objet un procédé de production de gaz naturel liquéfié et d'un courant d'azote liquide comprenant au moins les étapes suivantes :
Etape a) : production d'azote gazeux par une unité de séparation d'air (ASU);
Etape b) : liquéfaction d'un courant de gaz naturel dans une unité de liquéfaction de gaz naturel comprenant un échangeur de chaleur principal et un système de production de frigories ;
Etape c) : liquéfaction du courant d'azote issu de l'étape a) dans ledit échangeur principal de l'unité de liquéfaction de gaz naturel en parallèle du gaz naturel liquéfié à l'étape b);
caractérisé en ce que tout le froid nécessaire à la liquéfaction du courant d'azote et à la liquéfaction du gaz naturel est fourni par ledit système de production de frigories de l'unité de liquéfaction de gaz naturel.
Selon d'autres modes de réalisation, l'invention a aussi pour objet :
Un procédé tel que décrit précédemment, caractérisé en ce que l'unité de séparation d'air comprend au moins une colonne dite haute pression et au moins une colonne dite basse pression, l'azote gazeux produit à l'étape a) étant produit en tête de colonne basse pression.
Un procédé tel que décrit précédemment, caractérisé en ce qu'une partie de l'azote liquéfié issu de l'étape c) est recyclée dans l'unité de séparation d'air au niveau de la tête de la colonne basse pression.
Un procédé tel que décrit précédemment, caractérisé en ce que ledit système de production de frigories comprend au moins un compresseur et au moins un système turbine-surpresseur.
Un procédé tel que décrit précédemment, caractérisé en ce que l'unité de liquéfaction comprend un cycle de réfrigération alimenté par un courant réfrigérant contenant au moins un des constituants choisis parmi l'azote, le méthane, l'éthylène, l'éthane, le butane et le pentane. La présente invention a aussi pour objet un dispositif de production de gaz naturel liquéfié et d'azote liquide comprenant une unité de séparation d'air produisant au moins un courant gazeux d'azote et une unité de liquéfaction de gaz naturel, ladite unité de liquéfaction de gaz naturel comprenant au moins un échangeur de chaleur principal et un système de production de frigories caractérisé en ce que le système de production de frigories est apte à et conçu pour liquéfier à la fois le courant d'azote issu de l'unité de séparation d'air et le courant de gaz naturel circulant dans l'unité de liquéfaction de gaz naturel.
Selon un mode particulier, l'invention a pour objet un dispositif tel que décrit précédemment, caractérisé en ce que ledit système de production de frigories comprend au moins un compresseur et au moins un système turbine-surpresseur.
L'objet de la présente invention est de coupler thermiquement une unité de liquéfaction d'un gaz riche en hydrocarbures, typiquement du gaz naturel, avec une unité de séparation d'air (ASU).
Par couplage thermique on entend mise en commun des moyens de production de frigories pour assurer le bilan thermique des deux unités, typiquement compresseur d'air, compresseur de cycle de réfrigération, et éventuellement un système turbine/surpresseur.
Par système turbine/surpresseur on entend une turbine mécaniquement couplée (via un arbre commun) à un compresseur mono-étagé. La puissance générée à travers la turbine étant directement transmise au compresseur mono- étagé.
Le besoin frigorifique d'une unité de liquéfaction de gaz naturel étant généralement plus important que le besoin frigorifique d'une unité de séparation d'air, il est pertinent de profiter des machines (compresseurs et/ou turbine/surpresseurs) de l'unité de liquéfaction de gaz naturel pour assurer au moins partiellement le besoin frigorifique de l'unité de séparation d'air et notamment limiter l'investissement en machinerie de l'ASU.
En particulier, l'investissement incrémental pour augmenter la capacité de liquéfaction d'un liquéfacteur d'hydrocarbures est bien inférieur à l'investissement incrémental pour augmenter la capacité de production liquide d'une unité de séparation d'air. L'invention s'applique particulièrement à une unité de séparation d'air produisant un ou plusieurs courants gazeux, dont au moins un courant d'azote gazeux.
Ce courant d'azote gazeux est envoyé dans l'échangeur principal de l'unité de liquéfaction de gaz naturel et s'y liquéfie en parallèle du courant de gaz naturel. Le froid nécessaire à la liquéfaction de ce courant d'azote gazeux est fourni par les moyens de production de frigories du cycle de liquéfaction de gaz naturel lui- même, typiquement le compresseur de cycle avec éventuellement des turbine/surpresseurs.
Le courant d'azote gazeux pourra éventuellement être comprimé avant d'être envoyé dans l'unité de liquéfaction du gaz naturel pour faciliter sa liquéfaction.
Une fois liquéfié, le courant d'azote est au moins partiellement renvoyé dans l'unité de séparation d'air, typiquement en tête d'une colonne basse pression, pour y assurer le bilan frigorifique.
Un des avantages de cette solution est de profiter de la capacité frigorifique du liquéfacteur de gaz naturel pour augmenter le rendement en oxygène et en argon de l'ASU tout en limitant son investissement. Cette solution permet également à une ASU ne produisant dans sa configuration initiale presque que des courants gazeux et très peu de liquides de produire des courants liquides en plus grande quantité tout en limitant le surinvestissement.
Dans le cas particulier d'un cycle de liquéfaction de gaz naturel à l'azote, dont la production de frigories est assurée par une compresseur de cycle ainsi que par au moins un système turbine/surpresseur, le courant d'azote gazeux issu de l'ASU sera préférentiellement introduit en amont du compresseur de cycle pour y être ainsi comprimé avant d'être liquéfié dans l'échangeur principal de l'unité de liquéfaction du gaz naturel.
Bien que le procédé selon la présente invention soit applicable à divers courants d'alimentation d'hydrocarbures, il est particulièrement adapté pour des courants de gaz naturel à liquéfier. En outre l'homme de l'art comprendra aisément que, après liquéfaction, le gaz naturel liquéfié peut être davantage traité, si désiré. A titre d'exemple, le gaz naturel liquéfié obtenu peut être dépressurisé au moyen d'une vanne de Joule-Thomson ou par l'intermédiaire d'une turbine. En outre, d'autres étapes de traitement intermédiaires entre la séparation gaz/liquide et le refroidissement peuvent être réalisées. Le courant d'hydrocarbures à liquéfier est généralement un flux de gaz naturel obtenu à partir de champs de gaz naturel ou des réservoirs de pétrole. Comme alternative, le flux de gaz naturel peut également être obtenu d'une autre source, comprenant également une source synthétique telle qu'un procédé de Fischer-Tropsch.
Habituellement, le flux de gaz naturel est composé essentiellement de méthane. De préférence, le courant d'alimentation comprend au moins 60% mol de méthane, de préférence au moins 80% mol de méthane. En fonction de la source, le gaz naturel peut contenir des quantités d'hydrocarbures plus lourds que le méthane, tels que l'éthane, le propane, le butane et le pentane ainsi que certains hydrocarbures aromatiques. Le flux de gaz naturel peut également contenir des produits non-hydrocarbures tels que H2O, N2, CO2, H2S et d'autres composés soufrés, et autres.
Le flux d'alimentation contenant le gaz naturel peut être prétraité avant d'être l'introduit dans l'échangeur de chaleur. Ce prétraitement peut comprendre la réduction et/ou l'élimination des composants indésirables tels que le CO2 et le H2S, ou d'autres étapes telles que le pré-refroidissement et/ou la mise sous pression. Etant donné que ces mesures sont bien connues de l'homme de l'art, elles ne sont pas davantage détaillées ici.
L'expression "gaz naturel" telle qu'utilisée dans la présente demande se rapporte à toute composition contenant des hydrocarbures dont au moins du méthane. Cela comprend une composition « brute » (préalablement à tout traitement tel que nettoyage ou lavage), ainsi que toute composition ayant été partiellement, substantiellement ou entièrement traitée pour la réduction et/ou élimination d'un ou plusieurs composés, y compris, mais sans s'y limiter, le soufre, le dioxyde de carbone, l'eau, et les hydrocarbures ayant deux atomes de carbone ou plus.
L'échangeur de chaleur peut être toute colonne, une unité ou autre agencement adapté pour permettre le passage d'un certain nombre de flux, et ainsi permettre un échange de chaleur direct ou indirect entre une ou plusieurs lignes de fluide réfrigérant, et un ou plusieurs flux d'alimentation. L'invention sera décrite de manière plus détaillée en se référant à la figure qui illustre le schéma d'un mode de réalisation particulier d'une mise en œuvre d'un procédé selon l'invention.
Sur la figure, un flux de gaz naturel 1 est introduit dans l'échangeur principal 2 d'une unité 3 de liquéfaction de gaz naturel afin d'être liquéfié. Un courant 20 de gaz naturel liquide est extrait de l'unité de liquéfaction 3. Un courant réfrigérant circule en cycle fermé dans cet échangeur de chaleur 2 afin d'apporter le froid nécessaire pour liquéfier ledit courant 1 de gaz naturel.
En particulier, la présente figure décrit un cycle de liquéfaction utilisant de l'azote.
Néanmoins, d'autres types de cycles de liquéfaction de gaz nature! peuvent être mis en œuvre, par exemple un cycle de Brayton inverse (notamment alimenté à l'azote) mais on peut aussi utiliser au cycle au NG lui même) ou un cycle basé sur un ou plusieurs réfrigérants mixtes.
Sur le même site, une unité de séparation d'air (ASU) 4 contenant au moins une colonne dite haute pression 6 et une colonne dite basse pression 5 produit un courant gazeux 7 d'azote. Ce courant 7 d'azote est introduit dans le système 8 de production de frigories de l'unité de liquéfaction 3 via un compresseur 9. En sortie du compresseur, le courant d'azote est introduit dans au moins un surpresseur 10 en série du compresseur 9. Au moins une partie du débit issu de ce au moins un surpresseur 10 est relié à un moins une turbine 1 1 , une turbinel 1 liée à un surpresseur 10 formant ce qui est nommé dans la présente demande un système turbine/surpresseur. En sortie de surpresseur 10, le courant d'azote est introduit dans l'échangeur de chaleur principal 2 afin d'être refroidi en parallèle du flux 1 de gaz naturel liquéfié dans cet échangeur 2. Une partie 12 du courant gazeux ainsi refroidi est extraite de l'échangeur 2 à un niveau intermédiaire 13 afin d'être introduite dans la turbine 1 1 reliée au surpresseur 10 dont est issu le courant gazeux préalablement introduit dans l'échangeur 2. En sortie de la turbine 1 1 , le courant d'azote est à nouveau introduit dans l'échangeur de chaleur 2 à son extrémité la plus froide (c'est à dire une entrée 14 dont le niveau de température est le plus faible des niveaux de température de l'échangeur 2). Le courant d'azote ainsi introduit dans l'échangeur est alors réchauffé jusqu'à la sortie 15 de l'échangeur 2 dont le niveau de température est le plus élevé, puis est envoyé vers le compresseur 9 afin de suivre le même chemin que le courant 7. L'autre partie 16 du courant d'azote en sortie de surpresseur 10 introduite dans l'échangeur de chaleur 2, qui n'est pas extraite au niveau intermédiaire 13, est liquéfiée en parallèle du flux 1 de gaz naturel. Une fois liquéfié, un courant 17 d'azote liquide est séparé en au moins deux flux 18 et 19. Le flux 18 d'azote liquide est recyclé dans l'unité de séparation d'air 4 en étant introduit en tête de la colonne basse pression 5 de l'unité 4. Le flux d'azote liquide 19 est lui destiné à la production.
Une variante du procédé selon l'invention consiste à introduire au moins une partie 7' du courant d'azote gazeux 7 extrait de l'unité de séparation d'air 4 directement dans l'échangeur de chaleur principal 2 afin d'être liquéfiée en parallèle du flux 1 de gaz naturel et d'être extraite sous forme liquide à une sortie 21 de l'échangeur dont le niveau de température est le plus faible et ainsi rejoindre le flux 19 destiné à la production.

Claims

REVENDICATIONS
1 . Procédé de production de gaz naturel liquéfié et d'un courant d'azote liquide comprenant au moins les étapes suivantes :
Etape a) : production d'azote gazeux (7) par une unité (4) de séparation d'air (ASU);
Etape b) : liquéfaction d'un courant (1 ) de gaz naturel dans une unité (3) de liquéfaction de gaz naturel comprenant un échangeur (2) de chaleur principal et un système (8) de production de frigories ;
Etape c) : liquéfaction du courant (7) d'azote issu de l'étape a) dans ledit échangeur principal (2) de l'unité (3) de liquéfaction de gaz naturel en parallèle du gaz naturel liquéfié (20) à l'étape b);
caractérisé en ce que tout le froid nécessaire à la liquéfaction du courant d'azote et à la liquéfaction du gaz naturel est fourni par ledit système (8) de production de frigories de l'unité (3) de liquéfaction de gaz naturel.
2. Procédé selon la revendication précédente caractérisé en ce que l'unité (4) de séparation d'air comprend au moins une colonne (6) dite haute pression et au moins une colonne (5) dite basse pression, l'azote gazeux produit à l'étape a) étant produit en tête de colonne (5) basse pression.
3. Procédé selon la revendication précédente, caractérisé en ce qu'une partie de l'azote liquéfié issu de l'étape c) est recyclée dans l'unité (4) de séparation d'air au niveau de la tête de la colonne (5) basse pression.
4. Procédé selon l'une des revendications précédentes, caractérisé en ce que ledit système (8) de production de frigories comprend au moins un compresseur (9) et au moins un système turbine-surpresseur (10, 1 1 ).
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'unité (3) de liquéfaction comprend un cycle de réfrigération alimenté par un courant réfrigérant contenant au moins un des constituants choisis parmi l'azote, le méthane, l'éthylène, l'éthane, le butane et le pentane.
6. Dispositif de production de gaz naturel liquéfié et d'azote liquide comprenant une unité (4) de séparation d'air produisant au moins un courant (7) gazeux d'azote et une unité (3) de liquéfaction de gaz naturel, ladite unité (3) de liquéfaction de gaz naturel comprenant au moins un échangeur (2) de chaleur principal et un système (8) de production de frigories caractérisé en ce que le système (8) de production de frigories est apte à et conçu pour liquéfier à la fois le courant d'azote (7) issu de l'unité de séparation (4) d'air et le courant (1 ) de gaz naturel circulant dans l'unité (3) de liquéfaction de gaz naturel.
7. Dispositif selon la revendication précédente, caractérisé en ce que ledit système (8) de production de frigories comprend au moins un compresseur (9) et au moins un système turbine-surpresseur (10, 1 1 ).
PCT/FR2016/052888 2015-12-07 2016-11-08 Procédé de liquéfaction de gaz naturel et d'azote WO2017098099A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3007571A CA3007571C (fr) 2015-12-07 2016-11-08 Procede de liquefaction de gaz naturel et d'azote
US16/060,077 US10890375B2 (en) 2015-12-07 2016-11-08 Method for liquefying natural gas and nitrogen
EA201891282A EA034091B9 (ru) 2015-12-07 2016-11-08 Способ сжижения природного газа и азота
CN201680077539.4A CN108474613B (zh) 2015-12-07 2016-11-08 用于液化天然气和氮气的方法
EP16809967.9A EP3387352A1 (fr) 2015-12-07 2016-11-08 Procédé de liquéfaction de gaz naturel et d'azote

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1561923 2015-12-07
FR1561923A FR3044747B1 (fr) 2015-12-07 2015-12-07 Procede de liquefaction de gaz naturel et d'azote

Publications (1)

Publication Number Publication Date
WO2017098099A1 true WO2017098099A1 (fr) 2017-06-15

Family

ID=55589968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/052888 WO2017098099A1 (fr) 2015-12-07 2016-11-08 Procédé de liquéfaction de gaz naturel et d'azote

Country Status (7)

Country Link
US (1) US10890375B2 (fr)
EP (1) EP3387352A1 (fr)
CN (1) CN108474613B (fr)
CA (1) CA3007571C (fr)
EA (1) EA034091B9 (fr)
FR (1) FR3044747B1 (fr)
WO (1) WO2017098099A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1435497A2 (fr) 2002-11-01 2004-07-07 L'AIR LIQUIDE, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Installation combinée pour la séparation d'air et la liquéfaction de gaz naturel
US20140352353A1 (en) * 2013-05-28 2014-12-04 Robert S. Wissolik Natural Gas Liquefaction System for Producing LNG and Merchant Gas Products

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8418840D0 (en) * 1984-07-24 1984-08-30 Boc Group Plc Gas refrigeration
US5137558A (en) * 1991-04-26 1992-08-11 Air Products And Chemicals, Inc. Liquefied natural gas refrigeration transfer to a cryogenics air separation unit using high presure nitrogen stream
US5139547A (en) * 1991-04-26 1992-08-18 Air Products And Chemicals, Inc. Production of liquid nitrogen using liquefied natural gas as sole refrigerant
US5231835A (en) * 1992-06-05 1993-08-03 Praxair Technology, Inc. Liquefier process
DE19609489A1 (de) * 1996-03-11 1997-09-18 Linde Ag Verfahren und Vorrichtung zur Verflüssigung eines tiefsiedenden Gases
FR2782154B1 (fr) * 1998-08-06 2000-09-08 Air Liquide Installation combinee d'un appareil de production de fluide de l'air et d'une unite dans laquelle se produit une reaction chimique et procede de mise en oeuvre
US6006545A (en) * 1998-08-14 1999-12-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Liquefier process
CN1095496C (zh) * 1999-10-15 2002-12-04 余庆发 液化天然气的生产方法
US7228715B2 (en) * 2003-12-23 2007-06-12 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process and apparatus
US7552599B2 (en) * 2006-04-05 2009-06-30 Air Products And Chemicals, Inc. Air separation process utilizing refrigeration extracted from LNG for production of liquid oxygen
US7712331B2 (en) * 2006-06-30 2010-05-11 Air Products And Chemicals, Inc. System to increase capacity of LNG-based liquefier in air separation process
CN100441990C (zh) * 2006-08-03 2008-12-10 西安交通大学 利用空分制冷系统的小型天然气液化装置
US8783061B2 (en) * 2007-06-12 2014-07-22 Honeywell International Inc. Apparatus and method for optimizing a natural gas liquefaction train having a nitrogen cooling loop
US8601833B2 (en) * 2007-10-19 2013-12-10 Air Products And Chemicals, Inc. System to cold compress an air stream using natural gas refrigeration
US9714789B2 (en) * 2008-09-10 2017-07-25 Praxair Technology, Inc. Air separation refrigeration supply method
CN101392981B (zh) * 2008-10-21 2011-10-05 杭州杭氧股份有限公司 利用液化天然气冷量获得液氮的方法及装置
US9441877B2 (en) * 2010-03-17 2016-09-13 Chart Inc. Integrated pre-cooled mixed refrigerant system and method
US20130118204A1 (en) * 2010-07-28 2013-05-16 Air Products And Chemicals, Inc. Integrated liquid storage
CN101943512B (zh) * 2010-09-29 2012-08-29 中国海洋石油总公司 一种利用液化天然气冷能的空分方法
FR2973865B1 (fr) * 2011-04-08 2015-11-06 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
FR2990500A1 (fr) * 2012-05-11 2013-11-15 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
EP2713128A1 (fr) * 2012-10-01 2014-04-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Processus pour la séparation de l'air par distillation cryogénique
CN102994184B (zh) * 2012-12-03 2013-10-30 中国石油集团工程设计有限责任公司 一种液化天然气联产液氮的装置及方法
JP6087196B2 (ja) * 2012-12-28 2017-03-01 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 低温圧縮ガスまたは液化ガスの製造装置および製造方法
EP2977431A1 (fr) * 2014-07-24 2016-01-27 Shell Internationale Research Maatschappij B.V. Stabilisateur de condensat d'hydrocarbure et procédé de production d'un flux de condensat d'hydrocarbure stabilisé
WO2016094168A1 (fr) * 2014-12-12 2016-06-16 Dresser-Rand Company Système et procédé pour la liquéfaction de gaz naturel
US10180282B2 (en) * 2015-09-30 2019-01-15 Air Products And Chemicals, Inc. Parallel compression in LNG plants using a positive displacement compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1435497A2 (fr) 2002-11-01 2004-07-07 L'AIR LIQUIDE, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Installation combinée pour la séparation d'air et la liquéfaction de gaz naturel
US20140352353A1 (en) * 2013-05-28 2014-12-04 Robert S. Wissolik Natural Gas Liquefaction System for Producing LNG and Merchant Gas Products

Also Published As

Publication number Publication date
CN108474613A (zh) 2018-08-31
EA201891282A1 (ru) 2018-10-31
CN108474613B (zh) 2020-10-23
EA034091B1 (ru) 2019-12-26
FR3044747B1 (fr) 2019-12-20
EA034091B9 (ru) 2020-01-30
EP3387352A1 (fr) 2018-10-17
CA3007571A1 (fr) 2017-06-15
CA3007571C (fr) 2020-07-21
FR3044747A1 (fr) 2017-06-09
US20180372404A1 (en) 2018-12-27
US10890375B2 (en) 2021-01-12

Similar Documents

Publication Publication Date Title
CA2739696C (fr) Procede de production de courants d'azote liquide et gazeux, d'un courant gazeux riche en helium et d'un courant d'hydrocarbures deazote et installation associee
EP1352203B1 (fr) Procede de refrigeration de gaz liquefie et installation mettant en oeuvre celui-ci
EP1118827B1 (fr) Procédé de liquéfaction partielle d'un fluide contenant des hydrocarbures tel que du gaz naturel
CA2744450A1 (fr) Procede de production d'un courant de gaz naturel liquefie sous-refroidi a partir d'un courant de charge de gaz naturel et installation associee
EP1639062A2 (fr) Procede et installation de production simultanee d un gaz na turel apte a etre liquefie et d une coupe de liquides du gaz naturel.
WO2017081374A1 (fr) Méthode pour optimiser la liquéfaction de gaz naturel
WO2009153427A2 (fr) Procede de liquefaction d'un gaz naturel avec pre-refroidissement du melange refrigerant
WO2019122654A1 (fr) Procédé de production d'azote pur à partir d'un courant de gaz naturel contenant de l'azote
WO2017098099A1 (fr) Procédé de liquéfaction de gaz naturel et d'azote
WO2005103583A1 (fr) Procede de liquefaction d’un gaz integrant un appareillage de refroidissement thermo-acoustique
EP3252406B1 (fr) Procédé de liquéfaction de dioxyde de carbone issu d'un courant de gaz naturel
FR3052241A1 (fr) Procede de purification de gaz naturel et de liquefaction de dioxyde de carbone
WO2017081375A1 (fr) Procédé de liquéfaction de gaz naturel à l'aide d'un circuit de réfrigération en cycle fermé
WO2017134353A1 (fr) Introduction optimisée d'un courant réfrigérant mixte diphasique dans un procédé de liquéfaction de gaz naturel
FR3048492B1 (fr) Utilisation d’un compresseur centrifuge dans une unite de liquefaction de gaz naturel
WO2018055264A1 (fr) Procédé de purification de gaz naturel à liquéfier
EP3252407A1 (fr) Procédé de liquéfaction de gaz naturel et de dioxyde de carbone
FR3048074B1 (fr) Methode pour eviter l'evaporation instantanee de gaz naturel liquefie en cours de transport.
WO2019122656A1 (fr) Procédé de liquéfaction d'un courant de gaz naturel contenant de l'azote
FR3081047A1 (fr) Procede d’extraction d'azote d'un courant de gaz naturel
FR3082922A1 (fr) Procede de liquefaction de gaz naturel integre a un procede de production de liquides extraits d'un courant d'alimentation de gaz naturel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16809967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3007571

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201891282

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2016809967

Country of ref document: EP