WO2019120186A1 - 一种光学参量振荡器 - Google Patents

一种光学参量振荡器 Download PDF

Info

Publication number
WO2019120186A1
WO2019120186A1 PCT/CN2018/121698 CN2018121698W WO2019120186A1 WO 2019120186 A1 WO2019120186 A1 WO 2019120186A1 CN 2018121698 W CN2018121698 W CN 2018121698W WO 2019120186 A1 WO2019120186 A1 WO 2019120186A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
fundamental
ultrashort pulse
pulse laser
optical
Prior art date
Application number
PCT/CN2018/121698
Other languages
English (en)
French (fr)
Inventor
刘可
彭钦军
薄勇
王小军
宗楠
杨晶
许祖彦
Original Assignee
中国科学院理化技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院理化技术研究所 filed Critical 中国科学院理化技术研究所
Publication of WO2019120186A1 publication Critical patent/WO2019120186A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/113Q-switching using intracavity saturable absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/1083Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using parametric generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/235Regenerative amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • H01S3/0637Integrated lateral waveguide, e.g. the active waveguide is integrated on a substrate made by Si on insulator technology (Si/SiO2)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08054Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094096Multi-wavelength pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • H01S3/1115Passive mode locking using intracavity saturable absorbers
    • H01S3/1118Semiconductor saturable absorbers, e.g. semiconductor saturable absorber mirrors [SESAMs]; Solid-state saturable absorbers, e.g. carbon nanotube [CNT] based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/127Plural Q-switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1312Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1671Solid materials characterised by a crystal matrix vanadate, niobate, tantalate
    • H01S3/1673YVO4 [YVO]

Definitions

  • the present disclosure relates to the field of laser frequency conversion and, more particularly, to an optical parametric oscillator.
  • High-energy ultrashort pulse lasers such as picosecond or femtosecond pulsed lasers
  • the method of obtaining high-energy ultrashort pulse laser is obtained by laser mode-locking method, and the ultrashort pulse laser energy is improved by traveling wave amplification or regenerative amplification.
  • the laser emission level is discrete, only a few bands of ultrashort pulse laser can be obtained directly from the laser emitter.
  • an ultrashort pulse laser of 1064 nm and 1342 nm can be obtained from a Nd:YVO 4 laser
  • an ultrashort pulse laser of 2.1 ⁇ m can be obtained from a Ho:YAG laser.
  • ultra-short pulse laser frequency conversion can be realized by means of optical parametric frequency conversion or Raman frequency shifting.
  • Optical parametric frequency conversion includes Optical Parametric Generation (OPG), Optical Parametric Amplification (OPA), and Optical Parametric Oscillation (OPO).
  • OPG Optical Parametric Generation
  • OPA Optical Parametric Amplification
  • OPO Optical Parametric Oscillation
  • the OPG method has high threshold and low efficiency, and the resulting variable frequency laser has a wide spectrum and poor beam quality.
  • the OPA method is to inject a low-power signal laser on the basis of OPG, although the OPG method can improve the spectral width and poor beam quality.
  • the additional required seed laser adds cost and complexity.
  • the OPO method has low threshold, high efficiency, narrow spectrum, good beam quality, tunable and compact structure, and is an ideal ultra-short pulse laser frequency conversion method.
  • the femtosecond or picosecond ultrashort pulse laser has a short duration, it is necessary to use a synchronous pumping method to achieve optical parametric oscillation. This method usually requires the OPO cavity length to be equal to the pump laser pulse interval to meet the synchronous pumping conditions.
  • this method is usually used for ultrashort pulse laser frequency conversion with a repetition frequency of about 100 MHz, and the corresponding cavity length is 1.5 m.
  • the higher the repetition frequency the smaller the single pulse energy. Therefore, the current ultra-short pulse laser energy obtained by the conventional synchronous pump OPO method is only on the order of nanojoules.
  • methods for reducing the pulse repetition frequency are often used, such as the Optics Express (Opt. Express 25, 8840), a well-known optical journal in 2017, which uses a repetition rate of 7.09 MHz.
  • the 1 ⁇ m fundamental laser is used as pump light to realize a 0.3 ⁇ sub-optical parametric oscillatory laser output.
  • the present disclosure provides an optical parametric oscillator that overcomes the above problems or at least partially solves the above problems, and solves the problem of increasing the pulse energy in the prior art and failing to achieve high-energy ultrashort pulse optical parametric oscillation output.
  • an optical parametric oscillator including a fundamental frequency ultrashort pulse laser, a fundamental frequency regenerative amplifier, and an optical parametric oscillating cavity;
  • the fundamental frequency ultrashort pulse laser is used to generate a fundamental frequency ultrashort pulse laser
  • the fundamental frequency regenerative amplifier comprises a first fundamental frequency light mirror, a second fundamental frequency light mirror, a fundamental frequency light polarizer, and a fundamental frequency light Q switch;
  • the first fundamental light mirror and the second fundamental light mirror are oppositely disposed to form a regeneration cavity; the fundamental frequency light polarizer and the fundamental frequency light Q switch are combined for receiving the fundamental frequency ultrashort pulse And the laser and the fundamental ultrashort pulse laser are locked in the regeneration cavity, so that the fundamental frequency ultrashort pulse laser oscillates in the regeneration cavity along the optical axis of the regeneration cavity;
  • variable frequency medium and at least one beam splitter are disposed on the optical axis of the regeneration chamber, and the variable frequency medium is configured to receive a fundamental frequency ultrashort pulse laser and generate a variable frequency ultrashort pulse laser, receive the variable frequency ultrashort pulse laser and amplify;
  • a beam splitter is used to split and transmit the variable frequency ultrashort pulse laser to the optical parametric oscillating cavity to oscillate the variable frequency ultrashort pulse laser in the optical parametric oscillating cavity.
  • the beam splitter includes a first beam splitter and a second beam splitter, and the first beam splitter splits and transmits the variable frequency ultrashort pulse laser light, and the first variable frequency light mirror is disposed on the optical path.
  • a second frequency conversion light mirror is disposed on the optical path of the dichroic mirror splitting and transmitting the variable frequency ultrashort pulse laser, and the first frequency conversion light mirror, the first beam splitter mirror, the second beam splitter mirror, and the second frequency conversion light mirror mirror body The optical parametric oscillatory cavity.
  • the first fundamental-frequency light mirror is further plated with a variable-frequency high-reflection film
  • the beam splitter is further provided with a variable-frequency light mirror on the optical path of splitting and transmitting the variable-frequency ultrashort pulse laser.
  • the first fundamental light mirror, the beam splitter, and the variable frequency light mirror constitute the optical parametric oscillation cavity.
  • the first fundamental light mirror and the second fundamental light mirror have a reflectivity of more than 90% for the fundamental frequency ultrashort pulse laser; the first variable frequency light mirror, the second The conversion efficiency of the variable frequency light mirror to the variable frequency ultrashort pulse laser is greater than 50%.
  • the optical path of the variable frequency ultrashort pulse laser in the optical parametric oscillation cavity is 1/n of the optical path of the fundamental frequency ultrashort pulse laser in the regeneration cavity. , where n is a positive integer.
  • a laser gain medium is provided between the first fundamental light mirror and the second fundamental light mirror for amplifying a fundamental frequency ultrashort pulse laser in the regeneration cavity.
  • the baseband optical Q switch is coupled to a baseband Q switch drive; the baseband Q switch drive is configured to provide a drive voltage for the baseband optical Q switch to be retransmitted from 1 Hz to 1 MHz.
  • the optical parametric oscillating cavity is further provided with a variable frequency optical Q switch and a variable frequency optical polarizer for deriving the variable frequency ultrashort pulse laser light from the variable frequency optical polarizer.
  • variable frequency medium is in KTiOPO 4 , RbTiOAsO 4 , KTiOAsO 4 , LiNbO 3 , LiInS 2 , LiGaSe 2 , BaGa 4 S 7 , BaGa 4 Se 7 , BBO, PPLN, SiC nonlinear optical crystals.
  • the fundamental frequency ultrashort pulse laser is a mode-locked laser, a passive Q-switched laser, or a semiconductor laser.
  • the present disclosure proposes an optical parametric oscillator in which an optical parametric oscillator is inserted through a dichroic mirror in a regenerative amplifier cavity of a fundamental frequency ultrashort pulse, as long as the optical parametric oscillator reciprocates a one-week optical path and a fundamental frequency ultrashort pulse regenerative amplifier.
  • the equal-equal or optical parametric oscillator round-trip optical path is one of the integer fractions of the fundamental frequency ultrashort pulse regenerative amplifier round-trip optical path, and the synchronous pumping condition can be realized, regardless of the repetition frequency of the fundamental frequency optical regenerative amplifier. Achieve high-energy ultrashort pulse optical parametric oscillatory output.
  • FIG. 1 is a schematic structural view of an optical parametric oscillator according to Embodiment 1 of the present disclosure
  • FIG. 2 is a schematic structural view of an optical parametric oscillator according to Embodiment 2 of the present disclosure
  • FIG. 3 is a schematic structural view of an optical parametric oscillator according to Embodiment 3 of the present disclosure.
  • an optical parametric oscillator including a fundamental frequency ultrashort pulse laser, a fundamental frequency regenerative amplifier, and an optical parametric oscillating cavity;
  • the fundamental frequency ultrashort pulse laser is used to generate a fundamental frequency ultrashort pulse laser
  • the fundamental frequency regenerative amplifier comprises a first fundamental frequency light mirror, a second fundamental frequency light mirror, a fundamental frequency light polarizer, and a fundamental frequency light Q switch;
  • the first fundamental light mirror and the second fundamental light mirror are oppositely disposed to form a regeneration cavity; the fundamental frequency light polarizer and the fundamental frequency light Q switch are combined for receiving the fundamental frequency ultrashort pulse And the laser and the fundamental ultrashort pulse laser are locked in the regeneration cavity, so that the fundamental frequency ultrashort pulse laser oscillates in the regeneration cavity along the optical axis of the regeneration cavity;
  • variable frequency medium and at least one beam splitter are disposed on the optical axis of the regeneration chamber, and the variable frequency medium is configured to receive a fundamental frequency ultrashort pulse laser and generate a variable frequency ultrashort pulse laser, receive the variable frequency ultrashort pulse laser and amplify;
  • a beam splitter is used to split and transmit the variable frequency ultrashort pulse laser to the optical parametric oscillating cavity to oscillate the variable frequency ultrashort pulse laser in the optical parametric oscillating cavity.
  • the optical path of the variable frequency ultrashort pulse laser to and from the optical parametric oscillator is 1/n of the optical path of the fundamental frequency ultrashort pulse laser in the oscillation cavity.
  • FIG. 1 a schematic diagram of a high energy ultrashort pulse optical parametric oscillator is shown.
  • the invention comprises a fundamental frequency ultrashort pulse laser 1, a fundamental frequency regenerative amplifier, a first fundamental frequency light mirror 2, a second fundamental frequency light mirror 3, a fundamental frequency light polarizer 4, a fundamental frequency light Q switch 5, a frequency conversion medium 11, The first beam splitter 7, the second beam splitter 8, the first variable frequency light mirror 9, the second variable frequency light mirror 10, and the laser gain medium 12.
  • the fundamental frequency ultrashort pulse laser 1 is a semiconductor saturable absorption mirror (SESAM) passive mode-locked Nd:YVO 4 picosecond laser with a pulse repetition frequency of 80 MHz, a single pulse energy of 10 nJ, a pulse width of 10 ps, and a wavelength of 1064 nm.
  • SESAM semiconductor saturable absorption mirror
  • the fundamental frequency regenerative amplifier is composed of a first fundamental frequency light mirror 2, a second fundamental frequency light mirror 3, a fundamental frequency light polarizer 4, a fundamental frequency light Q switch 5, and a laser gain medium 12, and has an optical length of 1.5 m. , that is, the optical length of the regeneration cavity is 1.5m; the first fundamental-frequency light mirror 2 and the second fundamental-frequency light mirror 3 are made of quartz, and the laser reflectance of the wavelength of 1064 nm is greater than 99% by the dielectric film.
  • the fundamental frequency optical Q switch 5 is BBO electro-optical Q-opening, and the fundamental frequency Q-switch drive 6 provides a driving voltage of a re-frequency of 10 kHz to realize a fundamental frequency ultrashort pulse laser injection baseband regenerative amplifier;
  • the fundamental frequency optical polarizer 4 is The film polarizing plate 12;
  • the laser gain medium 12 is Nd:YVO 4 , the first beam splitter mirror 7 and the second beam splitter 8 substrate are quartz, and the laser transmittance to the 1064 nm wavelength is greater than 98% by the plated dielectric film, and is 1.5 ⁇ m.
  • the wavelength laser reflectance is greater than 99%, so that the 1064 nm fundamental laser can be separated from the 1.5 ⁇ m variable frequency laser.
  • the variable frequency light reflecting mirror 5 has a laser reflectance of 80% for a 1.5 ⁇ m wavelength
  • the first variable frequency light reflecting mirror 9, the second variable frequency light reflecting mirror 10, the first beam splitting mirror 7, and the second beam splitting mirror 8 constitute an optical
  • the parametric oscillating cavity, the optical length of the optical parametric oscillating cavity is also 1.5m, which is equal to the optical length of the regenerative amplifier cavity
  • Cutting disposed at a portion of the regeneration cavity that coincides with an optical axis of the optical parametric oscillation cavity.
  • the small-energy fundamental-frequency ultrashort pulse laser generated by the fundamental-frequency ultrashort pulse laser 1 is injected through a combination of a fundamental-frequency optical polarizer 4 and a fundamental-frequency optical Q-switch 5 and locked in a regeneration cavity, thereby regenerating the amplifier at the fundamental frequency In the middle and the round, each time the laser gain medium 12 is passed twice, the pulse energy is amplified, and the total amplification can be 10 3 to 10 6 times.
  • the fundamental frequency ultrashort pulse laser amplified in the regenerative cavity of the fundamental frequency regenerative amplifier also passes through the variable frequency medium 11.
  • the 1.5 ⁇ m wavelength-converted ultrashort pulse laser is generated by the optical parametric effect, and the feedback is in the optical parametric oscillation cavity. oscillation. Since the optical length of the optical parametric oscillating cavity is equal to the optical length of the fundamental frequency regenerative amplifier, the 1.5 ⁇ m variable frequency ultrashort pulse laser is sequentially used by the first frequency conversion light mirror 9, the second beam splitter 8, the first beam splitter 7, and the second frequency conversion light.
  • the fundamental frequency ultrashort pulse laser of 1064 nm also reaches the frequency conversion medium 11 again, so the 1.5 ⁇ m variable frequency ultrashort pulse laser is in the 1064 nm fundamental frequency ultrashort pulse laser pump.
  • Puxia got zoomed in.
  • the above process is repeated until the 1.5 ⁇ m variable frequency ultrashort pulse laser reaches a maximum value, and an effective 1.5 ⁇ m variable frequency ultrashort pulse laser is obtained from a partially transmitted laser light of the second variable frequency light reflecting mirror 10, and outputs a high energy 1.5 ⁇ m pulsed laser.
  • the pulse envelope has the same repetition rate of 10 kHz as the fundamental frequency regenerative amplifier.
  • FIG. 2 a schematic structural diagram of a high energy ultrashort pulse optical parametric oscillator is shown.
  • the variable frequency optical polarizer 13, the variable frequency optical Q switch 14 and the driver 15 are added on the basis of FIG. 1; the first fundamental light reflecting mirror 2 and the first variable frequency light reflecting mirror 9 are combined into the same piece by plating double high reflective film.
  • the mirror, that is, the mirror is both the first fundamental light mirror 2 and the first variable frequency light mirror 9.
  • the variable frequency optical Q switch 14 is a LIse electro-optic Q switch.
  • the fundamental frequency ultrashort pulse laser 1 is a semiconductor picosecond laser with a pulse repetition frequency of 100 MHz, a single pulse energy of 10 pJ, a pulse width of 30 ps, and a wavelength of 1064 nm.
  • the fundamental frequency regenerative amplifier is composed of a first fundamental frequency light mirror 2, a second fundamental frequency light mirror 3, a fundamental frequency light polarizer 4, a fundamental frequency light Q switch 5, and a laser gain medium 12, and has an optical length of 1.5 m. , that is, the optical length of the regeneration cavity is 1.5m; the substrate of the first fundamental-frequency light mirror 2 is quartz, and the laser reflectance of the wavelengths of 1064 nm and 3.5 ⁇ m is greater than 99% by the plated dielectric film, so it is also the first a frequency conversion light mirror 9; the second fundamental frequency light mirror 3 substrate material is quartz, the laser reflectance of the wavelength of 1064 nm is greater than 99% by the plated dielectric film; the fundamental frequency light Q switch 5 is BBO electro-optic Q light, by The fundamental frequency Q switch driver 6 provides a driving voltage of a repetitive frequency of 100 kHz to realize the injection of a fundamental frequency regenerative amplifier baseband ultrashort pulse laser; the fundamental frequency optical polarizer 4 is a thin film polarizing plate
  • the first variable frequency light reflecting mirror 9, the first beam splitting mirror 7, and the second variable frequency light reflecting mirror 10 constitute an optical parametric oscillating cavity
  • the optical parametric oscillating cavity has an optical length of 0.75 m, which is equal to the regenerative amplifier.
  • the cavity optical length is 1/2.
  • the small-energy fundamental-frequency ultrashort pulse laser generated by the fundamental-frequency ultrashort pulse laser 1 is injected through a combination of a fundamental-frequency optical polarizer 4 and a fundamental-frequency optical Q-switch 5 and locked in a regeneration cavity, thereby regenerating the amplifier at the fundamental frequency In the middle and the round, each time the laser gain medium 12 is passed twice, the pulse energy is amplified, and the total amplification can be 10 3 to 10 6 times.
  • the fundamental frequency ultrashort pulse laser amplified in the regenerative cavity of the fundamental frequency regenerative amplifier also passes through the variable frequency medium 11.
  • the 3.5 ⁇ m wavelength-converted ultrashort pulse laser is generated by the optical parametric effect, and the feedback is in the optical parametric oscillation cavity. oscillation.
  • the 3.5 ⁇ m variable frequency ultrashort pulse laser is sequentially used by the first variable frequency light mirror 9, the first beam splitter 7, the second frequency conversion mirror 10,
  • the fundamental frequency ultrashort pulse laser of 1064 nm also reaches the variable frequency medium 11 again, so the 3.5 ⁇ m variable frequency ultrashort pulse laser is obtained by 1064 nm fundamental frequency ultrashort pulse laser pumping. amplification. Repeat the above process until the 3.5 ⁇ m variable frequency ultrashort pulse laser reaches the maximum value.
  • variable frequency optical Q switch 14 works, and the 3.5 ⁇ m mid-infrared variable ultrashort pulse laser is poured out from the variable frequency light polarizer 13 to obtain a high energy 3.5 ⁇ m pulsed laser. It has the same repetitive frequency of 100 kHz as the fundamental frequency regenerative amplifier.
  • Figure 3 is a schematic diagram showing the structure of a high-energy ultrashort pulse optical parametric oscillator.
  • the variable frequency medium 11 is replaced by a periodically poled lithium niobate PPLN crystal
  • the fundamental frequency light polarizer 4 and the variable frequency light polarizer 13 are all selected from a polarizing prism;
  • the first fundamental light mirror is coated by coating 2 and the second beam splitter 8 is plated onto the same lens, that is, the lens is both the first fundamental light mirror 2 and the second beam splitter 8.
  • the fundamental frequency ultrashort pulse laser 1 uses a 1030nm SESAM passive mode-locked Yb:YAG fiber femtosecond laser with a pulse repetition frequency of 80MHz, a single pulse energy of 1nJ, a pulse width of 500fs and a wavelength of 1030nm.
  • the laser gain medium 12 in the fundamental frequency regenerative amplifier employs a Yb:YAG disc crystal.
  • the first baseband light mirror 2 substrate material is calcium fluoride, and the laser reflectance of the 1030 nm laser is more than 99% by the plated dielectric film, and the laser transmittance of the 3.9 ⁇ m wavelength is greater than 98%, so the first fundamental frequency light reflection
  • the mirror 2 is also the second beam splitter 8;
  • the second baseband light mirror 3 is made of quartz, and the laser reflectance of the wavelength of 1030 nm is greater than 99% by the dielectric film;
  • the fundamental light Q switch 5 is the RTP electro-optic Q.
  • the fundamental frequency Q switch drive 6 provides a drive voltage of 1 MHz to achieve ultrashort pulse laser injection of the fundamental frequency regenerative amplifier;
  • the fundamental frequency light polarizer 4 is a polarizing prism;
  • the first beam splitter 7 substrate material is quartz, through
  • the plated dielectric film achieves a laser transmittance of greater than 98% for a wavelength of 1030 nm and a reflectance of greater than 99% for a 3.9 ⁇ m variable frequency laser, thereby separating a 1030 nm fundamental frequency laser from a 3.9 ⁇ m variable frequency laser; and a second variable frequency light reflecting mirror 10 to 3.9 ⁇ m.
  • the wavelength conversion laser reflectance is greater than 99%; the first variable frequency light mirror 9, the first beam splitter 7, and the second variable frequency light mirror 10 constitute an optical parametric oscillation cavity, and the optical length is also 1.8m. .
  • the low-frequency fundamental-frequency ultrashort pulse laser output by the fundamental-frequency ultrashort pulse laser is injected and locked in the regeneration cavity by a combination of the fundamental-frequency optical polarizer 4 and the fundamental-frequency optical Q switch 6, thereby regenerating the amplifier at the fundamental frequency
  • the round-trip is amplified and the laser gain medium 12 is applied twice per round trip.
  • the pulse energy is amplified and amplified by a total of 10 3 to 10 6 times.
  • the ultrashort pulse laser amplified in the cavity of the fundamental frequency regenerative amplifier also passes through the variable frequency medium 11, generates a 3.9 ⁇ m variable frequency laser in the PPLN crystal, and feeds back the oscillation in the optical parametric oscillation cavity. Since the optical length of the optical parametric oscillating cavity is the same as the optical length of the fundamental frequency regenerative amplifier, the 3.9 ⁇ m variable frequency ultrashort pulse laser is sequentially reflected by the first variable frequency light mirror 9, the first beam splitter mirror 7, and the second variable frequency light mirror 10 When looping back to the variable frequency medium 11, the 1030 nm fundamental ultrashort pulse laser reaches the variable frequency medium 1 again, so the 3.9 ⁇ m variable frequency ultrashort pulse laser is amplified under the fundamental frequency ultrashort pulse laser pump of 1030 nm.
  • variable frequency optical Q switch 14 works, and the 3.9 ⁇ m mid-infrared variable ultrashort pulse laser is poured out from the variable frequency light polarizer 13 to obtain a high energy 3.9 ⁇ m pulsed laser. It has the same repetitive frequency of 1 MHz as the fundamental frequency regenerative amplifier.
  • the present disclosure proposes an optical parametric oscillator in which an optical parametric oscillator is inserted through a dichroic mirror in a regenerative amplifier cavity of a fundamental frequency ultrashort pulse, as long as the optical parametric oscillator reciprocates a one-week optical path and a fundamental frequency ultrashort pulse regenerative amplifier.
  • the equal-equal or optical parametric oscillator round-trip optical path is one of the integer fractions of the fundamental frequency ultrashort pulse regenerative amplifier round-trip optical path, and the synchronous pumping condition can be realized, regardless of the repetition frequency of the fundamental frequency optical regenerative amplifier. Achieve high-energy ultrashort pulse optical parametric oscillatory output.
  • the laser gain medium 12 of FIG. 2 is removed from the structure of a high energy ultrashort pulse optical parametric oscillator of the present embodiment.
  • the fundamental frequency ultrashort pulse laser 1 directly adopts a lower repetitive high-energy picosecond laser with a repetition rate of 1 kHz, a pulse energy of 10 mJ, a pulse width of 30 ps, and a wavelength of 1064 nm, so that there is no need to set in the fundamental frequency regenerative amplifier.
  • Laser gain medium In the prior art, ultrashort pulse optical parametric oscillation cannot be achieved at such a low repetition frequency, which can be achieved by the method of the present embodiment.
  • the fundamental frequency regenerative amplifier is composed of a first fundamental frequency light mirror 2, a second fundamental frequency light mirror 3, a fundamental frequency light polarizer 4, a fundamental frequency light Q switch 5, and a laser gain medium 12, and has an optical length of 1.5 m. , that is, the optical length of the regeneration cavity is 1.5 m; the substrate material of the first fundamental-frequency light mirror 2 is quartz, and the laser reflectance of the wavelength of 1064 nm and 2.1 ⁇ m is greater than 99% by the plated dielectric film, so it is simultaneously The first frequency conversion light mirror 9; the second fundamental frequency light mirror 3 material is quartz, the laser reflectance of the wavelength of 1064 nm is greater than 99% by the plating medium film; the fundamental frequency light Q switch 5 is KD*P electro-optic Q light opening, The fundamental frequency Q-switch driver 6 provides a driving voltage of 1 kHz to realize the injection of the fundamental frequency ultrashort pulse laser in the fundamental frequency regenerative amplifier; the fundamental frequency light polarizer 4 is a thin film polarizing plate; the
  • the first variable frequency light reflecting mirror 9, the first beam splitting mirror 7, and the second variable frequency light reflecting mirror 10 constitute an optical parametric oscillating cavity, and the optical parametric oscillating cavity has an optical length of 0.75 m, which is equal to the regenerative amplifier.
  • the optical length of the regeneration chamber is half.
  • the fundamental frequency ultrashort pulse laser generated by the fundamental frequency ultrashort pulse laser 1 is injected through a combination of a fundamental frequency light polarizer 4 and a fundamental frequency light Q switch 5 and locked in a regeneration cavity, thereby reciprocating in the fundamental frequency regenerative amplifier .
  • the fundamental frequency ultrashort pulse laser in the regenerative cavity of the fundamental frequency regenerative amplifier also passes through the variable frequency medium 11.
  • the 2.1 ⁇ m wavelength-converted ultrashort pulse laser is generated by the optical parametric effect, and the optical oscillation is feedback oscillation in the optical parametric oscillation cavity. .
  • the 2.1 ⁇ m variable frequency ultrashort pulse laser is sequentially applied by the first variable frequency light mirror 9, the first beam splitter 7, the second frequency conversion mirror 10,
  • the fundamental frequency ultrashort pulse laser of 1064 nm also reaches the variable frequency medium 11 again, so the 2.1 ⁇ m variable frequency ultrashort pulse laser is under the 1064 nm fundamental frequency ultrashort pulse laser round-trip pumping. Amplification is obtained, and the 1064 nm fundamental frequency ultrashort pulse laser energy is consumed.
  • variable frequency optical Q switch 14 works, and the 2.1 ⁇ m mid-infrared variable ultrashort pulse laser is poured out from the variable frequency light polarizer 13 to obtain a high energy 2.1 ⁇ m pulsed laser. It has the same repetition rate of 1 kHz as the fundamental frequency regenerative amplifier.
  • the present disclosure proposes an optical parametric oscillator in which an optical parametric oscillator is inserted through a dichroic mirror in a regenerative amplifier cavity of a fundamental frequency ultrashort pulse, as long as the optical parametric oscillator has a round trip optical path and a fundamental frequency ultrashort pulse.
  • the regenerative amplifier has the same optical path of one round trip or the optical path oscillator has a round-trip optical path, which is one of the integer fractions of the fundamental frequency ultrashort pulse regenerative amplifier, and the synchronous pumping condition can be realized, and the fundamental frequency optical regenerative amplifier can be realized. Independent of the repetition frequency, high-energy ultrashort pulse optical parametric oscillatory output is achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

一种光学参量振荡器,包括基频超短脉冲激光器(1)、基频再生放大器(2);在基频再生放大器(2)再生腔内通过双色分光镜插入光学参量振荡腔,只要变频超短脉冲激光在光学参量振荡腔往返一周光程与基频超短脉冲在基频再生放大器(2)往返一周光程相等,或者变频超短脉冲激光在光学参量振荡腔往返一周光程是基频超短脉冲在基频再生放大器(2)往返一周光程的整数分之一,就可以实现同步泵浦条件,而与基频光再生放大器(2)的重复频率无关,实现高能量的超短脉冲光学参量振荡输出。

Description

一种光学参量振荡器
交叉引用
本申请引用于2017年12月20日提交的专利名称为“一种光学参量振荡器”的第2017113847113号中国专利申请,其通过引用被全部并入本申请。
技术领域
本公开涉及激光频率变换领域,更具体地,涉及一种光学参量振荡器。
背景技术
高能量超短脉冲激光,如皮秒或飞秒脉冲激光,在材料处理、激光光谱学、激光测距等领域具有重要应用。目前,获得高能量超短脉冲激光的方法是通过激光锁模的方法获得,并通过行波放大或再生放大的方法提高超短脉冲激光能量。然而,由于激光发射能级是分立的,只有少数波段的超短脉冲激光可以直接从激光发射器中获得。如可从Nd:YVO 4激光器中获得1064nm和1342nm的超短脉冲激光,可从Ho:YAG激光器中获得2.1μm的超短脉冲激光。
为了在更宽的波长范围内,尤其是中红外范围获得超短脉冲激光,可以借助光学参量变频或者拉曼频移方法实现超短脉冲激光频率变换。光学参量变频包括光学参量产生(Optical Parametric Generation,OPG)、光学参量放大(Optical Parametric Amplification,OPA),以及光学参量振荡(Optical Parametric Oscillation,OPO)。
OPG方法阈值高、效率低、产生的变频激光光谱很宽,光束质量也很差;OPA方法是在OPG基础上注入一个小功率的信号激光,虽然可以改善OPG方法光谱宽、光束质量差的问题,然而额外需要的种子激光器增加了成本和复杂性,OPO方法阈值低、效率高、光谱窄、光束质量好、可调谐、结构紧凑,是理想的超短脉冲激光频率变换方法。然而,由于飞秒或皮秒超短脉冲激光持续时间很短,必须采用同步泵浦的方法才能实现光参量振荡。该方法通常要求OPO腔长须与泵浦激光脉冲间隔相等才能满足同步泵浦条件,因此该方法通常用于重复频率在100MHz左右的超短脉 冲激光变频,其相应的腔长为1.5m。在平均功率一定的情况下,重频越高单脉冲能量越小,因此目前采用传统同步泵浦OPO方法获得超短脉冲激光能量仅为纳焦耳量级。为从光参量振荡器中获得更高的单脉冲能量,往往采用降低脉冲重复频率的方法,如2017年光学著名期刊Optics Express文献(Opt.Express 25,8840)中,采用重复频率为7.09MHz的1μm基频激光作为泵浦光实现了0.35μJ的2μm亚皮秒光参量振荡激光输出,为实现同步泵浦条件,他们的腔长总长为21.2m,采用大量镜子对光路进行进行折叠,结构非常复杂。如要采用1MHz重频的基频超短脉冲激光泵浦,相应的OPO腔长要达到150m,要用10kHz重频的基频光泵浦的话,所需的OPO腔长将达到15km,显然这是无法实现的。
发明内容
本公开提供一种克服上述问题或者至少部分地解决上述问题的一种光学参量振荡器,解决了现有技术中提高脉冲能量困难,无法实现高能量的超短脉冲光学参量振荡输出的问题。
根据本公开的一个方面,提供一种光学参量振荡器,包括基频超短脉冲激光器、基频再生放大器、光学参量振荡腔;
所述基频超短脉冲激光器用于产生基频超短脉冲激光;
所述基频再生放大器包括第一基频光反射镜、第二基频光反射镜、基频光偏振器、基频光Q开关;
所述第一基频光反射镜和所述第二基频光反射镜相对设置构成再生腔;所述基频光偏振器和基频光Q开关组合,用于接收所述基频超短脉冲激光并将所述基频超短脉冲激光锁定在再生腔内,以使所述基频超短脉冲激光沿再生腔的光轴线在所述再生腔内振荡;
所述再生腔的光轴线上设有变频介质以及至少一个分光镜,所述变频介质用于接收基频超短脉冲激光并产生变频超短脉冲激光,接收变频超短脉冲激光并放大;所述分光镜用于将所述变频超短脉冲激光分光并传输至所述光学参量振荡腔,以使所述变频超短脉冲激光在所述光学参量振荡腔内振荡。
在一个实施例中,所述分光镜包括第一分光镜和第二分光镜,所述第一分光镜分光并传输变频超短脉冲激光的光路上设有第一变频光反射镜, 所述第二分光镜分光并传输变频超短脉冲激光的光路上设有第二变频光反射镜,所述第一变频光反射镜、第一分光镜、第二分光镜、第二变频光反射镜组成所述光学参量振荡腔。
在一个实施例中,所述第一基频光反射镜上还镀有变频光高反膜,所述分光镜分光并传输变频超短脉冲激光的光路上还设有一变频光反射镜,所述第一基频光反射镜、所述分光镜、所述变频光反射镜组成所述光学参量振荡腔。
在一个实施例中,所述第一基频光反射镜和所述第二基频光反射镜对基频超短脉冲激光反射率均大于90%;所述第一变频光反射镜、第二变频光反射镜对变频超短脉冲激光的反射率大于50%。
在一个实施例中,所述变频超短脉冲激光在所述光学参量振荡腔内往返一周的光程为所述基频超短脉冲激光在所述再生腔内往返一周的光程的1/n,其中n是正整数。
在一个实施例中,在所述第一基频光反射镜和所述第二基频光反射镜间设有激光增益介质,用于放大所述再生腔内的基频超短脉冲激光。
在一个实施例中,所述基频光Q开关连接有基频Q开关驱动;所述基频Q开关驱动用于为所述基频光Q开关提供重频为1Hz~1MHz的驱动电压。
在一个实施例中,所述光学参量振荡腔内还设有变频光Q开关和变频光偏振器,所述变频光Q开关用于将变频超短脉冲激光从变频光偏振器导出。
在一个实施例中,所述变频介质为KTiOPO 4、RbTiOAsO 4、KTiOAsO 4、LiNbO 3、LiInS 2、LiGaSe 2、BaGa 4S 7、BaGa 4Se 7、BBO、PPLN、SiC非线性光学晶体中的一种。
在一个实施例中,所述基频超短脉冲激光器为锁模激光器、被动调Q激光器或半导体激光器。
本公开提出一种光学参量振荡器,在基频超短脉冲的再生放大器腔内通过双色镜插入光学参量振荡器,只要光学参量振荡器往返一周光程与基频超短脉冲再生放大器往返一周光程相等或者光学参量振荡器往返一周光程是基频超短脉冲再生放大器往返一周光程的整数分之一,就可以实现 同步泵浦条件,而与及基频光再生放大器的重复频率无关,实现高能量的超短脉冲光学参量振荡输出。
附图说明
图1为根据本公开实施例1的光学参量振荡器结构示意图;
图2为根据本公开实施例2的光学参量振荡器结构示意图;
图3为根据本公开实施例3的光学参量振荡器结构示意图。
具体实施方式
下面结合附图和实施例,对本公开的具体实施方式作进一步详细描述。以下实施例用于说明本公开,但不用来限制本公开的范围。
本实施例中示出了一种光学参量振荡器,包括基频超短脉冲激光器、基频再生放大器、光学参量振荡腔;
所述基频超短脉冲激光器用于产生基频超短脉冲激光;
所述基频再生放大器包括第一基频光反射镜、第二基频光反射镜、基频光偏振器、基频光Q开关;
所述第一基频光反射镜和所述第二基频光反射镜相对设置构成再生腔;所述基频光偏振器和基频光Q开关组合,用于接收所述基频超短脉冲激光并将所述基频超短脉冲激光锁定在再生腔内,以使所述基频超短脉冲激光沿再生腔的光轴线在所述再生腔内振荡;
所述再生腔的光轴线上设有变频介质以及至少一个分光镜,所述变频介质用于接收基频超短脉冲激光并产生变频超短脉冲激光,接收变频超短脉冲激光并放大;所述分光镜用于将所述变频超短脉冲激光分光并传输至所述光学参量振荡腔,以使所述变频超短脉冲激光在所述光学参量振荡腔内振荡。
所述变频超短脉冲激光在所述光学参量振荡器内往返一周的光程为所述基频超短脉冲激光在所述振荡腔内往返一周的光程的1/n。
实施例1
如图1所示,图中示出了一种高能量超短脉冲光学参量振荡器的结构示意图。包括基频超短脉冲激光器1、基频再生放大器、第一基频光反射镜2、第二基频光反射镜3、基频光偏振器4、基频光Q开关5、变频介质 11、第一分光镜7、第二分光镜8、第一变频光反射镜9、第二变频光反射镜10、激光增益介质12。
所述基频超短脉冲激光器1是半导体可饱和吸收镜(SESAM)被动锁模Nd:YVO 4皮秒激光器,脉冲重复频率80MHz,单脉冲能量10nJ,脉宽10ps、波长1064nm。
所述基频再生放大器由第一基频光反射镜2、第二基频光反射镜3、基频光偏振器4、基频光Q开关5、激光增益介质12构成,光学长度为1.5m,即再生腔的光学长度为1.5m;第一基频光反射镜2、第二基频光反射镜3基片材料为石英,通过镀介质膜实现对1064nm波长的激光反射率均大于99%;基频光Q开关5为BBO电光Q开光,由基频Q开关驱动6提供重频为10kHz的驱动电压,以实现基频超短脉冲激光注入基频再生放大器;基频光偏振器4是薄膜偏振片;激光增益介质12为Nd:YVO 4,第一分光镜镜7、第二分光镜8基片为石英,通过镀介质膜实现对1064nm波长激光透过率大于98%,对1.5μm波长激光反射率大于99%,从而可以将1064nm基频激光和1.5μm变频激光分开。
所述变频介质11为KTA非线性晶体,切割角为θ=90°,
Figure PCTCN2018121698-appb-000001
切割;变频光高反射镜5对1.5μm波长激光反射率为80%;所述第一变频光反射镜9、第二变频光反射镜10、第一分光镜7、第二分光镜8构成光学参量振荡腔,光学参量振荡腔光学长度同样为1.5m,等于再生放大器腔光学长度;所述变频介质11为KTA非线性晶体,切割角为θ=90°,
Figure PCTCN2018121698-appb-000002
切割,设置于所述再生腔与所述光学参量振荡腔光轴重合部分。
所述基频超短脉冲激光器1产生的小能量基频超短脉冲激光通过基频光偏振器4和基频光Q开关5组合注入并锁定在再生腔内,从而在所述基频再生放大器中往返,每往返一次通过激光增益介质12两次,脉冲能量被放大,共可放大10 3~10 6倍。
基频再生放大器的再生腔内被放大的基频超短脉冲激光同样通过变频介质11,在满足相位匹配下,由光学参量效应产生1.5μm波长变频超短脉冲激光,并在光学参量振荡腔反馈振荡。由于光学参量振荡腔光学长度与基频再生放大器光学长度相等,因此1.5μm变频超短脉冲激光依次被第一变频光反射镜9、第二分光镜8、第一分光镜7、第二变频光反射镜10、 第一分光镜7反射再次回到变频介质11时,1064nm的基频超短脉冲激光也再次到达变频介质11,因此1.5μm变频超短脉冲激光在1064nm基频超短脉冲激光泵浦下得到放大。重复以上过程直至1.5μm变频超短脉冲激光达到最大值,有效的1.5μm变频超短脉冲激光从第二变频光反射镜10中部分透过的激光获得,输出高能量的1.5μm脉冲激光,其脉冲包络具有与基频再生放大器相同的重频10kHz。
实施例2
如图2所示,图中示出了一种高能量超短脉冲光学参量振荡器的结构示意图。其在图1的基础上增加了变频光偏振器13、变频光Q开关14及驱动器15;第一基频光反射镜2与第一变频光反射镜9通过镀双高反膜合为同一片反射镜,即该反射镜既是第一基频光反射镜2又是第一变频光反射镜9。
变频光Q开关14为LISe电光Q开关。基频超短脉冲激光器1是半导体皮秒激光器,脉冲重复频率100MHz,单脉冲能量10pJ,脉宽30ps、波长1064nm。
所述基频再生放大器由第一基频光反射镜2、第二基频光反射镜3、基频光偏振器4、基频光Q开关5、激光增益介质12构成,光学长度为1.5m,即再生腔的光学长度为1.5m;第一基频光反射镜2基片材料为石英,通过镀介质膜实现对1064nm和3.5μm波长的激光反射率均大于99%,因此它同时是第一变频光反射镜9;第二基频光反射镜3基片材料为石英,通过镀介质膜实现对1064nm波长的激光反射率大于99%;基频光Q开关5为BBO电光Q开光,由基频Q开关驱动6提供重频为100kHz的驱动电压实现基频再生放大器基频超短脉冲激光的注入;基频光偏振器4是薄膜偏振片;激光增益介质12为Nd:YAG,第一分光镜7基片为石英,通过镀介质膜实现对1064nm波长激光透过率大于98%,对3.5μm中红外波长激光反射率大于99%,从而将1064nm基频超短脉冲激光和3.5μm中红外变频超短脉冲激光分开;所述变频介质11为KTA晶体,切割角为θ=41.4°,
Figure PCTCN2018121698-appb-000003
第二变频光高反射镜10对3.5μm波长激光反射率大于99%。
在本实施例中,第一变频光反射镜9、所述第一分光镜7、所述第二变频光反射镜10构成光学参量振荡腔,光学参量振荡腔光学长度为 0.75m,等于再生放大器腔光学长度1/2。所述基频超短脉冲激光器1产生的小能量基频超短脉冲激光通过基频光偏振器4和基频光Q开关5组合注入并锁定在再生腔内,从而在所述基频再生放大器中往返,每往返一次通过激光增益介质12两次,脉冲能量被放大,共可放大10 3~10 6倍。
基频再生放大器的再生腔内被放大的基频超短脉冲激光同样通过变频介质11,在满足相位匹配下,由光学参量效应产生3.5μm波长变频超短脉冲激光,并在光学参量振荡腔反馈振荡。由于光学参量振荡腔光学长度是基频再生放大器再生腔光学长度一半,因此3.5μm变频超短脉冲激光依次被第一变频光反射镜9、第一分光镜7、第二变频光镜10、第一分光镜7反射两个循环回到变频介质11时,1064nm的基频超短脉冲激光也再次到达变频介质11,因此3.5μm变频超短脉冲激光在1064nm基频超短脉冲激光泵浦下得到放大。重复以上过程直至3.5μm变频超短脉冲激光达到最大值,此时变频光Q开关14工作,将3.5μm中红外变频超短脉冲激光从变频光偏振器13倒出获得高能量的3.5μm脉冲激光,其具有与基频再生放大器相同的重频100kHz。
实施例3
图3所示是一种高能量超短脉冲光学参量振荡器的结构示意图。与实施例2相比,将变频介质11替换为周期性极化铌酸锂PPLN晶体,基频光偏振器4和变频光偏振器13均选用偏振棱镜;通过镀膜将第一基频光反射镜2和第二分光镜8镀制到同一片镜片上,即该镜片既是第一基频光反射镜2,又是第二分光镜8.
基频超短脉冲激光器1选用1030nm SESAM被动锁模Yb:YAG光纤飞秒激光器,脉冲重复频率80MHz,单脉冲能量1nJ,脉宽500fs、波长1030nm。所述基频再生放大器中的激光增益介质12采用Yb:YAG盘片晶体。第一基频光反射镜2基片材料为氟化钙,通过镀介质膜实现对1030nm激光反射率均大于99%,对3.9μm波长激光透过率大于98%,因此第一基频光反射镜2同时是第二分光镜8;第二基频光反射镜3基片材料为石英,通过镀介质膜实现对1030nm波长的激光反射率大于99%;基频光Q开关5为RTP电光Q开光,由基频Q开关驱动6提供重频为1MHz的驱动电压实现超短脉冲激光注入基频再生放大器;基频光偏振器4是偏振棱镜; 第一分光镜7基片材料为石英,通过镀介质膜实现对1030nm波长激光透过率大于98%,对3.9μm变频激光反射率大于99%,从而可以将1030nm基频激光和3.9μm变频激光分开;第二变频光反射镜10对3.9μm波长变频激光反射率大于99%;所述第一变频光反射镜9、所述第一分光镜7、所述第二变频光反射镜10构成光学参量振荡腔,其光学长度为同样为1.8m。所述基频超短脉冲激光器输出的低能量基频超短脉冲激光通过基频光偏振器4和基频光Q开关6的组合注入并锁定在再生腔内,从而在所述基频再生放大器中往返并被放大,每往返一次通过激光增益介质12两次,脉冲能量被放大,共可放大10 3~10 6倍。基频再生放大器腔内被放大的超短脉冲激光同样通过变频介质11,在PPLN晶体中产生3.9μm变频激光,并在光学参量振荡腔反馈振荡。由于光学参量振荡腔光学长度与基频再生放大器光学长度相同,因此3.9μm变频超短脉冲激光依次被第一变频光反射镜9、第一分光镜镜7、第二变频光反射镜10反射1个循环回到变频介质11时,1030nm的基频超短脉冲激光也再次到达变频介质1,因此3.9μm变频超短脉冲激光在1030nm的基频超短脉冲激光泵浦下得到放大。重复以上过程直至3.9μm变频超短脉冲激光达到最大值,此时变频光Q开关14工作,将3.9μm中红外变频超短脉冲激光从变频光偏振器13倒出获得高能量的3.9μm脉冲激光,其具有与基频再生放大器相同的重频1MHz。
本公开提出一种光学参量振荡器,在基频超短脉冲的再生放大器腔内通过双色镜插入光学参量振荡器,只要光学参量振荡器往返一周光程与基频超短脉冲再生放大器往返一周光程相等或者光学参量振荡器往返一周光程是基频超短脉冲再生放大器往返一周光程的整数分之一,就可以实现同步泵浦条件,而与及基频光再生放大器的重复频率无关,实现高能量的超短脉冲光学参量振荡输出。
实施例4
将图2中的激光增益介质12去掉构成本实施例的一种高能量超短脉冲光学参量振荡器的结构示意图。与实施例2相比,基频超短脉冲激光器1直接采用重频1kHz、脉冲能量10mJ、脉宽30ps、波长1064nm的较低重频高能量的皮秒激光器,因此基频再生放大器内无需设置激光增益介质。在以往的技术中,无法在如此低的重频下实现超短脉冲光学参量振荡, 通过本实施例的方法则可实现。
所述基频再生放大器由第一基频光反射镜2、第二基频光反射镜3、基频光偏振器4、基频光Q开关5、激光增益介质12构成,光学长度为1.5m,即再生腔的光学长度为1.5m;第一基频光反射镜2基片材料为石英,通过镀介质膜实现对1064nm和,2.1μm波长的激光反射率均大于99%,因此它同时是第一变频光反射镜9;第二基频光反射镜3材料为石英,通过镀介质膜实现对1064nm波长的激光反射率大于99%;基频光Q开关5为KD*P电光Q开光,由基频Q开关驱动6提供重频为1kHz的驱动电压实现基频再生放大器中基频超短脉冲激光的注入;基频光偏振器4是薄膜偏振片;第一分光镜7基片为石英,通过镀介质膜实现对1064nm波长激光透过率大于98%,对2.1μm中红外波长激光反射率大于99%,从而将1064nm基频超短脉冲激光和2.1μm中红外变频超短脉冲激光分开;所述变频介质11为KTP晶体;第二变频光反射镜10对2.1μm波长激光反射率大于99%。
在本实施例中,第一变频光反射镜9、所述第一分光镜7、所述第二变频光反射镜10构成光学参量振荡腔,光学参量振荡腔光学长度为0.75m,等于再生放大器再生腔光学长度一半。所述基频超短脉冲激光器1产生的基频超短脉冲激光通过基频光偏振器4和基频光Q开关5组合注入并锁定在再生腔内,从而在所述基频再生放大器中往返。
基频再生放大器的再生腔内往返的基频超短脉冲激光同样通过变频介质11,在满足相位匹配下,由光学参量效应产生2.1μm波长变频超短脉冲激光,并在光学参量振荡腔反馈振荡。由于光学参量振荡腔光学长度是基频再生放大器振荡腔光学长度一半,因此2.1μm变频超短脉冲激光依次被第一变频光反射镜9、第一分光镜7、第二变频光镜10、第一分光镜7反射2个循环回到变频介质11时,1064nm的基频超短脉冲激光也再次到达变频介质11,因此2.1μm变频超短脉冲激光在1064nm基频超短脉冲激光往返泵浦下得到放大,且1064nm基频超短脉冲激光能量被消耗。重复以上过程直至2.1μm变频超短脉冲激光达到最大值,此时变频光Q开关14工作,将2.1μm中红外变频超短脉冲激光从变频光偏振器13倒出获得高能量的2.1μm脉冲激光,其具有与基频再生放大器相同的重频1kHz。
综上所述,本公开提出一种光学参量振荡器,在基频超短脉冲的再生放大器腔内通过双色镜插入光学参量振荡器,只要光学参量振荡器往返一周光程与基频超短脉冲再生放大器往返一周光程相等或者光学参量振荡器往返一周光程是基频超短脉冲再生放大器往返一周光程的整数分之一,就可以实现同步泵浦条件,而与及基频光再生放大器的重复频率无关,实现高能量的超短脉冲光学参量振荡输出。
最后,本公开的方法仅为较佳的实施方案,并非用于限定本公开的保护范围。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种光学参量振荡器,其特征在于,包括基频超短脉冲激光器、基频再生放大器、光学参量振荡腔;
    所述基频超短脉冲激光器用于产生基频超短脉冲激光;
    所述基频再生放大器包括第一基频光反射镜、第二基频光反射镜、基频光偏振器、基频光Q开关;
    所述第一基频光反射镜和所述第二基频光反射镜相对设置构成再生腔;所述基频光偏振器和基频光Q开关组合,用于接收所述基频超短脉冲激光并将所述基频超短脉冲激光锁定在再生腔内,以使所述基频超短脉冲激光沿再生腔的光轴线在所述再生腔内振荡;
    所述再生腔的光轴线上设有变频介质以及至少一个分光镜,所述变频介质用于接收基频超短脉冲激光并产生变频超短脉冲激光,接收变频超短脉冲激光并放大;所述分光镜用于将所述变频超短脉冲激光分光并传输至所述光学参量振荡腔,以使所述变频超短脉冲激光在所述光学参量振荡腔内振荡。
  2. 根据权利要求1所述的光学参量振荡器,其特征在于,所述分光镜包括第一分光镜和第二分光镜,所述第一分光镜分光并传输变频超短脉冲激光的光路上设有第一变频光反射镜,所述第二分光镜分光并传输变频超短脉冲激光的光路上设有第二变频光反射镜,所述第一变频光反射镜、第一分光镜、第二分光镜、第二变频光反射镜组成所述光学参量振荡腔。
  3. 根据权利要求1或2所述的光学参量振荡器,其特征在于,所述第一基频光反射镜上还镀有变频光高反膜,所述分光镜分光并传输变频超短脉冲激光的光路上还设有一变频光反射镜,所述第一基频光反射镜、所述分光镜、所述变频光反射镜组成所述光学参量振荡腔。
  4. 根据权利要求2所述的光学参量振荡器,其特征在于,所述第一基频光反射镜和所述第二基频光反射镜对基频超短脉冲激光反射率均大于90%;所述第一变频光反射镜、第二变频光反射镜对变频超短脉冲激光的反射率大于50%。
  5. 根据权利要求1所述的光学参量振荡器,其特征在于,所述变频超短脉冲激光在所述光学参量振荡腔内往返一周的光程为所述基频超短 脉冲激光在所述再生腔内往返一周的光程的1/n,其中n是正整数。
  6. 根据权利要求1所述的光学参量振荡器,其特征在于,在所述第一基频光反射镜和所述第二基频光反射镜间设有激光增益介质,用于放大所述再生腔内的基频超短脉冲激光。
  7. 根据权利要求1所述的光学参量振荡器,其特征在于,所述基频光Q开关连接有基频Q开关驱动;所述基频Q开关驱动用于为所述基频光Q开关提供重频为1Hz~1MHz的驱动电压。
  8. 根据权利要求1、2或3所述的光学参量振荡器,其特征在于,所述光学参量振荡腔内还设有变频光Q开关和变频光偏振器,所述变频光Q开关用于将变频超短脉冲激光从变频光偏振器导出。
  9. 根据权利要求1所述的光学参量振荡器,其特征在于,所述变频介质为KTiOPO 4、RbTiOAsO 4、KTiOAsO 4、LiNbO 3、LiInS 2、LiGaSe 2、BaGa 4S 7、BaGa 4Se 7、BBO、PPLN、SiC非线性光学晶体中的一种。
  10. 根据权利要求1所述的光学参量振荡器,其特征在于,所述基频超短脉冲激光器为锁模激光器、被动调Q激光器或半导体激光器。
PCT/CN2018/121698 2017-12-20 2018-12-18 一种光学参量振荡器 WO2019120186A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711384711.3 2017-12-20
CN201711384711.3A CN107863683B (zh) 2017-12-20 2017-12-20 一种光学参量振荡器

Publications (1)

Publication Number Publication Date
WO2019120186A1 true WO2019120186A1 (zh) 2019-06-27

Family

ID=61706642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121698 WO2019120186A1 (zh) 2017-12-20 2018-12-18 一种光学参量振荡器

Country Status (2)

Country Link
CN (1) CN107863683B (zh)
WO (1) WO2019120186A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022117583A1 (en) * 2020-12-01 2022-06-09 United Kingdom Research And Innovation Compact high energy regenerative amplifier

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107863683B (zh) * 2017-12-20 2020-06-02 中国科学院理化技术研究所 一种光学参量振荡器
CN111224308A (zh) * 2018-11-23 2020-06-02 中国科学院理化技术研究所 一种中红外光参量全固态激光源
CN112864789B (zh) * 2021-01-11 2022-05-03 中国科学院理化技术研究所 一种皮秒脉冲光学参量变频激光输出装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070268940A1 (en) * 2006-05-19 2007-11-22 Pavilion Integration Corporation Self-contained module for injecting signal into slave laser without any modifications or adaptations to it
CN106711745A (zh) * 2017-02-26 2017-05-24 中国科学院上海光学精密机械研究所 宽调谐、窄线宽纳秒脉冲双共振中红外参量振荡器
CN106856292A (zh) * 2017-02-21 2017-06-16 中国科学院上海光学精密机械研究所 基于外差拍频锁定的种子注入2μm波段单频脉冲光参量振荡器
CN107863683A (zh) * 2017-12-20 2018-03-30 中国科学院理化技术研究所 一种光学参量振荡器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0122670D0 (en) * 2001-09-20 2001-11-14 Karpushko Fedor V Intracavity frequency conversion of laser
CN1217454C (zh) * 2003-06-18 2005-08-31 清华大学 折叠型内腔变反射率光参量振荡器
CN101676785A (zh) * 2008-09-18 2010-03-24 中国科学院福建物质结构研究所 一种产生2微米波段激光的光参量振荡器
CN101673917A (zh) * 2009-09-29 2010-03-17 天津大学 端面泵浦中红外kta参量振荡器
CN103199427B (zh) * 2013-03-14 2015-03-04 天津大学 一种内腔单谐振光学参量振荡器
CN105305221A (zh) * 2015-11-25 2016-02-03 吕志伟 一种百皮秒至纳秒脉冲宽度可调的固体激光器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070268940A1 (en) * 2006-05-19 2007-11-22 Pavilion Integration Corporation Self-contained module for injecting signal into slave laser without any modifications or adaptations to it
CN106856292A (zh) * 2017-02-21 2017-06-16 中国科学院上海光学精密机械研究所 基于外差拍频锁定的种子注入2μm波段单频脉冲光参量振荡器
CN106711745A (zh) * 2017-02-26 2017-05-24 中国科学院上海光学精密机械研究所 宽调谐、窄线宽纳秒脉冲双共振中红外参量振荡器
CN107863683A (zh) * 2017-12-20 2018-03-30 中国科学院理化技术研究所 一种光学参量振荡器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, YING ET AL.: "8.2mJ, 324 MW , 5kHz Picosecond MOPA System Based on Nd: YAG Slab Amplifiers", JOURNAL OF OPTICS, vol. 18, 26 May 2016 (2016-05-26), pages 1 - 6, XP020306112 *
XU, HONGYAN ET AL.: "Millijoule-Level Picosecond Mid-Infrared Optical Parametric Amplifier Based on Mgo-Doped Periodically Poled Lithium Niobate", APPLIED OPTICS, vol. 54, no. 9, 19 March 2015 (2015-03-19), pages 2489 - 2494, XP001594643 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022117583A1 (en) * 2020-12-01 2022-06-09 United Kingdom Research And Innovation Compact high energy regenerative amplifier
GB2616156A (en) * 2020-12-01 2023-08-30 Res & Innovation Uk Compact high energy regenerative amplifier

Also Published As

Publication number Publication date
CN107863683A (zh) 2018-03-30
CN107863683B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2019120186A1 (zh) 一种光学参量振荡器
JP6453844B2 (ja) 円形出力ビーム用の高効率単一パス高調波発生器
US8830565B2 (en) Control of relaxation oscillations in intracavity optical parametric oscillators
JP2013515357A (ja) 超高速ラマンレーザーシステム及び動作方法
US20100060976A1 (en) Optical parametric oscillator
Reid et al. Advances in ultrafast optical parametric oscillators
WO2021120487A1 (zh) 一种电光调q腔内倍频亚纳秒脉冲绿光激光器
US11165218B2 (en) Low repetition rate infrared tunable femtosecond laser source
US20240027873A1 (en) Wavelength-tunable source of pulsed laser radiation for vis-nir spectroscopy
Emmerichs et al. Generation of high-repetition rate femtosecond pulses tunable in the mid-infrared
JP2010258198A (ja) モード同期固体レーザ装置
Zou et al. An in-band diode-end-pumped high-power and high-efficiency ultrashort pulse Nd: YVO4 bulk laser mode-locked by a frequency doubling LBO crystal
Nandy et al. Stable, high-average-power, narrow-linewidth source at 2.1 µm pumped at 1.064 μm
Temel et al. Power Scaling of a Narrowband-Seeded PPLN Non-Resonant Optical Parametric Oscillator
Wallenstein Advanced solid state sources for high power visible light generation
Reekie et al. Difference frequency generation with a synchronously mode-locked cw dye laser system
Xin et al. Pump-tuning KTP optical parametric oscillator with continuous output wavelength pumped by a pulsed tunable Ti: sapphire laser
Brown et al. A 10kHz PPLN OPO Operating in a Region of Very High Idler Absorption
JP2024510583A (ja) 周波数変換レーザ装置
Tan et al. Generation of watt level mid-infrared wavelengths using intra-cavity ZnGeP2 OPO within a 2.1 µm Ho: YAG laser
McCarthy et al. CW Mode-Locked Singly Resonant Optical Parametric Oscillator Synchronously Pumped by a Laser Diode-Pumped Nd: YLF Laser
Henrich et al. Concepts and technologies of advanced RGB sources
Lin et al. High repetition rate bismuth borate optical parametric oscillator pumped by a cavity-dumped Nd: YLF laser
Petrov et al. Generation of tunable mid-infrared picosecond pulses by means of MHz-rate optical parametric amplification of white-light continuum in GaSe
Novák et al. Parametric Mid-IR Source Pumped by a High Power Picosecond Thin-Disk Laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893250

Country of ref document: EP

Kind code of ref document: A1