CN107863683A - 一种光学参量振荡器 - Google Patents

一种光学参量振荡器 Download PDF

Info

Publication number
CN107863683A
CN107863683A CN201711384711.3A CN201711384711A CN107863683A CN 107863683 A CN107863683 A CN 107863683A CN 201711384711 A CN201711384711 A CN 201711384711A CN 107863683 A CN107863683 A CN 107863683A
Authority
CN
China
Prior art keywords
fundamental frequency
frequency conversion
light
pulse laser
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711384711.3A
Other languages
English (en)
Other versions
CN107863683B (zh
Inventor
刘可
彭钦军
薄勇
王小军
宗楠
杨晶
许祖彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN201711384711.3A priority Critical patent/CN107863683B/zh
Publication of CN107863683A publication Critical patent/CN107863683A/zh
Priority to PCT/CN2018/121698 priority patent/WO2019120186A1/zh
Application granted granted Critical
Publication of CN107863683B publication Critical patent/CN107863683B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/113Q-switching using intracavity saturable absorbers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/1083Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using parametric generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/235Regenerative amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • H01S3/0637Integrated lateral waveguide, e.g. the active waveguide is integrated on a substrate made by Si on insulator technology (Si/SiO2)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08054Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094096Multi-wavelength pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • H01S3/1115Passive mode locking using intracavity saturable absorbers
    • H01S3/1118Semiconductor saturable absorbers, e.g. semiconductor saturable absorber mirrors [SESAMs]; Solid-state saturable absorbers, e.g. carbon nanotube [CNT] based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/127Plural Q-switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1312Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1671Solid materials characterised by a crystal matrix vanadate, niobate, tantalate
    • H01S3/1673YVO4 [YVO]

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

本发明提供一种光学参量振荡器,包括基频超短脉冲激光器、基频再生放大器;通过在基频再生放大器再生腔内通过双色分光镜插入光学参量振荡腔,只要变频超短脉冲激光在光学参量振荡腔往返一周光程与基频超短脉冲在基频再生放大器往返一周光程相等或者变频超短脉冲激光在光学参量振荡腔往返一周光程是基频超短脉冲在基频再生放大器往返一周光程的整数分之一,就可以实现同步泵浦条件,而与基频光再生放大器的重复频率无关,实现高能量的超短脉冲光学参量振荡输出。

Description

一种光学参量振荡器
技术领域
本发明涉及激光频率变换领域,更具体地,涉及一种光学参量振荡器。
背景技术
高能量超短脉冲激光,如皮秒或飞秒脉冲激光,在材料处理、激光光谱学、激光测距等领域具有重要应用。目前,获得高能量超短脉冲激光的方法是通过激光锁模的方法获得,并通过行波放大或再生放大的方法提高超短脉冲激光能量。然而,由于激光发射能级是分立的,只有少数波段的超短脉冲激光可以直接从激光发射器中获得。如可从Nd:YVO4激光器中获得1064nm和1342nm的超短脉冲激光,可从Ho:YAG激光器中获得2.1μm的超短脉冲激光。
为了在更宽的波长范围内,尤其是中红外范围获得超短脉冲激光,可以借助光学参量变频或者拉曼频移方法实现超短脉冲激光频率变换。光学参量变频包括光学参量产生(Optical Parametric Generation,OPG)、光学参量放大(Optical ParametricAmplification,OPA),以及光学参量振荡(Optical Parametric Oscillation,OPO)。
OPG方法阈值高、效率低、产生的变频激光光谱很宽,光束质量也很差;OPA方法是在OPG基础上注入一个小功率的信号激光,虽然可以改善OPG方法光谱宽、光束质量差的问题,然而额外需要的种子激光器增加了成本和复杂性,OPO方法阈值低、效率高、光谱窄、光束质量好、可调谐、结构紧凑,是理想的超短脉冲激光频率变换方法。然而,由于飞秒或皮秒超短脉冲激光持续时间很短,必须采用同步泵浦的方法才能实现光参量振荡。该方法通常要求OPO腔长须与泵浦激光脉冲间隔相等才能满足同步泵浦条件,因此该方法通常用于重复频率在100MHz左右的超短脉冲激光变频,其相应的腔长为1.5m。在平均功率一定的情况下,重频越高单脉冲能量越小,因此目前采用传统同步泵浦OPO方法获得超短脉冲激光能量仅为纳焦耳量级。为从光参量振荡器中获得更高的单脉冲能量,往往采用降低脉冲重复频率的方法,如2017年光学著名期刊Optics Express文献(Opt.Express 25,8840)中,采用重复频率为7.09MHz的1μm基频激光作为泵浦光实现了0.35μJ的2μm亚皮秒光参量振荡激光输出,为实现同步泵浦条件,他们的腔长总长为21.2m,采用大量镜子对光路进行进行折叠,结构非常复杂。如要采用1MHz重频的基频超短脉冲激光泵浦,相应的OPO腔长要达到150m,要用10kHz重频的基频光泵浦的话,所需的OPO腔长将达到15km,显然这是无法实现的。
发明内容
本发明提供一种克服上述问题或者至少部分地解决上述问题的一种光学参量振荡器,解决了现有技术中提高脉冲能量困难,无法实现高能量的超短脉冲光学参量振荡输出的问题。
根据本发明的一个方面,提供一种光学参量振荡器,包括基频超短脉冲激光器、基频再生放大器、光学参量振荡腔;
所述基频超短脉冲激光器用于产生基频超短脉冲激光;
所述基频再生放大器包括第一基频光反射镜、第二基频光反射镜、基频光偏振器、基频光Q开关;
所述第一基频光反射镜和所述第二基频光反射镜相对设置构成再生腔;所述基频光偏振器和基频光Q开关组合,用于接收所述基频超短脉冲激光并将所述基频超短脉冲激光锁定在再生腔内,以使所述基频超短脉冲激光沿再生腔的光轴线在所述再生腔内振荡;
所述再生腔的光轴线上设有变频介质以及至少一个分光镜,所述变频介质用于接收基频超短脉冲激光并产生变频超短脉冲激光,接收变频超短脉冲激光并放大;所述分光镜用于将所述变频超短脉冲激光分光并传输至所述光学参量振荡腔,以使所述变频超短脉冲激光在所述光学参量振荡腔内振荡。
作为优选的,所述分光镜包括第一分光镜和第二分光镜,所述第一分光镜分光并传输变频超短脉冲激光的光路上设有第一变频光反射镜,所述第二分光镜分光并传输变频超短脉冲激光的光路上设有第二变频光反射镜,所述第一变频光反射镜、第一分光镜、第二分光镜、第二变频光反射镜组成所述光学参量振荡腔。
作为优选的,所述第一基频光反射镜上还镀有变频光高反膜,所述分光镜分光并传输变频超短脉冲激光的光路上还设有一变频光反射镜,所述第一基频光反射镜、所述分光镜、所述变频光反射镜组成所述光学参量振荡腔。
作为优选的,所述第一基频光反射镜和所述第二基频光反射镜对基频超短脉冲激光反射率均大于90%;所述第一变频光反射镜、第二变频光反射镜对变频超短脉冲激光的反射率大于50%。
作为优选的,所述变频超短脉冲激光在所述光学参量振荡腔内往返一周的光程为所述基频超短脉冲激光在所述再生腔内往返一周的光程的1/n,其中n是正整数。
作为优选的,在所述第一基频光反射镜和所述第二基频光反射镜间设有激光增益介质,用于放大所述再生腔内的基频超短脉冲激光。
作为优选的,所述基频光Q开关连接有基频Q开关驱动;所述基频Q开关驱动用于为所述基频光Q开关提供重频为1Hz~1MHz的驱动电压。
作为优选的,所述光学参量振荡腔内还设有变频光Q开关和变频光偏振器,所述变频光Q开关用于将变频超短脉冲激光从变频光偏振器导出。
作为优选的,所述变频介质为KTiOPO4、RbTiOAsO4、KTiOAsO4、LiNbO3、LiInS2、LiGaSe2、BaGa4S7、BaGa4Se7、BBO、PPLN、SiC非线性光学晶体中的一种。
作为优选的,所述基频超短脉冲激光器为锁模激光器、被动调Q激光器或半导体激光器。
本发明提出一种光学参量振荡器,在基频超短脉冲的再生放大器腔内通过双色镜插入光学参量振荡器,只要光学参量振荡器往返一周光程与基频超短脉冲再生放大器往返一周光程相等或者光学参量振荡器往返一周光程是基频超短脉冲再生放大器往返一周光程的整数分之一,就可以实现同步泵浦条件,而与及基频光再生放大器的重复频率无关,实现高能量的超短脉冲光学参量振荡输出。
附图说明
图1为根据本发明实施例1的光学参量振荡器结构示意图;
图2为根据本发明实施例2的光学参量振荡器结构示意图;
图3为根据本发明实施例3的光学参量振荡器结构示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本实施例中示出了一种光学参量振荡器,包括基频超短脉冲激光器、基频再生放大器、光学参量振荡腔;
所述基频超短脉冲激光器用于产生基频超短脉冲激光;
所述基频再生放大器包括第一基频光反射镜、第二基频光反射镜、基频光偏振器、基频光Q开关;
所述第一基频光反射镜和所述第二基频光反射镜相对设置构成再生腔;所述基频光偏振器和基频光Q开关组合,用于接收所述基频超短脉冲激光并将所述基频超短脉冲激光锁定在再生腔内,以使所述基频超短脉冲激光沿再生腔的光轴线在所述再生腔内振荡;
所述再生腔的光轴线上设有变频介质以及至少一个分光镜,所述变频介质用于接收基频超短脉冲激光并产生变频超短脉冲激光,接收变频超短脉冲激光并放大;所述分光镜用于将所述变频超短脉冲激光分光并传输至所述光学参量振荡腔,以使所述变频超短脉冲激光在所述光学参量振荡腔内振荡。
所述变频超短脉冲激光在所述光学参量振荡器内往返一周的光程为所述基频超短脉冲激光在所述振荡腔内往返一周的光程的1/n。
实施例1
如图1所示,图中示出了一种高能量超短脉冲光学参量振荡器的结构示意图。包括基频超短脉冲激光器1、基频再生放大器、第一基频光反射镜2、第二基频光反射镜3、基频光偏振器4、基频光Q开关5、变频介质11、第一分光镜7、第二分光镜8、第一变频光反射镜9、第二变频光反射镜10、激光增益介质12。
所述基频超短脉冲激光器1是半导体可饱和吸收镜(SESAM)被动锁模Nd:YVO4皮秒激光器,脉冲重复频率80MHz,单脉冲能量10nJ,脉宽10ps、波长1064nm。
所述基频再生放大器由第一基频光反射镜2、第二基频光反射镜3、基频光偏振器4、基频光Q开关5、激光增益介质12构成,光学长度为1.5m,即再生腔的光学长度为1.5m;第一基频光反射镜2、第二基频光反射镜3基片材料为石英,通过镀介质膜实现对1064nm波长的激光反射率均大于99%;基频光Q开关5为BBO电光Q开光,由基频Q开关驱动6提供重频为10kHz的驱动电压,以实现基频超短脉冲激光注入基频再生放大器;基频光偏振器4是薄膜偏振片;激光增益介质12为Nd:YVO4,第一分光镜镜7、第二分光镜8基片为石英,通过镀介质膜实现对1064nm波长激光透过率大于98%,对1.5μm波长激光反射率大于99%,从而可以将1064nm基频激光和1.5μm变频激光分开。
所述变频介质11为KTA非线性晶体,切割角为θ=90°,切割;变频光高反射镜5对1.5μm波长激光反射率为80%;所述第一变频光反射镜9、第二变频光反射镜10、第一分光镜7、第二分光镜8构成光学参量振荡腔,光学参量振荡腔光学长度同样为1.5m,等于再生放大器腔光学长度;所述变频介质11为KTA非线性晶体,切割角为θ=90°,切割,设置于所述再生腔与所述光学参量振荡腔光轴重合部分。
所述基频超短脉冲激光器1产生的小能量基频超短脉冲激光通过基频光偏振器4和基频光Q开关5组合注入并锁定在再生腔内,从而在所述基频再生放大器中往返,每往返一次通过激光增益介质12两次,脉冲能量被放大,共可放大103~106倍。
基频再生放大器的再生腔内被放大的基频超短脉冲激光同样通过变频介质11,在满足相位匹配下,由光学参量效应产生1.5μm波长变频超短脉冲激光,并在光学参量振荡腔反馈振荡。由于光学参量振荡腔光学长度与基频再生放大器光学长度相等,因此1.5μm变频超短脉冲激光依次被第一变频光反射镜9、第二分光镜8、第一分光镜7、第二变频光反射镜10、第一分光镜7反射再次回到变频介质11时,1064nm的基频超短脉冲激光也再次到达变频介质11,因此1.5μm变频超短脉冲激光在1064nm基频超短脉冲激光泵浦下得到放大。重复以上过程直至1.5μm变频超短脉冲激光达到最大值,有效的1.5μm变频超短脉冲激光从第二变频光反射镜10中部分透过的激光获得,输出高能量的1.5μm脉冲激光,其脉冲包络具有与基频再生放大器相同的重频10kHz。
实施例2
如图2所示,图中示出了一种高能量超短脉冲光学参量振荡器的结构示意图。其在图1的基础上增加了变频光偏振器13、变频光Q开关14及驱动器15;第一基频光反射镜2与第一变频光反射镜9通过镀双高反膜合为同一片反射镜,即该反射镜既是第一基频光反射镜2又是第一变频光反射镜9。
变频光Q开关14为LISe电光Q开关。基频超短脉冲激光器1是半导体皮秒激光器,脉冲重复频率100MHz,单脉冲能量10pJ,脉宽30ps、波长1064nm。
所述基频再生放大器由第一基频光反射镜2、第二基频光反射镜3、基频光偏振器4、基频光Q开关5、激光增益介质12构成,光学长度为1.5m,即再生腔的光学长度为1.5m;第一基频光反射镜2基片材料为石英,通过镀介质膜实现对1064nm和3.5μm波长的激光反射率均大于99%,因此它同时是第一变频光反射镜9;第二基频光反射镜3基片材料为石英,通过镀介质膜实现对1064nm波长的激光反射率大于99%;基频光Q开关5为BBO电光Q开光,由基频Q开关驱动6提供重频为100kHz的驱动电压实现基频再生放大器基频超短脉冲激光的注入;基频光偏振器4是薄膜偏振片;激光增益介质12为Nd:YAG,第一分光镜7基片为石英,通过镀介质膜实现对1064nm波长激光透过率大于98%,对3.5μm中红外波长激光反射率大于99%,从而将1064nm基频超短脉冲激光和3.5μm中红外变频超短脉冲激光分开;所述变频介质11为KTA晶体,切割角为θ=41.4°,第二变频光高反射镜10对3.5μm波长激光反射率大于99%。
在本实施例中,第一变频光反射镜9、所述第一分光镜7、所述第二变频光反射镜10构成光学参量振荡腔,光学参量振荡腔光学长度为0.75m,等于再生放大器腔光学长度1/2。所述基频超短脉冲激光器1产生的小能量基频超短脉冲激光通过基频光偏振器4和基频光Q开关5组合注入并锁定在再生腔内,从而在所述基频再生放大器中往返,每往返一次通过激光增益介质12两次,脉冲能量被放大,共可放大103~106倍。
基频再生放大器的再生腔内被放大的基频超短脉冲激光同样通过变频介质11,在满足相位匹配下,由光学参量效应产生3.5μm波长变频超短脉冲激光,并在光学参量振荡腔反馈振荡。由于光学参量振荡腔光学长度是基频再生放大器再生腔光学长度一半,因此3.5μm变频超短脉冲激光依次被第一变频光反射镜9、第一分光镜7、第二变频光镜10、第一分光镜7反射两个循环回到变频介质11时,1064nm的基频超短脉冲激光也再次到达变频介质11,因此3.5μm变频超短脉冲激光在1064nm基频超短脉冲激光泵浦下得到放大。重复以上过程直至3.5μm变频超短脉冲激光达到最大值,此时变频光Q开关14工作,将3.5μm中红外变频超短脉冲激光从变频光偏振器13倒出获得高能量的3.5μm脉冲激光,其具有与基频再生放大器相同的重频100kHz。
实施例3
图3所示是一种高能量超短脉冲光学参量振荡器的结构示意图。与实施例2相比,将变频介质11替换为周期性极化铌酸锂PPLN晶体,基频光偏振器4和变频光偏振器13均选用偏振棱镜;通过镀膜将第一基频光反射镜2和第二分光镜8镀制到同一片镜片上,即该镜片既是第一基频光反射镜2,又是第二分光镜8.
基频超短脉冲激光器1选用1030nm SESAM被动锁模Yb:YAG光纤飞秒激光器,脉冲重复频率80MHz,单脉冲能量1nJ,脉宽500fs、波长1030nm。所述基频再生放大器中的激光增益介质12采用Yb:YAG盘片晶体。第一基频光反射镜2基片材料为氟化钙,通过镀介质膜实现对1030nm激光反射率均大于99%,对3.9μm波长激光透过率大于98%,因此第一基频光反射镜2同时是第二分光镜8;第二基频光反射镜3基片材料为石英,通过镀介质膜实现对1030nm波长的激光反射率大于99%;基频光Q开关5为RTP电光Q开光,由基频Q开关驱动6提供重频为1MHz的驱动电压实现超短脉冲激光注入基频再生放大器;基频光偏振器4是偏振棱镜;第一分光镜7基片材料为石英,通过镀介质膜实现对1030nm波长激光透过率大于98%,对3.9μm变频激光反射率大于99%,从而可以将1030nm基频激光和3.9μm变频激光分开;第二变频光反射镜10对3.9μm波长变频激光反射率大于99%;所述第一变频光反射镜9、所述第一分光镜7、所述第二变频光反射镜10构成光学参量振荡腔,其光学长度为同样为1.8m。所述基频超短脉冲激光器输出的低能量基频超短脉冲激光通过基频光偏振器4和基频光Q开关6的组合注入并锁定在再生腔内,从而在所述基频再生放大器中往返并被放大,每往返一次通过激光增益介质12两次,脉冲能量被放大,共可放大103~106倍。基频再生放大器腔内被放大的超短脉冲激光同样通过变频介质11,在PPLN晶体中产生3.9μm变频激光,并在光学参量振荡腔反馈振荡。由于光学参量振荡腔光学长度与基频再生放大器光学长度相同,因此3.9μm变频超短脉冲激光依次被第一变频光反射镜9、第一分光镜镜7、第二变频光反射镜10反射1个循环回到变频介质11时,1030nm的基频超短脉冲激光也再次到达变频介质1,因此3.9μm变频超短脉冲激光在1030nm的基频超短脉冲激光泵浦下得到放大。重复以上过程直至3.9μm变频超短脉冲激光达到最大值,此时变频光Q开关14工作,将3.9μm中红外变频超短脉冲激光从变频光偏振器13倒出获得高能量的3.9μm脉冲激光,其具有与基频再生放大器相同的重频1MHz。
本发明提出一种光学参量振荡器,在基频超短脉冲的再生放大器腔内通过双色镜插入光学参量振荡器,只要光学参量振荡器往返一周光程与基频超短脉冲再生放大器往返一周光程相等或者光学参量振荡器往返一周光程是基频超短脉冲再生放大器往返一周光程的整数分之一,就可以实现同步泵浦条件,而与及基频光再生放大器的重复频率无关,实现高能量的超短脉冲光学参量振荡输出。
实施例4
将图2中的激光增益介质12去掉构成本实施例的一种高能量超短脉冲光学参量振荡器的结构示意图。与实施例2相比,基频超短脉冲激光器1直接采用重频1kHz、脉冲能量10mJ、脉宽30ps、波长1064nm的较低重频高能量的皮秒激光器,因此基频再生放大器内无需设置激光增益介质。在以往的技术中,无法在如此低的重频下实现超短脉冲光学参量振荡,通过本实施例的方法则可实现。
所述基频再生放大器由第一基频光反射镜2、第二基频光反射镜3、基频光偏振器4、基频光Q开关5、激光增益介质12构成,光学长度为1.5m,即再生腔的光学长度为1.5m;第一基频光反射镜2基片材料为石英,通过镀介质膜实现对1064nm和,2.1μm波长的激光反射率均大于99%,因此它同时是第一变频光反射镜9;第二基频光反射镜3材料为石英,通过镀介质膜实现对1064nm波长的激光反射率大于99%;基频光Q开关5为KD*P电光Q开光,由基频Q开关驱动6提供重频为1kHz的驱动电压实现基频再生放大器中基频超短脉冲激光的注入;基频光偏振器4是薄膜偏振片;第一分光镜7基片为石英,通过镀介质膜实现对1064nm波长激光透过率大于98%,对2.1μm中红外波长激光反射率大于99%,从而将1064nm基频超短脉冲激光和2.1μm中红外变频超短脉冲激光分开;所述变频介质11为KTP晶体;第二变频光反射镜10对2.1μm波长激光反射率大于99%。
在本实施例中,第一变频光反射镜9、所述第一分光镜7、所述第二变频光反射镜10构成光学参量振荡腔,光学参量振荡腔光学长度为0.75m,等于再生放大器再生腔光学长度一半。所述基频超短脉冲激光器1产生的基频超短脉冲激光通过基频光偏振器4和基频光Q开关5组合注入并锁定在再生腔内,从而在所述基频再生放大器中往返。
基频再生放大器的再生腔内往返的基频超短脉冲激光同样通过变频介质11,在满足相位匹配下,由光学参量效应产生2.1μm波长变频超短脉冲激光,并在光学参量振荡腔反馈振荡。由于光学参量振荡腔光学长度是基频再生放大器振荡腔光学长度一半,因此2.1μm变频超短脉冲激光依次被第一变频光反射镜9、第一分光镜7、第二变频光镜10、第一分光镜7反射2个循环回到变频介质11时,1064nm的基频超短脉冲激光也再次到达变频介质11,因此2.1μm变频超短脉冲激光在1064nm基频超短脉冲激光往返泵浦下得到放大,且1064nm基频超短脉冲激光能量被消耗。重复以上过程直至2.1μm变频超短脉冲激光达到最大值,此时变频光Q开关14工作,将2.1μm中红外变频超短脉冲激光从变频光偏振器13倒出获得高能量的2.1μm脉冲激光,其具有与基频再生放大器相同的重频1kHz。
综上所述,本发明提出一种光学参量振荡器,在基频超短脉冲的再生放大器腔内通过双色镜插入光学参量振荡器,只要光学参量振荡器往返一周光程与基频超短脉冲再生放大器往返一周光程相等或者光学参量振荡器往返一周光程是基频超短脉冲再生放大器往返一周光程的整数分之一,就可以实现同步泵浦条件,而与及基频光再生放大器的重复频率无关,实现高能量的超短脉冲光学参量振荡输出。
最后,本发明的方法仅为较佳的实施方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种光学参量振荡器,其特征在于,包括基频超短脉冲激光器、基频再生放大器、光学参量振荡腔;
所述基频超短脉冲激光器用于产生基频超短脉冲激光;
所述基频再生放大器包括第一基频光反射镜、第二基频光反射镜、基频光偏振器、基频光Q开关;
所述第一基频光反射镜和所述第二基频光反射镜相对设置构成再生腔;所述基频光偏振器和基频光Q开关组合,用于接收所述基频超短脉冲激光并将所述基频超短脉冲激光锁定在再生腔内,以使所述基频超短脉冲激光沿再生腔的光轴线在所述再生腔内振荡;
所述再生腔的光轴线上设有变频介质以及至少一个分光镜,所述变频介质用于接收基频超短脉冲激光并产生变频超短脉冲激光,接收变频超短脉冲激光并放大;所述分光镜用于将所述变频超短脉冲激光分光并传输至所述光学参量振荡腔,以使所述变频超短脉冲激光在所述光学参量振荡腔内振荡。
2.根据权利要求1所述的光学参量振荡器,其特征在于,所述分光镜包括第一分光镜和第二分光镜,所述第一分光镜分光并传输变频超短脉冲激光的光路上设有第一变频光反射镜,所述第二分光镜分光并传输变频超短脉冲激光的光路上设有第二变频光反射镜,所述第一变频光反射镜、第一分光镜、第二分光镜、第二变频光反射镜组成所述光学参量振荡腔。
3.根据权利要求1或2所述的光学参量振荡器,其特征在于,所述第一基频光反射镜上还镀有变频光高反膜,所述分光镜分光并传输变频超短脉冲激光的光路上还设有一变频光反射镜,所述第一基频光反射镜、所述分光镜、所述变频光反射镜组成所述光学参量振荡腔。
4.根据权利要求2所述的光学参量振荡器,其特征在于,所述第一基频光反射镜和所述第二基频光反射镜对基频超短脉冲激光反射率均大于90%;所述第一变频光反射镜、第二变频光反射镜对变频超短脉冲激光的反射率大于50%。
5.根据权利要求1所述的光学参量振荡器,其特征在于,所述变频超短脉冲激光在所述光学参量振荡腔内往返一周的光程为所述基频超短脉冲激光在所述再生腔内往返一周的光程的1/n,其中n是正整数。
6.根据权利要求1所述的光学参量振荡器,其特征在于,在所述第一基频光反射镜和所述第二基频光反射镜间设有激光增益介质,用于放大所述再生腔内的基频超短脉冲激光。
7.根据权利要求1所述的光学参量振荡器,其特征在于,所述基频光Q开关连接有基频Q开关驱动;所述基频Q开关驱动用于为所述基频光Q开关提供重频为1Hz~1MHz的驱动电压。
8.根据权利要求1、2或3所述的光学参量振荡器,其特征在于,所述光学参量振荡腔内还设有变频光Q开关和变频光偏振器,所述变频光Q开关用于将变频超短脉冲激光从变频光偏振器导出。
9.根据权利要求1所述的光学参量振荡器,其特征在于,所述变频介质为KTiOPO4、RbTiOAsO4、KTiOAsO4、LiNbO3、LiInS2、LiGaSe2、BaGa4S7、BaGa4Se7、BBO、PPLN、SiC非线性光学晶体中的一种。
10.根据权利要求1所述的光学参量振荡器,其特征在于,所述基频超短脉冲激光器为锁模激光器、被动调Q激光器或半导体激光器。
CN201711384711.3A 2017-12-20 2017-12-20 一种光学参量振荡器 Active CN107863683B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201711384711.3A CN107863683B (zh) 2017-12-20 2017-12-20 一种光学参量振荡器
PCT/CN2018/121698 WO2019120186A1 (zh) 2017-12-20 2018-12-18 一种光学参量振荡器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711384711.3A CN107863683B (zh) 2017-12-20 2017-12-20 一种光学参量振荡器

Publications (2)

Publication Number Publication Date
CN107863683A true CN107863683A (zh) 2018-03-30
CN107863683B CN107863683B (zh) 2020-06-02

Family

ID=61706642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711384711.3A Active CN107863683B (zh) 2017-12-20 2017-12-20 一种光学参量振荡器

Country Status (2)

Country Link
CN (1) CN107863683B (zh)
WO (1) WO2019120186A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019120186A1 (zh) * 2017-12-20 2019-06-27 中国科学院理化技术研究所 一种光学参量振荡器
CN111224308A (zh) * 2018-11-23 2020-06-02 中国科学院理化技术研究所 一种中红外光参量全固态激光源
CN112864789A (zh) * 2021-01-11 2021-05-28 中国科学院理化技术研究所 一种皮秒脉冲光学参量变频激光输出装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202018937D0 (en) * 2020-12-01 2021-01-13 Res & Innovation Uk Compact high energy regenerative amplifier

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1461081A (zh) * 2003-06-18 2003-12-10 清华大学 折叠型内腔变反射率光参量振荡器
CN1630967A (zh) * 2001-09-20 2005-06-22 费多尔·V·卡尔普什科 激光辐射的腔内频率变换
US20070268940A1 (en) * 2006-05-19 2007-11-22 Pavilion Integration Corporation Self-contained module for injecting signal into slave laser without any modifications or adaptations to it
CN101673917A (zh) * 2009-09-29 2010-03-17 天津大学 端面泵浦中红外kta参量振荡器
CN101676785A (zh) * 2008-09-18 2010-03-24 中国科学院福建物质结构研究所 一种产生2微米波段激光的光参量振荡器
CN103199427A (zh) * 2013-03-14 2013-07-10 天津大学 一种内腔单谐振光学参量振荡器
CN105305221A (zh) * 2015-11-25 2016-02-03 吕志伟 一种百皮秒至纳秒脉冲宽度可调的固体激光器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106856292B (zh) * 2017-02-21 2019-03-08 中国科学院上海光学精密机械研究所 基于外差拍频锁定的种子注入2μm波段单频脉冲光参量振荡器
CN106711745B (zh) * 2017-02-26 2019-03-08 中国科学院上海光学精密机械研究所 宽调谐、窄线宽纳秒脉冲双共振中红外参量振荡器
CN107863683B (zh) * 2017-12-20 2020-06-02 中国科学院理化技术研究所 一种光学参量振荡器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1630967A (zh) * 2001-09-20 2005-06-22 费多尔·V·卡尔普什科 激光辐射的腔内频率变换
CN1461081A (zh) * 2003-06-18 2003-12-10 清华大学 折叠型内腔变反射率光参量振荡器
US20070268940A1 (en) * 2006-05-19 2007-11-22 Pavilion Integration Corporation Self-contained module for injecting signal into slave laser without any modifications or adaptations to it
CN101676785A (zh) * 2008-09-18 2010-03-24 中国科学院福建物质结构研究所 一种产生2微米波段激光的光参量振荡器
CN101673917A (zh) * 2009-09-29 2010-03-17 天津大学 端面泵浦中红外kta参量振荡器
CN103199427A (zh) * 2013-03-14 2013-07-10 天津大学 一种内腔单谐振光学参量振荡器
CN105305221A (zh) * 2015-11-25 2016-02-03 吕志伟 一种百皮秒至纳秒脉冲宽度可调的固体激光器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI-JIAO HE等: "30.5-μJ, 10-kHz, picosecond optical parametric oscillator pumped synchronously and intracavity by a regenerative amplifier", 《OPTICS LETTERS》 *
V.KRYLOV等: "Femtosecond noncollinear and collinear parametric generation and amplification in BBO crystal", 《APPL. PHYS. B》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019120186A1 (zh) * 2017-12-20 2019-06-27 中国科学院理化技术研究所 一种光学参量振荡器
CN111224308A (zh) * 2018-11-23 2020-06-02 中国科学院理化技术研究所 一种中红外光参量全固态激光源
CN112864789A (zh) * 2021-01-11 2021-05-28 中国科学院理化技术研究所 一种皮秒脉冲光学参量变频激光输出装置
CN112864789B (zh) * 2021-01-11 2022-05-03 中国科学院理化技术研究所 一种皮秒脉冲光学参量变频激光输出装置

Also Published As

Publication number Publication date
CN107863683B (zh) 2020-06-02
WO2019120186A1 (zh) 2019-06-27

Similar Documents

Publication Publication Date Title
Burr et al. High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate
EP3223069B1 (en) Method and apparatus for generating thz radiation
CN107863683A (zh) 一种光学参量振荡器
EP2517320A1 (en) Ultrafast raman laser systems and methods of operation
CN104064947B (zh) 一种全固态锁模Yb激光器同步泵浦的飞秒光学参量振荡器
WO2006133387A2 (en) Quasi-synchronously pumped lasers for self-starting pulse generation and widely tunable systems
Du et al. Actively Q-switched intracavity second-harmonic generation of 1.06 μm in BiB3O6 crystal
Rotermund et al. Compact all-diode-pumped femtosecond laser source based on chirped pulse optical parametric amplification in periodically poled KTiOPO/sub 4
US11165218B2 (en) Low repetition rate infrared tunable femtosecond laser source
US20240027873A1 (en) Wavelength-tunable source of pulsed laser radiation for vis-nir spectroscopy
Lin et al. Effects of nonlinear phase in cascaded mode-locked Nd: YVO 4 laser
Emmerichs et al. Generation of high-repetition rate femtosecond pulses tunable in the mid-infrared
Driel et al. Femtosecond pulses from the ultraviolet to the infrared: optical parametric processes in a new light
Kartaloglu et al. Femtosecond self-doubling optical parametric oscillator based on KTiOAsO 4
Temel et al. Power Scaling of a Narrowband-Seeded PPLN Non-Resonant Optical Parametric Oscillator
Wise Optical Pulse Generation: Ultrafast
Pizzurro Innovative technique for generation of femtosecond high energy pulses in fiber lasers
Nandy et al. Stable, high-average-power, narrow-linewidth source at 2.1 µm pumped at 1.064 μm
RU2548394C1 (ru) Рамановский волоконный импульсный лазер
Ghotbi et al. Ti: sapphire-pumped infrared femtosecond optical parametric oscillator based on BiB3O6
Reekie et al. Difference frequency generation with a synchronously mode-locked cw dye laser system
Forget et al. Direct Active Mode-Locking of an Optical Parametric Oscillator
Akbari High peak power ultra-short pulse diode-pumped Yb: KGW lasers
Mondal et al. Intracavity cascaded second order interaction in BBO for generation of efficient, widely tunable coherent radiation
Moutzouris et al. Ultra-wide band wavelength converters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant