WO2019119784A1 - 一种除膜处理方法和设备 - Google Patents

一种除膜处理方法和设备 Download PDF

Info

Publication number
WO2019119784A1
WO2019119784A1 PCT/CN2018/095379 CN2018095379W WO2019119784A1 WO 2019119784 A1 WO2019119784 A1 WO 2019119784A1 CN 2018095379 W CN2018095379 W CN 2018095379W WO 2019119784 A1 WO2019119784 A1 WO 2019119784A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning mirror
film
solar cell
thin film
mirror
Prior art date
Application number
PCT/CN2018/095379
Other languages
English (en)
French (fr)
Inventor
黄同阳
徐晓华
王旭东
郭政
蔡涔
Original Assignee
君泰创新(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 君泰创新(北京)科技有限公司 filed Critical 君泰创新(北京)科技有限公司
Publication of WO2019119784A1 publication Critical patent/WO2019119784A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to photovoltaic technology, in particular to a film removal processing method and device.
  • Photovoltaic power generation is a recognized clean energy source. In recent years, photovoltaic power generation has been strongly supported by national policies. As a membrane-removing photovoltaic module, it is widely used in combination with buildings, automobiles, etc. because it can generate electricity and collect light. BIPV (Building Integrated Photovoltaic), solar photovoltaic power generation system attached to buildings (BAPV) , Building Attached Photovoltaic) and so on.
  • BIPV Building Integrated Photovoltaic
  • BAPV Building Attached Photovoltaic
  • the production of thin film solar cells is mostly laser scribed, that is, the laser is used to remove a certain proportion of the film without removing the film to achieve the film removal effect, but the conventional laser film removal generally uses the motor to drag the laser head.
  • the line mode or in the case of the laser beam not moving, is realized by the reticle method of reciprocating movement of the battery piece, both of which are limited by the mechanical movement capability, and the scribe line speed can only reach 1000-2000 mm per second ( Mm/s), at the same time, the spot diameter or spot width is generally limited to 50 micrometers ( ⁇ m) to 100 ⁇ m, so the film removal rate is low.
  • the conventional laser film removal scribing is used to increase the film removal rate.
  • the laser heads are processed at the same time. Due to the difference in performance of each laser, chromatic aberration is likely to occur in different processing areas.
  • Embodiments of the present invention provide a film removing processing method and apparatus, which can improve the film removing efficiency without generating chromatic aberration.
  • An embodiment of the present invention provides a film removal processing apparatus, including: an optical component; the optical component includes:
  • a laser generator for generating a laser beam
  • a first scanning mirror for reflecting the laser beam
  • a second scanning mirror for reflecting the laser beam reflected by the first scanning mirror
  • a focusing mirror for focusing the laser beam reflected by the second scanning mirror to the thin film solar cell for performing a film removing process
  • the film removal processing apparatus further includes a processor and a memory in which instructions are stored, and when the instructions are executed by the processor, the following steps are implemented:
  • the thin film solar cell or the optical component is moved to a designated position, and the first scanning mirror and/or the second scanning mirror are controlled to be deflected to perform a film removing process on the thin film solar cell.
  • the power of the laser generator is greater than or equal to a preset power.
  • the first scanning mirror and the second scanning mirror are scanning galvanometers.
  • the focal length of the focusing mirror is greater than or equal to a preset focal length.
  • the thin film solar cell panel includes one or more preset regions, each preset region being less than or equal to a scanning range of the first scanning mirror and the second scanning mirror;
  • the thin film solar cell or the optical component is moved to a designated position, and the first scanning mirror and/or the second scanning mirror are controlled to be deflected to perform a film removing process on the current preset area.
  • the embodiment of the invention provides a method for removing a film, comprising:
  • the optical component comprises: the laser generator, the first scanning mirror The second scanning mirror and the focusing mirror, the laser beam generated by the laser generator is reflected by the first scanning mirror and the second scanning mirror, and the focusing mirror focuses the reflected laser beam onto the thin film solar cell sheet for film removal processing.
  • the method also includes:
  • the controlling the deflection of the first scanning mirror and/or the second scanning mirror to perform a film removal process on the thin film solar cell sheet includes:
  • the first scanning mirror and/or the second scanning mirror are controlled to be deflected to perform a film removing process on the current preset area.
  • it also includes:
  • the embodiment of the present invention includes: an optical component; the optical component includes: a laser generator for generating a laser beam; and a second scanning mirror for reflecting the laser beam reflected by the first scanning mirror; a first scanning mirror for reflecting the laser beam; a focusing mirror for focusing the laser beam reflected by the second scanning mirror to the thin film solar cell for performing a film removing process; wherein the thin film solar cell chip comprises one or more a preset area, each of which is smaller than or equal to a scanning range of the first scanning mirror and the second scanning mirror; the film removing processing apparatus further includes a processor and a memory, wherein the memory stores an instruction And when the instruction is executed by the processor, implementing the steps of: moving the thin film solar cell or the optical component to a designated position, controlling the first scanning mirror and/or the second scanning mirror to occur Deflection to perform a film removal process on the current preset area.
  • the scanning film removal process of the thin film solar cell sheet is realized by using a pair of scanning mirrors, the disposable processing area is increased, the film removal rate is increased, and the film removal rate can be improved by using a single laser generator. , there will be no chromatic aberration.
  • the laser removal process with a laser power greater than or equal to the preset power is used to remove the film, thereby increasing the spot of the laser beam and further increasing the film removal rate.
  • FIG. 1 is a schematic structural view of a thin film solar cell according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a conventional film removal processing method
  • FIG. 3 is a schematic structural diagram of a film removal processing apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic view of a thin film solar cell sheet according to an embodiment of the present invention.
  • FIG. 5 is a flow chart of a method for removing a film according to an embodiment of the present invention.
  • the thin film solar cell includes, in order from top to bottom, a back electrode layer 1, a photovoltaic film layer 2, a front electrode layer 3, and a transparent substrate 4.
  • the film removal method uses a laser to selectively etch the back electrode layer 1 and the photovoltaic film layer 2, or the back electrode layer 1, the photovoltaic film layer 2, and the front electrode layer.
  • the conventional film removal processing method is as shown in FIG. 2.
  • the thin film solar cell sheet 200 has a battery structure scribe line 221 parallel to the X-axis.
  • the battery structure scribe line 221 is a scribe line inherent on the thin film solar cell sheet 200.
  • the laser generator 210 is required to perform a film removal process.
  • the film removal line 220 parallel to the Y axis of the thin film solar cell sheet 200 needs to be obtained by the laser generator 210 for removing the film.
  • the specific film removal processing method is as follows:
  • the laser generator 210 is fixed at a certain position on the Z-axis, and the laser beam 211 generated by the laser generator 210 is emitted in a fixed direction through the focusing mirror 212.
  • the thin film solar cell sheet 200 is gripped on a platform that is parallel to the XOY plane, and the platform can move the thin film solar cell sheet 200 in a direction parallel to the Y axis by mechanical movement of the Y axis, thereby generating a parallel to the Y axis.
  • the film engraving line 220 After the film engraving line 220 is generated, after a complete film engraving line 220 parallel to the Y axis is generated, if another film removing line 220 parallel to the Y axis is required, the platform needs to be dragged by the X axis mechanical movement.
  • the moving thin film solar cell 200 is stepped to produce another film removing line 220 parallel to the Y axis.
  • the traditional film removal treatment method is limited by the mechanical movement ability, and the scribe speed can only reach 1000-2000 mm/s.
  • the spot diameter or the spot width is generally limited to 50 ⁇ m to 100 ⁇ m, so the film removal rate is low, and the other
  • multiple laser heads are used for simultaneous processing. Due to the difference in performance of each laser, different processing areas are prone to chromatic aberration.
  • an embodiment of the present invention provides a film removal processing apparatus, including: an optical component.
  • the optical components include:
  • a laser generator 310 for generating a laser beam
  • a second scanning mirror 312b for reflecting the laser beam reflected by the first scanning mirror 312a
  • the focusing mirror 313 is configured to focus the laser beam reflected by the second scanning mirror 312b to the thin film solar cell sheet 300 for performing a film removing process.
  • the power of the laser generator 310 is greater than or equal to the preset power.
  • the power of the laser generator 310 is several tens of W to several hundred W.
  • a green laser generator with a power of 100 W and a wavelength of 532 nm (nm) is used.
  • the first scanning mirror 312a and the second scanning mirror 312b are scanning galvanometers.
  • the focal length of the focusing mirror 313 is greater than or equal to the preset focal length.
  • the focusing mirror 313 has a focal length of 825 millimeters (mm), such as a focusing mirror of the type F825.
  • the above-mentioned film removing processing apparatus further includes a processor and a memory, wherein the memory stores instructions, and when the instructions are executed by the processor, the following steps are implemented:
  • the thin film solar cell or the optical component is moved to a designated position, and the first scanning mirror and/or the second scanning mirror are controlled to be deflected to perform a film removing process on the solar cell sheet 300.
  • the processing area per time cannot be larger than the scanning range, and therefore, when the thin film solar cell sheet 300 is less than or equal to the first When scanning the scanning mirror 312a and the second scanning mirror 312b, the thin film solar cell 300 does not need to be divided; when the thin film solar cell 300 is larger than the scanning range of the first scanning mirror 312a and the second scanning mirror 312b, it is required
  • the thin film solar cell sheet 300 is divided into two or more preset regions, and then each of the preset regions is subjected to a film removing process, that is, the first predetermined region is subjected to a film removing process, and after completion, the second portion is completed.
  • the predetermined area is subjected to the film removal process, and after completion, the third preset area is subjected to the film removal process, ..., and so on, until the film removal process is completed for all the preset areas.
  • the pattern of the film removing film may be any pattern.
  • the pattern of the film removing film may be a spot, or may be a reticle or other pattern, which is in the embodiment of the present invention. Not limited.
  • the laser beam 311 is required to form a reticle during the movement to satisfy the overlap ratio between any two adjacent spots greater than or equal to a preset threshold. If the overlap ratio between two adjacent spots is less than a preset threshold, two mutually independent spots are obtained.
  • the specified position should at least enable the control to control the deflection of the first scanning mirror and/or the second scanning mirror to complete the film removing process on the current preset area
  • the specified position can be any position as long as the current preset area can be removed. For example, in FIG. 3, if it is desired to implement the film removing line 320 parallel to the Y axis, the first scanning mirror 312a and the second scanning mirror 312b may be first adjusted to the zeroing position, and then the thin film solar cell or optical component is moved. To the designated position, the laser beam is focused to the upper left corner of the preset area, and then the first scanning mirror 312a and the second scanning mirror 312b are controlled to be deflected.
  • the thin film solar cell panel includes three preset regions, which are a preset region 420a, a preset region 420b, and a preset region 420c, respectively. It is now necessary to score 10 stripping lines 320 parallel to the Y axis in the preset area 420a, the preset area 420b and the preset area 420c, respectively, and firstly return the first scanning mirror 312a and the second scanning mirror 312b.
  • the 312a remains stationary, and the second scanning mirror 312b is controlled to be deflected, so that the laser beam gradually moves from the lower end to the upper end of the second stripping line 320, and the stripping process of the second stripping line 320 is completed.
  • the predetermined region 10 in addition to other film processing film 320 inside the reticle 420a.
  • the thin film solar cell or optical component is moved to a designated position, and the first scanning mirror and/or the second scanning mirror are controlled to be deflected to perform a film removing process on the current region.
  • the thin film solar cell or the optical component is moved to another designated position, and the first scanning mirror and/or the second scanning mirror are controlled to be deflected to perform another preset area.
  • the film is processed until the film removal process is completed for all the preset areas.
  • the scanning film removal process of the thin film solar cell sheet is realized by using a pair of scanning mirrors, the disposable processing area is increased, the film removal rate is increased, and the film removal rate can be improved by using a single laser generator. , there will be no chromatic aberration.
  • the scribe speed is 15000 mm per second (mm/s)
  • the spot width or diameter is 1 mm.
  • the film removal rate can reach 15000 square millimeters per second (mm 2 /s); while in the conventional film removal process, when the spot diameter is 100 ⁇ m and the scribe line speed is 1500 mm/s, the touch rate is 150 mm 2 /s; therefore, the film removal treatment method of the embodiment of the present invention is more than 100 times faster than the conventional film removal treatment method.
  • pattern, character, and scatter marking are performed according to an arbitrary pattern, and patterns, characters, and the like are formed on the thin film solar cell sheet 300, which is difficult in the conventional film removing processing method. Achieved.
  • an embodiment of the present invention provides a method for removing a film. Since the first scanning mirror 312a and the second scanning mirror 312b have a certain scanning range, when processing is performed, the processing area per time cannot be greater than the processing area.
  • the thin film solar cell sheet 300 needs to be divided into two or more preset regions, and then each of the preset regions is subjected to a film removing process, that is, the first The preset area is subjected to the film removing process, and after completion, the second preset area is subjected to the film removing process, and after completion, the third preset area is subjected to the film removing process, ..., and so on, until all the pre-processing Set the area to complete the film removal process.
  • the method includes:
  • Step 500 moving the thin film solar cell or optical component to a designated location.
  • the optical component comprises: a laser generator, a first scanning mirror, a second scanning mirror and a focusing mirror, wherein the laser beam generated by the laser generator is reflected by the first scanning mirror and the second scanning mirror, and the focusing mirror will reflect The laser beam is focused onto a thin film solar cell for film removal.
  • the specified position should at least enable the control to control the deflection of the first scanning mirror and/or the second scanning mirror to complete the film removing process on the current preset area
  • the specified position can be any position as long as the current preset area can be removed. For example, in FIG. 3, if it is desired to implement the film removing line 320 parallel to the Y axis, the first scanning mirror 312a and the second scanning mirror 312b may be first adjusted to the zeroing position, and then the thin film solar cell or optical component is moved. To the designated position, the laser beam is focused to the upper left corner of the preset area, and then the first scanning mirror 312a and the second scanning mirror 312b are controlled to be deflected.
  • Step 501 Control the deflection of the first scanning mirror and/or the second scanning mirror to perform a film removing process on the current preset area.
  • the pattern of the film removing film may be any pattern.
  • the pattern of the film removing film may be a spot, or may be a reticle or other pattern, which is in the embodiment of the present invention. Not limited.
  • the laser beam 311 is required to form a scribe line during the movement to satisfy the overlap ratio between any two adjacent spots being greater than or equal to a preset threshold. If the overlap ratio between two adjacent spots is less than a preset threshold, two mutually independent spots are obtained.
  • the thin film solar cell panel includes three preset regions, which are a preset region 420a, a preset region 420b, and a preset region 420c, respectively. It is now necessary to score 10 stripping lines 320 parallel to the Y axis in the preset area 420a, the preset area 420b and the preset area 420c, respectively, and firstly return the first scanning mirror 312a and the second scanning mirror 312b.
  • the 312a remains stationary, and the second scanning mirror 312b is controlled to be deflected, so that the laser beam gradually moves from the lower end to the upper end of the second stripping line 320, and the stripping process of the second stripping line 320 is completed.
  • the predetermined region 10 in addition to other film processing film 320 inside the reticle 420a.
  • controlling the first scanning mirror and/or the second scanning mirror to deflect to perform a film removal process on the current thin film solar cell panel comprises: controlling the first scanning mirror and/or The second scanning mirror is deflected to perform a film removal process on the current area.
  • the method further includes:
  • the thin film solar cell or the optical component is moved to another designated position, and the first scanning mirror and/or the second scanning mirror are controlled to be deflected to perform another preset area.
  • the film is processed until the film removal process is completed for all the preset areas.
  • the scanning film removal process of the thin film solar cell sheet is realized by using a pair of scanning mirrors, the disposable processing area is increased, the film removal rate is increased, and the film removal rate can be improved by using a single laser generator. , there will be no chromatic aberration.
  • the scribe speed is 15000 mm per second (mm/s)
  • the spot width or diameter is 1 mm.
  • the film removal rate can reach 15000 square millimeters per second (mm 2 /s); while in the conventional film removal process, when the spot diameter is 100 ⁇ m and the scribe line speed is 1500 mm/s, the touch rate is 150 mm 2 /s; therefore, the film removal treatment method of the embodiment of the present invention is more than 100 times faster than the conventional film removal treatment method.
  • pattern, character, and scatter marking are performed according to an arbitrary pattern, and patterns, characters, and the like are formed on the thin film solar cell sheet 300, which is difficult in the conventional film removing processing method. Achieved.

Abstract

一种除膜处理方法和设备,所述设备包括:光学组件;光学组件包括:激光发生器,用于产生激光光束;第一扫描镜,用于反射激光光束;第二扫描镜,用于反射第一扫描镜反射的激光光束;聚焦镜,用于将第二扫描镜反射的激光光束聚焦到薄膜太阳能电池片进行除膜处理;还包括处理器和存储器,存储器中存储有指令,当指令被处理器执行时实现以下步骤:将薄膜太阳能电池片或光学组件移动到指定位置,控制第一扫描镜和/或第二扫描镜发生偏转,以对薄膜太阳能电池片进行除膜处理。所述设备提高了除膜速率,且不会产生色差。

Description

一种除膜处理方法和设备 技术领域
本发明涉及光伏技术,尤指一种除膜处理方法和设备。
背景技术
光伏发电是一种公认的清洁能源,近年光伏发电得到国家政策的大力扶持。作为除膜光伏组件更因为既可发电又能采光而被广泛用于与建筑、汽车等结合,即光伏建筑一体化(BIPV,Building Integrated Photovoltaic)、附着在建筑物上的太阳能光伏发电系统(BAPV,Building Attached Photovoltaic)等。目前薄膜太阳能电池除膜的制作大都采用激光刻划方式,即使用激光去除一定比例的不除膜膜层而达到除膜效果,但是传统激光除膜刻划一般都采用电机拖动激光头的刻线方式,或在激光束不动的情况下,通过电池片往复运动的刻线方式来实现,这两种方式均受机械运动能力的限制,刻线速度只能达到1000~2000毫米每秒(mm/s),同时光斑直径或光斑宽度一般会被限制在50微米(μm)~100μm左右,因而除膜速率较低,另一方面,传统激光除膜刻划为了提高除膜速率会使用多个激光头同时进行加工,由于每个激光器性能有差异,不同加工区域容易产生色差。
发明内容
本发明实施例提供了一种除膜处理方法和设备,能够提高除膜效率,且不产生色差。
本发明实施例提供了一种除膜处理设备,包括:光学组件;所述光学组件包括:
激光发生器,用于产生激光光束;
第一扫描镜,用于反射所述激光光束;
第二扫描镜,用于反射所述第一扫描镜反射的激光光束;
聚焦镜,用于将所述第二扫描镜反射的激光光束聚焦到薄膜太阳能电池片进行除膜处理;
所述除膜处理设备还包括处理器和存储器,所述存储器中存储有指令,当所述指令被所述处理器执行时实现以下步骤:
将所述薄膜太阳能电池片或所述光学组件移动到指定位置,控制所述第一扫描镜和/或 所述第二扫描镜发生偏转,以对薄膜太阳能电池片进行除膜处理。
可选的,所述激光发生器的功率大于或等于预设功率。
可选的,所述第一扫描镜和所述第二扫描镜为扫描振镜。
可选的,所述聚焦镜的焦距大于或等于预设焦距。
可选的,所述薄膜太阳能电池片包括一个或多个预设区域,每一个预设区域小于或等于所述第一扫描镜和所述第二扫描镜的扫描范围;
当所述指令被所述处理器执行时实现以下步骤:
将所述薄膜太阳能电池片或所述光学组件移动到指定位置,控制所述第一扫描镜和/或所述第二扫描镜发生偏转,以对当前预设区域进行除膜处理。
可选的,当所述指令被所述处理器执行时还实现以下步骤:
对所述当前预设区域进行除膜处理完成后,将所述薄膜太阳能电池片或所述光学组件移动到另一指定位置,控制所述第一扫描镜和/或所述第二扫描镜发生偏转,以对另一预设区域进行除膜处理,直到对所有所述预设区域进行除膜处理完成。
本发明实施例提出了一种除膜处理方法,包括:
将薄膜太阳能电池片或光学组件移动到指定位置;
控制所述第一扫描镜和/或所述第二扫描镜发生偏转,以对薄膜太阳能电池片进行除膜处理;其中,所述光学组件包括:所述激光发生器、所述第一扫描镜、所述第二扫描镜和所述聚焦镜,激光发生器产生的激光光束经第一扫描镜和第二扫描镜反射,聚焦镜将反射的激光光束聚焦到薄膜太阳能电池片上进行除膜处理。
可选的,该方法之前还包括:
将薄膜太阳能电池片划分为一个或多个预设区域,每一个预设区域小于或等于第一扫描镜和第二扫描镜的扫描范围;
所述控制所述第一扫描镜和/或所述第二扫描镜发生偏转,以对薄膜太阳能电池片进行除膜处理包括:
控制所述第一扫描镜和/或所述第二扫描镜发生偏转,以对当前预设区域进行除膜处理。
可选的,还包括:
对所述当前预设区域进行除膜处理完成后,将所述薄膜太阳能电池片或所述光学组件移 动到另一指定位置,控制所述第一扫描镜和/或所述第二扫描镜发生偏转,以对另一预设区域进行除膜处理,直到对所有所述预设区域进行除膜处理完成。
与相关技术相比,本发明实施例包括:光学组件;所述光学组件包括:激光发生器,用于产生激光光束;第二扫描镜,用于反射所述第一扫描镜反射的激光光束;第一扫描镜,用于反射所述激光光束;聚焦镜,用于将第二扫描镜反射的激光光束聚焦到薄膜太阳能电池片进行除膜处理;其中,所述薄膜太阳能电池片包括一个或多个预设区域,每一个预设区域小于或等于所述第一扫描镜和所述第二扫描镜的扫描范围;所述除膜处理设备还包括处理器和存储器,所述存储器中存储有指令,当所述指令被所述处理器执行时实现以下步骤:将所述薄膜太阳能电池片或所述光学组件移动到指定位置,控制所述第一扫描镜和/或所述第二扫描镜发生偏转,以对当前预设区域进行除膜处理。通过本发明实施例,采用一对扫描镜实现对薄膜太阳能电池片进行扫描式除膜处理,增加了一次性加工面积,提高了除膜速率,并且采用单一的激光发生器即可提高除膜速率,不会产生色差。
在一个可选方案中,采用大于或等于预设功率的激光发生器进行除膜处理,加大了激光光束的光斑,进一步提高了除膜速率。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1为本发明实施例薄膜太阳能电池的结构示意图;
图2为传统除膜处理方法的示意图;
图3为本发明实施例除膜处理设备的结构组成示意图;
图4为本发明实施例薄膜太阳能电池片的示意图;
图5为本发明实施例除膜处理方法的流程图。
具体实施方式
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在介绍本发明实施例的除膜处理方法之前,首先介绍采用该方法的薄膜太阳能电池的结构。图1为本发明实施例薄膜太阳能电池的结构示意图。如图1所示,薄膜太阳能电池从上至下依次包括:背电极层1、光伏薄膜层2、前电极层3和透明衬底4。一般除膜处理方法是使用激光对背电极层1和光伏薄膜层2,或者对背电极层1、光伏薄膜层2及前电极层进行选择性刻蚀去除。
传统的除膜处理方法如图2所示,薄膜太阳能电池片200上已有平行于X轴的电池结构刻线221,该电池结构刻线221是薄膜太阳能电池片200上固有的刻线,不需要激光发生器210进行除膜处理获得。
而薄膜太阳能电池片200上平行于Y轴的除膜刻线220则需要采用激光发生器210进行除膜处理获得,具体的除膜处理方法大致如下:
将激光发生器210固定在Z轴某一位置上,激光发生器210产生的激光束211通过聚焦镜212进行固定方向出光。薄膜太阳能电池片200被抓夹在平台上,该平台与XOY平面平行,该平台可以通过Y轴机械运动拖动薄膜太阳能电池片200沿着平行于Y轴的方向运动,从而产生平行于Y轴的除膜刻线220,当产生一条完整的平行于Y轴的除膜刻线220后,如若需要产生另一条平行于Y轴的除膜刻线220,则需要将平台通过X轴机械运动拖动薄膜太阳能电池片200进行步进,从而产生另一条平行于Y轴的除膜刻线220。
传统的除膜处理方法受机械运动能力的限制,刻线速度只能达到1000~2000mm/s,同时光斑直径或光斑宽度一般会被限制在50μm~100μm左右,因而除膜速率较低,另一方面,传统激光除膜刻划为了提高除膜速率会使用多个激光头同时进行加工,由于每个激光器性能有差异,不同加工区域容易产生色差。
参见图3,本发明实施例提出了一种除膜处理设备,包括:光学组件。
其中,光学组件包括:
激光发生器310,用于产生激光光束;
第一扫描镜312a,用于反射激光光束;
第二扫描镜312b,用于反射第一扫描镜312a反射的激光光束;
聚焦镜313,用于将第二扫描镜312b反射的激光光束聚焦到薄膜太阳能电池片300进行除膜处理。
在一个可选的实施例中,激光发生器310的功率大于或等于预设功率。例如,激光发生器310的功率为几十W到几百W。如采用功率为100W,波长为532纳米(nm)的绿光激光发生器。
采用较大功率的激光发生器进行除膜处理,加大了激光光束的光斑,进一步提高了除膜速率。
在一个可选的实施例中,第一扫描镜312a和第二扫描镜312b为扫描振镜。
在一个可选的实施例中,聚焦镜313的焦距大于或等于预设焦距。例如,聚焦镜313的焦距为825毫米(mm),如型号为F825的聚焦镜。
上述除膜处理设备还包括处理器和存储器,存储器中存储有指令,当指令被处理器执行时实现以下步骤:
将薄膜太阳能电池片或光学组件移动到指定位置,控制第一扫描镜和/或第二扫描镜发生偏转,以对太阳能电池片300进行除膜处理。
其中,由于第一扫描镜312a和第二扫描镜312b有一定的扫描范围,在进行除膜处理时,每一次的加工面积不能大于该扫描范围,因此,当薄膜太阳能电池片300小于或等于第一扫描镜312a和第二扫描镜312b的扫描范围时,不需要对薄膜太阳能电池片300进行划分;当薄膜太阳能电池片300大于第一扫描镜312a和第二扫描镜312b的扫描范围时,需要将薄膜太阳能电池片300划分为两个或两个以上预设区域,然后分别对每一个预设区域进行除膜处理,即对第一个预设区域进行除膜处理,完成后,对第二个预设区域进行除膜处理,完成后,对第三个预设区域进行除膜处理,……,以此类推,直到对所有预设区域进行除膜处理完成。
下面详细介绍对每一个预设区域进行除膜的方法。
首先,对太阳能电池片300进行除膜处理时,除膜的图案可以是任意图案,例如,除膜的图案可以是斑点,也可以是刻线,也可以是其他图案,本发明实施例对此不作限定。
下面以除膜的图案为刻线为例进行说明。
激光光束311在移动过程中要形成刻线需要满足任意相邻两个光斑之间的重叠率大于 或等于预设阈值。如果相邻两个光斑之间的重叠率小于预设阈值,则得到的是两个相互独立的光斑点。
其中,将薄膜太阳能电池片或光学组件移动到指定位置时,该指定位置应至少能使得控制控制第一扫描镜和/或第二扫描镜发生偏转完成对当前预设区域进行除膜处理,该指定位置可以是任意位置,只要能够完成对当前预设区域进行除膜处理就可以。例如,图3中,如若需要实现平行于Y轴的除膜刻线320,可以先将第一扫描镜312a和第二扫描镜312b调到归零位置,然后将薄膜太阳能电池片或光学组件移动到指定位置,使得激光光束聚焦到预设区域的左上角,接着控制第一扫描镜312a和第二扫描镜312b发生偏转。
如图4所示,假设薄膜太阳能电池片包括三个预设区域,分别为预设区域420a、预设区域420b和预设区域420c。现需要分别在预设区域420a、预设区域420b和预设区域420c内刻划10条平行于Y轴的除膜刻线320,先将第一扫描镜312a和第二扫描镜312b调到归零位置,然后将薄膜太阳能电池片或光学组件移动到指定位置,使得激光光束聚焦到预设区域420a的第一条除膜刻线320的上端,接着控制第一扫描镜312a保持不动,控制第二扫描镜312b发生偏转,使得激光光束逐渐从第一条除膜刻线320的上端移动到下端,完成对第一条除膜刻线320的除膜处理;之后,关闭激光发生器310,并控制第二扫描镜312b保持不动,控制第一扫描镜312a发生偏转,使得激光光束移动到第二条除膜刻线320的下端,然后,开启激光发生器310,并控制第一扫描镜312a保持不动,控制第二扫描镜312b发生偏转,使得激光光束逐渐从第二条除膜刻线320的下端移动到上端,完成对第二条除膜刻线320的除膜处理,……,依次类推,直到完成预设区域420a内的10条除膜刻线320的除膜处理。
在一个可选的实施例中,当指令被处理器执行时实现以下步骤:
将薄膜太阳能电池片或光学组件移动到指定位置,控制第一扫描镜和/或第二扫描镜发生偏转,以对当前区域进行除膜处理。
在一个可选的实施例中,当指令被处理器执行时还实现以下步骤:
对当前预设区域进行除膜处理完成后,将薄膜太阳能电池片或光学组件移动到另一指定位置,控制第一扫描镜和/或第二扫描镜发生偏转,以对另一预设区域进行除膜处理,直到对所有预设区域进行除膜处理完成。
通过本发明实施例,采用一对扫描镜实现对薄膜太阳能电池片进行扫描式除膜处理,增加了一次性加工面积,提高了除膜速率,并且采用单一的激光发生器即可提高除膜速率, 不会产生色差。
例如,当第一扫描镜312a和第二扫描镜312b的扫描范围为0×0毫米(mm)到1500×1500mm,刻线速度为15000毫米每秒(mm/s),光斑宽度或直径为1mm进行除膜处理时,除膜速率可达15000平方毫米每秒(mm 2/s);而传统除膜处理方法中,当光斑直径为100μm,刻线速度为为1500mm/s时,触摸速率为150mm 2/s;因此,本发明实施例的除膜处理方法比传统的除膜处理方法快100倍以上。
另外,使用第一扫描镜312a和第二扫描镜312b实现了根据任意图形进行图案、文字、散点打标,在薄膜太阳能电池片300上形成图案、文字等,这是传统除膜处理方法难以达到的。
最后,使用较大功率激光发生器因除膜速率快,使用单个激光头即可快速完成除膜刻线,不会造成色差问题。
参见图5,本发明实施例提出了一种除膜处理方法,由于第一扫描镜312a和第二扫描镜312b有一定的扫描范围,在进行除膜处理时,每一次的加工面积不能大于该扫描范围,因此,当薄膜太阳能电池片300小于或等于第一扫描镜312a和第二扫描镜312b的扫描范围时,不需要对薄膜太阳能电池片300进行划分;当薄膜太阳能电池片300大于第一扫描镜312a和第二扫描镜312b的扫描范围时,需要将薄膜太阳能电池片300划分为两个或两个以上预设区域,然后分别对每一个预设区域进行除膜处理,即对第一个预设区域进行除膜处理,完成后,对第二个预设区域进行除膜处理,完成后,对第三个预设区域进行除膜处理,……,以此类推,直到对所有预设区域进行除膜处理完成。
该方法包括:
步骤500、将薄膜太阳能电池片或光学组件移动到指定位置。
本实施例中,光学组件包括:激光发生器、第一扫描镜、第二扫描镜和聚焦镜,激光发生器产生的激光光束经第一扫描镜和第二扫描镜反射,聚焦镜将反射的激光光束聚焦到薄膜太阳能电池片上进行除膜处理。
其中,将薄膜太阳能电池片或光学组件移动到指定位置时,该指定位置应至少能使得控制控制第一扫描镜和/或第二扫描镜发生偏转完成对当前预设区域进行除膜处理,该指定位置可以是任意位置,只要能够完成对当前预设区域进行除膜处理就可以。例如,图3中,如若需要实现平行于Y轴的除膜刻线320,可以先将第一扫描镜312a和第二扫描镜312b调 到归零位置,然后将薄膜太阳能电池片或光学组件移动到指定位置,使得激光光束聚焦到预设区域的左上角,接着控制第一扫描镜312a和第二扫描镜312b发生偏转。
步骤501、控制第一扫描镜和/或第二扫描镜发生偏转,以对当前预设区域进行除膜处理。
下面详细介绍对每一个预设区域进行除膜的方法。
首先,对太阳能电池片300进行除膜处理时,除膜的图案可以是任意图案,例如,除膜的图案可以是斑点,也可以是刻线,也可以是其他图案,本发明实施例对此不作限定。
下面以除膜的图案为刻线为例进行说明。
激光光束311在移动过程中要形成刻线需要满足任意相邻两个光斑之间的重叠率大于或等于预设阈值。如果相邻两个光斑之间的重叠率小于预设阈值,则得到的是两个相互独立的光斑点。
如图4所示,假设薄膜太阳能电池片包括三个预设区域,分别为预设区域420a、预设区域420b和预设区域420c。现需要分别在预设区域420a、预设区域420b和预设区域420c内刻划10条平行于Y轴的除膜刻线320,先将第一扫描镜312a和第二扫描镜312b调到归零位置,然后将薄膜太阳能电池片或光学组件移动到指定位置,使得激光光束聚焦到预设区域420a的第一条除膜刻线320的上端,接着控制第一扫描镜312a保持不动,控制第二扫描镜312b发生偏转,使得激光光束逐渐从第一条除膜刻线320的上端移动到下端,完成对第一条除膜刻线320的除膜处理;之后,关闭激光发生器310,并控制第二扫描镜312b保持不动,控制第一扫描镜312a发生偏转,使得激光光束移动到第二条除膜刻线320的下端,然后,开启激光发生器310,并控制第一扫描镜312a保持不动,控制第二扫描镜312b发生偏转,使得激光光束逐渐从第二条除膜刻线320的下端移动到上端,完成对第二条除膜刻线320的除膜处理,……,依次类推,直到完成预设区域420a内的10条除膜刻线320的除膜处理。
在一个可选的实施例中,控制所述第一扫描镜和/或所述第二扫描镜发生偏转,以对当前薄膜太阳能电池片进行除膜处理包括:控制第一扫描镜和/或第二扫描镜发生偏转,以对当前区域进行除膜处理。
在一个可选的实施例中,该方法还包括:
对当前预设区域进行除膜处理完成后,将薄膜太阳能电池片或光学组件移动到另一指定位置,控制第一扫描镜和/或第二扫描镜发生偏转,以对另一预设区域进行除膜处理,直到对所有预设区域进行除膜处理完成。
通过本发明实施例,采用一对扫描镜实现对薄膜太阳能电池片进行扫描式除膜处理,增加了一次性加工面积,提高了除膜速率,并且采用单一的激光发生器即可提高除膜速率,不会产生色差。
例如,当第一扫描镜312a和第二扫描镜312b的扫描范围为0×0毫米(mm)到1500×1500mm,刻线速度为15000毫米每秒(mm/s),光斑宽度或直径为1mm进行除膜处理时,除膜速率可达15000平方毫米每秒(mm 2/s);而传统除膜处理方法中,当光斑直径为100μm,刻线速度为为1500mm/s时,触摸速率为150mm 2/s;因此,本发明实施例的除膜处理方法比传统的除膜处理方法快100倍以上。
另外,使用第一扫描镜312a和第二扫描镜312b实现了根据任意图形进行图案、文字、散点打标,在薄膜太阳能电池片300上形成图案、文字等,这是传统除膜处理方法难以达到的。
最后,使用较大功率激光发生器因除膜速率快,使用单个激光头即可快速完成除膜刻线,不会造成色差问题。
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (9)

  1. 一种除膜处理设备,其特征在于,包括:光学组件;所述光学组件包括:
    激光发生器,用于产生激光光束;
    第一扫描镜,用于反射所述激光光束;
    第二扫描镜,用于反射所述第一扫描镜反射的激光光束;
    聚焦镜,用于将所述第二扫描镜反射的激光光束聚焦到薄膜太阳能电池片进行除膜处理;
    所述除膜处理设备还包括处理器和存储器,所述存储器中存储有指令,当所述指令被所述处理器执行时实现以下步骤:
    将所述薄膜太阳能电池片或所述光学组件移动到指定位置,控制所述第一扫描镜和/或所述第二扫描镜发生偏转,以对薄膜太阳能电池片进行除膜处理。
  2. 根据权利要求1所述的除膜处理设备,其特征在于,所述激光发生器的功率大于或等于预设功率。
  3. 根据权利要求1所述的除膜处理设备,其特征在于,所述第一扫描镜和所述第二扫描镜为扫描振镜。
  4. 根据权利要求1所述的除膜处理设备,其特征在于,所述聚焦镜的焦距大于或等于预设焦距。
  5. 根据权利要求1所述的除膜处理设备,其特征在于,所述薄膜太阳能电池片包括一个或多个预设区域,每一个预设区域小于或等于所述第一扫描镜和所述第二扫描镜的扫描范围;
    当所述指令被所述处理器执行时实现以下步骤:
    将所述薄膜太阳能电池片或所述光学组件移动到指定位置,控制所述第一扫描镜和/或所述第二扫描镜发生偏转,以对当前预设区域进行除膜处理。
  6. 根据权利要求5所述的除膜处理设备,其特征在于,当所述指令被所述处理器执行时还实现以下步骤:
    对所述当前预设区域进行除膜处理完成后,将所述薄膜太阳能电池片或所述光学组件移 动到另一指定位置,控制所述第一扫描镜和/或所述第二扫描镜发生偏转,以对另一预设区域进行除膜处理,直到对所有所述预设区域进行除膜处理完成。
  7. 一种除膜处理方法,其特征在于,包括:
    将薄膜太阳能电池片或光学组件移动到指定位置;
    控制所述第一扫描镜和/或所述第二扫描镜发生偏转,以对薄膜太阳能电池片进行除膜处理;其中,所述光学组件包括:所述激光发生器、所述第一扫描镜、所述第二扫描镜和所述聚焦镜,激光发生器产生的激光光束经第一扫描镜和第二扫描镜反射,聚焦镜将反射的激光光束聚焦到薄膜太阳能电池片上进行除膜处理。
  8. 根据权利要求7所述的除膜处理方法,其特征在于,该方法之前还包括:
    将薄膜太阳能电池片划分为一个或多个预设区域,每一个预设区域小于或等于第一扫描镜和第二扫描镜的扫描范围;
    所述控制所述第一扫描镜和/或所述第二扫描镜发生偏转,以对薄膜太阳能电池片进行除膜处理包括:
    控制所述第一扫描镜和/或所述第二扫描镜发生偏转,以对当前预设区域进行除膜处理。
  9. 根据权利要求8所述的除膜处理方法,其特征在于,还包括:
    对所述当前预设区域进行除膜处理完成后,将所述薄膜太阳能电池片或所述光学组件移动到另一指定位置,控制所述第一扫描镜和/或所述第二扫描镜发生偏转,以对另一预设区域进行除膜处理,直到对所有所述预设区域进行除膜处理完成。
PCT/CN2018/095379 2017-12-19 2018-07-12 一种除膜处理方法和设备 WO2019119784A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711377087.4 2017-12-19
CN201711377087.4A CN108321246A (zh) 2017-12-19 2017-12-19 一种除膜处理方法和设备

Publications (1)

Publication Number Publication Date
WO2019119784A1 true WO2019119784A1 (zh) 2019-06-27

Family

ID=62892232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095379 WO2019119784A1 (zh) 2017-12-19 2018-07-12 一种除膜处理方法和设备

Country Status (6)

Country Link
US (1) US20190189828A1 (zh)
EP (1) EP3503218A1 (zh)
JP (1) JP2019107692A (zh)
KR (1) KR20190074192A (zh)
CN (1) CN108321246A (zh)
WO (1) WO2019119784A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019119914A1 (zh) * 2017-12-19 2019-06-27 君泰创新(北京)科技有限公司 除膜处理方法和设备
KR102582854B1 (ko) * 2018-07-05 2023-09-26 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
JP7270216B2 (ja) * 2019-08-23 2023-05-10 パナソニックIpマネジメント株式会社 レーザ加工装置、レーザ加工方法、および補正データ生成方法
CN114078977A (zh) * 2020-12-18 2022-02-22 帝尔激光科技(无锡)有限公司 太阳能电池选择性发射极的制备方法和制备设备
CN113649701B (zh) * 2021-08-13 2024-03-15 苏州迈为科技股份有限公司 一种太阳能电池激光清边方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048835A (ja) * 2005-08-08 2007-02-22 Shibaura Mechatronics Corp レーザ加工装置及びそれを用いた太陽電池基板のパターニング方法
US20090233397A1 (en) * 2008-03-13 2009-09-17 Walter Psyk Method and apparatus for forming the separating lines of a photovoltaic module with series-connected cells
CN102024872A (zh) * 2009-09-14 2011-04-20 株式会社日立高新技术 膜去除检查装置和方法以及太阳电池板生产线和生产方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085457A1 (fr) * 2002-04-10 2003-10-16 Fuji Photo Film Co., Ltd. Tete d'exposition, dispositif d'exposition et utilisation
CN101431126B (zh) * 2008-12-11 2010-08-11 武汉凌云光电科技有限责任公司 一种用于薄膜太阳能电池刻膜及打点的装置
US8173473B2 (en) * 2009-09-29 2012-05-08 Applied Materials, Inc. Laser system for processing solar wafers in a carrier
CN204657748U (zh) * 2015-05-28 2015-09-23 苏州德龙激光股份有限公司 背光源加工的co2激光多光束高速划槽装置
CN205588796U (zh) * 2016-05-10 2016-09-21 常州天合光能有限公司 电池片金属细栅线激光转印头装置
CN206084144U (zh) * 2016-09-09 2017-04-12 郭碧霜 适用于大面积导光板的激光打标机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048835A (ja) * 2005-08-08 2007-02-22 Shibaura Mechatronics Corp レーザ加工装置及びそれを用いた太陽電池基板のパターニング方法
US20090233397A1 (en) * 2008-03-13 2009-09-17 Walter Psyk Method and apparatus for forming the separating lines of a photovoltaic module with series-connected cells
CN102024872A (zh) * 2009-09-14 2011-04-20 株式会社日立高新技术 膜去除检查装置和方法以及太阳电池板生产线和生产方法

Also Published As

Publication number Publication date
US20190189828A1 (en) 2019-06-20
JP2019107692A (ja) 2019-07-04
CN108321246A (zh) 2018-07-24
EP3503218A1 (en) 2019-06-26
KR20190074192A (ko) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2019119784A1 (zh) 一种除膜处理方法和设备
CN103817113B (zh) 一种金属表面污物激光清洗系统及方法
CN111014963B (zh) 一种硬脆材料的三维微加工方法
WO2000030798A1 (fr) Procede et appareil de marquage au laser, et objet ainsi marque
CN203437812U (zh) 三维振镜激光蚀刻机
JP3292294B2 (ja) レーザを用いたマーキング方法及びマーキング装置
US20170313617A1 (en) Method and apparatus for laser-cutting of transparent materials
CN102416528A (zh) 脉冲激光刻蚀玻璃基底油墨上铜导电膜的装置及其方法
CN109352184A (zh) 硅基晶圆的分束激光切割方法
CN108565313B (zh) 一种除膜处理方法和设备
CN102569519B (zh) 去除带有背场结构mwt太阳能电池的背场的方法
WO2019075789A1 (zh) 一种激光诱导koh化学反应刻蚀和切割蓝宝石的加工方法
JPH10258383A (ja) 線状レーザビーム光学系
WO2019119914A1 (zh) 除膜处理方法和设备
CN103862179A (zh) 一种陶瓷表面精细刻线结构激光加工方法
CN201646001U (zh) 一种激光打标机
CN102615421A (zh) 多层薄膜基板加工方法及装置
CN103848392B (zh) 一种微结构周期可控的大面积黑硅的制造方法
CN113210357A (zh) 时间调控双束激光诱导冲击波清洗微纳米颗粒方法及装置
CN201646002U (zh) 激光打标机
CN110508932A (zh) 飞秒激光湿法刻蚀在氮化镓表面加工微结构阵列的方法
JP3873098B2 (ja) レーザ加工方法および装置
CN202667918U (zh) 一种脉冲激光刻蚀卷对卷柔性导电膜的装置
US8585390B2 (en) Mold making system and mold making method
JP2004146823A5 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892034

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18892034

Country of ref document: EP

Kind code of ref document: A1