WO2019119733A1 - 空调器系统及具有其的空调器 - Google Patents

空调器系统及具有其的空调器 Download PDF

Info

Publication number
WO2019119733A1
WO2019119733A1 PCT/CN2018/089015 CN2018089015W WO2019119733A1 WO 2019119733 A1 WO2019119733 A1 WO 2019119733A1 CN 2018089015 W CN2018089015 W CN 2018089015W WO 2019119733 A1 WO2019119733 A1 WO 2019119733A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
cylinder
liquid separator
conditioner system
condenser
Prior art date
Application number
PCT/CN2018/089015
Other languages
English (en)
French (fr)
Inventor
董辉
卢林高
刘亮
蔡庆波
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Priority to EP18892332.0A priority Critical patent/EP3640549A4/en
Priority to US16/633,572 priority patent/US20210041151A1/en
Publication of WO2019119733A1 publication Critical patent/WO2019119733A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member

Definitions

  • the present invention relates to the field of air conditioner equipment, and in particular to an air conditioner system and an air conditioner having the same.
  • the lowest point evaporation temperature that can be obtained by a two-stage compression refrigeration device using a medium temperature refrigerant is also limited by a series of problems caused by low evaporation pressure.
  • the pressure difference between the evaporator and the outside increases, and the possibility of air infiltration into the system increases, affecting the normal operation of the system.
  • the suction specific volume is large, and the gas actually sucked into the cylinder is reduced, which increases the size of the cylinder. Therefore, when a low evaporation temperature is required, a low temperature refrigerant is used.
  • the low-temperature refrigerant has a low condensation temperature requirement, and cannot be condensed into a liquid by ordinary water cooling and air cooling, and an artificial cold source is required to condense the low-temperature refrigerant, which results in simultaneous folding of two refrigerants.
  • the refrigeration cycle in the prior art, achieves a cascade refrigeration cycle by employing a plurality of compressors, which causes a problem of increasing the cost of implementing a cascade refrigeration cycle in the prior art.
  • the main object of the present invention is to provide an air conditioner system and an air conditioner having the same, which solves the problem of high manufacturing cost of the air conditioner system in the prior art.
  • an air conditioner system includes: a compressor; a first conduit, the first conduit is in communication with the compressor; and the second conduit, the second conduit is a plurality of compressors are in communication, the first pipeline is independently disposed with the second pipeline; the evaporative condenser is disposed on the first pipeline and the second pipeline, and the first pipeline and the second pipeline are The refrigerant may be separately exchanged with the evaporating condenser; the first liquid separator, the first liquid separator is disposed on the first pipeline, the outlet of the first liquid separator is connected to the compressor; the second liquid separator, the second The liquid separator is disposed on the second pipeline, the outlet of the second liquid separator is in communication with the compressor, and the first liquid separator is disposed adjacent to the second liquid separator.
  • the compressor includes a plurality of cylinders, and the plurality of cylinders operate independently.
  • the plurality of cylinders include a first cylinder, and an outlet of the first liquid separator is in communication with an air intake hole of the first cylinder, and a first end of the first pipeline is in communication with an exhaust port of the first cylinder, first A second end of the conduit is in communication with the inlet of the first dispenser.
  • the air conditioner system further includes: a condenser, the condenser is disposed on the first pipeline, the inlet of the condenser is in communication with the exhaust port of the first cylinder, and the outlet of the condenser is connected to the first inlet of the evaporation condenser The first outlet of the evaporative condenser is in communication with the inlet of the first dispenser.
  • the air conditioner system further includes: a first throttle valve, the first throttle valve being disposed on the first pipeline and located between the evaporation condenser and the condenser.
  • the plurality of cylinders further includes a second cylinder, the outlet of the second liquid separator is in communication with the suction hole of the second cylinder, and the first end of the second pipeline is connected to the exhaust port of the second cylinder, The second end of the second conduit is in communication with the inlet of the second dispenser.
  • the air conditioner system further includes: an evaporator, the evaporator is disposed on the second pipeline, the inlet of the evaporator is in communication with the second outlet of the evaporation condenser, and the outlet of the evaporator is connected to the inlet of the second dispenser .
  • the air conditioner system further includes: a second throttle valve, the second throttle valve being disposed on the second pipeline and located between the evaporation condenser and the evaporator.
  • the volume ratio of the second cylinder to the first cylinder is T1, wherein 0.15 ⁇ T1 ⁇ 0.4.
  • an aperture ratio of the second cylinder to the suction hole of the first cylinder is T2, wherein 0.7 ⁇ T2 ⁇ 0.9.
  • the height ratio of the second cylinder to the first cylinder is T3, wherein 0.75 ⁇ T3 ⁇ 0.95.
  • the effective volume ratio of the first dispenser to the second dispenser is T4, wherein 2.5 ⁇ T4 ⁇ 6.
  • an air conditioner including an air conditioner system, which is the air conditioner system described above.
  • the first pipeline and the second pipeline are respectively provided, and the first pipeline and the second pipeline are respectively connected to one compressor, and are respectively in the first A first dispenser and a second dispenser are disposed on the pipeline.
  • the air conditioner system can realize a cascade refrigeration cycle in which only one compressor is used, which effectively saves the manufacturing cost of the air conditioner system.
  • Figure 1 shows a schematic structural view of an embodiment of an air conditioner system according to the present invention
  • Figure 2 is a schematic view showing the structure of a first embodiment of a compressor according to the present invention
  • Fig. 3 shows a schematic structural view of a second embodiment of a compressor according to the present invention.
  • spatially relative terms such as “above”, “above”, “on top”, “above”, etc., may be used herein to describe as in the drawings.
  • the exemplary term “above” can include both “over” and "under”.
  • the device can also be positioned in other different ways (rotated 90 degrees or at other orientations) and the corresponding description of the space used herein is interpreted accordingly.
  • an air conditioner system is provided in accordance with an embodiment of the present invention.
  • the air conditioner system includes a compressor 10, a first line 20, a second line 30, an evaporating condenser 40, a first liquid separator 51, and a second liquid separator 52.
  • the first line 20 is in communication with the compressor 10; the second line 30 is in communication with a plurality of compressors 10.
  • the first line 20 is disposed independently of the second line 30; the evaporation condenser 40 is disposed on the first line 20 and the second line 30.
  • the refrigerant in the first line 20 and the second line 30 can be heat exchanged with the evaporation condenser 40, respectively.
  • the first liquid separator 51 is disposed on the first conduit 20, and the outlet of the first liquid separator 51 is in communication with the compressor 10.
  • the second liquid separator 52 is disposed on the second conduit 30, the outlet of the second liquid separator 52 is in communication with the compressor 10, and the first liquid separator 51 is disposed adjacent to the second liquid separator 52.
  • the first pipeline and the second pipeline are respectively disposed independently of each other, and the first pipeline and the second pipeline are respectively connected to one compressor, and respectively in the first pipeline A first dispenser and a second dispenser are provided on the road.
  • the air conditioner system can realize a cascade refrigeration cycle in which only one compressor is used, which effectively saves the manufacturing cost of the air conditioner system.
  • the compressor 10 includes a plurality of cylinders, and the plurality of cylinders operate independently. This arrangement enables the air conditioner system to be adapted to compress different refrigerants, improving the utility and reliability of the compressor.
  • the plurality of cylinders includes the first cylinder 11.
  • the outlet of the first liquid separator 51 is in communication with the suction hole of the first cylinder 11.
  • the first end of the first line 20 communicates with the exhaust port of the first cylinder 11, and the second end of the first line 20 communicates with the inlet of the first liquid separator 51.
  • the air conditioner system also includes a condenser 61 and a first throttle valve 62.
  • the condenser 61 is disposed on the first line 20.
  • the inlet of the condenser 61 is in communication with the exhaust port of the first cylinder 11.
  • the outlet of the condenser 61 is in communication with the first inlet of the evaporating condenser 40, and the first outlet of the evaporating condenser 40 is in communication with the inlet of the first liquid separator 51.
  • the first throttle valve 62 is disposed on the first line 20 and between the evaporation condenser 40 and the condenser 61. This arrangement can effectively improve the reliability of the air conditioner system.
  • the plurality of cylinders further includes a second cylinder 12.
  • the outlet of the second liquid separator 52 communicates with the suction hole of the second cylinder 12, the first end of the second conduit 30 communicates with the exhaust port of the second cylinder 12, and the second end of the second conduit 30 It is in communication with the inlet of the second dispenser 52.
  • This arrangement enables the second line 30 to form a closed circuit with the second cylinder 12 and the second liquid separator 52 such that the circulation line formed by the second line 30 is formed by the first line 20.
  • the circulation loops are independent of one another, improving the utility and reliability of the air conditioner system.
  • the air conditioner system further includes an evaporator 63 and a second throttle valve 64.
  • the evaporator 63 is disposed on the second line 30.
  • the inlet of the evaporator 63 is in communication with the second outlet of the evaporative condenser 40.
  • the outlet of the evaporator 63 is in communication with the inlet of the second dispenser 52.
  • the second throttle valve 64 is disposed on the second conduit 30 and between the evaporation condenser 40 and the evaporator 63.
  • the volume ratio of the second cylinder 12 to the first cylinder 11 is T1, wherein 0.15 ⁇ T1 ⁇ 0.4.
  • the aperture ratio of the second cylinder 12 to the suction hole of the first cylinder 11 is T2, where 0.7 ⁇ T2 ⁇ 0.9.
  • the height ratio of the second cylinder 12 to the first cylinder 11 is T3, where 0.75 ⁇ T3 ⁇ 0.95.
  • the effective volume ratio of the first liquid separator 51 to the second liquid separator 52 is T4, wherein 2.5 ⁇ T4 ⁇ 6. This setting can effectively improve the performance of the air conditioner.
  • the air conditioner system in the above embodiment can also be used in the technical field of air conditioner equipment, that is, an air conditioner is provided.
  • the air conditioner includes an air conditioner system which is the air conditioner system in the above embodiment.
  • the air conditioner system includes a compressor 10, a first line 20, a second line 30, an evaporative condenser 40, a first liquid separator 51, and a second liquid separator 52.
  • the first line 20 is in communication with the compressor 10;
  • the second line 30 is in communication with a plurality of compressors 10.
  • the first line 20 is disposed independently of the second line 30; the evaporation condenser 40 is disposed on the first line 20 and the second line 30.
  • the refrigerant in the first line 20 and the second line 30 can be heat exchanged with the evaporation condenser 40, respectively.
  • the first liquid separator 51 is disposed on the first conduit 20, and the outlet of the first liquid separator 51 is in communication with the compressor 10.
  • the second liquid separator 52 is disposed on the second conduit 30, the outlet of the second liquid separator 52 is in communication with the compressor 10, and the first liquid separator 51 is disposed adjacent to the second liquid separator 52.
  • the first pipeline and the second pipeline are respectively disposed independently of each other, and the first pipeline and the second pipeline are respectively connected to one compressor, and respectively in the first pipeline A first dispenser and a second dispenser are provided on the road.
  • the air conditioner system can realize a cascade refrigeration cycle in which only one compressor is used, which effectively saves the manufacturing cost of the air conditioner system.
  • a cascade refrigeration cycle typically consists of two or three separate refrigeration cycles, referred to as a high temperature portion and a low temperature portion, respectively.
  • Each of these cycles is a complete single or two stage compression refrigeration system with two parts connected by an evaporative condenser.
  • a single-machine dual refrigerant compressor is provided, which can participate in two refrigeration cycles respectively and function as two compressors.
  • the second cylinder is disposed above the first cylinder.
  • the upper first cylinder of the two-cylinder compressor independently completes the compression process of two refrigeration cycles, and the single-machine dual refrigerant simplifies the cascade circulation system.
  • the two cylinders need to be connected to the dispenser parts separately.
  • the first cylinder is a high temperature refrigerant cylinder, and the high temperature refrigerant is compressed into the first cylinder through the first liquid separator, discharged to the intermediate chamber of the lower flange, and finally discharged through the high temperature refrigerant exhaust pipe 2.
  • the second cylinder is a low-temperature refrigerant cylinder.
  • the low-temperature refrigerant After the low-temperature refrigerant enters the second cylinder through the first liquid separator to complete the compression, it is directly discharged into the compressor casing through the upper flange, and finally discharged through the low-temperature exhaust pipe 1, and the low-temperature refrigerant is exhausted.
  • the temperature is lower and the motor has a cooling effect.
  • the volume ratio of the second cylinder to the first cylinder ranges from 0.15 to 0.4.
  • the ratio of the second cylinder to the first cylinder is between 0.75 and 0.95. It is further determined that the ratio of the diameters of the suction holes of the second cylinder and the first cylinder is in the range of 0.7-0.9. This arrangement can further improve the sealing reliability inside the pump body.
  • the evaporative condenser When operating in a dual refrigerant system, the evaporative condenser acts as an evaporator for the high temperature refrigerant, and the low temperature and low pressure high temperature refrigerant enters the high temperature refrigerant cylinder through the first liquid separator, and is discharged into the inner cavity of the lower flange after the compression, and the high temperature
  • the refrigerant exhaust pipe enters the condenser, the throttle valve, and finally returns to the evaporative condenser to complete the high temperature refrigerant circulation process. After the high temperature refrigerant is circulated for a period of time, the low temperature refrigerant cycle begins.
  • the low-temperature refrigerant coming out of the evaporator enters the low-temperature refrigerant cylinder through the second liquid separator, and after the compression is completed, the refrigerant is discharged into the compressor cavity through the exhaust port of the upper flange.
  • the effective volume ratio of the first dispenser to the second dispenser is in the range of 2.5-6.0. Due to the low temperature of the low-temperature refrigerant exhaust, the compressor motor has a cooling effect.
  • the low-temperature refrigerant exhaust pipe enters the evaporating condenser, the throttle valve, and finally returns to the evaporator to complete the low-temperature refrigerant refrigeration cycle.
  • a second dispenser is separately provided at the suction port of the low temperature refrigerant cylinder.
  • the inner cavity of the lower flange is used as a high-temperature refrigerant exhaust chamber, and a high-temperature refrigerant exhaust port is separately provided on the lower flange, and a high-temperature refrigerant exhaust pipe is connected.
  • the sealing distance between the parts inside the pump body is sufficient, and the first cylinder and the second cylinder can be independently compressed.
  • Figure 3 is a top view of a single-machine dual refrigerant compressor. In terms of appearance, the compressor requires two different sizes of dispensers, corresponding to high/low temperature refrigerant exhaust pipes. Among them, since the low-temperature refrigerant is first discharged into the compressor casing, the compressor motor has a cooling effect.
  • Figure 1 is a system schematic diagram of the use of the single-system dual refrigerant compressor.
  • two separate refrigeration cycles are coupled through the dual refrigerant compressor in addition to being coupled through an evaporative condenser.
  • the evaporating condenser acts as an evaporator for the high-temperature refrigerant, and the low-temperature low-pressure high-temperature refrigerant enters the high-temperature refrigerant cylinder through the first liquid separator, and is discharged into the inner cavity of the lower flange after being compressed, and enters the condenser and the throttle valve through the high-temperature refrigerant exhaust pipe.
  • the low temperature refrigerant cycle begins.
  • the low-temperature refrigerant from the evaporator enters the low-temperature refrigerant cylinder through the second dispenser, and after the compression is completed, the refrigerant is discharged into the compressor cavity through the exhaust port of the upper flange. Due to the low temperature of the low-temperature refrigerant exhaust, the compressor motor has a cooling effect.
  • the low-temperature refrigerant exhaust pipe enters the evaporating condenser, the throttle valve, and finally returns to the evaporator to complete the low-temperature refrigerant refrigeration cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种空调器系统,包括压缩机(10);第一管路(20),第一管路(20)与压缩机(10)相连通;第二管路(30),第二管路(30)也与压缩机(10)相连通,第一管路(20)与第二管路(30)独立地设置;蒸发冷凝器(40),蒸发冷凝器(40)设置于第一管路(20)和第二管路(30)上,第一管路(20)和第二管路(30)中的冷媒可分别与蒸发冷凝器(40)进行热交换;第一分液器(51),第一分液器(51)设置于第一管路(20)上,第一分液器(51)的出口与压缩机(10)相连通;第二分液器(52),第二分液器(52)设置于第二管路(30)上,第二分液器(52)的出口与压缩机(10)相连通,且第一分液器(51)与第二分液器(52)相邻地设置。另外还公开了一种具有该空调器系统的空调器。

Description

空调器系统及具有其的空调器 技术领域
本发明涉及空调器设备技术领域,具体而言,涉及一种空调器系统及具有其的空调器。
背景技术
随着科研和生产对低温的要求越来越高,采用中温制冷剂的双级压缩制冷装置所能得到的最低点蒸发温度,也受到蒸发压力过低带来的一系列问题限制。例如,蒸发器与外界的压差增大,空气渗入系统的可能性增加,影响系统的正常工作。吸气比容大,实际吸入气缸的气体减少,增加了气缸的尺寸。因此,当需要低蒸发温度时,就要采用低温制冷剂。但是,低温制冷剂的冷凝温度要求较低,用一般的水冷和空气冷却无法凝结成液体,需要用一种人工冷源来冷凝低温制冷剂,这就出现了同时采用两种制冷剂的复叠式制冷循环,而在现有技术中都是通过采用多个压缩机实现复叠式制冷循环的,这样造成现有技术中实现复叠式制冷循环的成本增加的问题。
发明内容
本发明的主要目的在于提供一种空调器系统及具有其的空调器,以解决现有技术中空调器系统制造成本高的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种空调器系统,包括:压缩机;第一管路,第一管路与压缩机相连通;第二管路,第二管路与多个压缩机相连通,第一管路与第二管路独立地设置;蒸发冷凝器,蒸发冷凝器设置于第一管路和第二管路上,第一管路和第二管路中的冷媒可分别与蒸发冷凝器进行热交换;第一分液器,第一分液器设置于第一管路上,第一分液器的出口与压缩机相连通;第二分液器,第二分液器设置于第二管路上,第二分液器的出口与压缩机相连通,且第一分液器与第二分液器相邻地设置。
进一步地,压缩机包括多个气缸,多个气缸独立地工作。
进一步地,多个气缸包括第一气缸,第一分液器的出口与第一气缸的吸气孔相连通,第一管路的第一端与第一气缸的排气口相连通,第一管路的第二端与第一分液器的进口相连通。
进一步地,空调器系统还包括:冷凝器,冷凝器设置于第一管路上,冷凝器的进口与第一气缸的排气口相连通,冷凝器的出口与蒸发冷凝器的第一进口相连通,蒸发冷凝器的第一出口与第一分液器的进口相连通。
进一步地,空调器系统还包括:第一节流阀,第一节流阀设置于第一管路上并位于蒸发冷凝器与冷凝器之间。
进一步地,多个气缸还包括第二气缸,第二分液器的出口与第二气缸的吸气孔相连通,第二管路的第一端与第二气缸的排气口相连通,第二管路的第二端与第二分液器的进口相连通。
进一步地,空调器系统还包括:蒸发器,蒸发器设置于第二管路上,蒸发器的进口与蒸发冷凝器的第二出口相连通,蒸发器的出口与第二分液器的进口相连通。
进一步地,空调器系统还包括:第二节流阀,第二节流阀设置于第二管路上并位于蒸发冷凝器与蒸发器之间。
进一步地,第二气缸与第一气缸的容积比为T1,其中,0.15≤T1≤0.4。
进一步地,第二气缸与第一气缸的吸气孔的孔径比为T2,其中,0.7≤T2≤0.9。
进一步地,第二气缸与第一气缸的高度比为T3,其中,0.75≤T3≤0.95。
进一步地,第一分液器与第二分液器的有效容积比为T4,其中,2.5≤T4≤6。
根据本发明的另一方面,提供了一种空调器,包括空调器系统,空调器系统为上述的空调器系统。
应用本发明的技术方案,在该空调系统中通过设置相互独立设置的第一管路和第二管路,第一管路和第二管路分别与一个压缩机相连通,且分别在第一管路上设置第一分液器和第二分液器。采用该空调器系统能够实现复叠式制冷循环,在该系统中由于只使用了一个压缩机,有效地节约了该空调器系统的制造成本。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的空调器系统的实施例的结构示意图;
图2示出了根据本发明的压缩机的第一实施例的结构示意图;
图3示出了根据本发明的压缩机的第二实施例的结构示意图。
其中,上述附图包括以下附图标记:
1、低温排气管;2、高温排气管;
10、压缩机;11、第一气缸;12、第二气缸;
20、第一管路;30、第二管路;40、蒸发冷凝器;51、第一分液器;52、第二分液器;61、冷凝器;62、第一节流阀;63、蒸发器;64、第二节流阀。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
现在,将参照附图更详细地描述根据本申请的示例性实施方式。然而,这些示例性实施方式可以由多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施方式。应当理解的是,提供这些实施方式是为了使得本申请的公开彻底且完整,并且将这些示例性实施方式的构思充分传达给本领域普通技术人员,在附图中,为了清楚起见,有可能扩大了层和区域的厚度,并且使用相同的附图标记表示相同的器件,因而将省略对它们的描述。
结合图1至图3所示,根据本发明的实施例,提供了一种空调器系统。
如图1所示,该空调器系统包括压缩机10、第一管路20、第二管路30、蒸发冷凝器40、第一分液器51和第二分液器52。第一管路20与压缩机10相连通;第二管路30与多个压缩机10相连通。第一管路20与第二管路30独立地设置;蒸发冷凝器40设置于第一管路20和第二管路30上。第一管路20和第二管路30中的冷媒可分别与蒸发冷凝器40进行热交换。第一分液器51设置于第一管路20上,第一分液器51的出口与压缩机10相连通。第二分液器52设置于第二管路30上,第二分液器52的出口与压缩机10相连通,且第一分液器51与第二分液器52相邻地设置。
在本实施例中,在该空调系统中通过设置相互独立设置的第一管路和第二管路,第一管路和第二管路分别与一个压缩机相连通,且分别在第一管路上设置第一分液器和第二分液器。采用该空调器系统能够实现复叠式制冷循环,在该系统中由于只使用了一个压缩机,有效地节约了该空调器系统的制造成本。
其中,压缩机10包括多个气缸,多个气缸独立地工作。这样设置能够使得该空调器系统能够适用于对不同冷媒进行压缩,提高了该压缩机的实用性和可靠性。
具体地,多个气缸包括第一气缸11。第一分液器51的出口与第一气缸11的吸气孔相连通。第一管路20的第一端与第一气缸11的排气口相连通,第一管路20的第二端与第一分液器51的进口相连通。这样设置能够使得第一管路20与第一气缸11和第一分液器51形成一个完整的循环回路,有效地提高了该管路系统的可靠性和稳定性。
空调器系统还包括冷凝器61和第一节流阀62。冷凝器61设置于第一管路20上。冷凝器61的进口与第一气缸11的排气口相连通。冷凝器61的出口与蒸发冷凝器40的第一进口相连通,蒸发冷凝器40的第一出口与第一分液器51的进口相连通。第一节流阀62设置于第一管路20上并位于蒸发冷凝器40与冷凝器61之间。这样设置能够有效地提高空调器系统的可靠性。
进一步地,多个气缸还包括第二气缸12。第二分液器52的出口与第二气缸12的吸气孔相连通,第二管路30的第一端与第二气缸12的排气口相连通,第二管路30的第二端与第二分液器52的进口相连通。这样设置使得第二管路30能够与第二气缸12和第二分液器52之间形成封闭的循环回路,使得由第二管路30形成的循环管路与由第一管路20形成的循环回路相互独立,提高了该空调器系统的实用性和可靠性。
进一步地,空调器系统还包括蒸发器63和第二节流阀64。蒸发器63设置于第二管路30上。蒸发器63的进口与蒸发冷凝器40的第二出口相连通。蒸发器63的出口与第二分液器52的进口相连通。第二节流阀64设置于第二管路30上并位于蒸发冷凝器40与蒸发器63之间。其中,优选地,第二气缸12与第一气缸11的容积比为T1,其中,0.15≤T1≤0.4。第二气缸12与第一气缸11的吸气孔的孔径比为T2,其中,0.7≤T2≤0.9。第二气缸12与第一气缸11的高度比为T3,其中,0.75≤T3≤0.95。第一分液器51与第二分液器52的有效容积比为T4,其中,2.5≤T4≤6。这样设置能够有效地提高空调器性能。
上述实施例中的空调器系统还可以用于空调器设备技术领域,即提供了一种空调器。该空调器包括空调器系统,空调器系统为上述实施例中的空调器系统。该空调器系统包括压缩机10、第一管路20、第二管路30、蒸发冷凝器40、第一分液器51和第二分液器52。第一管路20与压缩机10相连通;第二管路30与多个压缩机10相连通。第一管路20与第二管路30独立地设置;蒸发冷凝器40设置于第一管路20和第二管路30上。第一管路20和第二管路30中的冷媒可分别与蒸发冷凝器40进行热交换。第一分液器51设置于第一管路20上,第一分液器51的出口与压缩机10相连通。第二分液器52设置于第二管路30上,第二分液器52的出口与压缩机10相连通,且第一分液器51与第二分液器52相邻地设置。
在本实施例中,在该空调系统中通过设置相互独立设置的第一管路和第二管路,第一管路和第二管路分别与一个压缩机相连通,且分别在第一管路上设置第一分液器和第二分液器。采用该空调器系统能够实现复叠式制冷循环,在该系统中由于只使用了一个压缩机,有效地节约了该空调器系统的制造成本。
具体地,复叠式制冷循环通常由两个或三个独立的制冷循环组成,分别称为高温部分和低温部分。其中每一个循环都是完整的单级或两级压缩制冷系统,两部分用一个蒸发冷凝器联系起来。通常两部分独立系统会分别使用两台压缩机,导致整个系统结构较为复杂。在本申请中提供了一种单机双冷媒压缩机,该压缩机上下缸可分别参与两个制冷循环,起到两台压缩机的作用。其中,在本实施例中,第二气缸设置于第一气缸的上方。
双缸压缩机的上第一气缸分别独立完成两个制冷循环的压缩过程,单机双冷媒简化了复叠式循环系统。为避免吸气带液,两个气缸需分别连接分液器部件。其中,第一气缸为高温冷媒气缸,高温冷媒经第一分液器进入第一气缸完成压缩后,排到下法兰的中间腔,最后经高温冷媒排气管2排出。第二气缸为低温冷媒气缸,低温冷媒经第一分液器进入第二气缸完成压缩后,经上法兰直接排到压缩机壳体内部,最终经低温排气管1排出,低温冷媒排气温度较低,对电机有降温作用。
其中,第二气缸与第一气缸的容积比范围是0.15-0.4。为避免吸气孔过大影响容积效率,第二气缸与第一气缸的高的比值在0.75-0.95内。进一步可确定第二气缸与第一气缸的吸气孔的直径比值范围在0.7-0.9内。这样设置能够进一步提高了泵体内部的密封可靠性。
在双冷媒系统中运行时,蒸发冷凝器作为高温冷媒的蒸发器,低温低压的高温冷媒经第一分液器进入高温冷媒气缸中,压缩完成后排入下法兰的内腔中,经高温冷媒排气管进入冷凝器、节流阀,最后回到蒸发冷凝器,完成高温冷媒循环过程。高温冷媒循环运行一段时间后,开始低温冷媒循环。从蒸发器出来的低温冷媒,经第二分液器进入低温冷媒气缸,完成压缩后,冷媒经上法兰的排气口排入压缩机内腔。其中,第一分液器与第二分液器的有效容积比值范围是2.5-6.0。由于低温冷媒排气温度低,对压缩机电机有降温作用。经低温冷媒排气管进入蒸发冷凝器、节流阀,最后回到蒸发器,完成低温冷媒制冷循环。
低温冷媒气缸的吸气口处单独设置第二分液器。下法兰内腔作为高温冷媒排气腔,下法兰上单独设置高温冷媒排气口,并连接高温冷媒排气管。泵体内部各零件间的密封距离保证足够,第一气缸和第二气缸能够独立压缩。图3为单机双冷媒压缩机俯视图,就外观来说,该压缩机需要两个不同规格的分液器,对应有高/低温冷媒排气管。其中,由于低温冷媒先排到压缩机壳体内部,对压缩机电机有降温作用。
图1为使用该单机双冷媒压缩机的系统原理图,与传统复叠式制冷系统相比,两个独立的制冷循环除了通过蒸发冷凝器相联系外,还通过该双冷媒压缩机联系。蒸发冷凝器作为高温冷媒的蒸发器,低温低压的高温冷媒经第一分液器进入高温冷媒气缸,压缩完成后排入下法兰内腔,经高温冷媒排气管进入冷凝器、节流阀,最后回到蒸发冷凝器,完成高温冷媒循环过程。高温冷媒循环运行一段时间后,开始低温冷媒循环。从蒸发器出来的低温冷媒经第二 分液器进入低温冷媒气缸,完成压缩后,冷媒经上法兰的排气口排入压缩机内腔。由于低温冷媒排气温度低,对压缩机电机有降温作用。经低温冷媒排气管进入蒸发冷凝器、节流阀,最后回到蒸发器,完成低温冷媒制冷循环。
除上述以外,还需要说明的是在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”等,指的是结合该实施例描述的具体特征、结构或者特点包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本发明的范围内。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种空调器系统,其特征在于,包括:
    压缩机(10);
    第一管路(20),所述第一管路(20)与所述压缩机(10)相连通;
    第二管路(30),所述第二管路(30)与多个所述压缩机(10)相连通,所述第一管路(20)与所述第二管路(30)独立地设置;
    蒸发冷凝器(40),所述蒸发冷凝器(40)设置于所述第一管路(20)和所述第二管路(30)上,所述第一管路(20)和所述第二管路(30)中的冷媒可分别与所述蒸发冷凝器(40)进行热交换;
    第一分液器(51),所述第一分液器(51)设置于所述第一管路(20)上,所述第一分液器(51)的出口与所述压缩机(10)相连通;
    第二分液器(52),所述第二分液器(52)设置于所述第二管路(30)上,所述第二分液器(52)的出口与所述压缩机(10)相连通,且所述第一分液器(51)与所述第二分液器(52)相邻地设置。
  2. 根据权利要求1所述的空调器系统,其特征在于,所述压缩机(10)包括多个气缸,多个所述气缸独立地工作。
  3. 根据权利要求2所述的空调器系统,其特征在于,多个所述气缸包括第一气缸(11),所述第一分液器(51)的出口与所述第一气缸(11)的吸气孔相连通,所述第一管路(20)的第一端与所述第一气缸(11)的排气口相连通,所述第一管路(20)的第二端与所述第一分液器(51)的进口相连通。
  4. 根据权利要求3所述的空调器系统,其特征在于,所述空调器系统还包括:
    冷凝器(61),所述冷凝器(61)设置于所述第一管路(20)上,所述冷凝器(61)的进口与所述第一气缸(11)的排气口相连通,所述冷凝器(61)的出口与所述蒸发冷凝器(40)的第一进口相连通,所述蒸发冷凝器(40)的第一出口与所述第一分液器(51)的进口相连通。
  5. 根据权利要求4所述的空调器系统,其特征在于,所述空调器系统还包括:
    第一节流阀(62),所述第一节流阀(62)设置于所述第一管路(20)上并位于所述蒸发冷凝器(40)与所述冷凝器(61)之间。
  6. 根据权利要求3所述的空调器系统,其特征在于,多个所述气缸还包括第二气缸(12),所述第二分液器(52)的出口与所述第二气缸(12)的吸气孔相连通,所述第二管路(30)的第一端与所述第二气缸(12)的排气口相连通,所述第二管路(30)的第二端与所述第二分液器(52)的进口相连通。
  7. 根据权利要求6所述的空调器系统,其特征在于,所述空调器系统还包括:
    蒸发器(63),所述蒸发器(63)设置于所述第二管路(30)上,所述蒸发器(63)的进口与所述蒸发冷凝器(40)的第二出口相连通,所述蒸发器(63)的出口与所述第二分液器(52)的进口相连通。
  8. 根据权利要求7所述的空调器系统,其特征在于,所述空调器系统还包括:
    第二节流阀(64),所述第二节流阀(64)设置于所述第二管路(30)上并位于所述蒸发冷凝器(40)与所述蒸发器(63)之间。
  9. 根据权利要求6所述的空调器系统,其特征在于,所述第二气缸(12)与所述第一气缸(11)的容积比为T1,其中,0.15≤T1≤0.4。
  10. 根据权利要求6所述的空调器系统,其特征在于,所述第二气缸(12)与所述第一气缸(11)的吸气孔的孔径比为T2,其中,0.7≤T2≤0.9。
  11. 根据权利要求6所述的空调器系统,其特征在于,所述第二气缸(12)与所述第一气缸(11)的高度比为T3,其中,0.75≤T3≤0.95。
  12. 根据权利要求1所述的空调器系统,其特征在于,所述第一分液器(51)与所述第二分液器(52)的有效容积比为T4,其中,2.5≤T4≤6。
  13. 一种空调器,包括空调器系统,其特征在于,所述空调器系统为权利要求1至12中任一项所述的空调器系统。
PCT/CN2018/089015 2017-12-19 2018-05-30 空调器系统及具有其的空调器 WO2019119733A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18892332.0A EP3640549A4 (en) 2017-12-19 2018-05-30 AIR CONDITIONING SYSTEM AND AIR CONDITIONING WITH IT
US16/633,572 US20210041151A1 (en) 2017-12-19 2018-05-30 Air-conditioning system and air conditioner having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711399605.2A CN108119955B (zh) 2017-12-19 2017-12-19 空调器系统及具有其的空调器
CN201711399605.2 2017-12-19

Publications (1)

Publication Number Publication Date
WO2019119733A1 true WO2019119733A1 (zh) 2019-06-27

Family

ID=62231284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089015 WO2019119733A1 (zh) 2017-12-19 2018-05-30 空调器系统及具有其的空调器

Country Status (4)

Country Link
US (1) US20210041151A1 (zh)
EP (1) EP3640549A4 (zh)
CN (1) CN108119955B (zh)
WO (1) WO2019119733A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109489289B (zh) * 2018-11-14 2020-02-18 珠海格力电器股份有限公司 复叠式空气调节系统
CN109441759A (zh) * 2018-11-19 2019-03-08 珠海格力节能环保制冷技术研究中心有限公司 压缩机泵体、压缩机及多联机空调系统
CN109209883A (zh) * 2018-11-21 2019-01-15 珠海格力节能环保制冷技术研究中心有限公司 泵体组件、三缸压缩机
CN110185623A (zh) * 2019-06-25 2019-08-30 北京工业大学 一种吸气和排气相互独立的多缸压缩机
CN110985384B (zh) * 2019-11-29 2023-11-17 安徽美芝精密制造有限公司 压缩机及制冷设备
CN111120323A (zh) * 2019-12-26 2020-05-08 珠海格力节能环保制冷技术研究中心有限公司 一种多缸压缩机及多级复叠式制冷系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376435A (en) * 1981-04-08 1983-03-15 Pittman Charles D Solar powered air conditioning system
JP2010048500A (ja) * 2008-08-22 2010-03-04 Toshiba Carrier Corp 冷凍サイクル装置
CN105317682A (zh) * 2014-06-09 2016-02-10 珠海格力节能环保制冷技术研究中心有限公司 空调系统及其压缩机
CN105588359A (zh) * 2015-01-30 2016-05-18 海信(山东)空调有限公司 一种空调系统
CN205536635U (zh) * 2016-01-05 2016-08-31 芜湖美智空调设备有限公司 制冷系统及制冰空调扇一体机
CN107476979A (zh) * 2017-08-10 2017-12-15 珠海格力节能环保制冷技术研究中心有限公司 压缩机、空调器及压缩机的装配方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW224512B (zh) * 1992-03-19 1994-06-01 Mitsubishi Rayon Co
JP2013181513A (ja) * 2012-03-05 2013-09-12 Mitsubishi Electric Corp 圧縮機及び冷凍サイクル装置
CN103362807B (zh) * 2012-04-10 2016-06-08 珠海格力节能环保制冷技术研究中心有限公司 压缩机、具有该压缩机的空调系统以及热泵热水器系统
JP6578517B2 (ja) * 2015-01-15 2019-09-25 パナソニックIpマネジメント株式会社 冷凍サイクル装置及びそれに用いられる圧縮機
WO2017103988A1 (ja) * 2015-12-15 2017-06-22 三菱電機株式会社 二元冷凍装置用圧縮機及び二元冷凍装置
WO2017185517A1 (zh) * 2016-04-29 2017-11-02 广东美的制冷设备有限公司 冷暖型空调器、单冷型空调器及空调器的控制方法
WO2018018766A1 (zh) * 2016-07-29 2018-02-01 广东美的制冷设备有限公司 冷暖型空调器及控制方法
KR102278116B1 (ko) * 2016-10-31 2021-07-15 미쓰비시덴키 가부시키가이샤 구동 장치, 공기 조화기 및 전동기의 구동 방법
CZ2019522A3 (cs) * 2017-02-15 2019-09-25 Mitsubishi Electric Corporation Kompresor
CN207635458U (zh) * 2017-12-19 2018-07-20 珠海格力节能环保制冷技术研究中心有限公司 空调器系统及具有其的空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376435A (en) * 1981-04-08 1983-03-15 Pittman Charles D Solar powered air conditioning system
JP2010048500A (ja) * 2008-08-22 2010-03-04 Toshiba Carrier Corp 冷凍サイクル装置
CN105317682A (zh) * 2014-06-09 2016-02-10 珠海格力节能环保制冷技术研究中心有限公司 空调系统及其压缩机
CN105588359A (zh) * 2015-01-30 2016-05-18 海信(山东)空调有限公司 一种空调系统
CN205536635U (zh) * 2016-01-05 2016-08-31 芜湖美智空调设备有限公司 制冷系统及制冰空调扇一体机
CN107476979A (zh) * 2017-08-10 2017-12-15 珠海格力节能环保制冷技术研究中心有限公司 压缩机、空调器及压缩机的装配方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3640549A4 *

Also Published As

Publication number Publication date
CN108119955A (zh) 2018-06-05
EP3640549A1 (en) 2020-04-22
EP3640549A4 (en) 2020-08-05
CN108119955B (zh) 2019-10-25
US20210041151A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
WO2019119733A1 (zh) 空调器系统及具有其的空调器
CN101691960B (zh) 三管制热回收空调系统
WO2019080523A1 (zh) 压缩机、制冷系统及空调器
CN108626118B (zh) 压缩机及具有其的换热系统
US11519640B2 (en) Air conditioner
CN104764241A (zh) 一种空调
CN107084463B (zh) 复合冷源冷水机组
CN211120093U (zh) 一种带双喷射器的双温制冷系统
CN107687716A (zh) 水源热泵系统
CN217813968U (zh) 泵体组件、压缩机、双温空调系统
CN204313529U (zh) 复叠大温差双源高温热泵
CN204574648U (zh) 一种节能空调机构
CN207635458U (zh) 空调器系统及具有其的空调器
US6892548B2 (en) Rotary compressor and refrigerant cycle system having the same
CN214092307U (zh) 一种涡旋压缩机
CN108007025B (zh) 分液器、压缩机、空调器系统及具有其的空调器
CN115030900A (zh) 泵体组件、压缩机、双温空调系统
CN111677665A (zh) 压缩机及具有其的空调装置
US11300337B2 (en) Outdoor system for air conditioner
CN209355485U (zh) 热风机系统及空调
CN207501502U (zh) 分液器、压缩机、空调器系统及具有其的空调器
CN105758047A (zh) 变流量单工质共用冷凝器和蒸发器的复叠制冷系统
WO2020056943A1 (zh) 蒸发冷凝机组及其控制方法
CN107218740B (zh) 冷媒循环系统及具有其的空调器
JP6744062B2 (ja) 圧縮機及びそれを備える冷暖房型冷凍装置、冷房専用型冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892332

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018892332

Country of ref document: EP

Effective date: 20200114

NENP Non-entry into the national phase

Ref country code: DE