WO2019119520A1 - 平面透镜和平面透镜的制作方法 - Google Patents

平面透镜和平面透镜的制作方法 Download PDF

Info

Publication number
WO2019119520A1
WO2019119520A1 PCT/CN2017/120165 CN2017120165W WO2019119520A1 WO 2019119520 A1 WO2019119520 A1 WO 2019119520A1 CN 2017120165 W CN2017120165 W CN 2017120165W WO 2019119520 A1 WO2019119520 A1 WO 2019119520A1
Authority
WO
WIPO (PCT)
Prior art keywords
planar lens
lens
soft material
acoustic
planar
Prior art date
Application number
PCT/CN2017/120165
Other languages
English (en)
French (fr)
Inventor
郑海荣
夏向向
蔡飞燕
柯满竹
周慧
李飞
许迪
李永川
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to EP17935100.2A priority Critical patent/EP3730976A4/en
Publication of WO2019119520A1 publication Critical patent/WO2019119520A1/zh
Priority to US16/902,225 priority patent/US11650355B2/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/30Sound-focusing or directing, e.g. scanning using refraction, e.g. acoustic lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method

Definitions

  • the present invention relates to the field of lens technology, and in particular, to a method for fabricating a planar lens and a planar lens.
  • the focused sound field has a wide range of uses in many fields.
  • the focused sound field can be used for ultrasound imaging, ultrasound therapy, and ultrasound surgery.
  • the treatment of ultrasound in tumors and brain diseases has gradually become a research hotspot in modern medicine.
  • Traditional ultrasound therapy uses ultrasound focused transducer (HIFU).
  • HIFU treatment is caused by high-intensity focused ultrasound to induce transient hyperthermia, which makes tumor tissue extremely necrotic, thus achieving the effect of tumor treatment.
  • Focusing sound field can be accurate in neuromodulation studies. Stimulate the nucleus, effectively regulate the neural circuit, and provide an important means for studying the pathogenesis and treatment of brain function such as Parkinson's disease and depression. Therefore, focusing the sound field is of great significance for the study of ultrasound treatment.
  • Focused ultrasound transducers generally have both piezoelectric wafer self-focusing and acoustic lens focusing.
  • commercial ultrasonic concave spherical focusing transducers are basically used for related experimental research, and each focusing transducer basically has a fixed focal length and focal spot. Focusing on the sound field can only be applied to one area, and in order to meet the needs of different research, each laboratory needs to purchase different types of commercial focus transducers, which have higher economic costs.
  • an object of the present invention is to provide a method for fabricating a planar lens and a planar lens, in which a plurality of combined lenses in the same plane can generate multi-point focusing in different regions, and can have different focal lengths according to a plurality of combined lenses. Different depths of focus solve the problem that a lens can only be focused on one area.
  • accurate ultrasonic stimulation and simultaneous stimulation at different positions can be performed.
  • the present invention has simple operation, The advantages of low cost and flexible use.
  • an embodiment of the present invention provides a planar lens, wherein the planar lens is a focusing lens, comprising: an acoustic soft material tangible structure and a cover layer, the acoustic soft material tangible structure comprising a plurality of combined lenses on the same plane
  • Each of the combined lenses includes a circular portion and a plurality of concentric annular portions continuously arranged around the circular portion, and a thickness of an adjacent annular portion of each of the combined lenses is different, wherein each of the annular portions A thickness is associated with a focal length of each of the combined lenses; the cover layer overlies an outer surface of the tangible structure of the acoustic soft material to form the planar lens.
  • an embodiment of the present invention provides a first possible embodiment of the first aspect, wherein the transmittance of the material used for the cover layer is higher than the transmittance of the material used for the tangible structure of the acoustic soft material.
  • an embodiment of the present invention provides a second possible implementation manner of the first aspect, wherein the material used for the acoustic soft material tangible structure is an epoxy resin, and the material used for the cover layer is Silica gel.
  • an embodiment of the present invention provides a third possible implementation of the first aspect, wherein the planar lens has a total thickness of 3 mm.
  • an embodiment of the present invention provides a fourth possible implementation of the first aspect, wherein the focal length of each of the combined lenses is different.
  • an embodiment of the present invention provides a fifth possible implementation manner of the first aspect, wherein, in each of the combined lenses, a circular portion and a plurality of concentric portions continuously arranged around the circular portion The annular portions correspond to the same focal length.
  • an embodiment of the present invention provides a sixth possible implementation of the first aspect, wherein the material used for the acoustic soft material tangible structure is polymethyl methacrylate or polylactic acid.
  • an embodiment of the present invention provides a seventh possible implementation of the first aspect, wherein the planar lens is applied to water.
  • an embodiment of the present invention further provides a method for fabricating a planar lens, comprising: calculating a sound wave focus required at a position parallel to a plane lens plane according to a propagation wavelength of the sound in the medium and a focal length of the sound field focus. a phase; calculating a thickness of the tangible structure of the acoustic soft material at a position parallel to a plane direction of the planar lens according to a phase required for the sound wave focusing; a cover layer covering the outer surface of the tangible structure of the acoustic soft material to form a A planar lens.
  • the embodiment of the present invention provides a first possible implementation manner of the first aspect, wherein the thickness of the tangible structure of the acoustic soft material is calculated according to the formula (1) and the formula (2),
  • is the wavelength of the sound in the medium
  • 2 ⁇ f/c 0L
  • f is the operating frequency
  • h is the total thickness of the planar lens
  • t is the thickness of the tangible structure of the acoustic soft material
  • c 0L is the sound in the medium
  • the propagation velocity, c 1L is the propagation velocity of the acoustic structure of the acoustic soft material
  • c 2L is the propagation velocity of the sound in the cover layer
  • F is the focal length of the sound field focus
  • r is the position of the center of the planar lens parallel to the direction of the acoustic lens.
  • the embodiment of the invention brings about the following beneficial effects: when the planar lens is used in combination with the ultrasonic transducer, the problem that one lens can only be focused on one region can be solved, and when applied to technologies such as ultrasonic therapy or ultrasound imaging, The number of combined lenses of the planar lens, the focal length of the combined lens can be adjusted, the accurate ultrasonic stimulation can be performed and the stimulation is performed simultaneously at different positions, and the invention has the advantages of simple operation, low cost and flexible use.
  • FIG. 1 is a schematic diagram of a planar lens according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view of a combined lens according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a combined lens according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a planar lens having two combined lenses according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a planar lens having three combined lenses according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a focusing principle of a planar lens having two combined lenses according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a focusing principle of a planar lens having two combined lenses according to another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a focusing principle of a planar lens having three combined lenses according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a focusing principle of a planar lens having three combined lenses according to another embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for fabricating a planar lens according to an embodiment of the present invention.
  • 100-plane lens 110-acoustic soft material tangible structure; 120-cover layer; 130-combined lens; 131-circular portion; 132-ring portion; 200-ultrasonic plane transducer.
  • a method for fabricating a planar lens and a planar lens according to an embodiment of the present invention includes a plurality of combined lenses in the same plane, and the plurality of combined lenses can be focused in different regions, and according to different focal lengths of the plurality of combined lenses Can have different depth of focus, so when the planar lens is used in combination with the ultrasonic transducer, it can solve the problem that one lens can only be focused on one area, and when applied to technologies such as ultrasonic therapy or ultrasound imaging, the planar lens With a plurality of combined lenses, the focal length of the combined lens can be adjusted to enable accurate ultrasonic stimulation and simultaneous stimulation at different locations.
  • the present invention has the advantages of simple operation, low cost, and flexible use.
  • the planar lens 100 is a focusing lens, and includes an acoustic soft material tangible structure 110 and a cover layer 120.
  • the acoustic soft material tangible structure 110 includes a plurality of combined lenses 130 in the same plane, each of the combined lenses 130 including a circular portion 131 and a plurality of continuous rows centered on the circular portion 131. Concentric annular portions 132, the thickness of adjacent annular portions 132 in each of the combined lenses is different, wherein the thickness of each annular portion 132 is related to the focal length of each combined lens.
  • the cover layer 120 covers the outer surface of the acoustic soft material tangible structure 110 to form the planar lens 100.
  • the plurality of combined lenses 130 are closely connected in the same plane, or the plurality of combined lenses 130 are not connected to each other on the same plane.
  • the two combined lenses 130 are closely connected, and each of the combined lenses 130 can be cut and connected.
  • three combined lenses 130 are shown in close connection, and three combined lenses 130 can be cut in part and joined together.
  • the transmittance of the material used by the cover layer 120 is higher than the transmittance of the material used by the acoustic soft material tangible structure 110.
  • the acoustic soft material tangible structure 110 mainly functions to focus the ultrasonic waves if the acoustic soft material tangible structure 110 has a high reflectivity in water. That is to say, the energy of the ultrasonic wave transmitted by the planar lens 100 made of the acoustic soft material tangible structure 110 is small, resulting in poor quality of the transmitted focused sound wave, so the transmission of the material used for the cover layer 120 in water is required.
  • the rate is higher than the transmittance of the material used in the tangible structure 110 of the acoustic soft material in water, so that the energy of the ultrasonic wave transmitted out of the plane lens 100 is greater than the energy of the ultrasonic wave reflected back in the plane lens 100, so that a higher quality can be obtained.
  • the transmitted focused sound waves are higher than the transmittance of the material used in the tangible structure 110 of the acoustic soft material in water, so that the energy of the ultrasonic wave transmitted out of the plane lens 100 is greater than the energy of the ultrasonic wave reflected back in the plane lens 100, so that a higher quality can be obtained.
  • the material used for the acoustic soft material tangible structure 110 is epoxy, and the material used for the cover layer 120 is silica gel.
  • the epoxy resin material and the silicone rubber after solidification have high transmittance in water, but the silicone rubber is easily deformed and the epoxy resin material is not easily deformed, so the material used for the acoustic soft material tangible structure 110
  • the material used for the cover layer 120 is silica gel, so that the combined planar lens 100 can form a tangible state in water and obtain stable and high-quality transmitted ultrasonic waves.
  • the manufacturing process is as follows: firstly, a plurality of combined lenses formed by an epoxy resin are prepared, and then the silica gel is injected into the grooves of the plurality of combined lenses formed by the epoxy resin, and then flattened by a smooth surface mold until the silica gel is solidified.
  • the planar lens 100 can be formed.
  • the planar lens has a total thickness of 3 millimeters.
  • planar lens provided by the present invention is calculated by the formula (1) and the formula (2),
  • is the wavelength of the sound in the medium
  • 2 ⁇ f/c 0L
  • f is the operating frequency
  • h is the total thickness of the planar lens
  • t is the thickness of the tangible structure of the acoustic soft material
  • c 0L is the sound in the medium
  • the propagation velocity, c 1L is the propagation velocity of the acoustic structure of the acoustic soft material
  • c 2L is the propagation velocity of the sound in the cover layer
  • F is the focal length of the sound field focus
  • r is the position of the center of the planar lens parallel to the direction of the acoustic lens. The value of r can range from 0 to infinity.
  • the phase along with the thickness variation of the acoustic soft material tangible structure 110 is calculated, and the equation (2) calculates the phase along the phase parallel to the plane of the acoustic lens.
  • the position r is from 0 to half of the total thickness, that is, the position r has a value range of [0, 21] in millimeters, and the width of each annular member is the position r.
  • each annular portion may have a width of 3 mm.
  • the focal length of each of the combined lenses is different. Further, in each of the combined lenses, the circular portion and the plurality of concentric annular portions continuously arranged around the circular portion correspond to the same focal length.
  • the plurality of combined lenses 130 included in one planar lens 100 each have their own focal lengths, and their focal lengths may be the same or different.
  • the focal length of the circular portion 131 and the annular portion 132 in each of the combined lenses 130 is the same, that is, the same combined lens 130 has the same focal length.
  • the ultrasonic planar transducer 200 emits ultrasonic waves, which are focused by the planar lens 100.
  • the planar lens 100 has two combined lenses 130, and the focal lengths of the annular portions 132 of the two combined lenses 130 are the same. As can be seen from the figure, when the two combined lenses have the same focal length, each has two focal points in the two regions, and the two focal points are on the same horizontal plane.
  • the ultrasonic planar transducer 200 emits ultrasonic waves, which are focused by the planar lens 100.
  • the planar lens 100 has two combined lenses 130, and the focal lengths of the annular portions 132 of the two combined lenses 130 are the same.
  • each has two focal points in the two regions, and the positions of the two focal points are on different horizontal planes according to the focal length.
  • the planar lens 100 has three combined lenses, and the ultrasonic planar transducer 200 emits ultrasonic waves that are focused by the planar lens 100.
  • the three combined lenses have the same focal length, each has one focus in three regions, and since the three combined lenses 130 have the same focal length, the three focal points are on the same horizontal plane.
  • the planar lens 100 has three combined lenses, and the ultrasonic planar transducer 200 emits ultrasonic waves that are focused by the planar lens 100.
  • the three combined lenses have different focal lengths, each has one focus in three regions, and since the three combined lenses 130 have different focal lengths, the three focal points are not on the same horizontal plane.
  • the planar lens 100 of the present invention may have a plurality of combined lenses, and the plurality of combined lenses may have the same focal length, may have the same focal length, or may have different focal lengths.
  • how many combined lenses are used ? How many ultrasound-transmitted areas and how many focal points are obtained. Therefore, the planar lens 100 of the present invention can precisely and flexibly adjust the depth of focus of the plane ultrasonic focusing.
  • the focal length can also be called the depth of focus.
  • the material used for the acoustic soft material tangible structure 110 is polymethyl methacrylate or polylactic acid. Among them, polymethyl methacrylate and polylactic acid have higher transmittance in water.
  • the acoustic soft material tangible structure 110 can also be other materials having similar acoustic parameters.
  • a method for manufacturing a planar lens includes:
  • S210 Calculate a phase required for sound wave focusing at a position parallel to a plane direction of the plane lens according to a propagation wavelength of the sound in the medium and a focal length of the sound field focus.
  • S220 Calculate a thickness of the tangible structure of the acoustic soft material at a position parallel to a plane direction of the plane lens according to a phase required for sound wave focusing.
  • the cover layer covers the outer surface of the tangible structure of the acoustic soft material to form a planar lens.
  • the thickness of the tangible structure of the acoustic soft material is calculated according to the formula (1) and the formula (2),
  • is the wavelength of the sound in the medium
  • 2 ⁇ f/c 0L
  • f is the operating frequency
  • h is the total thickness of the planar lens
  • t is the thickness of the tangible structure of the acoustic soft material
  • c 0L is the sound in the medium
  • the propagation velocity, c 1L is the propagation velocity of the acoustic structure of the acoustic soft material
  • c 2L is the propagation velocity of the sound in the cover layer
  • F is the focal length of the sound field focus
  • r is the position of the center of the planar lens parallel to the direction of the acoustic lens.
  • each block in the flowchart illustrations can represent a module, a program segment, or a portion of code that includes one or more executables for implementing the specified logical functions. instruction.
  • the functions noted in the blocks may also occur in a different order than that illustrated in the drawings. For example, two consecutive blocks may be executed substantially in parallel, and they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the flowchart, and combinations of blocks in the flowcharts can be implemented in a dedicated hardware-based system that performs the specified function or function, or can be A combination of instructions is implemented.
  • connection is to be understood broadly, and may be a fixed connection, a detachable connection, or an integral connection, unless otherwise specified and defined.
  • the mechanical connection may also be an electrical connection; it may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Surgical Instruments (AREA)

Abstract

一种平面透镜(100)和平面透镜(100)的制作方法,涉及透镜的技术领域,平面透镜(100)为聚焦透镜,包括:声学软材料有形结构(110)和覆盖层(120),声学软材料有形结构(110)包括位于同一平面的多个组合透镜(130),每个组合透镜(130)包括一个圆形部(131)和以圆形部(131)为中心连续排列的多个同心的环形部(132),每个组合透镜(130)中相邻环形部(132)的厚度不同,其中,各环形部(132)的厚度与每个组合透镜(130)的焦距相关;覆盖层(120)覆盖在声学软材料有形结构(110)外表面,以形成平面透镜(100)。解决了一个透镜只能聚焦在一个区域的问题,另外在应用于超声治疗或者超声成像等技术时,能够进行准确超声刺激和在不同位置同时进行刺激,具有操作简单、造价低廉、使用灵活的优点。

Description

平面透镜和平面透镜的制作方法
相关申请的交叉引用
本申请要求于2017年12月22日提交中国专利局的申请号为201711409075.5、名称为“平面透镜和平面透镜的制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及透镜技术领域,尤其是涉及一种平面透镜和平面透镜的制作方法。
背景技术
近年来声场的聚焦一直受到很多的关注,因为聚焦声场在很多领域中都有很广泛的用途,例如医学中,聚焦声场可以用做超声成像、超声治疗以及超声手术等。而近年来超声在肿瘤、脑疾病方面的治疗逐渐成为现代医学的研究热点。传统的超声治疗采用超声聚焦换能器(HIFU),HIFU治疗是通过高强度聚焦超声引发瞬间高热,使肿瘤组织极快地坏死,从而达到肿瘤治疗的效果;在神经调控研究中聚焦声场可以精准刺激神经核团,有效调节神经环路,为研究帕金森、抑郁症等脑功能性的发病机制和治疗提供重要手段。因此聚焦声场对于研究超声的治疗有重要意义。
聚焦超声换能器一般都有压电晶片自聚焦和声透镜聚焦两种。目前世界上进行超声治疗研究的实验室中,基本上都采用商用超声凹球面聚焦换能器进行相关实验研究,而每个聚焦换能器基本都是有一个固定的焦距和焦斑,在使用聚焦声场进行研究时也只能作用在一个区域,而且为了满足不同研究的需要,各实验室需购买不同型号的商用聚焦换能器,经济成本较高。
发明内容
有鉴于此,本发明的目的在于提供平面透镜和平面透镜的制作方法,在同一平面中的多个组合透镜,可以在不同区域产生多点聚焦,并且根据多个组合透镜的焦距的不同可以具有不同的聚焦深度,解决了一个透镜只能聚焦在一个区域的问题,另外在应用于超声治疗或者超声成像等技术时,能够进行准确超声刺激和在不同位置同时进行刺激,本发明具有操作简单、造价低廉、使用灵活的优点。
第一方面,本发明实施例提供了一种平面透镜,所述平面透镜为聚焦透镜,包括:声学软材料有形结构和覆盖层,所述声学软材料有形结构包括位于同一平面的多个组合透镜,每个所述组合透镜包括一个圆形部和以圆形部为中心连续排列的多个同心的环形部,每个所述组合透镜中相邻环形部的厚度不同,其中,各环形部的厚度与每个所述组合透镜的焦距相关;所述覆盖层覆盖在所述声学软材料有形结构外表面,以形成所述平面透镜。
结合第一方面,本发明实施例提供了第一方面的第一种可能的实施方式,其中,覆盖层所使用的材料的透射率,高于声学软材料有形结构所使用的材料的透射率。
结合第一方面,本发明实施例提供了第一方面的第二种可能的实施方式,其中,所述声学软材料有形结构所使用的材料为环氧树脂,所述覆盖层所使用的材料为硅胶。
结合第一方面,本发明实施例提供了第一方面的第三种可能的实施方式,其中,所述平面透镜的总厚度为3毫米。
结合第一方面,本发明实施例提供了第一方面的第四种可能的实施方式,其中,每个所述组合透镜的焦距不同。
结合第一方面,本发明实施例提供了第一方面的第五种可能的实施方式,其中,每个所述组合透镜中,圆形部和以圆形部为中心连续排列的多个同心的环形部对应相同的焦距。
结合第一方面,本发明实施例提供了第一方面的第六种可能的实施方式,其中,所述声学软材料有形结构所使用的材料为聚甲基丙烯酸甲酯或聚乳酸。
结合第一方面,本发明实施例提供了第一方面的第七种可能的实施方式,其中,所述平面透镜应用于水中。
第二方面,本发明实施例还提供一种平面透镜的制作方法,包括:根据声在介质中的传播波长和声场聚焦的焦距,计算沿平行于平面透镜平面方向的位置下声波聚焦所需要的相位;根据所述声波聚焦所需要的相位,计算声学软材料有形结构在沿平行于所述平面透镜平面方向的位置处的厚度;覆盖层覆盖在所述声学软材料有形结构外表面以形成所述平面透镜。
结合第二方面,本发明实施例提供了第一方面的第一种可能的实施方式,其中,根据算式(1)和算式(2)计算声学软材料有形结构的厚度,
Figure PCTCN2017120165-appb-000001
Figure PCTCN2017120165-appb-000002
其中,λ是声在介质中的波长,λ=2πf/c 0L,f为工作频率,h是所述平面透镜的总厚度,t是声学软材料有形结构的厚度,c 0L为声在介质中的传播速度,c 1L为声在声学软材料有形结构的传播速度,c 2L为声在覆盖层的传播速度,F是声场聚焦的焦距,r是平面透镜中心沿平行于声透镜方向的位置。
本发明实施例带来了以下有益效果:当平面透镜与超声换能器组合使用时,能够解决了一个透镜只能聚焦在一个区域的问题,另外在应用于超声治疗或者超声成像等技术时,平面透镜具有多少个组合透镜,组合透镜 的焦距可以调节,就能够进行准确超声刺激和在不同位置同时进行刺激,本发明具有操作简单、造价低廉、使用灵活的优点。
本发明的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的平面透镜的示意图;
图2为本发明实施例提供的组合透镜的平面示意图;
图3为本发明实施例提供的组合透镜的横切面示意图;
图4为本发明实施例提供的具有两个组合透镜的平面透镜的示意图;
图5为本发明实施例提供的具有三个组合透镜的平面透镜的示意图;
图6为本发明一个实施例提供的具有两个组合透镜的平面透镜的聚焦原理示意图;
图7为本发明另一个实施例提供的具有两个组合透镜的平面透镜的聚焦原理示意图;
图8为本发明一个实施例提供的具有三个组合透镜的平面透镜的聚焦原理示意图;
图9为本发明另一个实施例提供的具有三个组合透镜的平面透镜的聚焦原理示意图;
图10为本发明实施例提供的平面透镜的制作方法的流程图。
图标:
100-平面透镜;110-声学软材料有形结构;120-覆盖层;130-组合透镜;131-圆形部;132-环形部;200-超声平面换能器。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
目前,世界上进行超声治疗研究的实验室中,基本上都采用商用超声凹球面聚焦换能器进行相关实验研究,而每个聚焦换能器基本都是有一个固定的焦距和焦斑,在使用聚焦声场进行研究时也只能作用在一个区域,而且为了满足不同研究的需要,各实验室需购买不同型号的商用聚焦换能器,经济成本较高。基于此,本发明实施例提供的一种平面透镜和平面透镜的制作方法,在同一平面中包括多个组合透镜,多个组合透镜可以在不同区域聚焦,并且根据多个组合透镜的焦距的不同可以具有不同的聚焦深度,所以,当平面透镜与超声换能器组合使用时,能够解决了一个透镜只能聚焦在一个区域的问题,另外在应用于超声治疗或者超声成像等技术时,平面透镜具有多少个组合透镜,组合透镜的焦距可以调节,就能够进行准确超声刺激和在不同位置同时进行刺激,本发明具有操作简单、造价低廉、使用灵活的优点。
为便于对本实施例进行理解,首先对本发明实施例所公开的一种平面透镜进行详细介绍,参照图1所示,平面透镜100为聚焦透镜,包括:声学软材料有形结构110和覆盖层120。
再结合图2和图3所示,声学软材料有形结构110包括位于同一平面的多个组合透镜130,每个组合透镜130包括一个圆形部131和以圆形部131为中心连续排列的多个同心的环形部132,每个组合透镜中相邻环形部132的厚度不同,其中,各环形部132的厚度与每个组合透镜的焦距相关。覆盖层120覆盖在声学软材料有形结构110外表面,以形成平面透镜100。
值得注意的是,多个组合透镜130在同一平面中紧密相连,或者多个组合透镜130不相连的平铺在同一平面上。作为一个示例,以多个组合透镜130在同一平面中紧密相连为例,结合图4所示,显示的为两个组合透镜130紧密相连,并且可以将每个组合透镜130切割一部分,将其连在一起。结合图5所示,显示的为三个组合透镜130紧密相连,并且可以将三个组合透镜130切割一部分,将其连在一起。
在一些实施例中,覆盖层120所使用的材料的透射率,高于声学软材料有形结构110所使用的材料的透射率。
举例来说,以平面透镜100与超声平面换能器200组合在水中使用为例,声学软材料有形结构110主要起到聚焦超声波的作用,如果声学软材料有形结构110在水中的反射率很高,也就是说,声学软材料有形结构110所制作出来的平面透镜100能够透射出来的超声波的能量很少,导致透射聚焦的声波质量不佳,所以需要覆盖层120所使用的材料在水中的透射率,高于声学软材料有形结构110所使用的材料在水中的透射率,这样才能使透射出平面透镜100的超声波的能量大于在平面透镜100中反射回去的超声波的能量,从而可以得到更优质的透射聚焦声波。
在一些实施例中,声学软材料有形结构110所使用的材料为环氧树脂,覆盖层120所使用的材料为硅胶。
具体来说,环氧树脂材料和凝固之后的硅橡胶,在水中都具有很高的透射率,但是硅橡胶易变形而环氧树脂材料不易变形,所以当声学软材料有形结构110所使用的材料为环氧树脂,覆盖层120所使用的材料为硅胶,这样组合的平面透镜100既能够在水中形成有形的状态,又能够得到稳定且优质的透射超声波。其中,制作过程为:首先制作一环氧树脂形成的多个组合透镜,然后将硅胶注入到环氧树脂形成的多个组合透镜的凹槽中,然后用表面光滑的模具压平,等到硅胶凝固即可形成平面透镜100。
在一些实施例中,平面透镜的总厚度为3毫米。
举例来说,本发明所提供的平面透镜通过算式(1)和算式(2)计算得到,
Figure PCTCN2017120165-appb-000003
Figure PCTCN2017120165-appb-000004
其中,λ是声在介质中的波长,λ=2πf/c 0L,f为工作频率,h是所述平面透镜的总厚度,t是声学软材料有形结构的厚度,c 0L为声在介质中的传播速度,c 1L为声在声学软材料有形结构的传播速度,c 2L为声在覆盖层的传播速度,F是声场聚焦的焦距,r是平面透镜中心沿平行于声透镜方向的位置,r的取值范围可以从0到无穷大。
具体来说,由算式(1)计算出随着声学软材料有形结构110的厚度变化的相位,算式(2)计算出相位沿着平行于声透镜平面方向的相位。当确定平面透镜100所需要的焦距F时,位置r从0到总厚度的一半,即位置r的取值范围为[0,21],单位为毫米,每个环形部件的宽度为位置r的一个值,随着位置r的增大,由算式(2)计算出在该位置上的相位,将算式(2)计算出来的相位带入到算式(1)中, 结合平面透镜的总厚度为3毫米,得到位置r处的厚度t,也就是,该环形部的厚度,然后,将覆盖层灌入声学软材料有形结构的外表面,形成一个平面透镜100。其中,每个环形部的宽度均可以为3毫米。
在一些实施例中,每个组合透镜的焦距不同。进一步的,每个组合透镜中,圆形部和以圆形部为中心连续排列的多个同心的环形部对应相同的焦距。
具体来说,在一个平面透镜100中包括的多个组合透镜130均有其自己的焦距,其焦距可能相同,也可能不同。每个组合透镜130中的圆形部131和环形部132的焦距相同,即,同一个组合透镜130具有相同的焦距。
结合图6所示,超声平面换能器200发射超声波,经过平面透镜100聚焦,平面透镜100中具有2个组合透镜130,两个组合透镜130每个环形部132的焦距相同。从图中可以看出,当两个组合透镜具有相同的焦距时,在两个区域中各自具有一个焦点,且两个焦点在同一水平面上。
结合图7所示,超声平面换能器200发射超声波,经过平面透镜100聚焦,平面透镜100中具有2个组合透镜130,两个组合透镜130每个环形部132的焦距相同。从图中可以看出,当两个组合透镜具有不相同的焦距时,在两个区域中各自具有一个焦点,两个焦点的位置根据焦距的不同在不同的水平面上。
结合图8所示,平面透镜100具有3个组合透镜,超声平面换能器200发射超声波,经过平面透镜100聚焦。从图中可以看出,当三个组合透镜具有相同的焦距时,在三个区域中各自具有一个焦点,由于三个组合透镜130具有相同的焦距,所以三个焦点在同一水平面上。
结合图9所示,平面透镜100具有3个组合透镜,超声平面换能器200发射超声波,经过平面透镜100聚焦。从图中可以看出,当三个组合透镜具有不相同的焦距时,在三个区域中各自具有一个焦点,由于三个组合透镜130具有不相同的焦距,所以三个焦点不在同一水平面上。
综上可知,本发明的平面透镜100可以具有多个组合透镜,多个组合透镜可以具有相同的焦距,可以部分具有相同的焦距,也可以全部的焦距均不相同,另外,有多少个组合透镜,就得到多少个超声波传播的区域和多少个焦点。所以,本发明的平面透镜100可以精确且灵活的调节平面超声波聚焦的聚焦深度。
值得注意的是,焦距,也可以称为聚焦深度。
在一些实施例中,声学软材料有形结构110所使用的材料为聚甲基丙烯酸甲酯或聚乳酸。其中,聚甲基丙烯酸甲酯、聚乳酸这两个材料在水中的透射率较高。声学软材料有形结构110还可以为其他声学参数相近的材料。
参照图10所示,平面透镜的制作方法,包括:
S210:根据声在介质中的传播波长和声场聚焦的焦距,计算沿平行于平面透镜平面方向的位置下声波聚焦所需要的相位。
S220:根据声波聚焦所需要的相位,计算声学软材料有形结构在沿平行于平面透镜平面方向的位置处的厚度。
S230:覆盖层覆盖在声学软材料有形结构外表面以形成平面透镜。
作为一个示例,其中,根据算式(1)和算式(2)计算声学软材料有形结构的厚度,
Figure PCTCN2017120165-appb-000005
Figure PCTCN2017120165-appb-000006
其中,λ是声在介质中的波长,λ=2πf/c 0L,f为工作频率,h是所述平面透镜的总厚度,t是声学软材料有形结构的厚度,c 0L为声在介质中的传播速度,c 1L为声在声学软材料有形结构的传播速度,c 2L为声在覆盖层的传播速度,F是声场聚焦的焦距,r是平面透镜中心沿平行于声透镜方向的位置。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对步骤、数字表达式和数值并不限制本发明的范围。
在这里示出和描述的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制,因此,示例性实施例的其他示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
附图中的流程图显示了根据本发明的多个实施例的系统、方法和计算机程序,产品的可能实现的体系架构、功能和操作。在这点上,流程图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,流程图中的每个方框、以及流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本发明实施例的描述中,除非另有明确的规定和限定,术语“相连”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件 必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
最后应说明的是:以上所述实施例,仅为本发明的具体实施方式,用以说明本发明的技术方案,而非对其限制,本发明的保护范围并不局限于此,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本发明实施例技术方案的精神和范围,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (10)

  1. 一种平面透镜,其特征在于,所述平面透镜为聚焦透镜,包括:声学软材料有形结构和覆盖层,
    所述声学软材料有形结构包括位于同一平面的多个组合透镜,每个所述组合透镜包括一个圆形部和以圆形部为中心连续排列的多个同心的环形部,每个所述组合透镜中相邻环形部的厚度不同,其中,各环形部的厚度与每个所述组合透镜的焦距相关;
    所述覆盖层覆盖在所述声学软材料有形结构外表面,以形成所述平面透镜。
  2. 根据权利要求1所述的平面透镜,其特征在于,覆盖层所使用的材料的透射率,高于所述声学软材料有形结构所使用的材料的透射率。
  3. 根据权利要求2所述的平面透镜,其特征在于,所述声学软材料有形结构所使用的材料为环氧树脂,所述覆盖层所使用的材料为硅胶。
  4. 根据权利要求1所述的平面透镜,其特征在于,所述平面透镜的总厚度为3毫米。
  5. 根据权利要求1所述的平面透镜,其特征在于,每个所述组合透镜的焦距不同。
  6. 根据权利要求5所述的平面透镜,其特征在于,每个所述组合透镜中,圆形部和以圆形部为中心连续排列的多个同心的环形部对应相同的焦距。
  7. 根据权利要求2所述的平面透镜,其特征在于,所述声学软材料有形结构所使用的材料为聚甲基丙烯酸甲酯或聚乳酸。
  8. 根据权利要求1-7任一项所述的平面透镜,其特征在于,所述平面透镜应用于水中。
  9. 一种平面透镜的制作方法,其特征在于,包括:
    根据声在介质中的传播波长和声场聚焦的焦距,计算沿平行于平面透镜平面方向的位置下声波聚焦所需要的相位;
    根据所述声波聚焦所需要的相位,计算声学软材料有形结构在沿平行于所述平面透镜平面方向的位置处的厚度;
    覆盖层覆盖在所述声学软材料有形结构外表面以形成所述平面透镜。
  10. 根据权利要求9所述的平面透镜的制作方法,其特征在于,其中,根据算式(1)和算式(2)计算声学软材料有形结构的厚度,
    Figure PCTCN2017120165-appb-100001
    其中,λ是声在介质中的波长,λ=2πf/c 0L,f为工作频率,h是所述平面透镜的总厚度,t是声学软材料有形结构的厚度,c 0L为声在介质中的传播速度,c 1L为声在声学软材料有形结构的传播速度,c 2L为声在覆盖层的传播速度,F是声场聚焦的焦距,r是平面透镜中心沿平行于声透镜方向的位置。
PCT/CN2017/120165 2017-12-22 2017-12-29 平面透镜和平面透镜的制作方法 WO2019119520A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17935100.2A EP3730976A4 (en) 2017-12-22 2017-12-29 FLAT LENS AND FLAT LENS MANUFACTURING PROCESS
US16/902,225 US11650355B2 (en) 2017-12-22 2020-06-15 Planar lens and manufacturing method for planar lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711409075.5 2017-12-22
CN201711409075.5A CN107870381B (zh) 2017-12-22 2017-12-22 平面透镜和平面透镜的制作方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/902,225 Continuation US11650355B2 (en) 2017-12-22 2020-06-15 Planar lens and manufacturing method for planar lens

Publications (1)

Publication Number Publication Date
WO2019119520A1 true WO2019119520A1 (zh) 2019-06-27

Family

ID=61756286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/120165 WO2019119520A1 (zh) 2017-12-22 2017-12-29 平面透镜和平面透镜的制作方法

Country Status (4)

Country Link
US (1) US11650355B2 (zh)
EP (1) EP3730976A4 (zh)
CN (1) CN107870381B (zh)
WO (1) WO2019119520A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021056551A1 (zh) * 2019-09-29 2021-04-01 深圳先进技术研究院 超分辨超声显微装置及其应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109431543A (zh) * 2018-12-20 2019-03-08 深圳先进技术研究院 声波聚焦透镜、超声成像装置及方法
WO2020124474A1 (zh) * 2018-12-20 2020-06-25 深圳先进技术研究院 声波聚焦透镜、超声成像装置及方法
WO2021258339A1 (zh) * 2020-06-24 2021-12-30 深圳先进技术研究院 人工结构超声换能器以及超声装置
CN112245818B (zh) * 2020-09-09 2022-05-17 深圳先进技术研究院 超声神经调控装置
CN114308156B (zh) * 2021-12-23 2023-03-17 深圳先进技术研究院 一种超声移液装置及方法
WO2023190834A1 (ja) * 2022-03-30 2023-10-05 国立大学法人東北大学 超音波ユニット、回折膨潤テープ、及び超音波集束装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402792A (en) * 1993-03-30 1995-04-04 Shimadzu Corporation Ultrasonic medical apparatus
US20020030423A1 (en) * 2000-03-22 2002-03-14 Todd Fjield Ultrasound transducer unit and planar ultrasound lens
CN2572998Y (zh) * 2002-06-10 2003-09-17 电子科技大学 多频率可变焦体超声治疗聚焦装置
CN1522670A (zh) * 2003-02-18 2004-08-25 西门子公司 用于为超声治疗产生超声辐射的装置
CN201969218U (zh) * 2010-12-27 2011-09-14 天津医科大学 凹球面八圆环相控阵高强度聚焦超声换能器
US20160317842A1 (en) * 2006-12-21 2016-11-03 St. Jude Medical, Atrial Fibrillation Division, Inc. High intensity focused ultrasound transducer with acoustic lens

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963401A (zh) * 1972-10-18 1974-06-19
US4562900A (en) * 1984-12-20 1986-01-07 Varian Associates, Inc. Lens system for acoustic transducer array
FR2690634B1 (fr) * 1992-04-29 1994-10-14 Chronotec Dispositif de micro-pulvérisation générée par ondes ultra-sonores.
US20030060736A1 (en) * 1999-05-14 2003-03-27 Martin Roy W. Lens-focused ultrasonic applicator for medical applications
CN2672998Y (zh) 2003-12-22 2005-01-19 孟令彪 双态传输监视报警远动控制一体化钢构工业电视摄像机
EP2274924B1 (en) * 2008-04-04 2017-12-13 Microsonic Systems Inc. Methods and systems to form high efficiency and uniform fresnel lens arrays for ultrasonic liquid manipulation
US20120029393A1 (en) * 2010-07-30 2012-02-02 General Electric Company Compact ultrasound transducer assembly and methods of making and using the same
US20120071763A1 (en) * 2010-09-21 2012-03-22 Toshiba Medical Systems Corporation Medical ultrasound 2-d transducer array using fresnel lens approach
US9922638B2 (en) * 2014-10-29 2018-03-20 The United States Of America, As Represented By The Secretary Of The Navy Acoustic fresnel zone plate lens for aqueous environments and methods of using same
CN105251140B (zh) * 2015-11-23 2018-03-27 南京大学 一种聚焦声透镜的设计方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402792A (en) * 1993-03-30 1995-04-04 Shimadzu Corporation Ultrasonic medical apparatus
US20020030423A1 (en) * 2000-03-22 2002-03-14 Todd Fjield Ultrasound transducer unit and planar ultrasound lens
CN2572998Y (zh) * 2002-06-10 2003-09-17 电子科技大学 多频率可变焦体超声治疗聚焦装置
CN1522670A (zh) * 2003-02-18 2004-08-25 西门子公司 用于为超声治疗产生超声辐射的装置
US20160317842A1 (en) * 2006-12-21 2016-11-03 St. Jude Medical, Atrial Fibrillation Division, Inc. High intensity focused ultrasound transducer with acoustic lens
CN201969218U (zh) * 2010-12-27 2011-09-14 天津医科大学 凹球面八圆环相控阵高强度聚焦超声换能器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3730976A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021056551A1 (zh) * 2019-09-29 2021-04-01 深圳先进技术研究院 超分辨超声显微装置及其应用

Also Published As

Publication number Publication date
US20200310002A1 (en) 2020-10-01
CN107870381B (zh) 2019-08-23
EP3730976A1 (en) 2020-10-28
CN107870381A (zh) 2018-04-03
EP3730976A4 (en) 2021-08-18
US11650355B2 (en) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2019119520A1 (zh) 平面透镜和平面透镜的制作方法
CN107644636A (zh) 一种基于平面人工结构的超声聚焦透镜
US6618206B2 (en) System and method for acoustic imaging at two focal lengths with a single lens
JP6070549B2 (ja) 超音波探触子
CN106267592B (zh) 一种具有超构表面的凹面聚焦换能器设计方法
CN109313890A (zh) 操作超声换能器的二维阵列
US9089875B2 (en) Ultrasound backing element, transducer and ultrasound probe including the same
KR20170005526A (ko) 빔 집속을 위한 초음파 변환자 조립체 및 그의 제조 방법
CN106823165A (zh) 一种带立体成像探头的单曲面条状功率超声装置
US6396198B1 (en) Wave transmission-reception element for use in ultrasound probe, method for manufacturing the wave transmission-reception element and ultrasound probe incorporating the transmission-reception element
CN107661853A (zh) 环形自聚焦超声相控阵列换能器
Elloian et al. Flexible ultrasound transceiver array for non-invasive surface-conformable imaging enabled by geometric phase correction
He et al. Broadband three-dimensional focusing for an ultrasound scalpel at megahertz frequencies
JP6257176B2 (ja) 静電容量型トランスデューサ、及びその作製方法
KR101086048B1 (ko) 평평한 면을 갖는 렌즈 커버를 포함하는 초음파 프로브
KR20140103591A (ko) 고강도 집속 초음파 프로브와 그 제조 및 동작방법
KR101861354B1 (ko) 집속 초음파 변환기
KR101927635B1 (ko) 섀도 마스크를 이용한 초음파 트랜스 듀서, 그 작동방법 및 시스템
TWM411931U (en) Ultrasonic wave conversion massage device
WO2023169021A1 (zh) 一种穿颅多点超声聚焦声全息透镜
WO2021258339A1 (zh) 人工结构超声换能器以及超声装置
US11957513B2 (en) Non-rectangular transducer arrays and associated devices, systems, and methods
JP2004024464A (ja) 超音波探触子及び超音波診断装置
CN207270580U (zh) 一种带立体成像探头的单曲面条状功率超声装置
CN116259302B (zh) 一种水下复合材料声透镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017935100

Country of ref document: EP

Effective date: 20200722