WO2021258339A1 - 人工结构超声换能器以及超声装置 - Google Patents

人工结构超声换能器以及超声装置 Download PDF

Info

Publication number
WO2021258339A1
WO2021258339A1 PCT/CN2020/098143 CN2020098143W WO2021258339A1 WO 2021258339 A1 WO2021258339 A1 WO 2021258339A1 CN 2020098143 W CN2020098143 W CN 2020098143W WO 2021258339 A1 WO2021258339 A1 WO 2021258339A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring portion
ultrasonic transducer
artificial structure
focusing lens
ring
Prior art date
Application number
PCT/CN2020/098143
Other languages
English (en)
French (fr)
Inventor
蔡飞燕
夏向向
李永川
郑海荣
周慧
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2020/098143 priority Critical patent/WO2021258339A1/zh
Publication of WO2021258339A1 publication Critical patent/WO2021258339A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction

Definitions

  • This application relates to the field of ultrasound technology, in particular to an artificial structure ultrasound transducer and ultrasound device.
  • Ultrasound is a mechanical wave, which is generated by the vibration of an object (sound source) and propagates through a compressed and expanded medium.
  • Medical ultrasound usually refers to sound waves with a frequency in the range of 20kHz to 100MHz.
  • ultrasound has an important feature. Its attenuation in human tissues such as water and muscles is very small, and it can reach deeper human tissues.
  • the interaction between medical ultrasound and human tissue mainly uses the basic physical characteristics of the interaction between sound waves and matter.
  • Ultrasound has three major acoustic effects: wave effect, mechanical effect and thermal effect. These effects have important applications or great potentials in biomedicine.
  • Traditional ultrasound is based on the wave effect and has developed into the main technical means of imaging diagnosis.
  • the wave effect can be used in ultrasound imaging diagnostic techniques, such as B-ultrasound, color Doppler ultrasound, and contrast, which are widely used in clinical practice.
  • the focused ultrasound transducer can directly generate the required focused sound field, which is called active sound wave focusing.
  • Common acoustic focusing methods for transducers include concave spherical self-focusing, planar array transducers and concave array transducers.
  • the artificial structure can also achieve sound wave control, because the sound wave encounters an object (artificial structure) to produce a series of wave effects, and through reflection, refraction, diffraction, interference and other interactions, different sound wave effects are produced.
  • the artificial structure controls the ultrasonic focus, which mainly uses the artificial structure to adjust the negative refraction, diffraction or phase of the sound wave, and finally makes the ultrasonic wave after the artificial structure converge in a specific area.
  • the current artificial structure is usually made of piezoelectric materials (such as piezoelectric ceramics) into a Fresnel structure.
  • piezoelectric materials such as piezoelectric ceramics
  • high-frequency piezoelectric ceramics are difficult to press If it becomes a curved surface, it is easy to cause damage to the piezoelectric material in the process.
  • One of the objectives of the embodiments of the present application is to provide an artificially structured ultrasonic transducer and an ultrasonic device, which aims to solve the problem of difficulty in making a Fresnel structure for focusing using piezoelectric materials.
  • an artificial structure ultrasonic transducer which includes a piezoelectric material layer, a matching layer, and a focusing lens connected in sequence.
  • the focusing lens is used to focus sound waves, and the focusing lens is made of acoustic materials. Soft material.
  • the focusing lens forms a central ring portion and a plurality of first ring portions on a surface away from the matching layer, the first ring portion and the central ring portion are spaced apart, and each of the first ring portions A ring portion is arranged concentrically and spaced apart, and a plurality of second ring portions are formed concentrically and spaced apart from each other on the inner side of the first ring portion; the second ring portion is relative to the central ring portion and the first ring portion Protruding or recessed.
  • the focusing lens forms a central ring portion and a plurality of first ring portions on a surface facing the matching layer, the first ring portion is spaced from the central ring portion, and each of the first ring portions A ring portion is arranged concentrically and spaced apart, and a plurality of second ring portions are formed concentrically and spaced apart from each other on the inner side of the first ring portion; the second ring portion is relative to the central ring portion and the first ring portion Protruding or recessed.
  • the second ring portion protrudes relative to the central ring portion and the first ring portion, and a surface of the matching layer facing the focusing lens forms a plurality of concentric and spaced fits A ring, the mating ring is correspondingly inserted into the central ring portion and the first ring portion.
  • annular groove or an annular through groove is formed between the mating rings.
  • the second ring portion is recessed relative to the central ring portion and the first ring portion, and a surface of the matching layer facing the focusing lens forms a plurality of concentric and spaced fits Ring, the mating ring is correspondingly inserted into the second ring part.
  • annular groove or an annular through groove is formed on the inner side of the mating ring.
  • the widths of the central ring portion, the first ring portion, and the second ring portion are determined by the following formula:
  • r n represents the radius of the n-th Fresnel zone
  • c represents the speed of sound
  • f represents the artificial structure ultrasonic transducer emission frequency acoustic wave
  • the side walls of the central ring portion and the first ring portion are both parallel to the central axis of the focusing lens.
  • the surface of the piezoelectric material layer away from the matching layer and the surface facing the matching layer are both flat and perpendicular to the central axis of the focusing lens.
  • the piezoelectric material layer is a piezoelectric ceramic layer.
  • the acoustic soft material is a plastic material, a rubber material or a silicone material.
  • the acoustic soft material is silicone rubber.
  • the material of the matching layer includes epoxy resin.
  • the material of the matching layer includes epoxy resin and aluminum oxide.
  • the piezoelectric material layer, the matching layer and the focusing lens are sequentially bonded by an adhesive.
  • an ultrasonic device including: an ultrasonic probe, and the artificial structure ultrasonic transducer as described in each of the foregoing embodiments, which is arranged in front of the ultrasonic probe.
  • the artificial structure ultrasonic transducer includes a piezoelectric material layer, a matching layer and a focusing lens connected in sequence.
  • the material of the focusing lens is an acoustic soft material
  • the piezoelectric material layer is used to convert voltage into sound wave vibration
  • the material of the focusing lens is acoustic
  • the soft material is used to focus the sound waves
  • the matching layer is used to match the impedance from the piezoelectric material layer to the area to be measured. In this way, there is no need to fabricate the focusing structure separately from the piezoelectric material layer but the acoustic soft material.
  • the problem that the piezoelectric material layer is directly processed and manufactured is easy to cause damage, and the artificial structure ultrasonic transducer is easy to process and manufacture, and has a high manufacturing success rate and low cost.
  • the beneficial effect of the ultrasonic device provided by the embodiment of the present application is that the artificial structure ultrasonic transducer included does not need to be on the piezoelectric material layer, but a structure for focusing is made separately by acoustic soft material, which avoids direct contact with the piezoelectric material.
  • the processing of the layers easily leads to the problem of damage, the ultrasonic device is easy to process and prepare, the preparation success rate is high, and the cost is low.
  • Fig. 1 is a schematic diagram of a form of an artificial structure ultrasonic transducer provided by an embodiment of the present application
  • Fig. 2 is a three-dimensional exploded schematic diagram of the artificial structure ultrasonic transducer shown in Fig. 1;
  • Fig. 3 is a cross-sectional view of the artificial structure ultrasonic transducer shown in Fig. 1 along the XY plane;
  • Fig. 4 is a schematic top view of a focusing lens in the artificial structure ultrasonic transducer shown in Fig. 1;
  • Fig. 5 is a schematic diagram of focusing of sound waves by the artificial structure ultrasonic transducer shown in Fig. 1;
  • FIG. 6 is a schematic diagram of another form of the artificial structure ultrasonic transducer provided by the embodiment of the present application, which shows the surface of the focusing lens facing the matching layer;
  • FIG. 7 is a schematic diagram of another form of an artificial structure ultrasonic transducer provided by an embodiment of the present application, which shows the surface of the matching layer facing the focusing lens;
  • Fig. 8 is a cross-sectional view along the XY plane of the artificial structure ultrasonic transducer shown in Fig. 6;
  • FIG. 9 is a schematic diagram of the Fresnel zone radius of the focusing lens in the artificial structure ultrasonic transducer provided by the embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of an ultrasonic device provided by an embodiment of the present application.
  • an embodiment of the present application first provides an artificial structure ultrasonic transducer 100, which includes a piezoelectric material layer 1, a matching layer 2, and a focusing lens 3 connected in sequence; specifically, the pressure
  • the side of the electrical material layer 1 away from the matching layer 2 is used to cooperate with the ultrasonic probe 9 (please refer to FIG. 9 in combination), and the piezoelectric material layer 1 is used to convert the high frequency voltage applied to the ultrasonic probe 9 into high frequency Vibration, that is, high-frequency plane sound waves are generated.
  • the material of the focusing lens 3 is a soft acoustic material and is used to focus the sound waves.
  • the matching layer 2 is used to match the piezoelectric material layer 1 to the focusing lens 3 and the area to be measured C (please In combination with the impedance of FIG. 9), the attenuation loss of the sound wave from the piezoelectric material layer 1 to the area C to be measured is reduced.
  • the artificial structure ultrasonic transducer 100 provided by the embodiment of the present application includes a piezoelectric material layer 1, a matching layer 2 and a focusing lens 3 connected in sequence. It does not need to be on the piezoelectric material layer 1 but is made of a soft acoustic material separately.
  • the focusing structure avoids the problem of direct processing and manufacturing of the piezoelectric material layer 1 that may easily lead to damage.
  • the artificial structure ultrasonic transducer 100 is easy to process and prepare, has a high success rate and low cost, and the acoustic soft material has a good effect on sound waves.
  • the high transmittance can ensure that the artificial structure ultrasonic transducer 100 has a high sound wave utilization rate and obtains high sound wave focusing energy.
  • the so-called acoustic soft material refers to a material with high transmittance to sound waves, that is, a material with high transmittance of sound waves.
  • the transmittance of the acoustic soft material to sound waves is greater than or equal to 50%.
  • the acoustic soft material used in the focusing lens 3 can be at least one of silicone material, rubber material, and plastic material.
  • the acoustic soft material used in the focusing lens 3 can be silicone material, rubber. Material or plastic material. These materials can be easily processed into various shapes and structures, so that the overall manufacturing difficulty and cost of the artificial structure ultrasonic transducer 100 can be significantly reduced.
  • the focusing lens 3 can be manufactured by injection molding, compression molding, etc., using the above-mentioned materials.
  • the material of the focusing lens 3 is silicone rubber.
  • FIGS. 1 to 3 are a form of artificial structure ultrasonic transducer 100 provided by an embodiment of the application.
  • a central ring portion 31 and a plurality of first ring portions 32 are formed on the surface of the focusing lens 3 away from the matching layer 2.
  • the multiple first ring portions 32 are arranged concentrically and spaced apart from each other, and are located at the innermost side.
  • the first ring portion 32 and the central ring portion 31 are also spaced apart.
  • a second ring portion 33 is formed on the inner side of each first ring portion 32, and a plurality of second ring portions 33 are concentric and spaced apart from each other.
  • the height of the center ring portion 31 and the first ring portion 32 is the same, and the height of the second ring portion 33 is different from the heights of the center ring portion 31 and the first ring portion 32.
  • the second ring portion 33 may protrude relative to the central ring portion 31 and the first ring portion 32, or may be recessed.
  • the central ring portion 31 and the first ring portion 32 protrude with respect to the second ring portion 33 as an example.
  • a concentric and alternating concave-convex structure is formed on the surface of the focusing lens 3 away from the matching layer 2, please refer to FIGS. 4 and 4 and Figure 5.
  • the concave-convex structure can diffract sound waves, so that after passing through the focusing lens 3, the sound waves can be condensed at a certain point in front of the focusing lens 3 (the dotted line in FIG. 5 represents the diffracted sound waves), that is, converge on the focusing lens
  • the focal point S of 3 (see Figure 5).
  • the sound wave energy at the focal point S is high and can be used for corresponding applications, such as ultrasound imaging, ultrasound surgery, or ultrasound stimulation.
  • the surface of the matching layer 2 facing the focusing lens 3 may be flat, and the surface of the focusing lens 3 facing the matching layer 2 may be flat. In this way, on the one hand, the surface of the matching layer 2 facing the focusing lens 3 and the surface of the focusing lens 3 facing the matching layer 2 are easier to mold and fabricate; on the other hand, the two can be easily and tightly attached together.
  • the gap can reduce the air gap and impedance difference between the matching layer 2 and the focusing lens 3, reduce the attenuation loss of sound waves from the matching layer 2 to the focusing lens 3, and improve the effective utilization of sound waves.
  • the surface of the matching layer 2 facing the focusing lens 3 and the surface of the focusing lens 3 facing the matching layer 2 are both perpendicular to the central axis of the focusing lens.
  • the surface of the matching layer 2 facing the focusing lens 3 and the surface of the focusing lens 3 facing the matching layer 2 can be pasted together by an adhesive, which also helps to further reduce the air gap between the two , Facilitate the transmission of sound waves.
  • FIGS. 6 to 8 are another form of artificial structure ultrasonic transducer 100 provided by an embodiment of the application.
  • the difference from the embodiment shown in FIGS. 1 to 3 is that in this embodiment, the central ring portion 31, the first ring portion 32, and the second ring portion 33 are all formed on the facing matching layer 2 of the focusing lens 3. on the surface.
  • the features of the central ring portion 31, the first ring portion 32, and the second ring portion 33 may be the same as those of the embodiment shown in FIGS. 1 to 3, and will not be repeated here.
  • the surface of the matching layer 2 facing the focusing lens 3 is set to match the surface of the focusing lens 3 facing the matching layer 2, that is, the surface of the matching layer 2 facing the focusing lens 3 is formed Convex-concave structure opposite to the concavo-convex structure of the focusing lens 3.
  • the surface of the matching layer 2 facing the focusing lens 3 is formed to be able to insert
  • the mating ring 21 of the second ring portion 33 at this time, the height and width of the mating ring 21 are respectively equal to the height and width of the corresponding second ring portion 33.
  • the contact surfaces of the focusing lens 3 and the matching layer 2 can be completely bonded together without an air gap, which can further reduce the impedance difference between the matching layer 2 and the focusing lens 3, and reduce the sound wave from the matching layer 2 to the
  • the attenuation loss of the focusing lens 3 improves the effective utilization of sound waves.
  • the height of the mating ring 21 may be equal to the maximum thickness of the matching layer 2, so that the inner side of the mating ring 21 forms an annular through groove; or the height of the mating ring 21 may be equal to the maximum thickness of the matching layer 2, so that the mating ring A ring-shaped groove is formed on the inside of 21.
  • the central ring portion 31 and the first ring portion 32 are recessed with respect to the second ring portion 33.
  • the surface of the matching layer 2 facing the focusing lens 3 forms a matching ring 21 that can be inserted into the central ring portion 31 and the first ring portion 32 respectively.
  • the height and width of the matching ring 21 are respectively equal to the corresponding central ring portion 31.
  • the height and width of the corresponding first ring portion 32 can be reduced.
  • the height of the mating ring 21 may be equal to the maximum thickness of the matching layer 2, so that an annular through groove is formed between two adjacent mating rings 21; or, the height of the mating ring 21 may be equal to the maximum thickness of the matching layer 2, Thus, an annular groove is formed between two adjacent mating rings 21.
  • the surface of the matching layer 2 facing the focusing lens 3 and the surface of the focusing lens 3 facing the matching layer 2 can be pasted together by an adhesive to further reduce the air gap between the two. .
  • the widths of the central ring portion 31, the first ring portion 32 and the second ring portion 33 of the focusing lens 3 are determined by the Fresnel diffraction formula.
  • the central ring portion 31, the first ring portion 32 and the second ring portion 33 are all the wavebands of the focusing lens 3.
  • the central ring portion 31 and the first ring portion 32 are the odd bands of the focusing lens 3 in order from the inside to the outside (represented as a, c, e, g... in FIG. 4), specifically It is the first, third, fifth, and seventh wave bands
  • the second ring 33 is the even wave band of the focusing lens 3 in order from the inside to the outside (in Figure 4, b, d, f... Perform representation), specifically the second, fourth, sixth... bands.
  • the central ring 31 represented by a forms the first Fresnel zone
  • the central ring portion 31 and the second ring portion 33 denoted by b form a second Fresnel zone
  • the central ring portion 31, the second ring portion 33 denoted by b, and the first ring portion 32 denoted by c form a third Fresnel zone;
  • the central ring portion 31, the second ring portion 33 indicated by b, the first ring portion 32 indicated by c, and the second ring portion 33 indicated by d form a fourth Fresnel zone;
  • the central ring portion 31, the second ring portion 33 denoted by b, the first ring portion 32 denoted by c, the second ring portion 33 denoted by d, and the first ring portion 32 denoted by e form a fifth Fresnel Seoul area
  • the second ring 33 forms the sixth Fresnel zone
  • the second ring portion 33 and the first ring portion 32 denoted by g form a seventh Fresnel zone;
  • the widths of the central ring portion 31, the first ring portion 32 and the second ring portion 33 are determined by the following formulas (1) and (2):
  • r n represents the radius of the n-th Fresnel zone
  • c represents the speed of sound
  • f represents the artificial structure ultrasonic transducer 100 emitted the acoustic wave frequency
  • the radius of the Fresnel zone is the radius of the other largest Fresnel zone.
  • the piezoelectric material layer 1 may be a piezoelectric crystal layer or a piezoelectric ceramic layer.
  • the piezoelectric material layer 1 is a piezoelectric ceramic layer, which has a relatively low cost, is relatively easy to manufacture, and has good piezoelectric performance.
  • the surface of the piezoelectric material layer 1 facing the matching layer 2 may be flat, and the surface of the matching layer 2 facing the piezoelectric material layer 1 may be flat.
  • the surface of the piezoelectric material layer 1 facing the matching layer 2 and the surface of the matching layer 2 facing the piezoelectric material layer 1 are easier to shape and fabricate, and on the other hand, they can be easily and closely attached to each other. Together without an air gap, the attenuation loss of the sound wave from the piezoelectric material layer 1 to the matching layer 2 can be reduced, and the effective utilization rate of the sound wave can be improved.
  • the surface of the piezoelectric material layer 1 facing the matching layer 2 and the surface of the matching layer 2 facing the piezoelectric material layer 1 are both perpendicular to the central axis of the focusing lens 3.
  • the side walls of the central ring portion 31 and the first ring portion 32 are both parallel to the central axis of the focusing lens 3 and perpendicular to two opposite sides of the piezoelectric material layer 1. Two surfaces (the surface of the piezoelectric material layer 1 away from the matching layer 2 and the surface facing the matching layer 2).
  • the advantage of this is that the manufacture of the central ring portion 31, the first ring portion 32 and the second ring portion 33 is easier, and this makes the thickness of the focusing lens 3 layers thinner, which is beneficial to improve the artificial structure ultrasonic transducer 100 bandwidth.
  • the sound wave frequency range applicable to the artificial structure ultrasonic transducer 100 is 0.2MHz-100MHz, which has a large frequency bandwidth and a wider applicability.
  • the focused position after passing through the focusing lens 3 is fixed, that is, the focal length of the focusing lens 3 is determined.
  • the surface of the piezoelectric material layer 1 facing the matching layer 2 and the surface of the matching layer 2 facing the piezoelectric material layer 1 are connected by adhesive bonding.
  • the material of the matching layer 2 may include epoxy resin.
  • the material of the matching layer 2 includes aluminum oxide and epoxy resin, and the acoustic parameters of the matching layer 2 can be adjusted by adjusting the mass fraction of aluminum oxide.
  • the matching layer 2 can not only match the impedance of the piezoelectric material layer 1 to the focusing lens 3 and the area C to be measured, but it can also be directly separated from the piezoelectric material layer 1 and the focusing lens 3 by curing the epoxy resin. To form a bonded connection, no additional adhesive is required.
  • an embodiment of the present application further provides an ultrasound device 200, which includes an ultrasound probe 9 and a manual device arranged in front of the ultrasound probe 9 as described in the foregoing embodiments.
  • Structure ultrasonic transducer 100 The ultrasonic probe 9 is used to apply a high-frequency voltage to the piezoelectric material layer 1. After the inverse piezoelectric conversion and focusing of the artificial structure ultrasonic transducer 100, the sound wave is focused on the area C to be measured.
  • the ultrasound device 200 can be specifically used for ultrasound imaging, ultrasound surgery, ultrasound stimulation (such as ultrasound nerve control), and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

本申请公开一种人工结构超声换能器(100)和超声装置(200),该人工结构超声换能器(100)包括依次连接的压电材料层(1)、匹配层(2)和聚焦透镜(3),所述聚焦透镜(3)用于对声波进行聚焦,且所述聚焦透镜(3)的材料为声学软材料;无需在压电材料层(1)上而是通过声学软材料单独制作用于聚焦的结构,避免了直接对压电材料层(1)进行加工制造容易导致损坏的问题,该人工结构超声换能器(100)易于加工及制备,制备成功率高、成本低,且声学软材料对声波具有高透射率,可以保证该人工结构超声换能器(100)具有高的声波利用率,以及得到高的声波聚焦能量。

Description

人工结构超声换能器以及超声装置 技术领域
本申请涉及超声技术领域,具体涉及一种人工结构超声换能器和超声装置。
背景技术
超声是一种机械波,其是由物体(声源)振动产生,并通过压缩和膨胀媒质进行传播。医学超声通常是指频率在20kHz到100MHz区间内的声波。超声除了具有波的一般属性,还有一个重要特点,其在水、肌肉等人体组织内的衰减很小,可以抵达较深的人体组织。医学超声波与人体组织相互作用,主要应用了声波与物质相互作用的基本物理特性。超声具有波动效应、力学效应和热效应等三大声学效应,这些效应在生物医学中有着重要的应用或重大潜力。传统的超声基于波动效应,已经发展成为具有成像诊断主要技术手段。波动效应可用于B超、彩超、造影等在临床具有十分广泛应用的超声成像诊断技术。
聚焦超声换能器能直接产生所需要的聚焦声场,称为主动式声波聚焦。常见的换能器声波聚焦方式有凹球面自聚焦、平面阵列换能器和凹面阵列换能器。人工结构也可以实现声波调控,是因为声波遇到物体(人工结构)发生一系列波动效应,并通过反射、折射、衍射、干涉等多种相互作用,产生不同的声波效果。人工结构调控超声波聚焦,其主要应用人工结构对声波的负折射、衍射或相位调控,最终使经过人工结构后的超声波在特定区域汇聚。
目前的人工结构通常是将压电材料(如压电陶瓷)制作成菲涅尔结构,然而,在这类晶体材料上制作菲涅尔结构的难度较大,例如,高频压电陶瓷难以压制成曲面,过程中容易导致压电材料的损坏。
技术问题
本申请实施例的目的之一在于:提供一种人工结构超声换能器和超声装置,旨在解决目前压电材料制作用于聚焦的菲涅尔结构时存在的难度大的问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种人工结构超声换能器,包括依次连接的压电材料层、匹配层和聚焦透镜,所述聚焦透镜用于对声波进行聚焦,且所述聚焦透镜的材料为声学软材料。
在一个实施例中,所述聚焦透镜于远离所述匹配层的表面上形成中心环部和多个第一环部,所述第一环部与所述中心环部相间隔,各所述第一环部同心且相间隔设置,所述第一环部的内侧形成同心且相互间隔的多个第二环部;所述第二环部相对于所述中心环部和所述第一环部突出或凹陷。
在一个实施例中,所述聚焦透镜于朝向所述匹配层的表面上形成中心环部和多个第一环部,所述第一环部与所述中心环部相间隔,各所述第一环部同心且相间隔设置,所述第一环部的内侧形成同心且相互间隔的多个第二环部;所述第二环部相对于所述中心环部和所述第一环部突出或凹陷。
在一个实施例中,所述第二环部相对于所述中心环部和所述第一环部突出,所述匹配层的朝向所述聚焦透镜的表面上形成多个同心且相间隔的配合环,所述配合环对应插入所述中心环部和所述第一环部内。
在一个实施例中,所述配合环之间形成环状的凹槽或环状的通槽。
在一个实施例中,所述第二环部相对于所述中心环部和所述第一环部凹陷,所述匹配层的朝向所述聚焦透镜的表面上形成多个同心且相间隔的配合环,所述配合环对应插入所述第二环部内。
在一个实施例中,所述配合环的内侧形成环状的凹槽或环状的通槽。
在一个实施例中,所述中心环部、第一环部和第二环部的宽度由如下公式确定:
Figure PCTCN2020098143-appb-000001
其中d i(i=1)=r 1,
d i(i>1)=r i-r j
i=1,2,3,... j=1,2,3,...
其中,r n表示第n个菲涅尔区域的半径;λ=c/f表示所述人工结构超声换能器发射的声波的波长,c表示声速,f表示所述人工结构超声换能器发射的声波的频率;F表示所述聚焦透镜的预设焦距;d i(i=1)表示所述聚焦透镜的中心环部的半径;定义所述中心环部、第一环部和第二环部均为波带,d i(i>1)表示除所述中心环部以外其他所述波带的宽度;r i表示包含第i个所述波带的最小菲涅尔区域的半径,r j表示在所述最小菲涅尔区域内,小于该所述最小菲涅尔区域的半径的其他最大菲涅尔区域的半径。
在一个实施例中,所述中心环部和第一环部的侧壁均平行于所述聚焦透镜的中心轴线。
在一个实施例中,所述压电材料层的远离所述匹配层的表面和朝向所述匹配层的表面均为平面,且垂直于所述聚焦透镜的中心轴线。
在一个实施例中,所述压电材料层为压电陶瓷层。
在一个实施例中,所述声学软材料为塑料材料、橡胶材料或硅胶材料。
在一个实施例中,所述声学软材料为硅橡胶。
在一个实施例中,所述匹配层的材料包括环氧树脂。
在一个实施例中,所述匹配层的材料包括环氧树脂和氧化铝。
在一个实施例中,所述压电材料层、所述匹配层和所述聚焦透镜之间依次通过粘合剂粘接。
第二方面,提供了一种超声装置,包括:超声探头,以及设于所述超声探头前方的如上述各实施例所述的人工结构超声换能器。
有益效果
本申请实施例提供的人工结构超声换能器的有益效果在于:
该人工结构超声换能器包括依次连接的压电材料层、匹配层和聚焦透镜,聚焦透镜的材料为声学软材料,压电材料层用于将电压转换为声波震动,聚焦透镜的材料为声学软材料且用于对声波进行聚焦,匹配层用于匹配由压电材料层至待测区域的阻抗,如此,无需在压电材料层上而是通过声学软材料单独制作用于聚焦的结构,避免了直接对压电材料层进行加工制作容易导致损坏的问题,该人工结构超声换能器易于加工及制备,制备成功率高、成本低。
本申请实施例提供的超声装置的有益效果在于:其包括的人工结构超声换能器无需在压电材料层上而是通过声学软材料单独制作用于聚焦的结构,避免了直接对压电材料层进行加工制作容易导致损坏的问题,该超声装置易于加工及制备,制备成功率高、成本低。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的人工结构超声换能器的一种形式示意图;
图2是图1所示人工结构超声换能器的立体分解示意图;
图3是图1所示人工结构超声换能器沿XY平面的剖视图;
图4是图1所示人工结构超声换能器中聚焦透镜的俯视示意图;
图5是图1所示人工结构超声换能器对声波的聚焦示意图;
图6是本申请实施例提供的人工结构超声换能器的另一种形式示意图,其示出聚焦透镜的朝向匹配层的表面;
图7是本申请实施例提供的人工结构超声换能器的另一种形式示意图,其示出匹配层的朝向聚焦透镜的表面;
图8是图6所示人工结构超声换能器的沿XY平面的剖视图;
图9是本申请实施例提供的人工结构超声换能器中聚焦透镜的菲涅尔波带的半径示意图;
图10是本申请实施例提供的超声装置的结构示意图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接固定或设置在另一个部件上或者间接固定或设置在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所提供的技术方案,以下结合具体附图及实施例进行详细说明。
请参阅图1、图2和图7,本申请实施例首先提供一种人工结构超声换能器100,其包括依次连接的压电材料层1、匹配层2和聚焦透镜3;具体地,压电材料层1的远离匹配层2的一侧用于配合超声探头9(请结合参阅图9),该压电材料层1用于将超声探头9施加于其上的高频电压转换为高频震动,也即产生高频平面声波,聚焦透镜3的材料为声学软材料且用于对声波进行聚焦,匹配层2用于匹配由压电材料层1至聚焦透镜3和待测区域C(请结合参阅图9)的阻抗,以减少声波由压电材料层1至待测区域C的衰减损失。
本申请实施例提供的人工结构超声换能器100,其包括依次连接的压电材料层1、匹配层2和聚焦透镜3,无需在压电材料层1上而是通过声学软材料单独制作用于聚焦的结构,避免了直接对压电材料层1进行加工制造容易导致损坏的问题,该人工结构超声换能器100易于加工及制备,制备成功率高、成本低,且声学软材料对声波具有高透射率,可以保证该人工结构超声换能器100具有高的声波利用率,以及得到高的声波聚焦能量。
可以理解的是,本技术领域内,所谓声学软材料是指对声波具有高透射率的材料,也即高声波透射率材料。具体地,在一个实施例中,声学软材料对声波的透射率为大于或等于50%。
其中,可选地,该聚焦透镜3所使用的声学软材料可为硅胶材料、橡胶材料和塑料材料中的至少一种,例如,该聚焦透镜3所使用的声学软材料可为硅胶材料、橡胶材料或塑料材料。该些材料易于加工制成各种形状和结构,从而,该人工结构超声换能器100的整体的制作难度和成本能够显著地降低。
在具体应用中,该聚焦透镜3可以使用上述材料通过注塑成型、压制成型等方式制造。
在一个具体实施例中,该聚焦透镜3的材料为硅橡胶。
首先,请参阅图1至图3,此为本申请实施例提供的一种形式的人工结构超声换能器100。在该实施例中,聚焦透镜3的远离匹配层2的表面上形成中心环部31和多个第一环部32,多个第一环部32同心设置且相互之间间隔设置,位于最内侧的第一环部32与中心环部31也间隔设置,如此,在每一第一环部32的内侧形成了第二环部33,多个第二环部33同心且相互之间间隔设置。中心环部31与第一环部32的高度相同,第二环部33的高度与中心环部31、第一环部32的高度不同。具体地,第二环部33可以相对于中心环部31和第一环部32突出,也可以凹陷。
图1至图3中以中心环部31和第一环部32相对于第二环部33突出为例进行表示。
由于第二环部33的高度与中心环部31、第一环部32的高度不同,该聚焦透镜3的远离匹配层2的表面上形成了同心且交替的凹凸结构,请结合参阅图4和图5。凹凸结构能够对声波进行衍射,从而使得声波穿过聚焦透镜3后可以会聚于该聚焦透镜3前方的某一点处(图5中的点划线表示衍射声波),也即,会聚于该聚焦透镜3的焦点S处(请参阅图5)。焦点S处的声波能量高,可以进行相应的应用,如超声成像、超声手术或超声刺激等。
匹配层2的朝向聚焦透镜3的表面可以为平面,聚焦透镜3的朝向匹配层2的表面为平面。如此,一方面,匹配层2的朝向聚焦透镜3的表面和聚焦透镜3的朝向匹配层2的表面更容易成型和制作,另一方面,二者之间能够容易地紧密贴合在一起而无缝隙,可以减少匹配层2与聚焦透镜3之间的空气间隙和阻抗差别,减少声波由匹配层2至聚焦透镜3的衰减损失,提高声波的有效利用率。
其中,可选地,匹配层2的朝向聚焦透镜3的表面与聚焦透镜3的朝向匹配层2的表面均垂直于聚焦透镜的中心轴线。
在具体应用中,匹配层2的朝向聚焦透镜3的表面与聚焦透镜3的朝向匹配层 2的表面之间可通过粘合剂粘贴在一起,同样,有利于进一步减少二者之间的空气间隙,便于声波的传导。
接下来,请参阅图6至图8,此为本申请实施例提供的另一种形式的人工结构超声换能器100。与上述图1至图3所示实施例的不同之处在于,在该实施例中,中心环部31、第一环部32以及第二环部33均形成于聚焦透镜3的朝向匹配层2的表面上。中心环部31、第一环部32以及第二环部33的特征可以与上述图1至图3所示实施例相同,在此不再赘述。
对应地,在该实施例中,匹配层2的朝向聚焦透镜3的表面设置为与聚焦透镜3的朝向匹配层2的表面对应匹配,也即,匹配层2的朝向聚焦透镜3的表面上形成于聚焦透镜3的凹凸结构相反的凸凹结构。
具体地,当聚焦透镜3的朝向匹配层2的表面上的中心环部31和第一环部32为相对于第二环部33突出时,匹配层2的朝向聚焦透镜3的表面形成能够插入第二环部33的配合环21,此时,配合环21的高度和宽度分别等于所对应的第二环部33的高度和宽度。如此,使得聚焦透镜3和匹配层2二者相互接触的表面能够完全贴合在一起而无空气间隙,可以进一步减少匹配层2与聚焦透镜3之间的阻抗差别,减少声波由匹配层2至聚焦透镜3的衰减损失,提高声波的有效利用率。
配合环21的高度可以等于该匹配层2的最大厚度,从而,配合环21的内侧形成环状的通槽;或者,配合环21的高度可以等于该匹配层2的最大厚度,从而,配合环21的内侧形成环状的凹槽。
或者,如图6至图8所示,中心环部31和第一环部32相对于第二环部33凹陷。
对应地,匹配层2的朝向聚焦透镜3的表面形成能够分别插入中心环部31和第一环部32的配合环21,此时,配合环21的高度和宽度分别等于所对应的中心环部31、所对应的第一环部32的高度和宽度。同样地,可以减少声波由匹配层2至聚焦 透镜3的衰减损失。
配合环21的高度可以等于该匹配层2的最大厚度,从而,相邻两个配合环21之间形成环状的通槽;或者,配合环21的高度可以等于该匹配层2的最大厚度,从而,相邻两个配合环21之间形成环状的凹槽。
同样地,在具体应用中,匹配层2的朝向聚焦透镜3的表面与聚焦透镜3的朝向匹配层2的表面之间可通过粘合剂粘贴在一起,以进一步减少二者之间的空气间隙。
请结合参阅图8,在一个实施例中,聚焦透镜3的中心环部31、第一环部32和第二环部33的宽度由菲涅尔衍射公式确定。
定义中心环部31、第一环部32和第二环部33均为该聚焦透镜3的波带。具体地,中心环部31和第一环部32按照由内至外的顺序依次为该聚焦透镜3的奇波带(图4中分别以a、c、e、g……进行表示),具体是第1、3、5、7……个波带,第二环部33按照由内至外的顺序依次为该聚焦透镜3的偶波带(图4中分别以b、d、f……进行表示),具体是第2、4、6……个波带。
由内至外,以a表示的中心环部31形成第1个菲涅尔区域;
中心环部31和以b表示的第二环部33形成第2个菲涅尔区域;
中心环部31、以b表示的第二环部33和以c表示的第一环部32形成第3个菲涅尔区域;
中心环部31、以b表示的第二环部33、以c表示的第一环部32和以d表示的第二环部33形成第4个菲涅尔区域;
中心环部31、以b表示的第二环部33、以c表示的第一环部32、以d表示的第二环部33和以e表示的第一环部32形成第5个菲涅尔区域;
中心环部31、以b表示的第二环部33、以c表示的第一环部32、以d表示的第 二环部33、以e表示的第一环部32和以f表示的第二环部33形成第6个菲涅尔区域;
中心环部31、以b表示的第二环部33、以c表示的第一环部32、以d表示的第二环部33、以e表示的第一环部32、以f表示的第二环部33和以g表示的第一环部32形成第7个菲涅尔区域;
依次类推。
则,中心环部31、第一环部32和第二环部33的宽度由下述公式(1)和(2)确定:
Figure PCTCN2020098143-appb-000002
其中d i(i=1)=r 1,           (2)
d i(i>1)=r i-r j
i=1,2,3,... j=1,2,3,...。
其中,r n表示第n个菲涅尔区域的半径;λ=c/f表示该人工结构超声换能器100发射的声波的波长,c表示声速,f表示该人工结构超声换能器100发射的声波的频率;F表示该聚焦透镜3的预设焦距;d i(i=1)表示该聚焦透镜3的中心环部31的半径(第1个菲涅尔区域的半径);d i(i>1)表示除中心环部31以外其他波带的宽度;r i表示包含第i个波带的最小菲涅尔区域的半径,r j表示在前述最小菲涅尔区域内,小于该最小菲涅尔区域的半径的其他最大菲涅尔区域的半径。
请结合参阅图4和图9,以a表示的中心环部31的半径即为第1个菲涅尔区域的半径,即,d 1=r 1
以b表示的第二环部33的宽度即为第2个菲涅尔区域的半径与第1个菲涅尔区域的半径之差,即,d 2=r 2-r 1
以c表示的第一环部32的宽度即为第3个菲涅尔区域的半径与第2个菲涅尔区 域的半径之差,即,d 3=r 3-r 2
以d表示的第二环部33的宽度即为第4个菲涅尔区域的半径与第3个菲涅尔区域的半径之差,即,d 4=r 4-r 3
以e表示的第一环部32的宽度即为第5个菲涅尔区域的半径与第4个菲涅尔区域的半径之差,即,d 5=r 5-r 4
依次类推。
在一个实施例中,压电材料层1可以为压电晶体层或者为压电陶瓷层。在一个可选实施例中,压电材料层1为压电陶瓷层,其成本相对低、制作相对容易,且压电性能佳。
如图3、图6和图7所示,在一个实施例中,压电材料层1的朝向匹配层2的表面可以为平面,匹配层2的朝向压电材料层1的表面为平面。如此,一方面,压电材料层1的朝向匹配层2的表面和匹配层2的朝向压电材料层1的表面均更容易成型和制作,另一方面,二者之间能够容易地紧密贴合在一起而无空气间隙,可以减少声波由压电材料层1至匹配层2的衰减损失,提高声波的有效利用率。
其中,可选地,压电材料层1的朝向匹配层2的表面与匹配层2的朝向压电材料层1的表面均垂直于聚焦透镜3的中心轴线。
请同时参阅图3和图8,在一个实施例中,中心环部31和第一环部32的侧壁均平行于该聚焦透镜3的中心轴线,且垂直于压电材料层1的相对两个表面(压电材料层1的远离匹配层2的表面和朝向匹配层2的表面)。这样的好处是,中心环部31、第一环部32和第二环部33的制作更容易,并且,这使得该聚焦透镜3层的厚度更薄,有利于提高该人工结构超声换能器100的频宽。在一个可选实施例中,该人工结构超声换能器100所适用的声波频率范围为0.2MHz~100MHz,其频宽大,适用性更广。
此外,根据上述公式(1)和(2),对于一定频率的声波,其经过聚焦透镜3后所聚焦的位置是一定的,也即,该聚焦透镜3的焦距是确定的。对于不同频率的声波,其经过聚焦透镜3后可以聚焦于不同位置处,也即,该聚焦透镜3的焦距根据所调控的声波的频率的不同而不同。例如,当压电材料层1所转换得到的平面声波的频率为1MHz时,声波波长λ=1.5mm,则焦距F=18mm。
在一个实施例中,压电材料层1的朝向匹配层2的表面和匹配层2的朝向压电材料层1的表面之间通过粘合剂粘结连接。
在另一个实施例中,匹配层2的材料可以包括环氧树脂。可选地,匹配层2的材料包括氧化铝与环氧树脂,通过调整其中氧化铝的质量分数,可以调整该匹配层2的声学参数。如此,该匹配层2除能够匹配压电材料层1至聚焦透镜3和待测区域C的阻抗外,其还能够借由环氧树脂的固化而直接与压电材料层1和聚焦透镜3分别形成粘结连接,无需额外的粘结剂。
请参阅图10,并结合上述的图1至图9,本申请实施例还提供一种超声装置200,其包括超声探头9,以及设于超声探头9前方的如上述各实施例所说的人工结构超声换能器100。超声探头9用于向压电材料层1施加高频电压,经该人工结构超声换能器100的逆压电转换和聚焦后,声波聚焦于待测区域C处。
该超声装置200具体可以用于超声成像、超声手术以及超声刺激(如超声神经调控)等。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (17)

  1. 人工结构超声换能器,其特征在于,包括依次连接的压电材料层、匹配层和聚焦透镜,所述聚焦透镜用于对声波进行聚焦,且所述聚焦透镜的材料为声学软材料。
  2. 根据权利要求1所述的人工结构超声换能器,其特征在于,所述聚焦透镜于远离所述匹配层的表面上形成中心环部和多个第一环部,所述第一环部与所述中心环部相间隔,各所述第一环部同心且相间隔设置,所述第一环部的内侧形成同心且相互间隔的多个第二环部;所述第二环部相对于所述中心环部和所述第一环部突出或凹陷。
  3. 根据权利要求1所述的人工结构超声换能器,其特征在于,所述聚焦透镜于朝向所述匹配层的表面上形成中心环部和多个第一环部,所述第一环部与所述中心环部相间隔,各所述第一环部同心且相间隔设置,所述第一环部的内侧形成同心且相互间隔的多个第二环部;所述第二环部相对于所述中心环部和所述第一环部突出或凹陷。
  4. 根据权利要求3所述的人工结构超声换能器,其特征在于,所述第二环部相对于所述中心环部和所述第一环部突出,所述匹配层的朝向所述聚焦透镜的表面上形成多个同心且相间隔的配合环,所述配合环对应插入所述中心环部和所述第一环部内。
  5. 根据权利要求4所述的人工结构超声换能器,其特征在于,所述配合环之间形成环状的凹槽或环状的通槽。
  6. 根据权利要求3所述的人工结构超声换能器,其特征在于,所述第二环部相对于所述中心环部和所述第一环部凹陷,所述匹配层的朝向所述聚焦透镜的表面上形成多个同心且相间隔的配合环,所述配合环对应插入所述第二环部内。
  7. 根据权利要求6所述的人工结构超声换能器,其特征在于,所述配合环的内侧形成环状的凹槽或环状的通槽。
  8. 根据权利要求2至7中任一项所述的人工结构超声换能器,其特征在于,所述中心环部、第一环部和第二环部的宽度由如下公式确定:
    Figure PCTCN2020098143-appb-100001
    其中 d i(i=1)=r 1,
    d i(i>1)=r i-r j
    i=1,2,3,...j=1,2,3,...
    其中,r n表示第n个菲涅尔区域的半径;λ=c/f表示所述人工结构超声换能器发射的声波的波长,c表示声速,f表示所述人工结构超声换能器发射的声波的频率;F表示所述聚焦透镜的预设焦距;d i(i=1)表示所述聚焦透镜的中心环部的半径;定义所述中心环部、第一环部和第二环部均为波带,d i(i>1)表示除所述中心环部以外其他所述波带的宽度;r i表示包含第i个所述波带的最小菲涅尔区域的半径,r j表示在所述最小菲涅尔区域内,小于该所述最小菲涅尔区域的半径的其他最大菲涅尔区域的半径。
  9. 根据权利要求2至7中任一项所述的人工结构超声换能器,其特征在于,所述中心环部和第一环部的侧壁均平行于所述聚焦透镜的中心轴线。
  10. 根据权利要求9所述的人工结构超声换能器,其特征在于,所述压电材料层的远离所述匹配层的表面和朝向所述匹配层的表面均为平面,且垂直于所述聚焦透镜的中心轴线。
  11. 根据权利要求1至7中任一项所述的人工结构超声换能器,其特征在于,所述压电材料层为压电陶瓷层。
  12. 根据权利要求1至7中任一项所述的人工结构超声换能器,其特征在于,所述声学软材料为塑料材料、橡胶材料或硅胶材料。
  13. 根据权利要求12所述的人工结构超声换能器,其特征在于,所述声学软材料为硅橡胶。
  14. 根据权利要求1至7中任一项所述的人工结构超声换能器,其特征在于,所述匹配层的材料包括环氧树脂。
  15. 根据权利要求14所述的人工结构超声换能器,其特征在于,所述匹配层的材料包括环氧树脂和氧化铝。
  16. 根据权利要求1至7中任一项所述的人工结构超声换能器,其特征在于,所述压电材料层、所述匹配层和所述聚焦透镜之间依次通过粘合剂粘接。
  17. 超声装置,其特征在于,包括:超声探头,以及设于所述超声探头前方的如权利要求1至16中任一项所述的人工结构超声换能器。
PCT/CN2020/098143 2020-06-24 2020-06-24 人工结构超声换能器以及超声装置 WO2021258339A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/098143 WO2021258339A1 (zh) 2020-06-24 2020-06-24 人工结构超声换能器以及超声装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/098143 WO2021258339A1 (zh) 2020-06-24 2020-06-24 人工结构超声换能器以及超声装置

Publications (1)

Publication Number Publication Date
WO2021258339A1 true WO2021258339A1 (zh) 2021-12-30

Family

ID=79282518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098143 WO2021258339A1 (zh) 2020-06-24 2020-06-24 人工结构超声换能器以及超声装置

Country Status (1)

Country Link
WO (1) WO2021258339A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117019608A (zh) * 2023-10-08 2023-11-10 中北大学 一种高性能空气耦合超声点聚焦换能器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101605288A (zh) * 2008-06-13 2009-12-16 上海爱培克电子科技有限公司 一种声阻抗连续变化的超声换能器
US20120071763A1 (en) * 2010-09-21 2012-03-22 Toshiba Medical Systems Corporation Medical ultrasound 2-d transducer array using fresnel lens approach
KR101261298B1 (ko) * 2012-01-31 2013-05-06 원테크놀로지 주식회사 제모용 다초점 초음파 장치
CN105411623A (zh) * 2015-12-25 2016-03-23 中国科学院深圳先进技术研究院 一种二维面阵列超声换能器及其制备方法
CN107644636A (zh) * 2017-09-01 2018-01-30 深圳先进技术研究院 一种基于平面人工结构的超声聚焦透镜
CN107870381A (zh) * 2017-12-22 2018-04-03 深圳先进技术研究院 平面透镜和平面透镜的制作方法
CN110686771A (zh) * 2019-10-11 2020-01-14 暨南大学 一种基于光声效应的宽光谱脉冲光探测器和探测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101605288A (zh) * 2008-06-13 2009-12-16 上海爱培克电子科技有限公司 一种声阻抗连续变化的超声换能器
US20120071763A1 (en) * 2010-09-21 2012-03-22 Toshiba Medical Systems Corporation Medical ultrasound 2-d transducer array using fresnel lens approach
KR101261298B1 (ko) * 2012-01-31 2013-05-06 원테크놀로지 주식회사 제모용 다초점 초음파 장치
CN105411623A (zh) * 2015-12-25 2016-03-23 中国科学院深圳先进技术研究院 一种二维面阵列超声换能器及其制备方法
CN107644636A (zh) * 2017-09-01 2018-01-30 深圳先进技术研究院 一种基于平面人工结构的超声聚焦透镜
CN107870381A (zh) * 2017-12-22 2018-04-03 深圳先进技术研究院 平面透镜和平面透镜的制作方法
CN110686771A (zh) * 2019-10-11 2020-01-14 暨南大学 一种基于光声效应的宽光谱脉冲光探测器和探测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117019608A (zh) * 2023-10-08 2023-11-10 中北大学 一种高性能空气耦合超声点聚焦换能器及其制备方法
CN117019608B (zh) * 2023-10-08 2024-01-05 中北大学 一种高性能空气耦合超声点聚焦换能器及其制备方法

Similar Documents

Publication Publication Date Title
US9089875B2 (en) Ultrasound backing element, transducer and ultrasound probe including the same
CN102670242B (zh) 一种超声聚焦换能器
WO2019119520A1 (zh) 平面透镜和平面透镜的制作方法
CN112958420B (zh) 一种高带宽的超声换能器及其制备方法
WO2021258339A1 (zh) 人工结构超声换能器以及超声装置
CN111495721A (zh) 具有带集成中心匹配层的超声透镜的高频超声换能器
KR20170005526A (ko) 빔 집속을 위한 초음파 변환자 조립체 및 그의 제조 방법
JP6257176B2 (ja) 静電容量型トランスデューサ、及びその作製方法
TW202245698A (zh) 具有諧波特性之壓電收發器的成像裝置
JP5377141B2 (ja) 超音波プローブ
CN111842095B (zh) 人工结构超声换能器以及超声装置
KR20190085259A (ko) 초음파 프로브
KR101861354B1 (ko) 집속 초음파 변환기
TWI418782B (zh) 超聲波換能器探頭
CN111803121B (zh) 一种声波聚焦透镜和超声调控装置
WO2022000288A1 (zh) 一种声波聚焦透镜和超声调控装置
KR20220110377A (ko) 환형 배열 압전재로 구성된 평면형 집속 초음파변환기, 음향렌즈, 그 설계방법 및 그 제작방법
CN115316940A (zh) 利用光束成形的透明超声换能器及其组装方法
US20240082876A1 (en) Imaging devices having piezoelectric transceivers with harmonic characteristics
JP2935551B2 (ja) 超音波探触子
CN108433744A (zh) 超声换能器、超声探头、超声探针以及超声水听器
CN215198038U (zh) 超声换能器及超声诊断设备
CN209404818U (zh) 一种超声换能器、超声探头以及超声水听器
US20240075500A1 (en) Dual and multiple membrane micromachined ultrasound transducers
JP2024511654A (ja) 高調波特性を備えた圧電トランシーバを有するイメージングデバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20942061

Country of ref document: EP

Kind code of ref document: A1