WO2022000288A1 - 一种声波聚焦透镜和超声调控装置 - Google Patents

一种声波聚焦透镜和超声调控装置 Download PDF

Info

Publication number
WO2022000288A1
WO2022000288A1 PCT/CN2020/099356 CN2020099356W WO2022000288A1 WO 2022000288 A1 WO2022000288 A1 WO 2022000288A1 CN 2020099356 W CN2020099356 W CN 2020099356W WO 2022000288 A1 WO2022000288 A1 WO 2022000288A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular
annular convex
focusing lens
acoustic wave
convex portion
Prior art date
Application number
PCT/CN2020/099356
Other languages
English (en)
French (fr)
Inventor
蔡飞燕
夏向向
郑海荣
周慧
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2020/099356 priority Critical patent/WO2022000288A1/zh
Publication of WO2022000288A1 publication Critical patent/WO2022000288A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings

Definitions

  • the application relates to the technical field of ultrasonic instruments, in particular to an acoustic wave focusing lens and an ultrasonic control device.
  • Ultrasound is a mechanical wave generated by the vibration of an object, i.e. a sound source, and the propagation of ultrasound can be caused by compressing and expanding the medium. Ultrasound has a wide range of applications in the medical field. Medical ultrasound usually refers to sound waves with frequencies in the range of 20kHz to 100MHz. In addition to the general properties of waves, the medical ultrasound also has the characteristics of small attenuation in human tissues such as water and muscle, and can reach deeper human tissues. When medical ultrasound interacts with human tissue, it has three major acoustic effects, including wave effect, mechanical effect, and thermal effect. These effects have important applications or great potential in biomedicine.
  • the wave effect of ultrasound can be used in ultrasound imaging diagnostic equipment such as B-ultrasound, color ultrasound, and contrast-enhanced ultrasound; while the thermal effect of ultrasound can be used for thermal ablation of tumors and damage to nerve nuclei, such as high-intensity focused ultrasound therapy. knife, HIFU).
  • the focused ultrasonic transducer is an active sound wave focusing method, which can directly generate the required focused sound field.
  • Existing focused ultrasound transducers generally use the principle of piezoelectric wafer self-focusing, and the common focusing methods include concave spherical self-focusing, planar array transducers, and concave array transducers.
  • One of the purposes of the embodiments of the present application is to provide an acoustic wave focusing lens and an ultrasonic regulating device, which aims to solve the technical problem in the related art that the focused ultrasonic transducer cannot easily adjust the focal depth.
  • an acoustic wave focusing lens comprising:
  • the body is in the shape of a disc, and has an opposite first surface and a second surface, and the first surface is used for receiving incident ultrasonic waves;
  • a plurality of annular convex parts are arranged on the second surface, and the plurality of annular convex parts are arranged with the center of the body as the center and are arranged in a radially spaced collar, between two adjacent annular convex parts An annular groove is formed; the incident ultrasonic wave passes through the body, and is focused on the focal point after passing through the annular convex portion and the annular groove, and the distance between the focal point and the second surface is the focal depth;
  • the acoustic wave focusing lens is made of elastic sound-transmitting material, and has an original state and a stretched state; in the stretched state, each annular convex portion and each annular groove are stretched in the radial direction, and the focusing depth of the acoustic wave focusing lens in the stretched state greater than the depth of focus in the original state.
  • the acoustic wave focusing lens is a Fresnel lens
  • the annular convex portion and the annular groove are both annular, and in the radially outward direction from the center of the body, the width of the plurality of annular convex portions As the setting is gradually reduced, the widths of the plurality of annular grooves are also gradually reduced.
  • the radial width of the annular convex portion and the radial width of the annular groove both satisfy the following conditions:
  • n a positive integer
  • c the speed of sound
  • f the frequency of the incident ultrasonic wave
  • F the focal length of the Fresnel lens in the original unstretched state
  • d n (n>1) represents the nth element except at the center of the Fresnel lens annular protrusion or annular recess radial width direction
  • the distance from the top surface of the annular convex portion away from the second surface to the first surface is the thickness of the annular convex portion, and the distance from the bottom of the annular groove to the annular
  • the distance from the top surface of the convex portion is the depth of the annular groove, and the thickness of the annular convex portion and the depth of the annular groove satisfy the following conditions:
  • c 0 represents the sound speed in the liquid
  • c 1 represents the sound speed in the acoustic wave focusing lens
  • t 1 represents the thickness of the annular convex portion
  • t 2 represents the depth of the annular groove
  • represents the wavelength of the incident ultrasonic wave.
  • the length change value of the annular groove extending in the radial direction is greater than the length change value of the annular convex portion extending in the radial direction.
  • a plurality of stretching clamping portions are further provided at the outer peripheral edge of the body, and the plurality of stretching clamping portions are evenly distributed along the circumference of the outer peripheral edge of the body.
  • the acoustic wave focusing lens is made of rubber material or polymethyl methacrylate material or photosensitive resin material.
  • the body and the annular projection are integrally formed.
  • an ultrasonic regulation device including a planar ultrasonic transducer and the aforementioned acoustic wave focusing lens, where the planar ultrasonic transducer is used for emitting incident ultrasonic waves and is located on the side of the first surface of the acoustic wave focusing lens.
  • the incident ultrasonic waves emitted by the planar ultrasonic transducer are perpendicular to the first surface of the acoustic focusing lens.
  • the beneficial effect of the acoustic wave focusing lens provided by the embodiment of the present application is that after the incident ultrasonic wave passes through the body of the acoustic wave focusing lens, it will be focused on the focal point under the action of the annular convex portion and the annular groove, thereby realizing the focusing of the ultrasonic wave.
  • the acoustic wave focusing lens is made of elastic sound-transmitting material, under the action of external force, the acoustic wave focusing lens can be in a stretched state in which each annular convex portion and each annular groove are radially stretched, At this time, through the radial extension of the annular convex portion and the annular groove, the radius of the Fresnel area increases, and the radius of the Fresnel area is proportional to the focal depth of the acoustic wave focusing lens, so through By stretching the acoustic wave focusing lens, the depth of focus of the acoustic wave can be increased.
  • the design of the acoustic wave focusing lens can not only realize the focusing of ultrasonic waves and generate a focused sound field, but also adjust the stretching length of the acoustic wave focusing lens by stretching, thereby realizing the adjustment of the focusing depth. .
  • the design of the acoustic wave focusing lens can not only realize the focusing of ultrasonic waves and generate a focused sound field, but also adjust the stretching length of the acoustic wave focusing lens by stretching, thereby realizing the adjustment of the focusing depth. .
  • ultrasonic imaging and ultrasonic stimulation of different depth regions of the acting object can be conveniently realized, with simple operation, low cost and flexible use.
  • the beneficial effects of the ultrasonic control device are that the focusing of the ultrasonic waves can be realized by using the sonic focusing lens in conjunction with the planar ultrasonic transducer, and the depth of the sonic focusing can also be increased by stretching the sonic focusing lens, In this way, the focal length can be adjusted by adjusting the stretching length of the acoustic wave focusing lens, that is, the precise adjustment of the focusing depth can be realized, and the ultrasonic imaging and ultrasonic stimulation of different depth regions of the applied object can be conveniently realized, which improves the performance of the acoustic wave focusing lens.
  • the ultrasonic equipment of the ultrasonic control device especially the medical ultrasonic equipment, is applicable and convenient to use.
  • FIG. 1 is a top view and a front view of an acoustic wave focusing lens provided by an embodiment of the application;
  • FIG. 2 is an optical path structure diagram of the acoustic wave focusing lens provided by an embodiment of the present application when it is in an original state;
  • FIG. 3 is a structural diagram of an optical path of an acoustic wave focusing lens provided in an embodiment of the present application when it is in a stretched state.
  • Embodiments of the present application provide an acoustic wave focusing lens.
  • the acoustic wave focusing lens includes a body 100 and a plurality of annular convex portions 200 .
  • the body 100 is in the shape of a disc, and has a first surface 110 and a second surface 120 opposite to each other.
  • the first surface 110 is used to receive the incident ultrasonic wave 400 ; a plurality of annular protrusions 200 are arranged on the second surface 120, and a plurality of annular
  • the protruding parts 200 are centered on the center of the main body 100 and are arranged in radially spaced collars, and an annular groove 300 is formed between two adjacent annular protruding parts 200; the incident ultrasonic waves 400 pass through the main body 100 and pass through the annular
  • the convex portion 200 and the annular groove 300 are then focused on the focal point, and the distance between the focal point and the second surface 120 is the focal depth.
  • the acoustic wave focusing lens is made of elastic sound-transmitting material, and has an original state and a stretched state; in the stretched state, each annular convex portion 200 and each annular groove 300 extend radially, and the acoustic wave focusing lens is in a stretched state.
  • the depth of focus in the stretched state is greater than that in the original state.
  • the acoustic wave focusing lens is an artificial structure manufactured by artificial design, which can be applied to application fields such as ultrasonic imaging, ultrasonic surgery, and ultrasonic neuromodulation.
  • the incident ultrasonic wave 400 passes through the body 100 of the acoustic focusing lens, it will be focused on the focal point under the action of the annular convex portion 200 and the annular groove 300, thereby realizing the focusing of the ultrasonic wave.
  • the acoustic wave focusing lens is made of elastic sound-transmitting material, under the action of external force, the acoustic wave focusing lens can be stretched in the radial direction of each annular convex portion 200 and each annular groove 300 At this time, through the radial extension of the annular convex portion 200 and the annular groove 300, the radius of the Fresnel area increases, and the radius of the Fresnel area is proportional to the focal depth of the acoustic focusing lens. Therefore, the focusing depth of the acoustic wave can be increased by stretching the acoustic wave focusing lens.
  • the design of the acoustic wave focusing lens can not only realize the focusing of ultrasonic waves and generate a focused sound field, but also adjust the stretching length of the acoustic wave focusing lens by stretching, thereby realizing the adjustment of the focusing depth. .
  • the design of the acoustic wave focusing lens can not only realize the focusing of ultrasonic waves and generate a focused sound field, but also adjust the stretching length of the acoustic wave focusing lens by stretching, thereby realizing the adjustment of the focusing depth. .
  • ultrasonic imaging and ultrasonic stimulation of different depth regions of the acting object can be conveniently realized, with simple operation, low cost and flexible use.
  • the acoustic wave focusing lens is a Fresnel lens
  • both the annular convex portion 200 and the annular groove 300 are preferably annular, in the radially outward direction from the center of the body 100 , the widths of the plurality of annular protrusions 200 are gradually reduced, and the widths of the plurality of annular grooves 300 are gradually reduced, so that the focusing effect on the incident ultrasonic waves 400 can be better achieved.
  • the annular convex portion 200 and the annular concave portion may also be provided in other shapes, such as, but not limited to, a square ring, etc.
  • the annular convex portion 200 and the annular groove in the annular shape The focusing effect of 300 is better, and it is also more convenient for the structure design and optical path design of the lens.
  • the present Fresnel lens is calculated based on Fresnel diffraction, and is mainly composed of concentric circular annular protrusions and annular grooves alternately.
  • the annular convex portion and the annular convex portion are sequentially formed; however, the design is not limited to this, in other embodiments, the annular convex portion and the annular groove are Interchangeable, that is, at the center of the body 100 is a groove surrounded by annular protrusions.
  • the radial width of the annular convex portion 200 and the radial width of the annular groove 300 both satisfy the following conditions:
  • n represents a positive integer
  • c represents the speed of sound
  • f represents the frequency of the incident ultrasonic wave 400
  • F represents the focal length of the Fresnel lens in the unstretched original state
  • d n (n>1) represents other than the center of the Fresnel lens the n-th annular portion 200 or the width of the annular groove 300 in the radial direction
  • r1 represents the radius of the first Fresnel zone represents
  • r n represents the n-th Fresnel is the radius of the Fresnel region
  • r n-1 represents the radius of the n-1th Fresnel region.
  • each annular convex portion has an inner annular surface and an outer annular surface, wherein the outer annular surface is an annular surface relatively away from the center of the body 100 ; in each annular groove, an outer inner annular surface relatively away from the center of the body 100
  • the wall surface is the inner annular surface of the adjacent outer annular convex portion, and the inner inner wall surface of the annular groove relatively close to the center of the body 100 is the outer annular surface of the adjacent inner annular convex portion.
  • the area surrounded by the outer annular surface of the annular convex portion at the center of the main body 100 is the first Fresnel area, that is, the odd wave band numbered 1;
  • the area surrounded by the outer inner wall of the annular groove 300 adjacent to the Fresnel area is the second Fresnel area, that is, the even-wave band numbered 2;
  • the area enclosed by the outer annular surface of the part 200 is the third Fresnel area, that is, the odd wave band numbered 3; and so on, n Fresnel areas can be obtained.
  • the z-axis represents the positive direction perpendicular to the second surface 120 , that is, the direction of the depth of focus (which can also be considered as the focal length), and the dotted lines of concentric circles represent the unstretched
  • the radial direction of the body 100 is the x-axis direction shown in the figures
  • r 1 is the radius of the first Fresnel region
  • r 2 is the radius of the second Fresnel region .
  • the transmitted sound wave will converge at a preset focus A.
  • FIG. 3 after the incident ultrasonic wave 400 passes through the stretched Fresnel lens, that is, the stretched state, the transmitted sound wave will converge at the focus point B.
  • the focal length of the corresponding Fresnel lens also increases. The focal length of the sound waves afterward is larger than normal without being stretched.
  • the thickness difference between the annular convex portion and the annular groove 300 needs to satisfy certain numerical conditions.
  • the distance from the top surface of the annular convex portion 200 away from the second surface 120 to the first surface 110 is the thickness of the annular convex portion 200
  • the annular concave portion 200 is the thickness of the annular convex portion 200.
  • the distance between the groove bottom of the groove 300 and the top surface of the annular convex portion 200 is the depth of the annular groove 300, and the thickness of the annular convex portion 200 and the depth of the annular groove 300 satisfy the following conditions:
  • c 0 represents the sound speed in the liquid
  • c 1 represents the sound speed in the acoustic wave focusing lens
  • t 1 represents the thickness of the annular convex portion
  • t 2 represents the depth of the annular groove 300
  • represents the wavelength of the incident ultrasonic wave 400 .
  • the variation value of the length of the annular groove 300 extending in the radial direction is greater than the variation value of the length of the annular convex portion 200 extending in the radial direction.
  • a plurality of stretching clamping parts are further provided at the outer peripheral edge of the main body 100, and a plurality of The stretching clamping parts are evenly spaced along the circumference of the outer peripheral edge of the body 100 , so that the stretching force can be more uniform, and the deformation of the lens in all directions can be more uniform, so that a better focusing effect can be obtained.
  • a plurality of clamping jaws connected with a high-precision driving motor can be designed, and each clamping jaw is clamped on the tension clamping part. Then, the clamping jaws are driven by the driving motor (not shown) to realize the The acoustic wave focusing lens is uniformly stretched, and the stretching amount can be precisely controlled, thereby realizing the precise control of the focusing depth of the lens.
  • the acoustic wave focusing lens is preferably made of a rubber material or a polymethyl methacrylate (PMMA) material or a photosensitive resin material.
  • PMMA polymethyl methacrylate
  • the above materials can also be used. It is made of materials with similar acoustic parameters and certain elasticity.
  • the body 100 and the annular protrusion 200 are integrally formed.
  • the acoustic wave focusing lens is mostly made of elastic and sound-transmitting polymer materials, so the acoustic wave focusing lens can be manufactured by injection molding to ensure accurate lens size and reduce manufacturing costs.
  • the present application also proposes an ultrasonic control device, which includes a planar ultrasonic transducer (not shown) and the aforementioned acoustic wave focusing lens.
  • the specific structure of the acoustic wave focusing lens refers to the above-mentioned embodiment. It has all the technical solutions of the above-mentioned embodiments, and therefore also has all the beneficial effects brought by the technical solutions of the above-mentioned embodiments, and will not be repeated here.
  • the ultrasonic focusing can be realized by using the acoustic focusing lens in conjunction with the planar ultrasonic transducer, and the depth of the acoustic focusing can also be increased by stretching the acoustic focusing lens.
  • the focal length is adjusted by stretching the length of the lens, that is, the precise adjustment of the focal depth is realized, and the ultrasonic imaging and ultrasonic stimulation of different depth regions of the applied object are easily realized, which improves the ultrasonic equipment with the ultrasonic control device, especially It is the scope of application and convenient use of medical ultrasound equipment.
  • the planar ultrasonic transducer is used to transmit the incident ultrasonic waves 400 and is located on the side of the first surface 110 of the acoustic wave focusing lens.
  • the planar ultrasonic transducer may be placed with a certain interval from the first surface 110, or the acoustic focusing lens may be directly placed on the acoustic wave emitting surface of the planar ultrasonic transducer.
  • the incident ultrasonic wave 400 emitted by the planar ultrasonic transducer should be perpendicular to the first surface 110 of the sound wave focusing lens.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

一种声波聚焦透镜和超声调控装置,该声波聚焦透镜包括本体(100)和多个环形凸部(200);本体(100)具有用于接收入射超声波(400)的第一表面(110)与第二表面(120);多个环形凸部(200)均设于第二表面(120),并以本体(100)的中心为中心,沿径向间隔式套环排布,两相邻的环形凸部(200)之间形成一环形凹槽(300);入射超声波(400)透过本体(100),并经过环形凸部(200)和凹槽(300)后聚焦于焦点,焦点与第二表面(120)之间的距离为聚焦深度;声波聚焦透镜由弹性透声材料制成;在拉伸状态,各个环形凸部(200)以及各个环形凹槽(300)均沿径向伸展,声波聚焦透镜在拉伸状态下的聚焦深度大于在原始状态下的聚焦深度。声波聚焦透镜能通过拉伸实现声波聚焦深度的增加,结构简单且成本低。

Description

一种声波聚焦透镜和超声调控装置 技术领域
本申请涉及超声波仪器技术领域,具体涉及一种声波聚焦透镜和超声调控装置。
背景技术
超声波是一种由物体即声源振动而产生的机械波,且超声波可通过压缩和膨胀媒质导致其传播。超声波在医学领域具有广泛的应用,医学超声波通常是指频率在20kHz到100MHz区间内的声波。该医学超声除了具有波的一般属性之外,还具有在水、肌肉等人体组织内的衰减很小,可以抵达较深的人体组织的特点。当医学超声波与人体组织相互作用时,同时具有波动效应、力学效应和热效应等三大声学效应,这些效应在生物医学中有着重要的应用或重大潜力。在目前常见的医学类超声设备中,依据超声波的波动效应和热效应,已经发展成为具有成像诊断和热消融治疗两大基本功能的医疗仪器,在临床具有十分广泛应用。例如,超声波的波动效应具体可用于B超、彩超、造影等超声成像诊断设备;而超声波的热效应可用于肿瘤的热消融和神经核团毁损等治疗,比如高强度聚焦超声治疗(high energy focused ultrasonic knife,HIFU)中。
在这些超声设备中,通常包括聚焦超声换能器这一核心部件。聚焦超声换能器为主动式声波聚焦方式,可以直接产生所需要的聚焦声场。现有的聚焦超声换能器一般都采用压电晶片自聚焦的原理,其常见的聚焦方式有凹球面自聚焦、平面阵列换能器和凹面阵列换能器等。例如,在目前进行超声治疗研究的各实验室中,基本上都采用商用超声凹球面聚焦换能器进行相关实验研究;但是,由于每个聚焦超声换能器都有自己固定的焦距和焦斑,所以为了满足不同研究的需要,就需要购买不同型号的商用聚焦超声换能器,经济成本较高。此 外,在目前用于生物医学领域的超声设备中,大多都是使用单阵元聚焦超声换能器或阵列式超声换能器。对于单阵元聚焦超声换能器,由于其聚焦声场不可改变且聚焦形式单一,故当需要改变聚焦深度时就必须要更换对应的聚焦超声换能器,使用不够灵活且使用成本较高;而阵列式超声换能器制作复杂,尺寸较大,需要复杂的控制系统调控不同聚焦深度的超声波,成本也很高。因此,设计一种可以方便地调节聚焦深度且结构简单成本低的聚焦超声换能器就成了业内亟待解决的问题。
技术问题
本申请实施例的目的之一在于:提供一种声波聚焦透镜和超声调控装置,旨在解决相关技术中存在的聚焦超声换能器无法方便地调节聚焦深度的技术问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种声波聚焦透镜,包括:
本体,本体呈圆盘状,具有相对的第一表面与第二表面,第一表面用于接收入射超声波;以及,
多个环形凸部,多个环形凸部均设于第二表面,多个环形凸部呈以本体的中心为中心,沿径向间隔式套环排布,两相邻的环形凸部之间形成一环形凹槽;入射超声波透过本体,并经过环形凸部和环形凹槽后聚焦于焦点,焦点与第二表面之间的距离为聚焦深度;
声波聚焦透镜由弹性透声材料制成,具有原始状态和拉伸状态;在拉伸状态,各个环形凸部以及各个环形凹槽均沿径向伸展,声波聚焦透镜在拉伸状态 下的聚焦深度大于在原始状态下的聚焦深度。
在一个实施例中,声波聚焦透镜为菲涅尔透镜,环形凸部和环形凹槽均呈圆环状,在从本体的中心沿径向向外的方向上,多个环形凸部的宽度呈逐渐减小设置,多个环形凹槽的宽度也呈逐渐减小设置。
在一个实施例中,环形凸部沿径向的宽度以及环形凹槽沿径向的宽度均满足以下条件:
Figure PCTCN2020099356-appb-000001
d n(n=1)=r 1
d n(n﹥1)=r n-r n-1
其中,n代表正整数;λ=c/f表示入射超声波的波长,c表示声速,f表示入射超声波的频率;F表示处于未拉伸的原始状态下的菲涅尔透镜的焦距;d n(n=1)表示位于菲涅尔透镜中心处的第一个环形凸部或第一个环形凹槽的半径;d n(n﹥1)表示除了菲涅尔透镜中心处之外的第n个环形凸部或环形凹槽沿径向的宽度;n=1时,r 1表示表示第一个菲涅尔区域的半径;n﹥1时,r n表示第n个菲涅尔区域的半径,r n-1表示第n-1个菲涅尔区域的半径。
在一个实施例中,在沿垂直于第二表面的方向上,以环形凸部背离第二表面的顶面至第一表面的距离为环形凸部的厚度,以环形凹槽的槽底距离环形凸部的顶面的距离为环形凹槽的深度,环形凸部的厚度以及环形凹槽的深度满足以下条件:
Figure PCTCN2020099356-appb-000002
Figure PCTCN2020099356-appb-000003
Figure PCTCN2020099356-appb-000004
其中,
Figure PCTCN2020099356-appb-000005
表示环形凸部与第二表面的相位差,
Figure PCTCN2020099356-appb-000006
表示环形凹槽与第二表面的相位差,
Figure PCTCN2020099356-appb-000007
表示环形凸部和环形凹槽之间的相位差,且
Figure PCTCN2020099356-appb-000008
c 0表示在液体中的声速,c 1表示在声波聚焦透镜中的声速,t 1表示环状凸部的厚度,t 2表示环形凹槽的深度;λ表示入射超声波的波长。
在一个实施例中,在拉伸状态,环形凹槽沿径向伸展的长度变化值大于环形凸部沿径向伸展的长度变化值。
在一个实施例中,在本体的外周边缘处还设有多个拉伸夹持部,且多个拉伸夹持部沿本体的外周边缘的周向均匀间隔分布。
在一个实施例中,声波聚焦透镜使用橡胶材料或者聚甲基丙烯酸甲酯材料或者光敏树脂材料制成。
在一个实施例中,本体和环形凸部一体成型。
第二方面,提供了一种超声调控装置,包括平面超声换能器和如前所述的声波聚焦透镜,平面超声换能器用于发射入射超声波,并位于声波聚焦透镜的第一表面一侧。
在一个实施例中,平面超声换能器发射的入射超声波与声波聚焦透镜的第一表面垂直。
有益效果
本申请实施例提供的声波聚焦透镜的有益效果在于:当入射超声波经过声波聚焦透镜的本体后,就会在环形凸部和环形凹槽的作用下,聚焦于焦点,从而实现超声波的聚焦。而在本申请中,由于本声波聚焦透镜由弹性透声材料制成,故在外力作用下,本声波聚焦透镜可处于各个环形凸部以及各个环形凹槽均沿径向伸展的拉伸状态,此时,通过环形凸部和环形凹槽的沿径向伸展,其菲涅尔区域的半径就增长了,而菲涅尔区域的半径与声波聚焦透镜的聚焦深度 是呈正比关系的,故通过拉伸本声波聚焦透镜就能实现声波的聚焦深度增加。换言之,本申请的技术方案中,本声波聚焦透镜的设计,不但能够实现超声波的聚焦,产生聚焦声场,还可以通过拉伸来调节本声波聚焦透镜的拉伸长度,进而实现对聚焦深度的调节。这样,通过拉伸来精确地调控本声波聚焦透镜的聚焦深度,就可以很方便的实现对所作用物体的不同深度区域进行超声成像和超声刺激,操作简单,造价低廉,使用灵活。
本申请实施例提供的超声调控装置的有益效果在于:利用声波聚焦透镜与平面超声换能器配合使用,就可以实现超声波的聚焦,而且通过拉伸声波聚焦透镜,还可以实现声波聚焦深度增加,由此可实现通过调节本声波聚焦透镜的拉伸长度而调节焦距,即实现对聚焦深度的精确调节,进而很方便的实现对所作用物体的不同深度区域进行超声成像和超声刺激,提高了具有本超声调控装置的超声设备,特别是医学类超声设备的适用范围和使用便利。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请一实施例提供的声波聚焦透镜的俯视和前视图;
图2为本申请一实施例提供的声波聚焦透镜处于原始状态时的光路结构图;
图3为本申请一实施例提供的声波聚焦透镜处于拉伸状态时的光路结构图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所述的技术方案,以下结合具体附图及实施例进行详细说明。
本申请实施例提供一种声波聚焦透镜。
请参阅图1至图3,在一实施例中,该声波聚焦透镜包括本体100和多个环形凸部200。其中,本体100呈圆盘状,具有相对的第一表面110与第二表面120,第一表面110用于接收入射超声波400;多个环形凸部200均设于第二表面120,多个环形凸部200呈以本体100的中心为中心,沿径向间隔式套环排布,两相邻的环形凸部200之间形成一环形凹槽300;入射超声波400透 过本体100,并经过环形凸部200和环形凹槽300后聚焦于焦点,焦点与第二表面120之间的距离为聚焦深度。在本申请中,声波聚焦透镜由弹性透声材料制成,具有原始状态和拉伸状态;在拉伸状态,各个环形凸部200以及各个环形凹槽300均沿径向伸展,声波聚焦透镜在拉伸状态下的聚焦深度大于在原始状态下的聚焦深度。
在此需说明的是,由于声波遇到人工结构物体会发生一系列波动效应,并通过反射、折射、干涉等多种相互作用,产生不同的声波效果,故通过人工结构的物件也可以实现声波调控,且人工结构调控声波的方式还具有造价低和灵活性高的优势。例如,可利用人工结构对声波的负折射、衍射或相位调控,最终使经过人工结构后的超声波在特定区域汇聚,从而有效实现人工结构对超声波聚焦的调节。在本申请中,本声波聚焦透镜是一种通过人为设计制造而成的人工结构,可适用于超声成像、超声手术及超声神经调控等应用领域。
基于此结构设计,当入射超声波400经过声波聚焦透镜的本体100后,就会在环形凸部200和环形凹槽300的作用下,聚焦于焦点,从而实现超声波的聚焦。而在本申请中,由于本声波聚焦透镜由弹性透声材料制成,故在外力作用下,本声波聚焦透镜可处于各个环形凸部200以及各个环形凹槽300均沿径向伸展的拉伸状态,此时,通过环形凸部200和环形凹槽300的沿径向伸展,其菲涅尔区域的半径就增长了,而菲涅尔区域的半径与声波聚焦透镜的聚焦深度是呈正比关系的,故通过拉伸本声波聚焦透镜就能实现声波的聚焦深度增加。换言之,本申请的技术方案中,本声波聚焦透镜的设计,不但能够实现超声波的聚焦,产生聚焦声场,还可以通过拉伸来调节本声波聚焦透镜的拉伸长度,进而实现对聚焦深度的调节。这样,通过拉伸来精确地调控本声波聚焦透镜的聚焦深度,就可以很方便的实现对所作用物体的不同深度区域进行超声成 像和超声刺激,操作简单,造价低廉,使用灵活。
请参阅图1,在本实施例中,声波聚焦透镜为菲涅尔透镜,环形凸部200和环形凹槽300均优选呈圆环状,在从本体100的中心沿径向向外的方向上,多个环形凸部200的宽度呈逐渐减小设置,多个环形凹槽300的宽度呈逐渐减小设置,如此,才能更好的实现对入射超声波400的聚焦作用。当然,于其他实施例中,环形凸部200和环形凹部还可以呈其他形状设置,例如但不限于呈方形环等,但在本实施例中,圆环型的环形凸部200和环形凹槽300的聚焦效果更好,也更方便透镜的结构设计和光路设计。在此,本菲涅尔透镜是基于菲涅尔衍射计算得出的,主要是由同心的圆形环状凸起环状凹槽交替组成,例如在本实施例中,在本体100的中心处为实心的环状凸部,然后在沿径向方向上,依次为环状凹槽和环状凸部;然本设计不限于此,于其他实施例中,环状凸部和环状凹槽可互换,即在本体100的中心处为由环状凸部围成的凹槽。
请参阅图1至图3,在本实施例中,环形凸部200沿径向的宽度以及环形凹槽300沿径向的宽度均满足以下条件:
Figure PCTCN2020099356-appb-000009
d n(n=1)=r 1       (2)
d n(n﹥1)=r n-r n-1      (3)
其中,n代表正整数;λ=c/f表示入射超声波400的波长,c表示声速,f表示入射超声波400的频率;F表示处于未拉伸的原始状态下的菲涅尔透镜的焦距;d n(n=1)表示位于菲涅尔透镜中心处的第一个环形凸部200或第一个环形凹槽300的半径;d n(n﹥1)表示除了菲涅尔透镜中心处之外的第n个环形凸部200或环形凹槽300沿径向的宽度;n=1时,r1表示表示第一个菲涅尔 区域的半径;n﹥1时,r n表示第n个菲涅尔区域的半径,r n-1表示第n-1个菲涅尔区域的半径。
在此,每一环状凸部具有相对的内环面和外环面,其中外环面为相对背离本体100中心的环面;每一环状凹槽中的相对背离本体100中心的外侧内壁面即为相邻的外侧环状凸部的内环面,而环状凹槽中的相对靠近本体100中心的内侧内壁面即为相邻的内侧环状凸部的外环面。在本实施例中,以位于本体100中心处的环状凸部的外环面所围成的区域为第一个菲涅尔区域,即编号为1的奇波带;与第一个菲涅尔区域相邻的环形凹槽300的外侧内壁面所围成的区域为第二菲涅尔区域,即编号为2的偶波带;与第二个菲涅尔区域相邻的外侧的环形凸部200的外环面所围成的区域为第三菲涅尔区域,即编号为3的奇波带;以此类推,就可以得到n个菲涅尔区域。在如图1所示的菲涅尔透镜中,z轴表示与第二表面120垂直的正向方向,即聚焦深度(也可以认为是焦距)所在方向,同心圆环虚线表示处于未被拉伸的原始状态的菲涅尔透镜,而同心圆环实线表示被拉伸后的处于拉伸状态的菲涅尔透镜,两者相比其拉伸长度用△r表示。
在图2和图3中,本体100的径向方向即为图中所示的x轴方向,r 1为第一个菲涅尔区域的半径,r 2为第二个菲涅尔区域的半径。如图2所示,以平面超声换能器发射的平面波作为入射超声波400,在经过没被拉伸的处于原始状态的菲涅尔透镜之后,透射声波将在预设的焦点A处汇聚。而在图3中,入射超声波400经过被拉伸的即处于拉伸状态的菲涅尔透镜后,透射声波将在焦点B处汇聚。由公式(1)可知,当一个菲涅尔区域的半径r n增大时,其对应的菲涅尔透镜的焦距也是增大的,换言之,本申请提出的提供的声波聚焦透镜,在拉伸之后的声波的焦距比没被拉伸的正常情况下较大。
请参阅图2和图3,在本实施例中,为取得最优的超声聚焦效果,其环状凸部和环形凹槽300的厚度差需满足特定的数值条件。具体地,在沿垂直于第二表面120的方向即z轴方向上,以环形凸部200背离第二表面120的顶面至第一表面110的距离为环形凸部200的厚度,以环形凹槽300的槽底距离环形凸部200的顶面的距离为环形凹槽300的深度,环形凸部200的厚度以及环形凹槽300的深度满足以下条件:
Figure PCTCN2020099356-appb-000010
Figure PCTCN2020099356-appb-000011
Figure PCTCN2020099356-appb-000012
其中,
Figure PCTCN2020099356-appb-000013
表示环形凸部200与第二表面120的相位差,
Figure PCTCN2020099356-appb-000014
表示环形凹槽300与第二表面120的相位差,
Figure PCTCN2020099356-appb-000015
表示环形凸部200和环形凹槽300之间的相位差,且
Figure PCTCN2020099356-appb-000016
c 0表示在液体中的声速,c 1表示在声波聚焦透镜中的声速,t 1表示环状凸部的厚度,t 2表示环形凹槽300的深度;λ表示入射超声波400的波长。特别的,当环形凸部200和环形凹槽300的相位差,即
Figure PCTCN2020099356-appb-000017
保持在π/2附近时,就能取得最优的超声聚焦效果。
在拉伸状态时,由于本声波聚焦透镜由弹性透声材料制成,故较厚的环形凸部200和较薄的环形凹槽300在外力的拉伸作用下发生的弹性形变就会不一致,故环形凹槽300沿径向伸展的长度变化值大于环形凸部200沿径向伸展的长度变化值。
在此需特别说明的是,为实现对本声波聚焦透镜的拉伸,在本实施例中,在本体100的外周边缘处还设有多个拉伸夹持部(未示出),且多个拉伸夹持部沿本体100的外周边缘的周向均匀间隔分布,如此,可使拉伸的力度更加均 匀,透镜在各方向上的变形也更加一致,进而可获得更好的聚焦效果。在此,可设计多个与高精度驱动电机连接的夹爪,每一夹爪均夹持在拉伸夹持部上,然后,夹爪在驱动电机(未示出)的驱动下,实现对本声波聚焦透镜的均匀拉伸,且拉伸量可以精确控制,进而实现对透镜的聚焦深度的精确调控。
此外,在本实施例中,声波聚焦透镜优选使用橡胶材料或者聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)材料或者光敏树脂材料制成,当然,于其他实施例中,还可以使用与以上材料声学参数相近且具有一定弹性的材料制成。
在本实施例中,本体100和环形凸部200一体成型。可以理解,本声波聚焦透镜选用的大多是具有弹性和透声性的高分子材料,故本声波聚焦透镜可选用注塑一体成型的方式来制造,以确保透镜尺寸准确且降低制作成本。
本申请还提出一种超声调控装置,该超声调控装置包括平面超声换能器(未示出)和前述的声波聚焦透镜,该声波聚焦透镜的具体结构参照上述实施例,由于本超声调控装置采用了上述所有实施例的全部技术方案,因此同样具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
在本申请中,利用声波聚焦透镜与平面超声换能器配合使用,就可以实现超声波的聚焦,而且通过拉伸声波聚焦透镜,还可以实现声波聚焦深度增加,由此可实现通过调节本声波聚焦透镜的拉伸长度而调节焦距,即实现对聚焦深度的精确调节,进而很方便的实现对所作用物体的不同深度区域进行超声成像和超声刺激,提高了具有本超声调控装置的超声设备,特别是医学类超声设备的适用范围和使用便利。
在本实施例中,平面超声换能器用于发射入射超声波400,并位于声波聚焦透镜的第一表面110一侧。当然,平面超声换能器可以是与第一表面110具 有一定间隔式放置,也可以是本声波聚焦透镜直接放置在平面超声换能器的声波发射面上。在此,为获得更好的声波聚焦效果以及方便聚焦深度等的设计计算,平面超声换能器发射的入射超声波400应与声波聚焦透镜的第一表面110垂直。在本申请中,平面超声换能器所使用的平面超声探头频率范围为0.2至100MHz,而在本实施例中,使用的超声频率为1MHz,声波波长λ=1.5mm,在无拉伸的原始状态下的透镜的聚焦深度为18mm。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (18)

  1. 一种声波聚焦透镜,其特征在于,包括:
    本体,所述本体呈圆盘状,具有相对的第一表面与第二表面,所述第一表面用于接收入射超声波;以及,
    多个环形凸部,多个所述环形凸部均设于所述第二表面,多个所述环形凸部呈以所述本体的中心为中心,沿径向间隔式套环排布,两相邻的所述环形凸部之间形成一环形凹槽;所述入射超声波透过所述本体,并经过所述环形凸部和所述环形凹槽后聚焦于焦点,所述焦点与所述第二表面之间的距离为聚焦深度;
    所述声波聚焦透镜由弹性透声材料制成,具有原始状态和拉伸状态;在拉伸状态,各个所述环形凸部以及各个所述环形凹槽均沿径向伸展,所述声波聚焦透镜在所述拉伸状态下的所述聚焦深度大于在所述原始状态下的所述聚焦深度。
  2. 如权利要求1所述的声波聚焦透镜,其特征在于,所述声波聚焦透镜为菲涅尔透镜,所述环形凸部和所述环形凹槽均呈圆环状,在从所述本体的中心沿径向向外的方向上,多个所述环形凸部的宽度呈逐渐减小设置,多个所述环形凹槽的宽度也呈逐渐减小设置。
  3. 如权利要求2所述的声波聚焦透镜,其特征在于,所述环形凸部沿径向的宽度以及所述环形凹槽沿径向的宽度均满足以下条件:
    Figure PCTCN2020099356-appb-100001
    d n(n=1)=r 1
    d n(n﹥1)=r n-r n-1
    其中,n代表正整数;λ=c/f表示入射超声波的波长,c表示声速,f表示 入射超声波的频率;F表示处于未拉伸的原始状态下的所述菲涅尔透镜的焦距;d n(n=1)表示位于所述菲涅尔透镜中心处的第一个所述环形凸部或第一个所述环形凹槽的半径;d n(n﹥1)表示除了所述菲涅尔透镜中心处之外的第n个所述环形凸部或所述环形凹槽沿径向的宽度;n=1时,r 1表示表示第一个菲涅尔区域的半径;n﹥1时,r n表示第n个菲涅尔区域的半径,r n-1表示第n-1个菲涅尔区域的半径。
  4. 如权利要求3所述的声波聚焦透镜,其特征在于,在沿垂直于所述第二表面的方向上,以所述环形凸部背离所述第二表面的顶面至所述第一表面的距离为所述环形凸部的厚度,以所述环形凹槽的槽底距离所述环形凸部的顶面的距离为所述环形凹槽的深度,所述环形凸部的厚度以及所述环形凹槽的深度满足以下条件:
    Figure PCTCN2020099356-appb-100002
    Figure PCTCN2020099356-appb-100003
    Figure PCTCN2020099356-appb-100004
    其中,
    Figure PCTCN2020099356-appb-100005
    表示所述环形凸部与所述第二表面的相位差,
    Figure PCTCN2020099356-appb-100006
    表示所述环形凹槽与所述第二表面的相位差,
    Figure PCTCN2020099356-appb-100007
    表示所述环形凸部和所述环形凹槽之间的相位差,且
    Figure PCTCN2020099356-appb-100008
    c 0表示在液体中的声速,c 1表示在所述声波聚焦透镜中的声速,t 1表示所述环状凸部的厚度,t 2表示所述环形凹槽的深度;λ表示所述入射超声波的波长。
  5. 如权利要求2所述的声波聚焦透镜,其特征在于,在拉伸状态,所述环形凹槽沿径向伸展的长度变化值大于所述环形凸部沿径向伸展的长度变化值。
  6. 如权利要求1所述的声波聚焦透镜,其特征在于,在所述本体的外周边 缘处还设有多个拉伸夹持部,且多个所述拉伸夹持部沿所述本体的外周边缘的周向均匀间隔分布。
  7. 如权利要求1所述的声波聚焦透镜,其特征在于,所述声波聚焦透镜使用橡胶材料或者聚甲基丙烯酸甲酯材料或者光敏树脂材料制成。
  8. 如权利要求1所述的声波聚焦透镜,其特征在于,所述本体和所述环形凸部一体成型。
  9. 一种超声调控装置,其特征在于,包括平面超声换能器和声波聚焦透镜,所述平面超声换能器用于发射所述入射超声波,并位于所述声波聚焦透镜的第一表面一侧。
  10. 如权利要求9所述的超声调控装置,其特征在于,所述平面超声换能器发射的所述入射超声波与所述声波聚焦透镜的所述第一表面垂直。
  11. 如权利要求9所述的超声调控装置,其特征在于,所述声波聚焦透镜包括:
    本体,所述本体呈圆盘状,具有相对的第一表面与第二表面,所述第一表面用于接收入射超声波;以及,
    多个环形凸部,多个所述环形凸部均设于所述第二表面,多个所述环形凸部呈以所述本体的中心为中心,沿径向间隔式套环排布,两相邻的所述环形凸部之间形成一环形凹槽;所述入射超声波透过所述本体,并经过所述环形凸部和所述环形凹槽后聚焦于焦点,所述焦点与所述第二表面之间的距离为聚焦深度;
    所述声波聚焦透镜由弹性透声材料制成,具有原始状态和拉伸状态;在拉伸状态,各个所述环形凸部以及各个所述环形凹槽均沿径向伸展,所述声波聚焦透镜在所述拉伸状态下的所述聚焦深度大于在所述原始状态下的所述聚焦 深度。
  12. 如权利要求11所述的超声调控装置,其特征在于,所述声波聚焦透镜为菲涅尔透镜,所述环形凸部和所述环形凹槽均呈圆环状,在从所述本体的中心沿径向向外的方向上,多个所述环形凸部的宽度呈逐渐减小设置,多个所述环形凹槽的宽度呈逐渐减小设置。
  13. 如权利要求12所述的超声调控装置,其特征在于,所述环形凸部沿径向的宽度以及所述环形凹槽沿径向的宽度均满足以下条件:
    Figure PCTCN2020099356-appb-100009
    d n(n=1)=r 1
    d n(n﹥1)=r n-r n-1
    其中,n代表正整数;λ=c/f表示入射超声波的波长,c表示声速,f表示入射超声波的频率;F表示处于未拉伸的原始状态下的所述菲涅尔透镜的焦距;d n(n=1)表示位于所述菲涅尔透镜中心处的第一个所述环形凸部或第一个所述环形凹槽的半径;d n(n﹥1)表示除了所述菲涅尔透镜中心处之外的第n个所述环形凸部或所述环形凹槽沿径向的宽度;n=1时,r 1表示表示第一个菲涅尔区域的半径;n﹥1时,r n表示第n个菲涅尔区域的半径,r n-1表示第n-1个菲涅尔区域的半径。
  14. 如权利要求13所述的超声调控装置,其特征在于,在沿垂直于所述第二表面的方向上,以所述环形凸部背离所述第二表面的顶面至所述第一表面的距离为所述环形凸部的厚度,以所述环形凹槽的槽底距离所述环形凸部的顶面的距离为所述环形凹槽的深度,所述环形凸部的厚度以及所述环形凹槽的深度满足以下条件:
    Figure PCTCN2020099356-appb-100010
    Figure PCTCN2020099356-appb-100011
    Figure PCTCN2020099356-appb-100012
    其中,
    Figure PCTCN2020099356-appb-100013
    表示所述环形凸部与所述第二表面的相位差,
    Figure PCTCN2020099356-appb-100014
    表示所述环形凹槽与所述第二表面的相位差,
    Figure PCTCN2020099356-appb-100015
    表示所述环形凸部和所述环形凹槽之间的相位差,且
    Figure PCTCN2020099356-appb-100016
    c 0表示在液体中的声速,c 1表示在所述声波聚焦透镜中的声速,t 1表示所述环状凸部的厚度,t 2表示所述环形凹槽的深度;λ表示所述入射超声波的波长。
  15. 如权利要求11所述的超声调控装置,其特征在于,在拉伸状态,所述环形凹槽沿径向伸展的长度变化值大于所述环形凸部沿径向伸展的长度变化值。
  16. 如权利要求11所述的超声调控装置,其特征在于,在所述本体的外周边缘处还设有多个拉伸夹持部,且多个所述拉伸夹持部沿所述本体的外周边缘的周向均匀间隔分布。
  17. 如权利要求11所述的超声调控装置,其特征在于,所述声波聚焦透镜使用橡胶材料或者聚甲基丙烯酸甲酯材料或者光敏树脂材料制成。
  18. 如权利要求11所述的超声调控装置,其特征在于,所述本体和所述环形凸部一体成型。
PCT/CN2020/099356 2020-06-30 2020-06-30 一种声波聚焦透镜和超声调控装置 WO2022000288A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099356 WO2022000288A1 (zh) 2020-06-30 2020-06-30 一种声波聚焦透镜和超声调控装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099356 WO2022000288A1 (zh) 2020-06-30 2020-06-30 一种声波聚焦透镜和超声调控装置

Publications (1)

Publication Number Publication Date
WO2022000288A1 true WO2022000288A1 (zh) 2022-01-06

Family

ID=79317280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099356 WO2022000288A1 (zh) 2020-06-30 2020-06-30 一种声波聚焦透镜和超声调控装置

Country Status (1)

Country Link
WO (1) WO2022000288A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060028728A1 (en) * 2004-08-06 2006-02-09 Ming Li Fresnel zone plate based on elastic materials
CN201969218U (zh) * 2010-12-27 2011-09-14 天津医科大学 凹球面八圆环相控阵高强度聚焦超声换能器
CN107644636A (zh) * 2017-09-01 2018-01-30 深圳先进技术研究院 一种基于平面人工结构的超声聚焦透镜
CN108593088A (zh) * 2018-04-25 2018-09-28 重庆医科大学 一种表征球形聚焦超声场的聚焦纹影系统
CN108671426A (zh) * 2018-07-17 2018-10-19 重庆医科大学 超声换能器及超声杂质去除方法
CN209360736U (zh) * 2018-12-20 2019-09-10 深圳先进技术研究院 声波聚焦透镜及超声成像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060028728A1 (en) * 2004-08-06 2006-02-09 Ming Li Fresnel zone plate based on elastic materials
CN201969218U (zh) * 2010-12-27 2011-09-14 天津医科大学 凹球面八圆环相控阵高强度聚焦超声换能器
CN107644636A (zh) * 2017-09-01 2018-01-30 深圳先进技术研究院 一种基于平面人工结构的超声聚焦透镜
CN108593088A (zh) * 2018-04-25 2018-09-28 重庆医科大学 一种表征球形聚焦超声场的聚焦纹影系统
CN108671426A (zh) * 2018-07-17 2018-10-19 重庆医科大学 超声换能器及超声杂质去除方法
CN209360736U (zh) * 2018-12-20 2019-09-10 深圳先进技术研究院 声波聚焦透镜及超声成像装置

Similar Documents

Publication Publication Date Title
US6554826B1 (en) Electro-dynamic phased array lens for controlling acoustic wave propagation
US6618206B2 (en) System and method for acoustic imaging at two focal lengths with a single lens
US20180317950A1 (en) Ultrasonic transducer assembly
CN107870381B (zh) 平面透镜和平面透镜的制作方法
WO2022052180A1 (zh) 超声神经调控装置
KR101955786B1 (ko) 동심원 전극을 적용한 집속 초음파 트랜스듀서 및 그 트랜스듀서의 제어방법
JP2017528026A (ja) マルチセル・トランスデューサー
CN112245818B (zh) 超声神经调控装置
US20230015764A1 (en) Maging devices having piezoelectric transceivers with harmonic characteristics
CN111803121B (zh) 一种声波聚焦透镜和超声调控装置
WO2022000288A1 (zh) 一种声波聚焦透镜和超声调控装置
KR101927635B1 (ko) 섀도 마스크를 이용한 초음파 트랜스 듀서, 그 작동방법 및 시스템
KR101861354B1 (ko) 집속 초음파 변환기
WO2021258339A1 (zh) 人工结构超声换能器以及超声装置
KR102539113B1 (ko) 환형 배열 압전재로 구성된 평면형 집속 초음파변환기, 음향렌즈, 그 설계방법 및 그 제작방법
CN111842095B (zh) 人工结构超声换能器以及超声装置
KR101533400B1 (ko) 초점거리 조절 가능한 고강도 집속 초음파 치료헤드
WO2019041299A1 (zh) 一种基于平面人工结构的超声聚焦透镜
US11819881B2 (en) Imaging devices having piezoelectric transceivers with harmonic characteristics
JP3780065B2 (ja) 超音波探触子
JP2024512698A (ja) 高調波特性を備えた圧電トランシーバを有するイメージングデバイス
WO2022211836A1 (en) Imaging devices having piezoelectric transceivers with harmonic characteristics
CN114209995A (zh) 基于速度梯度匹配层的平面声透镜超声聚焦传感器
CN117879718A (zh) 超声探头和超声装置
TW200848105A (en) Multiple-channel hemispherical focused ultrasound phased array system for biomedical use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943100

Country of ref document: EP

Kind code of ref document: A1