WO2019117620A1 - Self-blast type gas circuit breaker - Google Patents

Self-blast type gas circuit breaker Download PDF

Info

Publication number
WO2019117620A1
WO2019117620A1 PCT/KR2018/015761 KR2018015761W WO2019117620A1 WO 2019117620 A1 WO2019117620 A1 WO 2019117620A1 KR 2018015761 W KR2018015761 W KR 2018015761W WO 2019117620 A1 WO2019117620 A1 WO 2019117620A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression chamber
fluid
chamber
unit
piston
Prior art date
Application number
PCT/KR2018/015761
Other languages
French (fr)
Korean (ko)
Inventor
황동익
정호중
최병화
강민철
김명후
김경회
Original Assignee
일진전기 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진전기 주식회사 filed Critical 일진전기 주식회사
Publication of WO2019117620A1 publication Critical patent/WO2019117620A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7023Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/80Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid flow of arc-extinguishing fluid from a pressure source being controlled by a valve
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/91Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism the arc-extinguishing fluid being air or gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H2033/908Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism using valves for regulating communication between, e.g. arc space, hot volume, compression volume, surrounding volume

Definitions

  • the present invention relates to a gas-shutoff apparatus for a combined-NO_2 system, and more particularly to a gas-
  • a breaker In general, when a power system fails, a breaker is used to shut down the fault current and protect the power plant.
  • the principle for extinguishing an arc generated between two electrical contacts by a fault current is as follows.
  • SF6 (sulfur hexafluoride) gas is widely used as an insulating gas here, and it has a high dielectric breakdown strength because it has a chemically very stable molecular structure. Because of this characteristic, SF6 insulated gas is widely used as insulation medium of high-voltage equipment, and arc extinguishing arc discharge performance is excellent, and it is widely used as arc extinguishing medium of circuit breaker.
  • SF6 gas circuit breaker is used for fault current interruption and protection of power system equipment when a fault occurs in most super high voltage power system.
  • the gas recirculation type gas circuit breaker includes two chambers such as a compression chamber and a thermal expansion chamber. In order to extinguish an arc due to a fault current, a compression chamber and a thermal expansion chamber .
  • the compression chamber of the gas circuit breaker is used for the small current interruption
  • the thermal expansion chamber of the gas circuit breaker is used for the large current interruption
  • the conventional compression chamber is constituted by a single chamber and the fluid such as the insulating gas flows only when the pressure is a specific pressure in the compression chamber in the compression chamber.
  • the present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to provide a gas-shutoff apparatus of a combined extinguishing system capable of improving arc extinguishing performance by dividing a compression chamber and individually controlling a fluid- .
  • the present invention also provides a gas-shutoff apparatus for a combined-NOx system, comprising: a cylinder portion in which a compression chamber and an expansion chamber are formed; A separating wall portion provided in the cylinder portion and partitioning the compression chamber and the expansion chamber; A fluid regulating portion that is openably and closably connected to the separating wall portion and regulates the flow of the fluid from the compression chamber to the expansion chamber; A piston portion facing the separating wall portion and disposed in the compression chamber; And a partition portion coupled to the separating wall portion and partitioning the compression chamber.
  • the dividing portion is formed in parallel with the longitudinal direction of the cylinder portion, and the compression chambers are partitioned in parallel.
  • the compression chamber is partitioned by the partition into a first compression chamber portion and a second compression chamber portion.
  • the piston portion may include: a first piston portion that presses the first compression chamber portion by the partition; And a second piston portion for pressing the second compression chamber portion.
  • the fluid regulating unit may include: a first regulating unit installed at one side of the separating wall facing the first compression chamber; And a second adjusting unit installed on the other side of the separating wall facing the second compression chamber.
  • the controller may further include a controller for controlling driving of the first adjusting unit and the second adjusting unit such that the first adjusting unit and the second adjusting unit are opened or closed at different points of time.
  • a gas purifier according to the present invention comprises a first compression chamber portion partitioned by partitioning a compression chamber into a first compression chamber portion and a second compression chamber portion, There is an effect that the fluid can flow.
  • the compression chambers are partitioned in parallel, the fluid in the first compression chamber portion and the second compression chamber portion can be compressed with the same pressure to the piston portion.
  • the valve is opened and discharged to the outside of the compression chamber, and damage to the composite extinguishing system gas barrier device due to the high pressure fluid can be prevented.
  • FIG. 1 is a side cross-sectional view illustrating a gas-shutoff apparatus of a combined extinguishing system according to an embodiment of the present invention.
  • FIG. 2 is a state diagram illustrating a state in which the first control unit is opened according to an embodiment of the present invention.
  • FIG. 3 is a state diagram showing a state in which a second adjusting unit is opened according to an embodiment of the present invention.
  • FIG. 4 is a side cross-sectional view illustrating a gas purifier according to an embodiment of the present invention.
  • FIG. 5 is a state diagram showing a state in which the decompression unit is opened according to an embodiment of the present invention.
  • FIG. 6 is a block diagram illustrating a control unit according to an embodiment of the present invention.
  • 1 is a side cross-sectional view illustrating a gas-shutoff apparatus of a combined extinguishing system according to an embodiment of the present invention.
  • 2 is a state diagram illustrating a state in which the first control unit is opened according to an embodiment of the present invention.
  • 3 is a state diagram showing a state in which a second adjusting unit is opened according to an embodiment of the present invention.
  • 4 is a side cross-sectional view illustrating a gas purifier according to an embodiment of the present invention.
  • 5 is a state diagram showing a state in which the decompression unit is opened according to an embodiment of the present invention.
  • 6 is a block diagram illustrating a control unit according to an embodiment of the present invention.
  • a gas screening apparatus 1 includes a cylinder unit 100, a separating wall unit 200, a fluid regulating unit 300, a piston unit 400 A pressure measuring unit 600, a control unit 700, and a pressure reducing unit 800.
  • the gas screening apparatus 1 of the present invention has a symmetrical structure with the X axis as a rotation center axis, and the configuration of one side (reference lower side in FIG. 1) (Upper side of Fig. 1 reference), and hence the drawing is omitted in the overlapping range.
  • a compression chamber 110 and an expansion chamber 150 are formed in a cylinder portion 100 according to an embodiment of the present invention.
  • the separating wall portion 200 to be described later is fixed and coupled to the inner surface of the cylinder portion 100.
  • the partition wall portion 200 is fixed to the inner side surface of the cylinder portion 100, the inside of the cylinder portion 100 is divided into the compression chamber 110 and the expansion chamber 150.
  • a piston part 400 to be described later is disposed in the interior of the cylinder part 100 according to an embodiment of the present invention.
  • the piston portion 400 is fixed in position and the cylinder portion 100 is moved in the left and right (reference in FIG. 1) direction.
  • the pressure of the fluid G in the compression chamber 110 specifically the insulation gas such as SF6, is increased,
  • the fluid G flows into the expansion chamber 150 from the compression chamber 110 through the fluid regulator 300.
  • a compression chamber 110 according to an embodiment of the present invention is partitioned by a partition 500 to be described later. Specifically, the first compression chamber portion 111 and the second compression chamber portion 113 are formed by the partition portion 500.
  • the pressure in the compression chamber 110 specifically, the fluid in the first compression chamber portion 111 and the second compression chamber portion 113 G of the fixed arc contact 10 and the movable arc contact 20 are simultaneously raised by the first adjusting unit 310 and the second adjusting unit 350 that have different set pressure values, To the arc that is generated between them.
  • the movable arc contact 20 is coupled to the cylinder portion 100 and connected to the front end (reference left side) side of the fixed arc contact 10 through the front end (reference right side) .
  • connection and support structure at the rear end side of the fixed arc contact 10 the moving structure of the cylinder part 100, and the movement method are the same as those of the conventional gas shutoff device, and thus a detailed description thereof will be omitted.
  • the separating wall 200 according to an embodiment of the present invention is installed in the cylinder 100 and separates the compression chamber 110 and the expansion chamber 150.
  • the separating wall portion 200 is installed inside the cylinder portion 100 and fixed to the inner peripheral surface of the cylinder portion 100 at a position near the front-rear width center of the cylinder portion 100.
  • the compression chamber 110 is formed in the front portion (left side in FIG. 1) of the separation wall portion 200 inside the cylinder portion 100 due to the partition portion 500 and the compression chamber 110 is formed in the rear portion of the separation wall portion 200
  • the expansion chamber 150 is formed.
  • the fluid G is filled in the compression chamber 110 and the expansion chamber 150 according to an embodiment of the present invention.
  • the fluid G may be formed of SF6 gas as an insulation gas.
  • the fluid regulating part 300 is openably and closably coupled to the separating wall part 200, and is configured to discharge fluid from the compression chamber 110 to the expansion chamber 150, (G).
  • the fluid regulator 300 includes a first regulator 310 and a second regulator 350.
  • the first regulating part 310 is installed on one side of the separating wall part 200 facing the first compression chamber part 111 and the second regulating part 350 is provided on the side of the separating wall part 200 facing the first compression chamber part 111, And is installed on the other side of the wall portion 200.
  • the pressure at which the first adjusting part 310 and the second adjusting part 350 are opened can be set differently, and the cylinder part 100 is moved to the piston part 400 side (left side in FIG. 2 reference)
  • the first regulating part 310 and the second regulating part 350 can be opened with a time difference when the first compression chamber part 111 and the second compression chamber part 113 are compressed.
  • the set pressure value of the first adjuster 310 is set to be smaller than the set pressure value of the second adjuster 350.
  • the cylinder portion 100 and the separating wall portion 200 move toward the piston portion 400 side (left side in FIG. 2, right side), and the compression chamber 110, that is, the first compression chamber portion 111,
  • the internal pressure of the chamber part 113 is raised and the first compression chamber part 111 first reaches the set pressure value and the first adjustment part 310 is opened first.
  • the high pressure fluid G is first introduced into the expansion chamber 150 and mixed with the fluid G in the expansion chamber 150 and then the internal pressure of the second control section 350 is adjusted to a set value
  • the refrigerant can be secondarily introduced into the expansion chamber 150 to improve the cooling performance.
  • the compression chamber 110 is formed as a single space, the pressure for opening and closing the fluid regulator 300 is set differently, and the fluid G is sequentially discharged from the compression chamber 110 to the expansion chamber 150 There is an effect that can be introduced.
  • the set pressure value of the first adjuster 310 is formed to be smaller than the set pressure value of the second adjuster 350.
  • the present invention is not limited thereto, 1 regulating unit 310 so that the second regulating unit 350 is opened first, and so on.
  • the fluid regulator 300 may be formed in a valve manner.
  • the fluid regulating unit 300 may be formed of a pressure reducing valve and a relief valve.
  • a configuration in which the fluid regulating unit 300 is opened and closed when the set pressure value is reached due to the elastic restoring force of the elastic member such as a spring is a driving method of a general relief valve, and a detailed description thereof will be omitted.
  • a piston 400 according to an embodiment of the present invention is disposed in the compression chamber 110 facing the separating wall portion 200 and is disposed inside the cylinder portion 100 do.
  • the piston unit 400 according to the embodiment of the present invention is fixed to the front side (left side in FIG. 1) of the cylinder unit 100.
  • the piston unit 400 includes a first piston unit 410 and a second piston unit 450.
  • the first piston portion 410 is in contact with one surface (reference upper surface in FIG. 1) of the partition portion 500 and is disposed between the partition portion 500 and the cylinder portion 100, (Refer to FIG. 1) opposite to one surface of the partition 500 that is in contact with the one piston unit 410 and is disposed between the partition unit 500 and the cylinder unit 100.
  • the first piston part 410 and the second piston part 450 are fixed to the inside of the cylinder part 100, and as the cylinder part 100 is moved, (111) and the second compression chamber (113), respectively.
  • first piston portion 410 and the second piston portion 450 are independently partitioned by the partition portion 500, the first piston portion 410 and the second piston portion 450 are in close contact with the inner surface of the cylinder portion 100 and the partition portion 500, It is possible to prevent the fluid G from being separated from the first piston 410, the second piston 450, and the cylinder 100 or the partition 500.
  • the compression chamber 110 formed in the cylinder 100 has a cylindrical portion 100, a separation wall portion 200 fixed to the inner peripheral surface of the cylinder portion 100, and a piston portion 400 formed between the piston portion 400 Space.
  • a depressurization unit 800 to be described later is coupled to the piston unit 400 according to an embodiment of the present invention.
  • the pressure relief portion is openably and closably connected to the piston portion 400 and opens when the internal pressure of the compression chamber 110 is equal to or more than a predetermined value to discharge the fluid G to protect the operation device .
  • the partition 500 according to an embodiment of the present invention is coupled to the separating wall 200 to partition the compression chamber 110.
  • the compression chamber 110 is partitioned into the first compression chamber portion 111 and the second compression chamber portion 113 by the partition portion 500. Specifically,
  • the partition 500 according to an embodiment of the present invention is formed in parallel with the longitudinal direction (left and right direction in FIG. 1) of the cylinder 100, do.
  • the compression chamber 110 is partitioned into a first compression chamber section 111 and a second compression chamber section 113, thereby forming a first compression chamber section 111, a second compression chamber section 111, 113 have the effect of compressing the fluid G with the same pressure by the piston portion 400.
  • first control part 310 and the second control part 350 installed to face the compression chamber 110, specifically, the first compression chamber part 111 and the second compression chamber part 113, respectively,
  • the pressure setting values for the compression chamber 110 and the compression chamber 110 are independently set so that the cylinder unit 100 and the separating wall unit 200 move to the piston unit 400 side So that the fluid G can be introduced into the expansion chamber 150 from the first compression chamber portion 111 and the second compression chamber portion 113.
  • the compartment 500 penetrates the piston 400 so that the piston 400 moves along the compartment 500 to the compression chamber 110, So that the fluid (G) inside the first compression chamber (111) and the second compression chamber (113) is compressed.
  • the pressure measuring unit 600 may measure the internal pressure of the compression chamber 110 and the expansion chamber 150, specifically, the internal pressure of the compression chamber 110 and the expansion chamber 150 And is installed in the cylinder part 100 by measuring the pressure difference.
  • the pressure measuring unit 600 measures the internal pressure of the compression chamber 110 and the expansion chamber 150 or the pressure difference between the compression chamber 110 and the expansion chamber 150, When the pressure difference between the expansion chamber 110 and the expansion chamber 150 reaches a predetermined range, the fluid regulator 300 is opened and closed to open and close the fluid regulator 300, specifically, the first regulator 310 and the second regulator 350, Can be controlled.
  • the controller 700 receives information on the internal pressures of the compression chamber 110 and the expansion chamber 150 from the pressure measurement unit 600.
  • the controller 700 includes a first controller 310 and a second controller 320 so that the first controller 310 and the second controller 320 may be opened / .
  • the control unit 700 controls the first compression chamber unit 111 and the second compression chamber unit 300 to independently open and close the fluid regulating unit 300, specifically, the first regulating unit 310 and the second regulating unit 350, 113 can be adjusted.
  • the depressurization unit 800 is installed in the piston unit 400 and is configured to control the internal pressure of the compression chamber 110, specifically, If the set value is exceeded, there is an effect that the operator or the shielding device itself can be protected by discharging the fluid G while being opened.
  • the depressurization unit 800 is installed in the first piston unit 410 facing the first compression chamber unit 111, but not limited thereto, and the second compression chamber unit 113, A plurality of first compression chamber units 111 and a plurality of second compression chamber units 113 are provided in the first piston unit 410 and the second piston unit 450 so as to face the first compression chamber unit 111 and the second compression chamber unit 113, And can be independently opened and closed.
  • the fixed arc contact 10 and the movable arc contact 20 are separated, and at the same time an arc is generated between the fixed arc contact 10 and the movable arc contact 20.
  • the fluid control unit 300 coupled to the separation wall unit 200 is opened, G passes through the fluid regulating part 300 and is injected between the fixed arc contact 10 and the movable arc contact 20 through the expansion chamber 150 and the nozzle part 30.
  • the high temperature fluid G generated due to the arc generated between the fixed arc contact 10 and the movable arc contact 20 passes between the nozzle portions 30 and flows into the expansion chamber 150.
  • the high temperature fluid G flowing through the expansion chamber 150 and the high pressure fluid G flowing from the compression chamber 110 are mixed and cooled.
  • the compression chamber 110 specifically, the first compression chamber portion 111
  • the first control part 310 is opened.
  • the fluid G in the first compression chamber portion 111 flows into the expansion chamber 150 and is mixed with the high temperature fluid G inside the expansion chamber 150.
  • the pressure of the internal fluid G of the second compression chamber portion 113 is further increased as the cylinder 100 moves to the piston 400 side (left side in FIG. 3) And when the pressure reaches the pressure value set to a value larger than the pressure value set to the first adjuster 310, the second adjuster 350 is opened.
  • the fluid G in the second compression chamber 113 flows into the expansion chamber 150 and is mixed with the high temperature fluid G inside the expansion chamber 150.
  • the partition 500 is coupled to the separating wall 200 and is disposed in parallel with the longitudinal direction of the cylinder 100, ) Are partitioned in parallel.
  • the pressure value can be set differently.
  • first regulating unit 310 and the second regulating unit 350 are sequentially opened at the required time to fluidize the fluid G in the compression chamber 110 into the expansion chamber 150.
  • the first regulating part 310 and the second regulating part 350 are sequentially opened in accordance with the pressure and the fluid G is moved in the expansion chamber 150 and the high temperature fluid G and the first compression chamber part 111), the fluid G to be cooled in the second compression chamber part 113 is mixed and the arc generated between the fixed arc contact 10 and the movable arc contact 20 is extinguished, and the heat generated from the arc is cooled There is an effect that can be made.
  • the internal pressure of the compression chamber 110 and the expansion chamber 150, specifically, the pressure difference between the compression chamber 110 and the expansion chamber 150 can be measured by the pressure measurement unit 600
  • the control unit 700 receives the information about the internal pressures of the compression chamber 110 and the expansion chamber 150 from the pressure measurement unit 600 and controls the fluid control unit 300 and specifically the first control unit 310
  • the first control unit 310 and the second control unit 350 can be independently controlled to be opened and closed while the second control unit 350 is opened and closed when the preset pressure value is reached.

Landscapes

  • Circuit Breakers (AREA)

Abstract

A self-blast type gas circuit breaker according to the present invention comprises: a cylinder part having a compression chamber and an expansion chamber; a separation wall part provided in the cylinder part and dividing the compression chamber and the expansion chamber; a fluid regulating part coupled to the separation wall part so as to be openable and closable and regulating the flow of fluid from the compression chamber toward the expansion chamber; a piston part facing the separation wall part and disposed inside the compression chamber; and a dividing part coupled to the separation wall part and dividing the compression chamber.

Description

복합 소호 방식 가스 차단장치Combustion type gas shutoff device
본 발명은 복합 소호 방식 가스 차단장치에 관한 것으로, 보다 상세하게는 아크 소호 성능이 향상될 수 있는 복합 소호 방식 가스 차단장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0002] The present invention relates to a gas-shutoff apparatus for a combined-NO_2 system, and more particularly to a gas-
일반적으로 전력 계통에 고장이 발생할 경우, 고장 전류를 차단하고 전력 설비를 보호하기 위하여 차단기(CIRCUIT BREAKER)가 사용된다. 초고전압 차단기에서 고장 전류에 의해 두 전기접점 간에 발생하는 아크를 소호하기 위한 원리는 다음과 같다.In general, when a power system fails, a breaker is used to shut down the fault current and protect the power plant. In an ultra high voltage circuit breaker, the principle for extinguishing an arc generated between two electrical contacts by a fault current is as follows.
절연 가스를 차단기 내에 고압으로 충진한 상태에서 고장 전류에 의한 아크가 발생하면, 절연 가스를 매우 높은 압력으로 압축하여 아크에 직접 분사함으로써 아크를 소호한다.When an arc occurs due to a fault current in the state where the insulated gas is filled with high pressure in the breaker, the arc is extinguished by directly injecting the insulated gas into the arc by compressing it to a very high pressure.
여기서 절연 가스로는 SF6(육불화황) 가스가 널리 사용되고 있으며, 이는 화학적으로 매우 안정된 분자 구조를 가지기 때문에 높은 절연 파괴 강도를 가진다. 이러한 특성 때문에 SF6 절연 가스는 고전압 설비의 절연 매체로 널리 사용되고 있고, 또한 아크 방전을 소멸시키는 아크 소호 성능이 우수하여 차단기의 아크 소호 매질로 널리 사용되고 있다.SF6 (sulfur hexafluoride) gas is widely used as an insulating gas here, and it has a high dielectric breakdown strength because it has a chemically very stable molecular structure. Because of this characteristic, SF6 insulated gas is widely used as insulation medium of high-voltage equipment, and arc extinguishing arc discharge performance is excellent, and it is widely used as arc extinguishing medium of circuit breaker.
대부분의 초고전압 전력 계통에서 고장이 발생되는 경우 고장 전류 차단 및 전력 계통 설비 보호를 위하여 SF6 가스 차단기(GAS CIRCUIT BREAKER)가 사용되고 있으며, 초고전압 차단기에서 아크를 소호하는 방식에 따라 파퍼 방식(PUFFER TYPE)과 복합 소호 방식(SELF-BLAST TYPE)으로 나뉜다.SF6 gas circuit breaker is used for fault current interruption and protection of power system equipment when a fault occurs in most super high voltage power system. PUFFER TYPE And SELF-BLAST TYPE.
특히 복합 소호 방식 가스 차단기는 보통 압축실(COMPRESSION CHAMBER)과 열팽창실(THERMAL CHAMBER) 등 2개의 챔버(CHAMBER)를 포함하고, 고장 전류에 의한 아크를 소호하기 위하여 차단기 내부에 설치된 압축실 및 열팽창실을 이용한다. Particularly, the gas recirculation type gas circuit breaker includes two chambers such as a compression chamber and a thermal expansion chamber. In order to extinguish an arc due to a fault current, a compression chamber and a thermal expansion chamber .
통상적으로 가스 차단기의 압축실은 소전류 차단에 이용되고, 가스 차단기의 열팽창실은 대전류 차단에 이용된다. Generally, the compression chamber of the gas circuit breaker is used for the small current interruption, and the thermal expansion chamber of the gas circuit breaker is used for the large current interruption.
종래 압축실이 단일의 챔버로 구성되어 압축실에서 열팽창실로 특정 압력일 경우에만 절연 가스 등 유체가 유동되며, 설정 압력 및 유입 시점을 달리 설정하여 유동시킬 수 없는 문제점이 있었다.The conventional compression chamber is constituted by a single chamber and the fluid such as the insulating gas flows only when the pressure is a specific pressure in the compression chamber in the compression chamber.
본 발명의 배경기술은 대한민국 등록특허공보 제10-1701818호(2017.01.25 등록, 발명의 명칭: 복합 소호형 가스차단기)에 개시되어 있다. BACKGROUND ART [0002] The background art of the present invention is disclosed in Korean Patent Registration No. 10-1701818 (Registered on Jul. 201, 201, entitled "Composite Loop Type Gas Circuit Breaker").
본 발명은 상기와 같은 문제점을 개선하기 위해 안출된 것으로, 구획부가 압축실을 구획하여 개별적으로 유체 개방 시점을 조절함으로 인하여 아크 소호 성능이 향상될 수 있는 복합 소호 방식 가스 차단장치를 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to provide a gas-shutoff apparatus of a combined extinguishing system capable of improving arc extinguishing performance by dividing a compression chamber and individually controlling a fluid- .
본 발명에 따른 복합 소호 방식 가스 차단장치는: 압축실과 팽창실이 형성되는 실린더부; 상기 실린더부에 설치되고, 상기 압축실과 상기 팽창실을 구획하는 분리벽부; 상기 분리벽부에 개폐가능하게 결합되고, 상기 압축실에서 상기 팽창실로 유체의 흐름을 조절하는 유체조절부; 상기 분리벽부와 마주보며 상기 압축실에 배치되는 피스톤부; 상기 분리벽부에 결합되고, 상기 압축실을 구획하는 구획부;를 포함하는 것을 특징으로 한다.The present invention also provides a gas-shutoff apparatus for a combined-NOx system, comprising: a cylinder portion in which a compression chamber and an expansion chamber are formed; A separating wall portion provided in the cylinder portion and partitioning the compression chamber and the expansion chamber; A fluid regulating portion that is openably and closably connected to the separating wall portion and regulates the flow of the fluid from the compression chamber to the expansion chamber; A piston portion facing the separating wall portion and disposed in the compression chamber; And a partition portion coupled to the separating wall portion and partitioning the compression chamber.
본 발명에서, 상기 구획부는, 상기 실린더부의 길이 방향과 나란하게 형성되며, 상기 압축실을 병렬로 구획하는 것을 특징으로 한다.In the present invention, the dividing portion is formed in parallel with the longitudinal direction of the cylinder portion, and the compression chambers are partitioned in parallel.
본 발명에서, 상기 압축실은 상기 구획부에 의해 제1압축챔버부와 제2압축챔버부로 구획되는 것을 특징으로 한다.In the present invention, the compression chamber is partitioned by the partition into a first compression chamber portion and a second compression chamber portion.
본 발명에서, 상기 피스톤부는, 상기 구획부에 의해 상기 제1압축챔버부를 가압하는 제1피스톤부; 및 상기 제2압축챔버부를 가압하는 제2피스톤부;을 포함하는 것을 특징으로 한다.In the present invention, the piston portion may include: a first piston portion that presses the first compression chamber portion by the partition; And a second piston portion for pressing the second compression chamber portion.
본 발명에서, 상기 유체조절부는, 상기 제1압축챔버부를 마주보는 상기 분리벽부의 일측에 설치되는 제1조절부; 및 상기 제2압축챔버부를 마주보는 상기 분리벽부의 타측에 설치되는 제2조절부;를 포함하는 것을 특징으로 한다.In the present invention, the fluid regulating unit may include: a first regulating unit installed at one side of the separating wall facing the first compression chamber; And a second adjusting unit installed on the other side of the separating wall facing the second compression chamber.
본 발명에서, 상기 제1조절부와 상기 제2조절부가 시점을 달리하여 개폐되도록 상기 제1조절부와 상기 제2조절부의 구동을 제어하는 제어부;를 더 포함하는 것을 특징으로 한다.The controller may further include a controller for controlling driving of the first adjusting unit and the second adjusting unit such that the first adjusting unit and the second adjusting unit are opened or closed at different points of time.
본 발명에 따른 복합 소호 방식 가스 차단장치는, 구획부가 압축실을 제1압축챔버부와 제2압축챔버부로 구획함으로 인해 구획되는 제1압축챔버부, 제2압축챔버부에서 독립적으로 유체를 팽창실로 유동시킬 수 있는 효과가 있다.A gas purifier according to the present invention comprises a first compression chamber portion partitioned by partitioning a compression chamber into a first compression chamber portion and a second compression chamber portion, There is an effect that the fluid can flow.
또한, 압축실이 병렬로 구획됨으로 인하여 피스톤부로 동일 압력으로 제1압축챔버부, 제2압축챔버부 내부의 유체를 압축시킬 수 있는 효과가 있다.Also, since the compression chambers are partitioned in parallel, the fluid in the first compression chamber portion and the second compression chamber portion can be compressed with the same pressure to the piston portion.
또한, 유체조절부, 구체적으로 제1조절부, 제2조절부로 인하여 제1압축챔버부, 제2압축챔버부의 설정 압력 값을 달리하여 순차적으로 개방되며 팽창실로 고압의 유체를 유동시킬 때 압력 상승 효과가 향상될 수 있다.In addition, when the high pressure fluid is flowed into the expansion chamber sequentially by opening the fluid adjusting part, specifically the first adjusting part and the second adjusting part, by the set pressure value of the first compression chamber part and the second compression chamber part, The effect can be improved.
또한, 감압부로 인하여 압축실 내부의 유체 압력이 설정 값을 초과하면 개방되어 압축실 외부로 배출하고, 고압의 유체로 인해 복합 소호 방식 가스 차단장치가 손상되는 것을 방지할 수 있다.Further, when the fluid pressure inside the compression chamber exceeds the set value due to the decompression portion, the valve is opened and discharged to the outside of the compression chamber, and damage to the composite extinguishing system gas barrier device due to the high pressure fluid can be prevented.
도 1은 본 발명의 일 실시예에 따른 복합 소호 방식 가스 차단장치를 도시한 측단면도이다.1 is a side cross-sectional view illustrating a gas-shutoff apparatus of a combined extinguishing system according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 제1조절부가 개방되는 상태를 도시한 상태도이다.2 is a state diagram illustrating a state in which the first control unit is opened according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 제2조절부가 개방되는 상태를 도시한 상태도이다.3 is a state diagram showing a state in which a second adjusting unit is opened according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 복합 소호 방식 가스 차단장치를 도시한 측단면도이다.4 is a side cross-sectional view illustrating a gas purifier according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 감압부가 개방되는 상태를 도시한 상태도이다.5 is a state diagram showing a state in which the decompression unit is opened according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 제어부를 도시한 블록구성도이다.6 is a block diagram illustrating a control unit according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명에 따른 복합 소호 방식 가스 차단장치의 일 실시예를 설명한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of a gas screening apparatus according to the present invention will be described with reference to the accompanying drawings. In this process, the thicknesses of the lines and the sizes of the components shown in the drawings may be exaggerated for clarity and convenience of explanation.
또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In addition, the terms described below are defined in consideration of the functions of the present invention, which may vary depending on the intention or custom of the user, the operator. Therefore, definitions of these terms should be made based on the contents throughout this specification.
도 1은 본 발명의 일 실시예에 따른 복합 소호 방식 가스 차단장치를 도시한 측단면도이다. 도 2는 본 발명의 일 실시예에 따른 제1조절부가 개방되는 상태를 도시한 상태도이다. 도 3은 본 발명의 일 실시예에 따른 제2조절부가 개방되는 상태를 도시한 상태도이다. 도 4는 본 발명의 일 실시예에 따른 복합 소호 방식 가스 차단장치를 도시한 측단면도이다. 도 5는 본 발명의 일 실시예에 따른 감압부가 개방되는 상태를 도시한 상태도이다. 도 6은 본 발명의 일 실시예에 따른 제어부를 도시한 블록구성도이다.1 is a side cross-sectional view illustrating a gas-shutoff apparatus of a combined extinguishing system according to an embodiment of the present invention. 2 is a state diagram illustrating a state in which the first control unit is opened according to an embodiment of the present invention. 3 is a state diagram showing a state in which a second adjusting unit is opened according to an embodiment of the present invention. 4 is a side cross-sectional view illustrating a gas purifier according to an embodiment of the present invention. 5 is a state diagram showing a state in which the decompression unit is opened according to an embodiment of the present invention. 6 is a block diagram illustrating a control unit according to an embodiment of the present invention.
도 1 내지 도 6을 참조하면, 본 발명의 일 실시예에 따른 복합 소호 방식 가스 차단장치(1)는 실린더부(100), 분리벽부(200), 유체조절부(300), 피스톤부(400), 압력측정부(600), 제어부(700), 감압부(800)를 포함한다.1 to 6, a gas screening apparatus 1 according to an embodiment of the present invention includes a cylinder unit 100, a separating wall unit 200, a fluid regulating unit 300, a piston unit 400 A pressure measuring unit 600, a control unit 700, and a pressure reducing unit 800.
도 1을 참조하면, 본 발명에서 복합 소호 방식 가스 차단장치(1)는 X축을 회전 중심축으로 하여 대칭 구조를 이루며, X축을 기준으로 일측(도 1 기준 하측)의 구성은 X축을 기준으로 타측(도 1 기준 상측)의 구성과 동일하므로 이와 중복되는 범위에서 도면을 생략한다.Referring to FIG. 1, in the present invention, the gas screening apparatus 1 of the present invention has a symmetrical structure with the X axis as a rotation center axis, and the configuration of one side (reference lower side in FIG. 1) (Upper side of Fig. 1 reference), and hence the drawing is omitted in the overlapping range.
도 1을 참조하면, 본 발명의 일 실시예에 따른 실린더부(100)에는 압축실(110)과 팽창실(150)이 형성된다. 실린더부(100)의 내측면에는 뒤에 설명할 분리벽부(200)가 위치 고정되며 결합된다.Referring to FIG. 1, a compression chamber 110 and an expansion chamber 150 are formed in a cylinder portion 100 according to an embodiment of the present invention. The separating wall portion 200 to be described later is fixed and coupled to the inner surface of the cylinder portion 100.
분리벽부(200)가 실린더부(100)의 내측면에 위치 고정됨으로 인하여 실린더부(100)의 내부가 압축실(110)과 팽창실(150)로 구획되는 효과가 있다. Since the partition wall portion 200 is fixed to the inner side surface of the cylinder portion 100, the inside of the cylinder portion 100 is divided into the compression chamber 110 and the expansion chamber 150.
본 발명의 일 실시예에 따른 실린더부(100)의 내부에서는 뒤에 설명할 피스톤부(400)가 배치된다. 피스톤부(400)는 위치가 고정되고 실린더부(100)가 좌우(도 1 기준) 방향으로 이동된다.In the interior of the cylinder part 100 according to an embodiment of the present invention, a piston part 400 to be described later is disposed. The piston portion 400 is fixed in position and the cylinder portion 100 is moved in the left and right (reference in FIG. 1) direction.
이로 인하여 피스톤부(400)와 분리벽부(200)의 거리가 가까워지면 압축실(110)의 내부에 있는 유체(G), 구체적으로 SF6 등의 절연 가스의 압력이 상승되고, 설정 압력 값을 초과하면 유체(G)가 압축실(110)에서 유체조절부(300)를 통해 팽창실(150)로 유동된다.Accordingly, when the distance between the piston portion 400 and the separating wall portion 200 is shortened, the pressure of the fluid G in the compression chamber 110, specifically the insulation gas such as SF6, is increased, The fluid G flows into the expansion chamber 150 from the compression chamber 110 through the fluid regulator 300.
도 1 내지 도 5를 참조하면, 본 발명의 일 실시예에 따른 압축실(110)은 뒤에 설명할 구획부(500)에 의해 구획된다. 구체적으로 구획부(500)에 의해 제1압축챔버부(111), 제2압축챔버부(113)가 형성된다.1 to 5, a compression chamber 110 according to an embodiment of the present invention is partitioned by a partition 500 to be described later. Specifically, the first compression chamber portion 111 and the second compression chamber portion 113 are formed by the partition portion 500. [
이로 인하여 피스톤부(400)와 분리벽부(200) 사이의 거리가 가까워짐에 따라 압축실(110), 구체적으로 제1압축챔버부(111)와 제2압축챔버부(113) 내부에 있는 유체(G)의 압력이 동시에 상승하고, 설정 압력값을 달리하는 제1조절부(310), 제2조절부(350)에 의해 절연 가스가 시간차를 가지고 고정 아크 접점(10), 가동 아크 접점(20) 사이에서 발생되는 아크로 유동되도록 한다.As a result, as the distance between the piston 400 and the separating wall 200 approaches, the pressure in the compression chamber 110, specifically, the fluid in the first compression chamber portion 111 and the second compression chamber portion 113 G of the fixed arc contact 10 and the movable arc contact 20 are simultaneously raised by the first adjusting unit 310 and the second adjusting unit 350 that have different set pressure values, To the arc that is generated between them.
본 발명의 일 실시예에 따른 가동 아크 접점(20)은 실린더부(100)에 결합되고, 선단(도 1 기준 우측) 측을 통해 고정 아크 접점(10)의 선단(도 1 기준 좌측) 측과 연결된다. The movable arc contact 20 according to an embodiment of the present invention is coupled to the cylinder portion 100 and connected to the front end (reference left side) side of the fixed arc contact 10 through the front end (reference right side) .
본 명세서에서는 고정 아크 접점(10)의 후단 측 연결 및 지지구조, 실린더부(100)의 이동 구조 및 이동 방식 등은 종래의 가스 차단장치와 동일하므로 그 구체적인 설명은 생략하기로 한다.In this specification, the connection and support structure at the rear end side of the fixed arc contact 10, the moving structure of the cylinder part 100, and the movement method are the same as those of the conventional gas shutoff device, and thus a detailed description thereof will be omitted.
도 1을 참조하면, 본 발명의 일 실시에에 따른 팽창실(150)에는 극간, 구체적으로 고정 아크 접점(10), 가동 아크 접점(20) 사이에서 발생하는 고온의 유체(G)가 유입된다. Referring to FIG. 1, a high-temperature fluid G generated between a gap, specifically, between a fixed arc contact 10 and a movable arc contact 20 flows into an expansion chamber 150 according to an embodiment of the present invention .
본 발명의 일 실시예에 따른 팽창실(150)에서는 고정 아크 접점(10), 가동 아크 접점(20) 사이에서 발생하는 고온의 유체(G)와 압축실(110)에서 유체조절부(300)를 통해 유입되는 유체(G)가 혼합되며, 혼합되는 유체(G)를 냉각시키는 효과가 있다. In the expansion chamber 150 according to an embodiment of the present invention, the high temperature fluid G generated between the fixed arc contact 10 and the movable arc contact 20 and the fluid control part 300 in the compression chamber 110, And the fluid G to be mixed therewith is mixed to cool the fluid G to be mixed.
도 1 내지 도 5를 참조하면, 본 발명의 일 실시예에 따른 분리벽부(200)는 실린더부(100)에 설치되는 것으로, 압축실(110)과 팽창실(150)을 구획한다. Referring to FIGS. 1 to 5, the separating wall 200 according to an embodiment of the present invention is installed in the cylinder 100 and separates the compression chamber 110 and the expansion chamber 150.
분리벽부(200)는 실린더부(100)의 내부에 설치되고, 실린더부(100)의 전후 폭 중앙 부근 위치에서 실린더부(100)의 내주면에 결합되며 위치 고정된다. The separating wall portion 200 is installed inside the cylinder portion 100 and fixed to the inner peripheral surface of the cylinder portion 100 at a position near the front-rear width center of the cylinder portion 100.
구획부(500)로 인하여 실린더부(100)의 내부에서 분리벽부(200)의 전방부(도 1 기준 좌측)에는 압축실(110)이 형성되고, 분리벽부(200)의 후방부(도 1 기준 우측)에는 팽창실(150)이 형성된다.The compression chamber 110 is formed in the front portion (left side in FIG. 1) of the separation wall portion 200 inside the cylinder portion 100 due to the partition portion 500 and the compression chamber 110 is formed in the rear portion of the separation wall portion 200 The expansion chamber 150 is formed.
본 발명의 일 실시예에 따른 압축실(110)과 팽창실(150)의 내부에는 유체(G)가 채워지며, 구체적으로 유체(G)는 절연 가스로서 SF6 가스로 형성될 수 있다.The fluid G is filled in the compression chamber 110 and the expansion chamber 150 according to an embodiment of the present invention. Specifically, the fluid G may be formed of SF6 gas as an insulation gas.
도 2 내지 도 4를 참조하면, 본 발명의 일 실시예에 따른 유체조절부(300)는 분리벽부(200)에 개폐가능하게 결합되는 것으로, 압축실(110)에서 팽창실(150)로 유체(G)의 흐름을 조절한다. 2 through 4, the fluid regulating part 300 according to an embodiment of the present invention is openably and closably coupled to the separating wall part 200, and is configured to discharge fluid from the compression chamber 110 to the expansion chamber 150, (G).
도 2를 참조하면, 유체조절부(300)는 제1조절부(310), 제2조절부(350)를 포함한다. 제1조절부(310)는 제1압축챔버부(111)를 마주보는 분리벽부(200)의 일측에 설치되고, 제2조절부(350)는 제2압축챔버부(113)를 마주보는 분리벽부(200)의 타측에 설치된다.Referring to FIG. 2, the fluid regulator 300 includes a first regulator 310 and a second regulator 350. The first regulating part 310 is installed on one side of the separating wall part 200 facing the first compression chamber part 111 and the second regulating part 350 is provided on the side of the separating wall part 200 facing the first compression chamber part 111, And is installed on the other side of the wall portion 200.
이로 인하여 제1조절부(310)와 제2조절부(350)가 개방되는 압력을 달리 설정할 수 있고, 실린더부(100)가 피스톤부(400) 측(도 2 기준 우측에서 좌측)으로 이동되고, 제1압축챔버부(111), 제2압축챔버부(113)가 각각 압축될 때 제1조절부(310)와 제2조절부(350)가 시간 차를 두어 개방될 수 있도록 한다.Accordingly, the pressure at which the first adjusting part 310 and the second adjusting part 350 are opened can be set differently, and the cylinder part 100 is moved to the piston part 400 side (left side in FIG. 2 reference) The first regulating part 310 and the second regulating part 350 can be opened with a time difference when the first compression chamber part 111 and the second compression chamber part 113 are compressed.
구체적으로 제1조절부(310)의 설정 압력 값이 제2조절부(350)의 설정 압력 값보다 작게 설정된다.Specifically, the set pressure value of the first adjuster 310 is set to be smaller than the set pressure value of the second adjuster 350.
이로 인하여 실린더부(100), 분리벽부(200)가 피스톤부(400) 측(도 2 기준 우측에서 좌측)으로 이동하며 압축실(110), 즉 제1압축챔버부(111), 제2압축챔버부(113)의 내부 압력이 상승되고, 제1압축챔버부(111)가 먼저 설정 압력 값에 도달되며 제1조절부(310)가 먼저 개방되도록 한다. The cylinder portion 100 and the separating wall portion 200 move toward the piston portion 400 side (left side in FIG. 2, right side), and the compression chamber 110, that is, the first compression chamber portion 111, The internal pressure of the chamber part 113 is raised and the first compression chamber part 111 first reaches the set pressure value and the first adjustment part 310 is opened first.
이로 인하여 고압의 유체(G)가 팽창실(150)로 1차적으로 유입되고, 팽창실(150)의 유체(G)와 혼합되며, 후에 제2조절부(350)의 내부 압력이 설정 값에 도달되면 팽창실(150)로 2차적으로 유입되어 냉각 성능을 향상시킬 수 있다.The high pressure fluid G is first introduced into the expansion chamber 150 and mixed with the fluid G in the expansion chamber 150 and then the internal pressure of the second control section 350 is adjusted to a set value The refrigerant can be secondarily introduced into the expansion chamber 150 to improve the cooling performance.
이에 더하여 압축실(110)이 단일의 공간으로 형성되는 것에 비해 유체조절부(300)의 개폐를 위한 압력을 다르게 설정하여 순차적으로 압축실(110)에서 팽창실(150)로 유체(G)를 유입시킬 수 있는 효과가 있다.In addition, since the compression chamber 110 is formed as a single space, the pressure for opening and closing the fluid regulator 300 is set differently, and the fluid G is sequentially discharged from the compression chamber 110 to the expansion chamber 150 There is an effect that can be introduced.
본 발명에서는 제1조절부(310)의 설정 압력 값이 제2조절부(350)의 설정 압력 값보다 작게 형성되나, 이에 한정하는 것은 아니고, 제2조절부(350)의 설정 압력 값이 제1조절부(310)의 설정 압력 값보다 작게 형성되어 제2조절부(350)가 먼저 개방되는 등 다양한 변형 실시가 가능하다.In the present invention, the set pressure value of the first adjuster 310 is formed to be smaller than the set pressure value of the second adjuster 350. However, the present invention is not limited thereto, 1 regulating unit 310 so that the second regulating unit 350 is opened first, and so on.
본 발명의 일 실시예에 따른 유체조절부(300)는 밸브 방식으로 형성될 수 있다. 구체적으로 유체조절부(300)는 감압 밸브, 릴리프 밸브로 형성될 수 있다. 스프링 등 탄성 부재의 탄성 복원력에 의해 설정 압력 값 도달 시 유체조절부(300)가 개폐되는 구성은 일반적인 릴리프 밸브의 구동 방식인 것으로 이와 관련된 자세한 설명은 생략한다.The fluid regulator 300 according to an embodiment of the present invention may be formed in a valve manner. Specifically, the fluid regulating unit 300 may be formed of a pressure reducing valve and a relief valve. A configuration in which the fluid regulating unit 300 is opened and closed when the set pressure value is reached due to the elastic restoring force of the elastic member such as a spring is a driving method of a general relief valve, and a detailed description thereof will be omitted.
도 1 내지 도 5를 참조하면, 본 발명의 일 실시예에 따른 피스톤부(400)는 분리벽부(200)와 마주보며 압축실(110)에 배치되는 것으로, 실린더부(100)의 내부에 배치된다. 1 to 5, a piston 400 according to an embodiment of the present invention is disposed in the compression chamber 110 facing the separating wall portion 200 and is disposed inside the cylinder portion 100 do.
도 2, 도 3을 참조하면, 본 발명의 일 실시예에 따른 피스톤부(400)는 실린더부(100)의 전방 측(도 1 기준 좌측)에 위치 고정된다.2 and 3, the piston unit 400 according to the embodiment of the present invention is fixed to the front side (left side in FIG. 1) of the cylinder unit 100.
본 발명의 일 실시예에 따른 피스톤부(400)는 제1피스톤부(410), 제2피스톤부(450)를 포함한다.The piston unit 400 according to an embodiment of the present invention includes a first piston unit 410 and a second piston unit 450.
제1피스톤부(410)는 구획부(500)의 일면(도 1 기준 상면)과 접촉되며, 구획부(500)와 실린더부(100) 사이에 배치되고, 제2피스톤부(450)는 제1피스톤부(410)와 접촉되는 구획부(500)의 일면에 대향되는 타면(도 1 기준 하면)과 접촉되며, 구획부(500)와 실린더부(100) 사이에 배치된다.The first piston portion 410 is in contact with one surface (reference upper surface in FIG. 1) of the partition portion 500 and is disposed between the partition portion 500 and the cylinder portion 100, (Refer to FIG. 1) opposite to one surface of the partition 500 that is in contact with the one piston unit 410 and is disposed between the partition unit 500 and the cylinder unit 100.
도 2, 도 3을 참조하면, 제1피스톤부(410)와 제2피스톤부(450)는 실린더부(100)의 내측에 위치 고정되고, 실린더부(100)가 이동됨에 따라 제1압축챔버부(111), 제2압축챔버부(113)를 각각 가압한다.2 and 3, the first piston part 410 and the second piston part 450 are fixed to the inside of the cylinder part 100, and as the cylinder part 100 is moved, (111) and the second compression chamber (113), respectively.
제1피스톤부(410)와 제2피스톤부(450)가 구획부(500)에 의해 독립적으로 구획됨으로 인하여 실린더부(100)의 내측면과 구획부(500)에 밀착되고, 제1피스톤부(410), 제2피스톤부(450)와 실린더부(100) 혹은 구획부(500) 사이로 유체(G)가 이탈되는 것을 방지할 수 있다.Since the first piston portion 410 and the second piston portion 450 are independently partitioned by the partition portion 500, the first piston portion 410 and the second piston portion 450 are in close contact with the inner surface of the cylinder portion 100 and the partition portion 500, It is possible to prevent the fluid G from being separated from the first piston 410, the second piston 450, and the cylinder 100 or the partition 500.
이로 인하여 실린더부(100)의 내부에 형성되는 압축실(110)은 실린더부(100), 실린더부(100)의 내주면에 위치 고정되는 분리벽부(200), 피스톤부(400) 사이에 형성되는 공간 형태로 이루어진다.The compression chamber 110 formed in the cylinder 100 has a cylindrical portion 100, a separation wall portion 200 fixed to the inner peripheral surface of the cylinder portion 100, and a piston portion 400 formed between the piston portion 400 Space.
도 1, 도 5를 참조하면, 본 발명의 일 실시예에 따른 피스톤부(400)에는 뒤에 설명할 감압부(800)가 결합된다. Referring to FIGS. 1 and 5, a depressurization unit 800 to be described later is coupled to the piston unit 400 according to an embodiment of the present invention.
갑압부는 피스톤부(400)에 개폐 가능하게 결합되고, 압축실(110)의 내부 압력이 일정치 이상인 경우에 개방되면서 유체(G)를 배출시켜 조작기(도면 미 도시)나 차단기 자체를 보호해주는 역할을 하게된다. The pressure relief portion is openably and closably connected to the piston portion 400 and opens when the internal pressure of the compression chamber 110 is equal to or more than a predetermined value to discharge the fluid G to protect the operation device .
도 1 내지 도 5를 참조하면, 본 발명의 일 실시예에 따른 구획부(500)는 분리벽부(200)에 결합되는 것으로, 압축실(110)을 구획한다. Referring to FIGS. 1 to 5, the partition 500 according to an embodiment of the present invention is coupled to the separating wall 200 to partition the compression chamber 110.
구획부(500)로 인하여 압축실(110)이 구획되고, 구체적으로 압축실(110)은 제1압축챔버부(111), 제2압축챔버부(113)로 구획된다. The compression chamber 110 is partitioned into the first compression chamber portion 111 and the second compression chamber portion 113 by the partition portion 500. Specifically,
도 2를 참조하면, 본 발명의 일 실시예에 따른 구획부(500)는 실린더부(100)의 길이 방향(도 1 기준 좌우 방향)과 나란하게 형성되는 것으로 압축실(110)을 병렬로 구획한다. Referring to FIG. 2, the partition 500 according to an embodiment of the present invention is formed in parallel with the longitudinal direction (left and right direction in FIG. 1) of the cylinder 100, do.
구체적으로 압축실(110)은 제1압축챔버부(111), 제2압축챔버부(113)로 구획되고, 이로 인하여 병렬로 구획되는 제1압축챔버부(111), 제2압축챔버부(113)는 피스톤부(400)에 의해 동일한 압력으로 유체(G)를 압축할 수 있는 효과가 있다.Specifically, the compression chamber 110 is partitioned into a first compression chamber section 111 and a second compression chamber section 113, thereby forming a first compression chamber section 111, a second compression chamber section 111, 113 have the effect of compressing the fluid G with the same pressure by the piston portion 400. [
이에 더하여 압축실(110), 구체적으로 제1압축챔버부(111), 제2압축챔버부(113)와 각각 마주보며 설치되는 제1조절부(310), 제2조절부(350)의 개방을 위한 압력 설정 값을 독립적으로 설정하여 실린더부(100), 분리벽부(200)가 피스톤부(400) 측(도 2 기준 우측에서 좌측)으로 이동 시 시간차를 두어 압축실(110), 구체적으로 제1압축챔버부(111), 제2압축챔버부(113)에서 유체(G)가 팽창실(150)로 유입될 수 있도록 한다.In addition, the first control part 310 and the second control part 350 installed to face the compression chamber 110, specifically, the first compression chamber part 111 and the second compression chamber part 113, respectively, The pressure setting values for the compression chamber 110 and the compression chamber 110 are independently set so that the cylinder unit 100 and the separating wall unit 200 move to the piston unit 400 side So that the fluid G can be introduced into the expansion chamber 150 from the first compression chamber portion 111 and the second compression chamber portion 113.
본 발명의 일 실시예에 따른 구획부(500)는 피스톤부(400)를 관통하며, 이로 인하여 피스톤부(400)가 구획부(500)를 따라 압축실(110), 구체적으로 제1압축챔버부(111), 제2압축챔버부(113) 내부의 유체(G)가 압축되도록 한다.The compartment 500 according to one embodiment of the present invention penetrates the piston 400 so that the piston 400 moves along the compartment 500 to the compression chamber 110, So that the fluid (G) inside the first compression chamber (111) and the second compression chamber (113) is compressed.
도 6을 참조하면, 본 발명의 일 실시예에 따른 압력측정부(600)는 압축실(110)과 팽창실(150)의 내부 압력, 구체적으로 압축실(110)과 팽창실(150)의 압력 차이를 측정하는 것으로 실린더부(100)에 설치된다. 6, the pressure measuring unit 600 according to an exemplary embodiment of the present invention may measure the internal pressure of the compression chamber 110 and the expansion chamber 150, specifically, the internal pressure of the compression chamber 110 and the expansion chamber 150 And is installed in the cylinder part 100 by measuring the pressure difference.
본 발명의 일 실시예에 따른 압력측정부(600)는 압축실(110)과 팽창실(150)의 내부 압력 또는 압축실(110)과 팽창실(150) 간 압력 차이를 측정하여 압축실(110)과 팽창실(150) 간 압력 차이가 소정 범위에 도달하면 유체조절부(300), 구체적으로 제1조절부(310), 제2조절부(350)가 개폐되도록 유체조절부(300)의 구동을 제어할 수 있다.The pressure measuring unit 600 according to an embodiment of the present invention measures the internal pressure of the compression chamber 110 and the expansion chamber 150 or the pressure difference between the compression chamber 110 and the expansion chamber 150, When the pressure difference between the expansion chamber 110 and the expansion chamber 150 reaches a predetermined range, the fluid regulator 300 is opened and closed to open and close the fluid regulator 300, specifically, the first regulator 310 and the second regulator 350, Can be controlled.
도 6을 참조하면, 본 발명의 일 실시예에 따른 제어부(700)는 압력측정부(600)로부터 압축실(110)과 팽창실(150)의 내부 압력에 관한 정보를 전달받는다.Referring to FIG. 6, the controller 700 receives information on the internal pressures of the compression chamber 110 and the expansion chamber 150 from the pressure measurement unit 600.
본 발명의 일 실시예에 따른 제어부(700)는 제1조절부(310), 제2조절부(320)가 시점을 달리하여 개폐되도록 제1조절부(310)와 제2조절부(320)의 구동을 제어한다.The controller 700 according to an embodiment of the present invention includes a first controller 310 and a second controller 320 so that the first controller 310 and the second controller 320 may be opened / .
제어부(700)는 유체조절부(300), 구체적으로 제1조절부(310), 제2조절부(350)가 독립적으로 개폐되도록 하여 제1압축챔버부(111)와 제2압축챔버부(113)의 개방 시점을 조절할 수 있다.The control unit 700 controls the first compression chamber unit 111 and the second compression chamber unit 300 to independently open and close the fluid regulating unit 300, specifically, the first regulating unit 310 and the second regulating unit 350, 113 can be adjusted.
도 1, 도 5를 참조하면, 본 발명의 일 실시예에 따른 감압부(800)는 피스톤부(400)에 설치되는 것으로, 압축실(110), 구체적으로 압축실(110)의 내부 압력 값이 설정 값을 초과하면 개방되면서 유체(G)를 배출시켜 조작기나 차단장치 자체를 보호할 수 있는 효과가 있다.1 and 5, the depressurization unit 800 according to an embodiment of the present invention is installed in the piston unit 400 and is configured to control the internal pressure of the compression chamber 110, specifically, If the set value is exceeded, there is an effect that the operator or the shielding device itself can be protected by discharging the fluid G while being opened.
본 발명에서는 감압부(800)가 제1압축챔버부(111)와 마주보는 제1피스톤부(410)에 설치되나 이에 한정하는 것은 아니고, 제2압축챔버부(113)와 마주보는 제2피스톤부(450)에 설치되거나, 복수 개가 제1피스톤부(410), 제2피스톤부(450)에 각각 구비되어 제1압축챔버부(111)와 제2압축챔버부(113)를 각각 마주보며 독립적으로 개폐되도록 설치되는 등 다양한 변형실시가 가능하다.In the present invention, the depressurization unit 800 is installed in the first piston unit 410 facing the first compression chamber unit 111, but not limited thereto, and the second compression chamber unit 113, A plurality of first compression chamber units 111 and a plurality of second compression chamber units 113 are provided in the first piston unit 410 and the second piston unit 450 so as to face the first compression chamber unit 111 and the second compression chamber unit 113, And can be independently opened and closed.
상기와 같이 구성되는 복합 소호 방식 가스 차단장치(1)의 작동원리 및 효과에 관해 설명하기로 한다.The operation principle and effect of the gas-shutoff apparatus 1 of the above-described construction will be described.
도 1, 도 2를 참조하면, 전력 계통에 고장이 발생되면 실린더부(100)에 연결된 조작기(도면 미 도시)에 의해 고정 아크 접점(10)과 피스톤부(400)를 제외한 가동 아크 접점(20), 실린더부(100)가 피스톤부(400) 측(도 1 기준 우측에서 좌측)으로 이동된다.Referring to FIGS. 1 and 2, when a failure occurs in the power system, the fixed arc contact 10 and the movable arc contact 20 (not shown) are removed by an actuator (not shown) connected to the cylinder 100, , The cylinder portion 100 is moved to the piston portion 400 side (left side in FIG. 1 reference right).
이로 인하여 실린더부(100)가 이동됨에 따라 압축실(110) 내부에 있는 유체(G)는 피스톤부(400)에 의해 압축된다. As a result, as the cylinder part 100 moves, the fluid G in the compression chamber 110 is compressed by the piston part 400.
이에 더하여 고정 아크 접점(10)과 가동 아크 접점(20)이 분리되고, 이와 동시에 고정 아크 접점(10), 가동 아크 접점(20) 사이에서 아크가 발생된다.In addition, the fixed arc contact 10 and the movable arc contact 20 are separated, and at the same time an arc is generated between the fixed arc contact 10 and the movable arc contact 20.
이 경우 압축실(110)의 유체(G) 압력이 팽창실(150)의 유체(G) 압력보다 높으면 분리벽부(200)에 결합되는 유체조절부(300)가 개방되고, 절연 가스 등 유체(G)는 유체조절부(300)를 통과하여 팽창실(150), 노즐부(30)를 통해 고정 아크 접점(10)과 가동 아크 접점(20) 사이로 분사된다.In this case, if the pressure of the fluid G in the compression chamber 110 is higher than the pressure of the fluid G in the expansion chamber 150, the fluid control unit 300 coupled to the separation wall unit 200 is opened, G passes through the fluid regulating part 300 and is injected between the fixed arc contact 10 and the movable arc contact 20 through the expansion chamber 150 and the nozzle part 30.
이에 따라 고정 아크 접점(10), 가동 아크 접점(20) 사이에서 발생되는 아크가 압축실(110)에서 압축된 가스에 의해 소호되면서 고장 전류가 차단된다.As a result, the arc generated between the fixed arc contact 10 and the movable arc contact 20 is extinguished by the gas compressed in the compression chamber 110, so that the fault current is cut off.
고정 아크 접점(10), 가동 아크 접점(20) 사이에서 발생되는 아크로 인해 생성되는 고온의 유체(G)는 노즐부(30) 사이를 통과하여 팽창실(150)로 유입된다. 팽창실(150)로 인하여 유입되는 고온의 유체(G)와 압축실(110)로부터 유입되는 고압의 유체(G)가 혼합되며 냉각되는 효과가 있다.The high temperature fluid G generated due to the arc generated between the fixed arc contact 10 and the movable arc contact 20 passes between the nozzle portions 30 and flows into the expansion chamber 150. The high temperature fluid G flowing through the expansion chamber 150 and the high pressure fluid G flowing from the compression chamber 110 are mixed and cooled.
도 2를 참조하면, 실린더부(100)가 피스톤부(400) 측(도 2 기준 우측에서 좌측)으로 이동됨에 따라 압축실(110), 구체적으로 제1압축챔버부(111), 제2압축챔버부(113) 내부 유체(G)의 압력이 증가되고, 제1조절부(310)에 설정된 압력 값에 도달되면 제1조절부(310)가 개방된다.Referring to FIG. 2, as the cylinder 100 moves to the piston 400 side (left side in FIG. 2), the compression chamber 110, specifically, the first compression chamber portion 111, When the pressure of the fluid G in the chamber part 113 is increased and the pressure value set in the first control part 310 is reached, the first control part 310 is opened.
이로 인하여 제1압축챔버부(111) 내 유체(G)가 팽창실(150)로 유동되어 팽창실(150) 내부에 있는 고온의 유체(G)와 혼합된다. The fluid G in the first compression chamber portion 111 flows into the expansion chamber 150 and is mixed with the high temperature fluid G inside the expansion chamber 150.
도 3을 참조하면, 계속하여 실린더부(100)가 피스톤부(400) 측(도 3 기준 우측에서 좌측)으로 이동됨에 따라 제2압축챔버부(113)의 내부 유체(G)의 압력이 더욱 증가되고, 제1조절부(310)에 설정된 압력 값보다 큰 값으로 설정된 압력 값에 도달하면 제2조절부(350)가 개방된다. 3, the pressure of the internal fluid G of the second compression chamber portion 113 is further increased as the cylinder 100 moves to the piston 400 side (left side in FIG. 3) And when the pressure reaches the pressure value set to a value larger than the pressure value set to the first adjuster 310, the second adjuster 350 is opened.
이로 인하여 제2압축챔버부(113) 내 유체(G)가 팽창실(150)로 유동되어 팽창실(150) 내부에 있는 고온의 유체(G)와 혼합된다.The fluid G in the second compression chamber 113 flows into the expansion chamber 150 and is mixed with the high temperature fluid G inside the expansion chamber 150.
도 1 내지 도 3을 참조하면, 구획부(500)는 분리벽부(200)와 결합되고, 구체적으로 실린더부(100)의 길이 방향(도 1 기준 좌우 방향)과 나란하게 형성되며 압축실(110)을 병렬로 구획한다.1 to 3, the partition 500 is coupled to the separating wall 200 and is disposed in parallel with the longitudinal direction of the cylinder 100, ) Are partitioned in parallel.
구획부(500)에 의해 제1압축챔버부(111), 제2압축챔버부(113)가 형성됨으로 인하여 시간차를 두고 제1조절부(310), 제2조절부(350)의 개방을 위한 압력 값을 달리 설정할 수 있다.Since the first compression chamber portion 111 and the second compression chamber portion 113 are formed by the partitioning portion 500 and the first and second control portions 310 and 350 are opened The pressure value can be set differently.
이에 더하여 필요 시점에 제1조절부(310), 제2조절부(350)를 순차적으로 개방하여 압축실(110) 내의 유체(G)를 팽창실(150)로 유동시킬 수 있는 효과가 있다.In addition, the first regulating unit 310 and the second regulating unit 350 are sequentially opened at the required time to fluidize the fluid G in the compression chamber 110 into the expansion chamber 150.
압력에 따라 순차적으로 제1조절부(310), 제2조절부(350)가 개방되어 유체(G)가 이동됨으로 인하여 팽창실(150)에서 고온의 유체(G)와 제1압축챔버부(111), 제2압축챔버부(113) 내의 냉각되는 유체(G)가 혼합되며 고정 아크 접점(10)과 가동 아크 접점(20) 사이에서 발생되는 아크를 소호하고, 아크로부터 발생되는 열을 냉각시킬 수 있는 효과가 있다.The first regulating part 310 and the second regulating part 350 are sequentially opened in accordance with the pressure and the fluid G is moved in the expansion chamber 150 and the high temperature fluid G and the first compression chamber part 111), the fluid G to be cooled in the second compression chamber part 113 is mixed and the arc generated between the fixed arc contact 10 and the movable arc contact 20 is extinguished, and the heat generated from the arc is cooled There is an effect that can be made.
도 6을 참조하면, 압력측정부(600)로 인하여 압축실(110)과 팽창실(150)의 내부 압력, 구체적으로 압축실(110)과 팽창실(150)의 압력 차를 측정할 수 있고, 제어부(700)가 압력측정부(600)로부터 압축실(110)과 팽창실(150)의 내부 압력에 관한 정보를 전달받아 유체조절부(300), 구체적으로 제1조절부(310)와 제2조절부(350)가 설정 압력 값에 도달 시 각각 개폐되는 것 외에 제1조절부(310), 제2조절부(350)가 독립적으로 개폐되도록 제어할 수 있다.6, the internal pressure of the compression chamber 110 and the expansion chamber 150, specifically, the pressure difference between the compression chamber 110 and the expansion chamber 150 can be measured by the pressure measurement unit 600 The control unit 700 receives the information about the internal pressures of the compression chamber 110 and the expansion chamber 150 from the pressure measurement unit 600 and controls the fluid control unit 300 and specifically the first control unit 310 The first control unit 310 and the second control unit 350 can be independently controlled to be opened and closed while the second control unit 350 is opened and closed when the preset pressure value is reached.
도 5를 참조하면, 감압부(800)가 압축실(110)의 압력이 설정 값을 초과하는 경우 개방되어 압축실(110) 내부의 유체(G)가 외부로 배출되도록 하여 고압의 유체(G)로 인해 복합 소호 방식 가스 차단장치(1)가 손상되는 것을 방지할 수 있다.Referring to FIG. 5, when the pressure reducing portion 800 is opened when the pressure of the compression chamber 110 exceeds a predetermined value, the fluid G in the compression chamber 110 is discharged to the outside, , It is possible to prevent the gas recirculation system 1 from being damaged.
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. I will understand. Accordingly, the technical scope of the present invention should be defined by the following claims.

Claims (6)

  1. 압축실과 팽창실이 형성되는 실린더부;A cylinder portion in which a compression chamber and an expansion chamber are formed;
    상기 실린더부에 설치되고, 상기 압축실과 상기 팽창실을 구획하는 분리벽부;A separating wall portion provided in the cylinder portion and partitioning the compression chamber and the expansion chamber;
    상기 분리벽부에 개폐가능하게 결합되고, 상기 압축실에서 상기 팽창실로 유체의 흐름을 조절하는 유체조절부;A fluid regulating portion that is openably and closably connected to the separating wall portion and regulates the flow of the fluid from the compression chamber to the expansion chamber;
    상기 분리벽부와 마주보며 상기 압축실에 배치되는 피스톤부;A piston portion facing the separating wall portion and disposed in the compression chamber;
    상기 분리벽부에 결합되고, 상기 압축실을 구획하는 구획부;를 포함하는 것을 특징으로 하는 복합 소호 방식 가스 차단장치.And a partitioning portion coupled to the separating wall portion and partitioning the compression chamber.
  2. 제1항에 있어서, The method according to claim 1,
    상기 구획부는, 상기 실린더부의 길이 방향과 나란하게 형성되며 상기 압축실을 병렬로 구획하는 것을 특징으로 하는 복합 소호 방식 가스 차단장치.Wherein the partition is formed in parallel with the longitudinal direction of the cylinder, and the compression chamber is partitioned in parallel.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 압축실은 상기 구획부에 의해 제1압축챔버부와 제2압축챔버부로 구획되는 것을 특징으로 하는 복합 소호 방식 가스 차단장치.Wherein the compression chamber is partitioned by the partition into a first compression chamber portion and a second compression chamber portion.
  4. 제3항에 있어서, The method of claim 3,
    상기 피스톤부는, 상기 구획부에 의해 상기 제1압축챔버부를 가압하는 제1피스톤부; 및Wherein the piston portion includes: a first piston portion for pressing the first compression chamber portion by the partition portion; And
    상기 제2압축챔버부를 가압하는 제2피스톤부;를 포함하는 것을 특징으로 하는 복합 소호 방식 가스 차단장치. And a second piston portion for pressing the second compression chamber portion.
  5. 제3항에 있어서, The method of claim 3,
    상기 유체조절부는,Wherein the fluid regulating portion includes:
    상기 제1압축챔버부를 마주보는 상기 분리벽부의 일측에 설치되는 제1조절부; 및A first adjusting unit installed at one side of the separating wall facing the first compression chamber; And
    상기 제2압축챔버부를 마주보는 상기 분리벽부의 타측에 설치되는 제2조절부;를 포함하는 것을 특징으로 하는 복합 소호 방식 가스 차단장치.And a second control unit installed on the other side of the partition wall facing the second compression chamber unit.
  6. 제5항에 있어서, 6. The method of claim 5,
    상기 제1조절부와 상기 제2조절부가 시점을 달리하여 개폐되도록 상기 제1조절부와 상기 제2조절부의 구동을 제어하는 제어부;를 더 포함하는 것을 특징으로 하는 복합 소호 방식 가스 차단장치. Further comprising a control unit for controlling the driving of the first adjusting unit and the second adjusting unit such that the first adjusting unit and the second adjusting unit are opened or closed at different times.
PCT/KR2018/015761 2017-12-14 2018-12-12 Self-blast type gas circuit breaker WO2019117620A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0172592 2017-12-14
KR1020170172592A KR101983622B1 (en) 2017-12-14 2017-12-14 Self-blast type gas circuit breaker

Publications (1)

Publication Number Publication Date
WO2019117620A1 true WO2019117620A1 (en) 2019-06-20

Family

ID=66672365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015761 WO2019117620A1 (en) 2017-12-14 2018-12-12 Self-blast type gas circuit breaker

Country Status (2)

Country Link
KR (1) KR101983622B1 (en)
WO (1) WO2019117620A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166161A (en) * 2006-12-28 2008-07-17 Mitsubishi Electric Corp Gas circuit breaker
KR20090072578A (en) * 2007-12-28 2009-07-02 현대중공업 주식회사 Thermal chamber self-blast circuit breaker
KR101200252B1 (en) * 2011-07-21 2012-11-09 한국전기연구원 Multi-compress chamber type of gas circuit breaker
KR101386134B1 (en) * 2012-11-28 2014-04-17 한국전기연구원 Self-blast type gas circuit breaker with pressure controllable thermal chamber
KR101501636B1 (en) * 2013-12-13 2015-03-11 한국전기연구원 Hybrid-extinction type gas circuit breaker with check valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166161A (en) * 2006-12-28 2008-07-17 Mitsubishi Electric Corp Gas circuit breaker
KR20090072578A (en) * 2007-12-28 2009-07-02 현대중공업 주식회사 Thermal chamber self-blast circuit breaker
KR101200252B1 (en) * 2011-07-21 2012-11-09 한국전기연구원 Multi-compress chamber type of gas circuit breaker
KR101386134B1 (en) * 2012-11-28 2014-04-17 한국전기연구원 Self-blast type gas circuit breaker with pressure controllable thermal chamber
KR101501636B1 (en) * 2013-12-13 2015-03-11 한국전기연구원 Hybrid-extinction type gas circuit breaker with check valve

Also Published As

Publication number Publication date
KR101983622B1 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
WO2016047891A1 (en) Gas insulated circuit breaker
US6515248B2 (en) Gas circuit breaker
RU2646596C2 (en) Internal arc management and ventilation for electrical equipment
WO2016108530A1 (en) Dc circuit breaker
CN113593977A (en) Optimized circuit breaker layout structure
WO2012002677A2 (en) Hybrid extinction-type gas circuit breaker for a gas insulated switchgear
WO2023010977A1 (en) Cabinet and pressure relief method
WO2018182105A1 (en) High speed switch
WO2020122495A1 (en) Arc extinguishing device of eco-friendly gas-insulated load break switch, in which puffer and arc chute are combined
WO2019117620A1 (en) Self-blast type gas circuit breaker
WO2016108528A1 (en) Dc circuit breaker
WO2020091261A1 (en) High speed earthing switch of gas insulated switchgear
WO2016108598A1 (en) Vacuum interrupter and driving method therefor
WO2024205040A1 (en) Fire-extinguishing device formed in switchboard
WO2015102310A1 (en) Gas circuit breaker of gas insulated switchgear
WO2020204400A1 (en) Vacuum gauge and vacuum interrupter comprising same
WO2019117617A1 (en) Gas circuit breaker
WO2019117618A1 (en) Puffer-type gas circuit breaker
KR101501636B1 (en) Hybrid-extinction type gas circuit breaker with check valve
KR101701817B1 (en) Gas isolated circuit breaker
WO2017069371A1 (en) Current cutoff switch using supercritical fluid, and current cutoff device and current cutoff method using same
WO2018190482A1 (en) Distribution board having bus bar cooling device
WO2019132237A1 (en) Dc circuit breaker
US4389554A (en) Transformer protective switch
WO2024058598A1 (en) Battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18887442

Country of ref document: EP

Kind code of ref document: A1