KR101200252B1 - Multi-compress chamber type of gas circuit breaker - Google Patents

Multi-compress chamber type of gas circuit breaker Download PDF

Info

Publication number
KR101200252B1
KR101200252B1 KR1020110072658A KR20110072658A KR101200252B1 KR 101200252 B1 KR101200252 B1 KR 101200252B1 KR 1020110072658 A KR1020110072658 A KR 1020110072658A KR 20110072658 A KR20110072658 A KR 20110072658A KR 101200252 B1 KR101200252 B1 KR 101200252B1
Authority
KR
South Korea
Prior art keywords
compression chamber
gas
chamber
circuit breaker
arc
Prior art date
Application number
KR1020110072658A
Other languages
Korean (ko)
Inventor
송기동
오연호
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020110072658A priority Critical patent/KR101200252B1/en
Application granted granted Critical
Publication of KR101200252B1 publication Critical patent/KR101200252B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7023Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/904Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism characterised by the transmission between operating mechanism and piston or movable contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/91Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism the arc-extinguishing fluid being air or gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H2033/908Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism using valves for regulating communication between, e.g. arc space, hot volume, compression volume, surrounding volume

Landscapes

  • Circuit Breakers (AREA)

Abstract

PURPOSE: A multiple compressive chamber type gas circuit breaker is provided to improve fault current interrupting performance by dividing a compressive chamber into two or more spaces and rising pressure more than two times with same operating force. CONSTITUTION: A first compressive chamber(54a) is located in the inside bordering a cylinder rod(13). A second compressive chamber(54b) is located on the outside bordering the inner wall of an operation housing(12). The first compressive chamber and the second compressive chamber are separated from each other. A division wall(53) is extended from a separation wall(50) in a piston(55) direction. A check valve(52) and a reducing valve(56) are installed in each compressive chamber(54). [Reference numerals] (AA) Arc area

Description

다중 압축실형 가스 차단기{Multi-compress chamber type of gas circuit breaker}Multi-compress chamber type of gas circuit breaker

본 발명은 다중 압축실형 가스 차단기에 관한 것으로서, 더욱 상세하게는 고장전류의 차단 성능을 향상시킬 수 있는 다중 압축실형 가스 차단기에 관한 것이다.
The present invention relates to a multi-compression chamber gas circuit breaker, and more particularly, to a multi-compression chamber gas circuit breaker capable of improving the fault current breaking performance.

일반적으로 전력계통에서 고장이 발생한 경우, 고장전류를 차단하고 전력설비를 보호하기 위하여 차단기(Circuit Breaker)가 사용된다. In general, when a breakdown occurs in the power system, a circuit breaker is used to cut off the fault current and protect the power equipment.

이러한 차단기는 보통 냉가스를 수용하며 조작기의 조작을 통해 냉가스를 압축하는 압축실(compress chamber)과 아크에 의해 아크 주위에서 가열 및 팽창된 열가스를 수용하는 열팽창실(thermal chamber) 등 2개의 챔버(chamber)를 포함하여 구성된다.These breakers usually contain cold gas and two chambers, a compression chamber that compresses the cold gas through the operation of the manipulator, and a thermal chamber that receives the heated and expanded heat gas around the arc by the arc. It comprises a chamber (chamber).

차단기는 정상 상태에서는 정격전류를 통전시키면서 전기를 전달하고, 전력계통에 고장 또는 사고가 발생하여 정상전류의 약 10배 이상에 달하는 고장전류가 흐르게 되면 압축실의 압축 가스와 열팽창실의 열가스를 이용하여 고장전류를 차단하게 된다.The breaker delivers electricity while supplying rated current under normal conditions.If a fault or accident occurs in the power system, and a fault current that reaches about 10 times more than the normal current flows, the breaker receives compressed gas from the compression chamber and heat gas from the thermal expansion chamber. To break the fault current.

통상적으로 차단기의 압축실의 냉가스는 소전류 차단에 이용되고, 열팽창실의 열가스는 대전류 차단에 이용된다.Usually, the cold gas of the compression chamber of a circuit breaker is used for a small current interruption, and the heat gas of a thermal expansion chamber is used for a large current interruption.

도 1은 종래기술에 따른 가스 차단기의 구조를 개략적으로 보여주는 단면도로서, 도 1을 참조하여 종래의 차단기 구조 및 작동상태를 설명하기로 한다.1 is a cross-sectional view schematically showing the structure of a gas circuit breaker according to the prior art, with reference to FIG. 1 will be described the conventional circuit breaker structure and operating state.

도 1에 도시한 바와 같이, 가스 차단기는 내부에 고정아크접점(10)을 가지는 고정부와, 내부에 가동아크접점(20), 실린더로드(13), 제1노즐(19), 제2노즐(21), 분리벽(14), 체크밸브(18), 피스톤(23), 감압밸브(24)를 가지는 가동부(11)를 포함한다.As shown in FIG. 1, the gas circuit breaker includes a fixed part having a fixed arc contact 10 therein, a movable arc contact 20, a cylinder rod 13, a first nozzle 19, and a second nozzle therein. And a movable part 11 having a separating wall 14, a check valve 18, a piston 23, and a pressure reducing valve 24.

가동부(11)는 실린더로드(13)의 연결고리(22)를 통해 연결되는 조작기에 의해 작동되고, 가동아크접점(20)은 가동부(11)의 작동으로 고정아크접점(10)으로부터 분리되는 경우에 아크를 발생시킨다.The movable part 11 is operated by a manipulator connected through the connecting ring 22 of the cylinder rod 13, and the movable arc contact point 20 is separated from the fixed arc contact point 10 by the operation of the movable part 11. Generates an arc.

실린더로드(13)는 가동부(11)의 내부에 축방향으로 길게 배치되어 피스톤(23)을 제외한 가동부(11)를 움직이기 위한 중심축 역할을 하고, 제1노즐(19)은 고정아크접점(10)이 출입가능하게 노즐목을 가지며, 제2노즐(21)은 가동아크접점(20)을 감싸는 구조로 실린더로드(13)의 단부에 설치되어 있다.The cylinder rod 13 is disposed axially in the movable part 11 to serve as a central axis for moving the movable part 11 except for the piston 23, and the first nozzle 19 has a fixed arc contact point ( 10) has a nozzle neck so that the entrance and exit, the second nozzle 21 is provided at the end of the cylinder rod 13 in a structure surrounding the movable arc contact (20).

분리벽(14)은 가동부하우징(12)와 실린더로드(13) 사이를 연결하도록 판 구조로 이루어져서 열팽창실(15)과 압축실(16)을 구분하고, 분리벽(14)에 형성된 유체홀(17)을 통해 열팽창실(15)과 압축실(16)의 유체가 유동가능하다.The separating wall 14 has a plate structure for connecting between the movable part housing 12 and the cylinder rod 13 to separate the thermal expansion chamber 15 and the compression chamber 16, and to form a fluid hole formed in the separating wall 14. The fluid of the thermal expansion chamber 15 and the compression chamber 16 is flowable through 17).

상기 분리벽(14)은 유체홀(17)은 체크밸브(18)에 의해 개폐되며, 체크밸브(18)는 열팽창실(15)과 압축실(16)의 압력차이에 따라 작동된다.The separation wall 14 is the fluid hole 17 is opened and closed by the check valve 18, the check valve 18 is operated according to the pressure difference between the thermal expansion chamber 15 and the compression chamber 16.

피스톤(23)은 가동부(11)의 동작시 가동부(11)의 내측 단부에 정지됨으로써 압축실(16)을 압축시키는 역할을 한다. The piston 23 serves to compress the compression chamber 16 by being stopped at the inner end of the movable portion 11 during the operation of the movable portion 11.

감압밸브(24)는 피스톤(23)에 설치되어 필요시 압축실(16)을 압력을 떨어뜨리는 역할을 한다.Pressure reducing valve 24 is installed in the piston 23 serves to lower the pressure in the compression chamber 16 if necessary.

이와 같이 구성된 가스 차단기의 작동상태를 설명하면 다음과 같다.Referring to the operating state of the gas circuit breaker configured as described above is as follows.

전력계통에 고장이 발생하면 가동부(11) 중 피스톤(23)을 제외한 나머지 모두가 연결고리(22)를 통해 조작기(미 도시)에 의해 도 1을 기준으로 좌측에서 우측으로 이동하고, 가동부(11)가 이동하는 과정에서 압축실(16)의 가스가 피스톤(23)에 의해 자동적으로 압축된다.When a failure occurs in the power system, all of the movable parts 11 except for the piston 23 are moved from the left side to the right side with reference to FIG. 1 by a manipulator (not shown) through the connecting ring 22, and the movable part 11. The gas in the compression chamber 16 is automatically compressed by the piston 23 in the process of moving.

또한, 가동부(11)가 이동함에 따라 가동아크접점(20)과 고정아크접점(10)이 분리되고, 두 아크접점(1,2) 사이에는 아크가 발생하게 된다.In addition, as the movable part 11 moves, the movable arc contact point 20 and the fixed arc contact point 10 are separated, and an arc is generated between the two arc contacts 1 and 2.

상기 압축실(16)의 가스압력이 열팽창실(15)의 가스압력보다 높으면 분리벽(14)의 체크밸브(18)가 열리게 되고, 압축실(16)에서 압축된 가스가 체크밸브(18)를 통해 열팽창실(15)을 거쳐 고정아크접점(10)과 가동아크접점(20) 사이의 아크영역으로 분사됨으로써, 두 아크접점(1,2) 사이에서 발생한 아크를 소호(소멸)시켜 고장전류를 차단한다.When the gas pressure of the compression chamber 16 is higher than the gas pressure of the thermal expansion chamber 15, the check valve 18 of the separation wall 14 is opened, and the gas compressed in the compression chamber 16 is checked. Through the thermal expansion chamber 15 through the injection into the arc region between the fixed arc contact 10 and the movable arc contact 20, the arc generated between the two arc contacts (1, 2) extinguishes (dissipates) the fault current To block.

상기와 같은 고장전류의 차단은 전력계통에서 발생한 고장전류가 작은 경우에만 가능한 작동으로서, 분사된 가스가 고정아크접점(10)과 가동아크접점(20) 사이에서 발생한 아크에 의해 팽창하여 열팽창실(15)로 역류하지 않을 경우에만 가능한 현상이다. The interruption of the fault current is possible only when the fault current generated in the power system is small, and the injected gas is expanded by an arc generated between the fixed arc contact 10 and the movable arc contact 20, thereby expanding the thermal expansion chamber ( 15) This is only possible if not backflowed.

차단해야 할 고장전류가 큰 경우, 고정아크접접(1)과 가동아크접점(20) 사이에서 발생한 아크에너지가 크게 되므로 아크주위의 가스가 가열 및 팽창되어 열팽창실(15)로 역류된다.When the fault current to be interrupted is large, the arc energy generated between the fixed arc contact 1 and the movable arc contact 20 becomes large so that the gas around the arc is heated and expanded to flow back into the thermal expansion chamber 15.

역류된 가스에 의해 열팽창실(15)의 압력은 압축실(16)보다 높아지게 되고, 이에 따라 체크밸브(18)가 닫히게 된다. The pressure of the thermal expansion chamber 15 becomes higher than that of the compression chamber 16 by the backflow gas, and the check valve 18 is closed by this.

열팽창실(15)로 역류한 가스는 열팽창실(15)에서 냉각되어 다시 고정아크접점(10)과 가동아크접점(20) 사이의 아크영역으로 분사되어 아크를 소호하게 된다. The gas flowing back to the thermal expansion chamber 15 is cooled in the thermal expansion chamber 15 and injected into the arc region between the fixed arc contact 10 and the movable arc contact 20 to extinguish the arc.

이때 열팽창실(15)의 열가스가 제1노즐목을 통해 분출되면서 열팽창실(15)의 압력이 낮아짐으로써 닫혔던 체크밸브(18)는 열리고 압축실(16)에서 압축된 가스가 팽창실(10)의 가스를 밀면서 같이 아크로 분사된다. At this time, as the heat gas of the thermal expansion chamber 15 is ejected through the first nozzle neck, the pressure of the thermal expansion chamber 15 is lowered, thereby closing the check valve 18 and the gas compressed in the compression chamber 16 is expanded in the expansion chamber 10. ) Is injected into the arc while pushing the gas.

즉, 압축실(16)의 가스 압력이 높으면 높을수록 아크로 분사되는 힘이 커져서 아크를 소호하고 절연회복에 유리하게 되어 차단성능이 향상된다. That is, the higher the gas pressure in the compression chamber 16, the greater the force injected into the arc, which extinguishes the arc and favors insulation recovery, thereby improving the breaking performance.

다시 말해서, 고장전류의 크기가 작은 경우는 압축실(16)의 압축된 가스로 아크를 소호하여 고장전류를 차단하게 되고, 고장전류가 큰 경우에는 고정아크접점(10)과 가동아크접점(20) 사이에서 발생한 아크에너지를 이용하여 주위의 가스를 팽창시켜 열팽창실(15)로 역류시킨 다음, 역류되어 열팽창실(15)에서 냉각된 가스와 압축실(16)에서 압축된 가스를 다시 아크영역으로 분사하여 아크를 소호시키고 고장전류를 차단하는 것이다.In other words, when the magnitude of the fault current is small, the arc current is blocked by the compressed gas of the compression chamber 16 to block the fault current. When the fault current is large, the fixed arc contact 10 and the movable arc contact 20 Using the arc energy generated between) expands the surrounding gas to flow back to the thermal expansion chamber (15), and then flows back to the gas cooled in the thermal expansion chamber (15) and the gas compressed in the compression chamber (16) again in the arc region It sprays the arc to extinguish the arc and cut off the fault current.

그런데, 차단기가 차단해야 할 고장전류의 크기는 수 100A에서 수10kA로 다양하다. However, the magnitude of the fault current that the breaker should cut varies from several 100A to several 10kA.

국제규격에서 정한 고장전류의 크기만 하더라도 수 100A의 소전류, 정격차단전류의 10%인 T10, 30%인 T30, 60%인 T60, 90%인 SLF90, 100%인 T100s 및 100%에 DC분이 실린 T100a 등이 있으며, 이 중에서 하나라도 실패하면 차단기로서의 기능을 인정받을 수 없게 된다. Even with the magnitude of the fault current specified by the international standard, a small current of several 100A, T10 of 10% of rated breaking current, T30 of 30%, T60 of 60%, SLF90 of 90%, T100s of 100% and 100% T100a and the like, and if any one of them fails, the function as a circuit breaker cannot be recognized.

보통 소전류, T10, T30은 전류크기 즉, 아크에너지가 작아서 가스의 팽창에 의한 열팽창실(15)에서의 압력상승을 기대할 수 없기 때문에 압축실(16)의 압축된 가스로 차단하고, 나머지 대전류는 아크에너지를 이용하여 열팽창실(15)의 팽창된 가스와 압축실(16)의 압축된 가스로 차단한다. Usually, the small current, T10, T30 is blocked by the compressed gas of the compression chamber 16 because the current magnitude, that is, the arc energy is small, and the pressure rise in the thermal expansion chamber 15 due to the expansion of the gas cannot be expected, and the remaining large current The arc is blocked by the expanded gas of the thermal expansion chamber 15 and the compressed gas of the compression chamber 16 by using the arc energy.

그러나 압축실(16)의 가스 압력이 낮을 경우 소전류, T10, T30에 있어서 아크로 분사되는 가스 유동이 미약하여 차단에 실패할 수 있고, T60 이상에서는 열팽창실(15)의 가스를 냉각시키지 못하고 아크로 분사시키는 힘이 약하여 차단에 실패하는 경우가 빈번하게 발생한다. However, when the gas pressure of the compression chamber 16 is low, the gas flow injected into the arc in the small current, T10, T30 may be weak, and the blocking may fail. In T60 and above, the gas in the thermal expansion chamber 15 may not be cooled and the arc furnace may fail. Frequently, the injection force is weak and the blocking fails.

특히, 차단기의 정격전압이 증가할수록 절연거리를 확보하기 위해 차단기의 동작거리 즉, 닫혀 있던 상태에서 움직이기 시작하여 완전히 열린 동작이 완료되는 거리(이것을 스트로크(stroke)라 함)가 증가하게 되고, 스트로크가 증가함에 따라 압축실(16)의 길이도 증가하게 된다. In particular, as the rated voltage of the circuit breaker increases, the operating distance of the circuit breaker, that is, the distance that starts to move in a closed state and completes an open operation, is completed (this is called a stroke) to secure an insulation distance. As the stroke increases, the length of the compression chamber 16 also increases.

이와 같이 압축실(16)의 길이가 증가하는 경우 압축실(16)의 가스 압력을 높이는 것은 매우 어려운 문제로 작용하게 된다. As such, when the length of the compression chamber 16 is increased, increasing the gas pressure in the compression chamber 16 becomes a very difficult problem.

이러한 경우 보통 조작기의 조작속도를 높여 압축실(16)의 가스 압력을 높이지만, 조작기의 조작력에는 한계가 있고, 조작속도가 너무 빠르면 열팽창실(15)의 가스가 팽창되어 압력이 상승할 시간적 여유가 없기 때문에, 즉 가스의 팽창이 일어나 열팽창실(15)로 역류하여 가스압력이 상승하기 전에 고정아크접점(10)이 제1노즐목에서 빠져나오기 때문에 오히려 차단성능이 저하되는 문제점이 있다.
In this case, the operation pressure of the manipulator is usually increased to increase the gas pressure in the compression chamber 16. However, the operation force of the manipulator has a limit. In other words, there is a problem in that the blocking performance is lowered because the fixed arc contact 10 exits from the first nozzle neck before the expansion of the gas occurs and flows back into the thermal expansion chamber 15 to increase the gas pressure.

본 발명은 상기와 같은 문제점을 해결하기 위하여 발명한 것으로서, 압축실을 적어도 2개 이상으로 분할하여 동일한 조작력으로 2배 이상의 압력 상승을 유도함으로써, 고장전류의 차단 성능을 향상시킬 수 있는 다중 압축실형 가스 차단기를 제공하는데 그 목적이 있다.
The present invention has been invented to solve the above problems, by dividing the compression chamber into at least two or more to induce a pressure rise of two times or more with the same operating force, multi-compression chamber type that can improve the fault current breaking performance The purpose is to provide a gas circuit breaker.

상기와 같은 목적을 달성하기 위해 본 발명에 따른 다중 압축실형 가스 차단기는 분리벽에서 피스톤 방향으로 실린더로드와 평행하게 형성되어, 상기 압축실을 동심원상으로 구획하는 구획벽을 포함하고, 상기 구획벽에 의한 압축실의 분할로 압축실의 가스 압축시 가스의 압력상승을 유도하고, 압축실의 압력상승을 극대화시켜 고장전류의 차단성능을 향상시킬 수 있는 것을 특징으로 한다.In order to achieve the above object, the multiple compression chamber type gas circuit breaker according to the present invention includes a partition wall which is formed in parallel with a cylinder rod in a piston direction in a separation wall and partitions the compression chamber concentrically. By dividing the compression chamber by the induction of the pressure rise of the gas during the compression of the gas of the compression chamber, it is characterized in that to maximize the pressure rise of the compression chamber to improve the fault current breaking performance.

상기 구획된 압축실마다 체크밸브와 감압밸브가 별개로 설치되어, 차단기의 동작을 원활하게 유지할 있는 것을 특징으로 한다.A check valve and a pressure reducing valve are separately provided for each of the divided compression chambers, so that the operation of the circuit breaker can be smoothly maintained.

상기 구획벽은 압축실의 분할 갯수에 비례하여 압력이 증가되도록 설치되는 것을 특징으로 한다.
The partition wall is characterized in that the pressure is installed to increase in proportion to the number of divisions of the compression chamber.

본 발명에 따른 다중 압축실형 가스 차단기의 장점을 설명하면 다음과 같다.The advantages of the multiple compression chamber gas circuit breaker according to the present invention are as follows.

1. 압축실의 체적 분할로 압축실의 가스압력 상승을 유도하여 조작력을 증가시키지 않고 동일한 조작속도에서 압축실의 가스 압력을 증가시킴으로써, 소전류 차단에서 아크를 높은 압력으로 차단 및 절연회복에 유리한 조건을 만들 수 있고, 대전류 차단에 있어서 열팽창실에서 팽창된 가스를 보다 높은 압력으로 아크영역을 향해 미는 힘을 발생시켜 대전류 차단 성능도 향상시킬 수 있다.1. Increasing the gas pressure of the compression chamber at the same operating speed without increasing the operating force by inducing the gas pressure rise of the compression chamber by volume division of the compression chamber, which is advantageous for blocking the arc at high pressure and recovering insulation at low current interruption. Conditions can be created and high current blocking performance can be improved by generating a force that pushes the gas expanded in the thermal expansion chamber toward the arc region at a higher pressure.

2. 압축실을 2개 이상 분할하여 동일한 조작력으로 2배 이상의 압력 상승을 유도함으로써, 소전류 차단 성능과 책무(duty test) 항목 T10, T30, T60의 차단성능을 향상시키고, SLF90 및 100% 정격차단시험 T100s, T100a의 시험에서 아크영역으로의 가스 분출력을 향상시킬 수 있다.
2. By dividing two or more compression chambers and inducing two times more pressure rise with the same operating force, it improves the low current breaking performance and the breaking performance of duty test items T10, T30, T60, and rated SLF90 and 100%. In the tests of T100s and T100a, the gas output to the arc region can be improved.

도 1은 종래기술에 따른 단일 압축실형 가스 차단기를 보여주는 단면도
도 2는 본 발명의 일실시예에 따른 다중 압축실형 가스 차단기를 보여주는 단면도
1 is a cross-sectional view showing a single compressed chamber gas circuit breaker according to the prior art.
Figure 2 is a cross-sectional view showing a multiple compression chamber gas circuit breaker according to an embodiment of the present invention

이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세하게 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention.

첨부한 도 2는 본 발명의 일실시예에 따른 다중 압축실형 가스 차단기를 보여주는 단면도이다.2 is a cross-sectional view illustrating a multiple compression chamber gas circuit breaker according to an exemplary embodiment of the present invention.

본 발명은 조작기의 조작력을 증대시키지 않고 동일한 조작속도에서 압축실(54)의 가스압력을 증가시킴으로써 고장전류의 차단 성능을 향상시킬 수 있는 다중 압축실형 가스 차단기에 관한 것이다.The present invention relates to a multiple compression chamber type gas circuit breaker that can improve the breaking performance of the fault current by increasing the gas pressure of the compression chamber 54 at the same operation speed without increasing the operation force of the manipulator.

본 발명은 조작기의 조작력을 증대시키지 않고 동일한 조작속도에서 압축실(54)의 가스압력을 증가시키기 위해 기존의 가스 차단기에서 압축실(54)을 동심원 상으로 분할한다.The present invention divides the compression chamber 54 concentrically in a conventional gas circuit breaker to increase the gas pressure of the compression chamber 54 at the same operating speed without increasing the operating force of the manipulator.

예를 들어, 압축실(54)을 2개, 즉 제1 및 제2압축실(54a,54b)로 분할하는 경우에 제1압축실(54a)과 제2압축실(54b)은 구획벽(53)에 의해 동심원상으로 구획될 수 있다.For example, when the compression chamber 54 is divided into two, that is, the first and second compression chambers 54a and 54b, the first compression chamber 54a and the second compression chamber 54b are partition walls ( 53 may be partitioned concentrically.

이때, 제1압축실(54a)은 실린더로드(13)와 접하는 안쪽에 위치하고, 제2압축실(54b)은 가동부하우징(12)의 안쪽벽에 접하는 바깥쪽에 위치한다.At this time, the first compression chamber (54a) is located inside the contact with the cylinder rod 13, the second compression chamber (54b) is located outside the contact with the inner wall of the movable part housing (12).

상기 구획벽(53)은 분리벽(50)에서 피스톤(55) 방향으로 실린더로드(13)와 평행하게 연장되며, 압축실(54)이 원형인 경우 구획벽(53)이 원주방향을 따라 연속해서 형성될 수 있다.The partition wall 53 extends parallel to the cylinder rod 13 in the direction of the piston 55 from the separation wall 50, and the partition wall 53 is continuous along the circumferential direction when the compression chamber 54 is circular. Can be formed.

분리벽(50)의 반대쪽에 위치하는 구획벽(53)의 단부는 피스톤(55)을 관통하여 슬라이딩 가능하게 지지된다.An end portion of the partition wall 53, which is located opposite the separation wall 50, is slidably supported through the piston 55.

상기 구획벽(53)에 의해 구획된 제1압축실(54a)과 제2압축실(54b)은 서로 별개의 공간으로 이루어져서, 제1압축실(54a)의 가스와 제2압축실(54b)의 가스는 서로 섞이지 않는다.The first compression chamber 54a and the second compression chamber 54b partitioned by the partition wall 53 have separate spaces, so that the gas and the second compression chamber 54b of the first compression chamber 54a are separated. Gases do not mix with each other.

분리벽(50)은 제1압축실(54a)과 제2압축실(54b)을 열팽창실(15)과 각각 연통시키기 위해 반경방향으로 간격을 두고 제1 및 제2유체홀(51)을 가지며, 제1 및 제2유체홀(51)을 통해 제1 및 제2압축실(54a,54b)의 냉가스가 열팽창실(15)로 각각 유입될 수 있다.The separating wall 50 has first and second fluid holes 51 at radial intervals so as to communicate the first compression chamber 54a and the second compression chamber 54b with the thermal expansion chamber 15, respectively. The cold gas of the first and second compression chambers 54a and 54b may be introduced into the thermal expansion chamber 15 through the first and second fluid holes 51, respectively.

상기 제1 및 제2유체홀(51)을 각각 개폐하기 위해 제1 및 제2체크밸브(52)가 분리벽(50)에 설치되고, 제1 및 제2체크밸브(52)는 열팽창실(15)과 제1압축실(54a) 그리고 열팽창실(15)과 제2압축실(54b) 사이의 압력차이에 따라 별개로 작동한다.In order to open and close the first and second fluid holes 51, the first and second check valves 52 are installed in the separation wall 50, and the first and second check valves 52 are thermal expansion chambers ( 15) and the first compression chamber 54a and the pressure difference between the thermal expansion chamber 15 and the second compression chamber 54b.

또한, 피스톤(55)에 설치되는 감압밸브(56)도 체크밸브(52)처럼 압축실(54)의 분할 갯수와 동일하게 각각 설치될 수 있다.In addition, the pressure reducing valve 56 installed on the piston 55 may be installed in the same manner as the number of divisions of the compression chamber 54 like the check valve 52.

상기와 같이 압축실(54)은 2개로 분할할 수 있지만, 3개, 4개, ... 또는 n개 로도 분할 가능하다.As described above, the compression chamber 54 may be divided into two, but may be divided into three, four, ... or n.

여기서, 상기 구획벽(53)에 의해 분할된 압축실(54) 마다 체크밸브(52)와 감압밸브(56)를 설치하여 차단부의 동작을 원활하게 유지할 수 있다.Here, a check valve 52 and a pressure reducing valve 56 are provided for each compression chamber 54 divided by the partition wall 53 to smoothly maintain the operation of the blocking unit.

상기와 같은 구성에 의한 본 발명의 작용 및 효과를 설명하면 다음과 같다.Referring to the operation and effect of the present invention by the above configuration as follows.

압축실(54)이 분할됨에 따라 압축실(54)의 체적이 줄어들기 때문에 동일한 조작속도(조작력)로 차단기를 구동하는 경우 기존의 압축실(54)에 비해 체적이 줄어든 만큼 압축실(54)의 압력 상승을 유도할 수 있다.Since the volume of the compression chamber 54 is reduced as the compression chamber 54 is divided, when the breaker is driven at the same operation speed (operation force), the compression chamber 54 is reduced as much as compared to the conventional compression chamber 54. May lead to an increase in pressure.

예를 들면, 압축실(54)을 2개로 분할하여 이론적으로 2배의 압력상승을 얻고자 할 경우에 도 2에서 B의 크기(반경)는 다음 식에 의해 결정된다.For example, in the case where the compression chamber 54 is divided into two and theoretically wants to obtain a double pressure rise, the size (radius) of B in FIG. 2 is determined by the following equation.

식 1)

Figure 112011056524446-pat00001
Equation 1)
Figure 112011056524446-pat00001

이때, A는 가동부하우징(12)의 반지름이고, B는 구획벽(53)의 반지름이고, C는 실린더로드(13)의 반지름이다.At this time, A is the radius of the movable part housing 12, B is the radius of the partition wall 53, C is the radius of the cylinder rod (13).

차단기의 정격전압 증가로 절연거리를 확보하기 위해 압축실(54)의 길이를 증가시켜 차단기의 동작거리(스트로크)를 증가시켜야 하는 경우, 압축실(54)을 2, 3, 4개...로 분할함으로써 가스의 압력상승을 유도할 수 있다.If the operating distance (stroke) of the breaker must be increased by increasing the length of the compression chamber 54 to secure the insulation distance due to the increase of the breaker voltage, the compression chamber 54 is divided into 2, 3, 4 ... By dividing by, the pressure rise of the gas can be induced.

따라서, 본 발명에 의하면 압축실(54)의 체적 분할로 압축실(54)의 가스압력 상승을 유도하여 조작력을 증가시키지 않고 동일한 조작속도에서 압축실(54)의 가스 압력을 증가시킴으로써, 소전류 차단에서 아크를 높은 압력으로 차단 및 절연회복에 유리한 조건을 만들 수 있고, 대전류 차단에 있어서 열팽창실(15)에서 팽창된 가스를 보다 높은 압력으로 아크영역을 향해 미는 힘을 발생시켜 대전류 차단 성능도 향상시킬 수 있다.Therefore, according to the present invention, the small current is induced by increasing the gas pressure of the compression chamber 54 at the same operation speed without increasing the operating force by inducing the gas pressure rise of the compression chamber 54 by volume division of the compression chamber 54. It is possible to create a condition favorable for breaking the arc and recovering the insulation at high pressure in the breaking, and in the breaking of the high current, the force that pushes the gas expanded in the thermal expansion chamber 15 toward the arc area at a higher pressure is also generated. Can be improved.

또한, 압축실(54)을 2개 이상 분할하여 동일한 조작력으로 2배 이상의 압력 상승을 유도함으로써, 소전류 차단 성능과 책무(duty test) 항목 T10, T30, T60의 차단성능을 향상시키고, SLF90 및 100% 정격차단시험 T100s, T100a의 시험에서 아크영역으로의 가스 분출력을 향상시킬 수 있다.
In addition, by dividing two or more compression chambers 54 and inducing a pressure rise of two times or more with the same operating force, the small current breaking performance and duty test items T10, T30 and T60 are improved, and the SLF90 and 100% rated breaking test In the tests of T100s and T100a, the gas power output to the arc area can be improved.

10 : 고정아크접점 11 : 가동부
12 : 가동부하우징 13 : 실린더로드
15 : 열팽창실 16 : 압축실
19 : 제1노즐 20 : 가동아크접점
21 : 제2노즐 22 : 연결고리
50 : 분리벽 51 : 유체홀
52 : 체크밸브 53 : 구획벽
54 : 압축실 54a : 제1압축실
54b : 제2압축실 55 : 피스톤
56 : 감압밸브
10: fixed arc contact 11: moving part
12: movable part housing 13: cylinder rod
15: thermal expansion chamber 16: compression chamber
19: 1st nozzle 20: movable arc contact
21: Nozzle 2 22: Hook
50: separating wall 51: fluid hole
52 check valve 53 partition wall
54: compression chamber 54a: first compression chamber
54b: second compression chamber 55: piston
56: pressure reducing valve

Claims (3)

전력 계통에서 고장 전류 발생시 압축실(54)의 압축 가스를 아크 영역에 공급하여 고장 전류를 차단하는 가스 차단기에 있어서,
분리벽(50)에서 피스톤(55) 방향으로 실린더로드(13)와 평행하게 형성되어, 상기 압축실(54)을 동심원상으로 구획하는 구획벽(53)을 포함하고, 상기 구획벽(53)에 의한 압축실(54)의 분할로 압축실(54)의 가스 압축시 가스의 압력상승을 유도하며,
상기 구획된 압축실(54)마다 체크밸브(52)와 감압밸브(56)가 별개로 설치되는 것을 특징으로 하는 다중 압축실형 가스 차단기.
In the gas circuit breaker for supplying the compressed gas of the compression chamber 54 to the arc area when the fault current occurs in the power system to block the fault current,
A partition wall 53 formed parallel to the cylinder rod 13 in the direction of the piston 55 from the separation wall 50 to partition the compression chamber 54 concentrically; the partition wall 53 By dividing the compression chamber 54 by the induction of the pressure rise of the gas during gas compression of the compression chamber 54,
Multiple compression chamber-type gas circuit breaker, characterized in that the check valve 52 and the pressure reducing valve 56 is provided separately for each of the partitioned compression chamber (54).
삭제delete 청구항 1에 있어서,
상기 구획벽(53)은 압축실(54)의 분할 갯수에 비례하여 압력이 증가되도록 설치되는 것을 특징으로 하는 다중 압축실형 가스 차단기.

The method according to claim 1,
The partition wall (53) is a multiple compression chamber-type gas circuit breaker, characterized in that the pressure is installed in proportion to the number of division of the compression chamber (54).

KR1020110072658A 2011-07-21 2011-07-21 Multi-compress chamber type of gas circuit breaker KR101200252B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110072658A KR101200252B1 (en) 2011-07-21 2011-07-21 Multi-compress chamber type of gas circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110072658A KR101200252B1 (en) 2011-07-21 2011-07-21 Multi-compress chamber type of gas circuit breaker

Publications (1)

Publication Number Publication Date
KR101200252B1 true KR101200252B1 (en) 2012-11-09

Family

ID=47564471

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110072658A KR101200252B1 (en) 2011-07-21 2011-07-21 Multi-compress chamber type of gas circuit breaker

Country Status (1)

Country Link
KR (1) KR101200252B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101501636B1 (en) * 2013-12-13 2015-03-11 한국전기연구원 Hybrid-extinction type gas circuit breaker with check valve
KR20160129146A (en) * 2015-04-29 2016-11-09 한국전기연구원 Gas interrupter with multiple compression chamber
KR101983622B1 (en) * 2017-12-14 2019-05-29 일진전기 주식회사 Self-blast type gas circuit breaker
WO2019117618A1 (en) * 2017-12-14 2019-06-20 일진전기 주식회사 Puffer-type gas circuit breaker

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119344A (en) 2002-09-30 2004-04-15 Mitsubishi Electric Corp Gas blast circuit breaker
JP2009099499A (en) 2007-10-19 2009-05-07 Toshiba Corp Gas-blast circuit breaker
JP2010056023A (en) 2008-08-29 2010-03-11 Toshiba Corp Gas-blast circuit breaker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119344A (en) 2002-09-30 2004-04-15 Mitsubishi Electric Corp Gas blast circuit breaker
JP2009099499A (en) 2007-10-19 2009-05-07 Toshiba Corp Gas-blast circuit breaker
JP2010056023A (en) 2008-08-29 2010-03-11 Toshiba Corp Gas-blast circuit breaker

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101501636B1 (en) * 2013-12-13 2015-03-11 한국전기연구원 Hybrid-extinction type gas circuit breaker with check valve
KR20160129146A (en) * 2015-04-29 2016-11-09 한국전기연구원 Gas interrupter with multiple compression chamber
KR102393660B1 (en) * 2015-04-29 2022-05-03 한국전기연구원 Gas interrupter with multiple compression chamber
KR101983622B1 (en) * 2017-12-14 2019-05-29 일진전기 주식회사 Self-blast type gas circuit breaker
WO2019117620A1 (en) * 2017-12-14 2019-06-20 일진전기 주식회사 Self-blast type gas circuit breaker
WO2019117618A1 (en) * 2017-12-14 2019-06-20 일진전기 주식회사 Puffer-type gas circuit breaker

Similar Documents

Publication Publication Date Title
KR101496903B1 (en) Hybrid-extinction type gas circuit breaker
KR101200252B1 (en) Multi-compress chamber type of gas circuit breaker
EP3200214A1 (en) Gas insulated circuit breaker
JP6667370B2 (en) Gas circuit breaker
EP3764382A1 (en) Gas-insulated low- or medium-voltage load break switch
KR101701817B1 (en) Gas isolated circuit breaker
KR101501636B1 (en) Hybrid-extinction type gas circuit breaker with check valve
KR20060109072A (en) Hybrid type gas interrupter with an arc contact having a compressible cylinder
KR101550299B1 (en) Circuit breaker for GIS(Gas Insulated Switchgears)
KR101605142B1 (en) Gas isolated circuit breaker
KR101040592B1 (en) Hybrid extinction type gas circuit breaker
KR102393660B1 (en) Gas interrupter with multiple compression chamber
KR101095657B1 (en) Thermal chamber self-blast circuit breaker
KR101909015B1 (en) Gas insulated circuit breaker
KR101053351B1 (en) Gas Insulated Switchgear
KR101524800B1 (en) Auto-moving flow guide for gas circuit breaker
KR101386134B1 (en) Self-blast type gas circuit breaker with pressure controllable thermal chamber
KR20140141205A (en) The driving force of the high-pressure exhaust heat gas using gas-insulated circuit breaker
KR101386232B1 (en) Self blast type gas circuit breaker with auto-adjust exhausing hole
JP6564331B2 (en) Gas circuit breaker
CN112912983A (en) Gas circuit breaker
KR20160038265A (en) Self blast type gas circuit breaker with auto-adjust exhausting hole
KR102308825B1 (en) Gas Insulated Switchgear
KR102484701B1 (en) Self-blast type gas circuit breaker
JP2014072170A (en) Gas circuit breaker

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151006

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171016

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181030

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191030

Year of fee payment: 8