WO2019117617A1 - Gas circuit breaker - Google Patents

Gas circuit breaker Download PDF

Info

Publication number
WO2019117617A1
WO2019117617A1 PCT/KR2018/015758 KR2018015758W WO2019117617A1 WO 2019117617 A1 WO2019117617 A1 WO 2019117617A1 KR 2018015758 W KR2018015758 W KR 2018015758W WO 2019117617 A1 WO2019117617 A1 WO 2019117617A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
moving
cylinder
expansion chamber
piston
Prior art date
Application number
PCT/KR2018/015758
Other languages
French (fr)
Korean (ko)
Inventor
정호중
김명후
최병화
김경회
강민철
황동익
Original Assignee
일진전기 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진전기 주식회사 filed Critical 일진전기 주식회사
Publication of WO2019117617A1 publication Critical patent/WO2019117617A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7023Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/80Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid flow of arc-extinguishing fluid from a pressure source being controlled by a valve
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/91Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism the arc-extinguishing fluid being air or gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H2033/908Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism using valves for regulating communication between, e.g. arc space, hot volume, compression volume, surrounding volume

Definitions

  • the present invention relates to a gas barrier device, and more particularly, to a gas barrier device capable of improving a pressure increasing effect and a cooling performance.
  • a breaker In general, when a power system fails, a breaker is used to shut down the fault current and protect the power plant.
  • the principle for extinguishing an arc generated between two electrical contacts by a fault current is as follows.
  • SF6 (sulfur hexafluoride) gas is widely used as an insulating gas here, and it has a high dielectric breakdown strength because it has a chemically very stable molecular structure. Because of this characteristic, SF6 insulated gas is widely used as insulation medium of high-voltage equipment, and arc extinguishing arc discharge performance is excellent, and it is widely used as arc extinguishing medium of circuit breaker.
  • SF6 gas circuit breaker is used for fault current interruption and protection of power system equipment in case of failure in most ultra high voltage power system.
  • the gas circuit breaker includes two chambers such as a compression chamber and a thermal expansion chamber and uses a compression chamber and a thermal expansion chamber provided inside the circuit breaker to extinguish an arc caused by a fault current.
  • the compression chamber of the gas circuit breaker is used for the small current interruption
  • the thermal expansion chamber of the gas circuit breaker is used for the large current interruption
  • a gas shutoff apparatus comprises: a cylinder portion in which a compression chamber and an expansion chamber are formed; A moving part movably installed inside the cylinder part and partitioning the compression chamber and the expansion chamber; A fluid regulating unit that is openably and closably provided in the moving unit and regulates the flow of the fluid from the compression chamber to the expansion chamber; And a piston portion facing the moving portion and disposed inside the cylinder portion.
  • the fluid regulating section controls the fluid to flow only from the compression chamber to the expansion chamber side.
  • the present invention further includes a supporting wall portion connecting the inner wall portion of the cylinder portion and supporting the cylinder portion.
  • the support wall portion is disposed between the piston portion and the moving portion.
  • a pressing part which is coupled to the piston part and passes through the supporting wall part to press the moving part.
  • the piston portion is disposed between the supporting wall portion and the moving portion.
  • the inner wall of the cylinder portion is formed with a stopper portion protruding from the moving path of the moving portion so as to restrict movement of the moving portion toward the piston portion.
  • the gas shielding device has an effect that the pressure of the fluid in the expansion chamber is further raised because the movable portion is provided movably inside the cylinder portion.
  • the moving part is moved inside the cylinder part and the cooling performance is improved by mixing with the high temperature heat gas flowing into the expansion chamber by the pressure rise of the fluid in the expansion chamber.
  • the support wall portion connects the inner wall portion of the cylinder portion, the bearing force of the cylinder portion moving relative to the piston portion is improved.
  • the pressing portion pressurizes the moving portion and further increases the fluid pressure inside the expansion chamber.
  • FIG. 1 is a side sectional view showing a gas barrier device according to an embodiment of the present invention.
  • FIG. 2 is a side cross-sectional view showing a state in which the fluid regulating portion is opened according to an embodiment of the present invention.
  • FIG 3 is a side cross-sectional view illustrating a state in which the pressing portion presses the moving portion according to the embodiment of the present invention.
  • FIG. 4 is a side cross-sectional view illustrating a gas barrier device according to another embodiment of the present invention.
  • FIG 5 is a side cross-sectional view showing a state in which the fluid regulating portion is opened in the gas barrier device according to another embodiment of the present invention.
  • FIG. 6 is a side cross-sectional view showing a state in which the piston portion presses the moving portion in the gas barrier device according to another embodiment of the present invention.
  • 1 is a side sectional view showing a gas barrier device according to an embodiment of the present invention.
  • 2 is a side cross-sectional view showing a state in which the fluid regulating portion is opened according to an embodiment of the present invention.
  • 3 is a side cross-sectional view illustrating a state in which the pressing portion presses the moving portion according to the embodiment of the present invention.
  • a gas barrier device 1 includes a cylinder part 100, a moving part 200, a fluid regulating part 300, a piston part 400, A wall portion 500, and a pressing portion 600.
  • the gas barrier device 1 has a symmetrical structure with the X axis as a rotation center axis, and the configuration of one side (lower reference in FIG. 1) (The upper side in Fig. 1) with respect to the axis, so the drawing is omitted in the overlapping range.
  • a compression chamber 110 and an expansion chamber 150 are formed in a cylinder portion 100 according to an embodiment of the present invention.
  • a supporting wall portion 500 to be described later is fixedly positioned on the inner side surface of the cylinder portion 100.
  • a piston unit 400 to be described later is disposed inside the cylinder unit 100.
  • the position of the piston 400 is fixed, and the cylinder 100 moves in the left and right directions (refer to FIG. 1).
  • the compression chamber 110 formed in the cylinder part 100 includes a piston part 400, an inner wall part 101 of the opposing cylinder part 100, a moving part 200, Is formed in a space shape by the wall portion (500).
  • the movable arc contact 20 is coupled to the cylinder portion 100 and connected to the front end (reference left side) side of the fixed arc contact 10 through the front end (reference right side) .
  • connection and support structure on the rear end side of the fixed arc contact 10 the moving structure of the cylinder part 100, and the movement method are the same as those of the conventional gas shutoff device, and thus a detailed description thereof will be omitted.
  • the inflating chamber 150 includes a high-temperature fluid G generated between a gap, specifically between a fixed arc contact 10 and a movable arc contact 20, Respectively.
  • the high temperature fluid G generated between the fixed arc contact 10 and the movable arc contact 20 and the fluid control part 300 in the compression chamber 110 Is mixed with the fluid G to cool the high temperature fluid (G).
  • a moving part 200 according to an embodiment of the present invention is installed movably inside a cylinder part 100 and includes a compression chamber 110 and an expansion chamber 150 It divides.
  • the compression chamber 110 is formed on the left side of the moving part 200 (refer to FIG. 1) inside the cylinder part 100 due to the moving part 200 according to the embodiment of the present invention,
  • the expanding chamber 150 is formed on the right side (refer to FIG. 1).
  • the fluid G is filled in the compression chamber 110 and the expansion chamber 150 according to an embodiment of the present invention.
  • the fluid G may be formed of SF6 gas as an insulation gas.
  • the moving part 200 is installed inside the cylinder part 100 and contacts the inner wall part 101 of the cylinder part 100 facing the cylinder part 100.
  • the compression chamber 110 and the expansion chamber 150 are thereby partitioned ,
  • the piston (400) compresses the fluid (G) in the compression chamber (110) and the pressure is increased.
  • the moving part 200 moves the piston part 400 by the pressure of the fluid G in the compression chamber 110 after a predetermined time after the fluid G in the compression chamber 110 is compressed by the piston part 400. [ (Left to right in FIG. 1).
  • the piston 400 continuously pressurizes the fluid G in the compression chamber 110 and pressurizes the fluid G flowing into the expansion chamber 150 from the compression chamber 110 through the fluid regulator 300, ) Can be further increased.
  • the high-pressure fluid G flows into the inflating chamber 150 (G) having an increased temperature due to an arc generated when the stationary arc contact 10 and the movable arc contact 20 are separated from each other.
  • the cooling performance is improved.
  • a fluid regulating unit 300 to be described later is installed in the moving unit 200 according to an embodiment of the present invention.
  • the fluid regulating part 300 according to an embodiment of the present invention is installed in the moving part 200 so as to be openable and closable.
  • the fluid regulating part 300 moves from the compression chamber 110 to the expansion chamber 150
  • the flow of the fluid G is controlled.
  • the fluid regulator 300 controls the flow of the fluid G such that the fluid G flows only from the compression chamber 110 to the expansion chamber 150 side (from the left to the right in FIG. 2) do.
  • the fluid regulator 300 When the pressure of the fluid G in the compression chamber 110 reaches the set value and the pressure inside the compression chamber 110 becomes larger than the pressure of the expansion chamber 150, the fluid regulator 300 is opened The fluid G flows from the compression chamber 110 toward the expansion chamber 150 side.
  • the opening and closing of the fluid regulating unit 300 is controlled according to the pressure value of the fluid G in the compression chamber 110.
  • the present invention is not limited thereto, and the fluid regulating unit 300 may be opened Various modifications are possible.
  • the fluid regulator 300 may be formed in a valve manner.
  • the fluid regulating unit 300 may be formed of a pressure reducing valve and a relief valve.
  • a configuration in which the fluid regulating unit 300 is opened and closed when the set pressure value is reached by the elastic restoring force of the elastic member such as a spring is a general driving method of the relief valve, and a detailed description thereof will be omitted.
  • the piston 400 according to an embodiment of the present invention is disposed inside the cylinder 100 facing the moving part 200.
  • the piston portion 400 is disposed in the compression chamber 110, and is fixed at one side (left side in FIG. 1) of the cylinder portion 100.
  • the compression chamber 110 formed in the cylinder 100 may include the cylinder portion 100 and specifically the inner wall portion 101 of the opposing cylinder portion 100, the moving portion 200, the piston portion 400 As shown in FIG.
  • the support wall part 500 connects the inner wall part 101 of the cylinder part 100 and supports the cylinder part 100.
  • the supporting wall part 500 according to the embodiment of the present invention is disposed between the piston part 400 and the moving part 200, and the supporting wall part 500 has a pressing part
  • the through hole portion 510 is formed so that the through hole portion 600 is penetrated.
  • the pressing portion 600 is in contact with the moving portion 200 through the through hole portion 510 formed in the supporting wall portion 500, and the piston portion 400 and the piston portion 400 are coupled to each other.
  • the compressing unit 600 compresses the expansion chamber 150 by pressing the moving unit 200 continuously.
  • the volume of the expansion chamber 150 is reduced and the pressure of the fluid G in the expansion chamber 150 is increased so that the high pressure fluid G passes through the nozzle unit 30 and flows into the fixed arc contact 10 Flows into the movable arc contact 20 so that the arc generated between the stationary arc contact 10 and the movable arc contact 20 is extinguished.
  • the high pressure fluid G is introduced into the expansion chamber 150 through the fluid regulator 300 in the compression chamber 110 and the expansion chamber 150 is continuously compressed and expanded through the nozzle unit 30 150) and the cooling performance is improved.
  • the pressing portion 600 is formed as a fixed member extending from the piston portion 400 toward the moving portion 200 side and fixed in shape, but is not limited thereto and may be formed of an elastic member such as a spring, 400 are elastically deformed and the length thereof is adjusted as the moving part 200 is pressed.
  • the pressurizing unit 600 is separated from the moving unit 200, but is not limited thereto.
  • the pressurizing unit 600 and the moving unit 200 are connected to each other and interlocked with the movement of the pressing unit 600 It is possible to carry out various modifications such as being moved together.
  • the fixed arc contact 10 and the movable arc contact 20 are separated, and at the same time an arc is generated between the fixed arc contact 10 and the movable arc contact 20.
  • the fluid regulator 300 coupled to the moving part 200 is opened The fluid G is injected between the stationary arc contact 10 and the movable arc contact 20 through the expansion chamber 150 and the nozzle unit 30 through the fluid regulating unit 300.
  • the fluid regulating unit 300 controls the fluid G to flow only from the compression chamber 110 to the expansion chamber 150 side (left to right in FIG. 1), the high-pressure fluid G passes through the expansion chamber 150 and the nozzle unit 30 so that the arc generated between the fixed arc contact 10 and the movable arc contact 20 can be extinguished.
  • the fluid G flowing into the expansion chamber 150 from the compression chamber 110 through the fluid regulator 300 is discharged by the arc generated between the fixed arc contact 10 and the movable arc contact 20 (G) that is heated and mixed with the high temperature fluid (G) flowing into the expansion chamber (150) through the nozzle part (30) There is an effect of cooling the fluid (G).
  • the piston part 400 is brought into contact with the supporting wall part 500 and the pressing part 600 Passes through the through hole 510 formed in the support wall part 500 and presses the moving part 200 so that the volume of the expansion chamber 150 is reduced.
  • the volume of the expansion chamber 150 is reduced and the pressure of the fluid G in the expansion chamber 150 is raised.
  • the pressure of the fluid G in the expansion chamber 150 is raised and the fluid G in the high pressure is discharged from the high temperature fluid G flowing into the expansion chamber 150, , It is mixed with the heat gas and the cooling performance is improved.
  • the pressure of the fluid G such as the insulating gas can be further increased as compared with the case where the position of the moving part 200 is fixed and the high pressure fluid G can be supplied to the fixed arc contact 10 through the nozzle part 30.
  • the movable arc contact 20 so that the arc generated between the stationary arc contact 10 and the movable arc contact 20 is extinguished and the arc performance is improved.
  • the supporting wall portion 500 includes a piston portion 400 which is fixed by the connection of the facing inner wall portion 101 of the cylinder portion 100, a piston portion 400 fixed to the fixed arc contact 10 There is an effect of supporting the cylinder part 100 being moved.
  • FIG. 4 is a side cross-sectional view illustrating a gas barrier device according to another embodiment of the present invention.
  • 5 is a side cross-sectional view showing a state in which the fluid regulating portion is opened in the gas barrier device according to another embodiment of the present invention.
  • 6 is a side cross-sectional view showing a state in which the piston portion presses the moving portion in the gas barrier device according to another embodiment of the present invention.
  • the gas barrier device according to the present invention has a symmetrical structure with the X axis as a rotation center axis, and the configuration of one side (reference lower side in FIG. 1) with respect to the X axis is the other side Reference upper side), so that the drawings are omitted in the overlapping range.
  • a gas barrier device 1 according to another embodiment of the present invention includes a cylinder part 100, a moving part 200, a fluid control part 300, a piston part 400, And a supporting wall portion 500.
  • the supporting wall portion 500 according to another embodiment of the present invention is configured such that when the piston portion 400 is moved forward (toward the reference right side in FIG. 4) of the moving portion 200 of the piston portion 400, (Left side in Fig. 4). That is, the piston part 400 is disposed between the supporting wall part 500 and the moving part 200.
  • the piston unit 400 is directly contacted with the moving unit 200 when the cylinder unit 100 moves relative to the piston unit 400 fixed to the inside of the cylinder unit 100 in the event of a failure in the power system
  • the moving part 200 is pressed.
  • the piston 400 and the moving part 200 are in contact with each other, and the moving part 200 is formed by the moving part 200 because the moving part 200 is movably installed inside the cylinder part 100
  • the volume of the expansion chamber 150 is reduced and the pressure of the fluid G in the expansion chamber 150 is increased.
  • the fluid G in the expansion chamber 150 is further raised so that the high pressure fluid G flows through the expansion chamber 150 and the nozzle unit 30 to the fixed arc contact 10 and the movable arc contact 20, So that the arc generated between the fixed arc contact 10 and the movable arc contact 20 is extinguished.
  • the moving part 200 is movably installed inside the cylinder part 100, the pressure rising effect and the high temperature generated between the fixed arc contact 10 and the movable arc contact 20 and flowing into the expansion chamber 150 (G), that is, the heat gas, and the cooling performance is improved.
  • a stopper portion 105 is formed on the inner wall portion 101 of the cylinder portion 100, specifically the inner side wall portion 101 (lower reference in FIG. 4) of the cylinder portion 100, do.
  • the stopper portion 105 is formed on the inner side wall portion 101 of the cylinder portion 100 but is not limited thereto and may be formed on the outer side inner wall portion 101 of the cylinder portion 100 And the like.
  • the distance between the moving part 200 and the piston part 400 within the cylinder part 100 can be ensured to be equal to or greater than the set interval by the stopper part 105. [ Therefore, even if the moving part 200 moves to the piston part 400, the moving part 200 is blocked by the stopper part 105 when the stopper part 105 is formed. The gap between the moving part 200 and the piston part 400 is not narrowed within the set distance by the stopper part 105. [
  • the stopper portion 105 is formed in a stepped shape on the inner wall portion 101 of the cylinder portion 100.
  • the present invention is not limited to this, but may be implemented in various ways, such as a switch type in which it is protruded or inserted from the inner wall portion 101 of the cylinder portion 100 according to a predetermined point of time.
  • the gas barrier device 1 is characterized in that the support wall portion 500 is disposed on the rear side (left side in FIG. 4) of the piston portion 400 and the inner wall portion 101 of the cylinder portion 100, Except that the stopper portion 105 is protruded from the support wall portion 500 and the through hole portion 510 formed in the pressing portion 600 and the support wall portion 500 is not required.
  • the operation principle and effects of the first embodiment are the same, so that the description thereof will be omitted in the overlapping range.

Landscapes

  • Circuit Breakers (AREA)

Abstract

A gas circuit breaker according to the present invention comprises: a cylinder part having a compression chamber and an expansion chamber; a moving part provided so as to be movable inside the cylinder part and dividing the compression chamber and the expansion chamber; a fluid regulating part provided at the moving part so as to be openable and closable and regulating the flow of fluid from the compression chamber toward the expansion chamber; and a piston part facing the moving part and disposed inside the cylinder part.

Description

가스 차단장치Gas shutoff device
본 발명은 가스 차단장치에 관한 것으로, 보다 상세하게는 압력 상승 효과 및 냉각 성능이 향상될 수 있는 가스 차단장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas barrier device, and more particularly, to a gas barrier device capable of improving a pressure increasing effect and a cooling performance.
일반적으로 전력 계통에 고장이 발생할 경우, 고장 전류를 차단하고 전력 설비를 보호하기 위하여 차단기(CIRCUIT BREAKER)가 사용된다. 초고전압 차단기에서 고장 전류에 의해 두 전기접점 간에 발생하는 아크를 소호하기 위한 원리는 다음과 같다.In general, when a power system fails, a breaker is used to shut down the fault current and protect the power plant. In an ultra high voltage circuit breaker, the principle for extinguishing an arc generated between two electrical contacts by a fault current is as follows.
절연 가스를 차단기 내에 고압으로 충진한 상태에서 고장 전류에 의한 아크가 발생하면, 절연 가스를 매우 높은 압력으로 압축하여 아크에 직접 분사함으로써 아크를 소호한다.When an arc occurs due to a fault current in the state where the insulated gas is filled with high pressure in the breaker, the arc is extinguished by directly injecting the insulated gas into the arc by compressing it to a very high pressure.
여기서 절연 가스로는 SF6(육불화황) 가스가 널리 사용되고 있으며, 이는 화학적으로 매우 안정된 분자 구조를 가지기 때문에 높은 절연 파괴 강도를 가진다. 이러한 특성 때문에 SF6 절연 가스는 고전압 설비의 절연 매체로 널리 사용되고 있고, 또한 아크 방전을 소멸시키는 아크 소호 성능이 우수하여 차단기의 아크 소호 매질로 널리 사용되고 있다.SF6 (sulfur hexafluoride) gas is widely used as an insulating gas here, and it has a high dielectric breakdown strength because it has a chemically very stable molecular structure. Because of this characteristic, SF6 insulated gas is widely used as insulation medium of high-voltage equipment, and arc extinguishing arc discharge performance is excellent, and it is widely used as arc extinguishing medium of circuit breaker.
대부분의 초고전압 전력 계통에서 고장이 발생되는 경우 고장 전류 차단 및 전력 계통 설비 보호를 위하여 SF6 가스 차단기(GAS CIRCUIT BREAKER)가 사용되고 있으며, 초고전압 차단기에서 아크를 소호하는 방식에 따라 퍼퍼 방식(PUFFER TYPE)과 복합 소호 방식(SELF-BLAST TYPE)으로 나뉜다.SF6 gas circuit breaker is used for fault current interruption and protection of power system equipment in case of failure in most ultra high voltage power system. PUFFER TYPE And SELF-BLAST TYPE.
특히 가스 차단기는 보통 압축실(COMPRESSION CHAMBER)과 열팽창실(THERMAL CHAMBER) 등 2개의 챔버(CHAMBER)를 포함하고, 고장 전류에 의한 아크를 소호하기 위하여 차단기 내부에 설치된 압축실 및 열팽창실을 이용한다. Particularly, the gas circuit breaker includes two chambers such as a compression chamber and a thermal expansion chamber and uses a compression chamber and a thermal expansion chamber provided inside the circuit breaker to extinguish an arc caused by a fault current.
통상적으로 가스 차단기의 압축실은 소전류 차단에 이용되고, 가스 차단기의 열팽창실은 대전류 차단에 이용된다. Generally, the compression chamber of the gas circuit breaker is used for the small current interruption, and the thermal expansion chamber of the gas circuit breaker is used for the large current interruption.
종래 압축실과 열팽창실을 구획하는 분리벽이 위치 고정되고 팽창실의 체적이 일정하여 아크 소호를 위한 압력 상승에 한계가 있는 문제점이 있었다.There has been a problem that the separation wall separating the compression chamber and the thermal expansion chamber is fixed and the volume of the expansion chamber is constant and there is a limit to increase of pressure for arc extinguishing.
본 발명의 배경기술은 대한민국 등록특허공보 제10-1701818호(2017.01.25 등록, 발명의 명칭: 복합 소호형 가스차단기)에 개시되어 있다. BACKGROUND ART [0002] The background art of the present invention is disclosed in Korean Patent Registration No. 10-1701818 (Registered on Jul. 201, 201, entitled "Composite Loop Type Gas Circuit Breaker").
본 발명은 상기와 같은 문제점을 개선하기 위해 안출된 것으로, 이동부가 실린더부의 내측에서 이동가능하게 설치되어 압력 상승 효과 및 냉각 성능이 향상될 수 있는 가스 차단장치를 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a gas shielding device in which a moving part is movably installed inside a cylinder part so that a pressure rising effect and a cooling performance can be improved.
본 발명에 따른 가스 차단장치는: 압축실과 팽창실이 형성되는 실린더부; 상기 실린더부의 내측에서 이동가능하게 설치되고, 상기 압축실과 상기 팽창실을 구획하는 이동부; 상기 이동부에 개폐가능하게 설치되고, 상기 압축실에서 상기 팽창실로의 유체의 흐름을 조절하는 유체조절부; 및 상기 이동부와 마주보며 상기 실린더부의 내측에 배치되는 피스톤부;를 포함하는 것을 특징으로 한다.A gas shutoff apparatus according to the present invention comprises: a cylinder portion in which a compression chamber and an expansion chamber are formed; A moving part movably installed inside the cylinder part and partitioning the compression chamber and the expansion chamber; A fluid regulating unit that is openably and closably provided in the moving unit and regulates the flow of the fluid from the compression chamber to the expansion chamber; And a piston portion facing the moving portion and disposed inside the cylinder portion.
본 발명에서, 상기 유체조절부는 유체가 상기 압축실에서 상기 팽창실 측으로만 유동되도록 제어하는 것을 특징으로 한다.In the present invention, the fluid regulating section controls the fluid to flow only from the compression chamber to the expansion chamber side.
본 발명에서, 상기 실린더부의 내벽부를 연결하며 상기 실린더부를 지지하는 지지벽부;를 더 포함하는 것을 특징으로 한다.The present invention further includes a supporting wall portion connecting the inner wall portion of the cylinder portion and supporting the cylinder portion.
본 발명에서, 상기 지지벽부는, 상기 피스톤부와 상기 이동부 사이에 배치되는 것을 특징으로 한다.In the present invention, the support wall portion is disposed between the piston portion and the moving portion.
본 발명에서, 상기 피스톤부에 결합되고, 상기 지지벽부를 통과하여 상기 이동부를 가압하는 가압부;를 더 포함하는 것을 특징으로 한다.According to the present invention, there is further provided a pressing part which is coupled to the piston part and passes through the supporting wall part to press the moving part.
본 발명에서, 상기 피스톤부는, 상기 지지벽부와 상기 이동부 사이에 배치되는 것을 특징으로 한다.In the present invention, the piston portion is disposed between the supporting wall portion and the moving portion.
본 발명에서, 상기 실린더부의 내벽부에는 상기 이동부가 상기 피스톤부 측으로 이동되는 것을 제한하도록 상기 이동부의 이동 경로 상에 스토퍼부가 돌출 형성되는 것을 특징으로 한다.In the present invention, the inner wall of the cylinder portion is formed with a stopper portion protruding from the moving path of the moving portion so as to restrict movement of the moving portion toward the piston portion.
본 발명에 따른 가스 차단장치는, 이동부가 실린더부의 내측에서 이동가능하게 설치됨으로 인하여 팽창실 내 유체의 압력이 더욱 상승되는 효과가 있다.The gas shielding device according to the present invention has an effect that the pressure of the fluid in the expansion chamber is further raised because the movable portion is provided movably inside the cylinder portion.
또한, 이동부가 실린더부의 내측에서 이동되며 팽창실의 유체의 압력 상승으로 팽창실로 유입되는 고온의 열가스와의 혼합을 통한 냉각 성능이 향상되는 효과가 있다.Further, the moving part is moved inside the cylinder part and the cooling performance is improved by mixing with the high temperature heat gas flowing into the expansion chamber by the pressure rise of the fluid in the expansion chamber.
또한, 지지벽부가 실린더부의 내벽부를 연결함으로 인하여 피스톤부에 대하여 상대 이동하는 실린더부의 지지력이 향상되는 효과가 있다. Further, since the support wall portion connects the inner wall portion of the cylinder portion, the bearing force of the cylinder portion moving relative to the piston portion is improved.
또한, 가압부로 인하여 이동부를 가압하며 팽창실 내부의 유체 압력을 더욱 상승시키는 효과가 있다.Further, the pressing portion pressurizes the moving portion and further increases the fluid pressure inside the expansion chamber.
또한, 스토퍼부로 인하여 피스톤부 측으로 이동되는 이동부의 이동 거리를 제한하는 효과가 있다.In addition, there is an effect of restricting the moving distance of the moving part moved toward the piston part due to the stopper part.
도 1은 본 발명의 일 실시예에 따른 가스 차단장치를 도시한 측단면도이다. 1 is a side sectional view showing a gas barrier device according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 유체조절부가 개방된 상태를 도시한 측단면도이다.2 is a side cross-sectional view showing a state in which the fluid regulating portion is opened according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 가압부가 이동부를 가압하는 상태를 도시한 측단면도이다.3 is a side cross-sectional view illustrating a state in which the pressing portion presses the moving portion according to the embodiment of the present invention.
도 4는 본 발명의 다른 실시예에 따른 가스 차단장치를 도시한 측단면도이다. 4 is a side cross-sectional view illustrating a gas barrier device according to another embodiment of the present invention.
도 5는 본 발명의 다른 실시예에 따른 가스 차단장치에서 유체조절부가 개방된 상태를 도시한 측단면도이다.5 is a side cross-sectional view showing a state in which the fluid regulating portion is opened in the gas barrier device according to another embodiment of the present invention.
도 6은 본 발명의 다른 실시예에 따른 가스 차단장치에서 피스톤부가 이동부를 가압하는 상태를 도시한 측단면도이다. 6 is a side cross-sectional view showing a state in which the piston portion presses the moving portion in the gas barrier device according to another embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명에 따른 가스 차단장치의 실시예들을 설명한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다.Hereinafter, embodiments of a gas barrier device according to the present invention will be described with reference to the accompanying drawings. In this process, the thicknesses of the lines and the sizes of the components shown in the drawings may be exaggerated for clarity and convenience of explanation.
또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In addition, the terms described below are defined in consideration of the functions of the present invention, which may vary depending on the intention or custom of the user, the operator. Therefore, definitions of these terms should be made based on the contents throughout this specification.
도 1은 본 발명의 일 실시예에 따른 가스 차단장치를 도시한 측단면도이다. 도 2는 본 발명의 일 실시예에 따른 유체조절부가 개방된 상태를 도시한 측단면도이다. 도 3은 본 발명의 일 실시예에 따른 가압부가 이동부를 가압하는 상태를 도시한 측단면도이다. 1 is a side sectional view showing a gas barrier device according to an embodiment of the present invention. 2 is a side cross-sectional view showing a state in which the fluid regulating portion is opened according to an embodiment of the present invention. 3 is a side cross-sectional view illustrating a state in which the pressing portion presses the moving portion according to the embodiment of the present invention.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 가스 차단장치(1)는 실린더부(100), 이동부(200), 유체조절부(300), 피스톤부(400), 지지벽부(500), 가압부(600)를 포함한다.1 to 3, a gas barrier device 1 according to an embodiment of the present invention includes a cylinder part 100, a moving part 200, a fluid regulating part 300, a piston part 400, A wall portion 500, and a pressing portion 600.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에서 가스 차단장치(1)는 X축을 회전 중심축으로 하여 대칭구조를 이루며, X축을 기준으로 일측(도 1 기준 하측)의 구성은 X축을 기준으로 타측(도 1 기준 상측)의 구성과 동일하므로 이와 중복되는 범위에서 도면을 생략한다.1 to 3, in an embodiment of the present invention, the gas barrier device 1 has a symmetrical structure with the X axis as a rotation center axis, and the configuration of one side (lower reference in FIG. 1) (The upper side in Fig. 1) with respect to the axis, so the drawing is omitted in the overlapping range.
도 1을 참조하면, 본 발명의 일 실시예에 따른 실린더부(100)에는 압축실(110)과 팽창실(150)이 형성된다. 실린더부(100)의 내측면에는 뒤에 설명할 지지벽부(500)가 위치 고정되며 결합된다. Referring to FIG. 1, a compression chamber 110 and an expansion chamber 150 are formed in a cylinder portion 100 according to an embodiment of the present invention. A supporting wall portion 500 to be described later is fixedly positioned on the inner side surface of the cylinder portion 100.
도 1 내지 도 3을 참조하면, 실린더부(100)의 내부에는 뒤에 설명할 피스톤부(400)가 배치된다. 피스톤부(400)는 위치가 고정되고, 실린더부(100)가 좌우(도 1 기준) 방향으로 이동한다.Referring to FIGS. 1 to 3, a piston unit 400 to be described later is disposed inside the cylinder unit 100. The position of the piston 400 is fixed, and the cylinder 100 moves in the left and right directions (refer to FIG. 1).
이로 인하여 피스톤부(400)와 이동부(200)의 거리가 가까워지면 압축실(110)의 내부에 있는 유체(G), 구체적으로 SF6 등의 절연 가스의 압력이 상승되고, 설정 압력 값에 도달되면 유체(G)가 압축실(110)에서 뒤에 설명할 유체조절부(300)를 통해 팽창실(150)로 유동된다.As a result, when the distance between the piston 400 and the moving part 200 is shortened, the pressure of the fluid G in the compression chamber 110, specifically, the insulation gas such as SF6 is increased, The fluid G flows into the expansion chamber 150 through the fluid regulator 300, which will be described later, in the compression chamber 110.
도 1 내지 도 3을 참조하면, 실린더부(100)에 형성되는 압축실(110)은 피스톤부(400), 마주보는 실린더부(100)의 내벽부(101) 그리고 이동부(200) 또는 지지벽부(500)에 의해 공간 형태로 형성된다.1 to 3, the compression chamber 110 formed in the cylinder part 100 includes a piston part 400, an inner wall part 101 of the opposing cylinder part 100, a moving part 200, Is formed in a space shape by the wall portion (500).
본 발명의 일 실시예에 따른 가동 아크 접점(20)은 실린더부(100)에 결합되고, 선단(도 1 기준 우측) 측을 통해 고정 아크 접점(10)의 선단(도 1 기준 좌측) 측과 연결된다. The movable arc contact 20 according to an embodiment of the present invention is coupled to the cylinder portion 100 and connected to the front end (reference left side) side of the fixed arc contact 10 through the front end (reference right side) .
본 명세서에서 고정 아크 접점(10)의 후단 측 연결 및 지지구조, 실린더부(100)의 이동 구조 및 이동 방식 등은 종래의 가스 차단장치와 동일하므로 그 구체적인 설명은 생략하기로 한다.In this specification, the connection and support structure on the rear end side of the fixed arc contact 10, the moving structure of the cylinder part 100, and the movement method are the same as those of the conventional gas shutoff device, and thus a detailed description thereof will be omitted.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 팽창실(150)에는 극간, 구체적으로 고정 아크 접점(10), 가동 아크 접점(20) 사이에서 발생하는 고온의 유체(G)가 유입된다. 1 to 3, the inflating chamber 150 according to an embodiment of the present invention includes a high-temperature fluid G generated between a gap, specifically between a fixed arc contact 10 and a movable arc contact 20, Respectively.
본 발명의 일 실시예에 따른 팽창실(150)에서는 고정 아크 접점(10), 가동 아크 접점(20) 사이에서 발생하는 고온의 유체(G)와 압축실(110)에서 유체조절부(300)를 통해 유입되는 유체(G)가 혼합되며, 고온의 유체(G)를 냉각시킨다.In the expansion chamber 150 according to an embodiment of the present invention, the high temperature fluid G generated between the fixed arc contact 10 and the movable arc contact 20 and the fluid control part 300 in the compression chamber 110, Is mixed with the fluid G to cool the high temperature fluid (G).
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 이동부(200)는 실린더부(100)의 내측에서 이동가능하게 설치되는 것으로, 압축실(110)과 팽창실(150)을 구획한다.1 to 3, a moving part 200 according to an embodiment of the present invention is installed movably inside a cylinder part 100 and includes a compression chamber 110 and an expansion chamber 150 It divides.
본 발명의 일 실시예에 따른 이동부(200)로 인하여 실린더부(100)의 내부에서 이동부(200)의 좌측(도 1 기준)에는 압축실(110)이 형성되고, 이동부(200)의 우측(도 1 기준)에는 팽창실(150)이 형성된다.The compression chamber 110 is formed on the left side of the moving part 200 (refer to FIG. 1) inside the cylinder part 100 due to the moving part 200 according to the embodiment of the present invention, The expanding chamber 150 is formed on the right side (refer to FIG. 1).
본 발명의 일 실시예에 따른 압축실(110)과 팽창실(150)의 내부에는 유체(G)가 채워지며, 구체적으로 유체(G)는 절연 가스로서 SF6 가스로 형성될 수 있다.The fluid G is filled in the compression chamber 110 and the expansion chamber 150 according to an embodiment of the present invention. Specifically, the fluid G may be formed of SF6 gas as an insulation gas.
이동부(200)는 실린더부(100)의 내부에 설치되고, 실린더부(100)의 마주보는 내벽부(101)와 접촉되고, 이로 인하여 압축실(110)과 팽창실(150)이 구획되며, 피스톤부(400)에 의해 압축실(110) 내의 유체(G)가 압축되며 압력이 상승되는 효과가 있다.The moving part 200 is installed inside the cylinder part 100 and contacts the inner wall part 101 of the cylinder part 100 facing the cylinder part 100. The compression chamber 110 and the expansion chamber 150 are thereby partitioned , The piston (400) compresses the fluid (G) in the compression chamber (110) and the pressure is increased.
이동부(200)는 압축실(110) 내부의 유체(G)가 피스톤부(400)에 의해 압축되다가 소정 시점 이후에는 압축실(110) 내부의 유체(G) 압력에 의해 피스톤부(400)에서 이격되는 방향(도 1 기준 좌측에서 우측)으로 이동된다. The moving part 200 moves the piston part 400 by the pressure of the fluid G in the compression chamber 110 after a predetermined time after the fluid G in the compression chamber 110 is compressed by the piston part 400. [ (Left to right in FIG. 1).
이로 인하여 피스톤부(400)가 압축실(110) 내부의 유체(G)를 계속하여 가압하고, 유체조절부(300)를 통해 압축실(110)에서 팽창실(150)로 유입되는 유체(G)의 압력을 더욱 상승시킬 수 있는 효과가 있다. The piston 400 continuously pressurizes the fluid G in the compression chamber 110 and pressurizes the fluid G flowing into the expansion chamber 150 from the compression chamber 110 through the fluid regulator 300, ) Can be further increased.
이에 더하여 유체조절부(300)를 통해 이동부(200)가 위치 고정되는 것에 비하여 유체(G)의 압력이 더 상승됨으로 인하여 고압의 유체(G)가 팽창실(150)로 유입되는 유체(G), 구체적으로 고정 아크 접점(10)과 가동 아크 접점(20)의 분리 시 발생되는 아크에 의해 온도가 상승된 고온의 유체(G)와 혼합되며 냉각 성능이 향상되는 효과가 있다.In addition, since the pressure of the fluid G is further elevated compared to the position where the moving part 200 is fixed through the fluid regulating part 300, the high-pressure fluid G flows into the inflating chamber 150 (G) having an increased temperature due to an arc generated when the stationary arc contact 10 and the movable arc contact 20 are separated from each other. Thus, the cooling performance is improved.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 이동부(200)에는 뒤에 설명할 유체조절부(300)가 설치된다. Referring to FIGS. 1 to 3, a fluid regulating unit 300 to be described later is installed in the moving unit 200 according to an embodiment of the present invention.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 유체조절부(300)는 이동부(200)에 개폐가능하게 설치되는 것으로, 압축실(110)에서 팽창실(150)로 유동되는 유체(G)의 흐름을 조절한다. 1 to 3, the fluid regulating part 300 according to an embodiment of the present invention is installed in the moving part 200 so as to be openable and closable. The fluid regulating part 300 moves from the compression chamber 110 to the expansion chamber 150 The flow of the fluid G is controlled.
도 2를 참조하면, 유체조절부(300)는 유체(G)가 압축실(110)에서 팽창실(150) 측(도 2 기준 좌측에서 우측)으로만 유동되도록 유체(G)의 유동을 제어한다.2, the fluid regulator 300 controls the flow of the fluid G such that the fluid G flows only from the compression chamber 110 to the expansion chamber 150 side (from the left to the right in FIG. 2) do.
이로 인하여 압축실(110) 내부의 유체(G)의 압력이 설정 값에 도달하고, 압축실(110) 내부의 압력이 팽창실(150)의 압력보다 커지면, 유체조절부(300)가 개방되어 압축실(110)에서 팽창실(150) 측으로 유체(G)가 유동된다.When the pressure of the fluid G in the compression chamber 110 reaches the set value and the pressure inside the compression chamber 110 becomes larger than the pressure of the expansion chamber 150, the fluid regulator 300 is opened The fluid G flows from the compression chamber 110 toward the expansion chamber 150 side.
본 발명에서는 압축실(110) 내부의 유체(G)의 압력 값에 따라 유체조절부(300)의 개폐가 조절되나, 이에 한정하는 것은 아니고 소정 시간이 지나면 유체조절부(300)가 개방되는 등 다양한 변형 실시가 가능하다.In the present invention, the opening and closing of the fluid regulating unit 300 is controlled according to the pressure value of the fluid G in the compression chamber 110. However, the present invention is not limited thereto, and the fluid regulating unit 300 may be opened Various modifications are possible.
이에 더하여 압축실(110) 내부의 유체(G) 압력이 팽창실(150) 내부의 유체(G) 압력보다 크게 형성되므로 팽창실(150)에서 압축실(110)로 유체(G)가 유동되는 것을 차단할 수 있는 효과가 있다.In addition, since the pressure of the fluid G in the compression chamber 110 is greater than the pressure of the fluid G in the expansion chamber 150, the fluid G flows from the expansion chamber 150 to the compression chamber 110 There is an effect that can be blocked.
본 발명의 일 실시예에 따른 유체조절부(300)는 밸브 방식으로 형성될 수 있다. 구체적으로 유체조절부(300)는 감압 밸브, 릴리프 밸브로 형성될 수 있다.The fluid regulator 300 according to an embodiment of the present invention may be formed in a valve manner. Specifically, the fluid regulating unit 300 may be formed of a pressure reducing valve and a relief valve.
스프링 등 탄성 부재의 탄성 복원력에 의해 설정 압력 값 도달 시 유체조절부(300)가 개폐되는 구성은 일반적인 릴리프 밸브의 구동 방식으로 이와 관련된 자세한 설명은 생략한다.A configuration in which the fluid regulating unit 300 is opened and closed when the set pressure value is reached by the elastic restoring force of the elastic member such as a spring is a general driving method of the relief valve, and a detailed description thereof will be omitted.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 피스톤부(400)는 이동부(200)와 마주보며 실린더부(100)의 내측에 배치된다. Referring to FIGS. 1 to 3, the piston 400 according to an embodiment of the present invention is disposed inside the cylinder 100 facing the moving part 200.
구체적으로 피스톤부(400)는 압축실(110)에 배치되고, 실린더부(100)의 일측(도 1 기준 좌측)에 위치 고정된다.Specifically, the piston portion 400 is disposed in the compression chamber 110, and is fixed at one side (left side in FIG. 1) of the cylinder portion 100.
이로 인하여 실린더부(100)의 내부에 형성되는 압축실(110)은 실린더부(100), 구체적으로 마주보는 실린더부(100)의 내벽부(101), 이동부(200), 피스톤부(400) 사이에 형성되는 공간 형태로 이루어진다.The compression chamber 110 formed in the cylinder 100 may include the cylinder portion 100 and specifically the inner wall portion 101 of the opposing cylinder portion 100, the moving portion 200, the piston portion 400 As shown in FIG.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 지지벽부(500)는 실린더부(100)의 마주보는 내벽부(101)를 연결하며 실린더부(100)를 지지한다. 1 to 3, the support wall part 500 according to an embodiment of the present invention connects the inner wall part 101 of the cylinder part 100 and supports the cylinder part 100.
본 발명의 일 실시예에 따른 지지벽부(500)로 인하여 실린더부(100)의 내측에 위치 고정되는 피스톤부(400), 고정 아크 접점(10)에 대하여 실린더부(100), 가동 아크 접점(20) 등이 이동될 수 있도록 한다.A piston part 400 fixed to the inside of the cylinder part 100 due to the support wall part 500 according to an embodiment of the present invention, a cylinder part 100, a movable arc contact point 20) can be moved.
도 1, 도 2를 참조하면, 본 발명의 일 실시예에 따른 지지벽부(500)는 피스톤부(400)와 이동부(200) 사이에 배치되고, 지지벽부(500)에는 뒤에 설명할 가압부(600)가 관통되도록 통과홀부(510)가 형성된다.1 and 2, the supporting wall part 500 according to the embodiment of the present invention is disposed between the piston part 400 and the moving part 200, and the supporting wall part 500 has a pressing part The through hole portion 510 is formed so that the through hole portion 600 is penetrated.
도 2를 참조하면, 가압부(600)는 지지벽부(500)에 형성되는 통과홀부(510)를 통과하여 이동부(200)와 접촉되고, 피스톤부(400), 피스톤부(400)에 결합되는 가압부(600)는 계속하여 이동부(200)를 가압하여 팽창실(150)을 압축한다.2, the pressing portion 600 is in contact with the moving portion 200 through the through hole portion 510 formed in the supporting wall portion 500, and the piston portion 400 and the piston portion 400 are coupled to each other. The compressing unit 600 compresses the expansion chamber 150 by pressing the moving unit 200 continuously.
이로 인하여 팽창실(150)의 체적이 감소되고, 팽창실(150) 내부 유체(G)의 압력은 상승하여 고압의 유체(G)가 노즐부(30)를 통과하여 고정 아크 접점(10)과 가동 아크 접점(20)으로 유동되어 고정 아크 접점(10)과 가동 아크 접점(20) 사이에서 발생되는 아크를 소호하도록 한다.The volume of the expansion chamber 150 is reduced and the pressure of the fluid G in the expansion chamber 150 is increased so that the high pressure fluid G passes through the nozzle unit 30 and flows into the fixed arc contact 10 Flows into the movable arc contact 20 so that the arc generated between the stationary arc contact 10 and the movable arc contact 20 is extinguished.
고압의 유체(G)가 압축실(110)에서 유체조절부(300)를 통해 팽창실(150)로 유입되고, 팽창실(150)이 계속하여 압축되면서 노즐부(30)를 통해 팽창실(150)로 유입되는 열가스와 혼합되며 냉각 성능이 향상되는 효과가 있다.The high pressure fluid G is introduced into the expansion chamber 150 through the fluid regulator 300 in the compression chamber 110 and the expansion chamber 150 is continuously compressed and expanded through the nozzle unit 30 150) and the cooling performance is improved.
본 발명에서는 가압부(600)가 피스톤부(400)에서 이동부(200) 측으로 연장 형성되고, 형상이 고정되는 고정부재로 형성되나, 이에 한정하는 것은 아니고 스프링 등 탄성부재로 형성되어 피스톤부(400)가 이동부(200)를 가압함에 따라 탄성 변형되며 길이가 조절되는 등 다양한 변형실시가 가능하다.In the present invention, the pressing portion 600 is formed as a fixed member extending from the piston portion 400 toward the moving portion 200 side and fixed in shape, but is not limited thereto and may be formed of an elastic member such as a spring, 400 are elastically deformed and the length thereof is adjusted as the moving part 200 is pressed.
본 발명에서는 가압부(600)가 이동부(200)와 이격되며 분리되나, 이에 한정하는 것은 아니고 가압부(600)와 이동부(200)가 연결되고, 가압부(600)의 이동에 연동되어 함께 이동되는 등 다양한 변형실시가 가능하다.In the present invention, the pressurizing unit 600 is separated from the moving unit 200, but is not limited thereto. The pressurizing unit 600 and the moving unit 200 are connected to each other and interlocked with the movement of the pressing unit 600 It is possible to carry out various modifications such as being moved together.
상기와 같이 구성되는 가스 차단장치(1)의 작동원리 및 효과에 관해 설명하기로 한다.The operation principle and effect of the gas barrier device 1 constructed as described above will be described.
도 1 내지 도 3을 참조하면, 전력 계통에 고장이 발생되면 실린더부(100)에 연결된 조작기(도면 미 도시)에 의해 고정 아크 접점(10)과 피스톤부(400)를 제외한 가동 아크 접점(20), 실린더부(100)가 피스톤부(400) 측(도 1 기준 우측에서 좌측)으로 이동된다.1 to 3, when a fault occurs in the power system, the fixed arc contact 10 and the movable arc contact 20 (not shown) are removed by an actuator (not shown) connected to the cylinder 100, , The cylinder portion 100 is moved to the piston portion 400 side (left side in FIG. 1 reference right).
실린더부(100)가 이동됨에 따라 압축실(110)의 내부에 있는 유체(G)는 피스톤부(400)에 의해 압축된다. As the cylinder part 100 moves, the fluid G inside the compression chamber 110 is compressed by the piston part 400.
이에 더하여 고정 아크 접점(10)과 가동 아크 접점(20)이 분리되고, 이와 동시에 고정 아크 접점(10), 가동 아크 접점(20) 사이에서 아크가 발생된다. In addition, the fixed arc contact 10 and the movable arc contact 20 are separated, and at the same time an arc is generated between the fixed arc contact 10 and the movable arc contact 20.
이 경우 압축실(110)의 유체(G)의 압력이 팽창실(150)의 유체(G)의 압력보다 높아지게 되면, 이동부(200)에 결합되며 설치되는 유체조절부(300)가 개방되고, 절연 가스 등 유체(G)는 유체조절부(300)를 통하여 팽창실(150), 노즐부(30)를 통해 고정 아크 접점(10)과 가동 아크 접점(20) 사이로 분사된다.In this case, when the pressure of the fluid G in the compression chamber 110 becomes higher than the pressure of the fluid G in the expansion chamber 150, the fluid regulator 300 coupled to the moving part 200 is opened The fluid G is injected between the stationary arc contact 10 and the movable arc contact 20 through the expansion chamber 150 and the nozzle unit 30 through the fluid regulating unit 300.
이에 따라 고정 아크 접점(10), 가동 아크 접점(20) 사이에서 발생되는 아크가 압축실(110)에서 압축된 유체(G)에 의해 소호되면서 고장 전류가 차단되는 효과가 있다.As a result, the arc generated between the fixed arc contact 10 and the movable arc contact 20 is extinguished by the fluid G compressed in the compression chamber 110, thereby blocking the fault current.
도 2를 참조하면, 실린더부(100)가 피스톤부(400) 측(도 2 기준 우측에서 좌측)으로 이동됨에 따라 압축실(110) 내부의 유체(G)의 압력이 증가되고, 설정된 압력 값에 도달되면 유체조절부(300)가 개방된다.2, the pressure of the fluid G in the compression chamber 110 increases as the cylinder 100 moves toward the piston 400 (left side in FIG. 2) The fluid regulating unit 300 is opened.
유체조절부(300)가 압축실(110)에서 팽창실(150) 측(도 1 기준 좌측에서 우측)으로만 유체(G)가 유동되도록 제어함으로 인하여 압축실(110) 내부의 고압의 유체(G)가 팽창실(150), 노즐부(30)를 통과하여 고정 아크 접점(10)과 가동 아크 접점(20) 사이에서 발생되는 아크를 소호시킬 수 있도록 한다.Since the fluid regulating unit 300 controls the fluid G to flow only from the compression chamber 110 to the expansion chamber 150 side (left to right in FIG. 1), the high-pressure fluid G passes through the expansion chamber 150 and the nozzle unit 30 so that the arc generated between the fixed arc contact 10 and the movable arc contact 20 can be extinguished.
이에 더하여 유체조절부(300)를 통해 압축실(110)에서 팽창실(150)로 유입되는 유체(G)는, 고정 아크 접점(10)과 가동 아크 접점(20) 사이에서 발생되는 아크에 의해 가열되고 노즐부(30)를 통해 팽창실(150)로 유입되는 고온의 유체(G)와 혼합되고, 압축실(110)에서 압축된 고압의 유체(G)로 인해 팽창실(150) 내부의 유체(G)를 냉각시키는 효과가 있다.The fluid G flowing into the expansion chamber 150 from the compression chamber 110 through the fluid regulator 300 is discharged by the arc generated between the fixed arc contact 10 and the movable arc contact 20 (G) that is heated and mixed with the high temperature fluid (G) flowing into the expansion chamber (150) through the nozzle part (30) There is an effect of cooling the fluid (G).
도 3을 참조하면, 본 발명의 일 실시예에 따른 실린더부(100)가 이동됨에 따라 피스톤부(400)가 지지벽부(500)에 접촉되고, 피스톤부(400)에 결합되는 가압부(600)가 지지벽부(500)에 형성되는 통과홀부(510)를 통과하며 이동부(200)를 가압함으로 인하여 팽창실(150)의 체적이 감소되는 효과가 있다. Referring to FIG. 3, as the cylinder part 100 according to the embodiment of the present invention is moved, the piston part 400 is brought into contact with the supporting wall part 500 and the pressing part 600 Passes through the through hole 510 formed in the support wall part 500 and presses the moving part 200 so that the volume of the expansion chamber 150 is reduced.
팽창실(150)의 체적이 감소되며 팽창실(150) 내부의 유체(G)의 압력이 상승된다.The volume of the expansion chamber 150 is reduced and the pressure of the fluid G in the expansion chamber 150 is raised.
이동부(200)의 위치가 고정되는 것에 비하여 팽창실(150) 내부의 유체(G)의 압력이 상승되고, 고압의 유체(G)는 팽창실(150)로 유입되는 고온의 유체(G), 열가스와 혼합되며 냉각 성능이 향상되는 효과가 있다. The pressure of the fluid G in the expansion chamber 150 is raised and the fluid G in the high pressure is discharged from the high temperature fluid G flowing into the expansion chamber 150, , It is mixed with the heat gas and the cooling performance is improved.
이에 더하여 이동부(200)의 위치가 고정되는 것에 비하여 절연 가스 등 유체(G)의 압력을 더욱 상승시킬 수 있고, 고압의 유체(G)가 노즐부(30)를 통하여 고정 아크 접점(10)과, 가동 아크 접점(20) 사이로 유동되어 고정 아크 접점(10)과 가동 아크 접점(20) 사이에서 발생되는 아크를 소호시키며 소호 성능이 향상되는 효과가 있다.The pressure of the fluid G such as the insulating gas can be further increased as compared with the case where the position of the moving part 200 is fixed and the high pressure fluid G can be supplied to the fixed arc contact 10 through the nozzle part 30. [ And the movable arc contact 20 so that the arc generated between the stationary arc contact 10 and the movable arc contact 20 is extinguished and the arc performance is improved.
도 1 내지 도 3을 참조하면, 지지벽부(500)가 실린더부(100)의 마주보는 내벽부(101)를 연결함으로 인하여 위치 고정되는 피스톤부(400), 고정 아크 접점(10)에 대하여 상대 이동되는 실린더부(100)를 지지하는 효과가 있다.1 to 3, the supporting wall portion 500 includes a piston portion 400 which is fixed by the connection of the facing inner wall portion 101 of the cylinder portion 100, a piston portion 400 fixed to the fixed arc contact 10 There is an effect of supporting the cylinder part 100 being moved.
이하, 본 발명의 다른 실시예에 따른 가스 차단장치(1)의 구성, 작동원리 및 효과에 관해 설명하기로 한다.Hereinafter, the configuration, operation principle, and effects of the gas barrier device 1 according to another embodiment of the present invention will be described.
도 4는 본 발명의 다른 실시예에 따른 가스 차단장치를 도시한 측단면도이다. 도 5는 본 발명의 다른 실시예에 따른 가스 차단장치에서 유체조절부가 개방된 상태를 도시한 측단면도이다. 도 6은 본 발명의 다른 실시예에 따른 가스 차단장치에서 피스톤부가 이동부를 가압하는 상태를 도시한 측단면도이다.4 is a side cross-sectional view illustrating a gas barrier device according to another embodiment of the present invention. 5 is a side cross-sectional view showing a state in which the fluid regulating portion is opened in the gas barrier device according to another embodiment of the present invention. 6 is a side cross-sectional view showing a state in which the piston portion presses the moving portion in the gas barrier device according to another embodiment of the present invention.
도 4 내지 도 6을 참조하면, 본 발명에서 가스 차단장치는 X축을 회전 중심축으로 하여 대칭구조를 이루며, X축을 기준으로 일측(도 1 기준 하측)의 구성은 X축을 기준으로 타측(도 1 기준 상측)의 구성과 동일하므로 이와 중복되는 범위에서 도면을 생략한다.4 to 6, the gas barrier device according to the present invention has a symmetrical structure with the X axis as a rotation center axis, and the configuration of one side (reference lower side in FIG. 1) with respect to the X axis is the other side Reference upper side), so that the drawings are omitted in the overlapping range.
도 4 내지 도 6을 참조하면, 본 발명의 다른 실시예에 따른 가스 차단장치(1)는, 실린더부(100), 이동부(200), 유체조절부(300), 피스톤부(400), 지지벽부(500)를 포함한다.4 to 6, a gas barrier device 1 according to another embodiment of the present invention includes a cylinder part 100, a moving part 200, a fluid control part 300, a piston part 400, And a supporting wall portion 500.
도 4를 참조하면, 본 발명의 다른 실시예에 따른 지지벽부(500)는 피스톤부(400)의 이동부(200) 측 방향(도 4 기준 우측)을 전방으로 할 때 피스톤부(400)의 후방(도 4 기준 좌측)에 배치된다. 즉, 피스톤부(400)는 지지벽부(500)와 이동부(200) 사이에 배치된다.4, the supporting wall portion 500 according to another embodiment of the present invention is configured such that when the piston portion 400 is moved forward (toward the reference right side in FIG. 4) of the moving portion 200 of the piston portion 400, (Left side in Fig. 4). That is, the piston part 400 is disposed between the supporting wall part 500 and the moving part 200.
이로 인하여 전력 계통에 고장 발생 시 실린더부(100)의 내측에 위치 고정되는 피스톤부(400)에 대하여 실린더부(100)가 상대 이동 시 피스톤부(400)가 이동부(200)에 직접 접촉되며 이동부(200)를 가압한다.The piston unit 400 is directly contacted with the moving unit 200 when the cylinder unit 100 moves relative to the piston unit 400 fixed to the inside of the cylinder unit 100 in the event of a failure in the power system The moving part 200 is pressed.
도 5를 참조하면, 실린더부(100)가 이동됨에 따라 피스톤부(400)와 이동부(200) 간 간격이 감소되면서 압축실(110) 내부의 유체(G) 압력이 상승되고, 유체(G)의 압력이 설정 값에 도달하면 유체조절부(300)가 개폐되면서 압축실(110)에서 팽창실(150)로 고압의 유체(G)가 유입된다.5, as the cylinder 100 moves, the gap between the piston 400 and the moving part 200 decreases, the pressure of the fluid G in the compression chamber 110 increases, The fluid control unit 300 is opened and closed and the high-pressure fluid G flows into the expansion chamber 150 from the compression chamber 110.
도 6을 참조하면, 피스톤부(400)와 이동부(200)가 접촉되고, 이동부(200)가 실린더부(100)의 내측에서 이동가능하게 설치됨으로 인하여 이동부(200)에 의해 형성되는 팽창실(150)의 체적이 감소되고, 팽창실(150) 내부의 유체(G) 압력이 상승되는 효과가 있다.6, the piston 400 and the moving part 200 are in contact with each other, and the moving part 200 is formed by the moving part 200 because the moving part 200 is movably installed inside the cylinder part 100 The volume of the expansion chamber 150 is reduced and the pressure of the fluid G in the expansion chamber 150 is increased.
팽창실(150) 내부의 유체(G) 압력이 추가적으로 상승됨으로 인하여 고압의 유체(G)가 팽창실(150), 노즐부(30)를 통하여 고정 아크 접점(10)과 가동 아크 접점(20) 사이로 유입되어 고정 아크 접점(10)과 가동 아크 접점(20) 사이에서 발생되는 아크를 소호한다.The fluid G in the expansion chamber 150 is further raised so that the high pressure fluid G flows through the expansion chamber 150 and the nozzle unit 30 to the fixed arc contact 10 and the movable arc contact 20, So that the arc generated between the fixed arc contact 10 and the movable arc contact 20 is extinguished.
이동부(200)가 실린더부(100)의 내측에서 이동가능하게 설치됨으로 인하여 압력 상승 효과 및 고정 아크 접점(10)과 가동 아크 접점(20) 사이에서 발생하여 팽창실(150)로 유입되는 고온의 유체(G), 즉 열가스와 혼합되며 냉각 성능이 향상되는 효과가 있다.Since the moving part 200 is movably installed inside the cylinder part 100, the pressure rising effect and the high temperature generated between the fixed arc contact 10 and the movable arc contact 20 and flowing into the expansion chamber 150 (G), that is, the heat gas, and the cooling performance is improved.
도 4 내지 도 6을 참조하면, 아크 소호가 완료되면 실린더부(100)가 이동되어 정위치로 복귀되고, 이동부(200)도 도 4의 정위치로 복귀된다. Referring to FIGS. 4 to 6, when the arc extinguishing is completed, the cylinder part 100 is moved and returned to the correct position, and the moving part 200 is also returned to the fixed position in FIG.
실린더부(100)의 내벽부(101), 구체적으로 실린더부(100)의 내측 내벽부(101)(도 4 기준 하측)에는 이동부(200)의 경로 상에 스토퍼부(105)가 돌출 형성된다.A stopper portion 105 is formed on the inner wall portion 101 of the cylinder portion 100, specifically the inner side wall portion 101 (lower reference in FIG. 4) of the cylinder portion 100, do.
본 발명에서는 스토퍼부(105)가 실린더부(100)의 내측 내벽부(101)에 형성되나 이에 한정하는 것은 아니고 실린더부(100)의 외측 내벽부(101)(도 4 기준 상측)에 형성되는 등 다양한 변형 실시가 가능하다.The stopper portion 105 is formed on the inner side wall portion 101 of the cylinder portion 100 but is not limited thereto and may be formed on the outer side inner wall portion 101 of the cylinder portion 100 And the like.
스토퍼부(105)로 인하여 실린더부(100) 내측에서 이동부(200)와 피스톤부(400) 사이의 간격을 설정간격 이상으로 확보할 수 있다. 따라서 이동부(200)가 피스톤부(400) 측으로 이동되더라도 스토퍼부(105)가 형성된 지점에 도달하게 되면 이동부(200)는 스토퍼부(105)에 막혀 더 이상의 이동이 불가하다. 이와 같이 스토퍼부(105)에 의해 이동부(200)와 피스톤부(400)의 간격은 설정간격 이내로 좁혀지지 않게 된다. The distance between the moving part 200 and the piston part 400 within the cylinder part 100 can be ensured to be equal to or greater than the set interval by the stopper part 105. [ Therefore, even if the moving part 200 moves to the piston part 400, the moving part 200 is blocked by the stopper part 105 when the stopper part 105 is formed. The gap between the moving part 200 and the piston part 400 is not narrowed within the set distance by the stopper part 105. [
본 발명의 다른 실시예에서는 스토퍼부(105)가 실린더부(100)의 내벽부(101)에 단차 형상으로 형성된다. 그러나 이에 한정하는 것은 아니고, 소정 시점에 따라 실린더부(100)의 내벽부(101)에서 돌출 또는 삽입되는 스위치(SWITCH) 방식으로 형성되는 등 다양한 변형 실시가 가능하다.In another embodiment of the present invention, the stopper portion 105 is formed in a stepped shape on the inner wall portion 101 of the cylinder portion 100. However, the present invention is not limited to this, but may be implemented in various ways, such as a switch type in which it is protruded or inserted from the inner wall portion 101 of the cylinder portion 100 according to a predetermined point of time.
본 발명의 다른 실시예에 따른 가스 차단장치(1)는, 지지벽부(500)가 피스톤부(400)의 후방(도 4 기준 좌측)에 배치되고, 실린더부(100)의 내벽부(101)에 스토퍼부(105)가 돌출 형성되며, 가압부(600) 및 지지벽부(500)에 형성되는 통과홀부(510)가 요구되지 않는 점을 제외하고는 본 발명의 일 실시예에 따른 가스 차단장치(1)의 구성, 작동원리 및 효과가 동일하므로 이에 중복되는 범위에서 설명을 생략한다.The gas barrier device 1 according to another embodiment of the present invention is characterized in that the support wall portion 500 is disposed on the rear side (left side in FIG. 4) of the piston portion 400 and the inner wall portion 101 of the cylinder portion 100, Except that the stopper portion 105 is protruded from the support wall portion 500 and the through hole portion 510 formed in the pressing portion 600 and the support wall portion 500 is not required. The operation principle and effects of the first embodiment are the same, so that the description thereof will be omitted in the overlapping range.
본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. I will understand. Accordingly, the technical scope of the present invention should be defined by the following claims.

Claims (7)

  1. 압축실과 팽창실이 형성되는 실린더부; A cylinder portion in which a compression chamber and an expansion chamber are formed;
    상기 실린더부의 내측에서 이동가능하게 설치되고, 상기 압축실과 상기 팽창실을 구획하는 이동부;A moving part movably installed inside the cylinder part and partitioning the compression chamber and the expansion chamber;
    상기 이동부에 개폐가능하게 설치되고, 상기 압축실에서 상기 팽창실로의 유체의 흐름을 조절하는 유체조절부; 및A fluid regulating unit that is openably and closably provided in the moving unit and regulates the flow of the fluid from the compression chamber to the expansion chamber; And
    상기 이동부와 마주보며 상기 실린더부의 내측에 배치되는 피스톤부;를 포함하는 것을 특징으로 하는 가스 차단장치.And a piston portion disposed inside the cylinder portion and facing the moving portion.
  2. 제1항에 있어서, The method according to claim 1,
    상기 유체조절부는 유체가 상기 압축실에서 상기 팽창실 측으로만 유동되도록 제어하는 것을 특징으로 하는 가스 차단장치.Wherein the fluid regulating portion controls the fluid to flow only from the compression chamber to the expansion chamber side.
  3. 제1항에 있어서,The method according to claim 1,
    상기 실린더부의 내벽부를 연결하며 상기 실린더부를 지지하는 지지벽부;를 더 포함하는 것을 특징으로 하는 가스 차단장치.And a support wall portion connecting the inner wall portion of the cylinder portion and supporting the cylinder portion.
  4. 제3항에 있어서, The method of claim 3,
    상기 지지벽부는, 상기 피스톤부와 상기 이동부 사이에 배치되는 것을 특징으로 하는 가스 차단장치.Wherein the support wall portion is disposed between the piston portion and the moving portion.
  5. 제4항에 있어서, 5. The method of claim 4,
    상기 피스톤부에 결합되고, 상기 지지벽부를 통과하여 상기 이동부를 가압하는 가압부;를 더 포함하는 것을 특징으로 하는 가스 차단장치.Further comprising: a pressing portion coupled to the piston portion and configured to press the movable portion through the support wall portion.
  6. 제3항에 있어서, The method of claim 3,
    상기 피스톤부는, 상기 지지벽부와 상기 이동부 사이에 배치되는 것을 특징으로 하는 가스 차단장치. Wherein the piston portion is disposed between the supporting wall portion and the moving portion.
  7. 제6항에 있어서, The method according to claim 6,
    상기 실린더부의 내벽부에는 상기 이동부가 상기 피스톤부 측으로 이동되는 것을 제한하도록 상기 이동부의 이동 경로 상에 스토퍼부가 돌출 형성되는 것을 특징으로 하는 가스 차단장치.Wherein a stopper portion is formed on an inner wall portion of the cylinder portion so as to protrude on a moving path of the moving portion so as to restrict movement of the moving portion toward the piston portion.
PCT/KR2018/015758 2017-12-14 2018-12-12 Gas circuit breaker WO2019117617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0172591 2017-12-14
KR1020170172591A KR101983621B1 (en) 2017-12-14 2017-12-14 Gas circuit breaker

Publications (1)

Publication Number Publication Date
WO2019117617A1 true WO2019117617A1 (en) 2019-06-20

Family

ID=66672778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015758 WO2019117617A1 (en) 2017-12-14 2018-12-12 Gas circuit breaker

Country Status (2)

Country Link
KR (1) KR101983621B1 (en)
WO (1) WO2019117617A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210710A (en) * 2007-02-27 2008-09-11 Mitsubishi Electric Corp Gas-blast circuit breaker for power
KR20120002779A (en) * 2010-07-01 2012-01-09 현대중공업 주식회사 Hybrid extinction type gas circuit breaker for gas
KR20120097856A (en) * 2011-02-25 2012-09-05 엘에스산전 주식회사 Interrupting portion of gas circuit breaker
KR20130051208A (en) * 2011-11-09 2013-05-20 현대중공업 주식회사 Breaking part with compressive thermal chamber of puffer type circuit breaker
KR20140043469A (en) * 2011-09-06 2014-04-09 가부시키가이샤 히타치세이사쿠쇼 Puffer type gas circuit breaker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210710A (en) * 2007-02-27 2008-09-11 Mitsubishi Electric Corp Gas-blast circuit breaker for power
KR20120002779A (en) * 2010-07-01 2012-01-09 현대중공업 주식회사 Hybrid extinction type gas circuit breaker for gas
KR20120097856A (en) * 2011-02-25 2012-09-05 엘에스산전 주식회사 Interrupting portion of gas circuit breaker
KR20140043469A (en) * 2011-09-06 2014-04-09 가부시키가이샤 히타치세이사쿠쇼 Puffer type gas circuit breaker
KR20130051208A (en) * 2011-11-09 2013-05-20 현대중공업 주식회사 Breaking part with compressive thermal chamber of puffer type circuit breaker

Also Published As

Publication number Publication date
KR101983621B1 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
WO2016047891A1 (en) Gas insulated circuit breaker
WO2015137568A1 (en) High-voltage male connector
WO2016167490A1 (en) Device and method for shutting off high-voltage direct current using gap switch
WO2018182105A1 (en) High speed switch
WO2019117617A1 (en) Gas circuit breaker
WO2020091261A1 (en) High speed earthing switch of gas insulated switchgear
KR20150004211A (en) High Voltage Gas Circuit Breaker
CN109727808A (en) Environment-friendly type breaker gas tank
KR101793375B1 (en) Gas insulated circuit breaker
WO2019117620A1 (en) Self-blast type gas circuit breaker
CN110770868B (en) Gas-insulated load break switch and switchgear comprising a gas-insulated load break switch
WO2019117618A1 (en) Puffer-type gas circuit breaker
EP0436951B1 (en) Gas circuit breaker
WO2017069371A1 (en) Current cutoff switch using supercritical fluid, and current cutoff device and current cutoff method using same
CN100428596C (en) Disconnecting switch assembly
KR20160144523A (en) Gas isolated circuit breaker
WO2014175607A1 (en) Gas circuit breaker
US4389554A (en) Transformer protective switch
WO2015102310A1 (en) Gas circuit breaker of gas insulated switchgear
WO2024154964A1 (en) Power equipment room having ventilation device
CN217983190U (en) Breaker opening device and breaker
KR102308825B1 (en) Gas Insulated Switchgear
KR20190101206A (en) Gas circuit breaker for gas insulation switchgear
WO2018117591A2 (en) Inverse current injection-type direct current blocking device and method using vacuum gap switch
WO2023128154A1 (en) Gas insulated switchgear high-speed earthing switch and gas insulated switchgear having same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889272

Country of ref document: EP

Kind code of ref document: A1