WO2019117541A1 - Superabsorbent polymer and preparation method therefor - Google Patents

Superabsorbent polymer and preparation method therefor Download PDF

Info

Publication number
WO2019117541A1
WO2019117541A1 PCT/KR2018/015468 KR2018015468W WO2019117541A1 WO 2019117541 A1 WO2019117541 A1 WO 2019117541A1 KR 2018015468 W KR2018015468 W KR 2018015468W WO 2019117541 A1 WO2019117541 A1 WO 2019117541A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
resin
weight
polymer
sodium
Prior art date
Application number
PCT/KR2018/015468
Other languages
French (fr)
Korean (ko)
Inventor
정선정
남대우
성보현
윤형기
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180155292A external-priority patent/KR102566286B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18887781.5A priority Critical patent/EP3708606A4/en
Priority to JP2020530506A priority patent/JP7038825B2/en
Priority to US16/771,479 priority patent/US11633719B2/en
Priority to CN201880078532.3A priority patent/CN111433261B/en
Publication of WO2019117541A1 publication Critical patent/WO2019117541A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof

Definitions

  • the present invention relates to a superabsorbent resin and a method for producing the same. More particularly, the present invention relates to a superabsorbent resin having improved rewet characteristics and absorption rates and a method for producing the same.
  • Super Absorbent Polymer is a synthetic polymer material capable of absorbing moisture of about 500 to 1,000 times its own weight. As a result, it is possible to use SAM (Super Absorbent Material), AGM Material), and so on. Such a superabsorbent resin has started to be put into practical use as a sanitary article and is currently being used for diapers and sanitary napkins for children, as well as soil repair agents for horticultural use, exponents for civil engineering and construction, sheet for seedling growing, , And as a material for fomentation and the like.
  • SAP Super Absorbent Polymer
  • pressure may be applied to sanitary materials such as diapers and sanitary napkins by the weight of the user.
  • sanitary materials such as diapers and sanitary napkins
  • a superabsorbent resin applied to a sanitary material such as a diaper or sanitary napkin absorbs a liquid
  • Urine A phenomenon Urine A phenomenon may occur.
  • an acrylic resin composition which comprises, in the presence of water-dispersed silica, a base having an acidic group and at least a part of the acidic group neutralized with an acrylic acid-based monomer and an internal cross-
  • Step 2 of a hydrophobic substance and a surface cross-linking agent
  • step 3 Performing the surface modification on the bead resin by raising the mixture of step 2 (step 3); 2019/117541 1 »(: 1 ⁇ ⁇ 2018/015468
  • a base resin comprising a cross-linked polymer obtained by cross-linking an acrylic acid-based monomer in which at least a part of an acidic group is neutralized;
  • the surface modification layer comprises a hydrophobic material having an HLB of not less than 0 and not more than 6, and a vortex time of not more than 35 seconds.
  • a method of manufacturing a superabsorbent resin according to an embodiment of the present invention includes:
  • Step 1 of preparing a base resin crosslinked with an acrylic acid-based monomer and an internal cross-linking agent having an acidic group and neutralizing at least a part of the acidic group in the presence of the water-dispersed silica;
  • step 2 Mixing the base resin with a hydrophobic substance having an HLB of not less than 0 and not more than 6, and a surface cross-linking agent (step 2); and
  • base resin or “base resin powder” means a polymer obtained by drying and pulverizing a polymer obtained by polymerizing a water-soluble ethylenically unsaturated monomer, Means a polymer in a state where the surface modification or surface cross-linking step described later is not performed.
  • the hydrogel polymer obtained by the polymerization reaction of the acrylic acid-based monomer is subjected to a process such as drying, crushing, classification, surface crosslinking and the like, and is marketed as a superabsorbent resin which is powdery product.
  • the superabsorbent resin obtained by the production method according to one embodiment of the present invention is excellent in physical properties such as water repellency, pressure absorbing ability and liquid permeability and exhibits excellent absorption performance and remains dry even after being swollen with salt water It is possible to effectively prevent the re-wetting 0 and the urine leakage (1-year) phenomenon in which the urine absorbed in the superabsorbent resin is re-exuded, leading to the present invention.
  • the monomer composition which is a raw material of the superabsorbent resin, is prepared by first mixing an acrylic acid-based monomer having an acidic group and at least a part of the acidic groups neutralized, an internal crosslinking agent, Polymerized to obtain a hydrogel polymer, which is dried, pulverized and classified to obtain a base (Step 1).
  • the monomer composition which is a raw material of the superabsorbent resin includes an acrylic acid-based monomer having an acidic group and at least a part of the acidic groups neutralized and a polymerization initiator.
  • the acrylic acid-based monomer is a compound represented by the following Formula 1:
  • the acrylic acid-based monomer includes at least one selected from the group consisting of acrylic acid, methacrylic acid, monovalent metal salts thereof, bivalent metal salts, ammonium salts and organic amine salts thereof.
  • the acrylic acid-based monomer may have an acidic group and at least a part of the acidic group may be neutralized.
  • the monomer is partially neutralized with an alkylene material such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like.
  • the neutralization degree of the acrylic acid monomer may be 40 to 95 mol%, or 40 to 80 mol%, or 45 to 75 mol%.
  • the range of the degree of neutralization can be adjusted according to the final properties. However, if the degree of neutralization is too high, neutralized monomers may precipitate and polymerization may be difficult to proceed smoothly. On the other hand, if the degree of neutralization is too low, the absorption capacity of the polymer is greatly decreased, .
  • the concentration of the acrylic acid monomer may be about 20 to about 60 wt%, preferably about 40 to about 50 wt%, based on the monomer composition including the raw material of the superabsorbent resin and the solvent, The concentration may be appropriate considering the conditions and the like. However, if the concentration of the monomer is excessively low, the yield of the superabsorbent resin may be low and economical efficiency may be deteriorated. On the other hand, if the concentration is excessively high, a part of the monomer may precipitate or the pulverization efficiency may be low And the like, may cause problems in the process, and the physical properties of the superabsorbent resin may be deteriorated.
  • the polymerization initiator used in polymerization is not particularly limited as long as it is generally used in the production of a superabsorbent resin.
  • a thermal polymerization initiator or a photopolymerization initiator upon irradiation may be used depending on the polymerization method.
  • a certain amount of heat is generated by irradiation of ultraviolet light or the like, and a certain amount of heat is generated as the polymerization reaction, which is an exothermic reaction, proceeds.
  • the photopolymerization initiator may form a radical by light such as ultraviolet light 2019/117541 1 »(: 1/10/0/0 018/015468
  • photopolymerization initiator examples include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, benzyl dimethyl ketal Ketal, acyl phosphine, and a-aminoketone may be used.
  • acylphosphine commercial lucirin TPO, that is, 2, 4, 6, which - may be trimethyl phosphine oxide (2, 4, -trimethyl-6-trimethyl benzoyl phosphine oxide) - trimethyl-benzoyl
  • the photopolymerization initiator may be included in the monomer composition at a concentration of about 0.01 to about 1.0 wt%. If the concentration of such a photopolymerization initiator is too low, the polymerization rate may be slow. If the concentration of the photopolymerization initiator is too high, the molecular weight of the high absorption resin may be small and the physical properties may become uneven.
  • thermal polymerization initiator at least one selected from persulfate-based initiators, azo-based initiators, initiators consisting of hydrogen peroxide and ascorbic acid can be used.
  • persulfate-based initiator examples include sodium persulfate (Na 2 S 2 () 8) , potassium sulphate (K 2 S 2 O 8), ammonium persulfate NH 2) 2 S 2 C) 8).
  • azo initiators include 2, 2-azobis- (2-amidinopropane)
  • N-dimethylene isobutyramidine dihydrochloride 2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride
  • the monomer composition includes an internal cross-linking agent as a raw material for a superabsorbent resin.
  • the internal crosslinking agent include a crosslinking agent having at least one functional group capable of reacting with the acrylic acid-based monomer and having at least one ethylenic unsaturated group; Or a crosslinking agent having two or more functional groups capable of reacting with a substituent formed by hydrolysis of a substituent and / or a monomer of the acrylic acid-based monomer may be used.
  • the internal cross-linking agent examples include '-methylenebisacrylamide, trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, propylene glycol di (Meth) acrylate, butylene diol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, (Meth) acrylate such as triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri Triarylamine, ethylene Recall diglycidyl may be used at least one member selected from ether, propylene glycol, the group consisting of glycerin, and ethylene carbonate.
  • Such an internal cross-linking agent may be present in the monomer composition at a level of from about 0.01 to about
  • the monomer composition includes water-dispersed silica.
  • the dispersion of silica ( ⁇ 11 0 ⁇ is, means silica in a state where stable dispersion of the silica particles in water without precipitation or flocculation, and, means silica which at least is partly ionized in the silica particle surface.
  • the method for producing the water-dispersed silica is not particularly limited, and those produced by known methods such as electrodialysis, sol-gel method, ion exchange method, and acid-neutralization method may be used.
  • Particle size of the dispersion of silica is not more than 11111, yet about 5, or at least about 10 11111, preferably about 1101 to 100, or up to about 50 11111, or no more than about 30 wave 11. 2019/117541 1 »(: 1 ⁇ ⁇ 2018/015468
  • the water-dispersed silica may be added in an amount of about 0.01 to about 1.0 part by weight, or about 0.02 to about 0.5 part by weight based on 100 parts by weight of the acrylic acid monomer.
  • the amount of the water-dispersed silica exceeds 1.0 part by weight , The water retention ability of the superabsorbent resin may be deteriorated. If the amount is less than 0.01 part by weight, rewetting may not be improved.
  • the water-dispersed silica can not obtain the effect of improving the rewetting property when the colloid is not retained in the monomer composition, it is preferable that the water-dispersed silica maintains a stable colloid state in the monomer composition .
  • powdery or hydrophobic silica that is not in a colloidal state does not have an effect of improving rewetting, so that the intended effect of the present invention can not be achieved.
  • the above-mentioned water-dispersed silica is added at the time of polymerization, and polymerization is carried out in the presence of the water-dispersed silica to form a gel of the superabsorbent resin particle by hydrogen bonding between the superabsorbent resin and the water-
  • the strength can be improved, and the rewet property can be improved.
  • the monomer composition may further include a foaming agent, and / or a foam stabilizer.
  • the foaming agent acts to increase the surface area by foaming during polymerization to form pores in the hydrogel polymer.
  • the foaming agent include carbonates such as sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, calcium bicarbonate, calcium bicarbonate, Calcium carbonate, calcium bicarbonate, magnesium bicarbonate or magnesium carbonate can be used. 2019/117541 1 »(: 1 ⁇ ⁇ 2018/015468
  • the blowing agent may be added at a concentration of about 0.005 to about 1 part by weight, or about 0.01 to about 0.3 part by weight based on 100 parts by weight of the acrylic acid monomer. If the amount of the foaming agent is more than 1 part by weight, the pores become too large, the gel strength of the superabsorbent resin decreases, and the density becomes low, which may cause problems in distribution and storage. When the amount is less than 0.005 parts by weight, the role as the blowing agent may be insignificant.
  • the bubble stabilizer serves to uniformly distribute the bubbles in the entire region of the polymer while maintaining the shape of the bubble formed by the foaming agent, thereby increasing the surface area of the polymer.
  • anionic surfactant examples include anionic surfactants such as sodium dodecyl sulfate, sodium stearate, ammonium lauryl sulfate, ), Sodium lauryl ether sulfate, sodium myreth sulfate, or alkylether sulfate compounds similar thereto.
  • anionic surfactant that can be used is not limited thereto, but preferably sodium dodecyl sulfate or sodium stearate can be used.
  • the anionic surfactant may be added in a concentration of about 0.001 to about 1 part by weight, or about 0.005 to about 0.05 part by weight based on 100 parts by weight of the acrylic acid monomer. If the concentration of the anionic surfactant is excessively low, it is difficult to achieve an improvement in absorption rate due to its insufficient function as a foam stabilizer. On the other hand, if the concentration is excessively high, surface tension after polymerization may become too low to adversely affect the physical properties of the diaper.
  • the monomer composition of the superabsorbent resin may further contain additives such as a thickener, a plasticizer, a preservative stabilizer, and an antioxidant, if necessary.
  • Raw materials such as acrylic acid-based monomer, photopolymerization initiator, thermal polymerization initiator, internal cross-linking agent and additive having the above-mentioned acid group and at least part of which is neutralized can be prepared in the form of a monomer composition solution dissolved in a solvent.
  • the solvent which can be used at this time can be used without limitation of its constitution as long as it can dissolve the above-mentioned components.
  • examples thereof include water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-
  • the organic solvent include glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl
  • One or more selected from ether, toluene, xylenes, butylolactone, carbitol, methylcellosolve acetate and benz-dimethylacetamide can be used in combination.
  • the solvent may be included in the balance of the total amount of the monomer composition excluding the components described above.
  • the method of forming a hydrogel polymer by thermal polymerization or photopolymerization of such a monomer composition is not particularly limited as long as it is a commonly used polymerization method.
  • the polymerization method is divided into thermal polymerization and photopolymerization largely depending on the polymerization energy source.
  • the polymerization can proceed in a reactor having agitation such as kneader,
  • the polymerization method described above is only one example, and the present invention is not limited to the polymerization method described above.
  • the function gelled polymer obtained in the reactor such as a kneader (10 (1) 1 having an axis stirred, by the thermal polymerization by supplying hot air or heating of the reactor as described above in accordance with the form of a stirring shaft provided in the reactor,
  • the hydrogel polymer discharged into the reactor outlet may be in the range of a few centimeters to a few millimeters.
  • the size of the obtained hydrogel polymer may vary depending on the concentration of the monomer composition to be injected, the injection rate, etc. In general, a gel polymer having a weight average particle diameter of 2 to 50 111111 can be obtained.
  • the form of the hydrogel polymer that is usually obtained may be a hydrogel polymer on a sheet having a belt width.
  • the thickness of the polymer sheet varies depending on the concentration and the injection rate of the monomer composition to be injected, 2019/117541 1 »(: 1 ⁇ ⁇ 2018/015468
  • the monomer composition it is preferable to supply the monomer composition so that a polymer in the form of a sheet having a thickness of usually about 0.5 to about 5 cm can be obtained.
  • the monomer composition is supplied to such an extent that the thickness of the polymer in the sheet is too thin, the production efficiency is low, which is undesirable.
  • the thickness of the polymer on the sheet exceeds 5 cm, the polymerization reaction occurs evenly over the entire thickness due to the excessively thick thickness I can not.
  • the normal water content of the hydrogel polymer obtained by this method may be about 40 to about 80 wt%.
  • water content as used throughout the present specification means a value obtained by subtracting the weight of the hydrogel polymer from the weight of the hydrogel polymer in terms of the content of water with respect to the weight of the total functional gel polymer. Specifically, The temperature is increased from room temperature to about 180 ° C, and then maintained at 180 ° C. In this case, , And the total drying time is set to 20 minutes including the temperature rising step of 5 minutes, and the water content is measured.
  • the step of coarse grinding may be further carried out before drying in order to increase the efficiency of the drying step.
  • the pulverizer to be used is not limited in its constitution, but may be a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, A crusher, a disc mill, a disc mill, a shred crusher, a crusher, a chopper, and a disc cutter.
  • the present invention is not limited to the above-described example.
  • the milling step may be milled so that the hydrous gel polymer has a particle size of about 2 to about 10 mm.
  • the drying is carried out on the hydrogel polymer immediately after the polymerization, which has not been pulverized or pulverized as described above, wherein the drying temperature of the drying step may be about 150 to about 25 C.
  • the drying temperature is lower than 150 ° C, There is a possibility that the drying time is too long and the physical properties of the superabsorbent resin to be finally formed are lowered.
  • the drying temperature exceeds 250 ° C, only the polymer surface is dried excessively, There is a possibility that the physical properties of the superabsorbent resin finally formed are lowered.
  • the drying can proceed at a temperature of from about 150 to about 200 ° C, more preferably from about 160 to about 180 ° C.
  • the drying method in the drying step may be selected and used as long as it is usually used as a drying step of the hydrogel polymer.
  • the drying step can be carried out by hot air supply, infrared irradiation, microwave irradiation, ultraviolet irradiation, or the like.
  • the water content of the polymer may be about 0.1 to about 10 wt%.
  • the polymer powder obtained after the pulverization step may have a particle size of about 150 to about 850 m.
  • the pulverizer used for pulverizing with such a particle size is specifically a pin mill, a hammer mill, a screw a roll mill, a disc mill, or a jog mill may be used.
  • the present invention is not limited to the above-described examples.
  • a hydrophobic substance having an HLB of 0 or more and 6 or less and a surface cross-linking agent are mixed in the base resin (Step 2).
  • a surface cross-linking solution containing a surface cross-linking agent is mixed with a base resin, and then the surface cross-linking reaction is performed on the ground polymer by heating the mixture by heating.
  • the surface crosslinking step is a step of inducing a crosslinking reaction on the surface of the pulverized polymer in the presence of a surface crosslinking agent to form a superabsorbent resin having improved physical properties.
  • a surface crosslinked layer (surface modifying layer) is formed on the surface of the pulverized polymer particles.
  • the surface cross-linking agent is applied to the surface of the superabsorbent resin particles, so that the surface cross-linking reaction occurs on the surface of the superabsorbent resin particles, which improves the crosslinkability on the surface of the particles without substantially affecting the inside of the particles.
  • the surface cross-linked superabsorbent resin particles have a higher degree of crosslinking in the vicinity of the surface than in the interior.
  • the pressure absorption ability and the permeability can be improved by the surface cross-linking reaction, but the rewetting and maintenance ability can be weakened.
  • the surface crosslinking efficiency is improved, so that the absorption rate and the liquid permeability can be further improved as compared with the resin not using a hydrophobic substance.
  • the hydrophobic substance may be a material that satisfies 0 or more, or 1 or more, or 2 or more, and 6 or less, or 5 or less, or 5.5 or less as the lower limit of HLB.
  • a material having a melting point lower than the surface cross-linking reaction temperature may be used.
  • a usable hydrophobic substances include, for example, glyceryl stearate (glyceryl stearate), glycol stearate (glycol stearate), magnesium stearyl 6-rate (magnesium stearate), glyceryl monolaurate (glyceryl laurate), sorbitan stearate Sorbitan stearate, sorbitan trioleate, or PEG-4 dilaurate.
  • glyceryl stearate can be used, but it is not limited thereto. It is not. 2019/117541 1 »(: 1 ⁇ ⁇ 2018/015468
  • the hydrophobic substance is distributed in the surface modified layer of the surface of the base resin so that the swollen resin particles in the process of absorbing and swelling the liquid of the super absorbency resin are prevented from aggregating or aggregating according to the increased pressure, It is possible to more easily transmit and diffuse the liquid, thereby contributing to improvement of the re-wetting property of the superabsorbent resin.
  • the hydrophobic material may be present in an amount of at least about 0.02 part by weight, or at least about 0.025 part by weight, or at least about 0.05 part by weight, and up to about 0.5 part by weight, or up to about 0.3 part by weight, or up to about 0.1 part by weight, If the content of the hydrophobic substance is less than 0.02 part by weight, the rewet property may not be improved. If the content of the hydrophobic substance is more than 0.5 part by weight, the base resin and the hydrophobic substance may be separated from each other There may be a problem that the rewetting improving effect does not exist or may act as an impurity, so the weight range may be preferable from this point of view.
  • the method of mixing the hydrophobic substance is not particularly limited as long as it can mix the base resin uniformly and can be suitably employed.
  • the hydrophobic substance may be mixed by dry mixing before mixing the surface cross-linking solution containing the surface cross-linking agent into the base resin, or by first dispersing the surface cross-linking solution in the base cross- Alternatively, separately from the surface cross-linking solution, the hydrophobic substance may be heated to a melting temperature or higher to be mixed in a solution state.
  • the above-mentioned surface cross-linking agent When the above-mentioned surface cross-linking agent is added, water can be further mixed together and added in the form of a surface cross-linking solution.
  • the surface crosslinking agent When water is added, there is an advantage that the surface crosslinking agent can be uniformly dispersed in the polymer.
  • the added water content is preferably from about 1 to about 10 wt. Parts per 100 parts by weight of the polymer for the purpose of inducing uniform dispersion of the surface cross-linking agent and preventing the polymer powder from aggregating and optimizing the surface penetration depth of the surface cross- By weight.
  • the surface cross-linking agent is not limited in its constitution as long as it is a compound capable of reacting with a functional group contained in the polymer.
  • polyhydric alcohol compound examples include mono-, di-, tri-, tetra- or polyethylene glycol, monopropylene glycol, 1,3-propanediol, dipropylene glycol, 2,3,4- - pentanediol, polypropylene glycol, glycerol, polyglycerol, 2-butene-1,4-diol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,2-cyclic nucleic acid dimethanol, and the like.
  • Examples of the epoxy compounds include ethylene glycol diglycidyl ether and glycidol.
  • Examples of the polyamine compounds include ethylene diamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylene nucleus amine, Polyethyleneimine and polyamidepolyamines can be used.
  • haloepoxy compound epichlorohydrin, epibromohydrin, and (X-methyl epichlorohydrin can be used.
  • mono-, di- or polyoxazolidinone compounds for example, 2-oxazolidinone Dinonone, etc.
  • alkylene carbonate compounds ethylene carbonate and the like can be used. These can be used alone or in combination with each other.
  • polyhydric alcohol compounds having 2 to 10 carbon atoms may be used.
  • the amount of the surface crosslinking agent to be added may be appropriately selected depending on the kind of the surface crosslinking agent to be added and the reaction conditions, but is usually about 0.001 to about 5 parts by weight, preferably about 0.01 to about 5 parts by weight, About 3 parts by weight, more preferably about 0.05 to about 2 parts by weight may be used.
  • the progress of the surface cross-linking reaction may cause a decrease in the absorption capacity and physical properties.
  • the surface-crosslinking agent described above may further include at least one selected from the group consisting of polyvalent metal salts such as aluminum salts, more specifically, aluminum sulfate, potassium salt, ammonium salt, sodium salt and hydrochloride.
  • polyvalent metal salts such as aluminum salts, more specifically, aluminum sulfate, potassium salt, ammonium salt, sodium salt and hydrochloride.
  • the liquid permeability and the like of the superabsorbent resin produced by the method of one embodiment can be further improved.
  • the multivalent metal salt may be added to the surface cross-linking solution together with the surface cross-linking agent, and may be used in an amount of 0.01 to 4 parts by weight based on 100 parts by weight of the base resin.
  • step 3 the base resin, the surface cross-linking agent, and the mixture of the hydrophobic substances are heated to raise the temperature, thereby performing the surface modification step (step 3).
  • the surface modification step may be carried out by heating at a temperature of from about 80 to about 190 (preferably from about 100 to about 180 (preferably from about 10 to about 90 minutes, preferably from about 20 to about 70 minutes) .
  • the temperature raising means for the surface reforming reaction is not particularly limited.
  • a heating medium can be supplied, or a heating source can be directly supplied and heated.
  • the type of heat medium that can be used steam, hot air, hot fluid, or the like can be used, but the present invention is not limited thereto, and the temperature of the heat medium to be supplied is controlled by means of heating medium, It can be selected appropriately considering the temperature.
  • a heat source to be directly supplied a heating method using electricity or a heating method using gas may be mentioned, but the present invention is not limited to the above-mentioned examples.
  • the base resin has excellent gel strength due to the water-dispersed silica added at the time of polymerization, and further, by the surface modification step, the surface cross-linking agent and the base resin A surface crosslinked structure formed by reaction with a functional group is formed, and the surface crosslinked structure 2019/117541 1 »(: 1 ⁇ ⁇ 2018/015468
  • the superabsorbent resin produced by the production method of the present invention is superior in the properties of such a base resin and the surface reforming layer formed on the base resin to improve the rewetting properties without deteriorating properties such as water retention capacity and pressure absorption capacity Properties and initial absorption rates.
  • a base resin comprising a base resin comprising a cross-linked polymer obtained by crosslinking at least part of an acidic group with an acrylic acid-based monomer, and a base resin formed on the surface of the base resin,
  • the surface modifying layer comprises a hydrophobic substance having an HLB of not less than 0 and not more than 6, and has a vortex time of 35 seconds or less.
  • the superabsorbent resin has a CRC of at least about 30 g / g, or at least about 31 g / g, or at least about 32 g / g, and at least about 40 g / g, as measured according to EDANA method WSP 241.3 , Or about 38 g / g or less, or about 35 g / g or less.
  • the superabsorbent resin preferably has a pressure absorption capacity (AUP) of about 0.7 g / g or more, about 22 g / g or more, or about 23 g / g or more, measured according to EDANA method WSP 242.3 35 g / g or less, or about 33 g / g or less, or about 32 g / g or less.
  • AUP pressure absorption capacity
  • the high viscosity aqueous resin may have a vortex time of 35 seconds or less, or about 32 seconds or less, or about 30 seconds, or 28 seconds or less.
  • the lower limit of the absorption rate is theoretically 0 seconds, but may be, for example, about 5 seconds or more, or about 10 seconds or more, or about 12 seconds or more.
  • the regeneration speed means a time (unit: second) during which the vortex of the liquid disappears due to the rapid top water when high-viscosity aqueous resin is added to the physiological saline solution and the time is short, Can be seen to have a fast initial absorption rate.
  • the superabsorbent resin is preferably a resin which is measured according to the following formula 1 2019/117541 1 »(1 ⁇ 1 ⁇ 2018/015468
  • the permeability (unit: sec) may be about 20 seconds or less, or about 18 hours or less, or about 16 seconds or less.
  • the liquid permeability is better as the value is smaller, About 5 seconds or more, or about 10 seconds or more, or about 12 seconds or more.
  • the superabsorbent resin can exhibit excellent absorption characteristics while exhibiting improved rewet characteristics.
  • Non-pressurized water supply water or long-term rewet may be 3.0 g or less, or 2.5 g or less, or 2.0 g or less.
  • the lower the weight of the water is, the better the lower theoretical value may be 0 g, for example, 0.1 g or more, or 0.5 g or more, or 1.0 g or more.
  • the rewet property defined as the weight of water reabsorbed to the filter paper may be less than 1.0 g, or not more than 0.9 g, or not more than 0.8 g.
  • the tap water used in the re-wetting property evaluation has an electrical conductivity of 170 to ISOtiS / cm. Since the electrical conductivity of the tap water greatly affects the physical properties of the tap water, it is necessary to measure the physical properties such as rewet using tap water having an equivalent level of electrical conductivity.
  • the superabsorbent resin of the present invention has excellent absorption ability, and excellent rewetting and leakage of urine can be suppressed even when a large amount of urine is absorbed.
  • Sodium bicarbonate (SBC) as a blowing agent 0.6 g of sodium persulfate (SPS) as a photoinitiator, 0.008 g of bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 0.15 g of sodium persulfate 0.08 g of a surfactant, 0.035 g of sodium dodecylsulfate (SDS), 0.4 g of water-dispersed silica (ST-O), 123.3 g of 31.5% caustic soda (NaOH) and 38.53 g of water to prepare a monomer aqueous solution composition .
  • SBC sodium bicarbonate
  • SPS sodium persulfate
  • SPS bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide
  • 0.15 g of sodium persulfate 0.08 g of a surfactant 0.035 g of sodium dodecylsulfate (S
  • UV light was irradiated (irradiated amount: 10 mW / cm 2 ) with a UV irradiator for 1 minute while maintaining the polymerization atmosphere temperature at 80 ° C, aging for 2 minutes, A polymer sheet was prepared.
  • the polymerized sheet was taken out and cut into a size of 3 cm x 3 cm, followed by chopping using a meat chopper to prepare a crumb.
  • the crumb was dried in an oven capable of airflow transfer up and down.
  • the hot air of 185 ° C was flowed from the lower side to the upper side for 15 minutes and the lower side was flowed from the upper side to the lower side for 15 minutes. After drying, the water content of the dried body was made to be 2% or less.
  • the polymerized sheet was taken out and chopped using a meatchopper cut to a size of 3 cm x 3 cm to prepare a crumb.
  • the crumb was dried in an oven capable of airflow transfer up and down. 185 ° C hot air was uniformly dried by flowing from below to upward for 15 minutes and from downward to upward for 15 minutes. After drying, 2019/117541 1 »(: 1 ⁇ ⁇ 2018/015468
  • the water content was adjusted to 2% or less. After drying, the mixture was pulverized by a pulverizer, and then Amplitute
  • UV light was irradiated (irradiated amount: 10 mW / cm 2 ) with a UV irradiator for 1 minute while maintaining the polymerization atmosphere temperature at 80 ° C, aging for 2 minutes, A polymer sheet was prepared.
  • the polymerized sheet was taken out and cut into a size of 3 cm x 3 cm, followed by chopping using a meat chopper to prepare a crumb.
  • the crumb was dried in an oven capable of airflow transfer up and down.
  • the hot air at 185 ° C was turned upside down for 15 minutes, 2019/117541 1 »(: 1 ⁇ ⁇ 2018/015468
  • UV light was irradiated (irradiated amount: 10 mW / cm 2 ) with a UV irradiator for 1 minute while maintaining the polymerization atmosphere temperature at 80 ° C, aging for 2 minutes, A polymer sheet was prepared.
  • the polymerized sheet was taken out and cut into a size of 3 cm x 3 cm, followed by chopping using a meat chopper to prepare a crumb.
  • the crumb is placed in an oven capable of airflow transfer up and down 2019/117541 1 »(: 1 ⁇ ⁇ 2018/015468
  • UV light was irradiated (irradiated amount: 10 mW / cm 2 ) with a UV irradiator for 1 minute while maintaining the polymerization atmosphere temperature at 80 ° C, aging for 2 minutes, A polymer sheet was prepared.
  • the polymerized sheet was taken out, cut into a size of 3 cm x 3 cm, and chopped using a meat chopper to obtain a crumb 2019/117541 1 »(: 1 ⁇ ⁇ 2018/015468
  • the crumb was dried in an oven capable of airflow transfer up and down.
  • the hot air of 185 ° C was flowed from the lower side to the upper side for 15 minutes and the lower side was flowed from the upper side to the lower side for 15 minutes.
  • the water content of the dried body was made to be 2% or less. (5% / 75% / 20%) were collected from each sample, and then classified for 10 minutes in an Amplitute 1.5 mm (classification mesh combination: # 20-30 / # 30-50 / # 50-100)
  • a polymer having a particle diameter of about 150 to 850 / was obtained by classification, and a base resin powder was obtained in this way.
  • glyceryl stearate 7.7 parts by weight of water, 5.5 parts by weight of methanol, ethylene glycol diglycidyl ether (EX-810), and 0.1 part by weight of glyceryl stearate were added to 100 parts by weight of the base resin, 0.05 parts by weight of sodium metabisulfite, 0.1 part by weight of aluminum sulfate 18 hydrate (Al-S), and 0.03 parts by weight of aluminum oxide (Alu 130) were uniformly mixed , And the surface cross-linking reaction was carried out at 140 ° C for 35 minutes. After completion of the surface treatment, a water absorbent resin having an average particle size of 150 to 850 g was obtained using a sieve.
  • SPS sodium persulfate
  • SPS sodium persulfate
  • SDS sodium dodecylsulfate
  • UV polymerization was carried out by irradiating ultraviolet ray (irradiation amount: 10 mW / cm 2 ) with a UV irradiator for 1 minute while maintaining the polymerization atmosphere temperature at 80 ° C and aging for 2 minutes to prepare a hydrogel polymer sheet.
  • the polymerized sheet was taken out, cut into a size of 3 cm x 3 cm, chopped using a meat chopper to obtain a crumb 2019/117541 1 »(: 1 ⁇ ⁇ 2018/015468
  • the crumb was dried in an oven capable of airflow transfer up and down.
  • the hot air of 185 ° C was flowed from the lower side to the upper side for 15 minutes and the lower side was flowed from the upper side to the lower side for 15 minutes.
  • the water content of the dried body was made to be 2% or less. (10% / 75% / 15%) were collected from each sample, and then classified by Amplitute 1.5 mm for 10 minutes (classification mesh combination: # 20-30 / # 30-50 / # 50-100)
  • a polymer having a particle diameter of about 150 m to 850 was obtained by classification, and a base resin powder was obtained in this manner.
  • UV light was irradiated (irradiated amount: 10 mW / cm 2 ) with a UV irradiator for 1 minute while maintaining the polymerization atmosphere temperature at 80 ° C, aging for 2 minutes, A polymer sheet was prepared.
  • the polymerized sheet was taken out and chopped using a meat chopper cut into a size of 3 cm x 3 cm to prepare a crumb. 2019/117541 1 »(: 1 ⁇ ⁇ 2018/015468
  • the crumb was dried in an oven capable of airflow transfer up and down.
  • the hot air of 185 ° C was flowed from the lower side to the upper side for 15 minutes and the lower side was flowed from the upper side to the lower side for 15 minutes.
  • the water content of the dried body was made to be 2% or less. and then, 10 minutes classified as Amplitute 1.5 mm pulverized to (classification mesh combination: # 20-30 / 0 # 3 50 / # 50-100) were each classified min (10% / 75% / 15 %) was collected and classified to obtain a polymer having a particle diameter of about 150 pm to 850.
  • the base resin powder was obtained in this manner.
  • the base resin thus prepared was mixed with 7.6 parts by weight of water, 7.6 parts by weight of methanol, 0.075 part by weight of ethylene glycol diglycidyl ether (EX-810), sodium metabisulfite, 0.03 part by weight of aluminum sulfate 18, 0.1 part by weight of aluminum sulfate 18 hydrate (Al-S) and 0.03 part by weight of aluminum oxide (Alu 130) were uniformly mixed and then subjected to surface crosslinking reaction at 140 ° C for 35 minutes After the completion of the surface treatment, a sieve was used to average
  • the superabsorbent resin W 0 ( g) (about 0.2 g) was uniformly put in an envelope made of a nonwoven fabric and sealed, followed by immersion in physiological saline (0.9 wt%) at room temperature. After 30 minutes, water was drained from the envelope for 3 minutes under a condition of 250 G using a centrifuge, and the mass W 2 ( g) of the envelope was measured. Also, after the same operation was performed without using a resin, the mass Wg at that time was measured. Using the obtained masses, CRC (g / g) was calculated according to the following equation.
  • a 400 mesh wire mesh made of stainless steel was mounted on a cylindrical bottom of a plastic having an inner diameter of 60 mm.
  • the piston capable of uniformly applying a load of 0.7 psi uniformly over the superabsorbent resin W 0 ( g) (0.9 grains) on the wire net under conditions of room temperature and humidity of 50% is slightly smaller than the outer diameter of 60 mm.
  • the inner wall of the cylinder was free from cracks and the up and down movement was not disturbed, and the weight W 3 ( g) of the apparatus was measured.
  • a glass filter having a diameter of 90 mm and a thickness of 5 mm was placed inside a Petro dish having a diameter of 150 mm and a physiological saline solution composed of 0.9% by weight sodium chloride was made to have the same level as the upper surface of the glass filter. And a filter paper having a diameter of 90 mm was placed thereon.
  • the measuring device was placed on a filter paper, and the solution was absorbed under a load for 1 hour. After one hour, the measuring device was lifted and its weight W 4 ( g) was measured.
  • the pressure absorption capacity (g / g) was calculated by using the obtained masses according to the following equation. .
  • AUP (g / g) [ W 4 (g) - W 3 (g)] / W 0 (g)
  • the liquid permeability measuring device is a chromatography tube having an inner diameter of 20 mm and a glass filter at the lower end. Lines were indicated on the liquid surface of 20 ml and 40 ml with the piston in the chromatographic tube. Thereafter, water was added in an amount of about 10 ml to prevent air bubbles between the lower glass filter and the cock of the chromatography tube, and the mixture was washed 2-3 times with brine and filled with 0.9% brine to a volume of 40 ml or more. Put the piston into the chromatography tube and open the lower valve to record the time (in millimeters) of reducing the liquid level from 40 ml to the 20 ml marking line.
  • the vortex time was measured in the first place according to the method described in International Patent Application No. 1987-003208.
  • Examples 1 to 5 of the present invention all exhibited excellent absorption rate and liquid permeability, and it was confirmed that the rewetting amount with respect to the tap water was very small under pressureless pressure and pressure, showing improved rewetting characteristics .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

The present invention relates to a superabsorbent polymer and a preparation method therefor. The present invention can provide a superabsorbent polymer in which a hydrophobic material having an HLB of 0-6 and a surface cross-linking agent are mixed into a base resin prepared in the presence of water dispersible silica, thereby having improved rewetting characteristics and permeability through surface-modification of the base resin.

Description

2019/117541 1»(:1^1{2018/015468  2019/117541 1 »(: 1 ^ {2018/015468
【발명의 명칭】 Title of the Invention
고흡수성 수지 및 이의 제조방법  Superabsorbent resin and method for producing the same
【기술분야】  TECHNICAL FIELD
관련출원 (들)과의 상호인용  Cross-reference with related application (s)
본 출원은 2017년 12월 11일자 한국 특허 출원 10-2017-0169490호 및 This application is related to Korean Patent Application No. 10-2017-0169490, dated December 11, 2017,
2018년 12월 5일자 한국 특허 출원 10-2018-0155292호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. Claims priority to Korean Patent Application No. 10-2018-0155292, filed on December 5, 2018, the entire contents of which are incorporated herein by reference.
본 발명은 고흡수성 수지 및 이의 제조 방법에 관한 것이다. 보다 상세하게는,향상된 재습윤 (rewet)특성 및 흡수속도를갖는고흡수성 수지 및 이의 제조방법에 관한것이다.  The present invention relates to a superabsorbent resin and a method for producing the same. More particularly, the present invention relates to a superabsorbent resin having improved rewet characteristics and absorption rates and a method for producing the same.
【발명의 배경이 되는기술】  TECHNICAL BACKGROUND OF THE INVENTION
고듭수성 수지 (Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material)등 각기 다른 이름으로 명명하고 있다. 상기와같은고흡수성 수지는 생리용구로 실용화되기 시작해서,현재는어린이용종이기저귀나생리대 등위생용품외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도유지제,및찜질용등의 재료로널리사용되고있다.  Super Absorbent Polymer (SAP) is a synthetic polymer material capable of absorbing moisture of about 500 to 1,000 times its own weight. As a result, it is possible to use SAM (Super Absorbent Material), AGM Material), and so on. Such a superabsorbent resin has started to be put into practical use as a sanitary article and is currently being used for diapers and sanitary napkins for children, as well as soil repair agents for horticultural use, exponents for civil engineering and construction, sheet for seedling growing, , And as a material for fomentation and the like.
가장많은경우에, 이러한고흡수성 수지는기저귀나생리대 등위생재 분야에서 널리 사용되고 있는데, 이러한 용도를 위해 수분 등에 대한 높은 흡수력을 나타낼 필요가 있고, 외부의 압력에도 흡수된 수분이 빠져 나오지 않아야 하며, 이에 더하여, 물을 흡수하여 부피 팽창 (팽윤)된 상태에서도 형태를잘유지하여 우수한통액성 (permeability)을나타낼필요가있다.  In most cases, such superabsorbent resins are widely used in diapers and sanitary napkins. In order to use such superabsorbent resins, it is necessary to exhibit a high absorption capacity for moisture and the like, In addition, there is a need to exhibit excellent permeability by absorbing water to keep its shape even in the state of volume expansion (swelling).
그런데, 상기 고흡수성 수지의 기본적인 흡수력 및 보수력을 나타내는 물성인 보수능 (CRC)과, 외부의 압력에도 흡수된 수분을 잘 보유하는 특성을 나타내는 가압하흡수능 (AUP)은 함께 향상시키기 어려운 것으로 알려져 있다. 이는 고흡수성 수지의 전체적인 가교 밀도가 낮게 제어될 경우, 보수능은 상대적으로 높아질 수 있지만, 가교 구조가 성기게 되고 겔 강도가 낮아져 가압하흡수능은저하될수있기 때문이다.반대로,가교밀도를높게 제어하여 2019/117541 1»(:1^1{2018/015468 It has been known that it is difficult to improve both the water repellency (CRC), which is the physical property showing the basic absorption power and the water holding capacity of the superabsorbent resin, and the absorptive capacity under pressure (AUP), which shows the property of holding the moisture absorbed even to the external pressure well . This is because, when the overall cross-linking density of the superabsorbent resin is controlled to be low, the crosslinking density can be relatively high, but the cross-linking structure becomes difficult and the gel strength becomes low, So 2019/117541 1 »(: 1 ^ {2018/015468
가압하흡수능을 향상시키는 경우, 빽빽한가교구조사이로수분이 흡수되기 어려운 상태로 되어 기본적인 보수능이 저하될 수 있다. 상술한 이유로 인해, 보수능 및 가압하흡수능이 함께 향상된 고흡수성 수지를 제공하는데 한계가 있다. When the absorption capacity under pressure is improved, moisture is hardly absorbed between the dense crosslinked structures, and basic storage ability may be lowered. For the above reasons, there is a limit to providing a superabsorbent resin having both a water-repellent ability and an ability to absorb under pressure.
그러나, 최근 기저귀나 생리대 등과 같은 위생재의 박막화에 따라 고흡수성 수지에 보다높은흡수성능이 요구되고있다.이 중에서도,상반되는 물성인 보수능과 가압 흡수능의 동반 향상과 통액성의 개선 등이 중요한 과제로대두되고있다.  In recent years, however, it has become increasingly important to improve the water absorbing ability and the pressure absorbing ability, which are opposite physical properties, and the improvement of the liquid permeability. It is being installed in the lobby.
또한, 기저귀나 생리대 등의 위생재에는사용자의 무게에 의해 압력이 가해질 수 있다. 특히, 기저귀나 생리대 등의 위생재에 적용되는 고흡수성 수지가 액체를 흡수한 이후, 이에 사용자의 무게에 의한 압력이 가해지면 고흡수성 수지에 흡수된 일부 액체가다시 배어 나오는 재습윤( )현상과, 소변이
Figure imgf000003_0001
현상이 발생할수있다.
In addition, pressure may be applied to sanitary materials such as diapers and sanitary napkins by the weight of the user. Particularly, when a superabsorbent resin applied to a sanitary material such as a diaper or sanitary napkin absorbs a liquid, if a pressure due to the weight of the user is applied to the absorbent resin, a re-wetting phenomenon , Urine
Figure imgf000003_0001
A phenomenon may occur.
따라서,이러한재습윤현상을억제하고자여러 가지 시도들이 진행되고 있다. 하지만 아직까지 재습윤 현상을 효과적으로 억제할 수 있는 구체적인 방안이 제시되지 못하고있는실정이다.  Therefore, various attempts have been made to suppress such re-wetting phenomenon. However, there is no concrete method to effectively inhibit the re-wetting phenomenon.
【발명의 내용】  DISCLOSURE OF THE INVENTION
【해결하고자하는과제】  [Problem to be solved]
상기와 같은 종래 기술의 문제점을 해결하고자, 본 발명은 재습윤 및 소변누출현상이 억제되는고흡수성 수지 및 이의 제조방법을제공하는것을 목적으로한다.  In order to solve the problems of the prior art as described above, it is an object of the present invention to provide a superabsorbent resin in which rewetting and leakage of urine are suppressed, and a method of manufacturing the same.
【과제의 해결수단】  MEANS FOR SOLVING THE PROBLEMS
상기의 목적을달성하기 위하여,본발명의 일측면에 따르면, 수분산 실리카의 존재 하에, 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 및 내부 가교제가 가교 중합된 베이스 ); To achieve the above object, according to one aspect of the present invention, there is provided a method for producing an acrylic resin composition, which comprises, in the presence of water-dispersed silica, a base having an acidic group and at least a part of the acidic group neutralized with an acrylic acid-based monomer and an internal cross-
Figure imgf000003_0002
이상 6 이하인 소수성 물질, 및 표면 가교제를혼합하는단계(단계 2);및
Figure imgf000003_0002
(Step 2) of a hydrophobic substance and a surface cross-linking agent,
상기 단계 2의 혼합물을 승은하여 상기 베아스 수지에 대한 표면 개질을수행하는단계(단계 3); 2019/117541 1»(:1^1{2018/015468 Performing the surface modification on the bead resin by raising the mixture of step 2 (step 3); 2019/117541 1 »(: 1 ^ {2018/015468
를포함하는,고흡수성 수지의 제조방법을제공한다. And a method of producing the superabsorbent resin.
또한,본발명의 다른일측면에 따르면,  According to another aspect of the present invention,
산성기의 적어도일부가중화된 아크릴산계 단량체가가교중합된가교 중합체를포함하는베이스수지;및  A base resin comprising a cross-linked polymer obtained by cross-linking an acrylic acid-based monomer in which at least a part of an acidic group is neutralized; and
상기 베이스 수지의 입자 표면에 형성되어 있고, 상기 가교 중합체가 표면가교제를매개로추가가교되어 있는표면개질층을포함하고,  A surface modification layer formed on the particle surface of the base resin, wherein the cross-linking polymer is additionally crosslinked via a surface cross-linking agent,
상기 표면개질층은 HLB가 0이상 6이하인소수성 물질을포함하며, 롭수속도(vortex time)가 35초이하인,고톱수성 수지를제공한다.  Wherein the surface modification layer comprises a hydrophobic material having an HLB of not less than 0 and not more than 6, and a vortex time of not more than 35 seconds.
【발명의 효과】  【Effects of the Invention】
본 발명와 고흡수성 수지 및 이의 제조 방법에 따르면, 우수한 제반 흡수물성을나타내면서도재습윤현상및 소변누출현상이 억제된 고흡수성 수지를제공할수있다.  INDUSTRIAL APPLICABILITY According to the present invention and the superabsorbent resin and the method for producing the same, it is possible to provide a superabsorbent resin exhibiting excellent physical properties of absorption and inhibiting porcelain wetting phenomenon and urine leakage phenomenon.
【발명을실시하기 위한구체적인내용】  DETAILED DESCRIPTION OF THE INVENTION
본발명은다양한변경을가할수있고여러 가지 형태를가질수있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는본발명을특정한개시 형태에 대해 한정하려는 것이 아니며,본발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로이해되어야한다.  The present invention can be variously modified and may take various forms, and specific embodiments will be illustrated and described in detail below. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
이하,본발명의 일 구현예에 따른고흡수성 수지 및 이의 제조방법에 대해상세히 설명한다. 본발명의 일구현예에 따른고흡수성 수지의 제조방법은,  Hereinafter, a superabsorbent resin according to one embodiment of the present invention and a method for producing the same will be described in detail. A method of manufacturing a superabsorbent resin according to an embodiment of the present invention includes:
수분산 실리카의 존재 하에, 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 및 내부 가교제가 가교 중합된 베이스 수지(base resin)를준비하는단계(단계 1);  (Step 1) of preparing a base resin crosslinked with an acrylic acid-based monomer and an internal cross-linking agent having an acidic group and neutralizing at least a part of the acidic group in the presence of the water-dispersed silica;
상기 베이스 수지에, HLB가 0 이상 6 이하인 소수성 물질, 및 표면 가교제를혼합하는단계(단계 2);및  Mixing the base resin with a hydrophobic substance having an HLB of not less than 0 and not more than 6, and a surface cross-linking agent (step 2); and
상기 단계 2의 혼합물을 승은하여 상기 베이스 수지에 대한 표면 개질을수행하는단계(단계 3)를포함한다. 2019/117541 1»(:1^1{2018/015468 And performing the surface modification to the base resin by raising the mixture of the step 2 (step 3). 2019/117541 1 »(: 1 ^ {2018/015468
본발명의 명세서에서,’’베이스수지"또는 "베이스수지 분말’’은수용성 에틸렌계 불포화 단량체가 중합된 중합체를 건조 및 분쇄하여 입자여 0 또는파우더
Figure imgf000005_0001
형태로 만든 것으로,후술하는표면 개질 또는표면 가교 단계를수행하지 않은상태의 중합체를의미한다.
In the specification of the present invention, the term "base resin" or "base resin powder" means a polymer obtained by drying and pulverizing a polymer obtained by polymerizing a water-soluble ethylenically unsaturated monomer,
Figure imgf000005_0001
Means a polymer in a state where the surface modification or surface cross-linking step described later is not performed.
아크릴산계 단량체의 중합 반응에 의해 수득되는 함수겔상 중합체는 건조, 분쇄, 분급, 표면 가교 등의 공정을 거쳐 분말상의 제품인 고흡수성 수지로시판된다.  The hydrogel polymer obtained by the polymerization reaction of the acrylic acid-based monomer is subjected to a process such as drying, crushing, classification, surface crosslinking and the like, and is marketed as a superabsorbent resin which is powdery product.
최근들어 고흡수성 수지에서 흡수능,통액성과같은제반흡수물성뿐 아니라실제 기저귀가사용되는상황에서 표면의
Figure imgf000005_0002
상태가 얼마나 유지될수있는가가기저귀 특성을가늠하는중요한척도가되고있다.
In recent years, not only the absorption properties such as absorption ability and liquid permeability in the super absorbency resin, but also the properties of the surface
Figure imgf000005_0002
How long the condition can be maintained is an important measure of diaper characteristics.
본 발명의 일 구현예에 따른 제조방법에 의해 수득되는 고흡수성 수지는보수능, 가압흡수능, 통액성 등의 물성이 우수하여 우수한 제반흡수 성능을 나타내며, 염수에 의해 팽윤된 후에도 건조한 상태가 유지되며 고흡수성 수지에 흡수된 소변이 다시 배어 나오는 재습윤 0 및 소변 누출(1해 )현상을효과적으로방지할수 있음을확인하여 본발명에 이르게 되었다.  The superabsorbent resin obtained by the production method according to one embodiment of the present invention is excellent in physical properties such as water repellency, pressure absorbing ability and liquid permeability and exhibits excellent absorption performance and remains dry even after being swollen with salt water It is possible to effectively prevent the re-wetting 0 and the urine leakage (1-year) phenomenon in which the urine absorbed in the superabsorbent resin is re-exuded, leading to the present invention.
본발명의 고흡수성 수지의 제조방법에서,먼저 상기 고흡수성 수지의 원료 물질인 모노머 조성물은산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 내부 가교제, 중합 개시제, 및 수분산 실리카를 포함하는 모노머 조성물을 중합하여 함수겔상 중합체를 수득하고, 이를 건조, 분쇄,분급하여 베이스
Figure imgf000005_0003
준비한다(단계 1).
In the method for producing a superabsorbent resin of the present invention, the monomer composition, which is a raw material of the superabsorbent resin, is prepared by first mixing an acrylic acid-based monomer having an acidic group and at least a part of the acidic groups neutralized, an internal crosslinking agent, Polymerized to obtain a hydrogel polymer, which is dried, pulverized and classified to obtain a base
Figure imgf000005_0003
(Step 1).
이에 대해하기에서 보다상세히 설명한다.  This will be described in more detail below.
상기 고흡수성 수지의 원료 물질인 모노머 조성물은 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 및 중합 개시제를 포함한다.  The monomer composition which is a raw material of the superabsorbent resin includes an acrylic acid-based monomer having an acidic group and at least a part of the acidic groups neutralized and a polymerization initiator.
상기 아크릴산계단량체는하기 화학식 1로표시되는화합물이다:  The acrylic acid-based monomer is a compound represented by the following Formula 1:
[화학식 1] [Chemical Formula 1]
- 에  - on
상기 화학식 1에서,  In Formula 1,
II1은불포화결합을포함하는탄소수 2내지 5의 알킬그룹이고, 2019/117541 1»(:1^1{2018/015468 1은수소원자, 1가또는 2가금속,암모늄기 또는유기 아민염이다. 바람직하게는, 상기 아크릴산계 단량체는 아크릴산, 메타크릴산 및 이들의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택되는 1종이상을포함한다. II < 1 > is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond, 2019/117541 1 (1) (2018/015468) 1 is an azole, monovalent or divalent metal, an ammonium group or an organic amine salt. Preferably, the acrylic acid-based monomer includes at least one selected from the group consisting of acrylic acid, methacrylic acid, monovalent metal salts thereof, bivalent metal salts, ammonium salts and organic amine salts thereof.
여기서, 상기 아크릴산계 단량체는 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨,수산화칼륨,수산화암모늄등과 같은 알킬리 물질로부분적으로 중화시킨 것이 사용될 수 있다. 이때,상기 아크릴산계 단량체의 중화도는 40 내지 95 몰%, 또는 40 내지 80몰%,또는 45 내지 75 몰%일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 조절될 수 있다. 그런데, 상기 중화도가 지나치게 높으면 중화된 단량체가석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만아니라취급하기 곤란한탄성 고무와같은성질을나타낼수있다.  Here, the acrylic acid-based monomer may have an acidic group and at least a part of the acidic group may be neutralized. Preferably, the monomer is partially neutralized with an alkylene material such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and the like. At this time, the neutralization degree of the acrylic acid monomer may be 40 to 95 mol%, or 40 to 80 mol%, or 45 to 75 mol%. The range of the degree of neutralization can be adjusted according to the final properties. However, if the degree of neutralization is too high, neutralized monomers may precipitate and polymerization may be difficult to proceed smoothly. On the other hand, if the degree of neutralization is too low, the absorption capacity of the polymer is greatly decreased, .
상기 아크릴산계 단량체의 농도는,상기 고흡수성 수지의 원료물질 및 용매를포함하는모노머 조성물에 대해 약 20내지 약 60중량%,바람직하게는 약 40내지 약 50중량%로될수있으며,중합시간및 반응조건등을고려해 적절한 농도로 될 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮고 경제성에 문제가 생길 수 있고, 반대로 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄 시 분쇄 효율이 낮게 나타나는 등 공정상 문제가 생길 수 있으며 고흡수성 수지의 물성이 저하될수있다.  The concentration of the acrylic acid monomer may be about 20 to about 60 wt%, preferably about 40 to about 50 wt%, based on the monomer composition including the raw material of the superabsorbent resin and the solvent, The concentration may be appropriate considering the conditions and the like. However, if the concentration of the monomer is excessively low, the yield of the superabsorbent resin may be low and economical efficiency may be deteriorated. On the other hand, if the concentration is excessively high, a part of the monomer may precipitate or the pulverization efficiency may be low And the like, may cause problems in the process, and the physical properties of the superabsorbent resin may be deteriorated.
본 발명의 고흡수성 수지 제조 방법에서 중합시 사용되는 중합 개시제는 고흡수성 수지의 제조에 일반적으로 사용되는 것이면 특별히 한정되지 않는다.  In the method for producing a superabsorbent resin of the present invention, the polymerization initiator used in polymerization is not particularly limited as long as it is generally used in the production of a superabsorbent resin.
구체적으로,상기 중합개시제는중합방법에 따라열중합개시제 또는 조사에 따른 광중합 개시제를 사용할 수 있다. 다만 광중합 방법에 의하더라도,자외선조사등의 조사에 의해 일정량의 열이 발생하고,또한발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합개시제를포함할수도있다.  Specifically, as the polymerization initiator, a thermal polymerization initiator or a photopolymerization initiator upon irradiation may be used depending on the polymerization method. However, even when the photopolymerization method is employed, a certain amount of heat is generated by irradiation of ultraviolet light or the like, and a certain amount of heat is generated as the polymerization reaction, which is an exothermic reaction, proceeds.
상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 2019/117541 1»(:1/10公018/015468 The photopolymerization initiator may form a radical by light such as ultraviolet light 2019/117541 1 »(: 1/10/0/0 018/015468
있는화합물이면그구성의 한정이 없이 사용될수있다. Can be used without limitation of the constitution.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone), 하이드록실 알킬케톤 (hydroxyl alkylketone), 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (Benzyl Dimethyl Ketal), 아실포스핀 (acyl phosphine) 및 알파-아미노케톤 (a-aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체예로, 상용하는 lucirin TPO, 즉, 2,4,6 -트리메틸-벤조일-트리메틸 포스핀 옥사이드 (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)를사용할수 있다.보다다양한광개시제에 대해서는 Reinhold Schwalm 저서인 TJV Coatings: Basics, Recent Developments and NewExamples of the photopolymerization initiator include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, benzyl dimethyl ketal Ketal, acyl phosphine, and a-aminoketone may be used. On the other hand, Specific examples of the acylphosphine commercial lucirin TPO, that is, 2, 4, 6, which - may be trimethyl phosphine oxide (2, 4, -trimethyl-6-trimethyl benzoyl phosphine oxide) - trimethyl-benzoyl For more diverse photoinitiators, see Reinhold Schwalm, TJV Coatings: Basics, Recent Developments and New
Application(Elsevier 2007년)' pi 15에 잘명시되어 있으며,상술한 예에 한정되지 않는다. Application (Elsevier 2007) 'pi 15, and is not limited to the above example.
상기 광중합 개시제는 상기 모노머 조성물에 대하여 약 0.01 내지 약 1.0중량%의 농도로포함될수있다. 이러한광중합개시제의 농도가지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면고흡수성 수지의 분자량이 작고물성이 불균일해질수있다.  The photopolymerization initiator may be included in the monomer composition at a concentration of about 0.01 to about 1.0 wt%. If the concentration of such a photopolymerization initiator is too low, the polymerization rate may be slow. If the concentration of the photopolymerization initiator is too high, the molecular weight of the high absorption resin may be small and the physical properties may become uneven.
또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨 (Sodium persulfate; Na2S2()8),과황산칼륨 (Pota:ssium persulfate; K2S2O8), 과황산암모늄 (Ammonium persulfate;(NH4)2S2C)8) 등이 있으며 , 아조 (Azo)계 개시제의 예로는 2, 2 -아조비스- (2 -아미디노프로판)이염산염 (2,As the thermal polymerization initiator, at least one selected from persulfate-based initiators, azo-based initiators, initiators consisting of hydrogen peroxide and ascorbic acid can be used. Specifically, examples of the persulfate-based initiator include sodium persulfate (Na 2 S 2 () 8) , potassium sulphate (K 2 S 2 O 8), ammonium persulfate NH 2) 2 S 2 C) 8). Examples of azo initiators include 2, 2-azobis- (2-amidinopropane)
2-azobis(2-amidinopropane) dihydrochloride), 2, 2 -아조비스- (N,2-azobis (2-amidinopropane) dihydrochloride), 2, 2-azobis- (N,
N-디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2,2-azobis-(N, N-dimethylene)isobutyramidine dihydro chloride) ,N-dimethylene isobutyramidine dihydrochloride, 2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride,
2-(카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril), 2,2- (carbamoyl azo) isobutylonitrile, 2,
2 -아조비스 [2-(2 -이미다졸린- 2 -일)프로판] 2-azobis [2- (2-imidazolin-2-yl) propane]
디하이드로클로라이드 (2,2-azobis[2-(2-imida:zolin-2-yl)propane] dihydrochloride), 4, 4 -아조비스- (4 -시아노발레릭 산) (4,4-azobis-(4-cyanovaleric acid))등이 있다.보다 다양한열중합개시제에 대해서는 Odian저서인’Principle of Polymerization(Wiley, 0 2019/117541 1»(:1^1{2018/015468 Azobis [2- (2-imida: zolin-2-yl) propane] dihydrochloride), 4,4-azobis- (4-cyanovaleric acid) (4,4-azobis - (4-cyanovaleric acid), etc. For a variety of thermal polymerization initiators, see the Odian book Principle of Polymerization (Wiley, 0 2019/117541 1 »(: 1 ^ 1 {2018/015468
1981)’ 203에 잘명시되어 있으며,상술한예에 한정되지 않는다. 1981) '203, and is not limited to the above-mentioned examples.
본발명의 일 실시예에 따르면,상기 모노머 조성물은고흡수성 수지의 원료 물질로서 내부 가교제를 포함한다. 상기 내부 가교제로는 상기 아크릴산계 단량체와 반응할 수 있는 관능기를 1개 이상 가지면서, 에틸렌성 불포화기를 1개 이상 갖는 가교제; 혹은 상기 아크릴산계 단량체의 치환기 및/또는 단량체의 가수분해에 의해 형성된 치환기와반응할수 있는관능기를 2개 이상갖는가교제를사용할수있다.  According to one embodiment of the present invention, the monomer composition includes an internal cross-linking agent as a raw material for a superabsorbent resin. Examples of the internal crosslinking agent include a crosslinking agent having at least one functional group capable of reacting with the acrylic acid-based monomer and having at least one ethylenic unsaturated group; Or a crosslinking agent having two or more functional groups capable of reacting with a substituent formed by hydrolysis of a substituent and / or a monomer of the acrylic acid-based monomer may be used.
상기 내부 가교제의 구체적인 예로는, ’-메틸렌비스아크릴아미드, 트리메틸롤프로판 트리(메타)아크릴레이트, 에틸렌글리콜 다이(메타)아크릴레이트, 폴리에틸렌글리콜(메타)아크릴레이트, 프로필렌글리콜 다이(메타)아크릴레이트, 폴리프로필렌글리콜(메타)아크릴레이트, 부탄다이올다이(메타)아크릴레이트, 부틸렌글리콜다이(메타)아크릴레이트, 다이에틸렌글리콜 다이(메타)아크릴레이트, 핵산다이올다이(메타)아크릴레이트, 트리에틸렌글리콜 다이(메타)아크릴레이트, 트리프로필렌글리콜 다이(메타)아크릴레이트, 테트라에틸렌글리콜 다이(메타)아크릴레이트, 다이펜타에리스리톨 펜타아크릴레이트, 글리세린 트리(메타)아크릴레이트, 펜타에리스톨 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르, 프로필렌 글리콜, 글리세린, 및 에틸렌카보네이트로 이루어진 군으로부터 선택된 1종이상을사용할수있다.  Specific examples of the internal cross-linking agent include '-methylenebisacrylamide, trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, propylene glycol di (Meth) acrylate, butylene diol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, (Meth) acrylate such as triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri Triarylamine, ethylene Recall diglycidyl may be used at least one member selected from ether, propylene glycol, the group consisting of glycerin, and ethylene carbonate.
이러한 내부 가교제는 상기 모노머 조성물에 대하여 약 0.01 내지 약 Such an internal cross-linking agent may be present in the monomer composition at a level of from about 0.01 to about
0.5중량%의 농도로포함되어,중합된고분자를가교시킬수있다. 0.5% by weight, so that the polymerized polymer can be crosslinked.
본 발명의 제조방법에서, 상기 모노머 조성물은 수분산 실리카를 포함한다.  In the production method of the present invention, the monomer composition includes water-dispersed silica.
상기 수분산 실리카(¥110 比句는, 물에 실리카 입자가 침전되거나 응집되지 않고 안정하게 분산되어 있는 상태의 실리카를 의미하며, 실리카 입자표면의 적어도 일부가 이온화되어 있는실리카를 의미한다.상기 수분산 실리카의 제조방법은특별히 제한되지 않으며,전기투석,졸-겔법,이온교환법, 산-중화법 등알려진제조방법으로제조된것을사용할수있다. The dispersion of silica (¥ 11 0比句is, means silica in a state where stable dispersion of the silica particles in water without precipitation or flocculation, and, means silica which at least is partly ionized in the silica particle surface. The The method for producing the water-dispersed silica is not particularly limited, and those produced by known methods such as electrodialysis, sol-gel method, ion exchange method, and acid-neutralization method may be used.
상기 수분산실리카의 입경은 약 511111이상,또는 약 1011111이상이면서, 약 1001101 이하, 또는 약 5011111 이하, 또는 약 30파11 이하인 것이 바람직하다. 2019/117541 1»(:1^1{2018/015468 Particle size of the dispersion of silica is not more than 11111, yet about 5, or at least about 10 11111, preferably about 1101 to 100, or up to about 50 11111, or no more than about 30 wave 11. 2019/117541 1 »(: 1 ^ {2018/015468
상기 수분산실리카의 입경이 너무 작으면 가격이 비싸 제조원가가올라가고, 너무크면재습윤개선효과가나타나지 않을수있다. If the particle diameter of the water-dispersed silica is too small, the cost is high and the manufacturing cost is increased.
또한, 상기 수분산 실리카는 상기 아크릴산계 단량체 100 중량부에 대하여 약 0.01 내지 약 1.0중량부,또는약 0.02내지 약 0.5중량부의 농도로 첨가될수있다.상기 수분산실리카의 사용량이 1.0중량부를초과할경우에는 고흡수성 수지의 보수능이 저하될 수 있고, 0.01 중량부 미만일 경우 재습윤 개선효과가없을수있어 이러한관점에서 상기 중량부범위로사용하는것이 바람직할수있다.  The water-dispersed silica may be added in an amount of about 0.01 to about 1.0 part by weight, or about 0.02 to about 0.5 part by weight based on 100 parts by weight of the acrylic acid monomer. When the amount of the water-dispersed silica exceeds 1.0 part by weight , The water retention ability of the superabsorbent resin may be deteriorated. If the amount is less than 0.01 part by weight, rewetting may not be improved.
또한, 상기 수분산 실리카가 모노머 조성물 내에서 콜로이드 (colloid) 상태를유지하지 못하고석출되면 재습윤개선 효과를 얻을수없으므로,상기 수분산실리카는모노머 조성물에서 안정적인 콜로이드상태를유지하는 것을 사용하는 것이 바람직하다. 이러한측면에서 콜로이드상태가아닌 분말상태 또는 소수성 실리카는 재습윤 개선 효과가 없어 본 발명이 의도하는 효과를 달성할수없다.  Also, since the water-dispersed silica can not obtain the effect of improving the rewetting property when the colloid is not retained in the monomer composition, it is preferable that the water-dispersed silica maintains a stable colloid state in the monomer composition . In this respect, powdery or hydrophobic silica that is not in a colloidal state does not have an effect of improving rewetting, so that the intended effect of the present invention can not be achieved.
이러한조건을만족하는수분산실리카로는 Nissan Chemical사의 ST-O, As the water-dispersed silica satisfying these conditions, ST-O of Nissan Chemical Co.,
ST-AK등을들수있으나,본발명이 이에 한정되는것은아니다. ST-AK, etc., but the present invention is not limited thereto.
본 발명의 제조방법에 따르면, 상기와 같은 수분산 실리카를 중합 시 첨가하여, 상기 수분산 실리카의 존재 하에 중합을 실시함으로써 고흡수성 수지와 수분산 실리카 사이의 수소 결합에 의해 고흡수성 수지 입자의 겔 강도가 개선되는 효과를 나타낼 수 있으며, 이에 따라 재습윤 특성이 개선될 수있다.  According to the production method of the present invention, the above-mentioned water-dispersed silica is added at the time of polymerization, and polymerization is carried out in the presence of the water-dispersed silica to form a gel of the superabsorbent resin particle by hydrogen bonding between the superabsorbent resin and the water- The strength can be improved, and the rewet property can be improved.
본 발명의 제조방법에서, 상기 모노머 조성물은 발포제, 및/또는 기포 안정제를더 포함할수있다.  In the production process of the present invention, the monomer composition may further include a foaming agent, and / or a foam stabilizer.
상기 발포제는 중합시 발포가 일어나 함수겔 중합체 내 기공을 형성하여 표면적을 늘리는 역할을 한다. 상기 발포제는 탄산염을 사용할 수 있으며, 일례로 소디움 비카보네이트 (sodium bicarbonate), 소디움 카보네이트 (sodium carbonate),포타슘비카보네이트 (potassium bicarbonate),포타슘 카보네이트 (potassium carbonate), 칼슘 비카보네이트 (calcium bicarbonate), 칼슘 카보네이트 (calcium bicarbonate), 마그네슘 비카보네이트 (magnesiumbicarbonate) 또는마그네슘카보네이트 (magnesium carbonate)를사용할수있다. 2019/117541 1»(:1^1{2018/015468 The foaming agent acts to increase the surface area by foaming during polymerization to form pores in the hydrogel polymer. Examples of the foaming agent include carbonates such as sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, calcium bicarbonate, calcium bicarbonate, Calcium carbonate, calcium bicarbonate, magnesium bicarbonate or magnesium carbonate can be used. 2019/117541 1 »(: 1 ^ {2018/015468
또한,상기 발포제는상기 아크릴산계 단량체 100중량부에 대하여 약 0.005내지 약 1 중량부,또는약 0.01 내지 약 0.3중량부의 농도로 첨가될수 있다. 상기 발포제의 사용량이 1 중량부를 초과할 경우에는 기공이 너무 많아져 고흡수성 수지의 겔 강도가 떨어지고 밀도가 작아져 유통과 보관에 문제를 초래할 수 있다. 또한, 상기 0.005 중량부 미만일 경우에는 발포제로서의 역할이 미미할수있다. The blowing agent may be added at a concentration of about 0.005 to about 1 part by weight, or about 0.01 to about 0.3 part by weight based on 100 parts by weight of the acrylic acid monomer. If the amount of the foaming agent is more than 1 part by weight, the pores become too large, the gel strength of the superabsorbent resin decreases, and the density becomes low, which may cause problems in distribution and storage. When the amount is less than 0.005 parts by weight, the role as the blowing agent may be insignificant.
또한, 상기 기포 안정제는 발포제로 인하여 형성된 기포의 형태를 유지하면서 동시에 중합체 전영역에 기포를균일하게분포시키는역할을하는 것으로중합체의 표면적을늘리는역할을한다.  The bubble stabilizer serves to uniformly distribute the bubbles in the entire region of the polymer while maintaining the shape of the bubble formed by the foaming agent, thereby increasing the surface area of the polymer.
상기 기포 안정제로는 음이온성 계면활성제를 사용할 수 있으며, 사용가능한 음이온성 계면활성제의 예로는, 소듐 도데실 설페이트 (sodium dodecyl sulfate), 소듐 스테아레이트 (sodium stearate), 암모늄 라우릴 설페이트 (ammonium lauryl sulfate), 소디움 라우릴 에테르 설페이트 (sodium lauryl ether sulfate), 소디움 미레스 설페이트 (sodium myreth sulfate), 또는 이들과 유사한 알킬에테르 설페이트계 화합물을 들 수 있다. 사용 가능한 음이온성 계면활성제가 이에 한정되지는 않으나, 바람직하게는 소듐 도데실 설페이트 또는소듐스테아레이트를사용할수있다.  Examples of the anionic surfactant that can be used include anionic surfactants such as sodium dodecyl sulfate, sodium stearate, ammonium lauryl sulfate, ), Sodium lauryl ether sulfate, sodium myreth sulfate, or alkylether sulfate compounds similar thereto. The anionic surfactant that can be used is not limited thereto, but preferably sodium dodecyl sulfate or sodium stearate can be used.
상기 음이온성 계면활성제는 상기 아크릴산계 단량체 100 중량부에 대하여 약 0.001 내지 약 1 중량부, 또는 약 0.005 내지 약 0.05 중량부의 농도로 첨가될 수 있다. 상기 음이온성 계면활성제의 농도가 지나치게 낮을 경우 기포 안정제로서의 역할이 미미하여 흡수 속도 향상 효과를 달성하기 어렵고, 반대로 상기 농도가 지나치게 높을 경우 중합 후 표면 장력이 너무 낮아져 기저귀 물성에 악영향을미칠수있다.  The anionic surfactant may be added in a concentration of about 0.001 to about 1 part by weight, or about 0.005 to about 0.05 part by weight based on 100 parts by weight of the acrylic acid monomer. If the concentration of the anionic surfactant is excessively low, it is difficult to achieve an improvement in absorption rate due to its insufficient function as a foam stabilizer. On the other hand, if the concentration is excessively high, surface tension after polymerization may become too low to adversely affect the physical properties of the diaper.
본발명의 제조방법에서,고흡수성 수지의 상기모노머 조성물은필요에 따라 증점제 (thickener), 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포함할수있다.  In the production method of the present invention, the monomer composition of the superabsorbent resin may further contain additives such as a thickener, a plasticizer, a preservative stabilizer, and an antioxidant, if necessary.
상술한 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 광중합 개시제, 열중합 개시제, 내부 가교제 및 첨가제와 같은 원료 물질은 용매에 용해된 모노머 조성물 용액의 형태로 준비될 수 있다. 2019/117541 1»(:1^1{2018/015468 Raw materials such as acrylic acid-based monomer, photopolymerization initiator, thermal polymerization initiator, internal cross-linking agent and additive having the above-mentioned acid group and at least part of which is neutralized can be prepared in the form of a monomer composition solution dissolved in a solvent. 2019/117541 1 »(: 1 ^ {2018/015468
이 때 사용할수 있는상기 용매는상술한성분들을용해할수 있으면 그구성의 한정이 없이 사용될수있으며,예를들어 물,에탄올,에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4 -부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트,메틸에틸케톤,아세톤,메틸아밀케톤, 시클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 톨루엔, 크실텐, 부틸로락톤, 카르비톨, 메틸셀로솔브아세테이트및凡 -디메틸아세트아미드등에서 선택된 1종이상을 조합하여사용할수있다. The solvent which can be used at this time can be used without limitation of its constitution as long as it can dissolve the above-mentioned components. Examples thereof include water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4- Examples of the organic solvent include glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl One or more selected from ether, toluene, xylenes, butylolactone, carbitol, methylcellosolve acetate and benz-dimethylacetamide can be used in combination.
상기 용매는모노머 조성물의 총함량에 대하여 상술한성분을 제외한 잔량으로포함될수있다.  The solvent may be included in the balance of the total amount of the monomer composition excluding the components described above.
한편, 이와 같은 모노머 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 형성하는 방법 또한 통상 사용되는 중합 방법이면, 특별히 구성의 한정이 없다.  On the other hand, the method of forming a hydrogel polymer by thermal polymerization or photopolymerization of such a monomer composition is not particularly limited as long as it is a commonly used polymerization method.
구체적으로, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중합으로 나뉘며, 통상 열중합을 진행하는 경우, 니더(如대如!·)와 같은 교반죽을 가진 반응기에서 진행될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반응기에서 진행될 수 있으나, 상술한 중합 방법은일 예이며,본발명은상술한중합방법에 한정되지는않는다.  Specifically, the polymerization method is divided into thermal polymerization and photopolymerization largely depending on the polymerization energy source. In general, when thermal polymerization is carried out, the polymerization can proceed in a reactor having agitation such as kneader, The polymerization method described above is only one example, and the present invention is not limited to the polymerization method described above.
일 예로, 상술한 바와 같이 교반축을 구비한 니더(101 (1 )와 같은 반응기에, 열풍을 공급하거나 반응기를 가열하여 열중합을 하여 얻어진 함수겔상 중합체는 반응기에 구비된 교반축의 형태에 따라, 반응기 배출구로 배출되는 함수겔상중합체는 수 센티미터 내지 수 밀리미터 형태일 수 있다. 구체적으로, 얻어지는 함수겔상 중합체의 크기는 주입되는 모노머 조성물의 농도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 중량 평균 입경이 2내지 50 111111인함수겔상중합체가얻어질수있다. For example, the function gelled polymer obtained in the reactor such as a kneader (10 (1) 1 having an axis stirred, by the thermal polymerization by supplying hot air or heating of the reactor as described above in accordance with the form of a stirring shaft provided in the reactor, The hydrogel polymer discharged into the reactor outlet may be in the range of a few centimeters to a few millimeters. Specifically, the size of the obtained hydrogel polymer may vary depending on the concentration of the monomer composition to be injected, the injection rate, etc. In general, a gel polymer having a weight average particle diameter of 2 to 50 111111 can be obtained.
또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반응기에서 광중합을진행하는경우,통상얻어지는함수겔상중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔상 중합체일 수 있다. 이 때, 중합체 시트의 두께는주입되는 단량체 조성물의 농도 및 주입속도에 따라달라지나, 2019/117541 1»(:1^1{2018/015468 In addition, when photopolymerization proceeds in a reactor equipped with a movable conveyor belt as described above, the form of the hydrogel polymer that is usually obtained may be a hydrogel polymer on a sheet having a belt width. At this time, the thickness of the polymer sheet varies depending on the concentration and the injection rate of the monomer composition to be injected, 2019/117541 1 »(: 1 ^ {2018/015468
통상약 0.5내지 약 5cm의 두께를가진시트상의 중합체가얻어질수있도록 단량체 조성물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 5cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반응이 전 두께에 걸쳐 고르게 일어나지 않을수가있다. It is preferable to supply the monomer composition so that a polymer in the form of a sheet having a thickness of usually about 0.5 to about 5 cm can be obtained. When the monomer composition is supplied to such an extent that the thickness of the polymer in the sheet is too thin, the production efficiency is low, which is undesirable. When the thickness of the polymer on the sheet exceeds 5 cm, the polymerization reaction occurs evenly over the entire thickness due to the excessively thick thickness I can not.
이때 이와같은방법으로 얻어진 함수겔상중합체의 통상함수율은 약 40내지 약 80 중량%일 수 있다. 한편, 본 명세서 전체에서 "함수율”은 전체 함수겔상 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔상 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180°C까지 온도를 상승시킨 뒤 180°C에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을측정한다. The normal water content of the hydrogel polymer obtained by this method may be about 40 to about 80 wt%. The term "water content" as used throughout the present specification means a value obtained by subtracting the weight of the hydrogel polymer from the weight of the hydrogel polymer in terms of the content of water with respect to the weight of the total functional gel polymer. Specifically, The temperature is increased from room temperature to about 180 ° C, and then maintained at 180 ° C. In this case, , And the total drying time is set to 20 minutes including the temperature rising step of 5 minutes, and the water content is measured.
다음에,얻어진함수겔상중합체를건조하는단계를수행한다.  Next, the step of drying the obtained hydrogel polymer is carried out.
이때 필요에 따라서 상기 건조 단계의 효율을 높이기 위해 건조 전에 조분쇄하는단계를더 거칠수있다.  At this time, if necessary, the step of coarse grinding may be further carried out before drying in order to increase the efficiency of the drying step.
이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기 (Vertical pulverizer),터보커터 (Turbo cutter),터보글라인더 (Turbo grinder), 회전 절단식 분쇄기 (Rotary cutter mill), 절단식 분쇄기 (Cutter mill), 원판 분쇄기 (Disc mill),조각파쇄기 (Shred crusher), 파쇄기 (Crusher),초퍼 (chopper) 및 원판식 절단기 (Disc cutter)로이루어진분쇄 기기 군에서 선택되는어느하나를 포함할수있으나,상술한예에 한정되지는않는다.  In this case, the pulverizer to be used is not limited in its constitution, but may be a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, A crusher, a disc mill, a disc mill, a shred crusher, a crusher, a chopper, and a disc cutter. The present invention is not limited to the above-described example.
이때 분쇄 단계는 함수겔상 중합체의 입경이 약 2 내지 약 10mm로 되도록분쇄할수있다.  Wherein the milling step may be milled so that the hydrous gel polymer has a particle size of about 2 to about 10 mm.
입경이 2mm미만으로분쇄하는것은함수겔상중합체의 높은함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 응집되는 현상이 나타날 수도 있다. 한편, 입경이 10mm 초과로 분쇄하는 경우, 추후 이루어지는건조단계의 효율증대효과가미미하다. 2019/117541 1»(:1^1{2018/015468 It is technically not easy to crush to less than 2 mm in diameter due to the high moisture content of the hydrogel polymer, and there may be a phenomenon that the crushed particles cohere to each other. On the other hand, when the particle size is larger than 10 mm, the effect of increasing the efficiency of the subsequent drying step is insignificant. 2019/117541 1 »(: 1 ^ {2018/015468
상기와 같이 분쇄되거나, 혹은 분쇄 단계를 거치지 않은 중합 직후의 함수겔상중합체에 대해 건조를수행한다.이때 상기 건조단계의 건조온도는 약 150내지 약 25CTC일수있다.건조온도가 150 °C 미만인경우,건조시간이 지나치게 길어지고최종형성되는고흡수성 수지의 물성이 저하될우려가있고, 건조 온도가 250°C를 초과하는 경우, 지나치게 중합체 표면만 건조되어,추후 이루어지는분쇄 공정에서 미분이 발생할수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 따라서 바람직하게 상기 건조는 약 150 내지 약 200°C의 온도에서, 더욱 바람직하게는 약 160 내지 약 180°C의 온도에서 진행될수있다. The drying is carried out on the hydrogel polymer immediately after the polymerization, which has not been pulverized or pulverized as described above, wherein the drying temperature of the drying step may be about 150 to about 25 C. When the drying temperature is lower than 150 ° C, There is a possibility that the drying time is too long and the physical properties of the superabsorbent resin to be finally formed are lowered. When the drying temperature exceeds 250 ° C, only the polymer surface is dried excessively, There is a possibility that the physical properties of the superabsorbent resin finally formed are lowered. Thus, preferably, the drying can proceed at a temperature of from about 150 to about 200 ° C, more preferably from about 160 to about 180 ° C.
한편, 건조 시간의 경우에는 공정 효율 등을 고려하여, 약 20내지 약 On the other hand, in the case of drying time, in consideration of process efficiency and the like, about 20 to about
90분동안진행될수있으나,이에 한정되지는않는다. But it is not limited thereto.
상기 건조 단계의 건조 방법 역시 함수겔상 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은약 0.1내자약 10중량%일수있다.  The drying method in the drying step may be selected and used as long as it is usually used as a drying step of the hydrogel polymer. Specifically, the drying step can be carried out by hot air supply, infrared irradiation, microwave irradiation, ultraviolet irradiation, or the like. After such a drying step, the water content of the polymer may be about 0.1 to about 10 wt%.
다음에, 이와같은건조단계를거쳐 얻어진 건조된 중합체를분쇄하는 단계를수행한다.  Next, a step of pulverizing the dried polymer obtained through such a drying step is carried out.
분쇄 단계후얻어지는중합체 분말은입경이 약 150내지 약 850m일 수있다.이와같은입경으로분쇄하기 위해사용되는분쇄기는구체적으로,핀 밀 (pin mill),해머 밀 (hammer mill),스크류밀 (screw mill),롤밀 (roll mill),디스크 밀 (disc mill) 또는 조그 밀 (jog mill) 등을 사용할 수 있으나, 상술한 예에 본 발명이 한정되는것은아니다.  The polymer powder obtained after the pulverization step may have a particle size of about 150 to about 850 m. The pulverizer used for pulverizing with such a particle size is specifically a pin mill, a hammer mill, a screw a roll mill, a disc mill, or a jog mill may be used. However, the present invention is not limited to the above-described examples.
그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있으며, 상기 중합체 분말을 입경 범위에 따라일정 중량비가되도록분급할수있다.  In order to control the physical properties of the superabsorbent resin powder which is finally produced after the pulverization step, a separate process of classifying the polymer powder obtained after the pulverization according to the particle size may be carried out. .
다음에,상기 베이스수지에, HLB가 0 이상 6 이하인 소수성 물질, 및 표면가교제를혼합한다 (단계 2).  Next, a hydrophobic substance having an HLB of 0 or more and 6 or less and a surface cross-linking agent are mixed in the base resin (Step 2).
일반적인 고흡수성 수지의 제조방법에서, 건조 및 분쇄된 중합체, 즉 2019/117541 1»(:1^1{2018/015468 In a general method for producing a superabsorbent resin, a dried and pulverized polymer, that is, 2019/117541 1 »(: 1 ^ {2018/015468
베이스 수지에 표면 가교제를 포함하는 표면 가교 용액을 혼합한 다음, 이들 혼합물에 열을 가하여 승온함으로써 상기 분쇄된 중합체에 대해 표면 가교 반응을수행한다. A surface cross-linking solution containing a surface cross-linking agent is mixed with a base resin, and then the surface cross-linking reaction is performed on the ground polymer by heating the mixture by heating.
상기 표면가교단계는표면가교제의 존재 하에 상기 분쇄된중합체의 표면에 가교 반응을유도함으로써,보다향상된 물성을 갖는고흡수성 수지를 형성시키는 단계이다. 이러한 표면 가교를 통해 상기 분쇄된 중합체 입자의 표면에는표면가교층 (표면개질층)이 형성된다.  The surface crosslinking step is a step of inducing a crosslinking reaction on the surface of the pulverized polymer in the presence of a surface crosslinking agent to form a superabsorbent resin having improved physical properties. Through such surface crosslinking, a surface crosslinked layer (surface modifying layer) is formed on the surface of the pulverized polymer particles.
일반적으로, 표면 가교제는 고흡수성 수지 입자의 표면에 도포되므로 표면 가교 반응은 고흡수성 수지 입자의 표면 상에서 일어나며, 이는 입자 내부에는 실질적으로 영향을 미치지 않으면서 입자의 표면 상에서의 가교 결합성은 개선시킨다. 따라서 표면 가교 결합된 고흡수성 수지 입자는 내부에서보다표면부근에서 더 높은가교결합도를갖는다.  Generally, the surface cross-linking agent is applied to the surface of the superabsorbent resin particles, so that the surface cross-linking reaction occurs on the surface of the superabsorbent resin particles, which improves the crosslinkability on the surface of the particles without substantially affecting the inside of the particles. Thus, the surface cross-linked superabsorbent resin particles have a higher degree of crosslinking in the vicinity of the surface than in the interior.
그런데 이러한 표면 가교 반응에 의해 가압 흡수능과 통액성 (permeability)은개선될수있지만재습윤및보수능은약화될수있다. 그런데, 본 발명의 제조방법에 따르면, 베이스 수지에 표면 가교제를 혼합하여 표면 가교 반응을수행하기 위해 승은하기 전에 소수성 물질을상기 베이스 수지에 혼합하여 재습윤 특성을 개선할 수 있다. 또한 표면 가교 효율이 향상되어 소수성 물질을 사용하지 않은 수지에 비해 흡수 속도, 및 통액성이 더욱향상될수있다.  However, the pressure absorption ability and the permeability can be improved by the surface cross-linking reaction, but the rewetting and maintenance ability can be weakened. However, according to the production method of the present invention, it is possible to improve the re-wetting property by mixing the base resin with a surface crosslinking agent to mix the hydrophobic substance with the base resin before the surface crosslinking reaction is carried out. In addition, the surface crosslinking efficiency is improved, so that the absorption rate and the liquid permeability can be further improved as compared with the resin not using a hydrophobic substance.
상기 소수성 물질은 HLB가그하한값으로 0이상,또는 1 이상,또는 2 이상이면서 상한값으로 6이하,또는 5이하,또는 5.5이하를만족하는물질을 사용할 수 있다. 또한, 상기 소수성 블질은 표면 가교 반응시 녹아 베이스 수지의 표면 개질층에 위치해야 하므로 용융 온도 (melting point)가 표면 가교 반응온도이하인물질을사용할수있다.  The hydrophobic substance may be a material that satisfies 0 or more, or 1 or more, or 2 or more, and 6 or less, or 5 or less, or 5.5 or less as the lower limit of HLB. In addition, since the hydrophobic structure is to be dissolved in the surface modification layer of the base resin by melting in the surface cross-linking reaction, a material having a melting point lower than the surface cross-linking reaction temperature may be used.
사용가능한소수성 물질로는 예를들어,글리세릴 스테아레이트 (glyceryl stearate),글리콜스테아레이트 (glycol stearate),마그네슘스테6]·레이트 (magnesium stearate), 글리세릴 라우레이트 (glyceryl laurate), 소르비탄 스테아레이트 (sorbitan stearate), 소르비탄 트리올리에이트 (sorbitan trioleate), 또는 PEG-4 디라우레이트 (PEG-4 dilaurate) 등을 들 수 있으며, 바람직하게는 글리세릴 스테아레이트를사용할수있으나,이에 제한되는것은아니다. 2019/117541 1»(:1^1{2018/015468 A usable hydrophobic substances include, for example, glyceryl stearate (glyceryl stearate), glycol stearate (glycol stearate), magnesium stearyl 6-rate (magnesium stearate), glyceryl monolaurate (glyceryl laurate), sorbitan stearate Sorbitan stearate, sorbitan trioleate, or PEG-4 dilaurate. Preferably, glyceryl stearate can be used, but it is not limited thereto. It is not. 2019/117541 1 »(: 1 ^ {2018/015468
상기 소수성 물질은 상기 베이스 수지의 표면의 표면 개질층 내에 분포하여 고흡수성 수지가 액체를 흡수하여 팽윤되는 과정에서 팽윤된 수지 입자들이 높아진 압력에 따라 서로 응집되거나 뭉쳐지는 것을 방지하며, 표면에 소수성을 부여함으로써 액체의 투과 및 확산을 보다 용이하게 할 수 있다.따라서 고흡수성 수지의 재습윤특성을개선하는데기여할수있다. The hydrophobic substance is distributed in the surface modified layer of the surface of the base resin so that the swollen resin particles in the process of absorbing and swelling the liquid of the super absorbency resin are prevented from aggregating or aggregating according to the increased pressure, It is possible to more easily transmit and diffuse the liquid, thereby contributing to improvement of the re-wetting property of the superabsorbent resin.
상기 소수성 물질은 상기 베이스 수지 100 중량부에 대하여 약 0.02 중량부 이상,또는 약 0.025중량부 이상,또는 약 0.05중량부 이상이면서 약 0.5중량부 이하,또는 약 0.3중량부 이하,또는 약 0.1 중량부 이하가되도록 혼합할수있다.상기 소수성 물질의 함량이 0.02중량부미만으로너무적으면 재습윤특성을 개선하기에 부족할수 있고, 0.5 중량부를초과하여 너무 많이 포함될경우베이스수지와소수성 물질이 서로탈리 되어 재습윤개선효과가 없거나 불순물로 작용하는 문제가 있을 수 있으므로 이러한 관점에서 상기 중량부범위가바람직할수있다.  The hydrophobic material may be present in an amount of at least about 0.02 part by weight, or at least about 0.025 part by weight, or at least about 0.05 part by weight, and up to about 0.5 part by weight, or up to about 0.3 part by weight, or up to about 0.1 part by weight, If the content of the hydrophobic substance is less than 0.02 part by weight, the rewet property may not be improved. If the content of the hydrophobic substance is more than 0.5 part by weight, the base resin and the hydrophobic substance may be separated from each other There may be a problem that the rewetting improving effect does not exist or may act as an impurity, so the weight range may be preferable from this point of view.
상기 소수성 물질을 혼합하는 방법은, 상기 베이스 수지에 고르게 혼합할수 있는방법이라면특별히 한정하지 않고적절히 채택하여 사용할수 있다.  The method of mixing the hydrophobic substance is not particularly limited as long as it can mix the base resin uniformly and can be suitably employed.
예를 들어, 상기 소수성 물질은 상기 베이스 수지에 표면 가교제를 포함하는 표면 가교 용액을 혼합하기 전에 건식으로 혼합하거나, 상기 표면 가교 용액에 먼저 분산시켜 표면 가교 용액과 함께 베이스 수지에 혼합하는 방식으로혼합할수 있다.또는,상기 표면가교용액과는별도로,상기 소수성 물질을용융온도이상으로가열하여 용액상태로혼합할수도있다.  For example, the hydrophobic substance may be mixed by dry mixing before mixing the surface cross-linking solution containing the surface cross-linking agent into the base resin, or by first dispersing the surface cross-linking solution in the base cross- Alternatively, separately from the surface cross-linking solution, the hydrophobic substance may be heated to a melting temperature or higher to be mixed in a solution state.
상기 표면가교제 첨가시,추가로물을함께혼합하여 표면가교용액의 형태로 첨가할수 있다. 물을 첨가하는 경우, 표면 가교제가중합체에 골고루 분산될수 있는이점이 있다. 이때,추가되는물의 함량은표면 가교제의 고른 분산을 유도하고 중합체 분말의 뭉침 현상을 방지함과동시에 표면 가교제의 표면 침투 깊이를최적화하기 위한목적으로중합체 100중량부에 대해, 약 1 내지 약 10중량부의 비율로첨가되는것이 바람직하다.  When the above-mentioned surface cross-linking agent is added, water can be further mixed together and added in the form of a surface cross-linking solution. When water is added, there is an advantage that the surface crosslinking agent can be uniformly dispersed in the polymer. At this time, the added water content is preferably from about 1 to about 10 wt. Parts per 100 parts by weight of the polymer for the purpose of inducing uniform dispersion of the surface cross-linking agent and preventing the polymer powder from aggregating and optimizing the surface penetration depth of the surface cross- By weight.
또한, 상기 표면 가교제로는 중합체가 갖는 관능기와 반응 가능한 화합물이라면그구성의 한정이 없다.  The surface cross-linking agent is not limited in its constitution as long as it is a compound capable of reacting with a functional group contained in the polymer.
바람직하게는 생성되는고흡수성 수지의 특성을향상시키기 위해,상기 2019/117541 1»(:1^1{2018/015468 Preferably, in order to improve the properties of the resulting superabsorbent resin, 2019/117541 1 »(: 1 ^ {2018/015468
표면가교제로다가알콜화합물;에폭시 화합물;폴리아민화합물;할로에폭시 화합물; 할로에폭시 화합물의 축합산물; 옥사졸린 화합물류; 모노-, 디- 또는 폴리옥사졸리디논 화합물; 환상 우레아 화합물; 다가 금속염; 및 알킬렌 카보네이트화합물로이루어진군에서 선택되는 1종이상을사용할수있다. 구체적으로,다가알콜화합물의 예로는모노-,디-,트리-,테트라-또는 폴리에틸렌 글리콜, 모노프로필렌 글리콜, 1,3 -프로판디올, 디프로필렌 글리콜, 2, 3, 4 -트리메틸- 1,3 -펜탄디올, 폴리프로필렌 글리콜, 글리세롤, 폴리글리세롤, 2 -부텐- 1,4 -디올, 1,4 -부탄디올, 1,3 -부탄디올, 1,5 -펜탄디올, 1,6 -핵산디올, 및 1,2 -사이클로핵산디메탄올로 이루어진 군에서 선택되는 1 종 이상을사용할수 있다. A surface crosslinking agent, a polyhydric alcohol compound, an epoxy compound, a polyamine compound, a haloepoxy compound, A condensation product of a haloepoxy compound; Oxazoline compounds; Mono-, di- or polyoxazolidinone compounds; Cyclic urea compounds; Polyvalent metal salts; And an alkylene carbonate compound can be used. Specific examples of the polyhydric alcohol compound include mono-, di-, tri-, tetra- or polyethylene glycol, monopropylene glycol, 1,3-propanediol, dipropylene glycol, 2,3,4- - pentanediol, polypropylene glycol, glycerol, polyglycerol, 2-butene-1,4-diol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,2-cyclic nucleic acid dimethanol, and the like.
또한,에폭시 화합물로는에틸렌글리콜디글리시딜에테르및글리시돌 등을 사용할 수 있으며, 폴리아민 화합물류로는 에틸렌디아민, 디에틸렌트리아민, 트리에틸렌테트라아민, 테트라에틸렌펜타민, 펜타에틸렌핵사민 , 폴리에틸렌이민 및 폴리아미드폴리아민로 이루어진 군에서 선택되는 1종이상을사용할수있다.  Examples of the epoxy compounds include ethylene glycol diglycidyl ether and glycidol. Examples of the polyamine compounds include ethylene diamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylene nucleus amine, Polyethyleneimine and polyamidepolyamines can be used.
그리고 할로에폭시 화합물로는 에피클로로히드린, 에피브로모히드린 및 (X-메틸에피클로로히드린을 사용할 수 있다. 한편, 모노-, 디- 또는 폴리옥사졸리디논화합물로는예를들어 2 -옥사졸리디논등을사용할수있다. 그리고, 알킬렌 카보네이트화합물로는에틸렌 카보네이트등을사용할 수 있다. 이들을각각 단독으로사용하거나서로조합하여 사용할수도 있다. 한편, 표면 가교 공정의 효율을 높이기 위해, 이들 표면 가교제 중에서 1 종 이상의 탄소수 2 내지 10의 다가 알코올 화합물류를 1 종 이상 포함하여 사용할수있다.  As the haloepoxy compound, epichlorohydrin, epibromohydrin, and (X-methyl epichlorohydrin can be used. As the mono-, di- or polyoxazolidinone compounds, for example, 2-oxazolidinone Dinonone, etc. As the alkylene carbonate compounds, ethylene carbonate and the like can be used. These can be used alone or in combination with each other. [0112] On the other hand, in order to increase the efficiency of the surface cross- One or more polyhydric alcohol compounds having 2 to 10 carbon atoms may be used.
상기 첨가되는 표면 가교제의 함량은 구체적으로 추가되는 표면 가교제의 종류나 반응 조건에 따라 적절히 선택될 수 있지만, 통상 베이스 수지 100 중량부에 대해, 약 0.001 내지 약 5 중량부, 바람직하게는 약 0.01 내지 약 3 중량부, 더욱 바람직하게는 약 0.05내지 약 2중량부를사용할수 있다.  The amount of the surface crosslinking agent to be added may be appropriately selected depending on the kind of the surface crosslinking agent to be added and the reaction conditions, but is usually about 0.001 to about 5 parts by weight, preferably about 0.01 to about 5 parts by weight, About 3 parts by weight, more preferably about 0.05 to about 2 parts by weight may be used.
표면 가교제의 함량이 지나치게 적으면, 표면 가교 반응이 거의 일어나지 않으며,중합체 100중량부에 대해, 5중량부를초과하는경우,과도한 2019/117541 1»(:1^1{2018/015468 If the content of the surface cross-linking agent is too small, the surface cross-linking reaction hardly occurs, and when the amount is more than 5 parts by weight based on 100 parts by weight of the polymer, 2019/117541 1 »(: 1 ^ {2018/015468
표면 가교 반응의 진행으로 인해 흡수능력 및 물성의 저하현상이 발생할수 있다. The progress of the surface cross-linking reaction may cause a decrease in the absorption capacity and physical properties.
한편,상술한상기 표면 가교제 외에 다가금속염, 예를들어,알루미늄 염, 보다 구체적으로 알루미늄의 황산염, 칼륨염, 암모늄염, 나트륨염 및 염산염으로이루어진군에서 선택된 1종이상을더 포함할수있다.  On the other hand, in addition to the surface-crosslinking agent described above, it may further include at least one selected from the group consisting of polyvalent metal salts such as aluminum salts, more specifically, aluminum sulfate, potassium salt, ammonium salt, sodium salt and hydrochloride.
이러한 다가 금속염은 추가로 사용함에 따라, 일 구현예의 방법으로 제조된 고흡수성 수지의 통액성 등을 더욱 향상시킬 수 있다. 이러한 다가 금속염은상기 표면 가교제와함께 표면 가교용액에 첨가될 수 있으며,상기 베이스 수지 100중량부에 대하여 0.01 내지 4중량부의 함량으로사용될 수 있다.  As the polyvalent metal salt is further used, the liquid permeability and the like of the superabsorbent resin produced by the method of one embodiment can be further improved. The multivalent metal salt may be added to the surface cross-linking solution together with the surface cross-linking agent, and may be used in an amount of 0.01 to 4 parts by weight based on 100 parts by weight of the base resin.
다음에, 상기 베이스 수지, 표면 가교제, 및 소수성 물질의 혼합물에 열을 가하여 승온함으로써 상기 베이스 수지에 대해 표면 개질 단계를 수행한다(단계 3).  Next, the base resin, the surface cross-linking agent, and the mixture of the hydrophobic substances are heated to raise the temperature, thereby performing the surface modification step (step 3).
상기 표면개질단계는약 80내지 약 190°(:,바람직하게는약 100내지 약 180°(:의 온도에서 약 10내지 약 90분,바람직하게는약 20내지 약 70분 동안가열시킴으로써 수행할수 있다.가교반응온도가
Figure imgf000017_0001
미만이거나반응 시간이 너무 짧을 경우 표면 가교 반응이 제대로 일어나지 않아 투과도가 낮아질 수 있고, 1901:를 초과하거나 반응 시간이 너무 길 경우 보수능이 저하되는문제가발생할수있다.
The surface modification step may be carried out by heating at a temperature of from about 80 to about 190 (preferably from about 100 to about 180 (preferably from about 10 to about 90 minutes, preferably from about 20 to about 70 minutes) . The crosslinking reaction temperature
Figure imgf000017_0001
Or the reaction time is too short, the surface cross-linking reaction does not occur properly and the permeability may be lowered. If the reaction time exceeds 1901: or the reaction time is too long, the water retention ability may decrease.
표면 개질 반응을위한승온수단은특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는스팀, 열풍,뜨거운 기름과 같은승은한유체 등을사용할 수 있으나, 본 발명이 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한가열방법을들수있으나,상술한예에 본발명이 한정되는것은아니다. 본 발명의 제조방법에 따르면, 중합시 첨가한수분산실리카로 인하여 베이스수지가겔강도가우수한특성을가지며,또한,상기 표면 개질 단계에 의해, 상기 베이스 수지의 표면에는 표면 가교제와 베이스 수지가 갖는 관능기와 반응하여 형성된 표면 가교 구조가 형성되며, 상기 표면 가교 구조 2019/117541 1»(:1^1{2018/015468 The temperature raising means for the surface reforming reaction is not particularly limited. A heating medium can be supplied, or a heating source can be directly supplied and heated. At this time, as the type of heat medium that can be used, steam, hot air, hot fluid, or the like can be used, but the present invention is not limited thereto, and the temperature of the heat medium to be supplied is controlled by means of heating medium, It can be selected appropriately considering the temperature. On the other hand, as a heat source to be directly supplied, a heating method using electricity or a heating method using gas may be mentioned, but the present invention is not limited to the above-mentioned examples. According to the production method of the present invention, the base resin has excellent gel strength due to the water-dispersed silica added at the time of polymerization, and further, by the surface modification step, the surface cross-linking agent and the base resin A surface crosslinked structure formed by reaction with a functional group is formed, and the surface crosslinked structure 2019/117541 1 »(: 1 ^ {2018/015468
내에 전술한소수성 물질이 고르게분포한표면개질층이 형성될수있다. 따라서,상기 본 발명의 제조방법으로 제조된 고흡수성 수지는, 이러한 베이스수지의 특성과상기 베이스수지 상에 형성되는표면 개질층으로 인해 보수능과가압흡수능 등의 물성을 저하시키지 않으면서 향상된 재습윤특성 및초기 흡수속도를가질수있다. A surface modification layer in which the aforementioned hydrophobic substance is evenly distributed can be formed. Therefore, the superabsorbent resin produced by the production method of the present invention is superior in the properties of such a base resin and the surface reforming layer formed on the base resin to improve the rewetting properties without deteriorating properties such as water retention capacity and pressure absorption capacity Properties and initial absorption rates.
이에 본 발명의 다른 일 구현예에 따르면, 산성기의 적어도 일부가 중화된 아크릴산계 단량체가 가교 중합된 가교 중합체를 포함하는 베이스 수지;및 상기 베이스수지의 입자표면에 형성되어 있고,상기 가교중합체가 표면가교제를매개로추가가교되어 있는표면 개질층을포함하고,상기 표면 개질층은 HLB가 0 이상 6 이하인 소수성 물질을 포함하며, 흡수 속도 (vortex time)가 35초이하인고흡수성 수지를제공한다.  According to another embodiment of the present invention, there is provided a base resin comprising a base resin comprising a cross-linked polymer obtained by crosslinking at least part of an acidic group with an acrylic acid-based monomer, and a base resin formed on the surface of the base resin, Wherein the surface modifying layer comprises a hydrophobic substance having an HLB of not less than 0 and not more than 6, and has a vortex time of 35 seconds or less.
상기 고흡수성 수지의 구체적인 제조방법 및 물성 등에 대한 상세한 설명은상기 고흡수성 수지의 제조방법에서상술한바와같다.  Details of the specific production method and physical properties of the superabsorbent resin are the same as those described above in the production method of the superabsorbent resin.
상기 고흡수성 수지는, EDANA 법 WSP 241.3에 따라 측정한 보수능 (CRC)이 약 30 g/g이상,또는약 31 g/g이상,또는약 32 g/g이상이면서, 약 40 g/g이하,또는 약 38 g/g이하,또는 약 35 g/g이하의 범위를가질 수 있다.  The superabsorbent resin has a CRC of at least about 30 g / g, or at least about 31 g / g, or at least about 32 g / g, and at least about 40 g / g, as measured according to EDANA method WSP 241.3 , Or about 38 g / g or less, or about 35 g / g or less.
또한,상기 고흡수성 수지는, EDANA법 WSP 242.3에 따라측정한 0.7 psi의 가압흡수능 (AUP)이 약 20 g/g이상,또는약 22 g/g이상,또는약 23 g/g 이상이면서,약 35 g/g이하,또는약 33 g/g이하,또는약 32 g/g이하의 범위를 가질수있다.  Further, the superabsorbent resin preferably has a pressure absorption capacity (AUP) of about 0.7 g / g or more, about 22 g / g or more, or about 23 g / g or more, measured according to EDANA method WSP 242.3 35 g / g or less, or about 33 g / g or less, or about 32 g / g or less.
또한,상기 고톱수성 수지는,롭수속도 (vortex time)가 35초 이하, 또는 약 32초 이하,또는 약 30초,또는 28초 이하일 수 있다.상기 흡수속도는그 값이 작을수록우수하여 상기 흡수속도의 하한은 이론상 0초이나, 일례로 약 5초이상,또는약 10초이상,또는약 12초이상일수있다.  In addition, the high viscosity aqueous resin may have a vortex time of 35 seconds or less, or about 32 seconds or less, or about 30 seconds, or 28 seconds or less. The lower limit of the absorption rate is theoretically 0 seconds, but may be, for example, about 5 seconds or more, or about 10 seconds or more, or about 12 seconds or more.
상기 듭수 속도는 생리 식염수에 고톱수성 수지를 가하여 교반시켰을 때, 빠른 톱수에 의해 액체의 소용돌이 (vortex)가 없어지는 시간 (time, 단위: 초)을 의미하는 것으로서, 상기 시간이 짧을수록 고흡수성 수지가 빠른 초기 흡수속도를갖는것으로볼수있다.  The regeneration speed means a time (unit: second) during which the vortex of the liquid disappears due to the rapid top water when high-viscosity aqueous resin is added to the physiological saline solution and the time is short, Can be seen to have a fast initial absorption rate.
또한, 상기 고흡수성 수지는, 하기 식 1에 따라 측정되는 2019/117541 1»(그1^1{2018/015468 Further, the superabsorbent resin is preferably a resin which is measured according to the following formula 1 2019/117541 1 »(1 ^ 1 {2018/015468
통액성(permeability, 단위: 초)이 약 20초 이하, 또는 약 18조 이하, 또는 약 16초 이하일 수 있다.상기 통액성은그 값이 작을수록우수하여 이론상하한 값은 0초이나, 예를 들어 약 5초 이상, 또는 약 10초 .이상, 또는 약 12초 이상일수있다. The permeability (unit: sec) may be about 20 seconds or less, or about 18 hours or less, or about 16 seconds or less. The liquid permeability is better as the value is smaller, About 5 seconds or more, or about 10 seconds or more, or about 12 seconds or more.
[식 1]  [Formula 1]
통액성(sec) = Tl - B  Liquid permeability (sec) = Tl - B
상기 식 1에서, In Equation (1)
은 크로마토그래피 관 내에 분급(30# - 50#)된 고흡수성 수지 시료 0.2±0.0005g을 넣고 염수를 가하여 염수부피가 50 ml가되게 한후, 30분 간 방치후,액면높이가 40 ml에서 20 ml까지 줄어드는데에 걸리는시간이고, B는 염수가 채워진 크로마토그래피 관에서 액면높이가 40 ml에서 20 ml까지 줄어드는데에 걸리는시간이다.  0.2 ± 0.0005 g of a superabsorbent resin sample (30 # - 50 #) in a chromatographic tube was added and the brine volume was adjusted to 50 ml by adding brine. The mixture was allowed to stand for 30 minutes, , And B is the time it takes for the liquid level to decrease from 40 ml to 20 ml in a chromatographic tube filled with salt water.
또한, 상기 고흡수성 수지는 우수한 흡수 특성을 나타내면서도, 보다 향상된재습윤특성을나타낼수있다.  In addition, the superabsorbent resin can exhibit excellent absorption characteristics while exhibiting improved rewet characteristics.
보다 구체적으로, 상기 고톱수성 수지 lg을 수도수 100g에 침지시켜 More specifically, 1 g of the high viscosity aqueous resin is immersed in 100 g of tap water
10분동안팽윤시킨후,팽윤된상기 고흡수성 수지를수도수에 침지시킨 최초 시점으로부터 3시간 동안 여과지 상에서 방치하고 나서, 상기 고흡수성 수지로부터 상기 여과지로 다시 베어나온 물의 중량으로 정의되는 재습윤 특성(무가압 수도수 장기 재습윤)이 3.0g 이하, 또는 2.5g 이하, 또는 2.0g 이하로 될 수 있다. 상기 물의 중량은 그 값이 작을수록 우수하여 이론상 하한값은 0g이나, 예를들어 O.lg이상,또는 0.5g이상,또는 l.Og이상으로될 수있다. Defined as the weight of water repelled from the superabsorbent resin to the filter paper after being allowed to stand on the filter paper for 3 hours from the initial time when the swollen superabsorbent resin is immersed in the tap water after swelling for 10 minutes, (Non-pressurized water supply water or long-term rewet) may be 3.0 g or less, or 2.5 g or less, or 2.0 g or less. The lower the weight of the water is, the better the lower theoretical value may be 0 g, for example, 0.1 g or more, or 0.5 g or more, or 1.0 g or more.
또는 상기 고흡수성 수지 lg을 수도수 100g에 침지시켜 10분 동안 팽윤시킨 후, 팽윤된 상기 고흡수성 수지를 수도수에 침지시킨 최초 시점으로부터 1시간 동안 여과지 상에서 방치하고 나서, 상기 고흡수성 수지로부터 상기 여과지로 다시 베어나온 물의 중량으로 정의되는 재습윤 특성(무가압 수도수 단기 재습윤)이 l.Og 이하, 또는 0.9g 이하, 또는 0.8g 이하로 될 수 있다. 상기 물의 중량은 그 값이 작을수록 우수하여 이론상 하한값은 0g이나, 예를들어 O.lg이상,또는 0.2g이상,또는 0.3g이상으로될 수있다. 2019/117541 1»(:1^1{2018/015468 Or 1 g of the superabsorbent resin is immersed in 100 g of tap water and swelled for 10 minutes and then allowed to stand on the filter paper for 1 hour from the initial point of immersing the swollen superabsorbent resin in tap water, The rewet property defined as the weight of water reabsorbed to the filter paper (unpressurized water short-term rehydrated) may be less than 1.0 g, or not more than 0.9 g, or not more than 0.8 g. The lower the weight of the water is, the better the lower theoretical value may be 0 g, for example, 0.1 g or more, or 0.2 g or more, or 0.3 g or more. 2019/117541 1 »(: 1 ^ {2018/015468
상기 재습윤 물성 평가에서 사용한 수도수는 전기 전도도가 170 내지 ISOtiS/cm이다. 수도수의 전기 전도도는 측정 물성에 큰 영향을 주기 때문에 동등한 수준의 전기 전도도를 갖는 수도수를 사용해서 재습윤 등의 물성을 측정할필요가있다. The tap water used in the re-wetting property evaluation has an electrical conductivity of 170 to ISOtiS / cm. Since the electrical conductivity of the tap water greatly affects the physical properties of the tap water, it is necessary to measure the physical properties such as rewet using tap water having an equivalent level of electrical conductivity.
상기와 같이 본 발명의 고흡수성 수지는 우수한 흡수능을 가지며 다량의 소변을 흡수하였을 경우에도 우수한 재습윤 및 소변 누출 현상이 억제될수있다.  As described above, the superabsorbent resin of the present invention has excellent absorption ability, and excellent rewetting and leakage of urine can be suppressed even when a large amount of urine is absorbed.
본 발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는것은아니다.  The present invention will be described in more detail in the following Examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.
<실시예> <Examples>
고흡수성수지의 제조  Preparation of superabsorbent resin
실시예 1  Example 1
아크릴산 100 g, 가교제로 폴리에틸렌글리콜디아크릴레이트 (PEGDA, 100 g of acrylic acid, 20 g of polyethylene glycol diacrylate (PEGDA,
Mw=523) 0.6 g,광개시제로 Bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide 0.008g, 열개시제로소디움퍼설페이트 (sodium persulfate; SPS) 0.15 g,발포제로소디움 비카보네이트 (sodium bicarbonate; SBC) 0.08 g, 계면활성제로 소디움 도데실설페이트 (sodium dodecylsulfate; SDS) 0.035 g,수분산실리카 (ST-O) 0.4g, 31.5% 가성소다 (NaOH) 123.3g, 물 38.53g을 혼합하여 모노머 수용액 조성물을 제조하였다. 상기 모노머 수용액 조성물을 Tray에 받은 후, 중합분위기 온도 80°C를 유지하면서 UV 조사 장치로 1분간 자외선을 조사하고 (조사량: 10 mW/cm2), 2분간 aging하여 UV 중합을 진행하여 함수겔 중합체 시트를 제조하였다. Sodium bicarbonate (SBC) as a blowing agent, 0.6 g of sodium persulfate (SPS) as a photoinitiator, 0.008 g of bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 0.15 g of sodium persulfate 0.08 g of a surfactant, 0.035 g of sodium dodecylsulfate (SDS), 0.4 g of water-dispersed silica (ST-O), 123.3 g of 31.5% caustic soda (NaOH) and 38.53 g of water to prepare a monomer aqueous solution composition . After the monomer aqueous solution composition was received in a tray, ultraviolet light was irradiated (irradiated amount: 10 mW / cm 2 ) with a UV irradiator for 1 minute while maintaining the polymerization atmosphere temperature at 80 ° C, aging for 2 minutes, A polymer sheet was prepared.
중합된 시트를 꺼내어 3 cm x 3 cm의 크기로자른후,미트쵸퍼 (meat chopper)를 이용하여 다지기 공정 (chopping)을 실시하여 가루 (crumb)를 제조하였다. 상기 가루 (crumb)을 상하로 풍량 전이가 가능한 오븐에서 건조하였다. 185°C의 핫 에어 (hot air)를 15분은 하방에서 상방으로, 15분은 상방에서 하방으로 흐르게 하여 균일하게 건조하였으며, 건조 후 건조체의 함수량은 2%이하게 되도록하였다.건조후,분쇄기로분쇄한다음, Amplitute 2019/117541 1»(:1^1{2018/015468 The polymerized sheet was taken out and cut into a size of 3 cm x 3 cm, followed by chopping using a meat chopper to prepare a crumb. The crumb was dried in an oven capable of airflow transfer up and down. The hot air of 185 ° C was flowed from the lower side to the upper side for 15 minutes and the lower side was flowed from the upper side to the lower side for 15 minutes. After drying, the water content of the dried body was made to be 2% or less. , Followed by addition of Amplitute 2019/117541 1 »(: 1 ^ {2018/015468
1.5 mm로 10분 분급 (분급 mesh 조합: #20-30/#30-50/#50-100)하였으며, 각 분급분 (10%/75%/15%)을 수집하여 입경 약 150 m 내지 850 인 중합체를 분급하여 얻었고,이러한방법으로베이스수지 분말을얻었다. (Classification mesh combination # 20-30 / # 30-50 / # 50-100) of 1.5 mm and collecting each class (10% / 75% / 15% , And a base resin powder was obtained in this way.
이후, 상기 제조한 베이스 수지 100 중량부에, 글리세릴 스테아레이트 (glyceryl stearate) 0.02중량부,표면 가교액 (물 7.6중량부, 메탄올 Thereafter, 0.02 part by weight of glyceryl stearate, and 7.6 parts by weight of a surface cross-linking agent (7.6 parts by weight of water,
7.6 중량부, 에틸렌글리콜 디글리시딜 에테르 (EX-810) 0.075 중량부, 소듐메타바이 설페이트 (sodium metabisulfite) 0.03중량부,알루미늄설페이트 18 수화물 (aluminum sulfate 18 hydrate; Al-S) 0.1중량부,및 알루미늄옥사이드 (Alu 130) 0.03중량부)을고르게 혼합한후, 140°C에서 .35분동안표면 가교반응을 진행하였다. 상기 표면 처리 완료 후, 시브 (sieve)를 이용하여 평균 입경 크기 150내지 850 _인고흡수성 수지를얻었다. , 0.075 part of ethylene glycol diglycidyl ether (EX-810), 0.03 part of sodium metabisulfite, 0.1 part of aluminum sulfate 18 hydrate (Al-S) And 0.03 parts by weight of aluminum oxide (Alu 130)) were uniformly mixed, and surface cross-linking reaction was carried out at 140 ° C for .35 minutes. After completion of the surface treatment, a water absorbent resin having an average particle size of 150 to 850 _ was obtained using a sieve.
이후, 상기 제조한 고흡수성 수지에 알루미늄 옥사이드 (Alu 130) 0.05 중량부를건식혼합하였다. 실시예 2  Thereafter, 0.05 parts by weight of aluminum oxide (Alu 130) was dry-mixed with the above superabsorbent resin. Example 2
아크릴산 100 g, 가교제로 폴리에틸렌글리콜디아크릴레이트 (PEGDA, Mw=523) 0.6 g,광개시제로 Bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide 0.008g, 열개시제로소디움퍼설페이트 (sodium persulfate; SPS) 0.15 g,발포제로소디움 비카보네이트 (sodium bicarbonate; SBC) 0.08 g, 계면활성제로 소디움 도데실설페이트 (sodium dodecylsulfate; SDS) 0.035 g,수분산실리카 (ST-AK) 0.4g, 100 g of acrylic acid, 0.6 g of polyethylene glycol diacrylate (PEGDA, Mw = 523) as a crosslinking agent, 0.008 g of bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide as a photoinitiator, 0.08 g of sodium persulfate 0.08 g of sodium bicarbonate (SBC) as a foaming agent, 0.035 g of sodium dodecylsulfate (SDS) as a surfactant, 0.4 g of water-dispersed silica (ST-AK)
31.5% 가성소다 (NaOH) 123.3g, 물 38.53g을 혼합하여 모노머 수용액 조성물을 제조하였다. 상기 모노머 수용액 조성물을 Tray에 받은후, 중합분위기 온도 80°C를 유지하면서 UV 조사 장치로 1분간 자외선을 조사하고 (조사량: 10 mW/cm2), 2분간 aging하여 UV 중합을 진행하여 함수겔 중합체 시트를 제조하였다. 123.3 g of 31.5% caustic soda (NaOH), and 38.53 g of water were mixed to prepare a monomer aqueous solution composition. After the monomer aqueous solution composition was received in a tray, ultraviolet light was irradiated (irradiated amount: 10 mW / cm 2 ) with a UV irradiator for 1 minute while maintaining the polymerization atmosphere temperature at 80 ° C, aging for 2 minutes, A polymer sheet was prepared.
중합된 시트를꺼내어 3 cm x 3 cm의 크기로자른투,미트쵸퍼 (meatchopper)를 이용하여 다지기 공정 (chopping)을 실시하여 가루 (crumb)를 제조하였다. 상기 가루 (crumb)을 상하로 풍량 전이가 가능한 오븐에서 건조하였다. 185°C의 핫 에어 (hot air)를 15분은 하방에서 상방으로, 15분은 상방에서 하방으로 흐르게 하여 균일하게 건조하였으며, 건조 후 건조체의 2019/117541 1»(:1^1{2018/015468 The polymerized sheet was taken out and chopped using a meatchopper cut to a size of 3 cm x 3 cm to prepare a crumb. The crumb was dried in an oven capable of airflow transfer up and down. 185 ° C hot air was uniformly dried by flowing from below to upward for 15 minutes and from downward to upward for 15 minutes. After drying, 2019/117541 1 »(: 1 ^ {2018/015468
함수량은 2%이하게 되도록하였다.건조후,분쇄기로분쇄한다음, AmplituteThe water content was adjusted to 2% or less. After drying, the mixture was pulverized by a pulverizer, and then Amplitute
1.5 mm로 10분 분급 (분급 mesh 조합: #20-30/#30-50/#50-100)하였으며, 각 분급분 (10%/75%/15%)을 수집하여 입경 약 150 m 내지 850 _인 중합체를 분급하여 얻었고,이러한방법으로베이스수지 분말을얻었다. (Classification mesh combination # 20-30 / # 30-50 / # 50-100) of 1.5 mm and collecting each class (10% / 75% / 15% ______________________________________ A base resin powder was obtained in this way.
이후, 상기 제조한 베이스 수지 100 중량부에, 글리세릴 스테아레이트 (glyceryl stearate) 0.02중량부,표면 가교액 (물 7.6중량부, 메탄올 Thereafter, 0.02 part by weight of glyceryl stearate, and 7.6 parts by weight of a surface cross-linking agent (7.6 parts by weight of water,
7.6 중량부, 에틸렌글리콜 디글리시딜 에테르 (EX-810) 0.075 중량부, 소듐메타바이 설페이트 (sodium metabisulfite) 0.03중량부,알루미늄설페이트 18 수화물 (aluminum sulfate 18 hydrate; Al-S) 0.1중량부,및 알루미늄옥사이드 (Alu 130) 0.03중량부)을고르게혼합한후, 140°C에서 35분동안표면가교반응을 진행하였다. 상기 표면 처리 완료 후, 시브 (sieve)를 이용하여 평균 입경 크기 150내지 850 /패인고흡수성 수지를얻었다. , 0.075 part of ethylene glycol diglycidyl ether (EX-810), 0.03 part of sodium metabisulfite, 0.1 part of aluminum sulfate 18 hydrate (Al-S) And 0.03 part by weight of aluminum oxide (Alu 130)) were uniformly mixed, and the surface cross-linking reaction was carried out at 140 ° C for 35 minutes. After completion of the surface treatment, a superabsorbent resin having an average particle size of 150 to 850 / D was obtained using a sieve.
이후, 상기 제조한 고흡수성 수지에 알루미늄 옥사이드 (Alu 130) 0.05 중량부를건식 혼합하였다. 실시예 3  Thereafter, 0.05 parts by weight of aluminum oxide (Alu 130) was dry-mixed with the above superabsorbent resin. Example 3
아크릴산 100 g, 가교제로 폴리에틸렌글리콜디아크릴레이트 (PEGDA, Mw=523) 0.75 g,광개시제로 Bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide 0.008g, 열개시제로소디움퍼설페이트 (sodium persulfate; SPS) 0.08 g,발포제로소디움 비카보네이트 (sodium bicarbonate; SBC) 0.2 g, 계면활성제로 소디움 도데실설페이트 (sodium dodecylsulfate; SDS) 0.025 g,수분산실리카 (ST-O) O.lg, 31.5% 가성소다 (NaOH) 123.3g, 물 38.53g을 혼합하여 모노머 수용액 조성물을 제조하였다. 상기 모노머 수용액 조성물을 Tray에 받은후, 중합분위기 온도 80°C를 유지하면서 UV 조사 장치로 1분간 자외선을 조사하고 (조사량: 10 mW/cm2), 2분간 aging하여 UV 중합을 진행하여 함수겔 중합체 시트를 제조하였다. 100 g of acrylic acid, 0.75 g of polyethylene glycol diacrylate (PEGDA, Mw = 523) as a crosslinking agent, 0.008 g of bis (2,4,6-trimethylbenzoyl) -phenylphosphineoxide as a photoinitiator, 0.08 g of sodium persulfate 0.2 g of sodium bicarbonate (SBC) as a foaming agent, 0.025 g of sodium dodecylsulfate (SDS) as a surfactant, 0.1 g of water-dispersed silica (ST-O), 31.5% of caustic soda NaOH) and 38.53 g of water to prepare a monomer aqueous solution composition. After the monomer aqueous solution composition was received in a tray, ultraviolet light was irradiated (irradiated amount: 10 mW / cm 2 ) with a UV irradiator for 1 minute while maintaining the polymerization atmosphere temperature at 80 ° C, aging for 2 minutes, A polymer sheet was prepared.
중합된 시트를꺼내어 3 cm x 3 cm의 크기로자른후,미트츠퍼 (meat chopper)를 이용하여 다지기 공정 (chopping)을 실시하여 가루 (crumb)를 제조하였다. 상기 가루 (crumb)을 상하로 풍량 전이가 가능한 오븐에서 건조하였다. 185 °C의 핫 에어 (hot air)를 15분은 하방에서 상방으로, 15분은 2019/117541 1»(:1^1{2018/015468 The polymerized sheet was taken out and cut into a size of 3 cm x 3 cm, followed by chopping using a meat chopper to prepare a crumb. The crumb was dried in an oven capable of airflow transfer up and down. The hot air at 185 ° C was turned upside down for 15 minutes, 2019/117541 1 »(: 1 ^ {2018/015468
상방에서 하방으로 흐르게 하여 균일하게 건조하였으며, 건조 후 건조체의 함수량은 2%이하게 되도록하였다.건조후,분쇄기로분쇄한다음, AmplituteAfter drying, it was pulverized by a pulverizer, and then Amplitute
1.5 mm로 10분 분급 (분급 mesh 조합: #20-30/#30-50/#50-100)하였으며, 각 분급분 (5%/75%/20%)을 수집하여 입경 약 150 pm 내지 850 인 중합체를 분급하여 얻었고,이러한방법으로베이스수지 분말을얻었다. (5% / 75% / 20%) were collected and classified to a particle diameter of about 150 to 850 , And a base resin powder was obtained in this way.
이후, 상기 제조한 베이스 수지 100 중량부에, 글리세릴 스테아레이트 (glyceryl stearate) 0.025중량부,표면가교액 (물 7.7중량부,메탄올 Thereafter, 0.025 part by weight of glyceryl stearate, and a surface cross-linking solution (7.7 parts by weight of water,
5.5중량부,에틸렌글리콜디글리시딜에테르 (EX-810) 0.02중량부,소듐메타바이 설페이트 (sodium metabisulfite) 0.05 중량부, 알루미늄 설페이트 18 수화물 (aluminum sulfate 18 hydrate; Al-S) 0.1 중량부,및 알루미늄옥사이드 (Alu 130) 0.03중량부)을고르게 혼합한후, 140°C에서 35분동안표면 가교반응을 진행하였다. 상기 표면 처리 완료 후, 시브 (sieve)를 이용하여 평균 입경 크기 150내지 850 _인고흡수성 수지를얻었다. , 0.05 parts by weight of sodium metabisulfite, 0.1 part by weight of aluminum sulfate 18 hydrate (Al-S) And 0.03 part by weight of aluminum oxide (Alu 130)) were uniformly mixed, and the surface cross-linking reaction was carried out at 140 ° C for 35 minutes. After completion of the surface treatment, a water absorbent resin having an average particle size of 150 to 850 _ was obtained using a sieve.
이후, 상기 제조한 고흡수성 수지에 알루미늄 옥사이드 (Alu 130) 0.05 중량부를건식 혼합하였다. 실시예 4  Thereafter, 0.05 parts by weight of aluminum oxide (Alu 130) was dry-mixed with the above superabsorbent resin. Example 4
아크릴산 100 g, 가교제로 폴리에틸렌글리콜디아크릴레이트 (PEGDA, Mw=523) 0.75 g,광개시제로 Bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide 0.008g, 열개시제로소디움퍼설페이트 (sodium persulfate; SPS) 0.08 g,발포제로소디움 비카보네이트 (sodium bicarbonate; SBC) 0.2 g, 계면활성제로 소디움 도데실설페이트 (sodium dodecylsulfate; SDS) 0.025 g,수분산실리카 (ST-AK) O.lg, 31.5% 가성소다 (NaOH) 123.3g, 물 38.53g을 혼합하여 모노머 수용액 조성물을 제조하였다. 상기 모노머 수용액 조성물을 Tray에 받은후, 중합분위기 온도 80°C를 유지하면서 UV 조사 장치로 1분간 자외선을 조사하고 (조사량: 10 mW/cm2), 2분간 aging하여 UV 중합을 진행하여 함수겔 중합체 시트를 제조하였다. 100 g of acrylic acid, 0.75 g of polyethylene glycol diacrylate (PEGDA, Mw = 523) as a crosslinking agent, 0.008 g of bis (2,4,6-trimethylbenzoyl) -phenylphosphineoxide as a photoinitiator, 0.08 g of sodium persulfate 0.28 g of sodium bicarbonate (SBC) as a blowing agent, 0.025 g of sodium dodecylsulfate (SDS) as a surfactant, 0.1 g of an aqueous dispersion silica (ST-AK), 31.5% of caustic soda NaOH) and 38.53 g of water to prepare a monomer aqueous solution composition. After the monomer aqueous solution composition was received in a tray, ultraviolet light was irradiated (irradiated amount: 10 mW / cm 2 ) with a UV irradiator for 1 minute while maintaining the polymerization atmosphere temperature at 80 ° C, aging for 2 minutes, A polymer sheet was prepared.
중합된 시트를꺼내어 3 cm x 3 cm의 크기로자른후,미트쵸퍼 (meat chopper)를 이용하여 다지기 공정 (chopping)을 실시하여 가루 (crumb)를 제조하였다. 상기 가루 (crumb)을 상하로 풍량 전이가 가능한 오븐에서 2019/117541 1»(:1^1{2018/015468 The polymerized sheet was taken out and cut into a size of 3 cm x 3 cm, followed by chopping using a meat chopper to prepare a crumb. The crumb is placed in an oven capable of airflow transfer up and down 2019/117541 1 »(: 1 ^ {2018/015468
건조하였다. 185°C의 핫 에어 (hot air)를 15분은 하방에서 상방으로, 15분은 상방에서 하방으로 흐르게 하여 균일하게 건조하였으며, 건조 후 건조체의 함수량은 2%이하게 되도록하였다.건조후,분쇄기로분쇄한다음, AmplituteAnd dried. The hot air of 185 ° C was flowed from the lower side to the upper side for 15 minutes and the lower side was flowed from the upper side to the lower side for 15 minutes. After drying, the water content of the dried body was made to be 2% or less. , Followed by addition of Amplitute
1.5 mm로 10분 분급 (분급 mesh 조합: #20-30/#30-50/#50-100)하였으며, 각 분급분 (5%/75%/20%)을 수집하여 입경 약 150 pm 내지 850 _인 중합체를 분급하여 얻었고,이러한방법으로베이스수지 분말을얻었다. (5% / 75% / 20%) were collected and classified to a particle diameter of about 150 to 850 ______________________________________ A base resin powder was obtained in this way.
이후, 상기 제조한 베이스 수지 100 중량부에, 글리세릴 스테아레이트 (glyceryl stearate) 0.025중량부,표면가교액 (물 7.7중량부,메탄올 Thereafter, 0.025 part by weight of glyceryl stearate, and a surface cross-linking solution (7.7 parts by weight of water,
5.5중량부,에틸렌글리콜디글리시딜에테르 (EX-810) 0.02중량부,소듐메타바이 설페이트 (sodium metabisulfite) 0.05 중량부, 알루미늄 설페이트 18 수화물 (aluminum sulfate 18 hydrate; Al-S) 0.1 중량부,및 알루미늄옥사이드 (Alu 130) 0.03중량부)을고르게 혼합한후, 140°C에서 35분동안표면가교반응을 진행하였다. 상기 표면 처리 완료 후, 시브 (sieve)를 이용하여 평균 입경 크기 150내지 850 _인고흡수성 수지를얻었다. , 0.05 parts by weight of sodium metabisulfite, 0.1 part by weight of aluminum sulfate 18 hydrate (Al-S) And 0.03 part by weight of aluminum oxide (Alu 130)) were uniformly mixed, and the surface cross-linking reaction was carried out at 140 ° C for 35 minutes. After completion of the surface treatment, a water absorbent resin having an average particle size of 150 to 850 _ was obtained using a sieve.
이후, 상기 제조한 고흡수성 수지에 알루미늄 옥사이드 (Alu 130) 0.05 중량부를건식 혼합하였다. 실시예 5  Thereafter, 0.05 parts by weight of aluminum oxide (Alu 130) was dry-mixed with the above superabsorbent resin. Example 5
아크릴산 100 g, 가교제로 폴리에틸렌글리콜디아크릴레이트 (PEGDA, Mw=523) 0.75 g,광개시제로 Bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide 0.008g, 열개시제로소디움퍼설페이트 (sodium persulfate; SPS) 0.08 g,발포제로소디움 비카보네이트 (sodium bicarbonate; SBC) 0.2 g, 계면활성제로 소디움 도데실설페이트 (sodium dodecylsulfate; SDS) 0.025 g,수분산실리카 (ST-O) O.lg, 31.5%가성소다 (NaOH) 123.3g, 물 38.53g을 혼합하여 모노머 수용액 조성물을 제조하였다. 상기 모노머 수용액 조성물을 Tray에 받은후, 중합분위기 온도 80°C를 유지하면서 UV 조사 장치로 1분간 자외선을 조사하고 (조사량: 10 mW/cm2), 2분간 aging하여 UV 중합을 진행하여 함수겔 중합체 시트를 제조하였다. 100 g of acrylic acid, 0.75 g of polyethylene glycol diacrylate (PEGDA, Mw = 523) as a crosslinking agent, 0.008 g of bis (2,4,6-trimethylbenzoyl) -phenylphosphineoxide as a photoinitiator, 0.08 g of sodium persulfate 0.2 g of sodium bicarbonate (SBC) as a foaming agent, 0.025 g of sodium dodecylsulfate (SDS) as a surfactant, 0.1 g of water-dispersed silica (ST-O), 31.5% of caustic soda NaOH) and 38.53 g of water to prepare a monomer aqueous solution composition. After the monomer aqueous solution composition was received in a tray, ultraviolet light was irradiated (irradiated amount: 10 mW / cm 2 ) with a UV irradiator for 1 minute while maintaining the polymerization atmosphere temperature at 80 ° C, aging for 2 minutes, A polymer sheet was prepared.
중합된 시트를꺼내어 3 cm x 3 cm의 크기로자른후,미트츠퍼 (meat chopper)를 이용하여 다지기 공정 (chopping)을 실시하여 가루 (crumb)를 2019/117541 1»(:1^1{2018/015468 The polymerized sheet was taken out, cut into a size of 3 cm x 3 cm, and chopped using a meat chopper to obtain a crumb 2019/117541 1 »(: 1 ^ {2018/015468
제조하였다. 상기 가루 (crumb)을 상하로 풍량 전이가 가능한 오븐에서 건조하였다. 185°C의 핫 에어 (hot air)를 15분은 하방에서 상방으로, 15분은 상방에서 하방으로 흐르게 하여 균일하게 건조하였으며, 건조 후 건조체의 함수량은 2%이하게 되도록하였다.건조후,분쇄기로분쇄한다음, Amplitute 1.5 mm로 10분 분급 (분급 mesh 조합: #20-30/#30-50/#50-100)하였으며, 각 분급분 (5%/75%/20%)을 수집하여 입경 약 150 , 내지 850 / 인 중합체를 분급하여 얻었고,이러한방법으로베이스수지 분말을얻었다. . The crumb was dried in an oven capable of airflow transfer up and down. The hot air of 185 ° C was flowed from the lower side to the upper side for 15 minutes and the lower side was flowed from the upper side to the lower side for 15 minutes. After drying, the water content of the dried body was made to be 2% or less. (5% / 75% / 20%) were collected from each sample, and then classified for 10 minutes in an Amplitute 1.5 mm (classification mesh combination: # 20-30 / # 30-50 / # 50-100) A polymer having a particle diameter of about 150 to 850 / was obtained by classification, and a base resin powder was obtained in this way.
이후, 상기 제조한 베이스 수지 100 중량부에, 글리세릴 스테아레이트 (glyceryl stearate) 0.2중량부,표면가교액 (물 7.7중량부,메탄올 5.5 중량부, 에틸렌글리콜 디글리시딜 에테르 (EX-810) 0.02 중량부, 소듐메타바이 설페이트 (sodium metabisulfite) 0.05 중량부, 알루미늄 설페이트 18 수화물 (aluminum sulfate 18 hydrate; Al-S) 0.1중량부,및 알루미늄옥사이드 (Alu 130) 0.03중량부)을고르게 혼합한후, 140°C에서 35분동안표면 가교반응을 진행하였다. 상기 표면 처리 완료 후, 시브 (sieve)를 이용하여 평균 입경 크기 150내지 850쌘!인고흡수성 수지를얻었다. Thereafter, 0.2 part by weight of glyceryl stearate, 7.7 parts by weight of water, 5.5 parts by weight of methanol, ethylene glycol diglycidyl ether (EX-810), and 0.1 part by weight of glyceryl stearate were added to 100 parts by weight of the base resin, 0.05 parts by weight of sodium metabisulfite, 0.1 part by weight of aluminum sulfate 18 hydrate (Al-S), and 0.03 parts by weight of aluminum oxide (Alu 130) were uniformly mixed , And the surface cross-linking reaction was carried out at 140 ° C for 35 minutes. After completion of the surface treatment, a water absorbent resin having an average particle size of 150 to 850 g was obtained using a sieve.
이후, 상기 제조한 고흡수성 수지에 알루미늄 옥사이드 (Alu 130) 0.05 중량부를건식 혼합하였다. 비교예 1  Thereafter, 0.05 parts by weight of aluminum oxide (Alu 130) was dry-mixed with the above superabsorbent resin. Comparative Example 1
아크릴산 100 g, 가교제로 폴리에틸렌글리콜디아크릴레이트 (PEGDA, 100 g of acrylic acid, 20 g of polyethylene glycol diacrylate (PEGDA,
Mw=523) 0.6 g,광개시제로 Bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide 0.008g, 열개시제로소디움퍼설페이트 (sodium persulfate; SPS) 0.15 g,발포제로소디움 비카보네이트 (sodium bicarbonate; SBC) 0.08 g, 계면활성제로 소디움 도데실설페이트 (sodium dodecylsulfate; SDS) 0.035 g, 31.5%가성소다 (NaOH) 123.3g, 물 38.53g을혼합하여 모노머 수용액조성물을제조하였다.상기 모노머 수용액 조성물을 Tray에 받은 후, 중합 분위기 온도 80°C를 유지하면서 UV 조사 장치로 1분간 자외선을 조사하고 (조사량: 10 mW/cm2), 2분간 aging하여 UV 중합을진행하여 함수겔중합체시트를제조하였다. Sodium bicarbonate (SBC) as a blowing agent, 0.6 g of sodium persulfate (SPS) as a photoinitiator, 0.008 g of bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 0.15 g of sodium persulfate 0.038 g of a surfactant, 0.035 g of sodium dodecylsulfate (SDS) as a surfactant, 123.3 g of 31.5% caustic soda (NaOH) and 38.53 g of water were mixed to prepare a monomer aqueous solution composition. Then, UV polymerization was carried out by irradiating ultraviolet ray (irradiation amount: 10 mW / cm 2 ) with a UV irradiator for 1 minute while maintaining the polymerization atmosphere temperature at 80 ° C and aging for 2 minutes to prepare a hydrogel polymer sheet.
중합된 시트를꺼내어 3 cm x 3 cm의 크기로자른후,미트쵸퍼 (meat chopper)를 이용하여 다지기 공정 (chopping)을 실시하여 가루 (crumb)를 2019/117541 1»(:1^1{2018/015468 The polymerized sheet was taken out, cut into a size of 3 cm x 3 cm, chopped using a meat chopper to obtain a crumb 2019/117541 1 »(: 1 ^ {2018/015468
제조하였다. 상기 가루 (crumb)을 상하로 풍량 전이가 가능한 오븐에서 건조하였다. 185 °C의 핫 에어 (hot air)를 15분은 하방에서 상방으로, 15분은 상방에서 하방으로 흐르게 하여 균일하게 건조하였으며, 건조 후 건조체의 함수량은 2%이하게 되도록하였다.건조후,분쇄기로분쇄한다음, Amplitute 1.5 mm로 10분 분급 (분급 mesh 조합: #20-30/#30-50/#50-100)하였으며, 각 분급분 (10%/75%/15%)을 수집하여 입경 약 150 m 내지 850 _인 중합체를 분급하여 얻었고,이러한방법으로베이스수지 분말을얻었다. . The crumb was dried in an oven capable of airflow transfer up and down. The hot air of 185 ° C was flowed from the lower side to the upper side for 15 minutes and the lower side was flowed from the upper side to the lower side for 15 minutes. After drying, the water content of the dried body was made to be 2% or less. (10% / 75% / 15%) were collected from each sample, and then classified by Amplitute 1.5 mm for 10 minutes (classification mesh combination: # 20-30 / # 30-50 / # 50-100) A polymer having a particle diameter of about 150 m to 850 was obtained by classification, and a base resin powder was obtained in this manner.
이후, 상기 제조한 베이스 수지 100 중량부에, 표면 가교액 (물 7.6 중량부, 메탄올 7.6 중량부, 에틸렌글리콜 디글리시딜 에테르 (EX-810) 0.075 중량부, 소듐메타바이설페이트 (sodium metabisulfite) 0.03 중량부, 알루미늄 설페이트 18수화물 (aluminum sulfate 18 hydrate; Al-S) 0.1 중량부,및 알루미늄 옥사이드 (Alu 130) 0.03중량부)을고르게혼합한후, 14CTC에서 35분동안표면 가교반응을진행하였다.상기 표면 처리 완료후,시브 (sieve)를 이용하여 평균 입경 크기 150내지 850,인고흡수성 수지를얻었다.  Then, 100 parts by weight of the base resin thus prepared was mixed with 7.6 parts by weight of water, 7.6 parts by weight of methanol, 0.075 part by weight of ethylene glycol diglycidyl ether (EX-810), sodium metabisulfite, 0.03 part by weight of aluminum sulfate, 0.1 part by weight of aluminum sulfate 18 hydrate (Al-S) and 0.03 part by weight of aluminum oxide (Alu 130) were uniformly mixed and subjected to surface cross-linking reaction at 14 CTC for 35 minutes After completion of the surface treatment, an absorbent resin having an average particle size of 150 to 850 was obtained using a sieve.
이후, 상기 제조한 고흡수성 수지에 알루미늄 옥사이드 (Alu 130) 0.05 중량부를건식혼합하였다. 비교예 2  Thereafter, 0.05 parts by weight of aluminum oxide (Alu 130) was dry-mixed with the above superabsorbent resin. Comparative Example 2
아크릴산 100 g, 가교제로 폴리에틸렌글리콜디아크릴레이트 (PEGDA, Mw=523) 0.6 g,광개시제로 Bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide 0.008g, 열개시제로소디움퍼설페이트 (sodium persulfate; SPS) 0.15 g,발포제로소디움 비카보네이트 (sodium bicarbonate; SBC) 0.08 g, 계면활성제로 소디움 도데실설페이트 (sodium dodecylsulfate; SDS) 0.035 g,실리카 (Aerosil 200) 0.4g, 31.5% 가성소다 (NaOH) 123.3g, 물 38.53g을 혼합하여 모노머 수용액 조성물을 제조하였다. 상기 모노머 수용액 조성물을 Tray에 받은후, 중합 분위기 온도 80°C를 유지하면서 UV 조사 장치로 1분간 자외선을 조사하고 (조사량: 10 mW/cm2), 2분간 aging하여 UV 중합을 진행하여 함수겔 중합체 시트를 제조하였다. 100 g of acrylic acid, 0.6 g of polyethylene glycol diacrylate (PEGDA, Mw = 523) as a crosslinking agent, 0.008 g of bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide as a photoinitiator, 0.08 g of sodium persulfate 0.08 g of sodium bicarbonate (SBC) as a foaming agent, 0.035 g of sodium dodecylsulfate (SDS) as a surfactant, 0.4 g of silica (Aerosil 200), 31.5% of caustic soda (NaOH) And 38.53 g of water were mixed to prepare a monomer aqueous solution composition. After the monomer aqueous solution composition was received in a tray, ultraviolet light was irradiated (irradiated amount: 10 mW / cm 2 ) with a UV irradiator for 1 minute while maintaining the polymerization atmosphere temperature at 80 ° C, aging for 2 minutes, A polymer sheet was prepared.
중합된 시트를꺼내어 3 cm x 3 cm의 크기로자른투,미트쵸퍼 (meat chopper)를 이용하여 다지기 공정 (chopping)을 실시하여 가루 (crumb)를 2019/117541 1»(:1^1{2018/015468 The polymerized sheet was taken out and chopped using a meat chopper cut into a size of 3 cm x 3 cm to prepare a crumb. 2019/117541 1 »(: 1 ^ {2018/015468
제조하였다. 상기 가루 (crumb)을 상하로 풍량 전이가 가능한 오븐에서 건조하였다. 185°C의 핫 에어 (hot air)를 15분은 하방에서 상방으로, 15분은 상방에서 하방으로 흐르게 하여 균일하게 건조하였으며, 건조 후 건조체의 함수량은 2%이하게 되도록하였다.건조후,분쇄기로분쇄한다음, Amplitute 1.5 mm로 10분 분급 (분급 mesh 조합: #20-30/#30-:50/#50-100)하였으며, 각 분급분 (10%/75%/15%)을 수집하여 입경 약 150 pm 내지 850 _인 중합체를 분급하여 얻었고,이러한방법으로베이스수지 분말을얻었다. . The crumb was dried in an oven capable of airflow transfer up and down. The hot air of 185 ° C was flowed from the lower side to the upper side for 15 minutes and the lower side was flowed from the upper side to the lower side for 15 minutes. After drying, the water content of the dried body was made to be 2% or less. and then, 10 minutes classified as Amplitute 1.5 mm pulverized to (classification mesh combination: # 20-30 / 0 # 3 50 / # 50-100) were each classified min (10% / 75% / 15 %) Was collected and classified to obtain a polymer having a particle diameter of about 150 pm to 850. The base resin powder was obtained in this manner.
이후, 상기 제조한 베이스 수지 100 중량부에, 표면 가교액 (물 7.6 중량부, 메탄올 7.6 중량부, 에틸렌글리콜 디글리시딜 에테르 (EX-810) 0.075 중량부, 소듐메타바이 설페이트 (sodium metabisulfite) 0.03 중량부, 알루미늄 설페이트 18수화물 (aluminum sulfate 18 hydrate; Al-S) 0.1 중량부,및 알루미늄 옥사이드 (Alu 130) 0.03중량부)을고르게혼합한후, 140°C에서 35분동안표면 가교반응을진행하였다.상기 표면 처리 완료후,시브 (sieve)를 이용하여 평균
Figure imgf000027_0001
Then, 100 parts by weight of the base resin thus prepared was mixed with 7.6 parts by weight of water, 7.6 parts by weight of methanol, 0.075 part by weight of ethylene glycol diglycidyl ether (EX-810), sodium metabisulfite, 0.03 part by weight of aluminum sulfate 18, 0.1 part by weight of aluminum sulfate 18 hydrate (Al-S) and 0.03 part by weight of aluminum oxide (Alu 130) were uniformly mixed and then subjected to surface crosslinking reaction at 140 ° C for 35 minutes After the completion of the surface treatment, a sieve was used to average
Figure imgf000027_0001
이후, 상기 제조한 고흡수성 수지에 알루미늄 옥사이드 (Alu 130) 0.05 중량부를건식 혼합하였다.  Thereafter, 0.05 parts by weight of aluminum oxide (Alu 130) was dry-mixed with the above superabsorbent resin.
<실험예> <Experimental Example>
상기 실시예들및비교예들에서 제조한고흡수성 수지에 대하여,다음과 같은방법으로물성을평가하였다.  The physical properties of the high water absorbent resin prepared in the above Examples and Comparative Examples were evaluated by the following methods.
다르게 표기하지 않는 한, 하기 물성 평가는 모두 항온항습 (23±1 °C, 상대습도 50士10%)에서 진행하였고, 생리식염수 또는 염수는 0.9 중량% 염화나트륨 (NaCl)수용액을의미한다.  Unless otherwise indicated, the following physical properties were evaluated at constant temperature and humidity (23 ± 1 ° C, relative humidity: 50%, 10%), and saline or brine means 0.9% sodium chloride (NaCl) aqueous solution.
또한, 하기 재습윤 물성 평가에서 사용한 수도수는 Orion Star A222 (회사: Thermo Scientific)을이용하여 측정하였을때,전기 전도도가 170내지 180 |iS/cm인것을사용하였다. Further, to be also used in rewet properties evaluation are Orion Star A222: as determined by the (company Thermo Scientific), the electrical conductivity 170 to 180 | was used as the i S / cm.
(1)원심분리 보수능 (CRC: Centriflige Retention Capacity) (1) Centrifugal Retention Capacity (CRC)
각수지의 무하중하흡수 배율에 의한보수능을 EDANA WSP 241.3에 따라측정하였다. 2019/117541 1»(:1^1{2018/015468 The retention capacity of each resin by the zero-load capacity was measured according to EDANA WSP 241.3. 2019/117541 1 »(: 1 ^ {2018/015468
구체적으로, 고흡수성 수지 W0(g) (약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉 (seal)한후,상온에서 생리식염수 (0.9중량%)에 침수시켰다. 30분 경과후, 원심 분리기를 이용하여 250G의 조건 하에서 상기 봉투로부터 3분간 물기를 빼고, 봉투의 질량 W2(g)을 측정하였다. 또, 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 W^g)을 측정하였다. 얻어진 각 질량을이용하여 다음과같은식에 따라 CRC(g/g)를산출하였다. Specifically, the superabsorbent resin W 0 ( g) (about 0.2 g) was uniformly put in an envelope made of a nonwoven fabric and sealed, followed by immersion in physiological saline (0.9 wt%) at room temperature. After 30 minutes, water was drained from the envelope for 3 minutes under a condition of 250 G using a centrifuge, and the mass W 2 ( g) of the envelope was measured. Also, after the same operation was performed without using a resin, the mass Wg at that time was measured. Using the obtained masses, CRC (g / g) was calculated according to the following equation.
[수학식 1]  [Equation 1]
CRC (g/g) = {[W2(g) - W,(g)]AV0(g)} - 1 (2)가압듭수능 (AUP: Absorbency under Pressure) CRC (g / g) = {[W 2 ( g) - W, (g)] AV 0 ( g)} - 1 (2) Absorbency under pressure
각 수지의 0.7 psi의 가압 흡수능을, EDANA법 WSP 242.3에 따라 측정하였다.  The pressure absorption capacity of each resin of 0.7 psi was measured according to EDANA method WSP 242.3.
구체적으로, 내경 60 mm의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 상온 및 습도 50%의 조건 하에서 철망 상에 고흡수성 수지 W0(g) (0.9넜을 균일하게 살포하고, 그 위에 0.7 psi의 하중을 균일하게 더 부여할 수 있는 피스톤은 외경 60 mm 보다 약간 작고 원통의 내벽과 틈이 없고 상하 움직임이 방해받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을측정하였다. Specifically, a 400 mesh wire mesh made of stainless steel was mounted on a cylindrical bottom of a plastic having an inner diameter of 60 mm. The piston capable of uniformly applying a load of 0.7 psi uniformly over the superabsorbent resin W 0 ( g) (0.9 grains) on the wire net under conditions of room temperature and humidity of 50% is slightly smaller than the outer diameter of 60 mm The inner wall of the cylinder was free from cracks and the up and down movement was not disturbed, and the weight W 3 ( g) of the apparatus was measured.
직경 150 mm의 페트로접시의 내측에 직경 90mm및두께 5mm의 유리 필터를 두고, 0.9 중량% 염화나트륨으로 구성된 생리식염수를 유리 필터의 윗면과 동일 레벨이 되도록 하였다. 그 위에 직경 90mm의 여과지 1장을 실었다. 여과지 위에 상기 측정 장치를 싣고, 액을 하중 하에서 1시간 동안 흡수시켰다 . 1시간후측정 장치를들어올리고,그중량 W4(g)을측정하였다. 얻어진 각 질량을 이용하여 다음 식에 따라 가압 흡수능 (g/g)을 산출하였다. . A glass filter having a diameter of 90 mm and a thickness of 5 mm was placed inside a Petro dish having a diameter of 150 mm and a physiological saline solution composed of 0.9% by weight sodium chloride was made to have the same level as the upper surface of the glass filter. And a filter paper having a diameter of 90 mm was placed thereon. The measuring device was placed on a filter paper, and the solution was absorbed under a load for 1 hour. After one hour, the measuring device was lifted and its weight W 4 ( g) was measured. The pressure absorption capacity (g / g) was calculated by using the obtained masses according to the following equation. .
[수학식 2]  &Quot; (2) &quot;
AUP(g/g) = [W4(g) - W3(g)]/W0(g) AUP (g / g) = [ W 4 (g) - W 3 (g)] / W 0 (g)
(3)통액성 (Permeability) (3) Permeability
통액성 (peremeability) 측정 방법은 특허번호 US9656242 B2 특허에 2019/117541 1»(:1^1{2018/015468 The method for measuring the permeability is disclosed in Patent No. US 9656242 B2 2019/117541 1 »(: 1 ^ {2018/015468
기재된방법에 준하여측정하였다. The measurement was carried out in accordance with the described method.
통액성 측정 장치는 내경 20mm이며, 하단에 glass 필터가 장착된 크로마토그래피 관이다. 크로마토그래피 관에 피스톤을 넣은상태에서의 액량 20ml및 40ml의 액면에 선을표시하였다. 이 후,크로마토그래피 관하부 glass 필터와 콕크 사이에 기포가 생기지 않도록 역으로 물을 투입하여 약 10ml를 채우고 염수로 2~3회 세척하고, 40ml 이상까지 0.9% 염수를 채웠다. 크로마토그래피 관에 피스톤을 넣고 하부 밸브를 열어 액면이 40ml에서 20ml 표시선까지 줄어드는시간 (미을기록하였다.  The liquid permeability measuring device is a chromatography tube having an inner diameter of 20 mm and a glass filter at the lower end. Lines were indicated on the liquid surface of 20 ml and 40 ml with the piston in the chromatographic tube. Thereafter, water was added in an amount of about 10 ml to prevent air bubbles between the lower glass filter and the cock of the chromatography tube, and the mixture was washed 2-3 times with brine and filled with 0.9% brine to a volume of 40 ml or more. Put the piston into the chromatography tube and open the lower valve to record the time (in millimeters) of reducing the liquid level from 40 ml to the 20 ml marking line.
크로마토그래피 관에 염수를 10ml남기고,분급 (30# - 50#)된 고흡수성 수지 시료 0.2±0.0005g을넣고 염수를가하여 염수부피가 50ml가되게 한후, 30분 간 방치하였다. 그 후, 크로마토그래피 관 내에 추가 달린 피스톤 (0.3psi=106.26g)을넣고 1분간방치 후,크로마토그래피 관하부밸브를 열어 액면이 40ml에서 20ml표시선까지 줄어드는시간 (T1)을기록하여, T1 - B 의 시간 (단위:초)을계산하였다.  0.2 ± 0.0005 g of a superabsorbent resin (30 # - 50 #) was placed in a chromatographic tube, leaving 10 ml of brine. Brine was added to make a brine volume of 50 ml and left for 30 minutes. Thereafter, a piston (0.3 psi = 106.26 g) added to the chromatographic tube was placed and allowed to stand for 1 minute, and the time (T1) during which the liquid level was reduced from 40 ml to 20 ml marking line by opening the bottom of the chromatography tube was recorded, (Unit: second) was calculated.
(4)롭수속도 (Vortex time) (4) Vortex time
흡수 속도 (vortex time)는 국제 공개 출원 제 1987-003208호에 기재된 방법에 준하여 초단위로측정하였다.  The vortex time was measured in the first place according to the method described in International Patent Application No. 1987-003208.
구체적으로, 23 °C 내지 24°C의 50 mL의 생리 식염수에 2g의 고흡수성 수지를 넣고, 마그네틱 바 (직경 8 mm, 길이 30 mm)를 600 rpm으로 교반하여 와류 (vortex)가사라질때까지의 시간을초단위로측정하여산출되었다. More specifically to the, 23 ° C to insert a superabsorbent resin 2g of the physiological saline 50 mL of 24 ° C, the magnetic bars (diameter: 8 mm, length 30 mm) for the mixture was stirred at 600 rpm vortex (vortex) lyrics la eases Of the total time.
(5)무가압수도수장기 재습윤 (3hrs) (5) Confiscated water for long-term re-wetting (3hrs)
① 컵 (컵 윗부분 직경 7cm, 아래 직경 5cm, 높이 8cm, 부피 192ml)에 #30-#50 입도의 고흡수성 수지 lg을 넣고 500rpm으로 교반하면서 수도수 (tap water) 100g을부은후팽윤시켰다.  1 g of a superabsorbent resin having a particle size of # 30- # 50 was placed in a cup (diameter of 7 cm above the cup, diameter of 5 cm, height of 8 cm, volume of 192 ml), and 100 g of tap water was swollen at 500 rpm and swelled.
② 고흡수성 수지가 수도수를 다 머금어 수면이 평평하게 되고 수도수가흐르지 않게되는시점에서 교반을멈추었다.  ② Stirring was stopped at the point when the water-absorbent resin became water level and the water surface became flat and water flow did not flow.
③수도수를부은시점으로부터 10분뒤에 필터페이퍼 (제조사 Whatman, catalog No. 1004-110, pore size 20-25 |am,지름 11cm) 5장위에 팽윤된고톱수성 2019/117541 1»(:1^1{2018/015468 ③ paper filter in 10 minutes from the time the number of swelling may (manufacturer: Whatman, catalog No. 1004-110, pore size 20-25 | am, 11cm diameter) with an aqueous swelling gotop 5 Zhang 2019/117541 1 »(: 1 ^ {2018/015468
수지가담긴컵을뒤집어 놓았다. I turned the cup with the resin over.
③ 수도수를 부은 시점으로부터 3시간 뒤에 컵과 고흡수성 수지를 제거하고필터페이퍼에 묻은수도수의 양 (단위: 을측정하였다. (6)무가압수도수단기 재습윤 (lhr)  (3) After 3 hours from the time when water was poured, the cup and superabsorbent resin were removed and the amount of water added to the filter paper was measured (unit:). (6)
① 컵 (윗부분 직경 7cm, 아래 직경 5cm, 높이 8cm, 부피 192ml)에 고톱수성 수지 lg을넣고수도수 100g을부은후팽윤시켰다.  ① 1 g of a high-viscosity water-based resin was put into a cup (diameter of 7 cm, diameter of 5 cm, height of 8 cm, volume of 192 ml), and 100 g of tap water was added and swelled.
②수도수를부은시점으로부터 10분뒤에 필터페이퍼 (제조사: Whatman, catalog No. 1004-110, pore size 20-25 |am,지름 11cm) 5장위에 팽윤된고듭수성 수지가담긴컵을뒤집어 놓았다.  ② After 10 minutes from the time when the water was poured, the cup containing the swollen water resin swollen on the filter paper (Whatman, catalog No. 1004-110, pore size 20-25 am, diameter 11 cm) was turned upside down.
③ 수도수를 부은 시점으로부터 1시간 뒤에 컵과 고흡수성 수지를 제거하고필터페이퍼에 묻은수도수의 양 (단위: g)을측정하였다.  ③ After 1 hour from the time when the water was poured, the cup and the water-absorbent resin were removed, and the amount (unit: g) of water added to the filter paper was measured.
(7)가압수도수장기 재습윤 (6hrs) (7) Pressurized water Long term rewet ( 6 hrs)
①지름 13cm페트리 접시 (petri dish)에 고흡수성 수지 4g을고루뿌리고 스파출러 (spatula)를 이용하여 고르게 분포시키고 수도수 200g을 부은 후 팽윤시켰다.  ① 4 g of superabsorbent resin was uniformly distributed in a 13 cm diameter petri dish and evenly distributed using a spatula, and 200 g of tap water was swollen and swollen.
② 6시간 동안 팽윤시킨 고흡수성 수지를 지름 11cm이 필터페이퍼 (제조사 whatman, catalog No. 1004-110, pore size 20-25 |jm,지름 11cm) 20장을깔고지름 11 cm에 5kg추 (0.75psi)로 1분간가압하였다.  ② Twelve sheets of filter paper (manufacturer whatman, catalog No. 1004-110, pore size 20-25 μm, diameter 11 cm) with a diameter of 11 cm and a height of 5 kg (0.75 psi ) For 1 minute.
③ 1분 간 가압 후 필터페이퍼에 묻은 수도수의 양 (단위: 을 측정하였다. 상기 실시예들과비교예들에 관한물성값을하기 표 1에 기재하였다. 【표 1】  (3) The amount of water added to the filter paper after 1 minute of pressurization was measured. The physical properties of the above Examples and Comparative Examples are shown in Table 1 below.
Figure imgf000030_0001
2019/117541 1»(:1^1{2018/015468
Figure imgf000030_0001
2019/117541 1 »(: 1 ^ {2018/015468
Figure imgf000031_0001
표 1을 참조하면, 본 발명의 실시예 1 내지 5는 모두 우수한 흡수 속도와 통액성을 나타내었으며, 무가압하 및 가압하에서 수도수에 대한 재습윤량이 매우적어 개선된재습윤특성을나타냄을확인하였다.
Figure imgf000031_0001
Referring to Table 1, Examples 1 to 5 of the present invention all exhibited excellent absorption rate and liquid permeability, and it was confirmed that the rewetting amount with respect to the tap water was very small under pressureless pressure and pressure, showing improved rewetting characteristics .
5 반면 비교예 1 및 2는 재습윤과흡수속도가실시예 보다좋지 않음을 알수있다.  5, whereas Comparative Examples 1 and 2 show that rewetting and absorption rates are not as good as in the Examples.

Claims

2019/117541 1»(:1^1{2018/015468 【청구범위】 2019/117541 1 (: 1 ^ {2018/015468)
【청구항 1]  [Claim 1]
수분산 실리카의 존재 하에, 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 및 내부 가교제가 가교 중합된 베이스 수지 (base resin)를준비하는단계 (단계 1);  (Step 1) of preparing a base resin crosslinked with an acrylic acid-based monomer and an internal cross-linking agent having an acidic group and neutralizing at least a part of the acidic group in the presence of the water-dispersed silica;
상기 베이스 수지에, HLB가 0 이상 6 이하인 소수성 물질, 및 표면 가교제를혼합하는단계 (단계 2);및  Mixing the base resin with a hydrophobic substance having an HLB of not less than 0 and not more than 6, and a surface cross-linking agent (step 2); and
상기 단계 2의 혼합물을 승은하여 상기 베이스 수지에 대한 표면 개질을수행하는단계 (단계 3);  Performing the surface modification to the base resin by raising the mixture of step 2 (step 3);
를포함하는,고흡수성 수지의 제조방법.  Absorbent resin.
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method according to claim 1,
상기 수분산 실리카는 입경이 10 내지 100nm인, 고흡수성 수지의 제조방법.  Wherein the water-dispersed silica has a particle diameter of 10 to 100 nm.
【청구항 3】 [Claim 3]
제 1항에 있어서,  The method according to claim 1,
상기 수분산 실리카는 상기 아크릴산계 단량체 100 중량부에 대하여 0.01 내지 1.0중량부로포함되는,고흡수성 수지의 제조방법.  Wherein the water-dispersed silica is contained in an amount of 0.01 to 1.0 part by weight based on 100 parts by weight of the acrylic acid-based monomer.
【청구항 4] [4]
제 1항에 있어서,  The method according to claim 1,
상기 소수성 물질은용융온도 (melting point)가상기 단계 3의 승온온도 이하인,고흡수성 수지의 제조방법.  Wherein the hydrophobic substance has a melting point equal to or lower than the temperature elevating temperature of step (3).
【청구항 5】 [Claim 5]
제 1항에 있어서,  The method according to claim 1,
상기 소수성 물질은 글리세릴 스테아레이트 (glyceryl stearate), 글리콜 스테아레이트 (glycol stearate), 마그네슘 스테아레이트 (magnesium stearate), 2019/117541 1»(:1^1{2018/015468 The hydrophobic material may be selected from the group consisting of glyceryl stearate, glycol stearate, magnesium stearate, 2019/117541 1 »(: 1 ^ {2018/015468
글리세릴 라우레이트 (glyceryl laurate), 소르비탄 스테아레이트 (sorbitan stearate), 소르비탄 트리올리에이트 (sorbitan trioleate), 및 PEG-4 디라우레이트 (PEG-4 dilaurate)로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 고흡수성 수지의 제조방법. At least one selected from the group consisting of glyceryl laurate, sorbitan stearate, sorbitan trioleate, and PEG-4 dilaurate. Absorbent resin.
【청구항 6】 [Claim 6]
제 5항에 있어서,  6. The method of claim 5,
상기 소수성 물질은글리세릴스테아레이트 (glyceryl stearate)인,고톱수성 수지의 제조방법.  Wherein the hydrophobic substance is glyceryl stearate.
【청구항 7] [7]
저 11항에 있어서,  In the 11th aspect,
상기 소수성 물질은상기 베이스수지 100중량부에 대하여 0.02내지 0.5중량부로혼합하는,고흡수성 수지의 제조방법.  Wherein the hydrophobic substance is mixed in an amount of 0.02 to 0.5 part by weight based on 100 parts by weight of the base resin.
【청구항 8】 8.
제 1항에 있어서,  The method according to claim 1,
상기 단계 2에서, 상기 소수성 물질을 먼저 상기 베이스 수지에 건식으로 혼합하고, 이어서 상기 표면 가교제를 포함하는 표면 가교 용액을 혼합하는,고흡수성 수지의 제조방법.  Wherein in step 2, the hydrophobic substance is first dry-mixed with the base resin, and then the surface cross-linking solution containing the surface cross-linking agent is mixed.
【청구항 9] 9]
저 U항에 있어서,  In that U section,
상기 단계 3은 80 내지 190°C의 온도에서 수행하는, 고흡수성 수지의 제조방법.  Wherein step 3 is carried out at a temperature of 80 to 190 ° C.
【청구항 10】 Claim 10
제 1항에 있어서,  The method according to claim 1,
상기 단계 1은,  In the step 1,
산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 2019/117541 1»(:1^1{2018/015468 An acrylic acid group-containing acrylic acid group having an acidic group and at least a part of the acidic group being neutralized 2019/117541 1 »(: 1 ^ {2018/015468
단량체, 내부 가교제, 수분산 실리카, 및 중합 개시제를 포함하는 모노머 조성물을중합하여 함수겔상중합체를형성하는단계; Polymerizing a monomer composition comprising a monomer, an internal cross-linking agent, an aqueous dispersion silica, and a polymerization initiator to form a hydrogel polymer;
상기 함수겔상중합체를건조하는단계;  Drying the hydrogel polymer;
상기 건조된중합체를분쇄하는단계;및  Pulverizing the dried polymer; and
상기 분쇄된중합체를분급하는단계를포함하는,고흡수성 수지의 제조 방법.  And a step of classifying the pulverized polymer.
【청구항 1.1】 1.1.
제 10항에 있어서,  11. The method of claim 10,
상기 모노머 조성물은발포제 및 기포안정제를더 포함하는,고흡수성 수지의 제조방법.  Wherein the monomer composition further comprises a foaming agent and a foam stabilizer.
【청구항 12】 Claim 12
제 11항에 있어서,  12. The method of claim 11,
상기 발포제는 소디움 비카보네이트 (sodium bicarbonate), 소디움 카보네이트 (sodium carbonate),포타슘비카보네이트 (potassium bicarbonate),포타슘 카보네이트 (potassium carbonate), 칼슘 비카보네이트 (calcium bicarbonate), 칼슘 카보네이트 (calcium bicarbonate),마그네슘비카보네이트 (magnesiumbicarbonate)및 마그네슘카보네이트 (magnesium carbonate)로이루어진군으로부터 선택되는 1종 이상을포함하는,고흡수성 수지의 제조방법.  The foaming agent may be selected from the group consisting of sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, calcium bicarbonate, calcium bicarbonate, magnesium bicarbonate, Magnesium bicarbonate, and magnesium carbonate. The method for producing a superabsorbent resin according to claim 1,
【청구항 13】 Claim 13
제 11항에 있어서,  12. The method of claim 11,
상기 기포 안정제는소듐도데실 설페이트 (sodium dodecyl sulfate),소듐 스테아레이트 (sodium stearate),암모늄라우릴설페이트 (ammonium lauryl sulfate), 소디움 라우릴 에테르 설페이트 (sodium lauryl ether sulfate; SLES), 및 소디움 미레스 설페이트 (sodium myreth sulfate)로 이루어진 군으로부터 선택되는 1종 이상을포함하는,고흡수성 수지의 제조방법.  The foam stabilizer may be selected from the group consisting of sodium dodecyl sulfate, sodium stearate, ammonium lauryl sulfate, sodium lauryl ether sulfate (SLES), and sodium lauryl ether sulfate Sodium hypophosphite, and sodium myreth sulfate. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
【청구항 14】 2019/117541 1»(:1^1{2018/015468 14. 2019/117541 1 »(: 1 ^ {2018/015468
제 1항에 있어서, The method according to claim 1,
상기 고톱수성 수지는 톱수 속도 (vortex time)가 35초 이하인, 고듭수성 수지의 제조방법.  Wherein the high viscosity aqueous resin has a vortex time of 35 seconds or less.
【청구항 15】 15.
제 1항에 있어서,  The method according to claim 1,
상기 고흡수성 수지는 하기 식 1에 따라측정되는 통액성 (permeability, 단위:초)이 20초이하인,고흡수성 수지의 제조방법:  Wherein the superabsorbent resin has a permeability (unit: second) measured according to the following formula 1: 20 seconds or less.
[식 1]  [Formula 1]
통액성 (sec) = Tl - B  Liquid permeability (sec) = Tl - B
상기 식 1에서, In Equation (1)
은크로마토그래피 관 내에 분급 (30# ~ 50#)된 고흡수성 수지 시료 0.2±0.0005g을 넣고 염수를 가하여 염수부피가 50 ml가되게 한후, 30분 간 방치 후,액면높이가 40 ml에서 20 ml까지 줄어드는데에 걸리는시간이고, B는 염수가 채워진 크로마토그래피 관에서 액면높이가 40 ml에서 20 ml까지 줄어드는데에 걸리는시간이다.  0.2 ± 0.0005 g of a superabsorbent resin sample (30 # ~ 50 #) in a chromatographic tube was added and the brine volume was adjusted to 50 ml by adding brine. The mixture was allowed to stand for 30 minutes, , And B is the time it takes for the liquid level to decrease from 40 ml to 20 ml in a chromatographic tube filled with salt water.
【청구항 16】 Claim 16
산성기의 적어도일부가중화된 아크릴산계 단량체가가교중합된가교 중합체를포함하는베이스수지;및  A base resin comprising a cross-linked polymer obtained by cross-linking an acrylic acid-based monomer in which at least a part of an acidic group is neutralized; and
상기 베이스 수지의 입자 표면에 형성되어 있고, 상기 가교 중합체가 표면가교제를매개로추가가교되어 있는표면개질층을포함하고,  A surface modification layer formed on the particle surface of the base resin, wherein the cross-linking polymer is additionally crosslinked via a surface cross-linking agent,
상기 표면개질층은내 가 0이상 6이하인소수성 물질을포함하며, 흡수속도 (vortex time)가 35초이하인,고흡수성 수지.  Wherein the surface modifying layer comprises a hydrophobic substance having a density of 0 or more and 6 or less and a vortex time of 35 seconds or less.
【청구항 17】 17.
제 16항에 있어서,  17. The method of claim 16,
상기 베이스 수지는 수분산 실리카의 존재 하에 가교 중합된 것인, 고흡수성 수지. 2019/117541 1»(:1^1{2018/015468 Wherein the base resin is crosslinked in the presence of the water-dispersed silica. 2019/117541 1 »(: 1 ^ {2018/015468
【청구항 18】 Claim 18
제 16항에 있어서,  17. The method of claim 16,
상기 고톱수성 수지는 하기 식 1에 따라 즉정되는 통액성(permeability, 단위:초)이 20초이하인,고흡수성 수지:  Wherein the high-shear water-based resin has a permeability (unit: sec) of at most 20 seconds,
[식 1]  [Formula 1]
통액성(sec) = Tl - B  Liquid permeability (sec) = Tl - B
상기 식 1에서,  In Equation (1)
T1은크로마토그래피 관 내에 분급(30# - 50#)된 고흡수성 수지 시료 0.2±0.0005g을 넣고 염수를 가하여 염수 부피가 50 ml가되게 한후, 30분 간 방치 후,액면높이가 40 ml에서 20 ml까지 줄어드는데에 걸리는시간이고,모는 염수가 채워진 크로마토그래피 관에서 액면높이가 40 ml에서 20 ml까지 줄어드는데에 걸리는시간이다.  T1 was obtained by adding 0.2 ± 0.0005 g of a superabsorbent resin sample (30 # - 50 #) classified into a chromatographic tube, adding brine to make the volume of the brine to be 50 ml, allowing to stand for 30 minutes, ml, and the time it takes for the liquid surface height to decrease from 40 ml to 20 ml in a chromatographic tube filled with brine.
【청구항 19】 Claim 19
제 16항에 있어서,  17. The method of claim 16,
상기 고를수성 수지는, 상기 고톱수성 수지 lg을 수도수 100g에 침지시켜 10분 동안 팽윤시킨 후, 팽윤된 상기 고흡수성 수지를 수도수에 침지시킨 최초 시점으로부터 3시간 동안 여과지 상에서 방치하고 나서, 상기 고흡수성 수지로부터 상기 여과지로 다시 베어나온 물의 중량으로 정의되는 재습윤특성(무가압수도수장기 재습윤)이 3.0g이하인,고흡수성 수지.  The above water-soluble resin is obtained by immersing 1 g of the high-water-based resin in 100 g of tap water and swelling for 10 minutes, then allowing the swollen superabsorbent resin to stand on the filter paper for 3 hours from the initial point of immersion in tap water, Wherein the re-wetting property (no-pressure water-repellent water-repellent long-term rewetting) defined by the weight of water repelled from the superabsorbent resin to the filter paper is 3.0 g or less.
【청구항 20】 Claim 20
제 16항에 있어서,  17. The method of claim 16,
상기 고흡수성 수지는, 상기 고흡수성 수지 lg을 수도수 100g에 침지시켜 10분 동안 팽윤시킨 후, 팽윤된 상기 고흡수성 수지를 수도수에 침지시킨 최초 시점으로부터 1시간 동안 여과지 상에서 방치하고 나서, 상기 고흡수성 수지로부터 상기 여과지로 다시 베어나온 물의 중량으로 정의되는 재습윤특성(무가압수도수단기 재습윤)이 l.Og이하인,고흡수성 수지.  The super-absorbent resin is immersed in 100 g of tap water and swelled for 10 minutes, then allowed to stand on the filter paper for 1 hour from the initial point of time when the swollen super-absorbent resin is immersed in tap water, Wherein the rewetting property (ungrained water repellency, short-term rewet) defined by the weight of water repelled from the superabsorbent resin to the filter paper is not more than 1.0 g.
PCT/KR2018/015468 2017-12-11 2018-12-07 Superabsorbent polymer and preparation method therefor WO2019117541A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18887781.5A EP3708606A4 (en) 2017-12-11 2018-12-07 Superabsorbent polymer and preparation method therefor
JP2020530506A JP7038825B2 (en) 2017-12-11 2018-12-07 Highly absorbent resin and its manufacturing method
US16/771,479 US11633719B2 (en) 2017-12-11 2018-12-07 Superabsorbent polymer composition and method for preparing the same
CN201880078532.3A CN111433261B (en) 2017-12-11 2018-12-07 Superabsorbent polymer composition and method of making the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170169490 2017-12-11
KR10-2017-0169490 2017-12-11
KR1020180155292A KR102566286B1 (en) 2017-12-11 2018-12-05 Super absorbent polymer and preparation method for the same
KR10-2018-0155292 2018-12-05

Publications (1)

Publication Number Publication Date
WO2019117541A1 true WO2019117541A1 (en) 2019-06-20

Family

ID=66819412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015468 WO2019117541A1 (en) 2017-12-11 2018-12-07 Superabsorbent polymer and preparation method therefor

Country Status (1)

Country Link
WO (1) WO2019117541A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11613591B2 (en) 2019-09-18 2023-03-28 Lg Chem, Ltd. Method for preparing super absorbent polymer
EP4186945A4 (en) * 2020-12-18 2024-02-14 Lg Chem, Ltd. Super absorbent polymer, and preparation method thereof
EP4186944A4 (en) * 2020-12-18 2024-02-14 Lg Chem, Ltd. Preparation method for super absorbent polymer
EP4190842A4 (en) * 2020-12-18 2024-02-14 Lg Chem, Ltd. Method for preparing super absorbent polymer
EP4190843A4 (en) * 2020-12-18 2024-02-21 Lg Chem, Ltd. Super absorbent polymer and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100858387B1 (en) * 2004-02-05 2008-09-11 가부시키가이샤 닛폰 쇼쿠바이 Particulate water absorbing agent and method for production thereof, and water absorbing article
US20130274349A1 (en) * 2012-04-12 2013-10-17 Jian Qin Open-celled foam with superabsorbent material and process for making the same
KR20140107346A (en) * 2011-12-27 2014-09-04 가부시키가이샤 리브도 코포레이션 Water-absorbent resin powder and absorber and absorbent article using the same
KR20160016714A (en) * 2014-08-04 2016-02-15 주식회사 엘지화학 Super absorbent polymer and its preparation method
KR20170020113A (en) * 2015-08-13 2017-02-22 주식회사 엘지화학 Preparation method for super absorbent polymer
US9656242B2 (en) 2013-09-30 2017-05-23 Lg Chem, Ltd. Method for preparing a super absorbent polymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100858387B1 (en) * 2004-02-05 2008-09-11 가부시키가이샤 닛폰 쇼쿠바이 Particulate water absorbing agent and method for production thereof, and water absorbing article
KR20140107346A (en) * 2011-12-27 2014-09-04 가부시키가이샤 리브도 코포레이션 Water-absorbent resin powder and absorber and absorbent article using the same
US20130274349A1 (en) * 2012-04-12 2013-10-17 Jian Qin Open-celled foam with superabsorbent material and process for making the same
US9656242B2 (en) 2013-09-30 2017-05-23 Lg Chem, Ltd. Method for preparing a super absorbent polymer
KR20160016714A (en) * 2014-08-04 2016-02-15 주식회사 엘지화학 Super absorbent polymer and its preparation method
KR20170020113A (en) * 2015-08-13 2017-02-22 주식회사 엘지화학 Preparation method for super absorbent polymer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Odian's book", 1981, WILEY, article "Principle of Polymerization", pages: 203
"Reinhold Schwalm's book", 2007, ELSEVIER, article "UV Coatings: Basics, Recent Developments and New Application", pages: 115
See also references of EP3708606A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11613591B2 (en) 2019-09-18 2023-03-28 Lg Chem, Ltd. Method for preparing super absorbent polymer
EP4186945A4 (en) * 2020-12-18 2024-02-14 Lg Chem, Ltd. Super absorbent polymer, and preparation method thereof
EP4186944A4 (en) * 2020-12-18 2024-02-14 Lg Chem, Ltd. Preparation method for super absorbent polymer
EP4190842A4 (en) * 2020-12-18 2024-02-14 Lg Chem, Ltd. Method for preparing super absorbent polymer
EP4190843A4 (en) * 2020-12-18 2024-02-21 Lg Chem, Ltd. Super absorbent polymer and preparation method thereof
JP7475771B2 (en) 2020-12-18 2024-04-30 エルジー・ケム・リミテッド Highly water-absorbent resin and method for producing same
JP7520450B2 (en) 2020-12-18 2024-07-23 エルジー・ケム・リミテッド Manufacturing method of superabsorbent resin

Similar Documents

Publication Publication Date Title
KR102566286B1 (en) Super absorbent polymer and preparation method for the same
KR101507287B1 (en) a Method for Preparing of the Superabsorbent Polymer (SAP) Resin
KR101538726B1 (en) Super Absorbent Polymer Resin
WO2019117541A1 (en) Superabsorbent polymer and preparation method therefor
JP6837141B2 (en) Highly water-absorbent resin and its manufacturing method
WO2018139768A1 (en) Method for preparing superabsorbent polymer
JP7039105B2 (en) Highly absorbent resin and its manufacturing method
KR102447936B1 (en) Super absorbent polymer and preparation method for the same
KR102417079B1 (en) Super absorbent polymer and preparation method for the same
JP7433047B2 (en) Super absorbent resin and its manufacturing method
JP2021510741A (en) Highly water-absorbent resin and its manufacturing method
KR102086050B1 (en) Super absorbent polymer and preparation method thereof
JP7247187B2 (en) SUPER ABSORBENT RESIN AND METHOD FOR MANUFACTURING SAME
JP7184443B2 (en) SUPER ABSORBENT RESIN AND METHOD FOR MANUFACTURING SAME
WO2018004162A1 (en) Method for preparing superabsorbent resin, and superabsorbent resin
KR20210038250A (en) Method for preparing super absorbent polymer
KR20190069103A (en) Preparation method for super absorbent polymer
KR20190075574A (en) Preparation method for super absorbent polymer
KR102498238B1 (en) Super absorbent polymer and preparation method thereof
WO2019112150A1 (en) Absorbent polymer and preparation method therefor
KR20180071933A (en) Super absorbent polymer and preparation method for the same
WO2019117511A1 (en) Superabsorbent polymer and preparation method therefor
WO2019117513A1 (en) Superabsorbent polymer and preparation method therefor
WO2019190120A1 (en) Super absorbent polymer and method for preparing same
JP2024505659A (en) Manufacturing method of super absorbent resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18887781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530506

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018887781

Country of ref document: EP

Effective date: 20200609