KR20190075574A - Preparation method for super absorbent polymer - Google Patents

Preparation method for super absorbent polymer Download PDF

Info

Publication number
KR20190075574A
KR20190075574A KR1020170177276A KR20170177276A KR20190075574A KR 20190075574 A KR20190075574 A KR 20190075574A KR 1020170177276 A KR1020170177276 A KR 1020170177276A KR 20170177276 A KR20170177276 A KR 20170177276A KR 20190075574 A KR20190075574 A KR 20190075574A
Authority
KR
South Korea
Prior art keywords
superabsorbent resin
weight
polymer
resin
sodium
Prior art date
Application number
KR1020170177276A
Other languages
Korean (ko)
Other versions
KR102541831B1 (en
Inventor
성보현
허영재
김수진
정선정
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020170177276A priority Critical patent/KR102541831B1/en
Publication of KR20190075574A publication Critical patent/KR20190075574A/en
Application granted granted Critical
Publication of KR102541831B1 publication Critical patent/KR102541831B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels

Abstract

The present invention relates to a method for producing a super absorbent polymer. According to the production method of the super absorbent polymer of the present invention, it is possible to provide a super absorbent polymer having an improved initial absorption rate. The production method of the present invention includes the steps of forming a hydrogel polymer; grinding after mixing a basic aqueous solution; producing a base resin; and performing a crosslinking reaction at the surface.

Description

고흡수성 수지의 제조 방법{PREPARATION METHOD FOR SUPER ABSORBENT POLYMER}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method of manufacturing a super absorbent polymer,

본 발명은 고흡수성 수지의 제조 방법에 관한 것이다. 보다 상세하게는, 향상된 초기 흡수 속도를 갖는 고흡수성 수지의 제조방법에 관한 것이다. The present invention relates to a method for producing a superabsorbent resin. More particularly, the present invention relates to a method for producing a superabsorbent resin having an improved initial absorption rate.

고흡수성 수지(Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀나 생리대 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다. Super Absorbent Polymer (SAP) is a synthetic polymer material capable of absorbing moisture of about 500 to 1,000 times its own weight. As a result, it is possible to develop a super absorbent polymer (SAM), an absorbent gel Material), and so on. Such a superabsorbent resin has started to be put into practical use as a sanitary article and is currently being used for sanitary articles such as diapers for children and sanitary napkins as well as soil repair agents for horticultural use, index materials for construction and construction, seedling- , And as a material for fomentation and the like.

가장 많은 경우에, 이러한 고흡수성 수지는 기저귀나 생리대 등 위생재 분야에서 널리 사용되고 있는데, 이러한 용도를 위해 수분 등에 대한 높은 흡수력을 나타낼 필요가 있고, 외부의 압력에도 흡수된 수분이 빠져 나오지 않아야 하며, 이에 더하여, 물을 흡수하여 부피 팽창(팽윤)된 상태에서도 형태를 잘 유지하여 우수한 통액성(permeability)을 나타낼 필요가 있다. In most cases, such a superabsorbent resin is widely used in the field of sanitary materials such as diapers and sanitary napkins. For this purpose, it is necessary to exhibit a high absorption capacity for moisture and the like, In addition, there is a need to exhibit excellent permeability by keeping the form well even when the water is absorbed and expanded in volume (swollen).

그런데, 상기 고흡수성 수지의 기본적인 흡수력 및 보수력을 나타내는 물성인 보수능(CRC)과, 외부의 압력에도 흡수된 수분을 잘 보유하는 특성을 나타내는 가압하 흡수능(AUL)은 함께 향상시키기 어려운 것으로 알려져 있다. 이는 고흡수성 수지의 전체적인 가교 밀도가 낮게 제어될 경우, 보수능은 상대적으로 높아질 수 있지만, 가교 구조가 성기게 되고 겔 강도가 낮아져 가압하 흡수능은 저하될 수 있기 때문이다. 반대로, 가교 밀도를 높게 제어하여 가압하 흡수능을 향상시키는 경우, 빽빽한 가교 구조 사이로 수분이 흡수되기 어려운 상태로 되어 기본적인 보수능이 저하될 수 있다. 상술한 이유로 인해, 보수능 및 가압하 흡수능이 함께 향상된 고흡수성 수지를 제공하는데 한계가 있다. However, it is known that it is difficult to improve both the water retention capacity (CRC), which is the physical property showing the basic absorption power and the water holding capacity of the superabsorbent resin, and the absorptive capacity under pressure (AUL), which shows the property of holding the moisture absorbed even to the external pressure well . This is because, when the overall cross-link density of the superabsorbent resin is controlled to be low, the hydrophobic ability can be relatively high, but the cross-linking structure becomes poor and the gel strength becomes low and the absorbability under pressure can be lowered. On the other hand, when the cross-linking density is controlled to be high and the absorption ability under pressure is improved, moisture can not easily be absorbed through the dense cross-linking structure, and the basic water-holding ability can be lowered. For the above reasons, there is a limit to providing a superabsorbent resin having both a water-repellent ability and an ability to absorb under pressure.

그러나, 최근 기저귀나 생리대 등과 같은 위생재의 박막화에 따라 고흡수성 수지에 보다 높은 흡수 성능이 요구되고 있다. 이 중에서도, 상반되는 물성인 보수능과 가압 흡수능의 동반 향상과 통액성의 개선 등이 중요한 과제로 대두되고 있다. However, recently, a hygroscopic material such as a diaper or a sanitary napkin is becoming thinner, so that a higher absorption performance is required for a superabsorbent resin. Among them, improvement of the water retention ability and the pressure absorption ability, which are opposite physical properties, and improvement of the liquid permeability are becoming important tasks.

또한, 기저귀나 생리대 등의 위생재에 적용되는 고흡수성 수지가 액체를 흡수한 이후 표면이 축축해져 불쾌한 사용감을 줄 수 있는데 이를 방지하기 위해서는 고흡수성 수지가 빠른 초기 흡수 속도를 나타낼 것이 요구된다. 초기 흡수 속도가 빠를수록 액체에 의해 팽윤된 후에도 표면이 건조한 상태가 유지되므로 보다 쾌적한 사용 상태를 유지할 수 있다.In addition, since the superabsorbent resin applied to sanitary materials such as diapers and sanitary napkins absorbs liquid, the surface of the absorbent resin becomes dewy and can give an uncomfortable feeling. To prevent this, it is required that the superabsorbent resin exhibits a fast initial absorption rate. As the initial absorption rate is faster, the surface is kept dry even after being swollen by the liquid, so that a more comfortable use condition can be maintained.

상기와 같은 종래 기술의 문제점을 해결하고자, 본 발명은 초기 흡수 속도가 빠른 고흡수성 수지의 제조방법을 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art as described above, it is an object of the present invention to provide a method of manufacturing a superabsorbent resin having a high initial absorption rate.

상기의 목적을 달성하기 위하여, 본 발명의 일 측면에 따르면, In order to achieve the above object, according to an aspect of the present invention,

산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 발포제, 계면활성제, 내부 가교제, 및 중합 개시제를 포함하는 모노머 조성물을 중합하여 함수겔 중합체를 형성하는 단계; Polymerizing a monomer composition comprising an acrylic acid-based monomer having an acidic group and at least a part of the acidic groups neutralized, a blowing agent, a surfactant, an internal cross-linker, and a polymerization initiator to form a hydrous gel polymer;

상기 함수겔 중합체에 대하여 염기성 수용액을 혼합하여 분쇄하는 단계;Mixing and grinding a basic aqueous solution with the hydrogel polymer;

상기 분쇄된 중합체를 건조하여 베이스 수지를 제조하는 단계; 및Drying the pulverized polymer to prepare a base resin; And

상기 베이스 수지에 대하여 표면 가교 반응을 수행하는 단계; Performing a surface cross-linking reaction on the base resin;

를 포함하는 고흡수성 수지의 제조방법을 제공한다.And a method of producing a superabsorbent resin.

본 발명의 고흡수성 수지의 제조 방법에 따르면, 우수한 제반 흡수 물성을 나타내면서도 초기 흡수 속도가 향상된 고흡수성 수지를 제공할 수 있다.INDUSTRIAL APPLICABILITY According to the method for producing a superabsorbent resin of the present invention, it is possible to provide a superabsorbent resin having an improved initial absorption rate while exhibiting excellent various absorbent properties.

본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing exemplary embodiments only and is not intended to be limiting of the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, the terms "comprises", "comprising", or "having" are used to designate the presence of stated features, steps, components, or combinations thereof, and are not intended to preclude the presence of one or more other features, Components, or combinations thereof, as a matter of convenience, without departing from the spirit and scope of the invention.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.

이하, 본 발명의 일 구현예에 따른 고흡수성 수지의 제조 방법에 대해 상세히 설명한다.Hereinafter, a method for producing a superabsorbent resin according to an embodiment of the present invention will be described in detail.

본 발명의 일 구현예에 따른 고흡수성 수지의 제조방법은, A method of manufacturing a superabsorbent resin according to an embodiment of the present invention includes:

산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 발포제, 계면활성제, 내부 가교제, 및 중합 개시제를 포함하는 모노머 조성물을 중합하여 함수겔 중합체를 형성하는 단계; 상기 함수겔 중합체에 대하여 염기성 수용액을 혼합하여 분쇄하는 단계; 상기 분쇄된 중합체를 건조하여 베이스 수지를 제조하는 단계; 및 상기 베이스 수지에 대하여 표면 가교 반응을 수행하는 단계를 포함한다. Polymerizing a monomer composition comprising an acrylic acid-based monomer having an acidic group and at least a part of the acidic groups neutralized, a blowing agent, a surfactant, an internal cross-linker, and a polymerization initiator to form a hydrous gel polymer; Mixing and grinding a basic aqueous solution with the hydrogel polymer; Drying the pulverized polymer to prepare a base resin; And performing a surface cross-linking reaction on the base resin.

참고로, 본 발명의 명세서에서 "중합체", 또는 "고분자"는 아크릴산계 단량체가 중합된 상태인 것을 의미하며, 모든 수분 함량 범위 또는 입경 범위를 포괄할 수 있다. 상기 중합체 중, 중합 후 건조 전 상태의 것으로 함수율(수분 함량)이 약 40 중량% 이상의 중합체를 함수겔 중합체로 지칭할 수 있다. For reference, in the specification of the present invention, "polymer" or "polymer" means that the acrylic acid-based monomer is in a polymerized state, and may cover all moisture content ranges or particle diameter ranges. Among the above polymers, a polymer having a water content (moisture content) of about 40% by weight or more after polymerization and before drying can be referred to as a hydrogel polymer.

또한, "베이스 수지" 또는 "베이스 수지 분말"은 상기 중합체를 건조 및 분쇄하여 파우더(powder) 형태로 만든 것으로, 후술하는 표면 가교 단계를 수행하기 이전의 중합체를 의미한다.The term "base resin" or "base resin powder" refers to a polymer prepared by drying and pulverizing the polymer in the form of a powder before the surface crosslinking step described below.

아크릴산계 단량체의 중합 반응에 의해 수득되는 함수겔상 중합체는 건조, 분쇄, 분급, 표면 가교 등의 공정을 거쳐 분말상의 제품인 고흡수성 수지로 시판된다. The hydrogel polymer obtained by the polymerization reaction of the acrylic acid-based monomer is subjected to a process such as drying, crushing, classification, surface crosslinking and the like, and is marketed as a superabsorbent resin which is powdery product.

최근 들어 고흡수성 수지에서 흡수능, 통액성과 같은 제반 흡수 물성뿐 아니라 실제 기저귀가 사용되는 상황에서 표면의 건조(dryness) 상태가 얼마나 유지될 수 있는가가 기저귀 특성을 가늠하는 중요한 척도가 되고 있다. In recent years, not only the absorption properties such as absorption capacity and liquid permeability but also the degree of maintaining the dryness of the surface in the situation where actual diapers are used have become an important measure of diaper characteristics.

본 발명의 일 구현예에 따른 제조방법에 의해 수득되는 고흡수성 수지는 보수능, 가압 흡수능, 통액성 등의 물성 측면에서 우수한 제반 흡수 성능을 나타내며, 초기 흡수 속도가 빨라 액체에 의해 팽윤된 후에도 건조한 상태가 유지될 수 있음을 확인하여 본 발명에 이르게 되었다.The superabsorbent resin obtained by the production method according to one embodiment of the present invention exhibits excellent absorption performance in terms of physical properties such as water retention capacity, pressure absorption capacity and liquid permeability, and is excellent in initial absorption rate and swollen State can be maintained, leading to the present invention.

본 발명의 고흡수성 수지의 제조 방법에서, 상기 고흡수성 수지의 원료 물질인 모노머 조성물은 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 발포제, 계면활성제, 내부 가교제, 및 중합 개시제를 포함한다. In the method for producing a superabsorbent resin according to the present invention, the monomer composition, which is a raw material of the superabsorbent resin, may contain an acrylic acid monomer having an acidic group and at least a part of which is neutralized, a foaming agent, a surfactant, .

이에 대해 하기에서 보다 상세히 설명한다. This will be described in more detail below.

먼저, 상기 아크릴산계 단량체는 하기 화학식 1로 표시되는 화합물이다:First, the acrylic acid-based monomer is a compound represented by the following Formula 1:

[화학식 1][Chemical Formula 1]

R1-COOM1 R 1 -COOM 1

상기 화학식 1에서, In Formula 1,

R1은 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고, R 1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond,

M1은 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다.M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group or an organic amine salt.

바람직하게는, 상기 아크릴산계 단량체는 아크릴산, 메타크릴산 및 이들의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택되는 1종 이상을 포함한다. Preferably, the acrylic acid-based monomer includes at least one selected from the group consisting of acrylic acid, methacrylic acid, monovalent metal salts thereof, bivalent metal salts, ammonium salts and organic amine salts thereof.

여기서, 상기 아크릴산계 단량체는 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 알칼리 물질로 부분적으로 중화시킨 것이 사용될 수 있다. 이때, 상기 아크릴산계 단량체의 중화도는 40 내지 95 몰%, 또는 40 내지 80 몰%, 또는 45 내지 75 몰%일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 조절될 수 있다. 그런데, 상기 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다.Here, the acrylic acid-based monomer may have an acidic group and at least a part of the acidic group may be neutralized. Preferably, the monomer is partially neutralized with an alkali substance such as sodium hydroxide, potassium hydroxide, ammonium hydroxide or the like. At this time, the neutralization degree of the acrylic acid monomer may be 40 to 95 mol%, or 40 to 80 mol%, or 45 to 75 mol%. The range of the degree of neutralization can be adjusted according to the final properties. However, if the degree of neutralization is too high, neutralized monomers may precipitate and polymerization may not be smoothly proceeded. On the other hand, if the degree of neutralization is too low, the absorption capacity of the polymer is greatly lowered, have.

상기 아크릴산계 단량체의 농도는, 상기 고흡수성 수지의 원료 물질 및 용매를 포함하는 모노머 조성물에 대해 약 20 내지 약 60 중량%, 바람직하게는 약 40 내지 약 50 중량%로 될 수 있으며, 중합 시간 및 반응 조건 등을 고려해 적절한 농도로 될 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮고 경제성에 문제가 생길 수 있고, 반대로 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄 시 분쇄 효율이 낮게 나타나는 등 공정상 문제가 생길 수 있으며 고흡수성 수지의 물성이 저하될 수 있다. The concentration of the acrylic acid-based monomer may be about 20 to about 60% by weight, preferably about 40 to about 50% by weight, based on the monomer composition including the raw material and the solvent of the superabsorbent resin, It may be an appropriate concentration considering the reaction conditions and the like. However, if the concentration of the monomer is excessively low, the yield of the superabsorbent resin may be low and economical efficiency may be deteriorated. On the other hand, if the concentration is excessively high, a part of the monomer may precipitate or the pulverization efficiency may be low Problems such as the like may occur and the physical properties of the superabsorbent resin may be deteriorated.

본 발명의 모노머 조성물은 발포제를 포함한다. The monomer composition of the present invention comprises a blowing agent.

상기 발포제에 의해 중합시 발포가 일어나 함수겔 중합체 내 기공을 형성하여 표면적을 늘리는 역할을 한다. The foaming agent causes foaming during polymerization to form pores in the hydrogel polymer, thereby increasing the surface area.

상기 발포제로는 탄산염 발포제를 사용할 수 있으며, 상기 탄산염 발포제의 일례로 소디움 비카보네이트(sodium bicarbonate), 소디움 카보네이트(sodium carbonate), 포타슘 비카보네이트(potassium bicarbonate), 포타슘 카보네이트(potassium carbonate), 칼슘 비카보네이트(calcium bicarbonate), 칼슘 카보네이트(calcium bicarbonate), 마그네슘 비카보네이트(magnesiumbicarbonate) 또는 마그네슘 카보네이트(magnesium carbonate)를 사용할 수 있다. The foaming agent may be a carbonate foaming agent. Examples of the carbonate foaming agent include sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, calcium bicarbonate calcium bicarbonate, calcium bicarbonate, magnesium bicarbonate, or magnesium carbonate may be used.

또한, 상기 발포제는 상기 아크릴산계 단량체 100 중량부에 대하여 약 0.01 내지 약 0.5 중량부, 또는 약 0.01 내지 약 0.3 중량부, 또는 약 0.01 내지 약 0.2 중량부의 함량으로 첨가될 수 있다. 상기 발포제의 사용량이 너무 많을 경우에는 기공이 너무 많아져 고흡수성 수지의 겔 강도가 떨어지고 밀도가 작아져 유통과 보관에 문제를 초래할 수 있다. 또한, 너무 적게 포함될 경우에는 발포제로서의 역할이 미미할 수 있다. The blowing agent may be added in an amount of about 0.01 to about 0.5 parts by weight, or about 0.01 to about 0.3 parts by weight, or about 0.01 to about 0.2 parts by weight based on 100 parts by weight of the acrylic acid monomer. If the amount of the foaming agent used is too large, the pores become too large, the gel strength of the superabsorbent resin lowers and the density becomes low, which may cause problems in distribution and storage. In addition, when the amount is too small, the function as a blowing agent may be insignificant.

본 발명의 모노머 조성물은 계면활성제를 포함한다. The monomer composition of the present invention comprises a surfactant.

상기 계면활성제는, 중합시 상기 단량체 조성물 내 성분들의 균일한 분포를 유도하고 발포제로 인하여 형성된 기포의 형태를 유지하면서 동시에 중합체 전 영역에 기포를 균일하게 분포시키는 역할을 할 수 있다. The surfactant may serve to uniformly distribute the components in the monomer composition during polymerization and to uniformly distribute the bubbles in the whole area of the polymer while maintaining the shape of the bubbles formed by the foaming agent.

상기 계면 활성제로 바람직하게는 음이온성 계면활성제를 사용할 수 있다.As the surfactant, anionic surfactants may preferably be used.

사용가능한 음이온성 계면활성제의 예로는, 소듐 도데실 설페이트(sodium dodecyl sulfate), 소듐 스테아레이트(sodium stearate), 암모늄 라우릴 설페이트 (ammonium lauryl sulfate), 소디움 라우릴 에테르 설페이트 (sodium lauryl ether sulfate), 소디움 미레스 설페이트(sodium myreth sulfate), 또는 이들과 유사한 알킬에테르 설페이트계 화합물을 들 수 있다. 사용 가능한 음이온성 계면활성제가 이에 한정되지는 않으나, 바람직하게는 소듐 도데실 설페이트 또는 소듐 스테아레이트를 사용할 수 있다. Examples of anionic surfactants that can be used include sodium dodecyl sulfate, sodium stearate, ammonium lauryl sulfate, sodium lauryl ether sulfate, Sodium myreth sulfate, or alkyl ether sulfate compounds similar thereto. The anionic surfactant that can be used is not limited thereto, but preferably sodium dodecyl sulfate or sodium stearate can be used.

상기 계면활성제는 상기 아크릴산계 단량체 100 중량부에 대하여 약 0.001 내지 약 0.5 중량부, 또는 약 0.002 내지 약 0.05 중량부로 첨가될 수 있다. 상기 계면활성제의 함량이 지나치게 낮을 경우 기포 안정제로서의 역할이 미미하여 흡수 속도 향상 효과를 달성하기 어렵고, 반대로 상기 함량이 지나치게 높을 경우 중합시 보수능 및 흡수 속도가 오히려 하락하여 바람직하지 않을 수 있다. The surfactant may be added in an amount of about 0.001 to about 0.5 part by weight, or about 0.002 to about 0.05 part by weight based on 100 parts by weight of the acrylic acid monomer. If the content of the surfactant is excessively low, it is difficult to achieve an improvement in the absorption rate due to insufficient action as a foam stabilizer. On the other hand, if the content is excessively high, the water retention capacity and absorption rate during polymerization may be rather low.

본 발명의 모노머 조성물은 내부 가교제를 포함한다. 상기 내부 가교제로는 상기 아크릴산계 단량체와 반응할 수 있는 관능기를 1개 이상 가지면서, 에틸렌성 불포화기를 1개 이상 갖는 가교제; 혹은 상기 아크릴산계 단량체의 치환기 및/또는 단량체의 가수분해에 의해 형성된 치환기와 반응할 수 있는 관능기를 2개 이상 갖는 가교제를 사용할 수 있다. The monomer composition of the present invention comprises an internal cross-linking agent. Examples of the internal crosslinking agent include a crosslinking agent having at least one functional group capable of reacting with the acrylic acid-based monomer and having at least one ethylenic unsaturated group; Or a crosslinking agent having two or more functional groups capable of reacting with a substituent formed by hydrolysis of a substituent and / or a monomer of the acrylic acid-based monomer may be used.

상기 내부 가교제의 구체적인 예로는, N,N'-메틸렌비스아크릴아미드, 트리메틸롤프로판 트리(메타)아크릴레이트, 에틸렌글리콜 다이(메타)아크릴레이트, 폴리에틸렌글리콜(메타)아크릴레이트, 프로필렌글리콜 다이(메타)아크릴레이트, 폴리프로필렌글리콜(메타)아크릴레이트, 부탄다이올다이(메타)아크릴레이트, 부틸렌글리콜다이(메타)아크릴레이트, 다이에틸렌글리콜 다이(메타)아크릴레이트, 헥산다이올다이(메타)아크릴레이트, 트리에틸렌글리콜 다이(메타)아크릴레이트, 트리프로필렌글리콜 다이(메타)아크릴레이트, 테트라에틸렌글리콜 다이(메타)아크릴레이트, 다이펜타에리스리톨 펜타아크릴레이트, 글리세린 트리(메타)아크릴레이트, 펜타에리스톨 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르, 프로필렌 글리콜, 글리세린, 및 에틸렌카보네이트로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있다. Specific examples of the internal crosslinking agent include N, N'-methylenebisacrylamide, trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, propylene glycol di Butylene diol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, hexane diol di (meth) acrylate, Acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri Styrene tetraacrylate, triarylamine, ethylene glycol diglycidyl ether, propylene glycol, Lee serine, and it can be used at least one selected from the group consisting of ethylene carbonate.

이러한 내부 가교제는 상기 모노머 조성물에 대하여 약 0.01 내지 약 0.5 중량%의 농도로 포함되어, 중합된 고분자를 가교시킬 수 있다. Such an internal crosslinking agent may be included at a concentration of about 0.01 to about 0.5% by weight based on the monomer composition to crosslink the polymerized polymer.

본 발명의 고흡수성 수지 제조 방법에서 중합시 사용되는 중합 개시제는 고흡수성 수지의 제조에 일반적으로 사용되는 것이면 특별히 한정되지 않는다.In the method for producing a superabsorbent resin of the present invention, the polymerization initiator used in polymerization is not particularly limited as long as it is generally used in the production of a superabsorbent resin.

구체적으로, 상기 중합 개시제는 중합 방법에 따라 열중합 개시제 또는 UV 조사에 따른 광중합 개시제를 사용할 수 있다. 다만 광중합 방법에 의하더라도, 자외선 조사 등의 조사에 의해 일정량의 열이 발생하고, 또한 발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를 포함할 수도 있다.Specifically, as the polymerization initiator, a thermal polymerization initiator or a photopolymerization initiator based on UV irradiation may be used depending on the polymerization method. However, even when the photopolymerization method is employed, a certain amount of heat is generated by irradiation of ultraviolet light or the like, and a certain amount of heat is generated as the polymerization reaction, which is an exothermic reaction, proceeds.

상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다. The photopolymerization initiator can be used without limitation in the constitution as long as it is a compound capable of forming a radical by light such as ultraviolet rays.

상기 광중합 개시제로는 예를 들어, 벤조인 에테르(benzoin ether), 디알킬아세토페논(dialkyl acetophenone), 하이드록실 알킬케톤(hydroxyl alkylketone), 페닐글리옥실레이트(phenyl glyoxylate), 벤질디메틸케탈(Benzyl Dimethyl Ketal), 아실포스핀(acyl phosphine) 및 알파-아미노케톤(α-aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체예로, 상용하는 lucirin TPO, 즉, 2,4,6-트리메틸-벤조일-트리메틸 포스핀 옥사이드(2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)를 사용할 수 있다. 보다 다양한 광개시제에 대해서는 Reinhold Schwalm 저서인 'UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)' p115에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.Examples of the photopolymerization initiator include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, benzyl dimethyl ketal Ketal, acyl phosphine, and alpha-aminoketone may be used. On the other hand, as a specific example of the acylphosphine, a commonly used lucyrin TPO, i.e., 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide can be used . More photoinitiators are well described in Reinhold Schwalm, UV Coatings: Basics, Recent Developments and New Applications (Elsevier 2007), p. 115, and are not limited to the above examples.

상기 광중합 개시제는 상기 모노머 조성물에 대하여 약 0.01 내지 약 1.0 중량%의 농도로 포함될 수 있다. 이러한 광중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다. The photopolymerization initiator may be included in the monomer composition at a concentration of about 0.01 to about 1.0 wt%. If the concentration of such a photopolymerization initiator is too low, the polymerization rate may be slowed. If the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent resin may be small and the physical properties may become uneven.

또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨(Sodium persulfate; Na2S2O8), 과황산칼륨(Potassium persulfate; K2S2O8), 과황산암모늄(Ammonium persulfate;(NH4)2S2O8) 등이 있으며, 아조(Azo)계 개시제의 예로는 2, 2-아조비스-(2-아미디노프로판)이염산염(2, 2-azobis(2-amidinopropane) dihydrochloride), 2, 2-아조비스-(N, N-디메틸렌)이소부티라마이딘 디하이드로클로라이드(2,2-azobis-(N, N-dimethylene)isobutyramidine dihydrochloride), 2-(카바모일아조)이소부티로니트릴(2-(carbamoylazo)isobutylonitril), 2, 2-아조비스[2-(2-이미다졸린-2-일)프로판] 디하이드로클로라이드(2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스-(4-시아노발레릭 산)(4,4-azobis-(4-cyanovaleric acid)) 등이 있다. 보다 다양한 열중합 개시제에 대해서는 Odian 저서인 'Principle of Polymerization(Wiley, 1981)', p203에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.As the thermal polymerization initiator, at least one selected from persulfate-based initiators, azo-based initiators, initiators consisting of hydrogen peroxide and ascorbic acid can be used. Specifically, examples of the persulfate-based initiator include sodium persulfate (Na 2 S 2 O 8 ), potassium persulfate (K 2 S 2 O 8 ), ammonium persulfate (NH 4 ) 2 S 2 O 8 ). Examples of the azo-based initiator include 2, 2-azobis (2-amidinopropane) dihydrochloride, 2 , 2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride, 2- (carbamoyl azo) isobutyronitrile Azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, yl) propane] dihydrochloride, and 4,4-azobis- (4-cyanovaleric acid). A variety of thermal polymerization initiators are well described in the Odian book, Principle of Polymerization (Wiley, 1981), p. 203, and are not limited to the above examples.

본 발명의 제조방법에서, 고흡수성 수지의 상기 모노머 조성물은 필요에 따라 증점제(thickener), 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포함할 수 있다. In the production method of the present invention, the monomer composition of the superabsorbent resin may further contain additives such as a thickener, a plasticizer, a storage stabilizer, and an antioxidant, if necessary.

상술한 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 광중합 개시제, 열중합 개시제, 내부 가교제 및 첨가제와 같은 원료 물질은 용매에 용해된 모노머 조성물 용액의 형태로 준비될 수 있다.Raw materials such as acrylic acid-based monomer, photopolymerization initiator, thermal polymerization initiator, internal cross-linking agent and additive having the above-mentioned acid group and at least part of which is neutralized can be prepared in the form of a monomer composition solution dissolved in a solvent.

이 때 사용할 수 있는 상기 용매는 상술한 성분들을 용해할 수 있으면 그 구성의 한정이 없이 사용될 수 있으며, 예를 들어 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로헥사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 톨루엔, 크실렌, 부틸로락톤, 카르비톨, 메틸셀로솔브아세테이트 및 N,N-디메틸아세트아미드 등에서 선택된 1종 이상을 조합하여 사용할 수 있다.The solvent which can be used at this time can be used without limitation of its constitution as long as it can dissolve the above-mentioned components. Examples thereof include water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, Propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol At least one selected from ethyl ether, toluene, xylene, butylolactone, carbitol, methylcellosolve acetate and N, N-dimethylacetamide can be used in combination.

상기 용매는 모노머 조성물의 총 함량에 대하여 상술한 성분을 제외한 잔량으로 포함될 수 있다.The solvent may be included in the remaining amount of the monomer composition excluding the components described above.

한편, 이와 같은 모노머 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 형성하는 방법 또한 통상 사용되는 중합 방법이면, 특별히 구성의 한정이 없다. On the other hand, the method of forming a hydrogel polymer by thermal polymerization or photopolymerization of such a monomer composition is not particularly limited as long as it is a commonly used polymerization method.

구체적으로, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중합으로 나뉘며, 통상 열중합을 진행하는 경우, 니더(kneader)와 같은 교반축을 가진 반응기에서 진행될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반응기에서 진행될 수 있으나, 상술한 중합 방법은 일 예이며, 본 발명은 상술한 중합 방법에 한정되지는 않는다.Specifically, the polymerization method is largely divided into thermal polymerization and photopolymerization depending on the polymerization energy source. In general, when thermal polymerization is carried out, it may proceed in a reactor having a stirring axis such as a kneader. In the case where light polymerization is proceeded, The polymerization method described above is merely an example, and the present invention is not limited to the polymerization method described above.

일 예로, 상술한 바와 같이 교반축을 구비한 니더(kneader)와 같은 반응기에, 열풍을 공급하거나 반응기를 가열하여 열중합을 하여 얻어진 함수겔상 중합체는 반응기에 구비된 교반축의 형태에 따라, 반응기 배출구로 배출되는 함수겔상 중합체는 수 센티미터 내지 수 밀리미터 형태일 수 있다. 구체적으로, 얻어지는 함수겔상 중합체의 크기는 주입되는 모노머 조성물의 농도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 중량 평균 입경이 2 내지 50 mm 인 함수겔상 중합체가 얻어질 수 있다.For example, the hydrogel polymer obtained by supplying hot air or heating the reactor to a reactor such as a kneader having an agitating shaft as described above and thermally polymerizing the reactor may be supplied to the reactor outlet The discharged hydrogel polymer may be in the range of a few centimeters to a few millimeters. Specifically, the size of the obtained hydrogel polymer may vary depending on the concentration of the monomer composition to be injected, the injection rate, etc. In general, a hydrogel polymer having a weight average particle diameter of 2 to 50 mm can be obtained.

또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반응기에서 광중합을 진행하는 경우, 통상 얻어지는 함수겔상 중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔상 중합체일 수 있다. 이 때, 중합체 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도에 따라 달라지나, 통상 약 0.5 내지 약 5cm의 두께를 가진 시트 상의 중합체가 얻어질 수 있도록 단량체 조성물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 5cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반응이 전 두께에 걸쳐 고르게 일어나지 않을 수가 있다.In addition, when photopolymerization proceeds in a reactor equipped with a movable conveyor belt as described above, the form of the hydrogel polymer that is usually obtained may be a hydrogel polymer on a sheet having a belt width. At this time, the thickness of the polymer sheet varies depending on the concentration of the monomer composition to be injected and the injection rate, but it is preferable to supply the monomer composition so that a polymer in the form of a sheet having a thickness of usually about 0.5 to about 5 cm can be obtained. When the monomer composition is supplied to such an extent that the thickness of the polymer in the sheet is too thin, the production efficiency is low, which is undesirable. When the thickness of the polymer on the sheet exceeds 5 cm, the polymerization reaction occurs evenly over the entire thickness due to the excessively thick thickness I can not.

이때 이와 같은 방법으로 얻어진 함수겔상 중합체의 통상 함수율은 약 40 내지 약 80 중량%일 수 있다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수겔상 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔상 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180℃까지 온도를 상승시킨 뒤 180℃에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을 측정한다.The normal water content of the hydrogel polymer obtained by this method may be about 40 to about 80 wt%. On the other hand, throughout the present specification, the term "moisture content" means the moisture content of the total functional gelated polymer weight minus the weight of the hydrogel polymer in dry state. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer in the process of raising the temperature of the polymer through infrared heating. At this time, the drying condition is a method of raising the temperature from room temperature to about 180 ° C and then keeping it at 180 ° C, and the total drying time is set to 20 minutes including 5 minutes of the temperature raising step, and water content is measured.

본 발명의 제조방법에 따르면, 상술한 방법으로 중합을 진행하여 조분쇄 전의 함수겔 중합체의 함수량이 40 내지 50%을 만족하도록 중합 조건을 조절하고, 또한 후술하는 분쇄 단계에서 공정 조건을 조절함으로써, 우수한 제반 흡수 물성을 나타내면서도 초기 흡수 속도가 빠른 우수한 품질의 고흡수성 수지를 제조할 수 있다. According to the production method of the present invention, the polymerization conditions are adjusted so that the water content of the hydrogel polymer before the coarse pulverization is 40 to 50% by the above-mentioned method, and the process conditions are controlled in the pulverization step described later, It is possible to produce a superabsorbent resin of excellent quality with high initial absorption rate while exhibiting excellent various absorption properties.

다음에, 얻어진 함수겔상 중합체를 분쇄하는 단계를 수행한다. 상기 분쇄는, 먼저 상기 함수겔 중합체에 대하여 염기성 수용액을 혼합하고, 상기 염기성 수용액이 혼합된 함수겔 중합체를 쵸핑(chopping)하는 방법으로 수행될 수 있다.Next, a step of pulverizing the obtained hydrogel polymer is carried out. The pulverization can be carried out by first mixing a basic aqueous solution with the hydrous gel polymer, and chopping the hydrogel polymer mixed with the basic aqueous solution.

상기와 같이 함수겔상 중합체에 염기성 수용액을 혼합하여 쵸핑한 후 건조한 상태에서 분쇄를 하게 되면, 상기 함수겔상 중합체의 표면이 이온성을 띠게 되며 이에 따라 함수겔 중합체의 친수성이 높아져 초기 흡수 속도가 빨라질 수 있다. 이렇게 빨라진 흡수 속도는 이후의 표면 가교 공정을 거쳐도 유지되어 고흡수성 수지가 흡수 속도 측면에서 최적화된 물성을 나타낼 수 있음을 확인하였다.As described above, when the functional gel polymer is pulverized after mixing with a basic aqueous solution and chopping it in a dry state, the surface of the hydrogel polymer becomes ionic, thereby increasing the hydrophilic property of the hydrogel polymer, have. It was confirmed that the faster absorption rate can be maintained even after the surface cross-linking process, and the superabsorbent resin can exhibit the optimized properties in terms of the absorption rate.

상기 염기성 수용액은 수산화칼륨(KOH), 탄산칼륨(K2CO3), 수산화나트륨(NaOH)과 같은 이온화도가 높은 염기성 물질을 포함할 수 있다. The basic aqueous solution may contain a basic substance having a high ionization degree such as potassium hydroxide (KOH), potassium carbonate (K 2 CO 3 ), and sodium hydroxide (NaOH).

상기 염기성 수용액에 있어 염기성 물질의 농도는 약 0.1 내지 약 10 M, 또는 약 0.5 내지 약 8 M일 수 있다. 상기 염기성 수용액의 농도가 너무 낮으면, 상술한 효과를 달성하기 위해 많은 양의 물이 투입되어야 하는 문제가 발생할 수 있고, 농도가 너무 높을 경우 시트가 상당히 끈적거리고 흡수 속도가 저하될 수 있어, 이러한 관점에서 상기 범위의 농도로 사용하는 것이 바람직하다. The concentration of the basic substance in the basic aqueous solution may be about 0.1 to about 10 M, or about 0.5 to about 8 M. [ If the concentration of the basic aqueous solution is too low, a large amount of water may be required to be added to achieve the above-mentioned effect. If the concentration is too high, the sheet may be considerably sticky and the absorption rate may be lowered. It is preferable to use it at the concentration within the above range.

상기 염기성 수용액은 상기 함수겔상 중합체 100 중량부에 대해, 약 5 내지 약 20 중량부, 바람직하게는 약 5 내지 약 15 중량부, 더욱 바람직하게는 약 10 내지 약 15 중량부가 되도록 혼합할 수 있다. 상기 염기성 수용액의 첨가량이 지나치게 적으면, 흡수 속도 개선의 효과가 거의 없으며, 너무 많이 첨가할 경우, 함수겔이 끈적거리는 현상이 나타날 수 있어, 이러한 관점에서 상기 범위로 사용하는 것이 바람직하다. The basic aqueous solution may be mixed in an amount of about 5 to about 20 parts by weight, preferably about 5 to about 15 parts by weight, more preferably about 10 to about 15 parts by weight based on 100 parts by weight of the hydrogel polymer. If the addition amount of the basic aqueous solution is too small, the effect of improving the absorption rate hardly occurs. If too much is added, the hydrogel may become sticky.

다음에, 상술한 분쇄 단계를 거쳐 분쇄된 중합체를 건조하는 단계를 수행한다.Next, the step of drying the pulverized polymer through the above-mentioned pulverizing step is carried out.

상기 건조 단계의 건조 온도는 약 150 내지 약 250℃일 수 있다. 건조 온도가 150℃ 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있고, 건조 온도가 250℃를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 따라서 바람직하게 상기 건조는 약 150 내지 약 200℃의 온도에서, 더욱 바람직하게는 약 160 내지 약 180℃의 온도에서 진행될 수 있다.The drying temperature of the drying step may be about 150 to about 250 ° C. If the drying temperature is lower than 150 ° C, the drying time becomes excessively long and the physical properties of the superabsorbent resin to be finally formed may deteriorate. When the drying temperature exceeds 250 ° C, only the polymer surface is excessively dried, And the physical properties of the finally formed superabsorbent resin may be deteriorated. Thus, preferably, the drying can proceed at a temperature of from about 150 to about 200 < 0 > C, more preferably from about 160 to about 180 < 0 > C.

한편, 건조 시간의 경우에는 공정 효율 등을 고려하여, 약 20 내지 약 90분 동안 진행될 수 있으나, 이에 한정되지는 않는다. On the other hand, in the case of drying time, it may proceed for about 20 to about 90 minutes, but is not limited thereto, considering process efficiency and the like.

상기 건조 단계의 건조 방법 역시 함수겔상 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은 약 0.1 내지 약 10 중량%일 수 있다.The drying method in the drying step may be selected and used as long as it is usually used as a drying step of the hydrogel polymer. Specifically, the drying step can be carried out by hot air supply, infrared irradiation, microwave irradiation, ultraviolet irradiation, or the like. The water content of the polymer after such a drying step may be from about 0.1 to about 10% by weight.

다음에, 이와 같은 건조 단계를 거쳐 얻어진 건조된 중합체를 분말 형태로 분쇄하는 단계를 수행한다. Next, a step of pulverizing the dried polymer obtained through such a drying step into a powder form is carried out.

분쇄 단계 후 얻어지는 중합체 분말은 입경이 약 150 내지 약 850㎛ 일 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀(pin mill), 해머 밀(hammer mill), 스크류 밀(screw mill), 롤 밀(roll mill), 디스크 밀(disc mill) 또는 조그 밀(jog mill) 등을 사용할 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다. The polymer powder obtained after the milling step may have a particle diameter of from about 150 to about 850 탆. The pulverizer used for crushing with such a particle size is specifically a pin mill, a hammer mill, a screw mill, a roll mill, a disc mill, A jog mill, or the like may be used, but the present invention is not limited to the above examples.

그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있으며, 상기 중합체 분말을 입경 범위에 따라 일정 중량비가 되도록 분급할 수 있다. In order to control the physical properties of the superabsorbent resin powder which is finally produced after the pulverization step, a separate process of classifying the polymer powder obtained after the pulverization according to the particle size may be carried out. . ≪ / RTI >

다음에, 상기와 같이 얻어진 중합체, 즉 베이스 수지에 대해 표면 가교 반응을 수행하여 상기 분쇄된 중합체에 대해 표면 가교 반응 단계를 수행한다. Next, the surface cross-linking reaction step is performed on the polymer obtained as described above, that is, the base resin to perform the surface cross-linking reaction step for the ground polymer.

일반적인 고흡수성 수지의 제조방법에서, 건조 및 분쇄된 중합체, 즉 베이스 수지에 표면 가교제를 포함하는 표면 가교 용액을 혼합한 다음, 이들 혼합물에 열을 가하여 승온함으로써 상기 분쇄된 중합체에 대해 표면 가교 반응을 수행한다.In a general method of producing a superabsorbent resin, a surface cross-linking solution containing a surface cross-linking agent is mixed with a dried and ground polymer, that is, a base resin, and then the surface cross-linking reaction .

상기 표면 가교 단계는 표면 가교제의 존재 하에 상기 분쇄된 중합체의 표면에 가교 반응을 유도함으로써, 보다 향상된 물성을 갖는 고흡수성 수지를 형성시키는 단계이다. 이러한 표면 가교를 통해 상기 분쇄된 중합체 입자의 표면에는 표면 가교층(표면 개질층)이 형성된다.The surface crosslinking step is a step of inducing a crosslinking reaction on the surface of the pulverized polymer in the presence of a surface crosslinking agent to form a superabsorbent resin having improved physical properties. Through such surface crosslinking, a surface crosslinked layer (surface modifying layer) is formed on the surface of the pulverized polymer particles.

일반적으로, 표면 가교제는 고흡수성 수지 입자의 표면에 도포되므로 표면 가교 반응은 고흡수성 수지 입자의 표면 상에서 일어나며, 이는 입자 내부에는 실질적으로 영향을 미치지 않으면서 입자의 표면 상에서의 가교 결합성은 개선시킨다. 따라서 표면 가교 결합된 고흡수성 수지 입자는 내부에서보다 표면 부근에서 더 높은 가교 결합도를 갖는다.Generally, the surface cross-linking agent is applied to the surface of the superabsorbent resin particles, so that the surface cross-linking reaction occurs on the surface of the superabsorbent resin particles, which improves the crosslinkability on the surface of the particles without substantially affecting the inside of the particles. Thus, the surface cross-linked superabsorbent resin particles have a higher degree of crosslinking in the vicinity of the surface than in the interior.

상기 표면 가교제로는 중합체가 갖는 관능기와 반응 가능한 화합물이라면 그 구성의 한정이 없다.The surface cross-linking agent is not limited in its composition as long as it is a compound capable of reacting with a functional group contained in the polymer.

바람직하게는 생성되는 고흡수성 수지의 특성을 향상시키기 위해, 상기 표면 가교제로 다가 알콜 화합물; 에폭시 화합물; 폴리아민 화합물; 할로에폭시 화합물; 할로에폭시 화합물의 축합 산물; 옥사졸린 화합물류; 모노-, 디- 또는 폴리옥사졸리디논 화합물; 환상 우레아 화합물; 다가 금속염; 및 알킬렌 카보네이트 화합물로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.Preferably, in order to improve the properties of the resulting superabsorbent resin, a polyhydric alcohol compound as the surface crosslinking agent; Epoxy compounds; Polyamine compounds; Halo epoxy compounds; A condensation product of a haloepoxy compound; Oxazoline compounds; Mono-, di- or polyoxazolidinone compounds; Cyclic urea compounds; Polyvalent metal salts; And an alkylene carbonate compound can be used.

구체적으로, 다가 알콜 화합물의 예로는 모노-, 디-, 트리-, 테트라- 또는 폴리에틸렌 글리콜, 모노프로필렌 글리콜, 1,3-프로판디올, 디프로필렌 글리콜, 2,3,4-트리메틸-1,3-펜탄디올, 폴리프로필렌 글리콜, 글리세롤, 폴리글리세롤, 2-부텐-1,4-디올, 1,4-부탄디올, 1,3-부탄디올, 1,5-펜탄디올, 1,6-헥산디올, 및 1,2-사이클로헥산디메탄올로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.Specific examples of the polyhydric alcohol compound include mono-, di-, tri-, tetra- or polyethylene glycol, monopropylene glycol, 1,3-propanediol, dipropylene glycol, 2,3,4-trimethyl- - pentanediol, polypropylene glycol, glycerol, polyglycerol, 2-butene-1,4-diol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,2-cyclohexane dimethanol, and the like.

또한, 에폭시 화합물로는 에틸렌 글리콜 디글리시딜 에테르 및 글리시돌 등을 사용할 수 있으며, 폴리아민 화합물류로는 에틸렌디아민, 디에틸렌트리아민, 트리에틸렌테트라아민, 테트라에틸렌펜타민, 펜타에틸렌헥사민, 폴리에틸렌이민 및 폴리아미드폴리아민로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.Examples of the epoxy compounds include ethylene glycol diglycidyl ether and glycidol. Examples of the polyamine compounds include ethylene diamine, diethylene triamine, triethylene tetramine, tetraethylene pentaamine, pentaethylene hexamine , Polyethyleneimine, and polyamide polyamines can be used.

그리고 할로에폭시 화합물로는 에피클로로히드린, 에피브로모히드린 및 ?-메틸에피클로로히드린을 사용할 수 있다. 한편, 모노-, 디- 또는 폴리옥사졸리디논 화합물로는 예를 들어 2-옥사졸리디논 등을 사용할 수 있다.As the haloepoxy compound, epichlorohydrin, epibromohydrin, and? -Methyl epichlorohydrin may be used. On the other hand, as the mono-, di- or polyoxazolidinone compounds, for example, 2-oxazolidinone and the like can be used.

그리고, 알킬렌 카보네이트 화합물로는 에틸렌 카보네이트 등을 사용할 수 있다. 이들을 각각 단독으로 사용하거나 서로 조합하여 사용할 수도 있다. 한편, 표면 가교 공정의 효율을 높이기 위해, 이들 표면 가교제 중에서 1 종 이상의 탄소수 2 내지 10의 다가 알코올 화합물류를 1 종 이상 포함하여 사용할 수 있다. As the alkylene carbonate compound, ethylene carbonate and the like can be used. These may be used alone or in combination with each other. On the other hand, in order to increase the efficiency of the surface cross-linking step, at least one polyhydric alcohol compound having 2 to 10 carbon atoms among these surface cross-linking agents may be used.

상기 첨가되는 표면 가교제의 함량은 구체적으로 추가되는 표면 가교제의 종류나 반응 조건에 따라 적절히 선택될 수 있지만, 통상 베이스 수지 100 중량부에 대해, 약 0.001 내지 약 5 중량부, 바람직하게는 약 0.01 내지 약 3 중량부, 더욱 바람직하게는 약 0.05 내지 약 2 중량부를 사용할 수 있다.The amount of the surface crosslinking agent to be added may be appropriately selected depending on the kind of the surface crosslinking agent to be added and the reaction conditions, but is usually about 0.001 to about 5 parts by weight, preferably about 0.01 to about 5 parts by weight, About 3 parts by weight, more preferably about 0.05 to about 2 parts by weight may be used.

표면 가교제의 함량이 지나치게 적으면, 표면 가교 반응이 거의 일어나지 않으며, 중합체 100 중량부에 대해, 5 중량부를 초과하는 경우, 과도한 표면 가교 반응의 진행으로 인해 흡수능력 및 물성의 저하 현상이 발생할 수 있다.If the content of the surface cross-linking agent is too small, surface cross-linking reaction hardly occurs. If the amount of the surface cross-linking agent is more than 5 parts by weight based on 100 parts by weight of the polymer, excessive absorption of the surface cross- .

한편, 상기 표면 가교 반응 단계는, 상기 표면 가교제와 분쇄된 중합체를 반응조에 넣고 혼합하는 방법, 분쇄된 중합체에 표면 가교제를 분사하는 방법, 연속적으로 운전되는 믹서에 분쇄된 중합체와 표면 가교제를 연속적으로 공급하여 혼합하는 방법 등 통상적인 방법으로 수행될 수 있다.On the other hand, the surface cross-linking reaction step may include a method of mixing the surface cross-linking agent and the pulverized polymer into a reaction tank and mixing them, a method of spraying a surface cross-linking agent on the pulverized polymer, a method of continuously spraying the pulverized polymer and surface cross- A method of supplying and mixing them, and the like.

그리고, 상기 표면 가교 반응 단계는 100 내지 250℃의 온도 하에서 진행될 수 있다. 또한 상기 표면 가교 반응은 1분 내지 120분, 바람직하게는 1분 내지 100분, 보다 바람직하게는 10분 내지 60분 동안 진행할 수 있다. 즉, 최소 한도의 표면 가교 반응을 유도하면서도 과도한 반응시 중합체 입자가 손상되어 물성이 저하되는 것을 방지하기 위하여, 상기 표면 가교 반응 단계는 전술한 조건으로 수행될 수 있다.The surface cross-linking reaction step may be carried out at a temperature of 100 to 250 ° C. The surface cross-linking reaction may be conducted for 1 minute to 120 minutes, preferably 1 minute to 100 minutes, more preferably 10 minutes to 60 minutes. That is, the surface cross-linking reaction step may be carried out under the above-mentioned conditions in order to prevent the polymer particles from being damaged due to excessive reaction while inducing minimal surface cross-linking reaction.

상기 본 발명의 제조방법으로 제조된 고흡수성 수지는, 보수능과 가압 흡수능 등의 물성을 저하시키지 않으면서 빠른 초기 흡수 속도를 가질 수 있다. The superabsorbent resin produced by the production method of the present invention can have a fast initial absorption rate without lowering physical properties such as water retention capacity and pressure absorption capacity.

예를 들어, 상기 제조방법으로 제조된 고흡수성 수지는, EDANA 법 WSP 241.3에 따라 측정한 보수능(CRC)이 약 27 g/g 이상, 또는 약 29 g/g 이상, 또는 약 30 g/g 이상이면서, 약 40 g/g 이하, 또는 약 38 g/g 이하, 또는 약 35 g/g 이하의 범위를 가질 수 있다. For example, the superabsorbent resin prepared by the above process may have a retention capacity (CRC) of at least about 27 g / g, or at least about 29 g / g, or at least about 30 g / g, measured according to EDANA method WSP 241.3 Or less, about 40 g / g or less, or about 38 g / g or less, or about 35 g / g or less.

또한, 상기 제조방법으로 제조된 고흡수성 수지는, 흡수 속도(vortex time)가 30초 이하, 또는 약 25초 이하, 또는 약 22초 이하일 수 있다. 상기 흡수 속도는 그 값이 작을수록 우수하여 상기 흡수 속도의 하한은 이론상 0초이나, 일례로 약 5초 이상, 또는 약 10초 이상, 또는 약 12 초 이상일 수 있다.In addition, the superabsorbent resin produced by the above production method may have a vortex time of 30 seconds or less, or about 25 seconds or less, or about 22 seconds or less. The lower the absorbing rate, the better the lowering of the absorbing rate is theoretically 0 seconds, for example about 5 seconds or more, about 10 seconds or more, or about 12 seconds or more.

상기 흡수 속도는 생리 식염수에 고흡수성 수지를 가하여 교반시켰을 때, 빠른 흡수에 의해 액체의 소용돌이(vortex)가 없어지는 시간(time, 단위: 초)을 의미하는 것으로서, 상기 시간이 짧을수록 고흡수성 수지가 빠른 초기 흡수 속도를 갖는 것으로 볼 수 있다. The absorption rate refers to a time (unit: sec) in which a vortex of a liquid disappears due to rapid absorption when a superabsorbent resin is added to physiological saline and stirred. When the time is shorter, Can be seen to have a fast initial absorption rate.

또한, 상기 고흡수성 수지 1g을 수도수 2L에 침지시켜 1분 동안 팽윤시켰을 때 1분 동안 상기 고흡수성 수지에 흡수되는 물의 중량으로 정의되는 1분 수도수 흡수능이 100g 이상, 또는 110g 이상, 또는 120g 이상이면서 200g 이하, 또는 190g 이하, 또는 180g 이하가 될 수 있다. When 1 g of the superabsorbent resin is immersed in 2 L of tap water and swelled for 1 minute, the water absorption capacity for one minute defined as the weight of water absorbed in the superabsorbent resin is 100 g or more, or 110 g or more, or 120 g Or more and 200 g or less, or 190 g or less, or 180 g or less.

상기 물성 평가에서 사용한 수도수는 전기 전도도가 170 내지 180 μS/cm이다. 수도수의 전기 전도도는 측정 물성에 큰 영향을 주기 때문에 동등한 수준의 전기 전도도를 갖는 수도수를 사용해서 물성을 측정할 필요가 있다.The tap water used in the physical property evaluation has an electrical conductivity of 170 to 180 μS / cm. Since the electrical conductivity of the tap water greatly affects the properties of the tap water, it is necessary to use tap water having an equivalent level of electrical conductivity to measure the physical properties.

또한, 상기 고흡수성 수지 1g을 염수(0.9wt% NaCl 수용액) 150ml에 침지시켜 1분 동안 팽윤시켰을 때 1분 동안 상기 고흡수성 수지에 흡수되는 염수의 중량으로 정의되는 1분 염수 흡수능이 25g 이상, 또는 30g 이상, 또는 35g 이상이면서, 100g 이하, 또는 90g 이하, 또는 80g 이하가 될 수 있다. Further, when 1 g of the superabsorbent resin is immersed in 150 ml of saline (0.9 wt% NaCl aqueous solution) and swelled for 1 minute, the absorption capacity of 1 minute brine is defined as the weight of the brine absorbed into the superabsorbent resin for 25 minutes or more, Or 30 g or more, or 35 g or more, 100 g or less, or 90 g or less, or 80 g or less.

상기와 같이 본 발명의 고흡수성 수지는 우수한 흡수능을 가지며 특히 초기 흡수 속도가 빨라 고품질의 위생재를 제공할 수 있다.As described above, the superabsorbent resin of the present invention can provide a high quality hygiene material having an excellent absorbing ability, especially a high initial absorption rate.

본 발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. The present invention will be described in more detail in the following Examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.

<실시예>- EXAMPLES -

고흡수성 수지의 제조Preparation of superabsorbent resin

실시예 1Example 1

아크릴산 500g에 가교제로 폴리에틸렌글리콜디아크릴레이트(PEGDA, Mw=523) 1.5g, 광개시제로 디페닐(2,4,6-트리메틸벤조일)-포스핀 옥시드 0.04g 을 첨가하여 용해시키고, 또 다른 베셀에 31.5% 가성소다(NaOH) 640g, 물 170 g을 혼합하여 교반시켰다. 30분 후 가성소다(NaOH)와 물 수용액을 아크릴산 혼합액 베셀로 펌프를 이용하여 넘기며 혼합하였다. 온도가 상승 후 45℃ 정도까지 내려가면 이 혼합액을 열개시제인 소디움 퍼설페이트(sodium persulfate; SPS) 0.4g, 발포제로 소디움 비카보네이트(sodium bicarbonate) 0.9 g, 계면활성제로 소디움 도데실설페이트(sodium dodecyl sulfate) 0.02 g이 들어있는 바틀에 드레인시켰다. 이 수용액을 가로 250mm, 세로 250mm, 높이 30mm의 스테인레스 재질의 용기에 가하고 자외선을 조사(조사량: 10mV/cm2)하여 60초 동안 UV중합을 실시하고 120초 동안 열을 가하여 함수겔상 중합체를 수득하였다. 수득한 함수겔상 중합체를 2mm * 2mm 크기로 분쇄한 후, 함수량을 측정한 결과 40.1%이었다. 1.5 g of polyethylene glycol diacrylate (PEGDA, Mw = 523) as a crosslinking agent and 0.04 g of diphenyl (2,4,6-trimethylbenzoyl) -phosphine oxide as a photoinitiator were added to 500 g of acrylic acid Was added and dissolved. Another vessel was mixed with 640 g of 31.5% caustic soda (NaOH) and 170 g of water and stirred. After 30 minutes, caustic soda (NaOH) and water aqueous solution were mixed with acrylic acid mixed solution using a pump vessel. When the temperature is lowered to 45 ° C after the temperature has risen, the mixture is mixed with 0.4 g of a thermal initiator, sodium persulfate (SPS), 0.9 g of sodium bicarbonate as a blowing agent, sodium dodecyl sulfate as a surfactant 0.0 &gt; g &lt; / RTI &gt; sulfate). This aqueous solution was added to a container made of stainless steel having a width of 250 mm, a length of 250 mm and a height of 30 mm, irradiated with ultraviolet light (irradiation amount: 10 mV / cm 2 ), subjected to UV polymerization for 60 seconds and heated for 120 seconds to obtain a hydrogel polymer . The obtained hydrogel polymer was pulverized into a size of 2 mm * 2 mm, and the water content was measured and found to be 40.1%.

분쇄한 함수겔 중합체 1400g에 수산화칼륨 수용액(0.5M 농도 KOH) 200g을 투입하여 쵸핑한 후 얻어진 겔형 수지 1000g을 600㎛의 구멍 크기를 갖는 스테인레스 와이어 거즈 위에 약 30mm 두께로 펼쳐 놓고 180℃ 열풍 오븐에서 30분 동안 건조하였다. 이렇게 얻어진 건조 중합체를 분쇄기를 사용하여 분쇄하고, ASTM 규격의 표준 망체로 분급하여 150 내지 850㎛의 입자 크기를 갖는 베이스 수지를 얻었다. 200 g of potassium hydroxide aqueous solution (0.5M concentration KOH) was added to 1400 g of pulverized hydrogel polymer and chopped. 1000 g of the obtained gel resin was spread on a stainless wire gauze having a hole size of 600 mu m to a thickness of about 30 mm, And dried for 30 minutes. The dry polymer thus obtained was pulverized using a pulverizer and classified with a standard mesh of ASTM standard to obtain a base resin having a particle size of 150 to 850 탆.

상기 베이스 수지 100 중량부에 에틸렌카보네이트 1 중량부, 물 4 중량부, 실리카 0.02 중량부를 포함하는 표면 가교 용액을 분사하여 혼합하고 이를 교반기와 이중 자켓으로 이루어진 용기에 넣어 185℃에서 60분간 표면 가교 반응을 진행하였다. 이후 표면 처리된 분말을 ASTM 규격의 표준 망체로 분급하여 150 내지 850㎛의 입자 크기를 갖는 고흡수성 수지 분말을 얻었다.A surface cross-linking solution containing 1 part by weight of ethylene carbonate, 4 parts by weight of water and 0.02 part by weight of silica was sprayed onto 100 parts by weight of the base resin and mixed in a container made of a stirrer and a double jacket. . Then, the surface-treated powder was classified into a standard mesh of ASTM standard to obtain a superabsorbent resin powder having a particle size of 150 to 850 탆.

실시예 2Example 2

실시예 1에서, 함수겔상 중합체의 분쇄시 수산화칼륨 수용액(1.5M 농도 KOH) 200g을 투입한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. In Example 1, a superabsorbent resin was prepared in the same manner as in Example 1, except that 200 g of an aqueous solution of potassium hydroxide (1.5M concentration KOH) was added during the grinding of the hydrogel polymer.

실시예 3Example 3

실시예 1에서, 함수겔상 중합체의 분쇄시 수산화칼륨 수용액(2.5M 농도 KOH) 200g을 투입한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. In Example 1, a superabsorbent resin was prepared in the same manner as in Example 1, except that 200 g of aqueous potassium hydroxide solution (2.5M concentration KOH) was added during the grinding of the hydrogel polymer.

실시예 4Example 4

실시예 1에서, 함수겔상 중합체의 분쇄시 수산화칼륨 수용액(5M 농도 KOH) 200g을 투입한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. In Example 1, a superabsorbent resin was prepared in the same manner as in Example 1, except that 200 g of aqueous potassium hydroxide solution (5M concentration KOH) was added during the pulverization of the hydrogel-like polymer.

실시예 5Example 5

실시예 1에서, 함수겔상 중합체의 분쇄시 수산화칼륨 수용액(7.5M 농도 KOH) 200g을 투입한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. A superabsorbent resin was prepared in the same manner as in Example 1, except that 200 g of potassium hydroxide aqueous solution (7.5 M concentration KOH) was added during grinding of the hydrogel polymer in Example 1.

실시예 6Example 6

실시예 1에서, 함수겔상 중합체의 분쇄시 탄산칼륨 수용액(0.5M 농도 K2CO3) 200g을 투입한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. In Example 1, a superabsorbent resin was prepared in the same manner as in Example 1, except that 200 g of potassium carbonate aqueous solution (0.5M concentration K 2 CO 3 ) was added during pulverization of the hydrogel polymer.

실시예 7Example 7

실시예 1에서, 함수겔상 중합체의 분쇄시 탄산칼륨 수용액(1.5M 농도 K2CO3) 200g을 투입한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. In Example 1, a superabsorbent resin was prepared in the same manner as in Example 1, except that 200 g of an aqueous potassium carbonate solution (1.5M concentration K 2 CO 3 ) was added during pulverization of the hydrogel polymer.

실시예 8Example 8

실시예 1에서, 함수겔상 중합체의 분쇄시 탄산칼륨 수용액(2.5M 농도 K2CO3) 200g을 투입한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. In Example 1, a superabsorbent resin was prepared in the same manner as in Example 1, except that 200 g of an aqueous potassium carbonate solution (2.5 M concentration K 2 CO 3 ) was added during the pulverization of the hydrogel polymer.

실시예 9Example 9

실시예 1에서, 함수겔상 중합체의 분쇄시 탄산칼륨 수용액(5M 농도 K2CO3) 200g을 투입한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. In Example 1, a superabsorbent resin was prepared in the same manner as in Example 1, except that 200 g of an aqueous potassium carbonate solution (5M concentration K 2 CO 3 ) was added during the grinding of the hydrogel-like polymer.

실시예 10Example 10

실시예 1에서, 함수겔상 중합체의 분쇄시 탄산칼륨 수용액(7.5M 농도 K2CO3) 200g을 투입한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. In Example 1, a superabsorbent resin was prepared in the same manner as in Example 1, except that 200 g of potassium carbonate aqueous solution (7.5M concentration K 2 CO 3 ) was added during pulverization of the hydrogel polymer.

비교예 1Comparative Example 1

실시예 1에서, 함수겔상 중합체의 분쇄시 염기성 수용액을 투입하지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다.In Example 1, a superabsorbent resin was prepared in the same manner as in Example 1, except that no basic aqueous solution was added during the pulverization of the hydrogel polymer.

<실험예><Experimental Example>

상기 실시예들 및 비교예들에서 제조한 고흡수성 수지에 대하여, 다음과 같은 방법으로 물성을 평가하였다.The properties of the superabsorbent resin prepared in the above Examples and Comparative Examples were evaluated by the following methods.

다르게 표기하지 않는 한, 하기 물성 평가는 모두 상온(25℃)에서 진행하였고, 생리식염수 또는 염수는 0.9 중량% 염화나트륨(NaCl) 수용액을 의미한다. Unless otherwise indicated, all of the following physical properties were evaluated at room temperature (25 캜), and physiological saline or brine means 0.9% by weight sodium chloride (NaCl) aqueous solution.

(1) 원심분리 보수능(CRC: Centrifuge Retention Capacity)(1) Centrifuge Retention Capacity (CRC)

각 수지의 무하중하 흡수 배율에 의한 보수능을 EDANA WSP 241.3에 따라 측정하였다. The retention capacity of each resin by the zero-load capacity was measured according to EDANA WSP 241.3.

구체적으로, 고흡수성 수지 W0(g) (약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉(seal)한 후, 상온에서 생리식염수(0.9 중량%)에 침수시켰다. 30분 경과 후, 원심 분리기를 이용하여 250G의 조건 하에서 상기 봉투로부터 3분간 물기를 빼고, 봉투의 질량 W2(g)을 측정하였다. 또, 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 W1(g)을 측정하였다. 얻어진 각 질량을 이용하여 다음과 같은 식에 따라 CRC(g/g)를 산출하였다.Specifically, a superabsorbent resin W 0 (g) (about 0.2 g) was uniformly put in an envelope made of a nonwoven fabric and sealed, and then immersed in physiological saline (0.9 wt%) at room temperature. After 30 minutes, water was drained from the envelope for 3 minutes under a condition of 250 G using a centrifuge, and the mass W 2 (g) of the envelope was measured. Further, after the same operation was performed without using a resin, the mass W 1 (g) at that time was measured. Using the obtained masses, CRC (g / g) was calculated according to the following equation.

[수학식 1][Equation 1]

CRC (g/g) = {[W2(g) - W1(g)]/W0(g)} - 1CRC (g / g) = {[W 2 (g) - W 1 (g)] / W 0 (g)

(2) 흡수속도 (Vortex time)(2) Vortex time

흡수 속도(vortex time)는 국제 공개 출원 제1987-003208호에 기재된 방법에 준하여 초 단위로 측정하였다.The vortex time was measured in seconds according to the method described in International Patent Application No. 1987-003208.

구체적으로, 23℃ 내지 24℃의 50 mL의 생리 식염수에 2g의 고흡수성 수지를 넣고, 마그네틱 바(직경 8 mm, 길이 30 mm)를 600 rpm으로 교반하여 와류(vortex)가 사라질 때까지의 시간을 초 단위로 측정하여 산출되었다. Specifically, 2 g of superabsorbent resin was added to 50 mL of physiological saline at 23 to 24 DEG C, and the magnetic bar (diameter 8 mm, length 30 mm) was stirred at 600 rpm until the disappearance of the vortex Was measured in seconds.

(3) 1분 수도수 흡수능 (3) 1 minute Water absorption capacity

① 가로 15cm, 세로 30cm의 티백에 1g의 고흡수성 수지를 넣고 수도수(tap water) 2L를 부은 후 1분간 팽윤시켰다. ① 1 g of superabsorbent resin was put into a tea bag of 15 cm in width and 30 cm in length, and 2 L of tap water was poured, followed by swelling for 1 minute.

② 1분 간 팽윤시킨 후 고흡수성 수지가 들어있는 티백을 수도수 밖으로 들어올려 1분이 경과한 후 수도수가 빠진 티백과 고흡수성 수지의 무게를 함께 측정한 후, 비어있는 티백의 무게를 빼준 값을 1분 수도수 흡수능으로 하였다. ② After swelling for 1 minute, lift the tea bag containing the superabsorbent resin out of the tap water. After 1 minute has elapsed, measure the weight of the tea bag and the superabsorbent resin that have lost water, and subtract the weight of the empty tea bag 1-minute water-absorption ability.

이때 수도수는 Orion Star A222 (회사:Thermo Scientific)을 이용하여 측정하였을 때, 전기 전도도가 170 내지 180 μS/cm 인 것을 사용하였다.In this case, the water conductivity was measured using Orion Star A222 (company: Thermo Scientific) with an electrical conductivity of 170 to 180 μS / cm.

(4) 1분 염수 흡수능(4) 1-minute salt water absorption capacity

① 200ml 비이커에 고흡수성 수지 1g 넣고 염수 150ml를 부은 후 1분간 팽윤시켰다. ① 1 g of superabsorbent resin was put into a 200 ml beaker, and 150 ml of brine was poured, followed by swelling for 1 minute.

② 100메쉬의 내경 8cm 크기의 둥근 체에 팽윤된 고흡수성 수지를 올려 놓고 1분간 염수를 배출(drain)시켰다. 이? 배출되는 염수는 다른 비이커에 모았다. (2) A superabsorbent resin swollen in a circular sieve having an inner diameter of 8 cm of 100 mesh was placed and the salt water was drained for 1 minute. this? The brine discharged was collected in another beaker.

③ 염수 150ml에서, ②에서 1분 동안 고흡수성 수지로부터 배출된 염수의 무게를 빼서 1분 염수 흡수능으로 계산하였다.③ In 150 ml of brine, we subtract the weight of brine discharged from the superabsorbent resin for one minute at ② and calculate it for 1 minute of salt water absorption capacity.

상기 실시예들과 비교예들에 관한 물성값을 하기 표 1에 기재하였다.The physical properties of the above examples and comparative examples are shown in Table 1 below.

베이스 수지Base resin 고흡수성 수지(표면 가교 후)High absorbency resin (after surface cross-linking) CRC
(g/g)
CRC
(g / g)
1분 수도수
흡수능
(g)
Number of minutes
Absorption capacity
(g)
Vortex time
(sec)
Vortex time
(sec)
CRC
(g/g)
CRC
(g / g)
1분
수도수
흡수능
(g)
1 minute
Water supply
Absorption capacity
(g)
1분
염수
흡수능
(g)
1 minute
Brine
Absorption capacity
(g)
Vortex time
(sec)
Vortex time
(sec)
실시예1Example 1 36.436.4 142142 2727 27.127.1 138138 3131 2222 실시예2Example 2 35.835.8 152152 2626 27.927.9 140140 3434 2121 실시예3Example 3 35.135.1 174174 2626 28.528.5 162162 5252 1818 실시예4Example 4 35.335.3 168168 2424 30.230.2 151151 4646 1919 실시예5Example 5 36.536.5 160160 2525 31.031.0 141141 4040 1919 실시예6Example 6 36.836.8 138138 2424 31.231.2 130130 3131 2121 실시예7Example 7 37.037.0 145145 2626 30.830.8 134134 3535 2323 실시예8Example 8 37.237.2 160160 2626 30.730.7 158158 4444 2222 실시예9Example 9 37.737.7 148148 2727 30.830.8 131131 3434 2424 실시예10Example 10 37.737.7 139139 2626 31.031.0 126126 3131 2525 비교예1Comparative Example 1 36.136.1 9292 4747 32.132.1 8888 2222 3838

표 1을 참조하면, 본 발명의 실시예들은 볼텍스법에 의한 측정시와 1분 수도수/염수 흡수능 측정시 모두 빠른 흡수 속도를 나타냄을 확인하였다.Referring to Table 1, it was confirmed that the embodiments of the present invention exhibited a fast absorption rate both in the measurement by the vortex method and in the measurement of water / saline water absorption capacity per minute.

반면 비교예는 1분 수도수 흡수능 및 1분 염수 흡수능으로 평가되는 초기 흡수 속도 및 볼텍스 법에 의한 흡수 속도가 모두 실시예 보다 좋지 않음을 알 수 있다.On the other hand, the comparative example shows that the initial absorption rate, which is evaluated by the one-minute tap water absorption capacity and the one-minute tap water absorption capacity, and the absorption rate by the vortex method are both lower than those of the examples.

Claims (11)

산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 발포제, 계면활성제, 내부 가교제, 및 중합 개시제를 포함하는 모노머 조성물을 중합하여 함수겔 중합체를 형성하는 단계;
상기 함수겔 중합체에 대하여 염기성 수용액을 혼합하여 분쇄하는 단계;
상기 분쇄된 중합체를 건조하여 베이스 수지를 제조하는 단계; 및
상기 베이스 수지에 대하여 표면 가교 반응을 수행하는 단계;
를 포함하는 고흡수성 수지의 제조방법.
Polymerizing a monomer composition comprising an acrylic acid-based monomer having an acidic group and at least a part of the acidic groups neutralized, a blowing agent, a surfactant, an internal cross-linker, and a polymerization initiator to form a hydrous gel polymer;
Mixing and grinding a basic aqueous solution with the hydrogel polymer;
Drying the pulverized polymer to prepare a base resin; And
Performing a surface cross-linking reaction on the base resin;
Absorbent resin.
제1항에 있어서,
상기 발포제는 소디움 비카보네이트(sodium bicarbonate), 소디움 카보네이트(sodium carbonate), 포타슘 비카보네이트(potassium bicarbonate), 포타슘 카보네이트(potassium carbonate), 칼슘 비카보네이트(calcium bicarbonate), 칼슘 카보네이트(calcium bicarbonate), 마그네슘 비카보네이트(magnesiumbicarbonate) 및 마그네슘 카보네이트(magnesium carbonate)로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 고흡수성 수지의 제조방법.
The method according to claim 1,
The foaming agent may be selected from the group consisting of sodium bicarbonate, sodium carbonate, potassium bicarbonate, potassium carbonate, calcium bicarbonate, calcium bicarbonate, magnesium bicarbonate, Magnesium bicarbonate, and magnesium carbonate. The method for producing a superabsorbent resin according to claim 1,
제1항에 있어서,
상기 발포제는 상기 아크릴산계 단량체 100 중량부에 대하여 0.01 내지 0.5 중량부로 포함되는, 고흡수성 수지의 제조방법.
The method according to claim 1,
The foaming agent is added in an amount of 0.01 to 0.5 parts by weight per 100 parts by weight of the acrylic acid monomer By weight based on the weight of the resin.
제1항에 있어서,
상기 계면활성제는 소듐 도데실 설페이트(sodium dodecyl sulfate), 소듐 스테아레이트(sodium stearate), 암모늄 라우릴 설페이트 (ammonium lauryl sulfate), 소디움 라우릴 에테르 설페이트 (sodium lauryl ether sulfate), 및 소디움 미레스 설페이트(sodium myreth sulfate)로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 고흡수성 수지의 제조방법.
The method according to claim 1,
The surfactant may be selected from the group consisting of sodium dodecyl sulfate, sodium stearate, ammonium lauryl sulfate, sodium lauryl ether sulfate, and sodium missesulfate sodium myreth sulfate). &lt; / RTI &gt;
제1항에 있어서,
상기 계면활성제는 상기 아크릴산계 단량체 100 중량부에 대하여 0.001 내지 0.5 중량부로 포함되는, 고흡수성 수지의 제조방법.
The method according to claim 1,
Wherein the surfactant is contained in an amount of 0.001 to 0.5 part by weight based on 100 parts by weight of the acrylic acid monomer.
제1항에 있어서,
상기 염기성 수용액은 수산화칼륨(KOH), 탄산칼륨(K2CO3), 및 수산화나트륨(NaOH)으로 이루어진 군으로부터 선택되는 1종 이상의 염기성 물질을 포함하는, 고흡수성 수지의 제조방법.
The method according to claim 1,
Wherein the basic aqueous solution comprises at least one basic substance selected from the group consisting of potassium hydroxide (KOH), potassium carbonate (K 2 CO 3 ), and sodium hydroxide (NaOH).
제1항에 있어서,
상기 염기성 수용액에서 염기성 물질의 농도는 0.1 내지 10 M인, 고흡수성 수지의 제조방법.
The method according to claim 1,
Wherein a concentration of the basic substance in the basic aqueous solution is 0.1 to 10 M.
제1항에 있어서,
상기 염기성 수용액의 첨가량은 상기 함수겔상 중합체 100 중량부에 대해 5 내지 20 중량부인, 고흡수성 수지의 제조 방법.
The method according to claim 1,
Wherein the basic aqueous solution is added in an amount of 5 to 20 parts by weight based on 100 parts by weight of the hydrogel-based polymer.
제1항에 있어서,
상기 고흡수성 수지는, 상기 고흡수성 수지 1g을 수도수 2L에 침지시켜 1분 동안 팽윤시켰을 때 1분 동안 상기 고흡수성 수지에 흡수되는 물의 중량으로 정의되는 1분 수도수 흡수능이 100g 이상인, 고흡수성 수지의 제조 방법.
The method according to claim 1,
Wherein the superabsorbent resin has a water absorption capacity of 1 g or more defined as the weight of water absorbed by the superabsorbent resin for 1 minute when 1 g of the superabsorbent resin is immersed in 2 L of tap water and swelled for 1 minute, A method for producing a resin.
제1항에 있어서,
상기 고흡수성 수지는, 상기 고흡수성 수지 1g을 염수(0.9wt% NaCl 수용액) 150ml 에 침지시켜 1분 동안 팽윤시켰을 때 1분 동안 상기 고흡수성 수지에 흡수되는 염수의 중량으로 정의되는 1분 염수 흡수능이 25g 이상인, 고흡수성 수지의 제조 방법.
The method according to claim 1,
The superabsorbent resin has a 1-minute salt water absorption capacity defined by the weight of the brine absorbed by the superabsorbent resin for 1 minute when 1 g of the superabsorbent resin is immersed in 150 ml of saline (0.9 wt% NaCl aqueous solution) Is 25 g or more.
제1항에 있어서,
상기 고흡수성 수지는 흡수 속도(vortex time)가 30초 이하인, 고흡수성 수지의 제조 방법.
The method according to claim 1,
Wherein the superabsorbent resin has an absorption rate (vortex time) of 30 seconds or less.
KR1020170177276A 2017-12-21 2017-12-21 Preparation method for super absorbent polymer KR102541831B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170177276A KR102541831B1 (en) 2017-12-21 2017-12-21 Preparation method for super absorbent polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170177276A KR102541831B1 (en) 2017-12-21 2017-12-21 Preparation method for super absorbent polymer

Publications (2)

Publication Number Publication Date
KR20190075574A true KR20190075574A (en) 2019-07-01
KR102541831B1 KR102541831B1 (en) 2023-06-08

Family

ID=67255192

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170177276A KR102541831B1 (en) 2017-12-21 2017-12-21 Preparation method for super absorbent polymer

Country Status (1)

Country Link
KR (1) KR102541831B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102289659B1 (en) * 2021-03-24 2021-08-17 케이엘건설 주식회사 Polyurethane composition with water expansion and manufacturing method thereof
KR102464153B1 (en) * 2022-08-18 2022-11-10 씨제이대한통운(주) Multifunctional modified urethane waterproofing material, multi-layered film composite waterproof construction method using the multifunctional modified urethane waterproofing material and impregenation type polysheet material
EP4186944A4 (en) * 2020-12-18 2024-02-14 Lg Chemical Ltd Preparation method for super absorbent polymer
EP4190842A4 (en) * 2020-12-18 2024-02-14 Lg Chemical Ltd Method for preparing super absorbent polymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3963550B2 (en) * 1997-06-13 2007-08-22 株式会社日本触媒 Method for producing water-absorbing agent
WO2012133734A1 (en) * 2011-03-31 2012-10-04 株式会社日本触媒 Granular water absorber and method for producing same
KR101371932B1 (en) * 2008-10-09 2014-03-14 주식회사 엘지화학 Method of controlling absorbing rate of an absorbent and the absorbent having absorbing rate controlled by the same
KR20170063818A (en) * 2014-09-29 2017-06-08 가부시키가이샤 닛폰 쇼쿠바이 Water-absorbable resin powder, and method for determining elastic modulus of water-absorbable resin powder
KR20170100395A (en) * 2016-02-25 2017-09-04 주식회사 엘지화학 Super absorbent polymer and method for preparation thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3963550B2 (en) * 1997-06-13 2007-08-22 株式会社日本触媒 Method for producing water-absorbing agent
KR101371932B1 (en) * 2008-10-09 2014-03-14 주식회사 엘지화학 Method of controlling absorbing rate of an absorbent and the absorbent having absorbing rate controlled by the same
WO2012133734A1 (en) * 2011-03-31 2012-10-04 株式会社日本触媒 Granular water absorber and method for producing same
KR20170063818A (en) * 2014-09-29 2017-06-08 가부시키가이샤 닛폰 쇼쿠바이 Water-absorbable resin powder, and method for determining elastic modulus of water-absorbable resin powder
KR20170100395A (en) * 2016-02-25 2017-09-04 주식회사 엘지화학 Super absorbent polymer and method for preparation thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4186944A4 (en) * 2020-12-18 2024-02-14 Lg Chemical Ltd Preparation method for super absorbent polymer
EP4190842A4 (en) * 2020-12-18 2024-02-14 Lg Chemical Ltd Method for preparing super absorbent polymer
KR102289659B1 (en) * 2021-03-24 2021-08-17 케이엘건설 주식회사 Polyurethane composition with water expansion and manufacturing method thereof
KR102464153B1 (en) * 2022-08-18 2022-11-10 씨제이대한통운(주) Multifunctional modified urethane waterproofing material, multi-layered film composite waterproof construction method using the multifunctional modified urethane waterproofing material and impregenation type polysheet material

Also Published As

Publication number Publication date
KR102541831B1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
KR102566286B1 (en) Super absorbent polymer and preparation method for the same
US11278866B2 (en) Super absorbent polymer and its preparation method
KR20200055648A (en) Super absorbent polymer and preparation method for the same
KR102541831B1 (en) Preparation method for super absorbent polymer
KR20190069101A (en) Super absorbent polymer and preparation method for the same
KR102568226B1 (en) Super absorbent polymer and preparation method for the same
JP7184443B2 (en) SUPER ABSORBENT RESIN AND METHOD FOR MANUFACTURING SAME
KR102565748B1 (en) Super absorbent polymer and preparation method for the same
WO2019117541A1 (en) Superabsorbent polymer and preparation method therefor
KR20180071940A (en) Super absorbent polymer and preparation method thereof
KR20190069103A (en) Preparation method for super absorbent polymer
US11370856B2 (en) Super absorbent polymer and preparation method for the same
KR102508435B1 (en) Preparation method for super absorbent polymer
KR20210033425A (en) Super absorbent polymer and preparation method for the same
KR20180071933A (en) Super absorbent polymer and preparation method for the same
KR20210038250A (en) Method for preparing super absorbent polymer
WO2019190120A1 (en) Super absorbent polymer and method for preparing same
KR20230037444A (en) Preparation method for super absorbent polymer
KR20220082510A (en) Method for preparing super absorbent polymer
KR20200074674A (en) Preparation method for super absorbent polymer, and super absorbent polymer
WO2019112150A1 (en) Absorbent polymer and preparation method therefor
KR20190057746A (en) Super absorbent polymer and preparation method for the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant