WO2019117511A1 - Superabsorbent polymer and preparation method therefor - Google Patents

Superabsorbent polymer and preparation method therefor Download PDF

Info

Publication number
WO2019117511A1
WO2019117511A1 PCT/KR2018/014840 KR2018014840W WO2019117511A1 WO 2019117511 A1 WO2019117511 A1 WO 2019117511A1 KR 2018014840 W KR2018014840 W KR 2018014840W WO 2019117511 A1 WO2019117511 A1 WO 2019117511A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
water
weight
polymer
superabsorbent resin
Prior art date
Application number
PCT/KR2018/014840
Other languages
French (fr)
Korean (ko)
Inventor
허영재
남대우
박보희
허성범
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180148009A external-priority patent/KR102568226B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/768,981 priority Critical patent/US11931720B2/en
Priority to JP2020528394A priority patent/JP7247187B2/en
Priority to EP18888466.2A priority patent/EP3705510A4/en
Priority to CN201880078011.8A priority patent/CN111448241B/en
Publication of WO2019117511A1 publication Critical patent/WO2019117511A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings

Definitions

  • the present invention relates to a superabsorbent resin and a method for producing the same. More particularly, the present invention relates to a superabsorbent resin having improved rewet characteristics and absorption rates and a method for producing the same.
  • Super Absorbent Polymer is a synthetic polymer material capable of absorbing moisture of about 500 to 1,000 times the weight of lanzai, and each developer can use SAM (Super Absorbent Material), AGM
  • SAM Super Absorbent Material
  • AGM Super Absorbent Material
  • the above-mentioned superabsorbent resin has been put into practical use as a sanitary article, and nowadays, in addition to the diapers and sanitary napkin products for children, it is now used as a soil remover for gardening, an index material for civil engineering and construction, Sheet, a freshness-retaining agent in the field of food distribution, and a material for fomentation.
  • pressure may be applied to sanitary materials such as diapers and sanitary napkins by the weight of the user.
  • sanitary materials such as diapers and sanitary napkins
  • pressure may be applied to sanitary materials such as diapers and sanitary napkins by the weight of the user.
  • a superabsorbent resin applied to a sanitary material such as a diaper or sanitary napkin absorbs a liquid
  • Urine A phenomenon may occur.
  • Step 2 To the base resin, (Step 2) of a hydrophobic substance and an epoxy-based surface cross-linking agent;
  • step 3 Performing the surface modification to the base resin by raising the mixture of step 2 (step 3); And a method of producing the superabsorbent resin.
  • a base resin comprising a cross-linked polymer obtained by cross-linking an acrylic acid-based monomer in which at least a part of an acidic group is neutralized;
  • the surface modification layer is formed on the particle surface of the base resin and the cross-linking polymer is additionally crosslinked via an epoxy-based surface cross-linking agent, and the surface modification layer comprises a hydrophobic substance having a B- Thereby providing a superabsorbent resin.
  • a method of manufacturing a superabsorbent resin according to an embodiment of the present invention includes:
  • Step 1 of preparing a base resin having an acidic group and at least a part of which is neutralized, and a base resin crosslinked and polymerized with an acrylic acid-based monomer and an internal cross-linking agent;
  • step 2 Mixing the base resin with a hydrophobic substance having an HLB of not less than 0 and not more than 6, and an epoxy-based surface cross-linking agent (step 2);
  • step 3 Performing the surface modification to the base resin by raising the mixture of step 2 (step 3);
  • base resin or “base resin powder” refers to a product obtained by drying and pulverizing a polymer obtained by polymerizing a water-soluble ethylenically unsaturated monomer to form particles or powder knowledge (1) Quot; means a polymer that has not undergone surface modification or surface cross-linking steps.
  • the hydrogel polymer obtained by the polymerization reaction of the acrylic acid-based monomer is subjected to a process such as drying, crushing, classification, surface crosslinking and the like, and is marketed as a superabsorbent resin which is powdery product.
  • the superabsorbent resin obtained by the production method according to one embodiment of the present invention is excellent in physical properties such as water repellency, pressure absorbing ability and liquid permeability and exhibits excellent absorption performance and remains dry even after being swollen with salt water Reabsorption of urine absorbed in the superabsorbent resin again) and urine And thus the present invention has been accomplished.
  • the monomer composition which is a raw material of the superabsorbent resin, is a monomer composition comprising an acrylic acid-based monomer having an acidic group and at least a part of the acidic groups neutralized, an internal crosslinking agent and a polymerization initiator Polymerized to obtain a hydrogel polymer, which is then dried, pulverized and classified to obtain a base (Step 1).
  • the monomer composition which is a raw material of the superabsorbent resin includes an acrylic acid-based monomer having an acidic group and at least a part of the acidic groups neutralized and a polymerization initiator.
  • the acrylic acid-based monomer is a compound represented by the following Formula 1:
  • the acrylic acid-based monomer includes at least one selected from the group consisting of acrylic acid, methacrylic acid, monovalent metal salts thereof, divalent metal salts, ammonium salts and organic amine salts.
  • the acrylic acid-based monomer may have an acidic group and at least a part of the acidic group may be neutralized .
  • sodium hydroxide to the above monomers, potassium hydroxide, may be used that was partially neutralized with an alkali substance such as ammonium hydroxide.
  • the neutralization degree of the acrylic acid monomer may be 40 to 95 mol%, or 40 to 80 mol%, or 45 to 75 mol%.
  • the range of the degree of neutralization can be adjusted according to the final properties. However, if the degree of neutralization is too high, neutralized monomers may precipitate and polymerization may be difficult to proceed smoothly. On the other hand, if the degree of neutralization is too low, the absorption capacity of the polymer is greatly decreased, .
  • the concentration of the acrylic acid monomer may be about 20 to about 60 wt%, preferably about 40 to about 50 wt%, based on the monomer composition including the raw material of the superabsorbent resin and the solvent, The concentration may be appropriate considering the conditions and the like. However, if the concentration of the monomer is excessively low, the yield of the superabsorbent resin may be low and economical efficiency may be deteriorated. On the other hand, if the concentration is excessively high, a part of the monomer may precipitate or the pulverization efficiency may be low And the like, may cause problems in the process, and the physical properties of the superabsorbent resin may be deteriorated.
  • the polymerization initiator used in polymerization is not particularly limited as long as it is generally used in the production of a superabsorbent resin.
  • a thermal polymerization initiator or a photopolymerization initiator upon irradiation may be used depending on the polymerization method.
  • a certain amount of heat is generated by irradiation of ultraviolet light or the like, and a certain amount of heat is generated as the polymerization reaction, which is an exothermic reaction, proceeds.
  • the photopolymerization initiator can be used without limitation in the constitution as long as it is a compound capable of forming a radical by light such as ultraviolet rays.
  • the photopolymerization initiator includes, for example, benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, benzyl dimethyl ketal
  • acylphosphine Dimethyl Ketal, acyl phosphine, and a-aminoketone may be used.
  • acylphosphine commercial liicirin TPO that is, 2, 4, 6, which-trimethyl-benzoyl-trimethyl phosphine oxide (2, 4 ⁇ , 6- trimethyl-benzoyl-trimethyl phosphine oxide) available
  • photoinitiators are well described in Reinhold Schwalm, UV Coatings: Basics, Recent Developments and New Applications (Elsevier 2007), p. 15, and are not limited to the above examples.
  • the concentration of the photopolymerization initiator is too low, the polymerization rate may be slowed. If the concentration of the photopolymerization initiator is excessively high, the concentration of the photopolymerization initiator may be lowered The molecular weight may be small and the physical properties may be uneven.
  • thermal polymerization initiator at least one selected from persulfate-based initiators, azo-based initiators, initiators consisting of hydrogen peroxide and ascorbic acid can be used.
  • persulfate-based initiator examples include sodium persulfate (Na 2 S 2 C> 8), potassium persulfate (K 2 S 2 O 8), ammonium persulfate (NH 2 4) 2 S 2 0 g).
  • azo initiators include 2, 2-azobis- (2-amidinopropane) dihydrochloride ( 2 ,
  • the monomer composition includes an internal cross-linking agent as a raw material for a superabsorbent resin.
  • the internal crosslinking agent include a crosslinking agent having at least one functional group capable of reacting with the acrylic acid-based monomer and having at least one ethylenic unsaturated group; Or a crosslinking agent having two or more functional groups capable of reacting with a substituent formed by hydrolysis of a substituent and / or a monomer of the acrylic acid-based monomer may be used.
  • the internal cross-linking agent is for crosslinking the interior of the polymerized polymer of the acrylic acid-based monomer, and is distinguished from the surface cross-linking agent for cross-linking the surface of the polymer.
  • the internal crosslinking agent examples include N, N'-methylenebisacrylamide, trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, propylene glycol di Butylene diol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, nucleic acid diol di (meth) acrylate, Acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri Styrene tetraacrylate, triallyl amine, Ethylene glycol diglycidyl may be used at least one member selected from ether, propylene glycol, the group consisting of glycerin, and ethylene
  • Such an internal crosslinking agent may be included at a concentration of about 0.01 to about 1.0 wt% based on the monomer composition to crosslink the polymerized polymer.
  • the monomer composition of the superabsorbent resin may further contain additives such as a thickener, a plasticizer, a preservative stabilizer, and an antioxidant, if necessary.
  • the above-mentioned acrylic acid-based monomer having an acidic group and at least part of the acidic group being neutralized, a photopolymerization initiator, a thermal polymerization initiator, an internal cross- 2019/117511 1 »(: 1 ⁇ 1 ⁇ 2018/014840
  • the same raw materials can be prepared in the form of a monomer composition solution dissolved in a solvent.
  • the solvent which can be used at this time can be used without limitation of its constitution as long as it can dissolve the above-mentioned components.
  • examples thereof include water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-
  • the organic solvent include glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl
  • One or more selected from ether, toluene, xylenes, butylolactone, carbitol, methylcellosolve acetate and N, N-dimethylacetamide can be used in combination .
  • the solvent may be included in the balance of the total amount of the monomer composition excluding the components described above.
  • the method of forming a hydrogel polymer by thermal polymerization or photopolymerization of such a monomer composition is not particularly limited as long as it is a commonly used polymerization method.
  • the polymerization method is largely divided into thermal polymerization and photopolymerization depending on the polymerization energy source.
  • the polymerization can proceed in a reactor having a stirring die such as a kneader (1 1 ⁇ 2 seeds (1) .
  • the polymerization method described above is only one example, and the present invention is not limited to the polymerization method described above.
  • the hydrogel polymer obtained by supplying hot air or heating the reactor to a reactor such as the kneader 10 &lt ; 1 > (1) having an agitating shaft as described above The hydrogel polymer discharged into the reactor outlet may be in the range of a few centimeters to a few millimeters.
  • the size of the resulting hydrogel polymer may vary depending on the concentration of the monomer composition to be injected, the rate of injection, etc.
  • a gel polymer having a weight average particle diameter of from 2 to 50 ⁇ m can be obtained.
  • the form of the hydrogel polymer which is usually obtained is Gel-like polymer on the sheet having the width of the belt.
  • the thickness of the polymer sheet depends on the concentration and the injection rate of the monomer composition to be injected, but it is preferable to supply the monomer composition so that a polymer in the form of a sheet having a thickness of usually about 0.5 to about 5 cm can be obtained.
  • the monomer composition is supplied to such an extent that the thickness of the polymer in the sheet is too thin, the production efficiency is low, which is undesirable.
  • the thickness of the polymer on the sheet exceeds 5 cm, the polymerization reaction occurs evenly over the entire thickness due to the excessively thick thickness I can not.
  • the normal water content of the hydrogel polymer obtained by this method may be about 40 to about 80 wt%.
  • moisture content means the moisture content of the total functional gelated polymer weight minus the weight of the hydrogel polymer in dry state. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer in the process of raising the temperature of the polymer through infrared heating.
  • the drying condition is a method of raising the temperature from room temperature to about 180 ° C and then keeping it at 180 ° C, and the total drying time is set to 20 minutes including 5 minutes of the temperature raising step, and water content is measured.
  • the step of coarse grinding may be further carried out before drying in order to increase the efficiency of the drying step.
  • the pulverizer to be used is not limited in its constitution, but may be a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, A crusher, a disc mill, a disc mill, a shred crusher, a crusher, a chopper, and a disc cutter.
  • the present invention is not limited to the above-described example.
  • the milling step may be milled so that the hydrous gel polymer has a particle size of about 2 to about 10 mm.
  • the drying is carried out on the hydrogel polymer immediately after polymerization, which has not been pulverized or pulverized as described above, wherein the drying temperature of the drying step may be from about 150 to about 250 ° C.
  • the drying temperature is lower than 150 ° C.
  • the drying time is too long and the physical properties of the superabsorbent resin to be finally formed may be deteriorated.
  • the drying temperature exceeds 250 ° C, only the polymer surface is excessively dried, and a fine powder may be generated in a subsequent pulverizing step There is a possibility that the physical properties of the superabsorbent resin finally formed are lowered.
  • the drying can proceed at a temperature of from about 150 to about 200 ° C, more preferably from about 160 to about 180 ° C.
  • drying time it may proceed for about 20 to about 90 minutes in consideration of the process efficiency and the like, but is not limited thereto.
  • the drying method in the drying step may be selected and used as long as it is usually used as a drying step of the hydrogel polymer. Specifically, the drying step can be carried out by hot air supply, infrared irradiation, microwave irradiation, ultraviolet irradiation, or the like.
  • the water content of the polymer after such a drying step may be from about 0.1 to about 10% by weight.
  • the polymer powder obtained after the pulverization step may have a particle diameter of about 150 to about 850 1.
  • the pulverizer used for pulverizing with such a particle size is specifically a pin mill, a hammer mill, a screw mill a screw mill, a roll mill, a disc mill or a jog mill may be used.
  • the present invention is not limited to the above examples.
  • a hydrophobic substance having an HLB of 0 or more and 6 or less, and Epoxy-based surface cross-linking agent is mixed (step 2).
  • a surface cross-linking solution containing a surface cross-linking agent is mixed with a dried and ground polymer, that is, a base resin, and then the surface cross-linking reaction .
  • the surface crosslinking step is a step of inducing a crosslinking reaction on the surface of the pulverized polymer in the presence of a surface crosslinking agent to form a superabsorbent resin having improved physical properties.
  • a surface crosslinked layer (surface modifying layer) is formed on the surface of the pulverized polymer particles.
  • the surface cross-linking agent is applied to the surface of the superabsorbent resin particles, so that the surface cross-linking reaction occurs on the surface of the superabsorbent resin particles, which improves the crosslinkability on the surface of the particles without substantially affecting the inside of the particles.
  • the surface cross-linked superabsorbent resin particles have a higher degree of crosslinking in the vicinity of the surface than in the interior.
  • the surface cross-linking agent a compound capable of reacting with a functional group contained in the polymer is used, and examples thereof include polyvalent alcohol compounds, epoxy compounds, polyamine compounds, haloepoxy compounds, condensation products of haloepoxy compounds, oxazoline compounds, Or an alkylene carbonate compound can be used.
  • epoxy-based surface cross-linking agent satisfying these conditions include ethyleneglycol diglycidyl ether, diethyleneglycol diglycidyl ether, triethyleneglycol diglycidyl ether, ether, tetraethyleneglycol diglycidyl ether, glycerin polyglycidyl ether, sorbitol polyglycidyl ether, and the like.
  • the amount of the epoxy-based surface cross-linking agent to be added is not particularly limited, About 0.005 parts by weight or more, or about 0.01 parts by weight or more, or about 0.02 parts by weight or more, about 0.2 parts by weight or less, or about 0.1 parts by weight or less, or 0.05 parts by weight or less, based on the weight of the composition.
  • the content of the epoxy-based surface cross-linking agent is too small, the cross-linking density of the surface cross-linked layer becomes too low to lower the absorption characteristics such as absorbency under pressure and liquid permeability. If too much is used, The re-wetting property may be deteriorated.
  • the epoxy-based surface cross-linking agent When the epoxy-based surface cross-linking agent is added, water may be further mixed together and added in the form of a surface cross-linking solution.
  • water When water is added, there is an advantage that the surface cross-linking agent can be uniformly dispersed in the polymer.
  • the added water content is preferably from about 1 to about 10 wt. Parts per 100 parts by weight of the polymer for the purpose of inducing uniform dispersion of the surface cross-linking agent and preventing the polymer powder from aggregating and optimizing the surface penetration depth of the surface cross- By weight.
  • the surface-crosslinking agent described above may further include at least one selected from the group consisting of polyvalent metal salts such as aluminum salts, more specifically, aluminum sulfate, potassium salt, ammonium salt, sodium salt and hydrochloride.
  • polyvalent metal salts such as aluminum salts, more specifically, aluminum sulfate, potassium salt, ammonium salt, sodium salt and hydrochloride.
  • the liquid permeability and the like of the superabsorbent resin produced by the method of one embodiment can be further improved.
  • the multivalent metal salt may be added to the surface cross-linking solution together with the surface cross-linking agent, and may be used in an amount of 0.01 to 4 parts by weight based on 100 parts by weight of the base resin.
  • the pressure absorption ability and the permeability can be improved by the surface cross-linking reaction, but the re-wetting property needs to be further supplemented.
  • the hydrophilic material can be mixed with the base resin to improve the re-wetting property before the surface cross-linking reaction is performed by mixing the surface cross-linking agent with the base resin.
  • the absorption rate and the liquid permeability can be further improved as compared with a resin not using a hydrophobic substance.
  • the hydrophobic substance has a HLB lower limit value of 0 or more, or 1 or more, or 2 Or less, and 6 or less, or 5 or less, or 5.5 or less in the upper limit value.
  • a material having a melting point lower than the surface cross-linking reaction temperature may be used.
  • Hydrophobic materials that can be used include, for example, glyceryl stearate, glycol stearate, magnesium stearate, glyceryl laurate, sorbitan stearate, stearate, sorbitan trioleate, or PEG-4 dilaurate.
  • glyceryl stearate or glyceryl laurate may be preferably used.
  • the present invention is not limited thereto.
  • the hydrophobic substance is distributed in the surface-modified layer of the surface of the base resin to prevent the swollen resin particles from agglomerating or agglomerating due to the increased pressure during the swelling of the high- It is possible to more easily transmit and diffuse the liquid, thereby contributing to improvement of the re-wetting property of the superabsorbent resin.
  • the hydrophobic material may be present in an amount of at least about 0.02 part by weight, or at least about 0.025 part by weight, or at least about 0.05 part by weight based on 100 parts by weight of the base resin,
  • the rewet property may be insufficient, If the amount is more than the weight part, the base resin and the hydrophobic substance may be separated from each other, and there may be a problem that the rewetting is not improved or impurities may be present.
  • the method of mixing the hydrophobic substance is not particularly limited as long as it can mix the base resin uniformly and can be suitably employed.
  • the hydrophobic substance may be mixed with the base resin by dry mixing before mixing the surface cross-linking solution containing the epoxy surface cross-linking agent, or by dispersing the surface cross-linking agent together with the surface cross- 2019/117511 1 »(: 1 ⁇ 1 ⁇ 2018/014840
  • the hydrophobic substance may be heated to a melting point or higher and mixed in a solution state.
  • a surface modification step is performed on the base resin by heating the mixture of the base resin and the epoxy surface cross-linking agent (step 3).
  • the surface modification step may be performed at a temperature of from about 120 to about 190 (preferably, from about 130 to about 1801: about 10 to about 90 minutes, preferably from about 20 to about
  • the temperature raising means for the surface reforming reaction is not particularly limited.
  • a heating medium can be supplied, or a heating source can be directly supplied and heated.
  • the type of heat medium that can be used steam, hot air, hot fluid, or the like can be used, but the present invention is not limited thereto, and the temperature of the heat medium to be supplied is controlled by means of heating medium, It can be selected appropriately considering the temperature.
  • a heat source to be directly supplied a heating method using electricity or a heating method using gas may be mentioned, but the present invention is not limited to the above-mentioned examples.
  • the superabsorbent resin produced by the production method of the present invention can have improved rewet characteristics and initial absorption rate without deteriorating physical properties such as water solubility and pressure absorption ability as the surface modifying layer.
  • a resin composition comprising: a base resin comprising a cross-linked polymer wherein at least a part of an acidic group is neutralized with an acrylic acid-based monomer; And a surface modification layer formed on the particle surface of the base resin, wherein the cross-linking polymer is additionally crosslinked via a surface cross-linking agent, By weight or more and not more than 6% by weight, to provide.
  • the superabsorbent resin has a CRC of at least about 28 g / g, or at least about 29 g / g, or at least about 30 g / g, and at least about 40 g / g of CRC measured according to EDANA method WSP 241.3 , Or about 38 g / g or less, or about 35 g / g or less.
  • the superabsorbent resin preferably has a pressure absorption capacity (AUP) of about 0.3 g / g or more, about 23 g / g or about 25 g / g or more, and about 0.3 g / 37 g / g or less, or about 35 g / g or less, or about 32 g / g or less.
  • AUP pressure absorption capacity
  • the aqueous resin may have a yortex time of 40 seconds or less, or 35 seconds or less, or about 30 seconds or less, or about 28 seconds or less.
  • the lower the absorbing rate, the better the lowering of the absorbing rate is theoretically 0 seconds, for example about 5 seconds or more, about 10 seconds or more, or about 12 seconds or more.
  • the absorption rate refers to a time (unit: second) in which the vortex of the liquid disappears due to the rapid top water when the superabsorbent resin is added to the physiological saline solution and stirred.
  • the time is short, Can be seen to have a fast initial absorption rate.
  • the superabsorbent resin may have a permeability (unit: second) measured according to the following formula 1: about 35 seconds or less, about 30 seconds or less, or about 27 seconds or less.
  • the liquid permeability is better as the value is smaller, and the theoretical lower limit value may be 0 seconds, for example, about 5 seconds or more, or about 10 seconds or more, or about 12 seconds or more.
  • the superabsorbent resin can exhibit excellent absorption characteristics while exhibiting improved rewet characteristics.
  • the superabsorbent resin is immersed in water of 100 ⁇
  • Water-repellent water-repellency water-repellency of 2.0 ⁇ or less, 1.5 ⁇ or less, or 1.4 ⁇ or less, or 1.3 or less.
  • the weight of the water is excellent as the value is small and theoretically the lower limit is 3 ⁇ 4, ⁇ or more, or 0.3 ⁇ or more, or 0.5 ⁇ or more.
  • the tap water used in the re-wetting property evaluation has an electrical conductivity of 170 -
  • the superabsorbent resin of the present invention has excellent absorption ability, and excellent rewetting and leakage of urine can be suppressed even when a large amount of urine is absorbed.
  • the obtained gel-like polymer functions 21111x1 * 2_ and then ground to a size, followed seuteinreseugwa the resulting gel-like resin having a pore size of 600 _ place expanding 30 111 111 thickness on the gauze 1801: and then dried for 30 minutes in a hot-air oven.
  • the dry polymer thus obtained was pulverized using a pulverizer, Classified into a standard standard network
  • a base resin having a particle size of 150 to 850_ was obtained.
  • glyceryl stearate (1 part by 3.8 parts) was mixed with 100 parts by weight of the base resin, and then 0.02 part by weight of ethylene glycol diglycidyl ether, 0.01 part by weight of glycerol polyglycidyl ether, 0.025 part by weight of polyethylene glycol, and 0.2 part by weight of aluminum sulfate was injected into a container made of a stirrer and a double jacket, and the surface cross-linking reaction was carried out at 140 ° C for 40 minutes. Classifying the powder after the surface treatment standard sieve mesh of ASTM standard, and having a particle size of 150 to 850 Thyssen 1 to obtain a water-absorbent resin powder. Then, 0.1 part by weight of silica was dry-mixed with 100 parts by weight of the surface-treated superabsorbent resin to obtain a final high-water absorbent resin product.
  • the resultant gel-like polymer was pulverized to a size of 21111x1 * 2_, and then the resulting gel-like resin was spread on a stainless steel wire gauze having a pore size of 600 g and then dried in a hot air oven for 180 minutes.
  • the dried polymer thus obtained was pulverized using a pulverizer, and classified with a standard mesh of Show 811 to obtain a base resin having a particle size of 150 to 850_.
  • glyceryl stearate And 0.075 part by weight of a surfactant were dry mixed, and then 0.02 part by weight of ethylene glycol diglycidyl ether, 0.01 part by weight of glycerol polyglycidyl ether, 8 parts by weight of water, 0.025 part by weight of polyethylene glycol and 0.2 part by weight of aluminum sulfate, The solution was sprayed, mixed and placed in a container made of a stirrer and a double jacket, and the surface cross-linking reaction was carried out at 1401: for 40 minutes. Then, the surface-treated powder To obtain a superabsorbent resin powder having a particle size of 150 to 850_. Then, 0.1 part by weight of silica was dry-mixed with 100 parts by weight of the surface-treated superabsorbent resin to obtain a final high-water absorbent resin product.
  • a stirrer, a nitrogen injector, acrylate, 518 the third glass container equipped with a thermometer 3 ⁇ 4 polyethylene glycol diacrylate (1> 01 61; 11> 46116 ⁇ ⁇ 01 (400)) 3.3 ⁇ 4 and diphenyl (2,4, 6- Trimethylbenzoyl) -phosphine oxide was added and dissolved.
  • a solution of 24.5% sodium hydroxide solution (822.2) was added, and nitrogen was continuously added to prepare an aqueous solution of a water-soluble unsaturated monomer.
  • the water-soluble unsaturated monomer aqueous solution was cooled to 40 ° C.
  • This aqueous solution (50/4) was applied to a container made of stainless steel having a width of 250 111111 , a length of 250_, a height of 3 Polymerization was carried out to obtain a hydrogel polymer.
  • the resultant hydrogel polymer was pulverized to a size of 2 * 2111111, 2019/117511 1 »(: 1 ⁇ 1 ⁇ 2018/014840
  • hydrogel polymer Irradiated with ultraviolet rays (dose: 10111 ⁇ 7011 2 ) Polymerization was carried out to obtain a hydrogel polymer.
  • the resultant hydrogel polymer was pulverized to a size of 2 * 2111111, and then the resulting gel resin was spread on a stainless wire gauze having a pore size of 600 mm to a thickness of about 30 ⁇ and dried in a 180 hot air oven for 30 minutes.
  • the dried polymer thus obtained was pulverized using a pulverizer and classified with a standard mesh of ASTM standard to obtain a base resin having a particle size of 150 to 850_.
  • a surface cross-linking solution containing 0.01 part by weight of ether, 8 parts by weight of water, 0.025 part by weight of polyethylene glycol and 0.2 part by weight of aluminum sulfate was mixed and sprayed in a container made of a stirrer and a double jacket, The reaction proceeded. Thereafter, the surface-treated powder was classified into a standard mesh of Show Standard to obtain a superabsorbent resin powder having a particle size of 150 to 850 / L. Then, 0.1 part by weight of silica was dry-mixed with 100 parts by weight of the surface-treated superabsorbent resin to obtain a final high-water absorbent resin product.
  • Acrylic acid 518 and polyethyleneglycol diacrylate 3.2 out of diphenyl (2, 4, 6-trimethylbenzoyl) - (meth) acrylate were added to three glass containers equipped with a stirrer, a nitrogen introducer and a thermometer.
  • phosphine oxide was dissolved by the addition of 0.04 ⁇ , 24.5% sodium hydroxide solution, 822.2 is a water-soluble unsaturated monomer aqueous solution with added nitrogen is continuously added was prepared.
  • the water-soluble unsaturated monomer aqueous solution was cooled to 40 ° C.
  • the aqueous solution 500 has a width 250 111 111, 250 111 111 vertically, the height 30Inm was added to the container of the stacking Nu-less material is irradiated with ultraviolet rays (dose: wave /! 2 ) Polymerization was carried out to obtain a hydrogel polymer. After the resulting hydrogel polymer was pulverized to a size of 2 111111 * 2111111, the obtained gel resin was spread on a stainless steel wire gauze having a pore size of 600 g and then dried in a hot air oven for 180 minutes. The dry polymer thus obtained was pulverized using a pulverizer and classified with a standard mesh of ASTM standard to obtain a base resin having a particle size of 150 to 850 / L.
  • glyceryl laurate (1 part by weight, 5.2 parts by weight) was added to 100 parts by weight of the base resin. Then, 0.02 part by weight of ethylene glycol diglycidyl ether, 0.01 part by weight of glycerol polyglycidyl ether, , Polyethylene glycol
  • a superabsorbent resin was prepared in the same manner as in Example 1, except that the content of glyceryl stearate was changed to 0.15 parts by weight in Example 1.
  • Example 7
  • a superabsorbent resin was prepared in the same manner as in Example 1, except that the content of glyceryl stearate was changed to 0.5 parts by weight. Comparative Example 1
  • Acrylic acid 518 and polyethylene glycol diacrylate (1 5 01 > 1 ⁇ 2 1 1 6116 ⁇ ⁇ 01 (400)) were added to a 31 ⁇ glass vessel equipped with a stirrer, a nitrogen introducer and a thermometer.
  • 3.2. trimethyl benzoyl) phosphine oxide was dissolved by the addition of 0.04 ⁇ , 24.5% sodium hydroxide solution, 822.2 aqueous unsaturated monomer solution was added to the ⁇ input of nitrogen was continuously prepared.
  • the water-soluble unsaturated monomer aqueous solution was cooled to 40 ° C.
  • silica 0.1 part by weight was mixed with 100 parts by weight of the base resin, and then 0.02 part by weight of ethylene glycol diglycidyl ether, 8 parts by weight of water and 0.2 part by weight of aluminum sulfate was injected and mixed, and a 140 ° double put in a jacket made of a container (: from 40 minutes to proceed with the surface cross-linking reaction and the water-absorbent resin powder to a subsequent surface-treated powder having the particle size of the classified to 150 to 850 Thyssen first body standard web of ASTM standards ≪ / RTI > Then the surface 2019/117511 1 »(: 1 ⁇ 1 ⁇ 2018/014840
  • the solution of 50 (250 to 111111 3 ⁇ 4 horizontal, vertical 250 111 111, was added to a stainless steel container of a height 3 ( ⁇ wave 1 is irradiated with ultraviolet rays (dose: 10 to 111 ⁇ ⁇ / 0 11 2) Polymerization was carried out to obtain a hydrogel polymer.
  • the resultant gel-like polymer was pulverized to a size of 2 mm, and then the obtained gel-like resin was spread on a stainless steel wire gauze having a pore size of 600 mm and a thickness of about 30 mm and dried in a 180 l hot air oven for 30 minutes.
  • the dry polymer thus obtained was pulverized using a pulverizer, and classified with a standard mesh of Show Standard to obtain a base resin having a particle size of 150 to 850_.
  • Example (400) ⁇ 1 071) 3.2 was prepared by dissolving 0.04 ⁇ of diphenyl (2,4,6-trimethylbenzoyl) after that, by the addition of 24.5% sodium hydroxide solution 822.2 8 while nitrogen is continuously introduced to prepare an aqueous solution of water-soluble unsaturated monomer.
  • the water-soluble unsaturated monomer aqueous solution was cooled to 40 ° C.
  • glyceryl stearate 0.025 part by weight was dry mixed, and then a surface cross-linking solution containing 0.03 part by weight of ethylene carbonate, 8 parts by weight of water, 0.025 part by weight of polyethylene glycol and 0.2 part by weight of aluminum sulfate was injected and mixed.
  • the surface cross - linking reaction was carried out at 1401: for 40 minutes.
  • the surface-treated powder was classified into a standard mesh having a standard of show standard to obtain a superabsorbent resin powder having a particle size of 150 to 850 sun !.
  • 0.1 part by weight of silica was dry-mixed with 100 parts by weight of the surface-treated superabsorbent resin to obtain a final highly hydrous resin product.
  • the tap water used in the re-wetting property evaluation described below has an electrical conductivity of from 170 to 180, as measured by Orion Star A222 (company: Thermo Scientific) pS / cm was used.
  • the retention capacity of each resin by the zero-load capacity was measured according to EDANA WSP 241.3.
  • the superabsorbent resin W 0 ( g) (about 0. 3) was uniformly put in an envelope made of a nonwoven fabric and sealed, and then immersed in physiological saline (0.9 wt%) at room temperature. After 30 minutes, water was drained from the envelope for 3 minutes under a condition of 250 G using a centrifuge, and the mass W 2 ( g) of the envelope was measured. Also, after the same operation was performed without using a resin, the mass WJg at that time was measured. Using the obtained masses, CRC (g / g) was calculated according to the following equation.
  • a 400 mesh wire mesh made of stainless steel was mounted on a cylindrical bottom of a plastic having an inner diameter of 60 mm. Piston that is under conditions of normal temperature and humidity of 50%, and on the wire evenly spraying the water-absorbing resin W 0 (g) (0.90, even more give a load of 0.3 psi on it is slightly smaller cylinder than an outer diameter 60 mm And the upper and lower movements were not disturbed at this time, the weight W 3 ( g) of the device was immediately given.
  • a glass filter having a diameter of 90 mm and a thickness of 5 mm was placed inside a Petro dish having a diameter of 150 mm and a physiological saline solution composed of 0.9% by weight sodium chloride was made to have the same level as the upper surface of the glass filter. And a filter paper having a diameter of 90 mm was placed thereon.
  • the measuring device was placed on a filter paper, and the solution was absorbed under a load for 1 hour. After 1 hour, the measuring device was lifted and its weight W 4 ( g) was measured.
  • the pressure absorption capacity (g / g) was calculated by using the obtained masses according to the following formula. &Quot; (2) "
  • AUP (g / g) [ W 4 (g) - W 3 (g)] AV 0 (g)
  • the liquid permeability measuring device is a chromatography tube having an inner diameter of 20 mm and a glass filter at the lower end. Lines were indicated on the liquid surface of 20 ml and 40 ml with the piston in the chromatographic tube. Thereafter, water was added in an amount of about 10 ml to prevent air bubbles between the lower glass filter and the cock of the chromatography tube, and the mixture was washed 2-3 times with brine and filled with 0.9% brine to a volume of 40 ml or more. Put the piston into the chromatography tube and open the lower valve to record the time (in millimeters) of reducing the liquid level from 40 ml to the 20 ml marking line.
  • the vortex time was measured in the first place according to the method described in International Patent Application No. 1987-003208.
  • Comparative Example 3 in which a non-epoxy surface cross-linking agent was used did not have satisfactory transparency and remanence characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention relates to a superabsorbent polymer and a preparation method therefor. The present invention can provide a superabsorbent polymer in which an epoxy-based surface cross-linking agent and a hydrophobic material having 0-6 of HLB are mixed into a base resin, thereby having improved rewetting characteristics and permeability through surface-modification of the base resin.

Description

【발명의 명칭】  Title of the Invention
고흡수성 수지 및 이의 제조방법  Superabsorbent resin and method for producing the same
【기술분야】  TECHNICAL FIELD
관련출원 (들)과의 상호인용  Cross-reference with related application (s)
본출원은 2017년 12월 11일자한국특허 출원제 10-2017-0169492호및 This application is related to Korean Patent Application No. 10-2017-0169492, filed December 11, 2017,
2018년 11월 27자 한국 특허 출원 제 10-2018-0148009호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. U.S. Patent Application No. 10-2018-0148009, filed on Nov. 27, 2018, all of which are incorporated herein by reference in their entirety.
본 발명은 고흡수성 수지 및 이의 제조 방법에 관한 것이다. 보다 상세하게는,향상된 재습윤 (rewet)특성 및 흡수속도를갖는고흡수성 수지 및 이의 제조방법에 관한것이다.  The present invention relates to a superabsorbent resin and a method for producing the same. More particularly, the present invention relates to a superabsorbent resin having improved rewet characteristics and absorption rates and a method for producing the same.
【발명의 배경이 되는기술】  TECHNICAL BACKGROUND OF THE INVENTION
고톱수성 수지 (Super Absorbent Polymer, SAP)란자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM( Absorbent Gel Material)등 각기 다른 이름으로 명명하고 있다.상기와같은 고흡수성 수지는 생리용구로 실용화되기 시작해서,현재는어린이용종이기저귀나생리대 등위생용품외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도유지제,및찜질용등의 재료로널리사용되고있다.  Super Absorbent Polymer (SAP) is a synthetic polymer material capable of absorbing moisture of about 500 to 1,000 times the weight of lanzai, and each developer can use SAM (Super Absorbent Material), AGM The above-mentioned superabsorbent resin has been put into practical use as a sanitary article, and nowadays, in addition to the diapers and sanitary napkin products for children, it is now used as a soil remover for gardening, an index material for civil engineering and construction, Sheet, a freshness-retaining agent in the field of food distribution, and a material for fomentation.
가장많은경우에, 이러한고흡수성 수지는기저귀나생리대 등위생재분야에서 널리 사용되고 있는데, 이러한 용도를 위해 수분 등에 대한 높은 흡수력을 나타낼 필요가 있고, 외부의 압력에도 흡수된 수분이 빠져 나오지 않아야 하며, 이에 더하여, 물을 흡수하여 부피 팽창 (팽윤)된 상태에서도 형태를잘유지하여 우수한통액성 (permeability)을나타낼필요가있다. In most cases, such superabsorbent resins are widely used in diapers and sanitary napkins. In order to use such superabsorbent resins, it is necessary to exhibit a high absorption capacity for moisture and the like , In addition, there is a need to exhibit excellent permeability by absorbing water to keep its shape even in the state of volume expansion ( swelling ) .
그런데, 상기 고흡수성 수지의 기본적인 흡수력 및 보수력을 나타내는 물성인 보수능 (CRC)과, 외부의 압력에도 흡수된 수분을 잘 보유하는 특성을 나타내는가압하흡수능 (AUP)은 함께 향상시키기 어려운 것으로 알려져 있다. 이는 고흡수성 수지의 전체적인 가교 밀도가 낮게 제어될 경우, 보수능은 상대적으로 높아질 수 있지만, 가교 구조가 성기게 되고 겔 강도가 낮아져 가압하흡수능은저하될수있기 때문이다.반대로,가교밀도를높게 제어하여 2019/117511 1»(:1^1{2018/014840 However, it is known that the CRC which is the physical property showing the basic absorption power and the water holding capacity of the superabsorbent resin, and the lower absorption ability (AUP) showing the property of holding the moisture absorbed even to the external pressure are difficult to improve together. This is because, when the overall cross-linking density of the superabsorbent resin is controlled to be low, the crosslinking density can be relatively high, but the cross-linking structure becomes difficult and the gel strength becomes low, So 2019/117511 1 »(: 1 ^ 1 {2018/014840
가압하흡수능을 향상시키는 경우, 빽맥한가교구조사이로수분이 흡수되기 어려운 상태로 되어 기본적인 보수능이 저하될 수 있다.상술한 이유로 인해, 보수능 및 가압하흡수능이 함께 향상된 고흡수성 수지를 제공하는데 한계가 있다. When the absorption capacity under pressure is increased, the water absorption is difficult to be absorbed through the superficial crosslinked structure, and the basic water-holding ability may be lowered. For the reasons described above, it is possible to provide a superabsorbent resin having improved water- There is a limit.
그러나, 최근 기저귀나 생리대 등과 같은 위생재의 박막화에 따라 고롭수성 수지에 보다높은듭수성능이 요구되고있다.이 중에서도,상반되는 물성인 보수능과 가압 흡수능의 동반 향상과 통액성의 개선 등아 중요한 과제로대두되고있다.  In recent years, however, a higher performance is required for a high-water-based resin due to the thinning of sanitary materials such as diapers and sanitary napkins. Among these, an important task is to improve the water retention ability and the pressure absorption ability, Is emerging.
또한, 기저귀나 생리대 등의 위생재에는 사용자의 무게에 의해 압력이 가해질 수 있다. 특히, 기저귀나 생리대 등의 위생재에 적용되는 고흡수성 수지가 액체를 흡수한 이후, 이에 사용자의 무게에 의한 압력이 가해지면 고흡수성 수지에 흡수된 일부 액체가 다시 배어 나오는 재습윤如 벼 현상과, 소변이
Figure imgf000003_0001
현상이 발생할수있다.
In addition, pressure may be applied to sanitary materials such as diapers and sanitary napkins by the weight of the user. In particular, when a superabsorbent resin applied to a sanitary material such as a diaper or sanitary napkin absorbs a liquid, if a pressure due to the weight of the user is applied to the absorbent, a part of the liquid absorbed in the superabsorbent resin is re- , Urine
Figure imgf000003_0001
A phenomenon may occur.
따라서,이러한재습윤현상을억제하고자여러 가지 시도들이 진행되고 있다. 하지만 아직까지 재습윤 현상을 효과적으로 억제할 수 있는 구체적인 방안이 제시되지 못하고있는실정이다. Therefore , various attempts have been made to suppress such re-wetting phenomenon. However, there is no concrete method to effectively inhibit the re-wetting phenomenon.
【발명의 내용】  DISCLOSURE OF THE INVENTION
【해결하고자하는과제】  [Problem to be solved]
상기와 같은 종래 기술의 문제점을 해결하고자, 본 발명은 재습윤 및 소변누출현상이 억제되는고흡수성 수지 및 이의 제조방법을제공하는 것을 목적으로한다.  In order to solve the problems of the prior art as described above, it is an object of the present invention to provide a superabsorbent resin in which rewetting and leakage of urine are suppressed, and a method of manufacturing the same.
【과제의 해결수단】  MEANS FOR SOLVING THE PROBLEMS
.상기의 목적을달성하기 위하여,본발명의 일측면에 따르면, 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 및 내부 가교제가 가교 중합된 베이스 수지 0 36 切)를 준비하는 단계(단계 1); The steps to order to achieve the above object, according to one aspect of the invention, having an acidic group prepared the acrylic acid monomer and internal crosslinking agent are crosslinked polymeric base resin 0 36切) at least partially neutralizing the acid groups ( Step 1);
상기 베이스수지에,
Figure imgf000003_0002
이하인소수성 물질,및 에폭시계 표면가교제를혼합하는단계(단계 2);및
To the base resin,
Figure imgf000003_0002
(Step 2) of a hydrophobic substance and an epoxy-based surface cross-linking agent; and
상기 단계 2의 혼합물을 승은하여 상기 베이스 수지에 대한 표면 개질을수행하는단계(단계 3); 를포함하는,고흡수성 수지의 제조방법을제공한다. Performing the surface modification to the base resin by raising the mixture of step 2 (step 3); And a method of producing the superabsorbent resin.
또한,본발명의 다른일측면에 따르면,  According to another aspect of the present invention,
산성기의 적어도 일부가중화된 아크릴산계 단량체가가교중합된가교 중합체를포함하는베이스수지;및  A base resin comprising a cross-linked polymer obtained by cross-linking an acrylic acid-based monomer in which at least a part of an acidic group is neutralized; and
상기 베이스 수지의 입자 표면에 형성되어 있고, 상기 가교 중합체가 에폭시계표면가교제를매개로추가가교되어 있는표면개질층을포함하고, 상기 표면 개질층은피 가 0 이상 6 이하인 소수성 물질을포함하는, 고흡수성 수지를제공한다.  Wherein the surface modification layer is formed on the particle surface of the base resin and the cross-linking polymer is additionally crosslinked via an epoxy-based surface cross-linking agent, and the surface modification layer comprises a hydrophobic substance having a B- Thereby providing a superabsorbent resin.
【발명의 효과】  【Effects of the Invention】
본 발명의 고흡수성 수지 및 이의 제조 방법에 따르면, 우수한 제반 흡수물성을나타내면서도재습윤현상및 소변누출현상이 억제된 고흡수성 수지를제공할수있다.  INDUSTRIAL APPLICABILITY According to the superabsorbent resin and the method for producing the same of the present invention, it is possible to provide a superabsorbent resin exhibiting excellent physical properties of absorption and inhibiting porcelain wetting and urine leakage.
【발명을실시하기 위한구체적인내용】  DETAILED DESCRIPTION OF THE INVENTION
본발명은다양한변경을가할수있고여러 가지 형태를가질수있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는본발명을특정한개시 형태에 대해 한정하려는 것이 아니며,본발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로이해되어야한다.  The present invention can be variously modified and may take various forms, and specific embodiments will be illustrated and described in detail below. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
이하,본 발명의 일 구현예에 따른고흡수성 수지의 제조 방법에 대해 상세히 설명한다. 본발명의 일구현예에 따른고흡수성 수지의 제조방법은,  Hereinafter, a method for producing a superabsorbent resin according to an embodiment of the present invention will be described in detail. A method of manufacturing a superabsorbent resin according to an embodiment of the present invention includes:
산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 및 내부 가교제가 가교 중합된 베이스 수지(base resin)를 준비하는 단계(단계 1);  (Step 1) of preparing a base resin having an acidic group and at least a part of which is neutralized, and a base resin crosslinked and polymerized with an acrylic acid-based monomer and an internal cross-linking agent;
상기 베이스수지에, HLB가 0이상 6이하인소수성 물질,및 에폭시계 표면가교제를혼합하는단계(단계 2);및  Mixing the base resin with a hydrophobic substance having an HLB of not less than 0 and not more than 6, and an epoxy-based surface cross-linking agent (step 2);
상기 단계 2의 혼합물을 승은하여 상기 베이스 수지에 대한 표면 개질을수행하는단계(단계 3);  Performing the surface modification to the base resin by raising the mixture of step 2 (step 3);
를포함한다. 2019/117511 1»(:1^1{2018/014840 . 2019/117511 1 »(: 1 ^ 1 {2018/014840
본발명의 명세서에서,’’베이스수지"또는 "베이스수지 분말"은수용성 에틸렌계 불포화 단량체가 중합된 중합체를 건조 및 분쇄하여 입자여 止 ) 또는파우더知0 (1 ) 형태로만든 것으로,후술하는표면 개질 또는표면 가교 단계를수행하지 않은상태의 중합체를의미한다. In the specification of the present invention, the term "base resin" or "base resin powder" refers to a product obtained by drying and pulverizing a polymer obtained by polymerizing a water-soluble ethylenically unsaturated monomer to form particles or powder knowledge (1) Quot; means a polymer that has not undergone surface modification or surface cross-linking steps.
아크릴산계 단량체의 중합 반응에 의해 수득되는 함수겔상 중합체는 건조, 분쇄, 분급, 표면 가교 등의 공정을 거쳐 분말상의 제품인 고흡수성 수지로시판된다.  The hydrogel polymer obtained by the polymerization reaction of the acrylic acid-based monomer is subjected to a process such as drying, crushing, classification, surface crosslinking and the like, and is marketed as a superabsorbent resin which is powdery product.
최근들어 고흡수성 수지에서 흡수능,통액성과같은제반흡수물성뿐 아니라실제 기저귀가사용되는상황에서 표면의 건조((^> 1633) 상태가 얼마나 유지될수있는가가기저귀 특성을가늠하는중요한척도가되고있다. In recent years, the absorbency and liquid permeability of superabsorbent resins, as well as the degree of absorption of the surface (^> 1633 ) in actual diapers, have become an important measure of diaper characteristics .
본 발명의 일 구현예에 따른 제조방법에 의해 수득되는 고흡수성 수지는보수능, 가압흡수능,통액성 등의 물성이 우수하여 우수한 제반흡수 성능을 나타내며, 염수에 의해 팽윤된 후에도 건조한 상태가 유지되며 고흡수성 수지에 흡수된 소변이 다시 배어 나오는 재습윤如 ) 및 소변
Figure imgf000005_0001
현상을효과적으로방지할수 있음을확인하여 본발명에 이르게 되었다.
The superabsorbent resin obtained by the production method according to one embodiment of the present invention is excellent in physical properties such as water repellency, pressure absorbing ability and liquid permeability and exhibits excellent absorption performance and remains dry even after being swollen with salt water Reabsorption of urine absorbed in the superabsorbent resin again) and urine
Figure imgf000005_0001
And thus the present invention has been accomplished.
본발명의 고흡수성 수지의 제조방법에서,먼저 상기 고흡수성 수지의 원료 물질인 모노머 조성물은산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 내부 가교제 및 중합 개시제를 포함하는 모노머 조성물을 중합하여 함수겔상 중합체를 수득하고, 이를 건조, 분쇄, 분급하여 베이스
Figure imgf000005_0002
준비한다(단계 1).
In the method for producing a superabsorbent resin according to the present invention, the monomer composition, which is a raw material of the superabsorbent resin, is a monomer composition comprising an acrylic acid-based monomer having an acidic group and at least a part of the acidic groups neutralized, an internal crosslinking agent and a polymerization initiator Polymerized to obtain a hydrogel polymer, which is then dried, pulverized and classified to obtain a base
Figure imgf000005_0002
(Step 1).
이에 대해하기에서 보다상세히 설명한다.  This will be described in more detail below.
상기 고흡수성 수지의 원료 물질인 모노머 조성물은 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 및 중합 개시제를 포함한다.  The monomer composition which is a raw material of the superabsorbent resin includes an acrylic acid-based monomer having an acidic group and at least a part of the acidic groups neutralized and a polymerization initiator.
상기 아크릴산계단량체는하기 화학식 1로표시되는화합물이다:  The acrylic acid-based monomer is a compound represented by the following Formula 1:
[화학식 1] [Chemical Formula 1]
Figure imgf000005_0003
Figure imgf000005_0003
상기 화학식 1에서, 2019/117511 1»(:1^1{2018/014840 In Formula 1, 2019/117511 1 »(: 1 ^ 1 {2018/014840
II1은불포화결합을포함하는탄소수 2내지 5의 알킬그룹이고,II < 1 > is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond,
1은수소원자, 1가또는 2가금속,암모늄기 또는유기 아민염이다. 바람직하게는, 상기 아크릴산계 단량체는 아크릴산, 메타크릴산 및 이들의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부타선택되는 1종이상을포함한다.  1 is an avalanche, a monovalent or divalent metal, an ammonium group or an organic amine salt. Preferably, the acrylic acid-based monomer includes at least one selected from the group consisting of acrylic acid, methacrylic acid, monovalent metal salts thereof, divalent metal salts, ammonium salts and organic amine salts.
여기서, 상기 아크릴산계 단량체는 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨,수산화칼륨,수산화암모늄등과 같은 알칼리 물질로부분적으로 중화시킨 것이 사용될 수 있다. 이때, 상기 아크릴산계 단량체의 중화도는 40 내지 95 몰%,또는 40내지 80몰%,또는 45 내지 75 몰%일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 조절될 수 있다. 그런데, 상기 중화도가 지나치게 높으면 중화된 단량체가석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로중화도가지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만아니라취급하기 곤란한탄성 고무와같은성질을나타낼수있다. Here, the acrylic acid-based monomer may have an acidic group and at least a part of the acidic group may be neutralized . Preferably sodium hydroxide, to the above monomers, potassium hydroxide, may be used that was partially neutralized with an alkali substance such as ammonium hydroxide. At this time, the neutralization degree of the acrylic acid monomer may be 40 to 95 mol%, or 40 to 80 mol%, or 45 to 75 mol%. The range of the degree of neutralization can be adjusted according to the final properties. However, if the degree of neutralization is too high, neutralized monomers may precipitate and polymerization may be difficult to proceed smoothly. On the other hand, if the degree of neutralization is too low, the absorption capacity of the polymer is greatly decreased, .
상기 아크릴산계 단량체의 농도는,상기 고흡수성 수지의 원료물질 및 용매를포함하는모노머 조성물에 대해 약 20내지 약 60중량%,바람직하게는 약 40내지 약 50중량%로될수있으며,중합시간및 반응조건등을고려해 적절한 농도로 될 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮고 경제성에 문제가 생길 수 있고, 반대로 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄 시 분쇄 효율이 낮게 나타나는 등 공정상 문제가 생길 수 있으며 고흡수성 수지의 물성이 저하될수있다.  The concentration of the acrylic acid monomer may be about 20 to about 60 wt%, preferably about 40 to about 50 wt%, based on the monomer composition including the raw material of the superabsorbent resin and the solvent, The concentration may be appropriate considering the conditions and the like. However, if the concentration of the monomer is excessively low, the yield of the superabsorbent resin may be low and economical efficiency may be deteriorated. On the other hand, if the concentration is excessively high, a part of the monomer may precipitate or the pulverization efficiency may be low And the like, may cause problems in the process, and the physical properties of the superabsorbent resin may be deteriorated.
본 발명의 고흡수성 수지 제조 방법에서 중합시 사용되는 중합 개시제는 고흡수성 수지의 제조에 일반적으로 사용되는 것이면 특별히 한정되지 않는다.  In the method for producing a superabsorbent resin of the present invention, the polymerization initiator used in polymerization is not particularly limited as long as it is generally used in the production of a superabsorbent resin.
구체적으로,상기 중합개시제는중합방법에 따라열중합개시제 또는 조사에 따른 광중합 개시제를 사용할 수 있다. 다만 광중합 방법에 의하더라도,자외선조사등의 조사에 의해 일정량의 열이 발생하고,또한발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합개시제를포함할수도있다. 상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는화합물이면그구성의 한정이 없이사용될수있다. Specifically, as the polymerization initiator, a thermal polymerization initiator or a photopolymerization initiator upon irradiation may be used depending on the polymerization method. However, even when the photopolymerization method is employed, a certain amount of heat is generated by irradiation of ultraviolet light or the like, and a certain amount of heat is generated as the polymerization reaction, which is an exothermic reaction, proceeds. The photopolymerization initiator can be used without limitation in the constitution as long as it is a compound capable of forming a radical by light such as ultraviolet rays.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone), 하이드록실 알킬케톤 (hydroxyl alkylketone), 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (Benzyl The photopolymerization initiator includes, for example, benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, benzyl dimethyl ketal
Dimethyl Ketal), 아실포스핀 (acyl phosphine) 및 알파-아미노케톤 (a-aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체예로, 상용하는 liicirin TPO, 즉, 2,4, 6 -트리메틸-벤조일-트리메틸 포스핀 옥사이드 (2,4·, 6-trimethyl-benzoyl-trimethyl phosphine oxide)를사용할수 있다.보다다양한광개시제에 대해서는 Reinhold Schwalm 저서인 ’UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)’ pi 15에 잘명시되어 있으며,상술한예에 한정되지 않는다. Dimethyl Ketal, acyl phosphine, and a-aminoketone may be used. On the other hand, Specific examples of the acylphosphine commercial liicirin TPO, that is, 2, 4, 6, which-trimethyl-benzoyl-trimethyl phosphine oxide (2, 4 ·, 6- trimethyl-benzoyl-trimethyl phosphine oxide) available A variety of photoinitiators are well described in Reinhold Schwalm, UV Coatings: Basics, Recent Developments and New Applications (Elsevier 2007), p. 15, and are not limited to the above examples.
상기 광중합 개시제는 상기 모노머 조성물에 대하여 약 0.01 내지 약 1.0중량%의 농도로포함될수있다.이러한광중합개시제의 농도가지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면고흡수성 수지의 분자량이 작고물성이 불균일해질수있다.  If the concentration of the photopolymerization initiator is too low, the polymerization rate may be slowed. If the concentration of the photopolymerization initiator is excessively high, the concentration of the photopolymerization initiator may be lowered The molecular weight may be small and the physical properties may be uneven.
또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨 (Sodium persulfate; Na2S2C>8),과황산칼륨 (Pot sium persulfate; K2S2O8), 과황산암모늄 (Ammonium persulfate;(NH4)2S20g) 등이 있으며, 아조 (Azo)계 개시제의 예로는 2, 2 -아조비스- (2 -아미디노프로판)이염산염 (2,As the thermal polymerization initiator, at least one selected from persulfate-based initiators, azo-based initiators, initiators consisting of hydrogen peroxide and ascorbic acid can be used. Specifically, examples of the persulfate-based initiator include sodium persulfate (Na 2 S 2 C> 8), potassium persulfate (K 2 S 2 O 8), ammonium persulfate (NH 2 4) 2 S 2 0 g). Examples of azo initiators include 2, 2-azobis- (2-amidinopropane) dihydrochloride ( 2 ,
2-azobis(2-amidinopropane) dihydrochloride), 2, 2 -아조비스- (N, N-디메틸텐)이소부티라마이딘 디하이드로클로라이드 (2,2-azobis-(N,2-azobis (2-amidinopropane) dihydrochloride, 2,2-azobis- (N, N-dimethylentene) isobutyramide dihydrochloride,
N-dimethylene)isobutyramidine dihydrochloride),N-dimethylene) isobutyramidine dihydrochloride),
2-(카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril), 2,2- (carbamoyl azo) isobutylonitrile, 2,
2 -아조비스 [2-(2 -이미다졸린- 2 -일)프로판] 2 -azobis [2- (2-imidazolin-2-yl) propane]
디하이드로클로라이드 (2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride), 4,4 -아조비스- (4 -시아노발레릭 산) (4,4-azobis-(4-cyanovaleric acid))등이 있다.보다 다양한열중합개시제에 대해서는 Odim저서인 'Principle of Polynierization(Wiley, 1981)’, p203에 잘명시되어 있으며,상술한예에 한정되지 않는다. Azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride), 4,4-azobis- (4-cyanovaleric acid) 4-cyanovaleric acid)). Various thermal polymerization initiators are well described in the Odim book, Principle of Polynization (Wiley, 1981), p. 203, and are not limited to the above examples.
본발명의 일 실시예에 따르면,상기 모노머 조성물은고흡수성 수지의 원료 물질로서 내부 가교제를 포함한다. 상기 내부 가교제로는 상기 아크릴산계 단량체와 반응할 수 있는 관능기를 1개 이상 가지면서, 에틸렌성 불포화기를 1개 이상 갖는 가교제; 혹은 상기 아크릴산계 단량체의 치환기 및/또는단량체의 가수분해에 의해 형성된 치환기와반응할수 있는관능기를 2개 이상갖는가교제를사용할수있다.  According to one embodiment of the present invention, the monomer composition includes an internal cross-linking agent as a raw material for a superabsorbent resin. Examples of the internal crosslinking agent include a crosslinking agent having at least one functional group capable of reacting with the acrylic acid-based monomer and having at least one ethylenic unsaturated group; Or a crosslinking agent having two or more functional groups capable of reacting with a substituent formed by hydrolysis of a substituent and / or a monomer of the acrylic acid-based monomer may be used.
상기 내부 가교제는 아크릴산계 단량체가 중합된 중합체의 내부를 가교시키기 위한 것으로서, 상기 중합체의 표면을 가교시키기 위한 표면 가교제와구분된다.  The internal cross-linking agent is for crosslinking the interior of the polymerized polymer of the acrylic acid-based monomer, and is distinguished from the surface cross-linking agent for cross-linking the surface of the polymer.
상기 내부 가교제의 구체적인 예로는, N,N’-메틸렌비스아크릴아미드, 트리메틸롤프로판 트리(메타)아크릴레이트, 에틸렌글리콜 다이(메타)아크릴레이트, 폴리에틸렌글리콜(메타)아크릴레이트, 프로필렌글리콜 다이(메타)아크릴레이트, 폴리프로필렌글리콜(메타)아크릴레이트, 부탄다이올다이(메타)아크릴레이트, 부틸렌글리콜다이(메타)아크릴레이트, 다이에틸렌글리콜 다이(메타)아크릴레이트, 핵산다이올다이(메타)아크릴레이트, 트리에틸렌글리콜 다이(메타)아크릴레이트, 트리프로필렌글리콜 다이(메타)아크릴레이트, 테트라에틸렌글리콜 다이(메타)아크릴레이트, 다이펜타에리스리톨 펜타아크릴레이트, 글리세린 트리(메타)아크릴레이트, 펜타에리스톨 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르, 프로필렌 글리콜, 글리세린, 및 에틸렌카보네이트로 이루어진 군으로부터 선택된 1종이상을사용할수있다.  Specific examples of the internal crosslinking agent include N, N'-methylenebisacrylamide, trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, propylene glycol di Butylene diol di (meth) acrylate, butylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, nucleic acid diol di (meth) acrylate, Acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri Styrene tetraacrylate, triallyl amine, Ethylene glycol diglycidyl may be used at least one member selected from ether, propylene glycol, the group consisting of glycerin, and ethylene carbonate.
이러한 내부 가교제는 상기 모노머 조성물에 대하여 약 0.01 내지 약 1.0중량%의 농도로포함되어,중합된고분자를가교시킬수있다.  Such an internal crosslinking agent may be included at a concentration of about 0.01 to about 1.0 wt% based on the monomer composition to crosslink the polymerized polymer.
본발명의 제조방법에서,고흡수성 수지의 상기 모노머조성물은필요에 따라 증점제(thickener), 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포함할수있다.  In the production method of the present invention, the monomer composition of the superabsorbent resin may further contain additives such as a thickener, a plasticizer, a preservative stabilizer, and an antioxidant, if necessary.
상술한 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 광중합 개시제, 열중합 개시제, 내부 가교제 및 첨가제와 2019/117511 1»(:1^1{2018/014840 The above-mentioned acrylic acid-based monomer having an acidic group and at least part of the acidic group being neutralized, a photopolymerization initiator, a thermal polymerization initiator, an internal cross- 2019/117511 1 »(: 1 ^ 1 {2018/014840
같은 원료 물질은 용매에 용해된 모노머 조성물 용액의 형태로 준비될 수 있다. The same raw materials can be prepared in the form of a monomer composition solution dissolved in a solvent.
이 때 사용할수 있는상기 용매는상술한성분들을용해할수 있으면 그구성의 한정이 없이사용될수있으며,예를들어 물,에탄올,에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4 -부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트,메틸에틸케톤,아세톤,메틸아밀케톤, 시클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 톨루엔, 크실텐, 부틸로락톤, 카르비톨, 메틸셀로솔브아세테이트및 N,N -디메틸아세트아미드등에서 선택된 1종이상을 조합하여사용할수있다. The solvent which can be used at this time can be used without limitation of its constitution as long as it can dissolve the above-mentioned components. Examples thereof include water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4- Examples of the organic solvent include glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl One or more selected from ether, toluene, xylenes, butylolactone, carbitol, methylcellosolve acetate and N, N-dimethylacetamide can be used in combination .
상기 용매는모노머 조성물의 총 함량에 대하여 상술한성분을제외한 잔량으로포함될수있다.  The solvent may be included in the balance of the total amount of the monomer composition excluding the components described above.
. 한편, 이와 같은 모노머 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 형성하는 방법 또한 통상 사용되는 중합 방법이면, 특별히 구성의 한정이 없다.  . On the other hand, the method of forming a hydrogel polymer by thermal polymerization or photopolymerization of such a monomer composition is not particularly limited as long as it is a commonly used polymerization method.
구체적으로, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중합으로 나뉘며, 통상 열중합을 진행하는 경우, 니더(1 ½묘(1아)와 같은 교반죽을 가진 반응기에서 진행될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반응기에서 진행될 수 있으나, 상술한 중합 방법은일 예이며,본발명은상술한중합방법에 한정되지는않는다. Specifically, the polymerization method is largely divided into thermal polymerization and photopolymerization depending on the polymerization energy source. In general, when thermal polymerization is carried out, the polymerization can proceed in a reactor having a stirring die such as a kneader (1 ½ seeds (1) , The polymerization method described above is only one example, and the present invention is not limited to the polymerization method described above.
일 예로, 상술한 바와 같이 교반축을 구비한 니더(10½&(1 )와 같은 반응기에, 열풍을 공급하거나 반응기를 가열하여 열중합을 하여 얻어진 함수겔상 중합체는 반응기에 구비된 교반축의 형태에 따라, 반응기 배출구로 배출되는 함수겔상중합체는 수 센티미터 내지 수 밀리미터 형태일 수 있다. 구체적으로, 얻어지는 함수겔상 중합체의 크기는 주입되는 모노머 조성물의 농도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 중량 평균 입경이 2내지 50 :!!!!!인함수겔상중합체가얻어질수있다. For example, the hydrogel polymer obtained by supplying hot air or heating the reactor to a reactor such as the kneader 10 < 1 > (1) having an agitating shaft as described above, The hydrogel polymer discharged into the reactor outlet may be in the range of a few centimeters to a few millimeters. Specifically, the size of the resulting hydrogel polymer may vary depending on the concentration of the monomer composition to be injected, the rate of injection, etc. Usually, a gel polymer having a weight average particle diameter of from 2 to 50 μm can be obtained.
또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반응기에서 광중합을진행하는경우,통상얻어지는함수겔상중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔상 중합체일 수 있다. 이 때, 중합체 시트의 두께는주입되는 단량체 조성물의 농도 및 주입속도에 따라달라지나, 통상약 0.5내지 약 5cm의 두께를가진시트상의 중합체가얻어질수있도록 단량체 조성물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 5cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반응이 전 두께에 걸쳐 고르게 일어나지 않을수가있다. Further, when the photopolymerization proceeds in the reactor having the movable conveyor belt as described above, the form of the hydrogel polymer which is usually obtained is Gel-like polymer on the sheet having the width of the belt. At this time, the thickness of the polymer sheet depends on the concentration and the injection rate of the monomer composition to be injected, but it is preferable to supply the monomer composition so that a polymer in the form of a sheet having a thickness of usually about 0.5 to about 5 cm can be obtained. When the monomer composition is supplied to such an extent that the thickness of the polymer in the sheet is too thin, the production efficiency is low, which is undesirable. When the thickness of the polymer on the sheet exceeds 5 cm, the polymerization reaction occurs evenly over the entire thickness due to the excessively thick thickness I can not.
이때 이와같은방법으로 얻어진 함수겔상중합체의 통상함수율은 약 40 내지 약 80 중량%일 수 있다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수겔상 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔상 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180°C까지 온도를 상승시킨 뒤 180°C에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을측정한다. The normal water content of the hydrogel polymer obtained by this method may be about 40 to about 80 wt%. On the other hand, throughout the present specification, the term "moisture content" means the moisture content of the total functional gelated polymer weight minus the weight of the hydrogel polymer in dry state. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer in the process of raising the temperature of the polymer through infrared heating. At this time, the drying condition is a method of raising the temperature from room temperature to about 180 ° C and then keeping it at 180 ° C, and the total drying time is set to 20 minutes including 5 minutes of the temperature raising step, and water content is measured.
다음에,얻어진함수겔상중합체를건조하는단계를수행한다.  Next, the step of drying the obtained hydrogel polymer is carried out.
이때 필요에 따라서 상기 건조 단계의 효율을 높이기 위해 건조 전에 조분쇄하는단계를더 거칠수있다.  At this time, if necessary, the step of coarse grinding may be further carried out before drying in order to increase the efficiency of the drying step.
이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기 (Vertical pulverizer),터보커터 (Turbo cutter),터보글라인더 (Turbo grinder), 회전 절단식 분쇄기 (Rotary cutter mill), 절단식 분쇄기 (Cutter mill), 원판 분쇄기 (Disc mill),조각파쇄기 (Shred crusher),파쇄기 (Crusher),초퍼 (chopper)및 원판식 절단기 (Disc cutter)로이루어진분쇄 기기 군에서 선택되는어느하나를 포함할수았으나,상술한예에 한정되지는않는다.  In this case, the pulverizer to be used is not limited in its constitution, but may be a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, A crusher, a disc mill, a disc mill, a shred crusher, a crusher, a chopper, and a disc cutter. However, the present invention is not limited to the above-described example.
이때 분쇄 단계는 함수겔상 중합체의 입경이 약 2 내지 약 10mm로 되도록분쇄할수있다.  Wherein the milling step may be milled so that the hydrous gel polymer has a particle size of about 2 to about 10 mm.
입경이 2mm미만으로분쇄하는것은함수겔상중합체의 높은함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 응집되는 현상이 나타날 수도 있다. 한편, 입경이 10mm초과로 분쇄하는 경우, 추후 이루어지는건조단계의 효율증대 효과가미미하다. It is technically not easy to crush to less than 2 mm in diameter due to the high water content of the hydrogel polymer, The phenomenon may also appear. On the other hand, when the particle size is larger than 10 mm, the effect of increasing the efficiency of the subsequent drying step is insignificant.
상기와 같이 분쇄되거나, 혹은 분쇄 단계를 거치지 않은 중합 직후의 함수겔상중합체에 대해 건조를수행한다.이때 상기 건조단계의 건조온도는 약 150내지 약 250°C일수있다.건조온도가 150°C 미만인경우,건조시간이 지나치게 길어지고최종형성되는고흡수성 수지의 물성이 저하될우려가있고, 건조온도가 250 °C를 초과하는 경우, 지나치게 중합체 표면만 건조되어,추후 이루어지는 분쇄 공정에서 미분이 발생할수도 있고, 최종 형성되는고흡수성 수지의 물성이 저하될 우려가 있다. 따라서 바람직하게 상기 건조는 약 150 내지 약 200°C의 온도에서, 더욱 바람직하게는 약 160 내지 약 180°C의 온도에서 진행될수있다. The drying is carried out on the hydrogel polymer immediately after polymerization, which has not been pulverized or pulverized as described above, wherein the drying temperature of the drying step may be from about 150 to about 250 ° C. When the drying temperature is lower than 150 ° C. The drying time is too long and the physical properties of the superabsorbent resin to be finally formed may be deteriorated. If the drying temperature exceeds 250 ° C, only the polymer surface is excessively dried, and a fine powder may be generated in a subsequent pulverizing step There is a possibility that the physical properties of the superabsorbent resin finally formed are lowered. Thus, preferably, the drying can proceed at a temperature of from about 150 to about 200 ° C, more preferably from about 160 to about 180 ° C.
한편, 건조 시간의 경우에는 공정 효율 등을 고려하여, 약 20내지 약 90분동안진행될수있으나,이에 한정되지는않는다.  On the other hand, in the case of the drying time, it may proceed for about 20 to about 90 minutes in consideration of the process efficiency and the like, but is not limited thereto.
상기 건조 단계의 건조 방법 역시 함수겔상 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은약 0.1내지 약 10중량%일수있다.  The drying method in the drying step may be selected and used as long as it is usually used as a drying step of the hydrogel polymer. Specifically, the drying step can be carried out by hot air supply, infrared irradiation, microwave irradiation, ultraviolet irradiation, or the like. The water content of the polymer after such a drying step may be from about 0.1 to about 10% by weight.
다음에,이와같은건조단계를거쳐 얻어진 건조된 중합체를분쇄하는 단계를수행한다. Next, the steps of crushing the dried polymer obtained through this drying steps.
분쇄 단계후얻어지는중합체분말은입경이 약 150내지 약 850 1일 수있다.이와같은입경으로분쇄하기 위해사용되는분쇄기는구체적으로,핀 밀 (pin mill),해머 밀 (hammer mill),스크류밀 (screw mill),롤밀 (roll mill),디스크 밀 (disc mill) 또는 조그 밀 (jog mill) 등을 사용할 수 있으나, 상술한 예에 본 발명이 한정되는것은아니다. The polymer powder obtained after the pulverization step may have a particle diameter of about 150 to about 850 1. The pulverizer used for pulverizing with such a particle size is specifically a pin mill, a hammer mill, a screw mill a screw mill, a roll mill, a disc mill or a jog mill may be used. However, the present invention is not limited to the above examples.
그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있으며, 상기 중합체 분말을 입경 범위에 따라일정 중량비가되도록분급할수있다.  In order to control the physical properties of the superabsorbent resin powder which is finally produced after the pulverization step, a separate process of classifying the polymer powder obtained after the pulverization according to the particle size may be carried out. .
다음에,상기 베이스수지에, HLB가 0 이상 6 이하인 소수성 물질, 및 에폭시계표면가교제를혼합한다 (단계 2). Next, a hydrophobic substance having an HLB of 0 or more and 6 or less, and Epoxy-based surface cross-linking agent is mixed (step 2).
일반적인 고흡수성 수지의 제조방법에서, 건조 및 분쇄된 중합체, 즉 베이스 수지에 표면 가교제를 포함하는 표면 가교 용액을 혼합한 다음, 이들 혼합물에 열을 가하여 승온함으로써 상기 분쇄된 중합체에 대해 표면 가교 반응을수행한다.  In a general method of producing a superabsorbent resin, a surface cross-linking solution containing a surface cross-linking agent is mixed with a dried and ground polymer, that is, a base resin, and then the surface cross-linking reaction .
상기 표면가교단계는표면가교제의 존재 하에 상기 분쇄된중합체의 표면에 가교 반응을유도함으로써,보다향상된 물성을 갖는고흡수성 수지를 형성시키는 단계이다. 이러한 표면 가교를 통해 상기 분쇄된 중합체 입자의 표면에는표면가교층 (표면개질층)이 형성된다.  The surface crosslinking step is a step of inducing a crosslinking reaction on the surface of the pulverized polymer in the presence of a surface crosslinking agent to form a superabsorbent resin having improved physical properties. Through such surface crosslinking, a surface crosslinked layer (surface modifying layer) is formed on the surface of the pulverized polymer particles.
일반적으로, 표면 가교제는 고흡수성 수지 입자의 표면에 도포되므로 표면 가교 반응은 고흡수성 수지 입자의 표면 상에서 일어나며, 이는 입자 내부에는 실질적으로 영향을 미치지 않으면서 입자의 표면 상에서의 가교 결합성은 개선시킨다. 따라서 표면 가교 결합된 고흡수성 수지 입자는 내부에서보다표면부근에서 더 높은가교결합도를갖는다.  Generally, the surface cross-linking agent is applied to the surface of the superabsorbent resin particles, so that the surface cross-linking reaction occurs on the surface of the superabsorbent resin particles, which improves the crosslinkability on the surface of the particles without substantially affecting the inside of the particles. Thus, the surface cross-linked superabsorbent resin particles have a higher degree of crosslinking in the vicinity of the surface than in the interior.
한편, 상기 표면 가교제로는 중합체가 갖는 관능기와 반응 가능한 화합물을사용하며,일례로다가알콜화합물,에폭시 화합물,폴리아민화합물, 할로에폭시 화합물, 할로에폭시 화합물의 축합산물,옥사졸린 화합물류, 다가 금속염, 또는 알킬렌 카보네이트 화합물 등을사용할 수 있는 것으로 알려져 있다.  On the other hand, as the surface cross-linking agent, a compound capable of reacting with a functional group contained in the polymer is used, and examples thereof include polyvalent alcohol compounds, epoxy compounds, polyamine compounds, haloepoxy compounds, condensation products of haloepoxy compounds, oxazoline compounds, Or an alkylene carbonate compound can be used.
한편 본 발명의 제조방법에 따르면, 에폭시계 표면 가교제를사용하며, 특정한 에폭시계 표면 가교제를 사용하여 고흡수성 수지의 재습윤 특성을 저하시키지 않으면서 흡수능이 보다개선될수있음을확인하였다.  On the other hand, according to the production method of the present invention, it has been confirmed that an epoxy-based surface cross-linking agent is used, and the absorption capacity can be further improved without lowering the rewetting property of the superabsorbent resin by using a specific epoxy surface cross-linking agent.
이러한조건을 만족하는 에폭시계 표면 가교제의 예로는 에틸렌글리콜 디글리시딜 에테르 (ethyleneglycol diglycidyl ether), 디에틸렌글리콜 디글리시딜 에테르 (diethyleneglycol diglycidyl ether), 트리에틸렌글리콜 디글리시딜 에테르 (triethyleneglycol diglycidyl ether), 테트라에틸렌글리콜 디글리시딜 에테르 (tetraethyleneglycol diglycidyl ether),글리세린폴리글리시딜에테르 (glycerin polyglycidyl ether),또는소르비톨폴리글리시딜에테르 (sorbitol polyglycidyl e仕 ier) 등을들수있다.  Examples of the epoxy-based surface cross-linking agent satisfying these conditions include ethyleneglycol diglycidyl ether, diethyleneglycol diglycidyl ether, triethyleneglycol diglycidyl ether, ether, tetraethyleneglycol diglycidyl ether, glycerin polyglycidyl ether, sorbitol polyglycidyl ether, and the like.
상기 첨가되는 에폭시계 표면 가교제의 함량은 상기 베이스 수지 100 중량부에 대해, 약 0.005중량부 이상,또는약 0.01 중량부 이상,또는 약 0.02 중량부 이상이면서, 약 0.2 중량부 이하,또는 약 0.1 중량부 이하, 또는 0.05 중량부이하로사용할수있다. The amount of the epoxy-based surface cross-linking agent to be added is not particularly limited, About 0.005 parts by weight or more, or about 0.01 parts by weight or more, or about 0.02 parts by weight or more, about 0.2 parts by weight or less, or about 0.1 parts by weight or less, or 0.05 parts by weight or less, based on the weight of the composition.
상기 에폭시계 표면 가교제의 함량이 지나치게 적으면, 표면 가교층의 가교 밀도가 너무 낮아 가압하 흡수능, 통액성과 같은 흡수 특성이 낮아지게 되며, 너무 많이 사용되는 경우, 과도한 표면 가교 반응의 진행으로 인해 재습윤특성이 저하될수있다.  If the content of the epoxy-based surface cross-linking agent is too small, the cross-linking density of the surface cross-linked layer becomes too low to lower the absorption characteristics such as absorbency under pressure and liquid permeability. If too much is used, The re-wetting property may be deteriorated.
상기 에폭시계 표면 가교제 첨가시 , 추가로 물을 함께 혼합하여 표면 가교 용액의 형태로 첨가할 수 있다. 물을 첨가하는 경우, 표면 가교제가 중합체에 골고루 분산될 수 있는 이점이 있다. 이때, 추가되는 물의 함량은 표면 가교제의 고른 분산을 유도하고 중합체 분말의 뭉침 현상을 방지함과 동시에 표면가교제의 표면침투깊이를최적화하기 위한목적으로중합체 100 중량부에 대해,약 1내지 약 10중량부의 비율로첨가되는것이 바람직하다. 한편,상술한상기 표면 가교제 외에 다가금속염,예를들어,알루미늄 염, 보다 구체적으로 알루미늄의 황산염, 칼륨염, 암모늄염, 나트륨염 및 염산염으로이루어진군에서 선택된 1종이상을더 포함할수있다.  When the epoxy-based surface cross-linking agent is added, water may be further mixed together and added in the form of a surface cross-linking solution. When water is added, there is an advantage that the surface cross-linking agent can be uniformly dispersed in the polymer. At this time, the added water content is preferably from about 1 to about 10 wt. Parts per 100 parts by weight of the polymer for the purpose of inducing uniform dispersion of the surface cross-linking agent and preventing the polymer powder from aggregating and optimizing the surface penetration depth of the surface cross- By weight. On the other hand, in addition to the surface-crosslinking agent described above, it may further include at least one selected from the group consisting of polyvalent metal salts such as aluminum salts, more specifically, aluminum sulfate, potassium salt, ammonium salt, sodium salt and hydrochloride.
이러한 다가 금속염은 추가로 사용함에 따라, 일 구현예의 방법으로 제조된 고흡수성 수지의 통액성 등을 더욱 향상시킬 수 있다. 이러한 다가 금속염은상기 표면 가교제와함께 표면 가교용액에 첨가될 수 있으며,상기 베이스수지 100중량부에 대하여 0.01 내지 4 중량부의 함량으로사용될 수 있다.  As the polyvalent metal salt is further used, the liquid permeability and the like of the superabsorbent resin produced by the method of one embodiment can be further improved. The multivalent metal salt may be added to the surface cross-linking solution together with the surface cross-linking agent, and may be used in an amount of 0.01 to 4 parts by weight based on 100 parts by weight of the base resin.
한편 이러한 표면 가교 반응에 의해 가압 흡수능과 통액성 (permeability)은 개선될 수 있지만 재습윤 특성은보다 보완할 필요가 있다.  On the other hand, the pressure absorption ability and the permeability can be improved by the surface cross-linking reaction, but the re-wetting property needs to be further supplemented.
본 발명의 제조방법에 따르면, 베이스 수지에 표면 가교제를 혼합하여 표면 가교 반응을 수행하기 위해 승온하기 전에 소수성 물질을 상기 베이스 수지에 혼합하여 재습윤특성을보다개선할수 있다.또한표면 가교효율이 향상되어 소수성 물질을사용하지 않은 수지에 비해 흡수 속도, 및 통액성이 더욱향상될수있다.  According to the production method of the present invention, the hydrophilic material can be mixed with the base resin to improve the re-wetting property before the surface cross-linking reaction is performed by mixing the surface cross-linking agent with the base resin. The absorption rate and the liquid permeability can be further improved as compared with a resin not using a hydrophobic substance.
상기 소수성 물질은 HLB가그하한값으로 0이상,또는 1 이상,또는 2 이상이면서 상한값으로 6이하,또는 5 이하,또는 5.5이하를만족하는물질을 사용할 수 있다. 또한, 상기 소수성 물질은 표면 가교 반응시 녹아 베이스 수지의 표면 개질층에 위치해야 하므로 용융 온도 (melting point)가 표면 가교 반응온도이하인물질을사용할수있다. The hydrophobic substance has a HLB lower limit value of 0 or more, or 1 or more, or 2 Or less, and 6 or less, or 5 or less, or 5.5 or less in the upper limit value. In addition, since the hydrophobic substance melts in the surface cross-linking reaction and is located in the surface modification layer of the base resin, a material having a melting point lower than the surface cross-linking reaction temperature may be used.
사용가능한소수성 물질로는 예를들어,글리세릴 스테아레이트 (glyceryl stearate),글리콜스테아레이트 (glycol stearate),마그네슘스테아레이트 (magnesium stearate), 글리세릴 라우레이트 (glyceryl laurate), 소르비탄 스테아레이트 (sorbitan stearate), 소르비탄 트리올리에이트 (sorbitan trioleate), 또는 PEG-4 디라우레이트 (PEG-4 dilaurate) 등을 들 수 있으며, 바람직하게는 글리세릴 스테아레이트,또는글리세릴 라우레이트를사용할수 있으나,본 발명이 이에 제한되는것은아니다.  Hydrophobic materials that can be used include, for example, glyceryl stearate, glycol stearate, magnesium stearate, glyceryl laurate, sorbitan stearate, stearate, sorbitan trioleate, or PEG-4 dilaurate. Of these, glyceryl stearate or glyceryl laurate may be preferably used. However, The present invention is not limited thereto.
상기 소수성 물질은 상기 베이스 수지의 표면의 표면 개질층 내에 분포하여 고톱수성 수지가 액체를 듭수하여 팽윤되는 과정에서 팽윤된 수지 입자들이 높아진 압력에 따라 서로 응집되거나 뭉쳐지는 것을 방지하며, 표면에 소수성을 부여함으로써 액체의 투과 및 확산을 보다 용이하게 할 수 있다.따라서 고흡수성 수지의 재습윤특성을개선하는데기여할수있다.  The hydrophobic substance is distributed in the surface-modified layer of the surface of the base resin to prevent the swollen resin particles from agglomerating or agglomerating due to the increased pressure during the swelling of the high- It is possible to more easily transmit and diffuse the liquid, thereby contributing to improvement of the re-wetting property of the superabsorbent resin.
상기 소수성 물질은 상기 베이스 수지 100 중량부에 대하여 약 0.02 중량부 이상, 또는 약 0.025중량부 이상, 또는 약 0.05중량부 이상이면서 약 The hydrophobic material may be present in an amount of at least about 0.02 part by weight, or at least about 0.025 part by weight, or at least about 0.05 part by weight based on 100 parts by weight of the base resin,
0.5중량부 이하,또는 약 0.3중량부 이하,또는 약 0.1 중량부 이하가되도록 혼합할수있다.상기 소수성 물질의 함량이 0.02중량부미만으로너무적으면 재습윤특성을 개선하기에 부족할수 있고, 0.5 중량부를초과하여 너무 많이 포함될경우베이스수지와소수성 물질이 서로탈리 되어 재습윤개선효과가 없거나 불순물로 작용하는 문제가 있을 수 있으므로 이러한 관점에서 상기 중량부범위가바람직할수있다. 0.5 part by weight or less, or about 0.3 part by weight or less, or about 0.1 part by weight or less. If the content of the hydrophobic substance is less than 0.02 part by weight, the rewet property may be insufficient, If the amount is more than the weight part, the base resin and the hydrophobic substance may be separated from each other, and there may be a problem that the rewetting is not improved or impurities may be present.
상기 소수성 물질을 혼합하는 방법은, 상기 베이스 수지에 고르게 혼합할수 있는방법이라면 특별히 한정하지 않고 적절히 채택하여 사용할수 있다.  The method of mixing the hydrophobic substance is not particularly limited as long as it can mix the base resin uniformly and can be suitably employed.
예를 들어, 상기 소수성 물질은 상기 베이스 수지에 에폭시계 표면 가교제를 포함하는 표면 가교 용액을 혼합하기 전에 건식으로 혼합하거나, 상기 표면 가교용액에 표면가교제와함께 분산시켜 베이스수지에 혼합하는 2019/117511 1»(:1^1{2018/014840 For example, the hydrophobic substance may be mixed with the base resin by dry mixing before mixing the surface cross-linking solution containing the epoxy surface cross-linking agent, or by dispersing the surface cross-linking agent together with the surface cross- 2019/117511 1 »(: 1 ^ 1 {2018/014840
방식으로혼합할수있다.또는,상기 표면 가교용액과는별도로,상기 소수성 물질을녹는점 이상으로가열하여 용액상태로혼합할수도있다. Alternatively, in addition to the surface cross-linking solution, the hydrophobic substance may be heated to a melting point or higher and mixed in a solution state.
다음에, 상기 베이스 수지, 및 에폭시계 표면 가교제의 혼합물에 열을 가하여 승온함으로써 상기 베이스 수지에 대해 표면 개질 단계를 수행한다(단계 3).  Next, a surface modification step is performed on the base resin by heating the mixture of the base resin and the epoxy surface cross-linking agent (step 3).
상기 표면 개질 단계는 약 120 내지 약 190°(:, 바람직하게는 약 130 내지 약 1801: 의 온도에서 약 10내지 약 90분,바람직하게는약 20내지 약 The surface modification step may be performed at a temperature of from about 120 to about 190 (preferably, from about 130 to about 1801: about 10 to about 90 minutes, preferably from about 20 to about
70 분 동안 가열시킴으로써 수행할 수 있다. 가교 반응 온도가 1201: 미만이거나 반응 시간이 너무 짧을 경우 표면 가교 반응이 계대로 일어나지 않아투과도가낮아질수있고, 1901:를초과하거나반응시간이 너무길경우 보수능이 저하되는문제가발생할수있다. Lt; / RTI > for 70 minutes. When the crosslinking reaction temperature is less than 1201: or the reaction time is too short, the surface cross-linking reaction does not occur in the order of passage and the permeability may be lowered. If the reaction time exceeds 1901: or the reaction time is too long,
표면 개질 반응을위한승온수단은특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는스팀, 열풍,뜨거운 기름과 같은승은한유체 등을사용할 수 있으나, 본 발명이 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한가열방법을들수있으나,상술한예에 본발명이 한정되는것은아니다. 상기와 같은 표면 개질 단계에 의해, 상기 베이스 수지의 표면에는 에폭시계 표면 가교제와 베이스 수지가 갖는 관능기와 반응하여 형성된 표면 가교 구조가 형성되며, 상기 표면 가교 구조 내에 전술한 소수성 물질이 고르게분포한표면개질층이 형성될수있다.  The temperature raising means for the surface reforming reaction is not particularly limited. A heating medium can be supplied, or a heating source can be directly supplied and heated. At this time, as the type of heat medium that can be used, steam, hot air, hot fluid, or the like can be used, but the present invention is not limited thereto, and the temperature of the heat medium to be supplied is controlled by means of heating medium, It can be selected appropriately considering the temperature. On the other hand, as a heat source to be directly supplied, a heating method using electricity or a heating method using gas may be mentioned, but the present invention is not limited to the above-mentioned examples. By the surface modification step as described above, a surface cross-linking structure formed by reacting with the functional groups of the epoxy-based surface cross-linking agent and the base resin is formed on the surface of the base resin, and the surface cross- A reforming layer can be formed.
따라서,상기 본발명의 제조방법으로 제조된 고흡수성 수지는, 이러한 표면개질층으로인해보수능과가압흡수능등의 물성을저하시키지 않으면서 향상된재습윤특성 및초기 흡수속도를가질수있다.  Therefore, the superabsorbent resin produced by the production method of the present invention can have improved rewet characteristics and initial absorption rate without deteriorating physical properties such as water solubility and pressure absorption ability as the surface modifying layer.
이에 본 발명의 다른 일 구현예에 따르면, 산성기의 적어도 일부가 중화된 아크릴산계 단량체가 가교 중합된 가교 중합체를 포함하는 베이스 수지; 및 상기 베이스수지의 입자표면에 형성되어 있고,상기 가교중합체가 표면 가교제를매개로추가가교되어 있는표면 개질층을포함하고,상기 표면
Figure imgf000015_0001
이상 6 이하인 소수성 물질을 포함하는, 고흡수성 수지를 제공한다.
According to another embodiment of the present invention, there is provided a resin composition comprising: a base resin comprising a cross-linked polymer wherein at least a part of an acidic group is neutralized with an acrylic acid-based monomer; And a surface modification layer formed on the particle surface of the base resin, wherein the cross-linking polymer is additionally crosslinked via a surface cross-linking agent,
Figure imgf000015_0001
By weight or more and not more than 6% by weight, to provide.
상기 고흡수성 수지의 구체적인 제조방법 및 물성 등에 대한 상세한 설명은상기 고흡수성 수지의 제조방법에서 상술한바와같다.  Details of the specific production method and physical properties of the superabsorbent resin are the same as those described above in the production method of the superabsorbent resin.
상기 고흡수성 수지는, EDANA 법 WSP 241.3에 따라 측정한 보수능 (CRC)이 약 28 g/g이상,또는약 29 g/g이상,또는약 30 g/g이상이면서, 약 40 g/g이하,또는 약 38 g/g이하,또는 약 35 g/g이하의 범위를가질 수 있다.  The superabsorbent resin has a CRC of at least about 28 g / g, or at least about 29 g / g, or at least about 30 g / g, and at least about 40 g / g of CRC measured according to EDANA method WSP 241.3 , Or about 38 g / g or less, or about 35 g / g or less.
또한,상기 고흡수성 수지는, EDANA법 WSP 242.3에 따라측정한 0.3 psi의 가압흡수능 (AUP)이 약 20 g/g이상,또는약 23 g/g이상,또는약 25 g/g 이상이면서,약 37 g/g이하,또는약 35 g/g이하,또는약 32 g/g이하의 범위를 가질수있다.  The superabsorbent resin preferably has a pressure absorption capacity (AUP) of about 0.3 g / g or more, about 23 g / g or about 25 g / g or more, and about 0.3 g / 37 g / g or less, or about 35 g / g or less, or about 32 g / g or less.
또한, 상기 고듭수성 수지는,톱수 속도 (yortex time)가 40초 이하,또는 35초 이하, 또는 약 30초 이하, 또는 약 28초 이하일 수 있다. 상기 흡수 속도는그 값이 작을수록우수하여 상기 흡수 속도의 하한은 이론상 0초이나, 일례로약 5초이상,또는약 10초이상,또는약 12초이상일수있다.  Also, the aqueous resin may have a yortex time of 40 seconds or less, or 35 seconds or less, or about 30 seconds or less, or about 28 seconds or less. The lower the absorbing rate, the better the lowering of the absorbing rate is theoretically 0 seconds, for example about 5 seconds or more, about 10 seconds or more, or about 12 seconds or more.
상기 흡수 속도는 생리 식염수에 고흡수성 수지를 가하여 교반시켰을 때, 빠른 톱수에 의해 액체의 소용돌이 (vortex)가 없어지는 시간 (time, 단위: 초)을 의미하는 것으로서, 상기 시간이 짧을수록 고흡수성 수지가 빠른 초기 흡수속도를갖는것으로볼수있다.  The absorption rate refers to a time (unit: second) in which the vortex of the liquid disappears due to the rapid top water when the superabsorbent resin is added to the physiological saline solution and stirred. When the time is short, Can be seen to have a fast initial absorption rate.
또한, 상기 고흡수성 수지는, 하기 식 1에 따라 측정되는 통액성 (permeability, 단위: 초)이 약 35초 이하, 또는 약 30초 이하, 또는 약 27초 이하일 수 있다. 상기 통액성은 그 값이 작을수록 우수하여 이론상 하한값은 0초이나, 예를 들어 약 5초 이상,또는 약 10초 이상,또는 약 12초 이상일수있다.  The superabsorbent resin may have a permeability (unit: second) measured according to the following formula 1: about 35 seconds or less, about 30 seconds or less, or about 27 seconds or less. The liquid permeability is better as the value is smaller, and the theoretical lower limit value may be 0 seconds, for example, about 5 seconds or more, or about 10 seconds or more, or about 12 seconds or more.
[식 1]  [Formula 1]
통액성 (sec) = Tl - B  Liquid permeability (sec) = Tl - B
상기 식 1에서, In Equation (1)
은 크로마토그래피 관 내에 분급 (30# - 50#)된 고흡수성 수지 시료 0.2±0.0005g을 넣고 염수를 가하여 염수 부피가 50 ml가되게 한후, 30분 간 방치후,액면높이가 40 ml에서 20 ml까지줄어드는데에 걸리는시간이고, B는 2019/117511 1»(:1^1{2018/014840 0.2 ± 0.0005 g of a superabsorbent resin sample (30 # - 50 #) in a chromatographic tube was added and the brine volume was adjusted to 50 ml by adding brine. The mixture was allowed to stand for 30 minutes, , And B is the time it takes to 2019/117511 1 »(: 1 ^ 1 {2018/014840
염수가 채워진 크로마토그래피 관에서 액면높이가 40 에서 20 까지 줄어드는데에 걸리는시간이다. It is the time it takes for the liquid level to decrease from 40 to 20 in a chromatographic tube filled with salt water.
또한, 상기 고흡수성 수지는 우수한 흡수 특성을 나타내면서도, 보다 향상된재습윤특성을나타낼수있다.  In addition, the superabsorbent resin can exhibit excellent absorption characteristics while exhibiting improved rewet characteristics.
보다 구체적으로, 상기 고흡수성 수지 을 수도수 100§에 침지시켜More specifically, the superabsorbent resin is immersed in water of 100 시켜
10분동안팽윤시킨후,팽윤된상기 고톱수성 수지를수도수에 침지시킨 최초 시점으로부터 1시간 동안 여과지 상에서 방치하고 나서, 상기 고흡수성 수지로부터 상기 여과지로 다시 베어나온 물의 중량으로 정의되는 재습윤 특성(무가압수도수단기 재습윤)이 2.0§이하, 1.5§이하,또는 1.4§이하,또는 1.3은이하로될수 있다.상기 물의 중량은그값이 작을수록우수하여 이론상 하한값은 ¾이나, 예를들어 0.1§이상,또는 0.3툐이상,또는 0.5§이상으로될 수있다. Defined as the weight of water repelled from the superabsorbent resin to the filter paper after being swollen for 10 minutes and left on the filter paper for 1 hour from the initial point of time when the swollen high viscosity aqueous resin was immersed in the tap water, (Water-repellent water-repellency water-repellency) of 2.0 § or less, 1.5 § or less, or 1.4 § or less, or 1.3 or less. The weight of the water is excellent as the value is small and theoretically the lower limit is ¾, § or more, or 0.3 툐 or more, or 0.5 § or more.
또는 상기 고흡수성 수지
Figure imgf000017_0001
수도수 20 에 침지시켜 6시간 동안 팽윤시킨 후, 팽윤된 상기 고흡수성 수지를 0.75! 의 압력 하에 1분 동안 여과지 상에서 방치하고나서,상기 고흡수성 수지로부터 상기 여과지로 다시 베어나온 물의 중량으로 정의되는 재습윤 특성(가압 수도수 장기 재습윤)이 1.2§이하,또는 1.1§이하,또는 1.0§이하로될수 있다.상기 물의 중량은그 값이 작을수록 우수하여 이론상 하한값은 이나, 예를 들어 0.18 이상, 또는 0.3§이상,또는 0.5§이상으로될수있다.
Or the superabsorbent resin
Figure imgf000017_0001
The swollen superabsorbent resin was immersed in water 20 and swelled for 6 hours . (Pressure water repellent long-term rewetting) defined as the weight of the water repelled from the superabsorbent resin to the filter paper is 1.2 § or less, or 1.1 § or less, or § 1.0 can be as follows: a theoretical lower limit to the weight of water is superior or the smaller the value is, for example, be in the range of 0.1 8 or more, or 0.3 or more §, § 0.5 or more.
상기 재습윤 물성 평가에서 사용한수도수는 전기 전도도가 170 내지 The tap water used in the re-wetting property evaluation has an electrical conductivity of 170 -
180 나 8/011이다. 수도수의 전기 전도도는측정 물성에 큰 영향을 주기 때문에 동등한 수준의 전기 전도도를 갖는 수도수를 사용해서 재습윤 등의 물성을 측정할필요가있다. 180 or 8/0 11 . Since the electrical conductivity of the tap water greatly affects the physical properties of the tap water, it is necessary to measure the physical properties such as rewet using tap water having an equivalent level of electrical conductivity.
상기와 같이 본 발명의 고흡수성 수지는 우수한 흡수능을 가지며 다량의 소변을 흡수하였을 경우에도 우수한 재습윤 및 소변 누출 현상이 억제될수있다.  As described above, the superabsorbent resin of the present invention has excellent absorption ability, and excellent rewetting and leakage of urine can be suppressed even when a large amount of urine is absorbed.
본 발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는것은아니다. 2019/117511 1»(:1^1{2018/014840 The present invention will be described in more detail in the following Examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples. 2019/117511 1 »(: 1 ^ 1 {2018/014840
<실시예> <Examples>
고흡수성수지의 제조  Preparation of superabsorbent resin
실시예 1  Example 1
교반기, 질소투입기, 온도계를 장착한 3느유리 용기에 아크릴산 518& 폴리에틸렌글리콜 디아크릴레이트(1>01> 1546116민}^01 (400) (1 071 6) 3.2은과 디페닐(2, 4, 6 -트리메틸벤조일)-포스핀 옥시드 0.04은을 첨가하여 용해시킨 후, 24.5% 수산화나트륨 용액 822.2은을 첨가하여 질소를 연속적으로 투입하면서 수용성 불포화 단량체 수용액을 제조하였다. 상기 수용상 불포화 단량체 수용액을 40°(:로 냉각하였다. 이 수용액 50(¾을 가로 250111111, 세로 250_, 높이 30111111의 스테인레스 재질의 용기에 가하고 자외선을 조사(조사량:(1>01> 1546116)} 01 (400) (1 071 6) 3.2 and acrylic acid 518 and polyethyleneglycol diacrylate were added to a three-necked glass vessel equipped with a stirrer, a nitrogen introducer and a thermometer, 6-trimethylbenzoyl) -phosphine oxide 0.04 silver was added and dissolved. Then, 24.5% sodium hydroxide solution 822.2 silver was added and nitrogen was continuously added to prepare an aqueous solution of a water-soluble unsaturated monomer. The water-containing unsaturated monomer aqueous solution was cooled to 40 ° C. 50 (¾) of this aqueous solution was added to a container made of stainless steel having a width of 250 111111 , a length of 250, and a height of 30 111111 , and irradiated with ultraviolet rays (dose:
1011^/0 )하여 90초동안 11,^/중합을실시하여 함수겔상중합체를수득하였다. 수득한함수겔상중합체를 21111x1 * 2_크기로분쇄한후,얻어진 겔형 수지를 600 _의 구멍 크기를 갖는 스테인레스과이어 거즈 위에 약 30111111 두께로 펼쳐 놓고 1801: 열풍 오븐에서 30분 동안 건조하였다. 이렇게 얻어진 건조 중합체를 분쇄기를 사용하여 분쇄하고,
Figure imgf000018_0001
규격의 표준 망체로 분급하여
10 &lt; 11 &gt; / 0) and polymerized for 11 seconds to obtain a hydrogel polymer. The obtained gel-like polymer functions 21111x1 * 2_ and then ground to a size, followed seuteinreseugwa the resulting gel-like resin having a pore size of 600 _ place expanding 30 111 111 thickness on the gauze 1801: and then dried for 30 minutes in a hot-air oven. The dry polymer thus obtained was pulverized using a pulverizer,
Figure imgf000018_0001
Classified into a standard standard network
150내지 850_의 입자크기를갖는베이스수지를얻었다. A base resin having a particle size of 150 to 850_ was obtained.
상기 베이스수지 100중량부에 글리세릴 스테아레이트(1社3 3.8) 0.025 중량부를 건식으로 혼합한 후, 에틸렌글리콜 디글리시딜 에테르 0.02 중량부, 글리세롤 폴리글리시딜 에테르 0.01 중량부, 물 8 중량부, 폴리에틸렌글리콜 0.025중량부,황산알루미늄 0.2중량부를포함하는표면가교용액을분사하여 혼합하고 이를 교반기와 이중 자켓으로 이루어진 용기에 넣어 140°(:에서 40분간표면 가교반응을진행하였다. 이후표면 처리된 분말을 ASTM규격의 표준 망체로 분급하여 150 내지 850쎈 1의 입자 크기를 갖는 고흡수성 수지 분말을 얻었다. 이후 표면 처리된 고흡수성 수지 100 중량부에 실리카 0.1 중량부를건식혼합하여 최종고흡수성 수지 제품을얻었다. 실시예 2 0.025 part by weight of glyceryl stearate (1 part by 3.8 parts) was mixed with 100 parts by weight of the base resin, and then 0.02 part by weight of ethylene glycol diglycidyl ether, 0.01 part by weight of glycerol polyglycidyl ether, 0.025 part by weight of polyethylene glycol, and 0.2 part by weight of aluminum sulfate was injected into a container made of a stirrer and a double jacket, and the surface cross-linking reaction was carried out at 140 ° C for 40 minutes. Classifying the powder after the surface treatment standard sieve mesh of ASTM standard, and having a particle size of 150 to 850 Thyssen 1 to obtain a water-absorbent resin powder. Then, 0.1 part by weight of silica was dry-mixed with 100 parts by weight of the surface-treated superabsorbent resin to obtain a final high-water absorbent resin product. Example 2
교반기, 질소투입기,온도계를 장착한 3느유리 용기에 아크릴산 518 폴리에틸렌글리콜 디아크릴레이트(1>01}¾1;11)461½ (:01 (400) 出 句 3.2은과 디페닐(2, 4, 6 -트리메틸벤조일)-포스핀 옥시드 0.04용을 첨가하여 용해시킨 후, 2019/117511 1»(:1^1{2018/014840 To a three-necked glass vessel equipped with a stirrer, a nitrogen introducer and a thermometer was added acrylic acid 518 polyethylene glycol diacrylate (1> 01} ¾1; 11) 461½ (: -Trimethylbenzoyl) -phosphine oxide (0.04) was added and dissolved, 2019/117511 1 »(: 1 ^ 1 {2018/014840
24.5% 수산화나트륨 용액 822.2§을 첨가하여 질소를 연속적으로 투입하면서 수용성 불포화 단량체 수용액을 제조하였다. 상기 수용성 불포화 단량체 수용액을 401:로 냉각하였다. 이 수용액 50¾을 가로 2501X1111, 세로 250111111, 높이 301^11의 스테인레스 재질의 용기에 가하고 자외선을 조사(조사량: 10«1\^7011 2)하여
Figure imgf000019_0001
중합을실시하여 함수겔상중합체를수득하였다. 수득한함수겔상중합체를 21111x1 * 2_크기로분쇄한후,얻어진 겔형 수지를 600 _의 구멍 크기를 갖는 스테인레스 와이어 거즈 위에 약 30_ 두께로 펼쳐 놓고 1801: 열풍 오븐에서 30분 동안 건조하였다. 이렇게 얻어진 건조 중합체를 분쇄기를 사용하여 분쇄하고, 쇼811 규격의 표준 망체로 분급하여 150내지 850_의 입자크기를갖는베이스수지를얻었다.
24.5% by the addition of sodium hydroxide solution 822.2 § while nitrogen is continuously introduced to prepare a water-soluble unsaturated monomer aqueous solution. The water-soluble unsaturated monomer aqueous solution was cooled to 401: This aqueous solution was added to a container made of stainless steel having a width of 250 1 X 1111 , a height of 250 111111 and a height of 30 1 11 , and irradiated with ultraviolet rays (irradiation amount: 10 1 1 70 70 11 2 )
Figure imgf000019_0001
Polymerization was carried out to obtain a hydrogel polymer. The resultant gel-like polymer was pulverized to a size of 21111x1 * 2_, and then the resulting gel-like resin was spread on a stainless steel wire gauze having a pore size of 600 g and then dried in a hot air oven for 180 minutes. The dried polymer thus obtained was pulverized using a pulverizer, and classified with a standard mesh of Show 811 to obtain a base resin having a particle size of 150 to 850_.
상기 베이스수지 100중량부에 글리세릴 스테아레이트
Figure imgf000019_0002
0.075 중량부를 건식으로 혼합한 후, 에틸렌글리콜 디글리시딜 에테르 0.02 중량부, 글리세롤 폴리글리시딜 에테르 0.01 중량부, 물 8 중량부, 폴리에틸렌글리콜 0.025중량부,황산알루미늄 0.2중량부를포함하는표면 가교용액을분사하여 혼합하고 이를 교반기와 이중 자켓으로 이루어진 용기에 넣어 1401:에서 40분간표면 가교 반응을진행하였다. 이후표면 처리된 분말을
Figure imgf000019_0003
규격의 표준 망체로 분급하여 150 내지 850_의 입자 크기를 갖는 고흡수성 수지 분말을 얻었다. 이후 표면 처리된 고흡수성 수지 100 중량부에 실리카 0.1 중량부를건식 혼합하여 최종고흡수성 수지 제품을얻었다. 실시예 3
To 100 parts by weight of the base resin, glyceryl stearate
Figure imgf000019_0002
And 0.075 part by weight of a surfactant were dry mixed, and then 0.02 part by weight of ethylene glycol diglycidyl ether, 0.01 part by weight of glycerol polyglycidyl ether, 8 parts by weight of water, 0.025 part by weight of polyethylene glycol and 0.2 part by weight of aluminum sulfate, The solution was sprayed, mixed and placed in a container made of a stirrer and a double jacket, and the surface cross-linking reaction was carried out at 1401: for 40 minutes. Then, the surface-treated powder
Figure imgf000019_0003
To obtain a superabsorbent resin powder having a particle size of 150 to 850_. Then, 0.1 part by weight of silica was dry-mixed with 100 parts by weight of the surface-treated superabsorbent resin to obtain a final high-water absorbent resin product. Example 3
교반기, 질소투입기,온도계를 장착한 3 유리 용기에 아크릴산 518¾ 폴리에틸렌글리콜 디아크릴레이트(1>01 61;11>46116 }^01 (400) ) 3.¾과 디페닐(2,4, 6 -트리메틸벤조일)-포스핀 옥시드 0.0始을 첨가하여 용해시킨 후, 24.5% 수산화나트륨 용액 822.2용을 첨가하여 질소를 연속적으로 투입하면서 수용성 불포화 단량체 수용액을 제조하였다. 상기 수용성 불포화 단량체 수용액을 40°(:로 냉각하였다. 이 수용액 50¾을 가로 250111111, 세로 250_, 높이 3(加파의 스테인레스 재질의 용기에 가하고 자외선을 조사(조사량:
Figure imgf000019_0004
중합을실시하여 함수겔상중합체를 수득하였다. 수득한함수겔상중합체를 2_ * 2111111크기로분쇄한후,얻어진 겔형 수지를 2019/117511 1»(:1^1{2018/014840
A stirrer, a nitrogen injector, acrylate, 518 the third glass container equipped with a thermometer ¾ polyethylene glycol diacrylate (1> 01 61; 11> 46116} ^ 01 (400)) 3.¾ and diphenyl (2,4, 6- Trimethylbenzoyl) -phosphine oxide was added and dissolved. Then, a solution of 24.5% sodium hydroxide solution (822.2) was added, and nitrogen was continuously added to prepare an aqueous solution of a water-soluble unsaturated monomer. The water-soluble unsaturated monomer aqueous solution was cooled to 40 ° C. This aqueous solution (50/4) was applied to a container made of stainless steel having a width of 250 111111 , a length of 250_, a height of 3
Figure imgf000019_0004
Polymerization was carried out to obtain a hydrogel polymer. The resultant hydrogel polymer was pulverized to a size of 2 * 2111111, 2019/117511 1 »(: 1 ^ 1 {2018/014840
600 ,의 구멍 크기를 갖는 스테인레스 와이어 거즈 위에 약 30_ 두께로 펼쳐 놓고 180玄 열풍 오븐에서 30분 동안 건조하였다. 이렇게 얻어진 건조 중합체를 분쇄기를 사용하여 분쇄하고, ASTM 규격의 표준 망체로 분급하여 150내지 850 !의 입자크기를갖는베이스수지를얻었다. 600 mesh, stainless steel wire gauze having a hole size of about 30 &lt; RTI ID = 0.0 &gt; l &lt; / RTI &gt; The dry polymer thus obtained was pulverized using a pulverizer and classified with a standard mesh of ASTM standard to obtain a base resin having a particle size of 150 to 850 !.
상기 베이스 수지 100 중량부에 글리세릴 스테아레이트 13 3.8) 0.3 중량부를 건식으로 혼합한 후, 에틸렌글리콜 디글리시딜 에테르 0.02 중량부, 글리세롤 폴리글리시딜 에테르 0.01 중량부, 물 8 중량부, 폴리에틸렌글리콜 0.025중량부,황산알루미늄 0.2중량부를포함하는표면가교용액을분사하여 혼합하고 이를 교반기와 이중 자켓으로 이루어진 용기에 넣어 140 X:에서 40분간표면 가교 반응을진행하였다. 이후표면 처리된 분말을 ASTM규격의 표준 망체로 분급하여 150 내지 850_의 입자 크기를 갖는 고흡수성 수지 분말을 얻었다. 이후 표면 처리된 고흡수성 수지 100 중량부에 실리카 0.1 중량부를건식혼합하여 최종고흡수성 수지 제품을얻었다. 실시예 4  After 0.3 parts by weight of glyceryl stearate 13 3.8 parts by weight was added to 100 parts by weight of the base resin, 0.02 part by weight of ethylene glycol diglycidyl ether, 0.01 part by weight of glycerol polyglycidyl ether, 8 parts by weight of water, 0.025 part by weight of glycol, and 0.2 part by weight of aluminum sulfate was injected into a container made of a stirrer and a double jacket, and the surface crosslinking reaction was carried out at 140X for 40 minutes. Then, the surface-treated powder was classified into a standard mesh of ASTM standard to obtain a superabsorbent resin powder having a particle size of 150 to 850_. Then, 0.1 part by weight of silica was dry-mixed with 100 parts by weight of the surface-treated superabsorbent resin to obtain a final high-water absorbent resin product. Example 4
교반기, 질소 투입기, 온도계를 장착한 3 유리 용기에 아크릴산 518& 들리에틸렌글리콜 디아크릴레이트(1*01} :117 1^1>¾01 (400) (1 071 6) 3.2은과 디페닐(2, 4, 6 -트리메틸벤조일)-포스핀 옥시드 0.04§을 첨가하여 용해시킨 후, 24.5% 수산화나트륨 용액 822.2§을 첨가하여 질소를 연속적으로 투입하면서 수용성 불포화 단량체 수용액을 제조하였다. 상기 수용성 불포화 단량체 수용액을 40ᄃ로 냉각하였다. 이 수용액 50( 을 가로 250111111, 세로 250_, 높이 30_의 스테인레스 재질의 용기에 가하고 .자외선을 조사(조사량: 10111\70112)하여
Figure imgf000020_0001
중합을실시하여 함수겔상중합체를 수득하였다. 수득한함수겔상중합체를 2_ * 2111111크기로분쇄한후,얻어진 겔형 수지를 600 ,의 구멍 크기를 갖는 스테인레스 와이어 거즈 위에 약 30_ 두께로 펼쳐 놓고 180公 열풍 오븐에서 30분 동안 건조하였다. 이렇게 얻어진 건조 중합체를 분쇄기를 사용하여 분쇄하고, ASTM 규격의 표준 망체로 분급하여 150내지 850_의 입자크기를갖는베이스수지를얻었다.
Acrylic acid 518 and aminoethyleneglycol diacrylate (1 * 01): 117 1 ^ 1> 400 (400) (1 071 6) 3.2 were added to 3 glass containers equipped with a stirrer, a nitrogen introducer and a thermometer, 4,6, was prepared phosphine oxide was dissolved by the addition of 0.04 §, 24.5% sodium hydroxide aqueous solution and 822.2 water-soluble unsaturated monomer was added to the § input of nitrogen in a row-trimethylbenzoyl). The water-soluble unsaturated monomer aqueous solution was cooled to 40.. This aqueous solution 50 was applied to a container made of stainless steel having a width of 250111111, a length of 250_, and a height of 30_ . Irradiated with ultraviolet rays (dose: 10111 \ 7011 2 )
Figure imgf000020_0001
Polymerization was carried out to obtain a hydrogel polymer. The resultant hydrogel polymer was pulverized to a size of 2 * 2111111, and then the resulting gel resin was spread on a stainless wire gauze having a pore size of 600 mm to a thickness of about 30 占 and dried in a 180 hot air oven for 30 minutes. The dried polymer thus obtained was pulverized using a pulverizer and classified with a standard mesh of ASTM standard to obtain a base resin having a particle size of 150 to 850_.
상기 베이스수지 100중량부에 글리세릴 스테아레이트여1 3.8) 0.025 중량부, 에틸렌글리콜 디글리시딜 에테르 0.02중량부, 글리세롤 폴리글리시딜 2019/117511 1»(:1^1{2018/014840 To 100 parts by weight of the base resin, 0.025 part by weight of glyceryl stearate (3.8), 0.02 part by weight of ethylene glycol diglycidyl ether, 0.025 part by weight of glycerol polyglycidyl 2019/117511 1 »(: 1 ^ 1 {2018/014840
에테르 0.01 중량부, 물 8 중량부, 폴리에틸렌글리콜 0.025 중량부, 황산알루미늄 0.2 중량부를 포함하는 표면 가교 용액을 분사하여 혼합하고 이를 교반기와 이중 자켓으로 이루어진 용기에 넣어 140°(:에서 40분간 표면 가교반응을진행하였다. 이후표면 처리된분말을쇼 규격의 표준망체로 분급하여 150 내지 850 /패의 입자 크기를 갖는 고흡수성 수지 분말을 얻었다. 이후 표면 처리된 고흡수성 수지 100 중량부에 실리카 0.1 중량부를 건식 혼합하여 최종고흡수성 수지 제품을얻었다. 실시예 5 A surface cross-linking solution containing 0.01 part by weight of ether, 8 parts by weight of water, 0.025 part by weight of polyethylene glycol and 0.2 part by weight of aluminum sulfate was mixed and sprayed in a container made of a stirrer and a double jacket, The reaction proceeded. Thereafter, the surface-treated powder was classified into a standard mesh of Show Standard to obtain a superabsorbent resin powder having a particle size of 150 to 850 / L. Then, 0.1 part by weight of silica was dry-mixed with 100 parts by weight of the surface-treated superabsorbent resin to obtain a final high-water absorbent resin product. Example 5
교반기, 질소투입기,온도계를 장착한 3 유리 용기에 아크릴산 518& 폴리에틸렌글리콜 디아크릴레이트(1*015¾1;117161½민>¾01 (400) 出 ) 3.2은과 디페닐(2, 4,6 -트리메틸벤조일)-포스핀 옥시드 0.04§을 첨가하여 용해시킨 후, 24.5% 수산화나트륨 용액 822.2은을 첨가하여 질소를 연속적으로 투입하면서 수용성 불포화 단량체 수용액을 제조하였다. 상기 수용성 불포화 단량체 수용액을 40 X:로 냉각하였다. 이 수용액 500은을 가로 250111111, 세로 250111111, 높이 30Inm의 스테민레스 재질의 용기에 가하고 자외선을 조사(조사량: 파 / !!2)하여
Figure imgf000021_0001
중합을실시하여 함수겔상중합체를수득하였다. 수득한함수겔상중합체를 2111111 * 2111111크기로분쇄한후,얻어진 겔형 수지를 600 _의 구멍 크기를 갖는 스테인레스 와이어 거즈 위에 약 30_ 두께로 펼쳐 놓고 1801: 열풍 오븐에서 30분 동안 건조하였다. 이렇게 얻어진 건조 중합체를 분쇄기를 사용하여 분쇄하고, ASTM 규격의 표준 망체로 분급하여 150내지 850 /패의 입자크기를갖는베이스수지를얻었다.
Acrylic acid 518 and polyethyleneglycol diacrylate 3.2 out of diphenyl (2, 4, 6-trimethylbenzoyl) - (meth) acrylate were added to three glass containers equipped with a stirrer, a nitrogen introducer and a thermometer. phosphine oxide was dissolved by the addition of 0.04 §, 24.5% sodium hydroxide solution, 822.2 is a water-soluble unsaturated monomer aqueous solution with added nitrogen is continuously added was prepared. The water-soluble unsaturated monomer aqueous solution was cooled to 40 ° C. The aqueous solution 500 has a width 250 111 111, 250 111 111 vertically, the height 30Inm was added to the container of the stacking Nu-less material is irradiated with ultraviolet rays (dose: wave /! 2 )
Figure imgf000021_0001
Polymerization was carried out to obtain a hydrogel polymer. After the resulting hydrogel polymer was pulverized to a size of 2 111111 * 2111111, the obtained gel resin was spread on a stainless steel wire gauze having a pore size of 600 g and then dried in a hot air oven for 180 minutes. The dry polymer thus obtained was pulverized using a pulverizer and classified with a standard mesh of ASTM standard to obtain a base resin having a particle size of 150 to 850 / L.
상기 베이스 수지 100 중량부에 글리세릴 라우레이트어1고 5.2) 0.025 중량부를 건식으로 혼합한 후, 에틸렌글리콜 디글리시딜 에테르 0.02 중량부, 글리세롤 폴리글리시딜 에테르 0.01 중량부, 물 8 중량부, 폴리에틸렌글리콜 0.025 part by weight of glyceryl laurate (1 part by weight, 5.2 parts by weight) was added to 100 parts by weight of the base resin. Then, 0.02 part by weight of ethylene glycol diglycidyl ether, 0.01 part by weight of glycerol polyglycidyl ether, , Polyethylene glycol
0.025중량부,황산알루미늄 0.2중량부를포함하는표면 가교용액을분사하여 혼합하고 이를 교반기와 이중 자켓으로 이루어진 용기에 넣어 140°(:에서 40분간표면 가교반응을진행하였다. 이후표면 처리된 분말을쇼 규격의 표준 망체로 분급하여 150 내지 850 /패의 입자 크기를 갖는 고흡수성 수지 분말을 얻었다. 이후 표면 처리된 고흡수성 수지 100 중량부에 실리카 0.1 2019/117511 1»(:1^1{2018/014840 0.025 part by weight of aluminum sulfate and 0.2 part by weight of aluminum sulfate was injected and mixed in a container made of a stirrer and a double jacket, and the surface cross-linking reaction was carried out at 140 ° C for 40 minutes. Thereafter, the surface-treated powder was classified into a standard mesh of Show Standard to obtain a superabsorbent resin powder having a particle size of 150 to 850 / L. Then, 100 parts by weight of the surface-treated superabsorbent resin was mixed with 100 parts by weight of silica 0.1 2019/117511 1 »(: 1 ^ 1 {2018/014840
중량부를건식혼합하여 최종고돕수성 수지 제품을얻었다. 실시예 6 Weight parts were dry mixed to obtain a final hard dope aqueous resin product. Example 6
실시예 1에서,글리세릴 스테아레이트의 함량을 0.15중량부로 한 것을 제외하고는,실시예 1과동일하게하여 고흡수성 수지를제조하였다. 실시예 7  A superabsorbent resin was prepared in the same manner as in Example 1, except that the content of glyceryl stearate was changed to 0.15 parts by weight in Example 1. Example 7
실시예 1에서, 글리세릴 스테아레이트의 함량을 0.5 중량부로 한 것을 제외하고는,실시예 1과동일하게하여 고흡수성 수지를제조하였다. 비교예 1  A superabsorbent resin was prepared in the same manner as in Example 1, except that the content of glyceryl stearate was changed to 0.5 parts by weight. Comparative Example 1
교반기, 질소투입기,온도계를 장착한 31ᅴ유리 용기에 아크릴산 518& 폴리에틸렌글리콜 디아크릴레이트(15 01>½11 6116 }^01 (400) 出 ) 3.2은과 디페닐(2,4, 6 -트리메틸벤조일)-포스핀 옥시드 0.04§을 첨가하여 용해시킨 후, 24.5% 수산화나트륨 용액 822.2§을 첨가하여 질소를 연속적으로 투입하면서 수용성 불포화 단량체 수용액을 제조하였다. 상기 수용성 불포화 단량체 수용액을 40°(:로 냉각하였다. 이 수용액 50(¾을 가로 250111111, 세로 250111111, 높이 30!!^의 스테인레스 재질의 용기에 가하고 자외선을 조사(조사량:
Figure imgf000022_0001
90초동안 11,중합을실시하여 함수겔상중합체를수득하였다. 수득한함수겔상중합체를 2_ * 2111111크기로분쇄한후,얻어진 겔형 수지를 600 _의 구멍 크기를 갖는 스테인레스 와이어 거즈 위에 약 30_ 두께로 펼쳐 놓고 1801: 열풍 오븐에서 30분 동안 건조하였다. 이렇게 얻어진 건조 중합체를 분쇄기를 사용하여 분쇄하고, ASTM 규격의 표준 망체로 분급하여 150내지 850 의 입자크기를갖는베이스수지를얻었다.
Acrylic acid 518 and polyethylene glycol diacrylate (1 5 01 > ½ 1 1 6116 } ^ 01 (400)) were added to a 31 ᅴ glass vessel equipped with a stirrer, a nitrogen introducer and a thermometer. 3.2. trimethyl benzoyl) phosphine oxide was dissolved by the addition of 0.04 §, 24.5% sodium hydroxide solution, 822.2 aqueous unsaturated monomer solution was added to the § input of nitrogen was continuously prepared. The water-soluble unsaturated monomer aqueous solution was cooled to 40 ° C. 50 (¾) of this aqueous solution was added to a container made of stainless steel having a width of 250 111111, a length of 250 111111 and a height of 30 占 하고 and irradiated with ultraviolet rays (dose:
Figure imgf000022_0001
Polymerization was carried out for 11 seconds at 11, to obtain a hydrogel polymer. The resultant gel-like polymer was pulverized to a size of 2 * 2 * 111111 , and then the resulting gel-like resin was spread on a stainless steel wire gauze having a pore size of 600 mm to a thickness of about 30 占 and dried in a 1801: hot air oven for 30 minutes. The dry polymer thus obtained was pulverized using a pulverizer and classified with a standard mesh of ASTM standard to obtain a base resin having a particle size of 150 to 850.
상기 베이스 수지 100중량부에 실리카 0.1 중량부를 건식으로혼합한 후, 에틸렌글리콜 디글리시딜 에테르 0.02 중량부, 물 8 중량부, 황산알루미늄 0.2 중량부를 포함하는 표면 가교 용액을 분사하여 혼합하고 이를 교반기와 이중 자켓으로 이루어진 용기에 넣어 140°(:에서 40분간 표면 가교 반응을 진행하였다.이후표면처리된분말을 ASTM규격의 표준망체로분급하여 150 내지 850쎈 1의 입자 크기를 갖는 고흡수성 수지 분말을 얻었다. 이후 표면 2019/117511 1»(:1^1{2018/014840 0.1 part by weight of silica was mixed with 100 parts by weight of the base resin, and then 0.02 part by weight of ethylene glycol diglycidyl ether, 8 parts by weight of water and 0.2 part by weight of aluminum sulfate was injected and mixed, and a 140 ° double put in a jacket made of a container (: from 40 minutes to proceed with the surface cross-linking reaction and the water-absorbent resin powder to a subsequent surface-treated powder having the particle size of the classified to 150 to 850 Thyssen first body standard web of ASTM standards &Lt; / RTI &gt; Then the surface 2019/117511 1 »(: 1 ^ 1 {2018/014840
처리된 고흡수성 수지 100중량부에 실리카 0.1 중량부를 건식 혼합하여 최종 고흡수성 수지 제품을얻었다. 비교예 2 0.1 part by weight of silica was dry-mixed with 100 parts by weight of the treated superabsorbent resin to obtain a final superabsorbent resin product. Comparative Example 2
교반기, 질소투입기,온도계를 장착한 3 유리 용기에 아크릴산 518& 폴리에틸렌글리콜 디아크릴레이트(1*01761;11 61½3예 (400) 出 ) 3.2은과 디페닐(2,4,6 -트리메틸벤조일)-포스핀 옥시드 0.04§을 첨가하여 용해시킨 후, 24.5% 수산화나트륨 용액 822.2§을 첨가하여 질소를 연속적으로 투입하면서 수용성 불포화 단량체 수용액을 제조하였다. 상기 수용성 불포화 단량체 수용액을 40 로 냉각하였다. 이 수용액 50(¾을 가로 250111111, 세로 250111111, 높이 3(切파1의 스테인레스 재질의 용기에 가하고 자외선을 조사(조사량: 10111\^/011 2)하여
Figure imgf000023_0001
중합을실시하여 함수겔상중합체를수득하였다. 수득한함수겔상중합체를 2_ * 2_크기로분쇄한후,얻어진 겔형 수지를 600 ;■의 구멍 크기를 갖는 스테인레스 와이어 거즈 위에 약 30_ 두께로 펼쳐 놓고 180笑 열풍 오븐에서 30분 동안 건조하였다. 이렇게 얻어진 건조 중합체를 분쇄기를 사용하여 분쇄하고, 쇼 규격의 표준 망체로 분급하여 150내지 850_의 입자크기를갖는베이스수지를얻었다.
(400) of acrylic acid 518 and polyethylene glycol diacrylate (1 * 01761; 1161 § 3 ) (400) in three glass containers equipped with a stirrer, a nitrogen introducer and a thermometer. ) - phosphine oxide § 0.04 with the solution obtained, 24.5% of sodium hydroxide was dissolved was added 822.2 aqueous unsaturated monomer solution was added to the § input of nitrogen was continuously prepared. The water-soluble unsaturated monomer aqueous solution was cooled to 40 ° C. The solution of 50 (250 to 111111 ¾ horizontal, vertical 250 111 111, was added to a stainless steel container of a height 3 (切wave 1 is irradiated with ultraviolet rays (dose: 10 to 111 \ ^ / 0 11 2)
Figure imgf000023_0001
Polymerization was carried out to obtain a hydrogel polymer. The resultant gel-like polymer was pulverized to a size of 2 mm, and then the obtained gel-like resin was spread on a stainless steel wire gauze having a pore size of 600 mm and a thickness of about 30 mm and dried in a 180 l hot air oven for 30 minutes. The dry polymer thus obtained was pulverized using a pulverizer, and classified with a standard mesh of Show Standard to obtain a base resin having a particle size of 150 to 850_.
상기 베이스 수지 100 중량부에 폴리에틸렌글리콜 글리세릴 스테아레이트 1고 15) 0.025 중량부, 에틸렌글리콜 디글리시딜 에테르 0.02 중량부, 글리세롤 폴리글리시딜 에테르 0.01 중량부, 물 8 중량부, 폴리에틸렌글리콜 0.025 중량부, 황산알루미늄 0.2 중량부를 포함하는 표면 가교용액을분사하여 혼합하고이를교반기와이중자켓으로이루어진용기에 넣어 140ᄃ에서 40분간 표면 가교 반응을 진행하였다. 이후 표면 처리된 분말을 ASTM 규격의 표준 망체로 분급하여 150 내지 850 의 입자 크기를 갖는 고흡수성 수지 분말을 얻었다. 이후 표면 처리된 고흡수성 수지 100 중량부에 실리카 0.1 중량부를 건식 혼합하여 최종 고톱수성 수지 제품을 얻었다. 비교예 3  0.025 part by weight of polyethylene glycol glyceryl stearate 1 part 15), 0.02 part by weight of ethylene glycol diglycidyl ether, 0.01 part by weight of glycerol polyglycidyl ether, 8 parts by weight of water, polyethylene glycol 0.025 part by weight And 0.2 part by weight of aluminum sulfate were sprayed and mixed, and the mixture was placed in a container made of a stirrer and a double jacket to carry out surface cross-linking reaction at 140 40 for 40 minutes. Then, the surface-treated powder was classified into a standard mesh of ASTM standard to obtain a superabsorbent resin powder having a particle size of 150 to 850. Then, 0.1 part by weight of silica was dry-mixed with 100 parts by weight of the surface-treated superabsorbent resin to obtain a final high-water-soluble resin product. Comparative Example 3
교반기, 질소투입기, 온도계를 장착한 3느유리 용기에 아크릴산 518& 폴리에틸렌글리콜 디아크릴레이트(1>01> 1 61^1)예 (400) <1 071 ) 3.2은과 디페닐(2,4,6 -트리메틸벤조일)-포스핀 옥시드 0.04§을 첨가하여 용해시킨 후, 24.5% 수산화나트륨 용액 822.28을 첨가하여 질소를 연속적으로 투입하면서 수용성 불포화 단량체 수용액을 제조하였다. 상기 수용성 불포화 단량체 수용액을 40°(:로 냉각하였다. 이 수용액 50¾을 가로 250^11, 세로 2501X1111, 높이 30rnm의 스테인레스 재질의 용기에 가하고 자외선을 조사(조사량:
Figure imgf000024_0001
중합을실시하여 함수겔상중합체를수득하였다. 수득한함수겔상중합체를 2_ * 2mm크기로분쇄한후,얻어진 겔형 수지를 600 ,의 구멍 크기를 갖는 스테인레스 와이어 거즈 위에 약 30_ 두께로 펼쳐 놓고 1801: 열풍 오븐에서 30분 동안 건조하였다. 이렇게 얻어진 건조 중합체를 분쇄기를 사용하여 분쇄하고, ASTM 규격의 표준 망체로 분급하여 150내지 850_의 입자크기를갖는베이스수지를얻었다.
In a three-necked glass vessel equipped with a stirrer, a nitrogen introducer and a thermometer, acrylic acid 518 & Polyethylene glycol diacrylate (1>01> 1 61 1) Example (400) <1 071) 3.2 was prepared by dissolving 0.04 § of diphenyl (2,4,6-trimethylbenzoyl) after that, by the addition of 24.5% sodium hydroxide solution 822.2 8 while nitrogen is continuously introduced to prepare an aqueous solution of water-soluble unsaturated monomer. The water-soluble unsaturated monomer aqueous solution was cooled to 40 ° C. It was added to the aqueous solution in a vessel of stainless steel in the transverse 50¾ 250 ^ 11 250 1X1111 vertical, height 30rnm irradiated with ultraviolet rays (dose:
Figure imgf000024_0001
Polymerization was carried out to obtain a hydrogel polymer. The resultant gel-like polymer was pulverized into 2-by-2 mm size, and then the obtained gel-type resin was spread on a stainless wire gauze having a pore size of 600 mm to a thickness of about 30 占 and dried in a hot air oven for 180 minutes. The dried polymer thus obtained was pulverized using a pulverizer and classified with a standard mesh of ASTM standard to obtain a base resin having a particle size of 150 to 850_.
상기 베이스수지 100중량부에 글리세릴 스테아레이트
Figure imgf000024_0002
0.025 중량부를 건식으로 혼합한 후, 에틸렌 카보네이트 0.03 중량부, 물 8 중량부, 폴리에틸렌글리콜 0.025 중량부, 황산알루미늄 0.2 중량부를 포함하는 표면 가교용액을분사하여 혼합하고이를교반기와이중자켓으로이루어진용기에 넣어 1401:에서 40분간 표면 가교 반응을 진행하였다. 이후 표면 처리된 분말을 쇼計 규격의 표준 망체로 분급하여 150 내지 850썬!의 입자 크기를 갖는 고흡수성 수지 분말을 얻었다. 이후 표면 처리된 고흡수성 수지 100 중량부에 실리카 0.1 중량부를 건식 혼합하여 최종 고돕수성 수지 제품을 얻었다.
To 100 parts by weight of the base resin, glyceryl stearate
Figure imgf000024_0002
0.025 part by weight was dry mixed, and then a surface cross-linking solution containing 0.03 part by weight of ethylene carbonate, 8 parts by weight of water, 0.025 part by weight of polyethylene glycol and 0.2 part by weight of aluminum sulfate was injected and mixed. The surface cross - linking reaction was carried out at 1401: for 40 minutes. Then, the surface-treated powder was classified into a standard mesh having a standard of show standard to obtain a superabsorbent resin powder having a particle size of 150 to 850 sun !. Thereafter, 0.1 part by weight of silica was dry-mixed with 100 parts by weight of the surface-treated superabsorbent resin to obtain a final highly hydrous resin product.
<실험예> <Experimental Example>
상기 실시예들및비교예들에서 제조한고듭수성 수지에 대하여,다음과 같은방법으로물성을평가하였다.  The physical properties of the aqueous resin prepared in the above Examples and Comparative Examples were evaluated by the following methods.
다르게 표기하지 않는 한, 하기 물성 평가는 모두 항온항습(23±1 °C, 상대습도 50±10%)에서 진행하였고, 생리식염수 또는 염수는 0.9 중량% 염화나트륨(NaCl)수용액을의미한다.  Unless otherwise indicated, the following physical properties were evaluated at constant temperature and humidity (23 ± 1 ° C, relative humidity 50 ± 10%), and saline or brine means 0.9% sodium chloride (NaCl) aqueous solution.
또한, 하기 재습윤 물성 평가에서 사용한 수도수는 Orion Star A222 (회사: Thermo Scientific)을이용하여 측정하였을때,전기 전도도가 170내지 180 pS/cm인 것을사용하였다. In addition, the tap water used in the re-wetting property evaluation described below has an electrical conductivity of from 170 to 180, as measured by Orion Star A222 (company: Thermo Scientific) pS / cm was used.
(1)원심분리 보수능 (CRC: CentrifUge Retention Capacity) (1) Centrifugal Retention Capacity (CRC)
각수지의 무하중하흡수 배율에 의한보수능을 EDANA WSP 241.3에 따라측정하였다.  The retention capacity of each resin by the zero-load capacity was measured according to EDANA WSP 241.3.
구체적으로, 고흡수성 수지 W0(g) (약 0.¾)을 부직포제의 봉투에 균일하게 넣고 밀봉 (seal)한후,상온에서 생리식염수 (0.9중량%)에 침수시켰다. 30분 경과후, 원심 분리기를 이용하여 250G의 조건 하에서 상기 봉투로부터 3분간 물기를 빼고, 봉투의 질량 W2(g)을 측정하였다. 또, 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 WJg)을 측정하였다. 얻어진 각 질량을이용하여 다음과같은식에 따라 CRC(g/g)를산출하였다. Specifically, the superabsorbent resin W 0 ( g) (about 0. 3) was uniformly put in an envelope made of a nonwoven fabric and sealed, and then immersed in physiological saline (0.9 wt%) at room temperature. After 30 minutes, water was drained from the envelope for 3 minutes under a condition of 250 G using a centrifuge, and the mass W 2 ( g) of the envelope was measured. Also, after the same operation was performed without using a resin, the mass WJg at that time was measured. Using the obtained masses, CRC (g / g) was calculated according to the following equation.
[수학식 1]  [Equation 1]
CRC (g/g) = {[W2(g) - W1(g)]AV0(g)} - 1 (2)가압를수능 (AUP: Absorption Under Pressure) CRC (g / g) = { [W 2 (g) - W 1 (g)] AV 0 (g)} - 1 (2) gaapreul SAT (AUP: Absorption Under Pressure)
각 수지의 0.3 psi의 가압 흡수능을, EDANA법 WSP 242.3에 따라 측정하였다.  The pressure absorption capacity of each resin of 0.3 psi was measured according to EDANA method WSP 242.3.
구체적으로, 내경 60 mm의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 상온 및 습도 50%의 조건 하에서 철망 상에 고흡수성 수지 W0(g) (0.90 을균일하게 살포하고,그위에 0.3 psi의 하중을 균일하게 더 부여할 수 있는 피스톤은 외경 60 mm 보다 약간 작고 원통의 내벽과 틈이 없고 상하 움직임이 방해받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을즉정하였다. Specifically, a 400 mesh wire mesh made of stainless steel was mounted on a cylindrical bottom of a plastic having an inner diameter of 60 mm. Piston that is under conditions of normal temperature and humidity of 50%, and on the wire evenly spraying the water-absorbing resin W 0 (g) (0.90, even more give a load of 0.3 psi on it is slightly smaller cylinder than an outer diameter 60 mm And the upper and lower movements were not disturbed at this time, the weight W 3 ( g) of the device was immediately given.
직경 150 mm의 페트로접시의 내측에 직경 90mm및두께 5mm의 유리 필터를 두고, 0.9 중량% 염화나트륨으로 구성된 생리식염수를 유리 필터의 윗면과 동일 레벨이 되도록 하였다. 그 위에 직경 90mm의 여과지 1장을 실었다. 여과지 위에 상기 측정 장치를 싣고, 액을 하중 하에서 1시간 동안 흡수시켰다 . 1시간후측정 장치를들어올리고,그중량 W4(g)을측정하였다, 얻어진 각 질량을 이용하여 다음 식에 따라 가압 흡수능 (g/g)을 산출하였다. [수학식 2] A glass filter having a diameter of 90 mm and a thickness of 5 mm was placed inside a Petro dish having a diameter of 150 mm and a physiological saline solution composed of 0.9% by weight sodium chloride was made to have the same level as the upper surface of the glass filter. And a filter paper having a diameter of 90 mm was placed thereon. The measuring device was placed on a filter paper, and the solution was absorbed under a load for 1 hour. After 1 hour, the measuring device was lifted and its weight W 4 ( g) was measured. The pressure absorption capacity (g / g) was calculated by using the obtained masses according to the following formula. &Quot; (2) &quot;
AUP(g/g) = [W4(g) - W3(g)]AV0(g) AUP (g / g) = [ W 4 (g) - W 3 (g)] AV 0 (g)
(3)통액성 (Permeability) (3) Permeability
통액성 (permeability)측정 방법은특허번호 US9656242 B2특허에 기재된 방법에 준하여 즉정하였다.  The permeability measurement method was imposed in accordance with the method described in Patent No. US 9656242 B2.
통액성 측정 장치는 내경 20mm이며, 하단에 glass 필터가 장착된 크로마토그래피 관이다. 크로마토그래피 관에 피스톤을 넣은상태에서의 액량 20ml및 40ml의 액면에 선을표시하였다. 이 후,크로마토그래피 관하부 glass 필터와 콕크 사이에 기포가 생기지 않도록 역으로 물을 투입하여 약 10ml를 채우고 염수로 2~3회 세척하고, 40ml 이상까지 0.9% 염수를 채웠다. 크로마토그래피 관에 피스톤을 넣고 하부 밸브를 열어 액면이 40ml에서 20ml 표시선까지 줄어드는시간 (미을기록하였다.  The liquid permeability measuring device is a chromatography tube having an inner diameter of 20 mm and a glass filter at the lower end. Lines were indicated on the liquid surface of 20 ml and 40 ml with the piston in the chromatographic tube. Thereafter, water was added in an amount of about 10 ml to prevent air bubbles between the lower glass filter and the cock of the chromatography tube, and the mixture was washed 2-3 times with brine and filled with 0.9% brine to a volume of 40 ml or more. Put the piston into the chromatography tube and open the lower valve to record the time (in millimeters) of reducing the liquid level from 40 ml to the 20 ml marking line.
크로마토그래피 관에 염수를 10ml남기고,분급 (300 ~600/패)된 고흡수성 수지 시료 0.2±0.0005g을 넣고 염수를가하여 염수부피가 50ml가되게 한후, 30분 간 방치하였다. 그 후, 크로마토그래피 관 내에 추가 달린 피스톤 (0.3psi=106.26g)을넣고 1분간방치 후,크로마토그래피 관하부 밸브를 열어 액면이 40m】에서 20ml표시선까지 줄어드는시간 (게을기록하여, T1 - B 의 시간 (단위:초)을계산하였다. 0.2 ± 0.0005 g of a superabsorbent resin sample (300-600 / L) was placed in a chromatographic tube, leaving 10 ml of brine. Brine was added to make a brine volume of 50 ml and left for 30 minutes. After that, add a piston (0.3 psi = 106.26g) in the chromatograph tube and leave it for 1 minute. Open the bottom of the chromatograph tube and time it decreases from 40m to 20ml mark The time (unit: second) was calculated.
(4)톱수속도 (Vortex time) (4) Top procedure (Vortex time)
흡수 속도 (vortex time)는 국제 공개 출원 제 1987-003208호에 기재된 방법에 준하여 초단위로측정하였다.  The vortex time was measured in the first place according to the method described in International Patent Application No. 1987-003208.
구체적으로, 23 °C의 50 mL의 생리 식염수에 2g의 고흡수성 수지를넣고, 마그네틱 바 (직경 8 mm,길이 30 mm)를 600 rpm으로교반하여 와류 (vortex)가 사라질때까지의 시간을초단위로측정하여산출되었다. Specifically, 2 g of superabsorbent resin was put into 50 mL of physiological saline at 23 ° C, and the magnetic bar (diameter: 8 mm, length: 30 mm) was stirred at 600 rpm to measure the time until the vortex disappeared. .
(5)무가압수도수단기 재습윤 (lhr) (5) Waterless seawater Short-term rewet (lhr)
① 컵 (윗부분 직경 7cm, 아래 직경 5cm, 높이 8cm, 부피 192ml)에 고흡수성수지 lg을넣고수도수 (tap water) 100g을부은후팽윤시켰다. ②수도수를부은시점으로부터 10분뒤에 필터페이퍼 (제조사: Whatman, catalog No. 1004-110, pore size 20-25나 m,지름 11cm) 5장위에 팽윤된고듭수성 수지가담긴컵을뒤집어 놓았다. ① 1 g of a superabsorbent resin was put into a cup (upper diameter 7 cm, lower diameter 5 cm, height 8 cm, height 192 ml), 100 g of tap water was added and swelled. ② After 10 minutes from the time when the water was poured, the cup containing the swollen water-based resin swollen on the filter paper (Whatman, catalog No. 1004-110, pore size 20-25 μm, diameter 11 cm) was turned upside down.
③ 수도수를 부은 시점으로부터 1시간 뒤에 컵과 고흡수성 수지를 제거하고필터페이퍼에 묻은수도수의 양 (단위: g)을측정하였다.  ③ After 1 hour from the time when the water was poured, the cup and the water-absorbent resin were removed, and the amount (unit: g) of water added to the filter paper was measured.
(6)가압수도수장기 재습윤 (6hrs) (6) Pressurized water Long term rewet (6hrs)
①지름 13cm페트리 접시 (petri dish)에 고흡수성 수지 4g을고루뿌리고 스파출러 (spatula)를 이용하여 고르게 분포시키고 수도수 200g을 부은 후 팽윤시켰다.  ① 4 g of superabsorbent resin was uniformly distributed in a 13 cm diameter petri dish and evenly distributed using a spatula, and 200 g of tap water was swollen and swollen.
②수도수를부은시점으로부터 6시간동안 팽윤시킨 고흡수성 수지를 지름 11cm이 필터페이퍼 (제조사 whatman, catalog No. 1004-110, pore size 20-25 (xm, 지름 1 1cm) 20장을깔고지름 1 1cm에 5kg추 (0.75psi)로 1분간가압하였다.(2) Place 20 sheets of filter paper (manufacturer whatman, catalog No. 1004-110, pore size 20-25 ( xm, diameter: 1 cm) with a diameter of 11 cm and swell for 6 hours from the time when water was poured. And pressed for 1 minute with 1 kg of 5 kg weight (0.75 psi).
③ 1분 간 가압 후 필터페이퍼에 묻은 수도수의 양 (단위: 을 측정하였다. 상기 실시예들과비교예들에 관한물성값을하기 표 1에 기재하였다. (3) The amount of water added to the filter paper after 1 minute of pressurization was measured. The physical properties of the examples and comparative examples are shown in Table 1 below.
【표 1】 [Table 1]
Figure imgf000027_0001
2019/117511 1»(:1^1{2018/014840
Figure imgf000027_0001
2019/117511 1 »(: 1 ^ 1 {2018/014840
Figure imgf000028_0002
표 1을 참조하면, 본 발명의 실시예 1 내지 7은 모두 우수한 재습윤 특성 및통액성을나타냄을확인하였다.
Figure imgf000028_0002
Referring to Table 1, it was confirmed that Examples 1 to 7 of the present invention all exhibited excellent rewet characteristics and fluidity.
반면, 소수성 물질을 사용하지 않거나,
Figure imgf000028_0001
6을 초과하는 물질을 첨가한 비교예 1 내지 2는 재습윤 특성이 실시예 보다 좋지 않음을 알 수 있다.
On the other hand, when the hydrophobic substance is not used,
Figure imgf000028_0001
It can be seen that Comparative Examples 1 and 2 to which a substance exceeding 6 were added had poor rewet characteristics than the Examples.
또한,비에폭시 표면가교제를사용한비교예 3은통액성과재습율특성 등이 모두좋지 않았다.  In addition, Comparative Example 3 in which a non-epoxy surface cross-linking agent was used did not have satisfactory transparency and remanence characteristics.

Claims

【청구범위】 Claims:
【청구항 1】  [Claim 1]
산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 및 내부 가교제가 가교 중합된 베이스 수지 (base resin)를 준비하는 단계 (단계 1);  (Step 1) of preparing a base resin having an acidic group and at least a part of which is neutralized, and a base resin crosslinked and polymerized with an acrylic acid-based monomer and an internal cross-linking agent;
상기 베이스수지에, HLB가 0이상 6이하인소수성 물질,및 에폭시계 표면가교제를혼합하는단계 (단계 2);  Mixing the base resin with a hydrophobic substance having an HLB of not less than 0 and not more than 6, and an epoxy-based surface cross-linking agent (step 2);
상기 단계 2의 혼합물을 승은하여 상기 베이스 수지에 대한 표면 개질을수행하는단계 (단계 3);  Performing the surface modification to the base resin by raising the mixture of step 2 (step 3);
를포함하는,고흡수성 수지의 제조방법.  Absorbent resin.
【청구항 2] [Claim 2]
제 1항에 있어서,  The method according to claim 1,
상기 단계 2에서, 상기 소수성 물질을 먼저 상기 베이스 수지에 건식으로혼합하고, 이어서 상기 에폭시계 표면 가교제를물에 용해하여 표면 가교용액상태로혼합하는,고흡수성 수지와제조방법.  Wherein the hydrophobic substance is first dry-mixed with the base resin, and then the epoxy-based surface cross-linking agent is dissolved in water and mixed in the state of surface cross-linking solution.
【청구항 3】 [Claim 3]
제 1항에 있어서,  The method according to claim 1,
상기 소수성 물질은용융온도 (melting point)가상기 단계 3의 승온온도 이하인,고흡수성 수지의 제조방법.  Wherein the hydrophobic substance has a melting point equal to or lower than the temperature elevating temperature of step (3).
【청구항 4】 Claim 4
제 1항에 있어서,  The method according to claim 1,
상기 소수성 물질은 글리세릴 스테아레이트 (glyceryl stearate), 글리콜 스테아레이트 (glycol stearate), 마그네슘 스테아레이트 (magnesium stearate), 글리세릴 라우레이트 (glyceryl laurate), 소르비탄 스테아레이트 (sorbitan stearate), 소르비탄 트리올리에이트 (sorbitan trioleate), 및 PEG-4 디라우레이트 (PEG-4 dilaurate)로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 고흡수성 수지의 제조방법. The hydrophobic material may be selected from the group consisting of glyceryl stearate, glycol stearate, magnesium stearate, glyceryl laurate, sorbitan stearate, sorbitan trioleate, Sorbitan trioleate, and PEG-4 dilaurate. The method for producing a superabsorbent resin according to claim 1,
【청구항 5] [Claim 5]
제 1항에 있어서,  The method according to claim 1,
상기 소수성 물질은상기 베이스수지 100중량부에 대하여 0.02내지 0.5중량부로혼합하는,고흡수성 수지의 제조방법.  Wherein the hydrophobic substance is mixed in an amount of 0.02 to 0.5 part by weight based on 100 parts by weight of the base resin.
【청구항 6] [Claim 6]
제 1항에 있어서,  The method according to claim 1,
상기 에폭시계 표면 가교제는 에틸렌글리콜 디글리시딜
Figure imgf000030_0001
ether), 디에틸렌글리콜 디글리시딜 에테르 (出 11>½116 >예 ¾1} 1 ether), 트리에틸렌글리콜 디글리시딜 에테르 (1 111 1611601 (%1> 1 ether), 테트라에틸렌글리콜 디글리시딜 에테르 (te仕 aethyleneglycol diglycidyl ether),글리세린콜리글리시딜에테르 (glycerin polyglycidyl ether),및소르비톨폴리글리시딜에테르 (sorbitol polyglycidyl ether)로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 고흡수성 수지의 제조방법.
The epoxy-based surface cross-linking agent may be ethylene glycol diglycidyl
Figure imgf000030_0001
ether), diethylene glycol diglycidyl ether (出11> ½ 116> Example ¾1} 1 ether), triethylene glycol diglycidyl ether (1 11 11 6116 min 01 (% 1> 1 ether) , At least one member selected from the group consisting of tetraethylene glycol diglycidyl ether, glycerin polyglycidyl ether, and sorbitol polyglycidyl ether, By weight.
**
【청구항 7] [7]
제 1항에 있어서,  The method according to claim 1,
상기 에폭시계 표면 가교제는 상기 베이스 수지 100중량부에 대하여 The epoxy-based surface cross-linking agent is preferably used in an amount of
0.005내지 0.2중량부로혼합하는,고흡수성 수지의 제조방법. 0.005 to 0.2 part by weight.
【청구항 8】 8.
제 1항에 있어서,  The method according to claim 1,
상기 단계 3은 120내지 1901:의 온도에서 수행하는,고흡수성 수지의 제조방법.  Wherein step 3 is carried out at a temperature of from 120 to 1901 &lt; RTI ID = 0.0 &gt;:. &Lt; / RTI &gt;
【청구항 9】 [Claim 9]
제 1항에 있어서,  The method according to claim 1,
상기 단계 1은, 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 내부 가교제, 및 중합 개시제를 포함하는 모노머 조성물을 중합하여 함수겔상중합체를형성하는단계; In the step 1, Polymerizing a monomer composition comprising an acrylic acid-based monomer having an acidic group and at least a part of the acidic groups neutralized, an internal cross-linking agent, and a polymerization initiator to form a hydrogel-like polymer;
상기 함수겔상중합체를건조하는단계;  Drying the hydrogel polymer;
상기 건조된중합체를분쇄하는단계;및  Pulverizing the dried polymer; and
상기 분쇄된중합체를분급하는단계를포함하는,고흡수성 수지의 제조 방법.  And a step of classifying the pulverized polymer.
【청구항 10】 Claim 10
제 1항에 있어서,  The method according to claim 1,
상기 고흡수성 수지는 흡수 속도 (vortex time)가 40초 이하인, 고흡수성 수지의 제조방법.  Wherein the superabsorbent resin has a vortex time of 40 seconds or less.
【청구항 11】 Claim 11
제 1항에 있어서,  The method according to claim 1,
상기 고흡수성 수지는 하기 식 1에 따라 측정되는 통액성 (permeability, 단위:초)이 35초이하인,고흡수성 수지의 제조방법:  Wherein the superabsorbent resin has a permeability (unit: sec) measured according to the following formula (1) is 35 seconds or less:
[식 1]  [Formula 1]
통액성 (sec) = Tl - B  Liquid permeability (sec) = Tl - B
상기 식 1에서,  In Equation (1)
T1은 크로마토그래피 관 내에 분급 (30# - 50#)된 고흡수성 수지 시료 0.2±0.0005g을 넣고 염수를 가하여 염수부피가 50 ml가 되게 한후, 30분 간 방치 후,액면높이가 40 ml에서 20 ml까지줄어드는데에 걸리는시간이고, B는 염수가 채워진 크로마토그래피 관에서 액면높이가 40 ml에서 20 ml까지 줄어드는데에 걸리는시간이다.  T1 was obtained by adding 0.2 ± 0.0005 g of a superabsorbent resin sample (30 # - 50 #) classified into a chromatographic tube, adding brine to make the volume of the brine to be 50 ml, leaving it for 30 minutes, ml, and B is the time it takes for the liquid level to decrease from 40 ml to 20 ml in a chromatographic tube filled with salt water.
【청구항 12】 Claim 12
산성기의 적어도 일부가중화된 아크릴산계 단량체가가교중합된가교 중합체를포함하는베이스수지;및  A base resin comprising a cross-linked polymer obtained by cross-linking an acrylic acid-based monomer in which at least a part of an acidic group is neutralized; and
상기 베이스 수지의 입자 표면에 형성되어 있고, 상기 가교 중합체가 에폭시계표면가교제를매개로추가가교되어 있는표면개질층을포함하고, 상기 표면 개질층은 HLB가 0 이상 6 이하인 소수성 물질을포함하는, 고흡수성 수지. Is formed on the particle surface of the base resin, and the cross-linked polymer Wherein the surface modifying layer comprises a hydrophobic substance having an HLB of not less than 0 and not more than 6, wherein the surface modifying layer is additionally crosslinked via an epoxy-based surface crosslinking agent.
【청구항 13】 Claim 13
제 12항에 있어서,  13. The method of claim 12,
하기 식 1에 따라즉정되는통액성 (permeability,단위:초)이 35초이하인, 고톱수성 수지 :  A high water-based resin having a permeability (unit: second) imposed in accordance with the following formula (1) is 35 seconds or less:
[식 1]  [Formula 1]
통액성 (sec) = Tl - B  Liquid permeability (sec) = Tl - B
상기 식 1에서, In Equation (1)
은 크로마토그래파 관 내에 분급 (30# - 50#)된 고흡수성 수지 시료 0.2±0.0005g을 넣고 염수를 가하여 염수 부피가 50 ml가되게 한후, 30분 간 방치 후,액면높이가 40 ml에서 20 ml까지줄어드는데에 걸리는시간이고, B는 염수가 채워진 크로마토그래피 관에서 액면높이가 40 ml에서 20 ml까지 줄어드는데에 걸리는시간이다.  0.2 ± 0.0005 g of a superabsorbent resin sample (30 # - 50 #) classified into a chromatographic tube was added and the brine volume was adjusted to 50 ml by adding brine. After standing for 30 minutes, ml, and B is the time it takes for the liquid level to decrease from 40 ml to 20 ml in a chromatographic tube filled with salt water.
【청구항 14】 14.
제 12항에 있어서,  13. The method of claim 12,
상기 소수성 물질은 글리세릴 스테아레이트 (glyceryl stearate), 글리콜 스테아레이트 (glycol stearate), 마그네슘 스테아레이트 (magnesium stearate), 글리세릴 라우레이트 (glyceryl laurate), 소르비탄 스테아레이트 (sorbitan stearate), 소르비탄 트리올리에이트 (sorbitan trioleate), 및 PEG-4 디라우레이트 (PEG-4 dilaurate)로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 고흡수성 수지.  The hydrophobic material may be selected from the group consisting of glyceryl stearate, glycol stearate, magnesium stearate, glyceryl laurate, sorbitan stearate, sorbitan trioleate, Sorbitan trioleate, PEG-4 dilaurate, and PEG-4 dilaurate.
【청구항 15】 15.
제 12항에 있어서,  13. The method of claim 12,
상기 에폭시계 표면 가교제는 에틸렌글리콜 디글리시딜 에테르 (ethyleneglycol diglycidyl ether), 디에틸렌글리콜 디글리시딜 에테르 (diethyl eneglycol diglycidyl ether), 트리에틸렌글리콜 디글리시딜 에테르 (triethyleneglycol diglycidyl ether), 테트라에틸렌글리콜 디글리시딜 에테르 (tetraethyl eneglycol diglycidyl ether),글리세린돌리글리시딜에테르 (glycerin polyglycidyl ether),및소르비톨폴리글리시딜에테르 (sorbitol polyglycidyl ether)로 이루어진군으로부터 선택되는 1종이상을포함하는,고흡수성 수지. The epoxy-based surface cross-linking agent is selected from the group consisting of ethyleneglycol diglycidyl ether, diethylene glycol diglycidyl But are not limited to, diethyleneglycol diglycidyl ether, triethyleneglycol diglycidyl ether, tetraethyleneglycol diglycidyl ether, glycerin polyglycidyl ether, And sorbitol polyglycidyl ether. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
【청구항 16】 Claim 16
제 12항에 있어서,  13. The method of claim 12,
상기 고흡수성 수지는 흡수 속도 (vortex time)가 40초 이하인, 고듭수성 수지 .  Wherein the superabsorbent resin has a vortex time of 40 seconds or less.
【청구항 17】 17.
제 12항에 있어서,  13. The method of claim 12,
상기 고톱수성 수지는, 상기 고톱수성 수지 lg을 수도수 100g에 침지시켜 10분 동안 팽윤시킨 후, 팽윤된 상기 고흡수성 수지를 수도수에 침지시킨 최초 시점으로부터 1시간 동안 여과지 상에서 방치하고 나서, 상기 고흡수성 수지로부터 상기 여과지로 다시 베어나온 물의 중량으로 정의되는 재습윤특성 (무가압수도수단기 재습윤)이 2.0g이하인,고흡수성 수지. 【청구항 18】  The high-sheath water-based resin is prepared by immersing 1 g of the high-shear water-based resin in 100 g of water and allowing it to swell for 10 minutes, then allowing the swollen super-absorbent resin to stand on the filter paper for 1 hour from the initial point of immersion in water, Wherein the re-wetting property (unreacted water repellency, short-term re-wetting) defined by the weight of the water repelled from the superabsorbent resin to the filter paper is 2.0 g or less. Claim 18
제 12항에 있어서,  13. The method of claim 12,
상기 고톱수성 수지는, 상기 고톱수성 수지 4g을 수도수 200g에 침지시켜 6시간 동안 팽윤시킨 후, 팽윤된 상기 고흡수성 수지를 0.75psi의 압력 하에 1분동안 여과지 상에서 방치하고나서,상기 고흡수성 수지로부터
Figure imgf000033_0001
The high-sheath water-based resin is obtained by immersing 4 g of the high-water-based resin in 200 g of tap water and swelling for 6 hours, then placing the swollen superabsorbent resin on a filter paper under a pressure of 0.75 psi for 1 minute, from
Figure imgf000033_0001
수도수장기 재습윤)이 1.2g이하인,고흡수성 수지. Water-repellent long-term rewetting) of 1.2 g or less.
PCT/KR2018/014840 2017-12-11 2018-11-28 Superabsorbent polymer and preparation method therefor WO2019117511A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/768,981 US11931720B2 (en) 2017-12-11 2018-11-28 Superabsorbent polymer composition and method for preparing the same
JP2020528394A JP7247187B2 (en) 2017-12-11 2018-11-28 SUPER ABSORBENT RESIN AND METHOD FOR MANUFACTURING SAME
EP18888466.2A EP3705510A4 (en) 2017-12-11 2018-11-28 Superabsorbent polymer and preparation method therefor
CN201880078011.8A CN111448241B (en) 2017-12-11 2018-11-28 Superabsorbent polymer composition and method of making the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0169492 2017-12-11
KR20170169492 2017-12-11
KR1020180148009A KR102568226B1 (en) 2017-12-11 2018-11-27 Super absorbent polymer and preparation method for the same
KR10-2018-0148009 2018-11-27

Publications (1)

Publication Number Publication Date
WO2019117511A1 true WO2019117511A1 (en) 2019-06-20

Family

ID=66819370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014840 WO2019117511A1 (en) 2017-12-11 2018-11-28 Superabsorbent polymer and preparation method therefor

Country Status (1)

Country Link
WO (1) WO2019117511A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3885396A4 (en) * 2019-09-18 2022-02-16 LG Chem, Ltd. Super absorbent polymer and preparation method for same

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987003208A1 (en) 1985-11-22 1987-06-04 Beghin-Say Sa Method for preparing a liquid absorbing composition
US5112902A (en) 1989-05-24 1992-05-12 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Process for preparing particles of high water-absorbent resin
EP0532002A1 (en) 1991-09-11 1993-03-17 Kimberly-Clark Corporation Absorbent composites and absorbent articles containing same
JPH08157606A (en) 1994-12-07 1996-06-18 Nippon Synthetic Chem Ind Co Ltd:The Production of highly water-absorbing resin
JPH08157531A (en) 1994-12-07 1996-06-18 Nippon Synthetic Chem Ind Co Ltd:The Production of highly water-absorbing resin
EP0752892B1 (en) 1994-03-29 2001-07-25 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
US20050118423A1 (en) 2003-02-10 2005-06-02 Yoshifumi Adachi Particulate water absorbent containing water absorbent resin as a main component
EP1694372A1 (en) 2003-12-19 2006-08-30 Stockhausen, Inc. Superabsorbent polymer having increased rate of water absorption
KR100858387B1 (en) * 2004-02-05 2008-09-11 가부시키가이샤 닛폰 쇼쿠바이 Particulate water absorbing agent and method for production thereof, and water absorbing article
EP2127741A1 (en) 2007-03-05 2009-12-02 Nippon Shokubai Co., Ltd. Water absorbent and process for producing the same
KR20160063956A (en) * 2014-11-27 2016-06-07 주식회사 엘지화학 Super absorbent polymer with fast absorption rate under load and preparation method thereof
EP3085439A1 (en) 2013-12-20 2016-10-26 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) water absorbent, and method for producing same
KR20170020113A (en) * 2015-08-13 2017-02-22 주식회사 엘지화학 Preparation method for super absorbent polymer
US9656242B2 (en) 2013-09-30 2017-05-23 Lg Chem, Ltd. Method for preparing a super absorbent polymer
EP3202823A1 (en) 2014-09-29 2017-08-09 Nippon Shokubai Co., Ltd. Water-absorbable resin powder, and method for determining elastic modulus of water-absorbable resin powder
KR20170106799A (en) * 2016-03-14 2017-09-22 주식회사 엘지화학 Preparation method of super absorbent polymer
KR20170111295A (en) * 2016-03-25 2017-10-12 주식회사 엘지화학 Preparation method for super absorbent polymer

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987003208A1 (en) 1985-11-22 1987-06-04 Beghin-Say Sa Method for preparing a liquid absorbing composition
US5112902A (en) 1989-05-24 1992-05-12 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Process for preparing particles of high water-absorbent resin
EP0532002A1 (en) 1991-09-11 1993-03-17 Kimberly-Clark Corporation Absorbent composites and absorbent articles containing same
EP0752892B1 (en) 1994-03-29 2001-07-25 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
JPH08157606A (en) 1994-12-07 1996-06-18 Nippon Synthetic Chem Ind Co Ltd:The Production of highly water-absorbing resin
JPH08157531A (en) 1994-12-07 1996-06-18 Nippon Synthetic Chem Ind Co Ltd:The Production of highly water-absorbing resin
US20050118423A1 (en) 2003-02-10 2005-06-02 Yoshifumi Adachi Particulate water absorbent containing water absorbent resin as a main component
EP1694372A1 (en) 2003-12-19 2006-08-30 Stockhausen, Inc. Superabsorbent polymer having increased rate of water absorption
KR100858387B1 (en) * 2004-02-05 2008-09-11 가부시키가이샤 닛폰 쇼쿠바이 Particulate water absorbing agent and method for production thereof, and water absorbing article
EP2127741A1 (en) 2007-03-05 2009-12-02 Nippon Shokubai Co., Ltd. Water absorbent and process for producing the same
US9656242B2 (en) 2013-09-30 2017-05-23 Lg Chem, Ltd. Method for preparing a super absorbent polymer
EP3085439A1 (en) 2013-12-20 2016-10-26 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) water absorbent, and method for producing same
EP3202823A1 (en) 2014-09-29 2017-08-09 Nippon Shokubai Co., Ltd. Water-absorbable resin powder, and method for determining elastic modulus of water-absorbable resin powder
KR20160063956A (en) * 2014-11-27 2016-06-07 주식회사 엘지화학 Super absorbent polymer with fast absorption rate under load and preparation method thereof
KR20170020113A (en) * 2015-08-13 2017-02-22 주식회사 엘지화학 Preparation method for super absorbent polymer
KR20170106799A (en) * 2016-03-14 2017-09-22 주식회사 엘지화학 Preparation method of super absorbent polymer
KR20170111295A (en) * 2016-03-25 2017-10-12 주식회사 엘지화학 Preparation method for super absorbent polymer

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Modern Superabsorbent Polymer Technology", 1998, WILEY-VCH, article FREDRIC L. BUCHHOLZ, ANDREW T. GRAHAM: "The structure and properties", pages: 167, 212, 214, XP055881661
JAPANESE STANDARDS ASSOCIATION: "Testing method for water absorption rate of super absorbent polymers", JIS K 7224, 1996, XP055937750
ODIAN: "Principle of Polymerization", 1981, WILEY, pages: 203
REINHOLD SCHWALM: "UV Coatings: Basics, Recent Developments and New Application", 2007, ELSEVIER, pages: 115
See also references of EP3705510A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3885396A4 (en) * 2019-09-18 2022-02-16 LG Chem, Ltd. Super absorbent polymer and preparation method for same

Similar Documents

Publication Publication Date Title
CN111436201B (en) Super absorbent polymer and method for preparing the same
KR102566286B1 (en) Super absorbent polymer and preparation method for the same
KR102447936B1 (en) Super absorbent polymer and preparation method for the same
JP7247187B2 (en) SUPER ABSORBENT RESIN AND METHOD FOR MANUFACTURING SAME
EP3757153B1 (en) Super absorbent polymer and method for preparing same
JP6837141B2 (en) Highly water-absorbent resin and its manufacturing method
WO2019117541A1 (en) Superabsorbent polymer and preparation method therefor
KR20190069300A (en) Super absorbent polymer and preparation method for the same
JP7184443B2 (en) SUPER ABSORBENT RESIN AND METHOD FOR MANUFACTURING SAME
WO2018147559A1 (en) Superabsorbent resin and method for producing same
KR20210038250A (en) Method for preparing super absorbent polymer
KR20180071940A (en) Super absorbent polymer and preparation method thereof
KR20190069103A (en) Preparation method for super absorbent polymer
KR20190075574A (en) Preparation method for super absorbent polymer
JP7226890B2 (en) SUPER ABSORBENT RESIN AND METHOD FOR MANUFACTURING SAME
JP7191403B2 (en) SUPER ABSORBENT RESIN AND METHOD FOR MANUFACTURING SAME
WO2019112150A1 (en) Absorbent polymer and preparation method therefor
WO2019117511A1 (en) Superabsorbent polymer and preparation method therefor
JP2020505477A (en) Super water absorbent resin and method for producing the same
KR20180071933A (en) Super absorbent polymer and preparation method for the same
WO2019117513A1 (en) Superabsorbent polymer and preparation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528394

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018888466

Country of ref document: EP

Effective date: 20200605