WO2019117513A1 - 고흡수성 수지 및 이의 제조 방법 - Google Patents

고흡수성 수지 및 이의 제조 방법 Download PDF

Info

Publication number
WO2019117513A1
WO2019117513A1 PCT/KR2018/014974 KR2018014974W WO2019117513A1 WO 2019117513 A1 WO2019117513 A1 WO 2019117513A1 KR 2018014974 W KR2018014974 W KR 2018014974W WO 2019117513 A1 WO2019117513 A1 WO 2019117513A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
water
weight
polymer
base resin
Prior art date
Application number
PCT/KR2018/014974
Other languages
English (en)
French (fr)
Inventor
박보희
남대우
허영재
홍연우
정지윤
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180148842A external-priority patent/KR102565748B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/770,414 priority Critical patent/US11613613B2/en
Priority to EP18889096.6A priority patent/EP3705511A4/en
Priority to JP2020529204A priority patent/JP7039105B2/ja
Priority to CN201880078461.7A priority patent/CN111433260B/zh
Publication of WO2019117513A1 publication Critical patent/WO2019117513A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present application is related to Korean Patent Application No. 10-2017-0169497 dated December 11,
  • the present invention relates to a superabsorbent resin and a method for producing the same. More particularly, the present invention relates to a superabsorbent resin having improved rewet characteristics and liquid permeability and a method for producing the same.
  • Super Absorbent Polymer is a synthetic polymer material capable of absorbing moisture of about 500 to 1,000 times its own weight.
  • SAM Super Absorbent Material
  • AGM Super Absorbent Material
  • the above-mentioned superabsorbent resin has been put into practical use as a sanitary article, and nowadays, in addition to the diapers and sanitary napkin products for children, it is now used as a soil remover for gardening, an index material for civil engineering and construction, Sheet, a freshness-retaining agent in the field of food distribution, and a material for fomentation.
  • CRC which is the physical property showing the basic absorption power and the water holding capacity of the superabsorbent resin
  • AUL absorptive absorption ability
  • pressure may be applied to sanitary materials such as diapers and sanitary napkins by the weight of the user.
  • sanitary material and a water-absorbent resin to be applied to such as a diaper or a sanitary napkin to absorb liquids, and thus rewet pressure coming applied surface and the portion of the liquid absorbed in the absorbent resin soaked again by a user of the weight (r e wet ) phenomenon, urine leakage nujul (16 1 3 ⁇ 4 size 6) phenomenon may occur.
  • An acrylic acid-based monomer having an acidic group and at least a part of the acidic groups neutralized and a cross- 11) (step 1);
  • step 3 Performing the surface modification to the base resin by raising the mixture of step 2 (step 3); 2019/117513 1 »(: 1 ⁇ ⁇ 2018/014974
  • a base resin comprising a cross-linked polymer obtained by cross-linking an acrylic acid-based monomer in which at least a part of an acidic group is neutralized;
  • the method for producing a superabsorbent resin according to an embodiment of the present invention comprises the steps of preparing a base resin having an acid group and at least a part of which is neutralized and a cross-linked polymer of an acrylic acid monomer and an internal cross- One);
  • step 2 Mixing the base resin with a hydrophobic substance having an HLB of not less than 0 and not more than 6, a hydrophilic polymer, and a surface cross-linking agent (step 2); and
  • step 3 Performing the surface modification to the base resin by raising the mixture of step 2 (step 3);
  • base resin or " base resin powder " refers to a polymer obtained by drying and pulverizing a polymer obtained by polymerizing a water-soluble ethylenically unsaturated monomer into a particle or a powder, Or a surface crosslinking step is not performed.
  • the hydrogel polymer obtained by the polymerization reaction of the acrylic acid-based monomer is subjected to a process such as drying, crushing, classification, surface crosslinking and the like, and is marketed as a superabsorbent resin which is powdery product.
  • the superabsorbent resin obtained by the production method according to one embodiment of the present invention is excellent in physical properties such as water repellency, pressure absorbing ability and liquid permeability and exhibits excellent absorption performance and remains dry even after being swollen with salt water It is possible to effectively prevent rewet and leakage of urine, which are absorbed in the superabsorbent resin, and lead to the present invention.
  • the monomer composition which is a raw material of the superabsorbent resin, is a monomer having an acidic group and containing at least a part of the acidic group neutralized, an acrylic acid monomer, an internal crosslinker and a polymerization initiator 2019/117513 1 »(: 1 ⁇ ⁇ 2018/014974
  • the monomer composition which is a raw material of the superabsorbent resin includes an acrylic acid-based monomer having an acidic group and at least a part of the acidic groups neutralized and a polymerization initiator.
  • the acrylic acid-based monomer is a compound represented by the following Formula 1:
  • the acrylic acid-based monomer includes at least one selected from the group consisting of acrylic acid, methacrylic acid, monovalent metal salts thereof, bivalent metal salts, ammonium salts and organic amine salts thereof.
  • the acrylic acid-based monomer may have an acidic group and at least a part of the acidic group may be neutralized.
  • the monomer is partially neutralized with an alkali substance such as sodium hydroxide, potassium hydroxide, ammonium hydroxide or the like.
  • the degree of neutralization of the acrylic acid monomer may be 40 to 95 mol%, or 40 to 90 mol%, or 45 to 85 mol%.
  • the range of the degree of neutralization can be adjusted according to the final properties. However, if the degree of neutralization is too high, neutralized monomers may precipitate and polymerization may be difficult to proceed smoothly. On the other hand, if the degree of neutralization is too low, the absorption capacity of the polymer is greatly decreased, .
  • the concentration of the acrylic acid monomer may be about 20 to about 60 wt%, preferably about 40 to about 50 wt%, based on the monomer composition including the raw material of the superabsorbent resin and the solvent, The concentration may be appropriate considering the conditions and the like. However, if the concentration of the monomer is excessively low, the yield of the superabsorbent resin may be low and economical problems may arise. On the contrary, when the concentration becomes too high, a part of the monomer may be precipitated or polymerized, The pulverization efficiency may be lowered at the time of pulverization, which may cause problems in the process, and the physical properties of the superabsorbent resin may be deteriorated.
  • the polymerization initiator used in polymerization is not particularly limited as long as it is generally used in the production of a superabsorbent resin.
  • the polymerization initiator a thermal polymerization initiator or a photopolymerization initiator based on UV irradiation may be used depending on the polymerization method.
  • a certain amount of heat is generated by irradiation of ultraviolet light or the like, and a certain amount of heat is generated as the polymerization reaction, which is an exothermic reaction, proceeds.
  • the photopolymerization initiator can be used without limitation in the constitution as long as it is a compound capable of forming a radical by light such as ultraviolet rays.
  • the photopolymerization initiator includes, for example, benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, benzyl dimethyl ketal
  • acyl phosphine Dimethyl Ketal, acyl phosphine, and a-aminoketone can be used.
  • acylphosphine there may be mentioned lucyrin TPO, that is, 2, 4, 6-trimethyl-benzoyl-trimethyl phosphine oxide (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide) can be used.
  • lucyrin TPO that is, 2, 4, 6-trimethyl-benzoyl-trimethyl phosphine oxide (2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide) can be used.
  • the concentration of the photopolymerization initiator is too low, the polymerization rate may be slowed. If the concentration of the photopolymerization initiator is excessively high, the concentration of the photopolymerization initiator may be lowered The molecular weight may be small and the physical properties may be uneven.
  • thermal polymerization initiator at least one selected from persulfate-based initiators, azo-based initiators, initiators consisting of hydrogen peroxide and ascorbic acid can be used.
  • the persulfate-based initiator include sodium persulfate (Na 2 S 2 () 8), potassium persulfate (K 2 S 20 g), sodium persulfate Ammonium persulfate (NH 4 ) 2 S 2 () 8 )
  • examples of the azo initiator include 2, 2-azobis- (2-amidinopropane) 2-azobis (2-amidinopropane) dihydrochloride, 2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride, , 2- (carbamoyl-azo) isobutyronitrile (2- (carbamoylazo) isobiitylonitril), 2, 2, acrylonitrile-azobis [2 _
  • (2-imidazolin-2-yl) propane] dihydrochloride (2, 2 -azobis [2- (2 -imidazolin- 2 _ yl) propane] dihydrochloride), 4,4-azobis- (4-cyano 4,4-azobis- (4-cyanovaleric acid), and the like.
  • thermal polymerization initiators are well described in the Odian book, Principle of Polymerization (Wiley, 1981), p. 203, and are not limited to the above examples.
  • the monomer composition includes an internal cross-linking agent as a raw material for a superabsorbent resin.
  • the internal crosslinking agent include a crosslinking agent having at least one functional group capable of reacting with the acrylic acid-based monomer and having at least one ethylenic unsaturated group; Or a crosslinking agent having two or more functional groups capable of reacting with a substituent formed by hydrolysis of a substituent and / or a monomer of the acrylic acid-based monomer may be used.
  • Examples of the internal cross-linking agent N, N'- methylene bisacrylamide, trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylates, poly _ glycol (meth) acrylate, propylene glycol di (Meth) acrylate, diethylene glycol di (meth) acrylate, polyoxyethylene (meth) acrylate, polypropylene glycol (meth) acrylate, butane diol di (Meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipentaerythritol pentaacrylate, glycerin tri Pentaerythritol tetraacrylate, triarylamine, ethyl At least one selected from the group consisting of ethylene glycol, glycerol diglycidyl ether, propylene glycol
  • Such an internal cross-linking agent may be included at a concentration of about 0.01 to about 2% by weight based on the monomer composition to crosslink the polymerized polymer.
  • the monomer composition of the superabsorbent resin may further contain additives such as a thickener, a plasticizer, a preservative stabilizer, and an antioxidant, if necessary.
  • Raw materials such as acrylic acid monomers, photopolymerization initiators, thermal polymerization initiators, internal cross-linking agents and additives having the above-mentioned acid groups and at least a part of the acid groups neutralized can be prepared in the form of a solution of a monomer composition dissolved in a solvent.
  • the solvent which can be used at this time can be used without limitation of its constitution as long as it can dissolve the above-mentioned components.
  • Examples thereof include water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-
  • the organic solvent include glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl It is possible to use a combination of at least one selected from ether, toluene, xylenes, butylolactone, carbitol, methylcellosolve acetate and N, N-dimethylacetamide.
  • the solvent may be included in the balance of the total amount of the monomer composition excluding the components described above.
  • the hydrogel polymer obtained by supplying hot air or heating the reactor to a reactor such as a kneader having an agitating shaft as described above and thermally polymerizing the reactor may be supplied to the reactor outlet
  • the discharged hydrogel polymer may be in the range of a few centimeters to a few millimeters.
  • the size of the resulting hydrogel polymer is dependent on the size of the injected monomer composition Concentration, and injection rate.
  • a gel polymer having a weight average particle diameter of 2 to 50 mm can be obtained.
  • the form of the hydrogel polymer that is usually obtained may be a hydrogel polymer on a sheet having a belt width.
  • the thickness of the polymer sheet depends on the concentration and the injection rate of the monomer composition to be injected, but it is preferable to supply the monomer composition so that a polymer in the form of a sheet having a thickness of usually about 0.5 to about 5 cm can be obtained.
  • the monomer composition is supplied to such an extent that the thickness of the polymer in the sheet is too thin, the production efficiency is low, which is undesirable.
  • the thickness of the polymer on the sheet exceeds 5 cm, the polymerization reaction occurs evenly over the entire thickness due to the excessively thick thickness I can not.
  • the normal water content of the hydrogel polymer obtained by this method may be about 40 to about 80 wt%.
  • water content as used throughout the present specification means a value obtained by subtracting the weight of the hydrogel polymer from the weight of the hydrogel polymer in terms of the content of water with respect to the weight of the total functional gel polymer. Specifically, The temperature is increased from room temperature to about 180 ° C, and then maintained at 180 ° C. In this case, , And the total drying time is set to 20 minutes including the temperature rising step of 5 minutes, and the water content is measured.
  • the step of coarse grinding may be further carried out before drying in order to increase the efficiency of the drying step.
  • the pulverizer to be used is not limited in its constitution, but may be a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, A crusher, a disc mill, a disc mill, a shred crusher, a crusher, a chopper, and a disc cutter.
  • the present invention is not limited to the above-described example.
  • the milling step may be milled so that the diameter of the hydrogel polymer is from about 2 to about 10 millimeters.
  • the drying temperature of the drying step may be about 150 ° C. to about 250 ° C. If the drying temperature is lower than 150 ° C., the drying time becomes too long and the physical properties of the ultrafine water- Exceeds 250 ° C, only the polymer surface is excessively dried, and fine powder may be generated in a subsequent milling step, and the physical properties of the finally formed water-based resin may be deteriorated.
  • the drying can proceed at a temperature of from about 150 to about 200 ° C, more preferably from about 160 to about 180 ° C.
  • drying time it may proceed for about 20 to about 90 minutes in consideration of the process efficiency and the like, but is not limited thereto.
  • the drying method in the drying step may be selected and used as long as it is usually used as a drying step of the hydrogel polymer. Specifically, the drying step can be carried out by hot air supply, infrared irradiation, microwave irradiation, ultraviolet irradiation, or the like.
  • the water content of the polymer after such a drying step may be from about 0.1 to about 10% by weight.
  • the polymer powder obtained after the pulverization step may have a particle diameter of about 150 to about 850.
  • the pulverizer used for pulverizing to such a particle size is specifically a pin mill, a hammer mill, a screw mill a screw mill, a roll mill, a disc mill or a jog mill may be used.
  • the present invention is not limited to the above examples.
  • the superabsorbent resin In order to manage the physical properties of the powder, a separate process of classifying the polymer powder obtained after the pulverization according to the particle size may be performed, and the polymer powder may be classified so as to have a constant weight ratio according to the particle diameter range.
  • a hydrophobic substance having an HLB of not less than 0 and not more than 6 a hydrophilic polymer, and a surface cross-linking agent are mixed in the base resin (Step 2).
  • a surface cross-linking solution containing a surface cross-linking agent is mixed with a dried and ground polymer, that is, a base resin, and then the surface cross-linking reaction .
  • the surface crosslinking step is a step of inducing a crosslinking reaction on the surface of the pulverized polymer in the presence of a surface crosslinking agent to form a superabsorbent resin having improved physical properties.
  • a surface crosslinked layer (surface modifying layer) is formed on the surface of the pulverized polymer particles.
  • the surface cross-linking agent is applied to the surface of the superabsorbent resin particles, so that the surface cross-linking reaction occurs on the surface of the superabsorbent resin particles, which improves the crosslinkability on the surface of the particles without substantially affecting the inside of the particles.
  • the surface cross-linked superabsorbent resin particles have a higher degree of crosslinking in the vicinity of the surface than in the interior.
  • the pressure absorption ability and the permeability can be improved by such a surface cross-linking reaction, but the re-wetting property can be deteriorated.
  • the hydrophilic material and the hydrophilic polymer are mixed with the base resin before the step of mixing the surface cross-linking agent to the base resin to perform the surface cross-linking reaction, can do.
  • the hydrophobic substance may be a material that satisfies 0 or more, or 1 or more, or 2 or more, and 6 or less, or 5 or less, or 5.5 or less as the lower limit of HLB.
  • a material having a melting point lower than the surface cross-linking reaction temperature may be used.
  • Hydrophobic materials that can be used include, for example, glyceryl stearate stearate, glycol stearate, magnesium stearate, glyceryl laurate, sorbitan stearate, sorbitan trioleate, or PEG- 4 dilaurate, and the like, and glyceryl 5 stearate may be preferably used, but is not limited thereto.
  • the hydrophobic substance is distributed in the surface modified layer of the surface of the base resin so that the swollen resin particles in the process of absorbing and swelling the liquid of the super absorbency resin are prevented from aggregating or aggregating according to the increased pressure, It is possible to more easily transmit and diffuse the liquid
  • the hydrophobic material is coated on the surface, which makes it difficult for the absorbed liquid to migrate to the outside of the swollen resin. Therefore, the high-water-absorbing resin Can contribute to improving the re-wetting property.
  • the hydrophilic polymer is introduced together with the hydrophobic substance into the base resin.
  • the hydrophobic material may be present in an amount of at least about 0.02 part by weight, or at least about 0.025 part by weight, or at least about 0.05 part by weight, and up to about 0.5 part by weight, or up to about 0.3 part by weight, or up to about 0.1 part by weight, If the content of the hydrophobic substance is less than 0.02 part by weight, the rewet property may not be improved. If the content of the hydrophobic substance is more than 0.5 part by weight, the base resin and the hydrophobic substance may be separated from each other And there may be a problem that it does not have a rewetting improving effect or acts as an impurity, so the weight range may be preferable from this point of view.
  • the hydrophilic polymer is a polymer compound dissolved in water, 2019/117513 1 »(: 1 ⁇ ⁇ 2018/014974
  • Natural polymers such as vegetable and polysaccharide, celluloses derivatives and synthetic polymers can be used.
  • polymers which are excellent in safety even when they come into direct contact with the human body from the viewpoint of environmental, safety and hygiene problems are preferable. Examples thereof include dextrin Based compound, a cellulose-based compound, a polyvinyl alcohol-based compound, or a polyethylene glycol-based compound.
  • the hydrophilic polymer may be used in a molar ratio of 8 or more, or 9 or more, or 10 or more, or 12 or more, or 13 or more and 20 or less, or 19 or less, or 18 or less. Range, it is possible to improve the effect of improving the rewetting and wettability of the present invention by compensating for the decrease in the wettability due to the hydrophobic substance.
  • the hydrophilic polymer include, but are not limited to this, and may be selected from the weight average molecular weight (1 ⁇ ⁇ ) is from about 600 to about 20 000 ⁇ 01.
  • the hydrophilic polymer may be present in an amount of at least about 0.001 part by weight, or at least about 0.005 part by weight, or at least about 0.01 part by weight, or at least about 0.02 part by weight, and up to about 0.5 part by weight, or up to about 0.3 part by weight, , Or about 0.1 part by weight or less. If the content of the hydrophilic polymer is too small, the wettability may not be improved. If the content of the hydrophilic polymer is too large, the rewet property may be adversely affected.
  • the hydrophobic material and the hydrophilic polymer have a weight ratio of about 1: 0.1 to about 1: 10, or about 1: 0.1 to about 1: 5, or about 1: 0.5 to about 1: . If the weight ratio is less than 1: 0.1, the improvement in wettability by the hydrophilic polymer may be insignificant. If the weight ratio is more than 1:10 and the hydrophilic polymer is contained in an excessively large amount, the effect of improving the rewet property may be lowered. A weight ratio range may be preferred.
  • the method of mixing the hydrophobic substance and the hydrophilic polymer is not particularly limited as long as it can mix the base resin uniformly and can be suitably employed.
  • the hydrophobic substance may be dry-mixed before the surface cross-linking solution containing the surface cross-linking agent is mixed with the base resin, 2019/117513 1 »(: 1 ⁇ ⁇ 2018/014974
  • phase-change hydrophobic substance may be heated to a melting temperature or higher to be mixed in a solution state.
  • the hydrophilic polymer may also be mixed with the base resin separately before mixing the surface cross-linking solution containing the surface cross-linking agent, or may be mixed with the surface cross-linking agent and the base resin together with the surface cross-linking agent.
  • the above-mentioned surface cross-linking agent When the above-mentioned surface cross-linking agent is added, water can be further mixed together and added in the form of a surface cross-linking solution.
  • the surface crosslinking agent When water is added, there is an advantage that the surface crosslinking agent can be uniformly dispersed in the polymer.
  • the added water content is preferably from about 1 to about 10 wt. Parts per 100 parts by weight of the polymer for the purpose of inducing uniform dispersion of the surface cross-linking agent and preventing the polymer powder from aggregating and optimizing the surface penetration depth of the surface cross- By weight.
  • the polyfunctional alcohol compound, the epoxy compound, the polyamine compound, the haloepoxy compound, A condensation product of a haloepoxy compound; Oxazoline compounds; Mono-, di- or polyoxazolidinone compounds; Cyclic urea compounds; Polyvalent metal salts; And an alkaline carbonate compound can be used.
  • examples of the polyhydric alcohol compound include mono-, di-, tri-, tetra- or polyene glycol, monopropylene glycol, 1,3-propanediol, dipropylene glycol, 2,3,4- 1,3-pentanediol, polypropylene glycol, glycerol, polyglycerol, 2-butene-1,4-diol, 1,4-butanediol, 1,3-butanediol, 1,5- Diols, and 1,2-cyclic nucleic acid dimethanol.
  • Examples of the epoxy compounds include ethylene glycol diglycidyl ether and glycidol.
  • Examples of the polyamine compounds include ethylene diamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylene nucleus amine, In the group consisting of polyethylene imine and polyamide polyamines 2019/117513 1 »(: 1 ⁇ ⁇ 2018/014974
  • At least one selected may be used.
  • the amount of the surface crosslinking agent to be added may be appropriately selected depending on the kind of the surface crosslinking agent to be added and the reaction conditions, but is usually about 0.001 to about 5 parts by weight, preferably about 0.01 to about 5 parts by weight, About 3 parts by weight, more preferably about 0.05 to about 2 parts by weight may be used.
  • the content of the surface cross-linking agent is too small, surface cross-linking reaction hardly occurs. If the amount of the surface cross-linking agent is more than 5 parts by weight based on 100 parts by weight of the polymer, excessive absorption of the surface cross- .
  • the surface-crosslinking agent described above may further include at least one selected from the group consisting of polyvalent metal salts such as aluminum salts, more specifically, aluminum sulfate, potassium salt, ammonium salt, sodium salt and hydrochloride.
  • polyvalent metal salts such as aluminum salts, more specifically, aluminum sulfate, potassium salt, ammonium salt, sodium salt and hydrochloride.
  • the liquid permeability and the like of the superabsorbent resin produced by the method of one embodiment can be further improved.
  • the multivalent metal salt may be added to the surface cross-linking solution together with the surface cross-linking agent, and may be used in an amount of 0.01 to 4 parts by weight based on 100 parts by weight of the base resin.
  • a surface modification step is performed on the base resin by heating the mixture of the base resin, the surface cross-linking agent, the hydrophobic substance, and the hydrophilic polymer (step 3).
  • the temperature raising means for the surface reforming reaction is not particularly limited.
  • a heating medium can be supplied, or a heating source can be directly supplied and heated.
  • the type of heat medium that can be used steam, hot air, heated fluid such as hot oil may be used.
  • the present invention is not limited thereto, and the temperature of the heat medium to be supplied may be controlled by means of heating medium, It can be appropriately selected in consideration of the target temperature.
  • a heat source to be directly supplied a heating method using electricity or a heating method using gas may be mentioned, but the present invention is not limited to the above-mentioned examples.
  • the surface cross-linking structure formed by reacting with the functional groups of the surface cross-linking agent and the base resin is formed on the surface of the base resin, and the hydrophobic substance and the hydrophilic polymer are uniformly distributed A surface modification layer may be formed.
  • the superabsorbent resin produced by the production method of the present invention can have improved rewet property, liquid permeability and wettability without deteriorating properties such as water retention capacity and pressure absorption ability due to such surface modification layer.
  • a base resin comprising a base resin comprising a cross-linked polymer obtained by crosslinking at least part of an acidic group with an acrylic acid-based monomer, and a base resin formed on the surface of the base resin,
  • the surface modifying layer comprises a hydrophobic substance having an HLB of not less than 0 and not more than 6 and a hydrophilic polymer which is crosslinked through a surface cross-linking agent and has a permeability (unit: Sec) is less than or equal to 30 seconds:
  • Equation (1) 2019/117513 1 »(: 1 ⁇ ⁇ 2018/014974
  • the liquid permeability measuring device has an inner diameter of 20_, It is a chromatography tube equipped with a filter. Lines were indicated on the liquid level of liquids 20 1111 and 40 1111 with the piston in the chromatographic tube. Thereafter, the chromatography tube bottom ⁇ 8 and filter the air bubbles between the water cock In the station so as not to fill the 10 washed 2-3 times with brine, it was charged the 0.9% saline to over 40 1X11. Put the piston in the chromatography tube and open the lower valve to record the time (in millimeters) that the liquid level decreased from 40 1111 to 20 1111 .
  • the liquid permeability measured according to the formula 1 may be 30 seconds or less, or 28 seconds or less, or 25 seconds or less, or 20 seconds or less, or 18 seconds.
  • the liquid permeability is better as the value is smaller, Theoretically may be 0 second, for example about 5 seconds or more, or about 10 seconds or more, or about 12 seconds or more.
  • the superabsorbent resin can be produced by EDANA method (01 (:) is about 22 or more, or about 25 or more, or about 27 or more, and about 40 or less, measured in accordance with 241.3 , Or about 35 pounds per square inch or less. 2019/117513 1 »(: 1 ⁇ ⁇ 2018/014974
  • ⁇ ⁇ 8 Measured according to 242.3 About twenty-two or more, or about twenty-five or more force colors, and about 35 or less, or about 33 or less, or about 32 / or less.
  • the super-absorbent resin may be less than the absorption rate ( ⁇ 1 ⁇ ) ⁇ 7 up to about 35 seconds or about 30 seconds or about 28 seconds.
  • the lower the absorbing rate, the better the lowering of the absorbing rate is theoretically 0 seconds, for example about 5 seconds or more, about 10 seconds or more, or about 12 seconds or more.
  • the absorption rate refers to the time ( 1116 , unit: second) in which the swirling liquid ( 011 : 6 o'clock) disappears due to the rapid water flow when the superabsorbent resin is added to physiological saline and stirred, It can be seen that the resin has a fast initial absorption rate.
  • the aqueous resin can exhibit superior liquid-permeability and exhibit improved rewet characteristics.
  • the high-sheath water-based resin 1 was dipped in water for 100 hours
  • the swollen superabsorbent resin was immersed in water of 20/4 and swelled for 6 hours .
  • Pressure water re-wetting defined as the weight of water repelled from the superabsorbent resin to the filter paper, is 1.5 ⁇ or less, or 1.2 ⁇ or less, or 1.1 ⁇ or less, or 1.0 ⁇ or less.
  • the weight of the water is better as the value is smaller, For example, 0.1 ⁇ or more, or 0.3 ⁇ or more, or 0.5 ⁇ or more.
  • the swollen superabsorbent resin is allowed to stand on the filter paper for one minute under a pressure of 0.75 psi and thereafter the rewet property defined as the weight of saline water returned from the superabsorbent resin to the filter paper ) May be 5.0 g or less, or 4.0 g or less, or 3.0 g or less, or 2.0 g or less.
  • the lower limit of the weight of the brine is better, and the lower limit value may be Og, for example, 0.1 g or more, or 0.3 g or more, or 0.5 g or more.
  • the rewetting properties can be used in the evaluation is the electrical conductivity of 170 to 180
  • the superabsorbent resin of the present invention has an excellent ability to absorb moisture, and even when a large amount of urine is absorbed, rewetting and leakage of urine can be suppressed.
  • the monomer aqueous solution composition was subjected to thermal polymerization reaction to obtain a polymerized sheet.
  • the polymerized sheet was taken out and cut into a size of 3 cm x 3 cm, followed by chopping using a meat chopper to prepare a crumb.
  • the crumb was dried in an oven capable of blowing air up and down.
  • Example 1 the content of glycerol monostearate contained in the surface cross-linking solution was 0.075 part by weight, the content of polyethylene glycol was
  • the aqueous resin was obtained in the same manner as in Example 1 except that the amount of the water-soluble resin was changed to 0.075 parts by weight.
  • Example 3
  • Example 1 a superabsorbent resin was obtained in the same manner as in Example 1, except that the content of glycerol monostearate contained in the surface cross-linking liquid was changed to 0.15 part by weight and the content of polyethylene glycol was changed to 0.075 part by weight.
  • Example 4 the content of glycerol monostearate contained in the surface cross-linking liquid was changed to 0.15 part by weight and the content of polyethylene glycol was changed to 0.075 part by weight.
  • Example 1 a high viscosity aqueous resin was obtained in the same manner as in Example 1, except that the content of glycerol monostearate contained in the surface cross-linking solution was changed to 0.05 parts by weight and the content of polyethylene glycol was changed to 0.05 parts by weight. Comparative Example 1
  • Example 1 a superabsorbent resin was obtained in the same manner as in Example 1, except that glycerol monostearate and polyethylene glycol were not included in the surface cross-linking solution. Comparative Example 2
  • Example 1 a high viscosity aqueous resin was obtained by performing the procedure of Example 1 except that polyethylene glycol was not included in the surface cross-linking solution. Comparative Example 3
  • Example 1 the content of glycerol monostearate in the surface cross-linking solution was adjusted to 0.015 part by weight, and the same procedure as in Example 1 was conducted except that polyethylene glycol was not included, to obtain a superabsorbent resin.
  • Example 1 the content of glycerol monostearate in the surface cross-linking solution was adjusted to 0.015 part by weight, and the same procedure as in Example 1 was conducted except that polyethylene glycol was not included, to obtain a superabsorbent resin.
  • Example 1 a superabsorbent resin was obtained in the same manner as in Example 1, except that the content of glycerol monostearate contained in the surface cross-linking solution was changed to 0.01 part by weight.
  • the tap water used in the re-wetting property evaluation was determined by using Orion Star A222 (company: Thermo Scientific), and the electrical conductivity was 170 to 180 or S / cm.
  • the superabsorbent resin W 0 ( g) (about 0.2 g) was uniformly put in an envelope made of a nonwoven fabric and sealed, followed by immersion in physiological saline (0.9 wt%) at room temperature. After a lapse of 30 minutes, using a centrifugal separator, under the condition of 250G,
  • a 400 mesh wire mesh made of stainless steel was mounted on a cylindrical bottom of a plastic having an inner diameter of 60 mm.
  • the piston capable of uniformly spraying the superabsorbent resin W 0 (g) (0.90 g) on the wire net and uniformly applying a load of 0.3 psi on the wire net under conditions of room temperature and humidity of 50% There is no small inner wall of the cylinder and there is no gap, and the up and down movements are not obstructed. At this time, the weight W 3 (g) of the device was measured.
  • a glass filter having a diameter of 90 mm and a thickness of 5 mm was placed inside a Petro dish having a diameter of 150 mm and a physiological saline solution composed of 0.9% by weight sodium chloride was made to have the same level as the upper surface of the glass filter. And a filter paper having a diameter of 90 mm was placed thereon.
  • the measuring device was placed on a filter paper, and the solution was absorbed under a load for 1 hour. After one hour, the measuring device was lifted and its weight W 4 ( g) was measured.
  • the pressure absorption capacity (g / g) was calculated by using the obtained masses according to the following equation.
  • AUP (g / g) [ W 4 (g) - W 3 (g)] / W 0 (g) (3) Permeability
  • the liquid permeable instantaneous device is a chromatography tube with an inner diameter of 20rran and a glass filter at the bottom. Lines were indicated on the liquid surface of 20 ml and 40 ml with the piston in the chromatographic tube. Thereafter, water was added in an amount of about 10 ml to prevent air bubbles between the lower glass filter and the cock of the chromatography tube, and the mixture was washed 2-3 times with brine and filled with 0.9% brine to a volume of 40 ml or more. The piston was placed in the chromatographic tube and the bottom valve was opened to record the time (in minutes) the liquid surface decreased from 40 ml to the 20 ml marking line:
  • the wetting time was measured in the first place according to the method described in International Patent Application No. 1987-003208, which measures the vortex time.
  • the vortex time was measured in the first place according to the method described in International Patent Application No. 1987-003208.
  • Comparative Example 1 had poor rewetting and liquid permeability than Examples, and Comparative Examples 2 and 3 in which the hydrophilic polymer was not introduced showed similar rewetting characteristics to those of the Examples, but the wettability and absorption rate were not good .
  • Reference Example 1 containing 0.01 parts by weight of hydrophobic substance was better than Comparative Example 1 but better than Examples 1 to 4, although rewet property and liquid permeability were good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

본 발명은 고흡수성 수지 및 이의 제조방법에 관한 것이다. 본 발명은 베이스 수지에 HLB가 0 이상 6 이하인 소수성 물질, 친수성 고분자 및 표면가교제를 혼합하여 베이스 수지에 대한 표면 개질을 통해 향상된 재습윤 특성 및 통액성을 갖는 고흡수성 수지를 제공할 수 있다.

Description

【발명의 명칭】
고흡수성 수지및 이의 제조방법
【기술분야】
관련출원 (들)과의 상호인용
본출원은 2017년 12월 11일자한국특허 출원제 10-2017-0169497호및
2018년 11월 27자 한국 특허 출원 제 10-2018-0148842호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 고흡수성 수지 및 이의 제조 방법에 관한 것이다. 보다 상세하게는, 향상된 재습윤 (rewet) 특성 및 통액성을 갖는 고흡수성 수지 및 이의 제조방법에 관한것이다.
【발명의 배경이 되는기술】
고를수성 수지 (Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material)등 각기 다른 이름으로 명명하고 있다.상기와같은고흡수성 수지는 생리용구로 실용화되기 시작해서,현재는어린이용종이기저귀나생리대 등위생용품외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도유지제,및찜질용등의 재료로널리사용되고있다.
가장많은경우에,이러한고흡수성 수지는기저귀나생리대 등위생재 분야에서 널리 사용되고 있는데, 이러한 용도를 위해 수분 등에 대한 높은 흡수력을 나타낼 필요가 있고, 외부의 압력에도 흡수된 수분이 빠져 나오지 않아야 하며, 이에 더하여, 물을 흡수하여 부피 팽창 (팽윤)된 상태에서도 형태를잘유지하여 우수한통액성 (permeability)을나타낼필요가있다.
.그런데, 상기 고흡수성 수지의 기본적인 흡수력 및 보수력을 나타내는 물성인 보수능 (CRC)과, 외부의 압력에도 흡수된 수분을 잘 보유하는 특성을 나타내는가압하흡수능 (AUL)은함께 향상시키기 어려운 것으로 알려져 있다. 이는 고흡수성 수지의 전체적인 가교 밀도가 낮게 제어될 경우, 보수능은 상대적으로 높아질 수 있지만, 가교 구조가 성기게 되고 겔 강도가 낮아져 가압하흡수능은저하될수있기 때문이다.반대로,가교밀도를높게 제어하여 2019/117513 1»(:1^1{2018/014974
가압하흡수능을 향상시키는 경우, 백빽한가교구조사이로수분이 흡수되기 어려운상태로 되어 기본적인 보수능이 저하될 수 있다.상술한 이유로 인해, 보수능 및 가압하흡수능이 함께 향상된 고흡수성 수지를 제공하는데 한계가 있다.
그러나, 최근 기저귀나 생리대 등과 같은 위생재의 박막화에 따라 고를수성 수지에 보다높은돕수성능이 요구되고있다.이 중에서도,상반되는 물성인 보수능과 가압 흡수능의 동반 향상과 통액성의 개선 등이 중요한 과제로대두되고있다.
또한, 기저귀나 생리대 등의 위생재에는사용자의 무게에 의해 압력이 가해질 수 있다. 특히, 기저귀나 생리대 등의 위생재에 적용되는 고흡수성 수지가 액체를 흡수한 이후, 이에 사용자의 무게에 의한 압력이 가해지면 고흡수성 수지에 흡수된 일부 액체가다시 배어 나오는 재습윤(rewet) 현상과, 소변이 새는누줄(16크1¾6)현상이 발생할수있다.
따라서,이러한재습윤현상을억제하고자여러 가지 시도들이 진행되고 있다. 하지만 아직까지 재습윤 현상을 효과적으로 억제할 수 있는 구체적인 방안이 제시되지 못하고있는실정이다.
【발명의 상세한설명】
【해결하려는과제】
상기와 같은 종래 기술의 문제점을 해결하고자, 본 발명은 재습윤 및 소변누출현상이 억제되는고흡수성 수지 및 이의 제조방법을제공하는것을 목적으로한다.
【과제의 해결 수단】
상기의 목적을달성하기 위하여,본발명의 일측면에 따르면,
산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 및 내부 가교제가 가교 중합된 베이스
Figure imgf000003_0001
11)를 준비하는 단계(단계 1);
상기 베이스 수지에,
Figure imgf000003_0002
0 이상 6 이하인 소수성 물질, 친수성 고분자,및표면가교제를혼합하는단계(단계 2);및
상기 단계 2의 혼합물을 승은하여 상기 베이스 수지에 대한 표면 개질을수행하는단계(단계 3); 2019/117513 1»(:1^1{2018/014974
를포함하는,고흡수성수지의 제조방법을제공한다.
또한,본발명의 다른일측면에 따르면,
산성기의 적어도 일부가중화된 아크릴산계 단량체가가교중합된가교 중합체를포함하는베이스수지;및
상기 베이스 수지의 입자 표면에 형성되어 있고, 상기 가교 중합체가 표면가교제를매개로추가가교되어 있는표면개질층을포함하고,
상기 표면 개질층은미 가 0 이상 6 이하인 소수성 물질 및 친수성 고분자를포함하며,
하기 식 1에
Figure imgf000004_0001
단위:초)이 30초이하인 고흡수성 수지를제공한다:
[식 1]
통액성 떠 = 11
상기 식 1에서,
은 크로마토그래피 관 내에 분급 (30# - 50#)된 고흡수성 수지 시료 0.2±0.0005§을넣고염수를가하여 염수부피가 50 가되게 한후, 30분간 방치 후, 액면높이가 40 1111에서 20 1111까지 줄어드는 데에 걸리는 시간아고, 8는염수가채워진크로마토그래피 관에서 액면높이가 40 1111에서 20 1111까지 줄어드는데에 걸리는시간이다.
【발명의 효과】
본 발명의 고흡수성 수지 및 이의 제조 방법에 따르면, 우수한 제반 흡수물성과통액성을나타내면서도재습윤현상및 소변누출현상이 억제된 고흡수성 수지를제공할수있다.
【발명을실시하기 위한구체적인내용】
본발명은다양한변경을가할수 있고여러 가지 형태를가질수있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는본발명을특정한개시 형태에 대해 한정하려는 것이 아니며,본발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로이해되어야한다.
이하,본발명의 일 구현예에 따른고흡수성 수지 및 이의 제조방법에 대해상세히 설명한다. 본발명의 일구현예에 따른고흡수성 수지의 제조방법은, 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 및 내부 가교제가 가교 중합된 베이스 수지 (base resin)를 준비하는 단계 (단계 1);
상기 베이스 수지에, HLB가 0 이상 6 이하인 소수성 물질, 친수성 고분자,및표면가교제를혼합하는단계 (단계 2);및
상기 단계 2의 혼합물을 승은하여 상기 베이스 수지에 대한 표면 개질을수행하는단계 (단계 3);
를포함한다. 본발명의 명세서에서, "베이스수지"또는”베이스수지 분말’’은수용성 에틸렌계 불포화 단량체가 중합된 중합체를 건조 및 분쇄하여 입자 (particle) 또는파우더 (powder)형태로만든 것으로,후술하는표면 개질 또는표면 가교 단계를수행하지 않은상태의 중합체를의미한다.
아크릴산계 단량체의 중합 반응에 의해 수득되는 함수겔상 중합체는 건조, 분쇄, 분급, 표면 가교 등의 공정을 거쳐 분말상의 제품인 고흡수성 수지로시판된다.
최근들어 고흡수성 수지에서 흡수능,통액성과같은제반흡수물성뿐 아니라실제 기저귀가사용되는상황에서 표면의 건조 (dryness) 상태가 얼마나 유지될수있는가가기저귀 특성을가늠하는중요한척도가되고있다.
본 발명의 일 구현예에 따른 제조방법에 의해 수득되는 고흡수성 수지는보수능, 가압흡수능, 통액성 등의 물성이 우수하여 우수한 제반흡수 성능을 나타내며, 염수에 의해 팽윤된 후에도 건조한 상태가 유지되며 고흡수성 수지에 흡수된 소변이 다시 배어 나오는 재습윤 (rewet) 및 소변 누출 (leakage)현상을효과적으로방지할수 있음을확인하여 본발명에 이르게 되었다.
본발명의 고흡수성 수지의 제조방법에서,먼저 상기 고흡수성 수지의 원료 물질인 모노머 조성물은 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 내부 가교제 및 중합 개시제를 포함하는 모노머 2019/117513 1»(:1^1{2018/014974
조성물을 중합하여 함수겔상 중합체를 수득하고, 이를 건조, 분쇄, 분급하여 베이스수지 0¼86^8 )를준비한다(단계 1).
이에 대해하기에서보다상세히 설명한다.
상기 고흡수성 수지의 원료 물질인 모노머 조성물은 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 및 중합 개시제를 포함한다.
상기 아크릴산계 단량체는하기 화학식 1로표시되는화합물이다:
[화학식 1]
Figure imgf000006_0001
상기 화학식 1에서,
II1은불포화결합을포함하는탄소수 2내지 5의 알킬그룹이고,
IV!1은수소원자 , 1가또는 2가금속,암모늄기 또는유기 아민염이다. 바람직하게는, 상기 아크릴산계 단량체는 아크릴산, 메타크릴산 및 이들의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택되는 1종이상을포함한다.
여기서, 상기 아크릴산계 단량체는 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨,수산화칼륨,수산화암모늄등과같은 알칼리 물질로부분적으로 중화시킨 것이 사용될 수 있다. 이때,상기 아크릴산계 단량체의 중화도는 40 내지 95 몰%, 또는 40내지 90몰%,또는 45 내지 85 몰%일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 조절될 수 있다. 그런데, 상기 중화도가 지나치게 높으면 중화된 단량체가석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만아니라취급하기 곤란한탄성 고무와같은성질을나타낼수있다.
상기 아크릴산계 단량체의 농도는,상기 고흡수성 수지의 원료물질 및 용매를포함하는모노머 조성물에 대해 약 20내지 약 60중량%,바람직하게는 약 40내지 약 50중량%로될수있으며,중합시간및 반응조건등을고려해 적절한 농도로 될 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮아지면 고흡수성 수지의 수율이 낮고 경제성에 문제가 생길 수 있고, 반대로 농도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄 시 분쇄 효율이 낮게 나타나는 등 공정상 문제가 생길 수 있으며 고흡수성 수지의 물성이 저하될수있다.
본 발명의 고흡수성 수지 제조 방법에서 중합시 사용되는 중합 개시제는 고흡수성 수지의 제조에 일반적으로 사용되는 것이면 특별히 한정되지 않는다.
구체적으로,상기 중합개시제는중합방법에 따라열중합개시제 또는 UV 조사에 따른 광중합 개시제를 사용할 수 있다. 다만 광중합 방법에 의하더라도,자외선조사등의 조사에 의해 일정량의 열이 발생하고,또한발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합개시제를포함할수도있다.
상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는화합물이면그구성의 한정이 없이 사용될수있다.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르 (benzoin ether), 디알킬아세토페논 (dialkyl acetophenone), 하이드록실 알킬케톤 (hydroxyl alkylketone), 페닐글리옥실레이트 (phenyl glyoxylate), 벤질디메틸케탈 (Benzyl
Dimethyl Ketal), 아실포스핀 (acyl phosphine) 및 알파-아미노케톤 (a- aminoketone)으로이루어진군에서 선택되는하나이상을사용할수있다.한편, 아실포스핀의 구체예로, 상용하는 lucirin TPO, 즉, 2, 4, 6 -트리메틸-벤조일- 트리메틸 포스핀 옥사이드 (2, 4, 6-trimethyl -benzoyl-trimethyl phosphine oxide)를 사용할 수 있다. 보다 다양한 광개시제에 대해서는 Reinhold Schwalm 저서인
'UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)’ pi 15에 잘명시되어 있으며,상술한예에 한정되지 않는다.
상기 광중합 개시제는 상기 모노머 조성물에 대하여 약 0.01 내지 약 1.0중량%의 농도로포함될수있다.이러한광중합개시제의 농도가지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면고흡수성 수지의 분자량이 작고물성이 불균일해질수있다.
또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨 (Sodium persulfate; Na2S2()8),과황산칼륨 (Potassium persulfate; K2S20g), 과황산암모늄(Ammonium persulfate;(NH42S2()8) 등이 있으며, 아조(Azo)계 개시제의 예로는 2, 2 -아조비스-(2 -아미디노프로판)이염산염(2, 2-azobis(2- amidinopropane) dihydrochloride), 2, 2-아조비스-(N, N-디메틸렌)이소부티라마이딘 디하이드로클로라이드(2,2-azobis-(N, N-dimethylene)isobutyramidine dihydrochloride), 2-(카바모일아조)이소부티로니트릴(2-(carbamoylazo)isobiitylonitril), 2, 2 -아조비스 [2_
2 -이미다졸린-2-일)프로판] 디하이드로클로라이드(2,2-azobis[2-(2-imidazolin-2_ yl)propane] dihydrochloride), 4,4 -아조비스-(4 -시아노발레릭 산)(4,4-azobis-(4- cyanovaleric acid)) 등이 있다. 보다 다양한 열중합 개시제에 대해서는 Odian 저서인 'Principle of Polymerization(Wiley, 1981)', p203에 잘 명시되어 있으며, 상술한예에 한정되지 않는다.
본발명의 일 실시예에 따르면,상기 모노머 조성물은고흡수성 수지의 원료 물질로서 내부 가교제를 포함한다. 상기 내부 가교제로는 상기 아크릴산계 단량체와 반응할 수 있는 관능기를 1개 이상 가지면서, 에틸렌성 불포화기를 1개 이상 갖는 가교제; 혹은 상기 아크릴산계 단량체의 치환기 및/또는단량체의 가수분해에 의해 형성된 치환기와반응할수 있는관능기를 2개 이상갖는가교제를사용할수있다.
상기 내부 가교제의 구체적인 예로는, N,N’-메틸렌비스아크릴아미드, 트리메틸롤프로판 트리(메타)아크릴레이트, 에틸렌글리콜 다이(메타)아크릴레이트, 폴리 _에틸렌글리콜(메타)아크릴레이트, 프로필렌글리콜 다이(메타)아크릴레이트, 폴리프로필렌글리콜(메타)아크릴레이트, 부탄다이올다이(메타)아크릴레이트, 부틸렌글리콜다이(메타)아크릴레이트, 다이에틸렌글리콜 다이(메타)아크릴레이트, 핵산다이올다이(메타)아크릴레이트, 트리에틸렌글리콜 다이(메타)아크릴레이트, 트리프로필렌글리콜 다이(메타)아크릴레이트, 테트라에틸렌글리콜 다이(메타)아크릴레이트, 다이펜타에리스리톨 펜타아크릴레이트, 글리세린 트리(메타)아크릴레이트, 펜타에리스톨 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르, 프로필렌 글리콜, 글리세린, 및 에틸렌카보네이트로 이루어진 군으로부터 선택된 1종이상을사용할수있다.
이러한내부가교제는상기 모노머 조성물에 대하여 약 0.01 내지 약 2 중량%의 농도로포함되어,중합된고분자를가교시킬수있다. 본발명의 제조방법에서,고흡수성 수지의 상기 모노머 조성물은필요에 따라 증점제 (thickener), 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포함할수있다.
상술한 산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 광중합 개시제, 열중합 개시제, 내부 가교제 및 첨가제와 같은원료물질은용매에 용해된모노머 조성물용액의 형태로준비될수있다. 이 때 사용할수 있는상기 용매는상술한성분들을용해할수 있으면 그구성의 한정이 없이사용될수있으며,예를들어 물,에탄올,에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4 -부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트,메틸에틸케톤,아세톤,메틸아밀케톤, 시클로핵사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 톨루엔, 크실텐, 부틸로락톤, 카르비톨, 메틸셀로솔브아세테이트및 N,N-디메틸아세트아미드등에서 선택된 1종이상을 조합하여사용할수있다.
상기 용매는모노머 조성물의 총 함량에 대하여 상술한성분을 제외한 잔량으로포함될수있다.
한편, 이와 같은 모노머 조성물을 열중합 또는 광중합하여 함수겔상 -충합체를 형상하는 방법 또한 통상 사용국는 중합 방 -이면, 특별히-구성의 한정이 없다.
구체적으로, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중합으로 나뉘며, 통상 열중합을 진행하는 경우, 니더 (kneader)와 같은 교반축을 가진 반응기에서 진행될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반응기에서 진행될 수 있으나, 상술한 중합 방법은일 예이며,본발명은상술한중합방법에 한정되지는않는다.
일 예로, 상술한 바와 같이 교반축을 구비한 니더 (kneader)와 같은 반응기에, 열풍을 공급하거나 반응기를 가열하여 열중합을 하여 얻어진 함수겔상 중합체는 반응기에 구비된 교반축의 형태에 따라, 반응기 배출구로 배출되는 함수겔상 중합체는 수 센티미터 내지 수 밀리미터 형태일 수 있다. 구체적으로, 얻어지는 함수겔상 중합체의 크기는 주입되는 모노머 조성물의 농도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 중량 평균 입경이 2내지 50 mm인함수겔상중합체가얻어질수있다.
또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반응기에서 광중합을진행하는경우,통상얻어지는함수겔상중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔상 중합체일 수 있다. 이 때, 중합체 시트의 두께는주입되는단량체 조성물의 농도 및 주입속도에 따라달라지나, 통상약 0.5내지 약 5cm의 두께를가진시트상의 중합체가얻어질수있도록 단량체 조성물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 5cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반응이 전 두께에 걸쳐 고르게 일어나지 않을수가있다.
이때 이와같은 방법으로 얻어진 함수겔상중합체의 통상 함수율은 약 40 내지 약 80중량%일 수 있다. 한편, 본 명세서 전체에서 "함수율은 전체 함수겔상 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔상 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180°C까지 온도를 상승시킨 뒤 180°C에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을측정한다.
다음에,얻어진함수겔상중합체를건조하는단계를수행한다.
이때 필요에 따라서 상기 건조 단계의 효율을 높이기 위해 건조 전에 조분쇄하는단계를더 거칠수있다.
이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기 (Vertical pulverizer),터보커터 (Turbo cuter),터보글라인더 (Turbo grinder), 회전 절단식 분쇄기 (Rotary cutter mill), 절단식 분쇄기 (Cutter mill), 원판 분쇄기 (Disc mill),조각파쇄기 (Shred crusher),파쇄기 (Crusher),초퍼 (chopper) 및 원판식 절단기 (Disc cutter)로이루어진 분쇄 기기 군에서 선택되는어느하나를 포함할수있으나,상술한예에 한정되지는않는다. 이때 분쇄 단계는 함수겔상 중합체의 입경이 약 2 내지 약 lOimn로 되도록분쇄할수있다.
입경이 2mm미만으로분쇄하는것은함수겔상중합체의 높은함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 응집되는 현상이 나타날 수도 있다. 한편, 입경이 10mm초과로 분쇄하는 경우, 추후 이루어지는건조단계의 효율증대효과가미미하다.
상기와 같이 분쇄되거나, 혹은 분쇄 단계를 거치지 않은 중합 직후의 함수겔상중합체에 대해 건조를수행한다. 이때 상기 건조단계의 건조온도는 약 150내지 약 250°C일수있다.건조온도가 150°C 미만인경우,건조시간이 지나치게 길어지고최종형성되는고흡수성 수지의 물성이 저하될우려가있고, 건조온도가 250°C를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는분쇄 공정에서 미분이 발생할수도 있고, 최종 형성되는고듭수성 수지의 물성이 저하될 우려가 있다. 따라서 바람직하게 상기 건조는 약 150 내지 약 200°C의 온도에서, 더욱 바람직하게는 약 160 내지 약 180°C의 온도에서 진행될수있다.
한편, 건조 시간의 경우에는공정 효율 등을 고려하여, 약 20 내지 약 90분동안진행될수있으나,이에 한정되지는않는다.
상기 건조 단계의 건조 방법 역시 함수겔상 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은약 0.1내지 약 10중량%일수있다.
다음에,이와같은건조단계를거쳐 얻어진 건조된 중합체를분쇄하는 단계를수행한다.
분쇄 단계후얻어지는중합체 분말은입경이 약 150내지 약 850_일 수있다.이와같은입경으로분쇄하기 위해사용되는분쇄기는구체적으로,핀 밀 (pin mill),해머 밀 (hammer mill),스크류밀 (screw mill),롤밀 (roll mill),디스크 밀 (disc mill) 또는 조그 밀 (jog mill) 등을 사용할 수 있으나, 상술한 예에 본 발명이 한정되는것은아니다.
그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있으며, 상기 중합체 분말을 입경 범위에 따라일정 중량비가되도록분급할수있다.
다음에, 상기 베이스 수지에, HLB가 0 이상 6 이하인 소수성 물질, 친수성 고분자,및표면가교제를혼합한다(단계 2).
일반적인 고흡수성 수지의 제조방법에서, 건조 및 분쇄된 중합체, 즉 베이스 수지에 표면 가교제를 포함하는 표면 가교 용액을 혼합한 다음, 이들 혼합물에 열을 가하여 승온함으로써 상기 분쇄된 중합체에 대해 표면 가교 반응을수행한다.
상기 표면가교단계는표면가교제의 존재 하에 상기 분쇄된중합체의 표면에 가교 반응을유도함으로써,보다향상된 물성을 갖는고흡수성 수지를 형성시키는 단계이다. 이러한 표면 가교를 통해 상기 분쇄된 중합체 입자의 표면에는표면가교층(표면개질층)이 형성된다.
일반적으로, 표면 가교제는 고흡수성 수지 입자의 표면에 도포되므로 표면 가교 반응은 고흡수성 수지 입자의 표면 상에서 일어나며, 이는 입자 내부에는 실질적으로 영향을 미치지 않으면서 입자의 표면 상에서의 가교 결합성은 개선시킨다. 따라서 표면 가교 결합된 고흡수성 수지 입자는 내부에서보다표면부근에서 더 높은가교결합도를갖는다.
그런데 이러한 표면 가교 반응에 의해 가압 흡수능과 통액성(permeability)은개선될수있지만재습윤특성은떨어질수있다.
그런데, 본 발명의 제조방법에 따르면, 베이스 수지에 표면 가교제를 혼합하여 표면 가교 반응을 수행하기 위해 승은하기 전에 소수성 물질과 친수성 고분자를 상기 베이스 수지에 혼합하여 재습윤 특성과 통액성 개선을 동시에 달성할수있다.
상기 소수성 물질은 HLB가그하한값으로 0이상,또는 1 이상,또는 2 이상이면서 상한값으로 6이하,또는 5 이하,또는 5.5이하를만족하는물질을 사용할 수 있다. 또한, 상기 소수성 물질은 표면 가교 반응시 녹아 베이스 수지의 표면 개질층에 위치해야 하므로 용융 온도(melting point)가 표면 가교 반응온도이하인물질을사용할수있다.
사용가능한소수성 물질로는 예를들어,글리세릴 스테아레이트(glyceryl stearate),글리콜스테아레이트 (glycol stearate),마그네슘스테아레이트 (magnesium stearate), 글리세릴 라우레이트 (glyceryl laurate), 소르비탄 스테아레이트 (sorbitan stearate), 소르비탄 트리올리에이트 (sorbitan trioleate), 또는 PEG-4 디라우레이트 (PEG-4 dilaurate) 등을 들 수 있으며, 바람직하게는 글리세릴 5 스테아레이트를사용할수있으나,이에 제한되는것은아니다.
상기 소수성 물질은 상기 베이스 수지의 표면의 표면 개질층 내에 분포하여 고흡수성 수지가 액체를 흡수하여 팽윤되는 과정에서 팽윤된 수지 입자들이 높아진 압력에 따라 서로 응집되거나 뭉쳐지는 것을 방지하며, 표면에 소수성을 부여함으로써 액체의 투과 및 확산을 보다 용이하게 할 수
10 있다.따라서 고흡수성 수지의 재습윤특성을개선하는데 기여할수있다.또한 소수성 물질이 표면에 코팅되어 있으므로,내부에 흡수된 액체가팽윤된 수지 바깥으로 이동하기 어렵게 만들어준다.따라서 고톱수성 수지의 재습윤특성을 개선하는데 기여할수있다.
한편 이러한 소수성 물질의 도입에 의해 고흡수성 수지의 재습윤
15 특성은 개선될 수 있지만, 표면의 소수성이 커짐에 따라 젖음성 (wetting)이 나빠질 수 있다. 따라서 과량의 액체가순간적으로 주입될 경우 누출 (leakage) 현상이 발생할우려가있다.
한편 본발명의 제조방법에 따르면,베이스수지에 상기 소수성 물질과 함께 친수성 고분자를 함께 도입한다.상기 친수성 고분자는고흡수성 수지의
20 젖음성을 향상하는 역할을 함으로써 재습윤 특성을 개선하여 기저귀에서의 소변누줄현상을방지할수있다.
상기 소수성 물질은 상기 베이스 수지 100 중량부에 대하여 약 0.02 중량부 이상,또는 약 0.025중량부 이상,또는 약 0.05 중량부 이상이면서 약 0.5중량부 이하,또는 약 0.3 중량부 이하,또는 약 0.1 중량부 이하가되도록 25 혼합할수있다.상기 소수성 물질의 함량이 0.02중량부미만으로너무적으면 재습윤특성을 개선하기에 부족할수 있고, 0.5 중량부를 초과하여 너무 많이 포함될경우베이스수지와소수성 물질이 서로탈리 되어 재습윤개선효과가 없거나 불순물로 작용하는 문제가 있을 수 있으므로 이러한 관점에서 상기 중량부범위가바람직할수있다.
0 상기 친수성 고분자는 물에 용해되는 고분자 화합물이며, 동물계, 2019/117513 1»(:1^1{2018/014974
식물계, 다당류계 등의 천연고분자, 셀롤로오스 유도체, 합성고분자등을모두 이용할 수 있지만, 환경, 안전, 위생문제의 관점에서 직접 인체에 접촉되었을 때도 안전성이 우수한 고분자가 바람직하고, 그 예로는 덱스트린계 화합물, 셀룰로오스계 화합물, 폴리비닐알코올계 화합물, 또는 폴리에틸렌 글리콜계 화합물등을사용할수있다.
또한상기 친수성 고분자는도瓦묘가 8 이상,또는 9이상,또는 10이상, 또는 12 이상, 또는 13 이상이면서 20 이하, 또는 19 이하, 또는 18 이하인 것을사용할수있다.
Figure imgf000014_0001
범위에 있을때,소수성 물질에 따른젖음성 하락을 보완하여 본 발명이 목적하는 재습윤 및 젖음성 개선 효과 발현이 용이할수있다.
또한 상기 친수성 고분자는 이에 한정되는 것은 아니나, 중량평균분자량(1 )이 약 600내지 약 20,000 ^01인것을사용할수있다. 상기 친수성 고분자는상기 베이스수지 100중량부에 대하여 약 0.001 중량부 이상, 또는 약 0.005 중량부 이상, 또는 약 0.01 중량부, 또는 약 0.02 중량부 이상이면서 약 0.5중량부 이하,또는 약 0.3 중량부 이하,또는 약 0.1 중량부 이하가 되도록 혼합할 수 있다. 상기 친수성 고분자의 함량이 너무 적으면 젖음성 개선이 되지 않을 수 있고, 너무 많이 포함될 경우 재습윤 특성에 악영향을 줄 수 있으므로 이러한 관점에서 상기 중량부 범위가 바람직할수있다.
또한 본 발명의 일 실시예에 따르면, 상기 소수성 물질 및 친수성 고분자는약 1:0.1내지 약 1: 10,또는약 1:0.1내지 약 1:5,또는약 1:0.5내지 약 1:2의 중량비로 사용할 수 있다. 상기 중량비가 1:0.1 미만이면, 친수성 고분자에 의한 젖음성 개선이 미미할 수 있고, 중량비가 1:10 을 초과하여 친수성 고분자가 상대적으로 너무 많이 포함되면 재습윤 특성 개선 효과가 낮아질수있으므로이러한관점에서 상기 중량비 범위가바람직할수있다. 상기 소수성 물질 및 친수성 고분자를 혼합하는 방법은, 상기 베이스 수지에 고르게 혼합할 수 있는 방법이라면 특별히 한정하지 않고 적절히 채택하여사용할수있다.
예를 들어, 상기 소수성 물질은 상기 베이스 수지에 표면 가교제를 포함하는 표면 가교 용액을 혼합하기 전에 건식으로 혼합하거나, 상기 표면 2019/117513 1»(:1^1{2018/014974
가교 용액에 먼저 분산시켜 표면 가교 용액과 함께 베이스 수지에 혼합하는 방식으로혼합할수 있다.또는,상기 표면가교용액과는별도로,상가소수성 물질을용융온도이상으로가열하여 용액상태로혼합할수도있다.
또한, 상기 친수성 고분자 역시 상기 베이스 수지에 표면 가교제를 포함하는표면가교용액을혼합하기 전에 별도로혼합하거나,상기 표면가교 용액에 용해하여 표면가교제와함께 베이스수지에 혼합하는방식으로혼합할 수있다.
상기 표면가교제 첨가시,추가로물을함께혼합하여 표면가교용액의 형태로 첨가할수 있다. 물을 첨가하는 경우,표면 가교제가중합체에 골고루 분산될수 있는 이점이 있다. 이때,추가되는물의 함량은표면 가교제의 고른 분산을 유도하고 중합체 분말의 뭉침 현상을 방지함과 동시에 표면 가교제의 표면 침투깊이를최적화하기 위한목적으로중합체 100중량부에 대해, 약 1 내지 약 10중량부의 비율로첨가되는것이 바람직하다.
또한, 상기 표면 가교제로는 중합체가 갖는 관능기와 반응 가능한 화합물이라면그구성의 한정이 없다.
바람직하게는 생성되는고흡수성 수지의 특성을 향상시키기 위해,상기 표면가교제로다가알콜화합물;에폭시 화합물;폴리아민화합물;할로에폭시 화합물; 할로에폭시 화합물의 축합산물; 옥사졸린 화합물류; 모노-, 디- 또는 폴리옥사졸리디논 화합물; 환상 우레아 화합물; 다가 금속염; 및 알칼렌 카보네이트화합물로이루어진군에서 선택되는 1종이상을사용할수있다. 구체적으로,다가알콜화합물의 예로는모노-,디-,트리-,테트라-또는 폴리에될렌 글리콜, 모노프로필렌 글리콜, 1,3 -프로판디올, 디프로필렌 글리콜, 2, 3, 4 -트리메틸- 1,3 -펜탄디올, 폴리프로필렌 글리콜, 글리세롤, 폴리글리세롤, 2 - 부텐- 1,4 -디올, 1,4 -부탄디올, 1,3 -부탄디올, 1,5 -펜탄디올, 1,6 -핵산디올, 및 1,2- 사이클로핵산디메탄올로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.
또한,에폭시 화합물로는에틸렌글리콜디글리시딜에테르및글리시돌 등을 사용할 수 있으며, 폴리아민 화합물류로는 에틸렌디아민, 디에틸렌트리아민, 트리에틸렌테트라아민, 테트라에틸렌펜타민, 펜타에틸렌핵사민, 폴리에틸렌이민 및 폴리아미드폴리아민로 이루어진 군에서 2019/117513 1»(:1^1{2018/014974
선택되는 1종이상을사용할수있다.
그리고 할로에폭시 화합물로는 에피클로로히드린, 에피브로모히드린 및 (X-메틸에피클로로히드린을 사용할 수 있다. 한편, 모노-, 디- 또는 폴리옥사졸리디논화합물로는예를들어 2 -옥사졸리디논등을사용할수있다. 그리고, 알킬렌 카보네이트화합물로는 에틸렌 카보네이트등을사용할 수 있다. 이들을각각단독으로사용하거나서로 조합하여 사용할수도 있다. 한편, 표면 가교 공정의 효율을 높이기 위해, 이들 표면 가교제 중에서 1 종 이상의 탄소수 2 내지 10의 다가 알코올 화합물류를 1 종 이상 포함하여 사용할수있다.
상기 첨가되는 표면 가교제의 함량은 구체적으로 추가되는 표면 가교제의 종류나 반응 조건에 따라 적절히 선택될 수 있지만, 통상 베이스 수지 100 중량부에 대해, 약 0.001 내지 약 5 중량부, 바람직하게는 약 0.01 내지 약 3 중량부,더욱 바람직하게는 약 0.05 내지 약 2중량부를사용할수 있다.
표면 가교제의 함량이 지나치게 적으면, 표면 가교 반응이 거의 일어나지 않으며,중합체 100중량부에 대해, 5중량부를초과하는경우,과도한 표면 가교 반응의 진행으로 인해 흡수능력 및 물성의 저하현상이 발생할수 있다.
한편,상술한상기 표면가교제 외에 다가금속염, 예를들어,알루미늄 염, 보다 구체적으로 알루미늄의 황산염, 칼륨염, 암모늄염, 나트륨염 및 염산염으로이루어진군에서 선택된 1종이상을더 포함할수있다.
이러한 다가 금속염은 추가로 사용함에 따라, 일 구현예의 방법으로 제조된 고흡수성 수지의 통액성 등을 더욱 향상시킬 수 있다. 이러한 다가 금속염은상기 표면 가교제와함께 표면 가교용액에 첨가될수 있으며,상기 베이스 수지 100중량부에 대하여 0.01 내지 4중량부의 함량으로사용될 수 있다.
다음에, 상기 베이스 수지, 표면 가교제, 소수성 물질, 및 친수성 고분자의 혼합물에 열을 가하여 승온함으로써 상기 베이스 수지에 대해 표면 개질단계를수행한다(단계 3).
상기 표면 개질 단계는 약 90 내지 약 190 °0, 바람직하게는 약 100 내지 약 180 C의 온도에서 약 10내지 약 90분,바람직하게는약 20내지 약 70 분 동안 가열시킴으로써 수행할 수 있다. 가교 반응 온도가 90 °C 미만이거나 반응 시간이 너무 짧을 경우 표면 가교 반응이 제대로 일어나지 않아투과도가낮아질수 있고, 190 °C를초과하거나반응시간이 너무길 경우 보수능이 저하되는문제가발생할수있다.
표면 개질 반응을위한승온수단은특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀, 열풍,뜨거운 기름과 같은 승은한유체 등을사용할 수 있으나, 본 발명이 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한가열방법을들수있으나,상술한예에 본발명이 한정되는것은아니다. 상기와같은표면개질단계에 의해,상기 베이스수지의 표면에는표면 가교제와 베이스 수지가 갖는 관능기와 반응하여 형성된 표면 가교 구조가 형성되며,상기 표면 가교구조내에 전술한소수성 물질 및 친수성 고분자가 고르게분포한표면개질층이 형성될수있다.
따라서,상기 본 발명의 제조방법으로 제조된 고흡수성 수지는, 이러한 표면개질층으로인해 보수능과가압흡수능등의 물성을저하시키지 않으면서 향상된재습윤특성,통액성 및 젖음성을가질수있다.
이에 본 발명의 다른 일 구현예에 따르면, 산성기의 적어도 일부가 중화된 아크릴산계 단량체가 가교 중합된 가교 중합체를 포함하는 베이스 수지;및 상기 베이스수지의 입자표면에 형성되어 있고,상기 가교중합체가 표면 가교제를매개로추가가교되어 있는표면 개질층을포함하고,상기 표면 개질층은 HLB가 0이상 6이하인소수성 물질 및 친수성 고분자를포함하며, 하기 식 1에 따라 즉정되는 통액성 (permeability, 단위: 초)이 30초 이하인 고흡수성 수지를제공한다:
[식 1]
통액성 (sec) = Tl - B
상기 식 1에서, 2019/117513 1»(:1^1{2018/014974
은 크로마토그래피 관 내에 분급(30# - 50#)된 고흡수성 수지 시료 0.2±0.0005은을넣고염수를가하여 염수부피가 50 1111가되게 한후, 30분간 방치 후, 액면높이가 40 1X11에서 20 1111까지 줄어드는 데에 걸리는시간이고, 6는염수가채워진크로마토그래피 관에서 액면높이가 40 1111에서 20 1111까지 줄어드는데에 걸리는시간이다.
Figure imgf000018_0001
방법은특허번호 1¾9656242 ^2특허에 기재된방법에 준하여 측정하였다.
통액성 측정 장치는 내경 20_이며, 하단에
Figure imgf000018_0002
필터가 장착된 크로마토그래피 관이다. 크로마토그래피 관에 피스톤을 넣은상태에서의 액량 201111및 401111의 액면에 선을표시하였다. 이 후,크로마토그래피 관하부 § 8 필터와 콕크 사이에 기포가 생기지 않도록 역으로 물을 투입하여 약 10 를 채우고 염수로 2~3회 세척하고, 401X11 이상까지 0.9% 염수를 채웠다. 크로마토그래피 관에 피스톤을 넣고 하부 밸브를 열어 액면이 401111에서 201111 표시선까지 줄어드는시간(미을기록하였다.
크로마토그래피 관에 염수를 101111남기고,분급(30# - 50#)된 고흡수성 수지 시료 0.2±0.0005은을 넣고 염수를가하여 염수부피가 501111가되게 한후, 30분 간 방치하였다. 그 후, 크로마토그래피 관 내에 추가 달린 피스톤(0.3? =106.26쾨을넣고 1분간방치 후,크로마토그래피 관하부밸브를 열어 액면이 401신에서 201신표시선까지 줄어드는시간(꺄)을기록하여, II - ^ 의 시간(단위:초)을계산하였다.
상기 식 1에 따라측정되는통액성은 30초 이하,또는 28초 이하,또는 25초이하,또는 20초이하,또는 18초이하일수있다.상기 통액성은그값이 작을수록우수하여 상기 통액성의 하한은이론상 0초이나,일례로약 5초이상, 또는약 10초이상,또는약 12초이상일수있다.
상기 고흡수성 수지의 구체적인 제조방법 및 물성 등에 대한 상세한 설명은상기 고흡수성 수지의 제조방법에서 상술한바와같다.
상기 고흡수성 수지는, EDANA 법
Figure imgf000018_0003
241.3에 따라 측정한 보수능(01(:)이 약 22 ^이상,또는약 25 ^이상,또는약 27 ^이상이면서, 약 40 ^이하,또는
Figure imgf000018_0004
,또는 약 35 £/§이하의 범위를가질 수 있다. 2019/117513 1»(:1^1{2018/014974
\¥8근 242.3에 따라측정한 0.3
Figure imgf000019_0001
약 22던名이상,또는약 25힘色 이상이면서,약 35은 이하,또는약 33십 이하,또는약 32은/용이하의 범위를 가질수있다.
또한, 상기 고흡수성 수지는, 흡수 속도(\ 1 ^)7} 약 35초 이하, 또는 약 30초, 또는 약 28초 이하일 수 있다. 상기 흡수 속도는 그 값이 작을수록 우수하여 상기 흡수 속도의 하한은 이론상 0초이나, 일례로 약 5초 이상,또는약 10초이상,또는약 12초이상일수있다.
상기 흡수 속도는 생리 식염수에 고흡수성 수지를 가하여 교반시켰을 때, 빠른 를수에 의해 액체의 소용돌이( 0116시가 없어지는 시간( 1116, 단위: 초)을 의미하는 것으로서, 상기 시간이 짧을수록 고흡수성 수지가 빠른 초기 흡수속도를갖는것으로볼수있다.
이와 같이 상기 고듭수성 수지는 우수한통액성을 나타내면서도, 보다 향상된재습윤특성을나타낼수있다.
보다 구체적으로, 상기 고톱수성 수지 1은을 수도수 100은에 침지시켜
10분동안팽윤시킨후,팽윤된상기 고롭수성 수지를수도수에 침지시킨최초 시점으로부터 1시간 동안 여과지 상에서 방치하고 나서, 상기 고흡수성 수지로부터 상기 여과지로 다시 베어나온 물의 중량으로 정의되는 재습윤 특성(무가압 수도주 단가 재습윤)아 2. 아하, 또는 1.5§ 이하, 또는 1 이하로 될 수 있다. 상기 물의 중량은 그 값이 작을수록 우수하여 이론상 하한값은 ¾이나, 예를들어 0.1§이상,또는 0.3§이상,또는 0.5§이상으로될 수있다.
또는 상기 고흡수성 수지
Figure imgf000019_0002
수도수 20¾에 침지시켜 6시간 동안 팽윤시킨 후, 팽윤된 상기 고흡수성 수지를 0.75? 의 압력 하에 1분 동안 여과지 상에서 방치하고 나서,상기 고흡수성 수지로부터 상기 여과지로 다시 베어나온 물의 중량으로 정의되는 재습윤 특성(가압 수도수 재습윤)이 1.5§ 이하,또는 1.2§이하,또는 1.1§이하,또는 1.0§이하로될수있다.상기 물의 중량은 그 값이 작을수록 우수하여 이론상 하한값은
Figure imgf000019_0003
예를 들어 0.1§ 이상,또는 0.3§이상,또는 0.5§이상으로될수있다.
또는 상기 고흡수성 수지 염수 10 에 침지시켜 2시간 동안 팽윤시킨 후, 팽윤된 상기 고흡수성 수지를 0.75psi의 압력 하에 1분 동안 여과지 상에서 방치하고나서,상기 고흡수성 수지로부터 상기 여과지로 다시 베어나온 염수의 중량으로 정의되는 재습윤 특성 (가압 염수 재습윤)이 5.0g 이하, 또는 4.0g 이하, 또는 3.0g 이하, 또는 2.0g 이하로 될 수 있다. 상기 염수의 중량은그값이 작을수록우수하여 이론상하한값은 Og이나, 예를들어 O.lg이상,또는 0.3g이상,또는 0.5g이상으로될수있다.
상기 재습윤 물성 평가에서 사용한 수도수는 전기 전도도가 170 내지 180|xS/cm이다. 수도수의 전기 전도도는 측정 물성에 큰 영향을 주기 때문에 동등한 수준의 전기 전도도를 갖는 수도수를 사용해서 재습윤 등의 물성을 측정할필요가있다.
상기와 같이 본 발명의 고흡수성 수지는 우수한 흡수능을 가지며 다량의 소변을 흡수하였을 경우에도 재습윤 및 소변 누출 현상이 억제될 수 있다.
본 발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는것은아니다.
<실시예>
고흡수성수지의 제조
실시예 1
아크릴산 100 g, 가교제로 폴리에틸렌글리콜디아크릴레이트 (PEGDA,
Mw=523) 0.001 g, 에틸렌글리콜 디글리시딜 에테르 0.32g 열개시제로 소디움 퍼설페이트 (sodium persulfate; SPS) 0.08g, 계면활성제로 소디움 도데실설페이트 (sodium dodecylsulfate) 0.015 g, 31.5%가성소다 (NaOH) 128 g,물 63.5 g을 혼합하여 모노머 수용액 조성물을 제조하였다. 상기 모노머 수용액 조성물을 열중합 반응을 진행하여 중합된 시트를 얻었다. 중합된 시트를 꺼내어 3 cm x 3 cm의 크기로 자른후, 미트 츠퍼 (meat chopper)를 이용하여 다지기 공정 (chopping)을 실시하여 가루 (crumb)를 제조하였다. 상기 가루 (crumb)를 상하로 풍량 전아가 가능한 오븐에서 건조하였다. 185°C의 핫 에어 (hot air)를 15분은 하방에서 상방으로, 15분은 상방에서 하방으로 흐르게 하여 균일하게 건조하였으며, 건조 후 건조체의 함수량은 2% 이하게 되도록 하였다. 건조 후, 분쇄기로 분쇄한 다음, Amplitute 1.5 mm로 10분 분급 (분급 mesh조합: #20/#30/#50/#100)하였으며 각 분급분 (10%/65%/22%/3%)을 수집하여 입경 약 150 rn내지 850
Figure imgf000021_0001
베이스수지 분말을얻었다.
이후, 상기 제조한 베이스 수지 100 중량부에, 표면 가교액 (물 6.2 중량부, 메탄올 6.2 중량부, 에틸렌글리콜 디글리시딜 에테르 0.03 중량부, 글리세롤 모노스테아레이트 (glycerol monosterate) 0.025 중량부, 폴리에틸렌글리콜 (polyethylene glycol 6000) 0.025 중량부, Na2S205 0.05 중량부, 알루미늄설페이트 18수화물 (aluminum sulfate 18 hydrate; Al-S) 0.2중량부, 및 산화알루미늄 ALul30 0.1 중량부)을 고르게 혼합한 후, 140°C에서 30분 동안 표면가교반응을진행하였다.상기 표면 처리 완료후,시브 (sieve)를이용하여 평균입경 850 m이하인고흡수성 수지를얻었다. 실시예 2
상기 실시예 1 에서, 표면 가교액에 포함되는 글리세롤 모노스테아레이트 함량을 0.075 중량부로 하고, 폴리에틸렌글리콜의 함량을
0.075 중량부로 한 것을 제외하고는 실시예 1과 동일하게 하여 고듭수성 수지를얻었다. 실시예 3
상기 실시예 1 에서, 표면 가교액에 포함되는 글리세롤 모노스테아레이트 함량을 0.15 중량부로 하고, 폴리에틸렌글리콜의 함량을 0.075 중량부로 한 것을 제외하고는 실시예 1과 동일하게 하여 고흡수성 수지를얻었다. 실시예 4
상기 실시예 1 에서, 표면 가교액에 포함되는 글리세롤 모노스테아레이트함량을 0.05중량부로하고,폴리에틸렌글리콜의 함량을 0.05 중량부로 한 것을 제외하고는 실시예 1과 동일하게 하여 고톱수성 수지를 얻었다. 비교예 1
상기 실시예 1 에서, 표면 가교액에 글리세롤 모노스테아레이트와 폴리에틸렌글리콜을포함하지 않은것을제외하고는실시예 1과동일하게하여 고흡수성 수지를얻었다. 비교예 2
상기 실시예 1 에서,표면 가교액에 폴리에틸렌글리콜을포함하지 않은 것을제외하고는실시예 1과동일하게하여 고톱수성 수지를얻었다. 비교예 3
상기 실시예 1 에서, 표면 가교액에 글리세롤 모노스테아레이트의 함량을 0.015 중량부로 하고, 폴리에틸렌글리콜을 포함하지 않은 것을 제외하고는실시예 1과동일하게하여 고흡수성 수지를얻었다. 참고예 1
상기 실시예 1 에서, 표면 가교액에 포함되는 글리세롤 모노스테아레이트의 함량을 0.01 중량부로 한 것을 제외하고는 실시예 1과 동일하게 하여 고흡수성 수지를얻었다. <실험예>
상기 실시예들및 비교예들에서 제조한고흡수성 수지에 대하여,다음과 같은방법으로물성을평가하였다.
다르게 표기하지 않는 한, 하기 물성 평가는 모두 항온항습 (23±1 °C, 상대습도 50±10%)에서 진행하였고, 생리식염수 또는 염수는 0.9 중량% 염화나트륨 (NaCl)수용액을의미한다.
또한, 하기 재습윤 물성 평가에서 사용한 수도수는 Orion Star A222 (:회사: Thermo Scientific)을 이용하여 즉정하였을 때, 전기 전도도가 170 내지 180나 S/cm인것을사용하였다.
(1)원심분리 보수능 (CRC : Centrifuge Retention Capacity) 각수지의 무하중하흡수배율에 의한보수능을 EDANA WSP 241.3에 따라측정하였다.
구체적으로, 고흡수성 수지 W0(g) (약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉 (seal)한후,상온에서 생리식염수 (0.9중량%)에 침수시켰다. 30분 경과후, 원심 분리기를 이용하여 250G의 조건 하에서 상기 봉투로부터
3분간 물기를 빼고, 봉투의 질량 W2(g)을 측정하였다. 또, 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 W g)을 측정하였다. 얻어진 각 질량을이용하여 다음과같은식에 따라 CRC(g/g)를산출하였다.
[수학식 1]
CRC (g/g) = {[W2(g) - W1(g)]AV0(g)} - 1
(2)가압톱수능 (AUP: Absorbtion Under Pressure)
각 수지의 0.3 psi의 가압 흡수능을, EDANA법 WSP 242.3에 따라 측정하였다.
구체적으로,내경 60 mm의 플라스틱의 원통바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 상온 및 습도 50%의 조건 하에서 철망 상에 고흡수성 수지 W0(g) (0.90 g)을균일하게 살포하고,그위에 0.3 psi의 하중을 균일하게 더 부여할 수 있는 피스톤은 외경 60 mm 보다 약간 작고 원통의 내벽과 틈이 없고 상하 움직임이 방해받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을측정하였다.
직경 150 mm의 페트로 접시의 내측에 직경 90mm 및 두께 5mm의 유리 필터를두고, 0.9중량%염화나트륨으로구성된생리식염수를유리 필터의 윗면과 동일 레벨이 되도록 하였다. 그 위에 직경 90mm의 여과지 1장을 실었다. 여과지 위에 상기 측정 장치를 싣고, 액을 하중 하에서 1시간 동안 흡수시켰다. 1시간후측정 장치를들어올리고,그중량 W4(g)을측정하였다.
얻어진 각 질량을 이용하여 다음 식에 따라 가압 흡수능 (g/g)을 산출하였다.
[수학식 2]
AUP(g/g) = [W4(g) - W3(g)]/W0(g) (3)통액성 (Permeability)
통액성 (peremeability) 측정 방법은 발행번호 US9656242 B2 특허에 기재된방법에 준하여 측정하였다.
통액성 즉정 장치는 내경 20rran이며, 하단에 glass 필터가 장착된 크로마토그래피 관이다. 크로마토그래피 관에 피스톤을 넣은상태에서의 액량 20ml및 40ml의 액면에 선을표시하였다. 이 후,크로마토그래피 관하부 glass 필터와 콕크 사이에 기포가 생기지 않도록 역으로 물을 투입하여 약 10ml를 채우고 염수로 2~3회 세척하고, 40ml 이상까지 0.9% 염수를 채웠다. 크로마토그래피 관에 피스톤을 넣고 하부 밸브를 열어 액면이 40ml에서 20ml 표시선까지 줄어드는시간 ( 을기록하였다:
크로마토그래피 관에 염수를 10ml남기고, 분급 (30# - 50#)된 고흡수성 수지 시료 0.2±0.0005g을 넣고 염수를가하여 염수부피가 50ml가되게 한후, 30분 간 방치하였다. 그 후, 크로마토그래피 관 내에 추가 달린 피스톤 (0.3psi=106.26g)을넣고 1분간방치 후,크로마토그래피 관하부밸브를 열어 액면이 40ml에서 20ml표시선까지 줄어드는시간 (T1)을기록하여, T1 - B 의 시간 (단위:초)을계산하였다.
(4)젖음성 (wetting time)
흡수 속도 (vortex time)를 측정하는 국제 공개 출원 제 1987-003208호에 기재된방법에 준하여 젖음성 (wetting time)을초단위로측정하였다/
구체적으로, 23 °C 내지 24°C의 50 mL의 생리 식염수에 2g의 고흡수성 수지를넣고,마그네틱 바 (직경 8 mm,길이 30 mrn)를 600 rpm으로교반하면서, 액체 상부에 젖지 않은 고흡수성 수지가 관찰되는 시간까지를 측정하였다. 시간이 길수록젖음성이 좋지 않은것으로평가할수있다.
(5)무가압수도수단기 재습윤 (rewet, lhr)
① 컵 (윗부분 직경 7cm, 아래 직경 5cm, 높이 8cm, 부피 192ml)에 고톱수성 수지 lg을넣고수도수 (tap water) 100g을부은후팽윤시켰다.
②수도수를부은시점으로부터 10분뒤에 필터페이퍼 (제조사: whatman, catalog No. 1004-110, pore size 20-25|im,지름 11cm) 5장위에 팽윤된고톱수성 수지가담긴컵을뒤집어 놓았다.
③ 수도수를 부은 시점으로부터 1시간 뒤에 컵과 고흡수성 수지를 제거하고필터페이퍼에 묻은수도수의 양 (단위 : g)을측정하였다. (6)가압수도수재습윤 (rewet, 6hrs)
①지름 13cm페트리 접시 (petri dish)에 고흡수성 수지 4g을고르게뿌려 분산시키고수도수 200g을부은후 6시간동안팽윤시켰다.
② 6시간동안 팽윤시킨 고흡수성 수지를 필터페이퍼 (제조사: Whatman, catalog No. 1004-110, pore size 20-25|xm,지름 11cm) 20장위에 깔고지름 11cm, 5kg 추 (0.75psi)로 1분간가압하였다.
③ 1분 간 가압 후 필터페이퍼에 묻은 수도수의 양 (단위: 을 측정하였다.
(7)가압염수재습윤 (rewet, 2hrs)
①지름 13cm페트리 접시 (petri dish)에 고흡수성 수지 4g을고르게뿌려 분산시키고염수 100g을부은후 2시간동안팽윤시켰다.
② 2시간동안 팽윤시킨 고흡수성 수지를 필터페이퍼 (제조사: Whatman, catalog No. 1004-110, pore size 20-25나 m,지름 11cm) 20장위에 깔고지름 11 cm, 5kg 추 (0.75psi)로 1분간가압하였다.
③ 1분간가압후필터페이퍼에 묻은염수의 양 (단위: g)을측정하였다.
(8)톱수속도 (Vortex time)
흡수 속도 (vortex time)는 국제 공개 출원 제 1987-003208호에 기재된 방법에 준하여 초단위로측정하였다.
구체적으로, 23 °C 내지 24°C의 50 mL의 생리 식염수에 2g의 고흡수성 수지를 넣고,마그네틱 바 (직경 8 mm, 길이 30 mm)를 600 rpm으로 교반하여 와류 (vortex)가사라질때까지의 시간을초단위로즉정하여산줄되었다. 상기 실시예들과비교예들에 관한물성값을하기 표 1에 기재하였다.
【표 1】
Figure imgf000026_0001
표 1을 참조하면, 소수성 물질과 친수성 고분자를 모두 사용한 본 발명의 실시예 1 내지 4는 모두 우수한 젖음성과 통액성을 나타내었으며, 무가압하및 가압하에서 수도수에 대한재습윤량과가압하의 염수 재습윤량이 매우적어 개선된재습윤특성을나타냄을확인하였다.
반면 비교예 1은 재습윤과 통액성이 실시예 보다 모두 좋지 않았고, 친수성 고분자를 도입하지 않은 비교예 2와 3은 재습윤 특성은 실시예와 유사한수준이었으나젖음성과흡수속도가좋지 않음을알수있다.
소수성 물질을 0.01 중량부로 포함하는 참고예 1은 비교예 1보다는 재습윤특성과통액성이 좋았으나,실시예 1 내지 4보다는좋지 않음을 알수 있다.

Claims

【특허청구범위】
【청구항 1]
산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체 및 내부 가교제가 가교 중합된 베이스 수지 (base resin)를 준비하는 단계 (단계 1);
상기 베이스 수지에, HLB가 0 이상 6 이하인 소수성 물질, 친수성 고분자,및표면가교제를혼합하는단계 (단계 2);및
상기 단계 2의 혼합물을 승은하여 상기 베이스 수지에 대한 표면 개질을수행하는단계 (단계 3);
를포함하는,고흡수성 수지의 제조방법.
【청구항 2]
제 1항에 있어서,
상기 단계 2에서, 상기 소수성 물질을 먼저 상기 베이스 수지에 건식으로 혼합하고, 이어서 상기 표면 가교제, 및 친수성 고분자를 혼합하는, 고흡수성 수지의 제조방법.
【청구항 3】
一제 2항에 있어서-,
상기 표면 가교제 및 친수성 고분자는 물에 용해하여 표면 가교 용액 상태로혼합하는,고흡수성 수지의 제조방법.
【청구항 4】
제 1항에 있어서,
상기 소수성 물질은용융온도 (melting point)가상기 단계 3의 승온온도 이하인,고흡수성 수지의 제조방법.
【청구항 5】
제 1항에 있어서,
상기 소수성 물질은 글리세릴 스테아레이트 (glyceryl stearate), 글리콜 스테아레이트 (glycol stearate), 마그네슘 스테아레이트 (magnesium stearate), 글리세릴 라우레이트 (glyceryl laurate), 소르비탄 스테아레이트 (sorbitan stearate), 소르비탄 트리올리에이트 (sorbitan trioleate), 및 PEG-4 디라우레이트 (PEG-4 dilaurate)로 이루어진 군으로부터 선택되는 1종 이상을 포함하는, 고흡수성 수지의 제조방법.
【청구항 6】
제 1항에 있어서,
상기 친수성 고분자는 HLB가 8이상인,고흡수성 수지의 제조방법.
【청구항 7]
저 U항에 있어서,
상기 친수성 고분자는 덱스트린계 화합물, 셀룰로오스계 화합물, 폴리비닐알코올계 화합물, 및 폴리에틸렌글리콜계 화합물로 이루어진 군으로부터 선택되는 1종이상을포함하는,고흡수성 수지의 제조방법.
【청구항 8】
제 1항에 있어서,
상기 소수성 물질은 글리세릴 스테아레이트 (glyceryl stearate)이고, 상기 친수성 고분자는 폴리에틸렌글리콜 (polyethylene glycol)인, 고롭수성 수지의 제조방법.
【청구항 9]
제 1항에 있어서,
상기 소수성 물질은상기 베이스수지 100중량부에 대하여 0.02내지
0.5중량부로혼합하는,고흡수성 수지의 제조방법.
【청구항 10】
제 1항에 있어서,
상기 친수성 고분자는 상기 베이스 수지 100 중량부에 대하여 0.001 2019/117513 1»(:1^1{2018/014974
내지 0.5중량부로혼합하는,고흡수성 수지의 제조방법.
【청구항 11】
제 1항에 있어서,
상기 단계 3은 90 내지 1901:의 온도에서 수행하는, 고흡수성 수지의 제조방법.
【청구항 12】
제 1항에 있어서,
상기 단계 1은,
산성기를 가지며 상기 산성기의 적어도 일부가 중화된 아크릴산계 단량체, 내부 가교제, 및 중합 개시제를 포함하는 모노머 조성물을 중합하여 함수겔상중합체를형성하는단계;
상기 함수겔상중합체를건조하는단계;
상기 건조된중합체를분쇄하는단계;및
상기 분쇄된중합체를분급하는단계를포함하는,고흡수성 수지의 제조 방법.
【청구항 13】
제 1항에 있어서,
상기 고흡수성 수지는 하기 식 1에 따라 측정되는
Figure imgf000029_0001
단위:초)이 30초이하인,고흡수성 수지의 제조방법:
[식 1]
통액성 ¥) = 11 - 8
상기 식 1에서,
은크로마토그래피 관내에 분급 (30# 50#)된 고흡수성 수지 시료
0.2±0.0005용을넣고염수를가하여 염수부피가 50 가되게 한후, 30분간 방치 후, 액면높이가 40 1111에서 20 1111까지 줄어드는 데에 걸리는시간이고, 8는염수가채워진크로마토그래피 관에서 액면높이가 40 m\에서 20 1111까지 줄어드는데에 걸리는시간이다.
【청구항 14】
산성기의 적어도일부가중화된 아크릴산계 단량체가가교중합된가교 중합체를포함하는베이스수지;및
상기 베이스 수지의 입자 표면에 형성되어 있고, 상기 가교 중합체가 표면가교제를매개로추가가교되어 있는표면개질층을포함하고,
상기 표면 개질층은 HLB 가 0 이상 6 이하인 소수성 물질 및 친수성 고분자를포함하며,
하기 식 1에 따라즉정되는통액성 (permeability,단위:초)이 30초이하인, 고듭수성 수지:
[식 1]
통액성 (sec) = Tl - B
상기 식 1에서,
T1은 크로마토그래피 관 내에 분급 (30# - 50#)된 고흡수성 수지 시료 0.2±0.0005g을넣고염수를가하여 염수부피가 50 ml가되게 한후, 30분간 방치 후, 액면높이가 40 ml에서 20 ml까지 줄어드는 데에 걸리는시간이고, B는염수가채워진크로마토그래피 관에서 액면높이가 40 ml에서 20 ml까지 줄어드는데에 걸리는시간이다.
【청구항 15】
제 14항에 있어서,
상기 소수성 물질은 글리세릴 스테아레이트 (glyceryl stearate), 글리콜 스테아레이트 (glycol stearate), 마그네슘 스테아레이트 (magnesium stearate), 글리세릴 라우레이트 (glyceryl laurate), 소르비탄 스테아레이트 (sorbitan stearate), 소르비탄 트리올리에이트 (sorbitan trioleate), 및 PEG-4 디라우레이트 (PEG-4 dilaurate)로이루어진군으로부터 선택되는 1종이상을포함하는,고흡수성 수지.
【청구항 16]
제 14항에 있어서, 2019/117513 1»(:1^1{2018/014974
상기 고흡수성 수지는, 상기 고흡수성 수지 1§ 을 수도수 100§ 에 침지시켜 10분 동안 팽윤시킨 후, 팽윤된 상기 고흡수성 수지를 수도수에 침지시킨 최초 시점으로부터 1시간 동안 여과지 상에서 방치하고 나서, 상기 고흡수성 수지로부터 상기 여과지로 다시 베어나온 물의 중량으로 정의되는 재습윤특성(무가압수도수단기 재습윤)이 2.(¾이하인,고흡수성 수지.
【청구항 17】
제 14항에 있어서,
상기 고롭수성 수지는, 상기 고톱수성 수지 4은 을 수도수 200은 에 침지시켜 6시간 동안 팽윤시킨 후, 팽윤된 상기 고흡수성 수지를 0.75? 의 압력 하에 1분동안여과지 상에서 방치하고나서,상기 고흡수성 수지로부터 상기 여과지로 다시 베어나온 물의 중량으로 정의되는 재습윤 특성(가압 수도수재습윤)이 1.5은이하인,고흡수성 수지.
【청구항 18】
제 14항에 있어서,
상기 고톱수성 수지는,상기 고톱수성 수지 4은을염수 100은에 짐지시켜 2시간 동안 팽윤시킨 후, 팽윤된 상기 고흡수성 수지를 0.75? 의 압력 하에 1분- 동안 여-과지 상에서 방치하고 나서, 상기 고흡수성 수지로부터 상기 여과지로 다시 베어나온 염수의 중량으로 정의되는 재습윤 특성 }압 염수 재습윤)이 5.0은이하인,고톱수성 수지.
【청구항 19】
제 14항에 있어서,
상기 소수성 물질은상기 베이스수지 100중량부에 대하여 0.02내지
0.5중량부로포함되는,고흡수성 수지.
PCT/KR2018/014974 2017-12-11 2018-11-29 고흡수성 수지 및 이의 제조 방법 WO2019117513A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/770,414 US11613613B2 (en) 2017-12-11 2018-11-29 Superabsorbent polymer composition and method for preparing the same
EP18889096.6A EP3705511A4 (en) 2017-12-11 2018-11-29 SUPER ABSORBENT POLYMER AND MANUFACTURING METHOD FOR IT
JP2020529204A JP7039105B2 (ja) 2017-12-11 2018-11-29 高吸水性樹脂およびその製造方法
CN201880078461.7A CN111433260B (zh) 2017-12-11 2018-11-29 超吸收性聚合物组合物及其制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0169497 2017-12-11
KR20170169497 2017-12-11
KR10-2018-0148842 2018-11-27
KR1020180148842A KR102565748B1 (ko) 2017-12-11 2018-11-27 고흡수성 수지 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2019117513A1 true WO2019117513A1 (ko) 2019-06-20

Family

ID=66820500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014974 WO2019117513A1 (ko) 2017-12-11 2018-11-29 고흡수성 수지 및 이의 제조 방법

Country Status (1)

Country Link
WO (1) WO2019117513A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022512151A (ja) * 2019-09-18 2022-02-02 エルジー・ケム・リミテッド 高吸水性樹脂およびその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987003208A1 (fr) 1985-11-22 1987-06-04 Beghin-Say Sa Procede de preparation d'une composition absorbant les liquides
KR100858387B1 (ko) * 2004-02-05 2008-09-11 가부시키가이샤 닛폰 쇼쿠바이 입자상 수분흡수제 및 그 제조방법과 수분흡수성 물품
JP5558096B2 (ja) * 2007-03-01 2014-07-23 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤
KR20160063956A (ko) * 2014-11-27 2016-06-07 주식회사 엘지화학 가압하 흡수 속도가 빠른 고흡수성 수지 및 이의 제조 방법
KR20170020113A (ko) * 2015-08-13 2017-02-22 주식회사 엘지화학 고흡수성 수지의 제조 방법
US9656242B2 (en) 2013-09-30 2017-05-23 Lg Chem, Ltd. Method for preparing a super absorbent polymer
KR20170106799A (ko) * 2016-03-14 2017-09-22 주식회사 엘지화학 고흡수성 수지의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987003208A1 (fr) 1985-11-22 1987-06-04 Beghin-Say Sa Procede de preparation d'une composition absorbant les liquides
KR100858387B1 (ko) * 2004-02-05 2008-09-11 가부시키가이샤 닛폰 쇼쿠바이 입자상 수분흡수제 및 그 제조방법과 수분흡수성 물품
JP5558096B2 (ja) * 2007-03-01 2014-07-23 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤
US9656242B2 (en) 2013-09-30 2017-05-23 Lg Chem, Ltd. Method for preparing a super absorbent polymer
KR20160063956A (ko) * 2014-11-27 2016-06-07 주식회사 엘지화학 가압하 흡수 속도가 빠른 고흡수성 수지 및 이의 제조 방법
KR20170020113A (ko) * 2015-08-13 2017-02-22 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR20170106799A (ko) * 2016-03-14 2017-09-22 주식회사 엘지화학 고흡수성 수지의 제조 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ODIAN: "Principle of Polymerization", 1981, WILEY, pages: 203
REINHOLD SCHWALM: "UV Coatings: Basics, Recent Developments and New Application", 2007, ELSEVIER, pages: 115
See also references of EP3705511A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022512151A (ja) * 2019-09-18 2022-02-02 エルジー・ケム・リミテッド 高吸水性樹脂およびその製造方法
JP7184443B2 (ja) 2019-09-18 2022-12-06 エルジー・ケム・リミテッド 高吸水性樹脂およびその製造方法

Similar Documents

Publication Publication Date Title
KR102566286B1 (ko) 고흡수성 수지 및 이의 제조 방법
KR102447936B1 (ko) 고흡수성 수지 및 이의 제조 방법
EP3680277A1 (en) Superabsorbent polymer and preparation method thereof
EP3521343B1 (en) Absorbent polymer and preparation method therefor
WO2019117541A1 (ko) 고흡수성 수지 및 이의 제조 방법
JP7039105B2 (ja) 高吸水性樹脂およびその製造方法
JP7247187B2 (ja) 高吸水性樹脂およびその製造方法
JP7184443B2 (ja) 高吸水性樹脂およびその製造方法
KR20180071940A (ko) 고흡수성 수지 및 이의 제조 방법
WO2018124404A1 (ko) 고흡수성 수지 및 이의 제조 방법
KR20190069103A (ko) 고흡수성 수지 및 이의 제조 방법
KR102634904B1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2019117513A1 (ko) 고흡수성 수지 및 이의 제조 방법
KR20180071933A (ko) 고흡수성 수지 및 이의 제조 방법
WO2019117511A1 (ko) 고흡수성 수지 및 이의 제조 방법
KR20210038250A (ko) 고흡수성 수지의 제조 방법
WO2019083211A1 (ko) 고흡수성 수지의 제조 방법
WO2019112150A1 (ko) 고흡수성 수지 및 이의 제조 방법
JP2024505659A (ja) 高吸水性樹脂の製造方法
KR20220077680A (ko) 고흡수성 수지의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889096

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529204

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018889096

Country of ref document: EP

Effective date: 20200605