WO2019117119A1 - Inverter, inverter in case, electric motor having built-in inverter, and composite device having built-in inverter - Google Patents

Inverter, inverter in case, electric motor having built-in inverter, and composite device having built-in inverter Download PDF

Info

Publication number
WO2019117119A1
WO2019117119A1 PCT/JP2018/045424 JP2018045424W WO2019117119A1 WO 2019117119 A1 WO2019117119 A1 WO 2019117119A1 JP 2018045424 W JP2018045424 W JP 2018045424W WO 2019117119 A1 WO2019117119 A1 WO 2019117119A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
cooler
frame
fixed
smoothing
Prior art date
Application number
PCT/JP2018/045424
Other languages
French (fr)
Japanese (ja)
Inventor
田島 豊
野村 由利夫
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2019117119A1 publication Critical patent/WO2019117119A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to an inverter, a cased inverter, an inverter built-in motor, and an inverter built-in complex device.
  • the conventional inverter comprises a plurality of parts and an inverter case.
  • the plurality of components include a cooler and the like, and are fixed to the inverter case.
  • the inverter case has a box-like shape. Fixing of the component to the inverter case is performed by attaching the component to a boss provided on the inner wall of the inverter case. Alternatively, fixing of the component to the inverter case is performed by fixing a foot provided on the component to the inner wall of the inverter case. In some cases, the foot provided to the first part is fixed to the second part fixed to the inverter case.
  • the first power substrate drives the first motor and the second power substrate drives the second motor (claim 1) ).
  • the first power substrate and the second power substrate include a plurality of switching elements constituting a motor drive circuit (paragraphs 0018 and 0019).
  • the heat generated in the first power substrate is dissipated by the first heat dissipation plate, and the heat generated in the second power substrate is dissipated by the second heat dissipation plate (claim 1).
  • the first power substrate and the first heat sink are integrated, and the second power substrate and the second heat sink are integrated (paragraph 0008).
  • the inverter includes a connector, a smoothing capacitor, a semiconductor power module, a current sensor, a cooler, and the like, and these components are arranged.
  • These parts include parts having different sizes and shapes. For this reason, in the following cases, there is a problem that the gap between parts becomes large. That is, when the component is attached to the boss provided on the inner wall of the inverter case, and the foot provided on the component is fixed to the inner wall of the inverter case, the foot provided on the first component is the inverter For example, when the first part and the second part are stacked and fixed to the second part fixed to the case. In particular, when the gap between a large part and an adjacent part becomes large, dead space is generated around the large part.
  • the present invention is made to solve this problem.
  • the problem to be solved by the present invention is to make it easy to reduce the gap between a plurality of parts and to make the inverter smaller.
  • the inverter is provided with a frame, a semiconductor power module and a cooler.
  • the frame is configured by combining a plurality of frame members including a plurality of rod-like frame members.
  • the semiconductor power module switches direct current and generates alternating current.
  • the cooler is fixed to the frame and cools the semiconductor power module.
  • the restriction on the position at which the part is fixed is reduced, and the restriction on the position at which the part is arranged is reduced. This makes it easy to reduce the gap between the plurality of components, and to miniaturize the inverter.
  • FIG. 5 is a cross-sectional view schematically illustrating a cross section at a position of a cutting line AA in FIG. 4 of the inverter according to the first embodiment.
  • FIG. 5 is a cross-sectional view schematically illustrating a cross-section at the position of cutting line BB in FIG.
  • FIG. 5 is a cross sectional view schematically illustrating a cross section at a position of a cutting line CC in FIG. 4 of the inverter according to the first embodiment.
  • FIG. 5 is a cross-sectional view schematically illustrating a cross section at a position of a cutting line DD in FIG. 4 of the inverter according to the first embodiment.
  • FIG. 5 is a cross sectional view schematically illustrating a cross section at a position of a cutting line EE in FIG. 4 of the inverter according to the first embodiment.
  • FIG. 5 is a cross-sectional view schematically illustrating a cross section at a position of a cutting line FF in FIG. 4 of the inverter according to the first embodiment.
  • FIG. 2 is a cross-sectional view schematically illustrating a cross section of a capacitor group and a frame provided in the inverter of the first embodiment. It is a connection diagram illustrating electric connection in a smoothing capacitor provided in an inverter of a 1st embodiment. It is a top view which illustrates typically the upper surface of the capacitor group provided in the inverter of the 2nd modification of a 1st embodiment, and a frame.
  • FIG. 5 is a cross-sectional view schematically illustrating a structure for cooling a component that is desirably added to the inverter of the first embodiment.
  • FIG. 1 It is sectional drawing which illustrates typically the structure for the heat insulation between the components preferably added to the inverter of 1st Embodiment. It is a sectional view which illustrates a section of an inverter of a 6th modification of a 1st embodiment typically. It is a perspective view which illustrates a cross section of an inverter of a 2nd embodiment typically. It is a perspective view which illustrates a frame provided in an inverter of a 2nd embodiment typically. It is a perspective view which illustrates a cross section of an inverter of a 3rd embodiment typically. It is a sectional view which illustrates a section of an inverter of a 4th embodiment typically.
  • FIG. 1 It is a perspective view which illustrates typically a part of the frame provided in the 1st cooler and the 2nd cooler which were provided in the inverter of a 5th embodiment, and the inverter concerned. It is sectional drawing which illustrates typically the cross section of the 1st cooler and 2nd cooler which were provided in the inverter of 5th Embodiment, and a part of flame
  • the first exemplary embodiment of the present invention relates to an inverter.
  • FIG. 1 is a perspective view schematically illustrating the inverter of the first embodiment.
  • the inverter 1000 illustrated in FIG. 1 comprises an inverter circuit 1010, at least one cooler 1011 and a frame 1012.
  • the inverter 1000 may include components other than these components.
  • the inverter circuit 1010 receives DC and control signals.
  • the inverter circuit 1010 switches the direct current input according to the input signal to generate a three-phase alternating current.
  • the generated three-phase alternating current is output from the inverter circuit 1010.
  • inverter 1000 operates as a power converter that converts direct current into three-phase alternating current.
  • the cooler 1011 dissipates the heat generated by the inverter circuit 1010.
  • the main components provided in the inverter circuit 1010 and the cooler 1011 are fixed to a frame 1012 as a support and supported by the frame 1012.
  • the output three-phase alternating current is supplied to the motor.
  • the generated three-phase alternating current may be supplied to loads other than the motor.
  • the inverter 1000 may generate an alternating current other than the three-phase alternating current. For example, inverter 1000 may generate a single phase alternating current.
  • FIG. 2 is a connection diagram illustrating an electrical connection in the inverter circuit provided in the inverter of the first embodiment.
  • the inverter 1000 configures an inverter circuit 1010, and includes a DC connector 1100, a smoothing capacitor 1110, DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125, a signal terminal connector 1130, and signal wiring. 1140, a drive circuit board 1150 and 1160, a semiconductor power module 1170, AC bus bar electrodes 1180, 1181 and 1182, AC connectors 1190, 1191 and 1192 and current sensors 1200, 1201 and 1202.
  • the inverter circuit 1010 may include components other than these components.
  • the input terminals 1210 and 1211 of the DC connector 1100 contact the electrodes 1220 and 1221 of the smoothing capacitor 1110, respectively.
  • the input terminals 1210 and 1211 are electrically connected to the electrodes 1220 and 1221, respectively.
  • the electrodes 1230, 1231, 1232, 1233, 1234 and 1235 of the smoothing capacitor 1110 contact one end of the DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125 respectively.
  • the other ends of the DC busbar electrodes 1120, 1121, 1122, 1123, 1124 and 1125 contact the DC electrodes 1240, 1241, 1242, 1243, 1244 and 1245 of the semiconductor power module 1170, respectively.
  • the electrodes 1230, 1231, 1232, 1233, 1234 and 1235 are electrically connected to the DC electrodes 1240, 1241, 1242, 1243, 1244 and 1245 through the DC busbar electrodes 1120, 1121, 1122, 1123, 1124 and 1125 respectively. Connected.
  • the DC bus bar electrodes 1120, 1122 and 1124 are P electrode bus bars for U phase, V phase and W phase, respectively.
  • the DC bus bar electrodes 1121, 1123 and 1125 are N electrode bus bars for U phase, V phase and W phase, respectively.
  • the AC electrodes 1250, 1251 and 1252 of the semiconductor power module 1170 are in contact with one ends of the AC busbar electrodes 1180, 1181 and 1182, respectively.
  • the other ends of the AC bus bar electrodes 1180, 1181 and 1182 contact the output terminal 1260 of the AC connector 1190, the output terminal 1261 of the AC connector 1191, and the output terminal 1262 of the AC connector 1192, respectively.
  • the AC electrodes 1250, 1251 and 1252 are electrically connected to the output terminals 1260, 1261 and 1262 through the AC busbar electrodes 1180, 1181 and 1182, respectively.
  • the DC electrodes 1240, 1241, 1242, 1243, 1244 and 1245 of the semiconductor power module 1170 serve as DC input terminals.
  • the AC electrodes 1250, 1251 and 1252 of the semiconductor power module 1170 become an AC output terminal.
  • the plurality of terminals 1270 of the signal terminal connector 1130 are in contact with one ends of the plurality of signal wirings 1140, respectively.
  • the other ends of the plurality of signal wirings 1140 contact the plurality of electrodes 1280 of the drive circuit boards 1150 and 1160, respectively.
  • the plurality of terminals 1270 are electrically connected to the plurality of electrodes 1280 via the plurality of signal wirings 1140, respectively.
  • a direct current before high voltage smoothing is input from the outside to the input terminals 1210 and 1211 of the DC connector 1100.
  • the direct current before smoothing input from the outside to the DC connector 1100 is input to the electrodes 1220 and 1221 of the smoothing capacitor 1110 and smoothed by the smoothing capacitor 1110.
  • the smoothing capacitor 1110 generates a smoothed direct current.
  • the smoothed direct current is output from the electrodes 1230 and 1231 of the smoothing capacitor 1110, is output from the electrodes 1232 and 1233 of the smoothing capacitor 1110, and is output from the electrodes 1234 and 1235 of the smoothing capacitor 1110.
  • the smoothed direct current output from the electrodes 1230 and 1231 is transmitted by the DC bus bar electrodes 1120 and 1121, and input to the DC electrodes 1240 and 1241 of the semiconductor power module 1170.
  • the smoothed direct current output from the electrodes 1232 and 1233 is transmitted by the DC bus bar electrodes 1122 and 1123 and input to the DC electrodes 1242 and 1243 of the semiconductor power module 1170.
  • the smoothed direct current output from the electrodes 1234 and 1235 is transmitted by the DC bus bar electrodes 1124 and 1125 and input to the DC electrodes 1244 and 1245 of the semiconductor power module 1170. Thereby, the direct current switched by the semiconductor power module 1170 becomes the smoothed direct current.
  • a control signal is input from the outside to the terminal 1270 of the signal terminal connector 1130.
  • the signal input to the signal terminal connector 1130 is transmitted by the signal wiring 1140 and input to the electrodes 1280 of the drive circuit boards 1150 and 1160.
  • the drive circuit boards 1150 and 1160 drive the semiconductor power module 1170 based on the input signal.
  • the semiconductor power module 1170 switches direct current input to the DC electrodes 1240 and 1241 and switches direct current input to the DC electrodes 1242 and 1243 according to driving by the drive circuit boards 1150 and 1160, and DC electrodes 1244 and 1245. Switch the direct current input to.
  • the semiconductor power module 1170 generates a three-phase alternating current.
  • the generated three-phase alternating current is output from the AC electrodes 1250, 1251 and 1252 of the semiconductor power module 1170.
  • the output three-phase alternating current is transmitted by the AC bus bar electrodes 1180, 1181, and 1182, and is input to the output terminal 1260 of the AC connector 1190, the output terminal 1261 of the AC connector 1191, and the output terminal 1262 of the AC connector 1192.
  • the input three-phase alternating current is output from the output terminals 1260, 1261 and 1262 to the outside.
  • the inverter 1000 When the inverter 1000 generates a single-phase alternating current, the inverter 1000 is a semiconductor power module that switches direct current to generate a single-phase alternating current, an AC bus bar electrode that transmits the generated single-phase alternating current, and the transmitted single-phase alternating current It has an output terminal for outputting alternating current to the outside. More generally, the inverter 1000 includes a semiconductor power module that switches direct current and generates alternating current, an AC bus bar electrode that transmits the generated alternating current, and an AC connector that outputs the transmitted alternating current to the outside.
  • Current sensors 1200, 1201 and 1202 are disposed above or below AC busbar electrodes 1180, 1181 and 1182, respectively, and detect the magnitude of the current flowing through AC busbar electrodes 1180, 1181 and 1182. The magnitude of the detected current is used to control the current flowing to the motor.
  • the electrode 1220 of the smoothing capacitor 1110 constitutes one DC bus bar that transmits direct current before smoothing.
  • the electrode 1221 of the smoothing capacitor 1110 constitutes one DC bus bar that transmits direct current before smoothing.
  • the electrode 1230 of the smoothing capacitor 1110, the bus bar electrode 1120, and the DC electrode 1240 of the semiconductor power module 1170 constitute one DC bus bar that transmits the smoothed direct current.
  • the electrode 1231 of the smoothing capacitor 1110, the bus bar electrode 1121, and the DC electrode 1241 of the semiconductor power module 1170 constitute one DC bus bar that transmits the smoothed direct current.
  • the electrode 1232 of the smoothing capacitor 1110, the bus bar electrode 1122, and the DC electrode 1242 of the semiconductor power module 1170 constitute one DC bus bar that transmits the smoothed direct current.
  • the electrode 1233 of the smoothing capacitor 1110, the bus bar electrode 1123, and the DC electrode 1243 of the semiconductor power module 1170 constitute one DC bus bar that transmits the smoothed direct current.
  • the electrode 1234 of the smoothing capacitor 1110, the bus bar electrode 1124, and the DC electrode 1244 of the semiconductor power module 1170 constitute one DC bus bar that transmits the smoothed direct current.
  • the electrode 1235 of the smoothing capacitor 1110, the bus bar electrode 1125, and the DC electrode 1245 of the semiconductor power module 1170 constitute one DC bus bar that transmits the smoothed direct current.
  • the AC electrode 1250 and the AC bus bar electrode 1180 of the semiconductor power module 1170 constitute one AC bus bar transmitting an alternating current.
  • the AC electrode 1251 and the AC bus bar electrode 1181 of the semiconductor power module 1170 constitute one AC bus bar transmitting an alternating current.
  • the AC electrode 1252 and the AC bus bar electrode 1182 of the semiconductor power module 1170 constitute one AC bus bar transmitting an alternating current.
  • FIG. 3 is a perspective view schematically illustrating a frame provided in the inverter of the first embodiment.
  • the frame 1012 includes pillars 1300, 1301, 1302 and 1303, beams 1310, 1311, 1312, 1313, 1314, 1316 and 1317, side plates 1320 and 1321, and bottom plates 1330 and 1331, as shown in FIG. It has a plurality of frame members.
  • the frame 1012 is configured by combining the plurality of frame members.
  • the plurality of frame members includes a plurality of rod-like frame members including pillars 1300, 1301, 1302 and 1303 and beams 1310, 1311, 1312, 1313, 1314, 1315, 1316 and 1317.
  • the pillars 1300, 1301, 1302, and 1303 are first rod-like frame members extending in the first direction D1. Although the number of columns is four in the present embodiment, the number of columns may be increased or decreased.
  • Beams 1310, 1311, 1312, 1313, 1314, 1315, 1316 and 1317 are second rod-like frame members extending in the second direction D2.
  • the second direction D2 is a direction different from the first direction D1, and is, for example, a direction perpendicular to the first direction D1.
  • the number of beams is eight in the present embodiment, the number of beams may be increased or decreased.
  • the side plates 1320 and 1321 are plate-like frame members having surfaces extending in the first direction D1 and the third direction D3 which are the spreading directions.
  • the third direction D3 is a direction different from the first direction D1 and the second direction D2, and is, for example, a direction perpendicular to the first direction D1 and the second direction D2.
  • the said surface is a main surface.
  • the bottom plates 1330 and 1331 are plate-like frame members having surfaces extending in the second direction D2 and the third direction D3 which are the spreading directions.
  • the said surface is a main surface.
  • the number of bottom plates may be increased or decreased.
  • the side plate 1320 is at a first position in the second direction D2.
  • the pillars 1300 and 1302 are in the second position in the second direction D2.
  • the pillars 1301 and 1303 are at a third position in the second direction D2.
  • the side plate 1321 is at a fourth position in the second direction D2.
  • the first position, the second position, the third position and the fourth position in the second direction D2 are different from each other.
  • the pillars 1300 and 1301 are in the first position in the third direction D3.
  • the pillars 1302 and 1303 are in the second position in the third direction D3.
  • the first position and the second position in the third direction D3 are different from each other.
  • the beams 1310 and 1311 and the bottom plates 1330 and 1331 are at a first position in the first direction D1.
  • Beams 1312 and 1313 are at a second position in a first direction D1.
  • Beams 1314 and 1315 are at a third position in the first direction D1.
  • Beams 1316 and 1317 are at a fourth position in the first direction D1.
  • the first position, the second position, the third position and the fourth position in the first direction D1 are different from each other.
  • Beams 1310, 1312, 1314 and 1316 are in a first position in a third direction D3.
  • Beams 1311, 1313, 1315 and 1317 are at a second position in the third direction D3.
  • the beam 1310 is fixed to the columns 1300 and 1301 and the side plates 1320 and 1321, and is supported by the columns 1300 and 1301 and the side plates 1320 and 1321.
  • the beam 1311 is fixed to the columns 1302 and 1303 and the side plates 1320 and 1321, and is supported by the columns 1302 and 1303 and the side plates 1320 and 1321.
  • the bottom plate 1330 extends in the third direction D3, and one end and the other end of the bottom plate 1330 in the third direction D3 are fixed to beams 1310 and 1311 on the outer periphery of the frame 1012, respectively. Thus, the bottom plate 1330 is supported by the beams 1310 and 1311.
  • the bottom plate 1330 may be fixed to the pillars 1300 and 1302 and the side plate 1320 without the beams 1310 and 1311.
  • the bottom plate 1331 extends in the third direction D3, and one end and the other end of the bottom plate 1331 in the third direction D3 are fixed to beams 1310 and 1311 on the outer periphery of the frame 1012, respectively. Thus, the bottom plate 1331 is supported by the beams 1310 and 1311.
  • the bottom plate 1331 may be fixed to the columns 1300, 1301, 1302 and 1303 and the side plate 1321 without the beams 1310 and 1311.
  • Beams 1312 and 1314 are fixed to pillars 1300 and 1301 and side plate 1321 and supported by pillars 1300 and 1301 and side plate 1321.
  • Beams 1313 and 1315 are fixed to columns 1302 and 1303 and side plate 1321 and supported by columns 1302 and 1303 and side plate 1321.
  • the beam 1316 is fixed to the pillars 1300 and 1301 and the side plates 1320 and 1321, and is supported by the pillars 1300 and 1301 and the side plates 1320 and 1321.
  • the beam 1317 is fixed to the columns 1302 and 1303 and the side plates 1320 and 1321, and is supported by the columns 1302 and 1303 and the side plates 1320 and 1321.
  • the frame 1012 comprises a plurality of rod-like frame members including pillars 1300, 1301, 1302 and 1303 and beams 1310, 1311, 1312, 1313, 1314, 1315, 1316 and 1317.
  • the frame 1012 is formed with an opening 1340 surrounded by a plurality of frame members including rod-like frame members.
  • the opening 1340 makes it easy to reach the inside of the frame 1012 from the outside of the frame 1012 via the opening 1340 and to reach the outside of the frame 1012 from the inside of the frame 1012 via the opening 1340. Become. This makes it easy to insert a tool or the like from the outside of the frame 1012 through the opening 1340 into the interior of the frame 1012 when assembling the inverter 1000, and allows wiring etc. to be opened from the inside of the frame 1012 as necessary. It is easy to pull it out of the frame 1012 via 1340.
  • the first direction D1 is, for example, the vertical direction
  • the second direction D2 and the third direction D3 are, for example, the horizontal direction.
  • the first direction D1, the second direction D2, and the third direction D3 may be different from these directions.
  • FIG. 4 is a top view schematically illustrating the top of the inverter according to the first embodiment.
  • 5, 6, 7, 8, 9, and 10 are cross-sectional views schematically showing cross sections of the inverter of the first embodiment.
  • the cross sections shown in FIG. 5, FIG. 6, FIG. 7, FIG. 8, FIG. 9, and FIG. 10 respectively correspond to the cutting lines AA, BB, CC, DD, EE and FIG. It is a cross section in the position of FF.
  • the semiconductor power module 1170 is plate-shaped and has a surface to be cooled 1400 as shown in FIGS. 7, 8 and 10.
  • the cooled surface 1400 is a back surface to be one main surface of the semiconductor power module 1170.
  • At least one cooler 1011 is a single cooler.
  • the cooler 1011 is attached to the surface to be cooled 1400 of the semiconductor power module 1170 and cools the surface to be cooled 1400. Accordingly, at least one cooler 1011 cools the semiconductor power module 1170.
  • the surface to be cooled 1400 may be the other main surface of the semiconductor power module 1170.
  • the plate-shaped semiconductor power module 1170 may be replaced with a non-plate-shaped semiconductor power module, and the cooler 1011 may cool the non-plate-shaped semiconductor power module.
  • the number of coolers may be increased.
  • components that can be embedded in the frame 1012 such as the signal wiring 1140 and the AC bus bar electrodes 1180, 1181 and 1182 may be embedded in the frame 1012. Therefore, DC connector 1100, smoothing capacitor 1110, DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125, signal terminal connector 1130, signal wiring 1140, drive circuit boards 1150 and 1160, semiconductor power module 1170, AC bus bar electrode 1180 , 1181 and 1182, AC connectors 1190, 1191 and 1192 and current sensors 1200, 1201 and 1202 are at least one component selected or fixed to the frame 1012.
  • the cooler 1011 on which the semiconductor power module 1170 is mounted is also fixed to the frame 1012 and supported by the frame 1012 as illustrated in FIGS. 7, 8 and 10.
  • the DC connector 1100 is inserted into the opening 1410 formed in the side plate 1320 as illustrated in FIGS. 7 and 8. Thus, the DC connector 1100 is fixed to the side plate 1320 and supported by the side plate 1320.
  • the smoothing capacitor 1110 is fixed to the upper surface of the bottom plate 1330 as illustrated in FIGS. 6, 7, 8 and 9. Thereby, the smoothing capacitor 1110 is fixed to the bottom plate 1330 and supported by the bottom plate 1330.
  • the AC bus bar electrode 1181 is fixed to the tip of a protrusion 1420 provided on the side plate 1321 as illustrated in FIG.
  • the AC bus bar electrode 1181 is fixed to the side plate 1321 and supported by the side plate 1321.
  • AC bus bar electrodes 1180 and 1182 are also fixed to the tips of the projections provided on the side plate 1321.
  • the AC bus bar electrodes 1180 and 1182 are also fixed to the side plate 1321 and supported by the side plate 1321.
  • the AC bus bar electrodes 1180, 1181, and 1182 may be fixed to the beam.
  • the AC connector 1191 is inserted into an opening 1431 formed in the side plate 1321 as illustrated in FIGS. 7 and 8. Thus, the AC connector 1191 is fixed to the side plate 1321 and supported by the side plate 1321.
  • AC connectors 1190 and 1192 are also inserted into openings 1430 and 1432 formed in side plate 1321, respectively, as illustrated in FIG. Thus, the AC connectors 1190 and 1192 are fixed to the side plate 1321 and supported by the side plate 1321.
  • the signal terminal connector 1130 is fixed to the top surface of the beam 1317 as illustrated in FIGS. 5 and 10. Thus, the signal terminal connector 1130 is fixed to the beam 1317 and supported by the beam 1317.
  • the signal wires 1140 pass through the beams 1317 as illustrated in FIGS. Thus, the signal wiring 1140 is fixed to the beam 1317 and supported by the beam 1317.
  • Magnetic powder or metal powder may be mixed in the frame 1012.
  • the signal wire 1140 may be surrounded by magnetic foil or metal foil wound around the frame 1012.
  • an electric shielding effect is generated, and the electromagnetic field is shielded (at the inside and the outside of the frame) by the magnetic powder or the like, and the noise ingress to the signal wiring 1140 is restricted, and the electrical operation of the inverter 1000 is stabilized.
  • the current sensor 1201 is fixed to the tip of a protrusion 1420 provided on the side plate 1321 as illustrated in FIG.
  • the current sensor 1201 is fixed to the side plate 1321 and supported by the side plate 1321.
  • the current sensors 1200 and 1202 are also fixed to the tips of the protrusions provided on the side plate 1321.
  • the current sensors 1200 and 1202 are also fixed to the side plate 1321 and supported by the side plate 1321.
  • Current sensors 1200, 1201 and 1202 may be fixed to the beam.
  • One end and the other end of the drive circuit board 1150 are fixed to the top surfaces of beams 1314 and 1315, respectively, as illustrated in FIG.
  • the drive circuit board 1150 is fixed to the beams 1314 and 1315 and supported by the beams 1314 and 1315.
  • One end and the other end of the drive circuit board 1160 are fixed to the top surfaces of beams 1312 and 1313, respectively, as shown in FIG.
  • the drive circuit board 1160 is fixed to the beams 1312 and 1313 and supported by the beams 1312 and 1313.
  • the cooler 1011 is fixed to the upper surface of the bottom plate 1331 as illustrated in FIG. 6, FIG. 7, FIG. 8 and FIG. Thus, the cooler 1011 is fixed to the bottom plate 1331 and supported by the bottom plate 1331.
  • the bottom plates 1330 and 1331 separated from each other may be replaced with an integrated bottom plate, and the smoothing capacitor 1110 and the cooler 1011 may be fixed to the integrated bottom plate.
  • the semiconductor power module 1170 is fixed to the upper surface of the cooler 1011 as illustrated in FIGS. 7, 8 and 10. Thus, the semiconductor power module 1170 is fixed to the cooler 1011 and supported by the cooler 1011.
  • FIG. 11 is a cross-sectional view schematically illustrating a cross section of the semiconductor power module, the cooler, and the frame provided in the inverter according to the first modification of the first embodiment.
  • the frame 1012 further includes a beam 1440, and the semiconductor power module 1170 cooled by the cooler 1011 is fixed to the beam 1440. Ru.
  • the semiconductor power module 1170 may be directly fixed to the frame 1012.
  • a frame configured by combining a plurality of frame members including a plurality of rod-like frame members has a restriction on a position at which a frame member to which a part is fixed is arranged. It has the feature of being small. For this reason, when the part is fixed to the frame, the restriction on the position at which the part is arranged is reduced. For example, when a component is fixed to a column provided in a frame configured by combining a plurality of columns and a plurality of beams, the restriction on the horizontal position for arranging the column to which the component is fixed is small.
  • the smoothing capacitor 1110, the signal terminal connector 1130, the signal wiring 1140, the drive circuit boards 1150 and 1160, the AC bus bar electrodes 1180, 1181 and 1182, the AC connectors 1190, 1191 and 1192 and the current sensor It becomes easy to fix 1200, 1201 and 1202. Also, it becomes easy to arrange these parts so that the gap between these parts is small. In addition, it becomes easy to arrange at least a part of these components in the center of the frame 1012 remote from the outside of the frame 1012. As a result, it becomes easy to miniaturize the inverter 1000, and it becomes easy to reduce the cost required to manufacture the inverter 1000.
  • smoothing capacitor 1110, signal terminal connector 1130, signal wiring 1140, drive circuit boards 1150 and 1160, AC bus bar electrodes 1180, 1181 and 1182, AC connectors 1190, 1191 and 1192, current sensors 1200 and 1201, and 1202 is fixed to the frame 1012 and not fixed to the cooler 1011.
  • parts that do not require cooling, which are included in these parts may be fixed to the frame 1012, and need not be fixed to the cooler 1011.
  • the cooler 1011 may not be a support for supporting these components, and may not have a portion to which these components are fixed.
  • the cooler 1011 does not have to have a part to which these parts are fixed, it is not necessary to make the cooler 1011 larger than the semiconductor power module 1170, and the cooler 1011 can be miniaturized, reduced in weight and cost. It will be easier to do. As a result, it becomes easy to miniaturize the inverter 1000, and it becomes easy to reduce the cost required to manufacture the inverter 1000. If the cooler 1011 is made of metal and has a box-like shape, this advantage is more pronounced.
  • the cooler 1011 is fixed to the frame 1012. Therefore, it is not necessary to fix the cooler 1011 to the inverter case or to integrate it with the inverter case.
  • the electric capacities required for the plurality of inverters respectively accommodated in the plurality of different inverter cases are approximately the same.
  • the plurality of inverters can be shared. As a result, it is easy to reduce the cost required to manufacture the inverter 1000 by the mass production effect.
  • An example in which the inverter 1000 is accommodated in each inverter case of a plurality of different inverter cases will be described in tenth, eleventh, twelfth, and thirteenth embodiments described later.
  • both AC bus bar electrode 1181 and current sensor 1201 are fixed to alignment projection 1420. Thereby, alignment between the AC bus bar electrode 1181 and the current sensor 1201 can be easily performed. Similarly, alignment between the AC bus bar electrode 1180 and the current sensor 1200 can be easily performed, and alignment between the AC bus bar electrode 1182 and the current sensor 1202 can be easily performed.
  • the inverter 1000 it is easy to increase the strength of the frame 1012. Therefore, when the DC connector 1100, the signal terminal connector 1130, and the AC connectors 1190, 1191 and 1192 are fixed to the frame 1012, these connectors are firmly fixed. Thereby, even when an external cable is connected to these connectors, the fixing of these connectors is less likely to be affected.
  • the inverter 1000 a large number of signal wires 1140 are supported by the beams 1317. This reduces the space required to support the signal wiring 1140.
  • FIG. 12 is a cross-sectional view schematically showing a cross section of a capacitor group and a frame provided in the inverter of the first embodiment.
  • the smoothing capacitor 1110 comprises a capacitor group 1500 as illustrated in FIG.
  • Capacitor group 1500 is fixed to bottom plate 1330.
  • the capacitor group 1500 is fixed to the frame 1012.
  • Capacitor group 1500 includes a plurality of integrated capacitors.
  • Each capacitor 1510 which is each of the plurality of capacitors, has a cylindrical shape and has one cylindrical end and the other cylindrical end.
  • the cylindrical axis of each condenser 1510 extends in a first direction D1 parallel to the normal direction of the top surface of the bottom plate 1330.
  • the plurality of capacitors are arranged in a second direction D2 perpendicular to the normal direction of the top surface of the bottom plate 1330.
  • Capacitor group 1500 is fixed to the bottom plate without using a capacitor case. Fixing without using the capacitor case eliminates the need for the capacitor case for accommodating the capacitor group 1500 and the terminals or feet used for fixing the capacitor case. As a result, it becomes easy to miniaturize the smoothing capacitor 1110 and it becomes easy to prevent dead space around the smoothing capacitor 1110.
  • FIG. 13 is a connection diagram illustrating an electrical connection in the smoothing capacitor provided in the inverter of the first embodiment.
  • the smoothing capacitor 1110 includes a capacitor group 1500, a bus bar electrode 1520 and a bus bar electrode 1521 as illustrated in FIG.
  • Each capacitor 1510 comprises a first electrode 1540 and a second electrode 1541.
  • the first electrode 1540 is at one cylindrical end of each capacitor 1510.
  • the second electrode 1541 is at the other cylindrical end of each capacitor 1510.
  • the plurality of first electrodes 1540 provided in capacitor group 1500 are electrically connected to each other by bus bar electrode 1520.
  • the plurality of second electrodes 1541 provided in the capacitor group 1500 are electrically connected to each other by the bus bar electrode 1521. Thereby, the plurality of capacitors included in capacitor group 1500 are electrically connected in parallel.
  • the capacitor group 1500 may be fixed to the bottom plate 1330 after the insulating process is performed on the capacitor group 1500 and the bus bar electrodes 1520 and 1521.
  • FIG. 14 is a top view schematically illustrating an upper surface of a capacitor group and a frame provided in an inverter according to a second modification of the first embodiment.
  • each capacitor 1510 extends in a third direction D3 perpendicular to the normal direction of the top surface of the bottom plate 1330. .
  • FIG. 15 is a cross-sectional view illustrating cross sections of a capacitor group, a frame, and a base plate provided in an inverter according to a third modification of the first embodiment.
  • the inverter 1000 further includes a base plate 1550 illustrated in FIG. 15, the capacitor group 1500 is fixed to the base plate 1550, and the base plate 1550 is fixed to the frame 1012. Be done.
  • FIG. 16 is a cross-sectional view schematically illustrating cross sections of a capacitor group, a frame, and a resin body provided in the inverter according to the fourth modification of the first embodiment.
  • the inverter 1000 further includes a resin body 1560 shown in FIG. 16, the resin body 1560 is fixed to the frame 1012, and the capacitor group 1500 is embedded in the resin body 1560.
  • the resin body 1560 is made of a resin cured product.
  • Capacitor group 1500 is included in resin body 1560 and is sealed with resin body 1560.
  • the capacitor group 1500 may be bonded to the frame 1012 via a bonding medium made of resin without being sealed by the resin body 1560.
  • FIG. 17 is a cross-sectional view schematically illustrating cross sections of a capacitor group, a frame, a resin body, and a base plate provided in the inverter according to the fifth modification of the first embodiment.
  • the inverter 1000 includes a base plate 1570 and a resin body 1571 shown in FIG. 17, the base plate 1570 is fixed to the frame 1012, and the resin body 1571 is a base plate. It is fixed to 1570, and the capacitor group 1500 is embedded in the resin body 1571. Capacitor group 1500 may be bonded to base plate 1570 via a bonding medium made of resin without being sealed by resin body 1560.
  • FIG. 18 is a cross-sectional view schematically illustrating a structure for cooling a part that is desirably added to the inverter of the first embodiment.
  • the inverter 1000 further comprises a heat transfer member 1610, the heat transfer member 1610 contacting the part 1611 and at least one cooler 1011, the part 1611 And the cooler 1011 are thermally connected.
  • the contact of the heat transfer member 1610 with the component 1611 and the cooler 1011 causes heat to be dissipated from the component 1611 to the cooler 1011 via the heat transfer member 1610 to cool the component 1611. This eliminates the need for the component 1611 to be in direct contact with the cooler 1011 and makes it easier to cool the component 1611.
  • the component 1611 is a component that generates a large amount of heat, a component that contacts a component that generates a large amount of heat, a component that is close to a component that generates a large amount of heat, a component that is susceptible to heat, or the like.
  • the components that generate a large amount of heat are the smoothing capacitor 1110, the semiconductor power module 1170, and the like.
  • Parts that contact parts that generate a large amount of heat are DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125, AC bus bar electrodes 1180, 1181 and 1182, and the like.
  • Parts close to the parts that generate a large amount of heat are drive circuit boards 1150 and 1160, current sensors 1200, 1201 and 1202, and the like.
  • component 1611 comprises smoothing capacitor 1110, DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125, drive circuit boards 1150 and 1160, AC bus bar electrodes 1180, 1181 and 1182, and current sensors 1200, 1201 and 1202. At least one component selected from the group.
  • the heat transfer member 1610 is fixed to a frame member 1612 such as a column or a beam provided on the frame 1012.
  • a frame member 1612 such as a column or a beam provided on the frame 1012.
  • the heat transfer member 1610 is fixed to the frame 1012.
  • Fixing the heat transfer member 1610 to the frame 1012 suppresses the occurrence of an adverse effect due to the heat transfer member 1610 coming into contact with an unintended portion.
  • the heat transfer member 1610 even when the heat transfer member 1610 has a structure in which the heat transfer member 1610 passes through the air, the heat transfer member 1610 is easily and reliably fixed to the frame member 1612.
  • the heat transfer member 1610 may not be fixed to the frame 1012 and may be held by the frame 1012.
  • the heat transfer member 1610 desirably has flexibility. Thereby, even when the surface of the component 1611 has unevenness or the surface of the component 1611 is a curved surface, the heat transfer member 1610 can be easily brought into contact with the component 1611, and the component 1611 can be effectively transferred to the heat transfer member 1610. Heat is transmitted to When the heat transfer member 1610 is flexible, the support of the heat transfer member 1610 by the frame member 1612 is further facilitated.
  • Fixing of the heat transfer member 1610 to the frame 1012 is also easy, as is fixing of the other components of the inverter 1000 to the frame 1012.
  • FIG. 19 is a cross-sectional view schematically showing a structure for thermal insulation between parts, which is preferably added to the inverter of the first embodiment.
  • the inverter 1000 further includes a heat shield plate 1710, and the heat shield plate 1710 is disposed between the components 1711 and 1712. Thus, the transfer of heat from the component 1712 to the component 1711 is suppressed.
  • the component 1711 is a component sensitive to heat.
  • the component 1712 is a component or the like that generates a large amount of heat. Parts susceptible to heat are drive circuit boards 1150 and 1160, current sensors 1200, 1201 and 1202, and so on.
  • the components that generate a large amount of heat are the smoothing capacitor 1110, the semiconductor power module 1170, and the like.
  • the heat shield plate 1710 is made of resin or the like, and is fixed to a frame member 1713 such as a column or a beam provided on the frame 1012. Thus, the heat shield plate 1710 is fixed to the frame 1012.
  • Fixing of the heat shield plate 1710 to the frame 1012 is also easy, as is fixing of the other components provided in the inverter 1000 to the frame 1012.
  • FIG. 20 is a cross-sectional view schematically illustrating a cross section of an inverter according to a sixth modification of the first embodiment.
  • the side plate 1321 is a frame member having an outer surface 1800 which is a surface facing the outside of the frame 1012, and an AC bus bar electrode 1181 has an end 1810 disposed on the outer surface 1800.
  • the end 1810 contacts the winding 1820 of the motor driven by the inverter 1000 and is electrically connected to the winding 1820.
  • the end 1810 may be disposed inside the side plate 1321.
  • AC bus bar electrodes 1180 and 1182 are also disposed on the outer side surface 1800 of side plate 1321 or inside side plate 1321 and have ends electrically connected to the windings of the motor driven by inverter 1000.
  • a connection portion such as a bolt fastening portion is provided at the end of each AC bus bar electrode of the AC bus bar electrodes 1180, 1181 and 1182, and the end of each AC bus bar electrode is not wound with an AC connector.
  • the direct contact of the end of each AC busbar electrode with the motor windings causes the end of each AC busbar electrode to be electrically connected to the motor windings without an AC connector. This makes it possible to electrically connect the motor to the inverter 1000 without using expensive and large AC connectors, and it is easy to reduce the cost and space required to electrically connect the motor to the inverter 1000. become.
  • each AC bus bar electrode of the AC bus bar electrodes 1180, 1181 and 1182 is the previously described cooled component 1611
  • the heat transfer member 1610 is disposed along the end of each AC bus bar electrode, and at least one cooler Contact 1011. This can suppress heat transfer from the winding of the motor to the inverter 1000.
  • the heat transfer member 1611 may contact the end of each AC bus bar electrode, or may be slightly separated from the end of each AC bus bar electrode.
  • the sixth modification is suitably adopted when the inverter 1000 is accommodated in an inverter case joined to the motor case provided in the motor or integrated with the motor case.
  • the structure includes a plurality of circuit boards, is disposed in a state in which the plurality of circuit boards are electrically connected, and is employed in an electric device that performs a predetermined operation.
  • a plurality of parts having different sizes and shapes are fixed to the frame 1012. Fixing the plurality of parts to the frame 1012 facilitates fixing the plurality of parts so as to reduce the gap between the plurality of parts as described above. In particular, it becomes easy to arrange the large component and the adjacent component so that the gap between the large component and the adjacent component is reduced. Thereby, it becomes easy to arrange a plurality of parts at high density, and it becomes easy to miniaturize the inverter 1000.
  • the DC connector 1100, the DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125, the signal wiring 1140 and the AC bus bar electrodes 1180, 1181 and 1182 may be fixed to the surface of the frame 1012. .
  • the heat transfer member 1610 is provided, the same applies to the heat transfer member 1610. An electrical insulation process is performed on the surface of the frame member to which these wires are fixed, as needed.
  • the inverter 1000 components other than the semiconductor power module 1170 are fixed to the frame 1012 without being fixed to the cooler 1011.
  • the cooler 1011 can be easily miniaturized, and the cost required for the cooler 1011 can be easily reduced.
  • the inverter 1000 can be accommodated in each inverter case of a plurality of different inverter cases. This makes it easy to share the plurality of inverters respectively accommodated in the plurality of different inverter cases.
  • the inverter 1000 a plurality of parts are fixed to the frame 1012.
  • the plurality of parts By securing the plurality of parts to the frame 1012, as described above, even if the plurality of parts have significantly different sizes and shapes from each other, the plurality of parts may be reduced so as to reduce the gap between the plurality of parts. It becomes easy to fix. This makes it easy to miniaturize the inverter 1000.
  • the frame 1012 is provided with a rod-like frame member, whereby an opening 1340 surrounded by a plurality of frame members including the rod-like frame member is formed in the frame 1012.
  • the opening 1340 makes it easy to reach the inside of the frame 1012 from the outside of the frame 1012 via the opening 1340 and to reach the outside of the frame 1012 from the inside of the frame 1012 via the opening 1340.
  • This makes it easy to insert a tool or the like into the frame 1012 from the outside of the frame 1012 through the opening 1340 when assembling the inverter 1000, and wiring or the like from the inside of the frame 1012 as needed. It is easy to pull it out of the frame 1012 via the unit.
  • An exemplary second embodiment of the present invention relates to an inverter.
  • the back surface of the semiconductor power module 1170 is the surface to be cooled 1400, and the cooling to cool the surface to be cooled 1400 A vessel 1011 is provided, and a cooler 1011 is fixed to the bottom plate 1331.
  • the surface of the semiconductor power module 1170 does not become a surface to be cooled.
  • the back surface of the semiconductor power module is the first surface to be cooled, the first cooler for cooling the first surface to be cooled is provided, and the first cooler is It is fixed to the bottom plate.
  • the surface of the semiconductor power module 1170 is the second surface to be cooled, a second cooler for cooling the second surface to be cooled is provided, and the second cooler is fixed to the inner plate.
  • FIG. 21 is a cross-sectional view schematically illustrating a cross-section of the inverter according to the second embodiment.
  • the position of the cross section shown in FIG. 21 corresponds to the position of the cross section shown in FIG.
  • the inverter 2000 illustrated in FIG. 21 includes an inverter circuit 1010, at least one cooler 2011 and a frame 2012.
  • the inverter circuit 1010 provided in the inverter 2000 of the second embodiment is similar to the inverter 1010 provided in the inverter 1000 of the first embodiment. For this reason, the inverter 2000 of the second embodiment includes the same semiconductor power module 1170 as the semiconductor power module 1170 provided in the inverter 1000 of the first embodiment.
  • the semiconductor power module 1170 has a plate shape.
  • the semiconductor power module 1170 has a first surface to be cooled 2400 and a second surface to be cooled 2401.
  • the first cooled surface 2400 is a back surface to be one main surface of the semiconductor power module 1170.
  • the second cooled surface 2401 is a surface to be the other main surface of the semiconductor power module 1170.
  • At least one cooler 2011 includes a first cooler 2900 and a second cooler 2901.
  • the first cooler 2900 is attached to the first cooled surface 2400 of the semiconductor power module 1170 and cools the first cooled surface 2400.
  • the second cooler 2901 is attached to the second cooled surface 2401 of the semiconductor power module 1170 and cools the second cooled surface 2401.
  • FIG. 22 is a perspective view schematically illustrating a frame provided in the inverter of the second embodiment.
  • the frame 2012 is, as illustrated in FIG. 22, columns 1300, 1301, 1302 and 1303, beams 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317 and 2318, side plates 1320 and 1321, and a bottom plate 1330. And 1331 and a plurality of frame members including an inner plate 2332.
  • the frame 1012 is configured by combining the plurality of frame members.
  • Frame members of pillars 1300, 1301, 1302, 1303 and 1303, beams 1310, 1311, 1312, 1313, 1314, 1316, 1317, side plates 1320 and 1321 and bottom plates 1330 and 1331 according to the second embodiment. are similar to the frame members provided with the same reference numerals and provided in the inverter 1000 of the first embodiment.
  • the beam 2318 is fixed to the columns 1300 and 1301 and the side plate 1321, and is supported by the columns 1300 and 1301 and the side plate 1321.
  • the beam 2319 is fixed to the columns 1302 and 1303 and the side plate 1321 and is supported by the columns 1302 and 1303 and the side plate 1321.
  • the inner plate 2332 is a plate-like frame member having a plane that extends in the second direction D2 and the third direction D3 which are the spreading directions.
  • the said surface is a main surface.
  • the inner plate 2332 is fixed to the beams 2318 and 2319 and is supported by the beams 2318 and 2319.
  • An inner plate 2332 may be fixed to the pillars 1300, 1301, 1302 and 1303 and the side plates 1321 without the beams 2318 and 2319, and may be supported by the pillars 1300, 1301, 1302 and 1303 and the side plates 1321.
  • the inner plate 2332 is spaced from the bottom plate 1331 in the first direction D1.
  • the first cooler 2900 is fixed to the upper surface of the bottom plate 1331 as the first frame member as illustrated in FIG.
  • the first cooler 2900 is fixed to the bottom plate 1331 and supported by the bottom plate 1331.
  • the second cooler 2901 is fixed to the lower surface of the inner plate 2332 which is the second frame member.
  • the second cooler 2901 is fixed to the bottom plate 2331 and supported by the bottom plate 2331.
  • at least one cooler 2011 is fixed to the frame 2012.
  • the first cooler 2900 and the second cooler 2901 are used to cool both of the first cooled surface 2400 and the second cooled surface 2401 of the plate-like semiconductor power module 1170.
  • Module 1170 is sandwiched.
  • the first cooler 2900 and the second cooler 2901 are large and heavy.
  • the drive circuit boards 1150 and 1160 are close to the second cooler 2901 in the first direction D1, and the smoothing capacitor 1010, DC bus bar electrodes 1120, 1121, 1122, 1123, 1124, and 1125 in the second direction D2.
  • AC busbar electrodes 1180, 1181 and 1182 and current sensors 1200, 1201 and 1202 are close to the first cooler 2900 and the second cooler 2901.
  • first cooler 2900 and the second cooler 2901 are fixed at positions suitable for fixing the first cooler 2900 and the second cooler 2901, respectively. It is easy to arrange the bottom plate 1331 and the inner plate 2332. Therefore, in inverter 2000, fixing of first cooler 2900 and second cooler 2901 can be easily performed. This facilitates reducing the cost of manufacturing an inverter 2000 comprising two coolers 2011 including a first cooler 2900 and a second cooler 2901.
  • An exemplary third embodiment of the present invention relates to an inverter.
  • the back surface of the semiconductor power module 1170 is the surface to be cooled 1400, and the cooling to cool the surface to be cooled 1400 A vessel 1011 is provided, and a cooler 1011 is fixed to the bottom plate 1331.
  • the surface of the semiconductor power module 1170 does not become a surface to be cooled.
  • the back surface of the semiconductor power module is the first surface to be cooled, a first cooler for cooling the first surface to be cooled is provided, and the first cooler is It is fixed to the bottom plate.
  • the surface of the semiconductor power module is a second surface to be cooled, a second cooler for cooling the second surface to be cooled is provided, and the second cooler is fixed to the inner plate.
  • FIG. 23 is a cross-sectional view schematically illustrating a cross-section of the inverter according to the third embodiment.
  • the position of the cross section shown in FIG. 23 corresponds to the position of the cross section shown in FIG.
  • the inverter 3000 illustrated in FIG. 23 includes an inverter circuit 1010, at least one cooler 3011 and a frame 1012.
  • the inverter circuit 1010 and the frame 1012 provided in the inverter 3000 of the third embodiment are the same as the inverter circuit 1010 and the frame 1012 provided in the inverter 1000 of the first embodiment, respectively. Therefore, the inverter 3000 of the third embodiment includes a semiconductor power module 1170 similar to the semiconductor power module 1170 provided in the inverter 1000 of the first embodiment, and a bottom plate 1331 provided in the inverter 1000 of the first embodiment. A similar bottom plate 1331 is provided.
  • the semiconductor power module 1170 has a plate shape.
  • the semiconductor power module 1170 has a first surface to be cooled 3400 and a second surface to be cooled 3401.
  • the first cooled surface 3400 is a back surface to be one main surface of the semiconductor power module 1170.
  • the second cooled surface 3401 is a surface to be the other main surface of the semiconductor power module 1170.
  • the at least one cooler 3011 includes a first cooler 3900 and a second cooler 3901.
  • the first cooler 3900 is attached to the first cooled surface 3400 of the semiconductor power module 1170 and cools the first cooled surface 3400.
  • the second cooler 3901 is attached to the second cooled surface 3401 of the semiconductor power module 1170 and cools the second cooled surface 3401.
  • the first cooler 3900 is fixed to the upper surface of the bottom plate 1331.
  • the second cooler 3901 is also fixed to the upper surface of the bottom plate 1331.
  • the second cooler 3901 is fixed to the bottom plate 1331 and supported by the bottom plate 1331. Accordingly, the first cooler 3900 and the second cooler 3901 are fixed in common to the bottom plate 1331 which is a common frame member, and at least one cooler 3011 is fixed to the frame 1012.
  • the third embodiment as in the first embodiment, it is easy to miniaturize the inverter 3000 and reduce the cost required to manufacture the inverter 3000.
  • the first cooler 3900 is fixed to the lower surface of the beam and the second cooler 3901 is fixed to the upper surface of the beam, so that the first cooler 3900 and the second cooler 3901 are fixed to the beam It may be done.
  • the fourth exemplary embodiment of the present invention relates to an inverter.
  • the main differences between the first embodiment and the fourth embodiment are as follows: In the first embodiment, no DC bus bar electrode for transmitting direct current before smoothing is provided, and direct current after smoothing is transmitted.
  • the DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125 are provided, and the DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125 for transmitting the smoothed direct current are not directly supported by the frame 1012.
  • a DC bus bar electrode for transmitting a direct current before smoothing and a DC bus bar electrode for transmitting a direct current after smoothing are provided, and a DC bus bar electrode for transmitting a direct current before smoothing, A DC bus bar electrode for transmitting a direct current after smoothing is fixed to the frame.
  • FIGS. 24 and 25 are cross-sectional views schematically illustrating cross sections of the inverter according to the fourth embodiment.
  • the positions of the cross sections shown in FIGS. 24 and 25 correspond to the positions of the cross sections shown in FIGS. 7 and 8, respectively.
  • the inverter 4000 illustrated in FIGS. 24 and 25 includes an inverter circuit 4010, at least one cooler 1011 and a frame 4012.
  • the cooler 1011 provided in the inverter 4000 of the fourth embodiment is the same as the cooler 1011 provided in the inverter 1000 of the first embodiment.
  • FIG. 26 is a connection diagram illustrating electrical connections in the inverter circuit provided in the inverter of the fourth embodiment.
  • the inverter 4000 constitutes an inverter circuit 4010, and comprises a DC connector 1100, DC bus bar electrodes 4290 and 4291, a smoothing capacitor 1110, DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125, A signal terminal connector 1130, a signal wiring 1140, drive circuit boards 1150 and 1160, a semiconductor power module 1170, AC busbar electrodes 1180, 1181 and 1182, AC connectors 1190, 1191 and 1192 and current sensors 1200, 1201 and 1202 are provided.
  • semiconductor power module 1170, AC bus bar electrodes 1180, 1181 and 1182, AC connectors 1190, 1191 and 1192 and current sensors 1200, 1201 and 1202 have the same reference symbols as those provided in inverter 1000 of the first embodiment. It is similar to the parts
  • Input terminals 1210 and 1211 of DC connector 1100 contact one end of DC bus bar electrodes 4290 and 4291, respectively.
  • the other ends of DC bus bar electrodes 4290 and 4291 contact electrodes 1220 and 1221 of smoothing capacitor 1110, respectively.
  • input terminals 1210 and 1211 are electrically connected to electrodes 1220 and 1221 via DC bus bar electrodes 4290 and 4291, respectively.
  • the DC bus bar electrode 4290 and the electrode 1220 of the smoothing capacitor 1110 constitute one DC bus bar that transmits direct current before smoothing.
  • the DC bus bar electrode 4291 and the electrode 1221 of the smoothing capacitor 1110 constitute one DC bus bar that transmits direct current before smoothing.
  • the direct current before smoothing input to the DC connector 1100 is transmitted by the DC bus bar electrodes 4290 and 4291 and is input to the electrodes 1220 and 1221 of the smoothing capacitor 1110.
  • FIG. 27 is a perspective view schematically illustrating a frame provided in the inverter of the fourth embodiment.
  • the frame 4012 comprises a plurality of frame members including pillars 1300, 1301, 1302 and 1303, beams 1310, 1311, 1312, 1313, 1314, 1315, 1316 and 1317, side plates 4320 and 4321 and bottom plates 1330 and 4331.
  • the frame 4012 is configured by combining the plurality of frame members.
  • the frame members of the columns 1300, 1301, 1302, 1303 and 1303, the beams 1310, 1311, 1312, 1313, 1314, 1315, 1316 and 1317 and the bottom plate 1330 provided in the inverter 4000 of the fourth embodiment are the same as in the first embodiment. It is similar to the frame member provided with the same reference numeral provided in the inverter 1000.
  • the DC connector 1100 is fixed to the outer surface 4910 of the side plate 4320 as illustrated in FIGS. 24 and 25.
  • the DC connector 1100 is fixed to the side plate 4320, supported by the side plate 4320, and fixed to the frame 4012.
  • the DC bus bar electrode 4290 penetrates the side plate 4320 as illustrated in FIG.
  • the DC bus bar electrode 4290 is fixed to the side plate 4320, supported by the side plate 4320, and fixed to the frame 4012.
  • the DC bus bar electrode 4291 also penetrates the side plate 4320. Accordingly, the DC bus bar electrode 4291 is also fixed to the side plate 4320, supported by the side plate 4320, and fixed to the frame 4012.
  • the DC bus bar electrode 1122 contacts the tip of the protrusion 4920 provided on the bottom plate 4331 as illustrated in FIG.
  • the DC bus bar electrode 1122 is fixed to the bottom plate 4331, supported by the bottom plate 4331, and fixed to the frame 4012.
  • the DC busbar electrodes 1120, 1121, 1123, 1124 and 1125 also contact the tips of the protrusions 4920.
  • the DC bus bar electrodes 1120, 1121, 1123, 1124 and 1125 are also fixed to the bottom plate 4331, supported by the bottom plate 4331, and fixed to the frame 4012.
  • DC bus bar electrode 1122 has a wide shape and only a small length. Further, one end of the DC bus bar electrode 1122 is in contact with the electrode 1232 of the smoothing capacitor 1110, and the other end of the DC bus bar electrode 1122 is in contact with the DC electrode 1242 of the semiconductor power module 1170. For this reason, the DC bus bar electrode 1122 has a complicated shape such as a three-dimensional bent shape.
  • the DC busbar electrodes 1120, 1121, 1123, 1124 and 1125 also have complicated shapes.
  • DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125 are integrated and the DC bus bar electrodes 1121, 1123 and 1125 are stacked with the DC bus bar electrodes 1120, 1122 and 1124 in order to reduce parasitic inductance.
  • the shape of the DC busbar electrodes 1120, 1121, 1122, 1123, 1124 and 1125 is further complicated.
  • the frame 4012 When the frame 4012 is provided, it is easy to arrange the bottom plate 4331 for fixing the DC bus bar electrode 1122 at a position suitable for fixing the DC bus bar electrode 1122. Therefore, even when the DC bus bar electrode 1122 has a complicated three-dimensional shape that is difficult to support, the DC bus bar electrode 1122 can be easily supported.
  • the DC busbar electrode 1122 is fixed to the bottom plate 4331, after the DC busbar electrode 1122 is fixed to the bottom plate 4331, one end of the DC busbar electrode 1122 is screwed to the electrode 1232 of the smoothing capacitor 1110, By fixing the other end of the DC bus bar electrode 1122 to the DC electrode 1242 of the semiconductor power module 1170 with a screw, it becomes easy to mount the DC bus bar electrode 1122.
  • the dead space generated around the DC bus bar electrodes 4290 and 4291 can be reduced while insulating the DC bus bar electrodes 4290 and 4291. This facilitates placing the DC bus bar electrodes 4290 and 4291 in a small space.
  • the AC bus bar electrode 1181 penetrates the side plate 4321 as illustrated in FIG.
  • the AC bus bar electrode 1181 is fixed to the side plate 4321, supported by the side plate 4321, and fixed to the frame 4012.
  • AC bus bar electrodes 1180 and 1182 also penetrate side plate 4321.
  • the AC bus bar electrodes 1180 and 1182 are also fixed to the side plate 4321, supported by the side plate 4321, and fixed to the frame 4012.
  • the AC connector 1191 is fixed to the outer side 4930 of the side plate 4321 as illustrated in FIGS. 24 and 25.
  • the AC connector 1191 is fixed to the side plate 4321, supported by the side plate 4321, and fixed to the frame 4012.
  • AC connectors 1190 and 1192 are also fixed to the outer side 4930 of side plate 4321.
  • the AC connectors 1190 and 1192 are also fixed to the side plate 4321, supported by the side plate 4321, and fixed to the frame 4012.
  • Parts that can be embedded in frame members such as DC bus bar electrodes 4290 and 4291, DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125, signal wiring 1140, AC bus bar electrodes 1180, 1181 and 1182 are, for example, insert molds. It may be embedded in the frame member by molding or the like.
  • the DC bus bar electrodes 4290 and 4291, the smoothing capacitor 1110, the DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125, the plurality of signal wires 1140, the drive circuit boards 1150 and 1160, AC At least one component selected from the group consisting of the bus bar electrodes 1180, 1181 and 1182, and the current sensors 1200, 1201 and 1202 may be the cooled component 1611 described above.
  • the fifth exemplary embodiment of the present invention relates to an inverter.
  • the back surface of the semiconductor power module 1170 is the surface to be cooled 1400.
  • a cooler 1011 for cooling the surface to be cooled 1400 is provided.
  • the surface of the semiconductor power module 1170 does not become a surface to be cooled.
  • the back surface of the semiconductor power module 1170 is the first surface to be cooled.
  • a first cooler for cooling the first surface to be cooled is provided.
  • the surface of the semiconductor power module 1170 becomes a second surface to be cooled.
  • a second cooler is provided for cooling the second surface to be cooled.
  • the frame doubles as a conduit for conducting the coolant from the first cooler to the second cooler.
  • FIGS. 28 and 29 are cross-sectional views schematically showing cross sections of the inverter of the fifth embodiment.
  • the positions of the cross sections shown in FIGS. 28 and 29 correspond to the positions of the cross sections shown in FIGS. 6 and 7, respectively.
  • the inverter 100 illustrated in FIGS. 28 and 29 includes an inverter circuit 1010, at least one cooler 110, and a frame 111. At least one cooler 110 includes a first cooler 120 and a second cooler 121.
  • the inverter circuit 1010 provided in the inverter 100 of the fifth embodiment is the same as the inverter circuit 1010 provided in the inverter 1000 of the first embodiment. Therefore, the inverter 100 according to the fifth embodiment includes a smoothing capacitor 1110 and a semiconductor power module 1170 similar to the smoothing capacitor 1110 and the semiconductor power module 1170 provided in the inverter 1000 according to the first embodiment.
  • the semiconductor power module 1170 has a plate shape.
  • the semiconductor power module 1170 has a first surface to be cooled 130 and a second surface to be cooled 131.
  • the first cooled surface 130 is a back surface to be one main surface of the semiconductor power module 1170.
  • the second cooled surface 131 is a surface to be the other main surface of the semiconductor power module 1170.
  • the semiconductor power module 1170 is disposed between the first cooler 120 and the second cooler 121.
  • the cooling of the semiconductor power module 1170 is performed by a double-sided cooling structure.
  • the first cooler 120 is attached to the first cooled surface 130 of the semiconductor power module 1170 and cools the first cooled surface 130.
  • the second cooler 121 is attached to the second cooled surface 131 of the semiconductor power module 1170 and cools the second cooled surface 131.
  • FIG. 30 is a perspective view schematically illustrating a first cooler and a second cooler provided in the inverter according to the fifth embodiment.
  • the first cooler 120 includes a first cooler body 140, a first coolant inlet pipe 141, and a first coolant outlet pipe 142, as shown in FIG.
  • the tip of the first coolant inlet pipe 141 has a first coolant inlet 150.
  • the tip of the first coolant outlet pipe 142 has a first coolant outlet 160.
  • the first cooler 120 has a first coolant inlet 150 and a first coolant outlet 160.
  • the second cooler 121 includes a second cooler body 170, a second coolant inlet pipe 171, and a second coolant outlet pipe 172.
  • the tip of the second coolant inlet pipe 171 has a second coolant inlet 180.
  • the tip of the second coolant outlet pipe 172 has a second coolant outlet 190.
  • the second cooler 121 has a second coolant inlet 180 and a second coolant outlet 190.
  • FIG. 31 is a perspective view schematically illustrating a first cooler 120 and a second cooler 121 provided in the inverter according to the fifth embodiment, and a part of a frame 111 provided in the inverter.
  • FIG. 32 is a cross-sectional view schematically showing a cross section of the first cooler 120 and the second cooler 121 provided in the inverter of the fifth embodiment, and a part of the frame 111 provided in the inverter. It is.
  • the first cooler 120 and the second cooler 121 are fixed to the frame 111 as illustrated in FIGS. 31 and 32.
  • the second cooler 121 faces the first cooler 120, and the first cooler 120 It is separated in the direction D1 of 1.
  • the second coolant inlet pipe 171 faces the first coolant outlet pipe 142 and is separated from the first coolant outlet pipe 142 in the first direction D1.
  • the frame 111 includes a plate 200, a plate 201, a column 202, a column 203, a column 204 and a column 205.
  • the plate 200 and the plate 201 are plate-like frame members having surfaces extending in the second direction D2 and the third direction D3 which are the spreading directions.
  • the pillars 202, the pillars 203, the pillars 204 and the pillars 205 are rod-like frame members extending in the first direction D1.
  • the first cooler 120 is fixed to the plate 200, the column 202, the column 203, the column 204 and the column 205. For this reason, the first cooler 120 is supported by the plate 200, the pillars 202, the pillars 203, the pillars 204 and the pillars 205.
  • the first cooler 120 has a rectangular shape and includes four corners. The four corners of the first cooler 120 are fixed to the column 202, the column 203, the column 204 and the column 205.
  • the second cooler 121 is fixed to the plate 201, the column 202, the column 203, the column 204 and the column 205. For this reason, the second cooler 121 is supported by the plate 201, the column 202, the column 203, the column 204, and the column 205.
  • the second cooler 121 has a rectangular parallelepiped shape and has four corners. The four corners of the second cooler 121 are fixed to the column 202, the column 203, the column 204 and the column 205.
  • the column 202, the column 203, the column 204 and the column 205 include a column 202 that supports the first coolant outlet pipe 142 and the second coolant inlet pipe 171.
  • the frame 111 comprises a hollow portion 210.
  • the hollow portion 210 has a hollow shape and has a flow passage 220 through which the coolant flows.
  • the hollow portion 210 is provided in the column 202.
  • the first coolant outlet pipe 142 is inserted into the flow path 220.
  • the second cooling fluid inlet pipe 171 is inserted into the flow path 220.
  • the hollow part 210 has one connection end 230 connected to the first coolant outlet 160 and the other connection end 231 connected to the second coolant inlet 180.
  • the coolant can flow from the first cooler 120 to the hollow portion 210.
  • the cooling fluid can flow from the hollow portion 210 to the second cooler 121. Therefore, in the inverter 100, a flow path from the first coolant inlet 150 to the second coolant outlet 190 via the first cooler 120, the hollow portion 210 and the second cooler 121 sequentially is configured. Be done. For this reason, the coolant that has flowed into the first coolant inlet 150 flows sequentially through the first cooler 120, the hollow portion 210, and the second cooler 121, and flows out from the second coolant outlet 190.
  • the hollow portion 210 constitutes a path of the coolant between the first cooler 120 and the second cooler 121, and becomes a part of the coolant pipe.
  • the coolant that has flowed into the first coolant inlet 150 flows through the first coolant inlet pipe 141, the first cooler main body 140, and the first coolant outlet pipe 142 sequentially, and then the first cooling is performed. It flows out from the liquid outlet 160.
  • the cooling fluid flowing to the first cooler body 140 removes heat from the first cooled surface 130 in contact with the first cooler body 140 to cool the first cooled surface 130.
  • the cooling fluid having flowed into the second cooling fluid inlet 180 flows through the second cooling fluid inlet piping 171, the second cooler main body 170, and the second cooling fluid outlet piping 172 sequentially, and then the second cooling It flows out from the liquid outlet 190.
  • the cooling fluid flowing to the second cooler main body 170 removes heat from the second cooled surface 131 in contact with the second cooler main body 170 and cools the second cooled surface 131.
  • the coolant is cooling water composed of water or an aqueous solution. Therefore, the first coolant inlet pipe 141 and the second coolant inlet pipe 171 are water inlet pipes.
  • the first coolant outlet pipe 142 and the second coolant outlet pipe 172 are water outlet pipes.
  • the coolant may be a coolant other than the coolant.
  • the first coolant inlet pipe 141 may be inserted into the flow passage 220 at one end of the hollow portion 210.
  • the second coolant outlet pipe 172 may be inserted into the flow path 220 at the other end of the hollow portion 210. Therefore, the hollow portion 210 is connected to the first connection end 230 connected to the first coolant inlet 150 and / or the first coolant outlet 160, and to the second coolant inlet 180 or the second coolant outlet 190. It may have the other connection end 231 connected.
  • a plurality of coolers are required to respectively cool the plurality of heat generating parts.
  • multiple coolers in addition to the space required to hold and fix the multiple coolers, the space occupied by the piping through which the cooling fluid flows, connecting the multiple coolers and the piping to each other
  • the space occupied by connecting parts is also required. This requires a large space. The need for a large space is an obstacle to miniaturizing the inverter.
  • the flow path 220 through which the coolant flows from the first cooler 120 to the second cooler 121 supports the first cooler 120 and the second cooler 121, and It is inside the hollow portion 210 provided in the frame 111 to be fixed. For this reason, it is not necessary to provide cooling piping having a flow path in which the cooling fluid from the first cooler 120 to the second cooler 121 flows independently from the frame 111. In addition, it is not necessary to provide connection parts for connecting the cooling pipe to the first cooler 120 and the second cooler 121. Therefore, although the condition that the first surface to be cooled 130 and the second surface to be cooled 131 are located on the same plane and be close to each other is not satisfied, the first cooler 120 and the second The space required to install the cooler 121 can be reduced.
  • the inverter 100 since the first coolant outlet pipe 142 and the second coolant inlet pipe 171 are inserted into the flow path 220 of the hollow portion 210 having a sufficient length, a sufficient length can be obtained. It is easy to secure the covering cost which it has. For this reason, it is possible to easily prevent the coolant from leaking.
  • the sixth exemplary embodiment of the present invention relates to an inverter.
  • first embodiment a cooler for cooling the surface to be cooled 1400 of the semiconductor power module 1170 is provided.
  • the smoothing capacitor 1110 is not cooled.
  • a first cooler for cooling the first electrode provided in the smoothing capacitor 1110 is provided.
  • a second cooler is provided to cool the surface to be cooled 1400 of the semiconductor power module 1170 and the second electrode provided on the smoothing capacitor 1110.
  • the frame doubles as a conduit for conducting the coolant from the second cooler to the first cooler.
  • FIG. 33 is a cross sectional view schematically illustrating a cross section of the inverter according to the sixth embodiment.
  • the position of the cross section shown in FIG. 33 corresponds to the position of the cross section shown in FIG.
  • the inverter 300 illustrated in FIG. 33 includes an inverter circuit 1010, a first cooler 310, at least one cooler 311, and a frame 312. At least one cooler 311 includes a second cooler 320.
  • the inverter circuit 1010 provided in the inverter 300 of the sixth embodiment is the same as the inverter circuit 1010 provided in the inverter 1000 of the first embodiment. Therefore, the inverter 300 according to the sixth embodiment includes a smoothing capacitor 1110 and a semiconductor power module 1170 similar to the smoothing capacitor 1110 and the semiconductor power module 1170 provided in the inverter 1000 according to the first embodiment.
  • the smoothing capacitor 1110 comprises a capacitor 330, a first electrode 331 and a second electrode 332.
  • the capacitor 330 has one end and the other end.
  • the first electrode 331 is disposed at one end of the capacitor 330.
  • the second electrode 332 is disposed at the other end of the capacitor 330.
  • the semiconductor power module 1170 has a plate shape.
  • the semiconductor power module 1170 has a surface to be cooled 1400.
  • the cooled surface 1400 is a back surface to be one main surface of the semiconductor power module 1170.
  • the smoothing capacitor 1110 is disposed between the first cooler 310 and the second cooler 320. Cooling of the smoothing capacitor 1110 is performed by a double-sided cooling structure.
  • the inverter 300 further includes a first electrical insulator 340 and a second electrical insulator 341.
  • the first electrode 331 is in close contact with or bonded to the first electrical insulator 340.
  • the first electrical insulator 340 is in intimate contact with or bonded to the first cooler 310.
  • the second electrode 332 is in close contact with or bonded to the second electrical insulator 341.
  • the second electrical insulator 341 adheres to the second cooler 320 or is bonded to the second cooler 320.
  • the first cooler 310 cools the first electrode 331 by the first cooler 310, the first electrical insulating material 340, and the first cooler 310 being in close contact with or bonded to each other.
  • the second cooler 320 cools the second electrode 332 by bringing the second cooler 320, the second electrical insulator 341, and the second cooler 320 into close contact or bonding.
  • the first electrical insulator 340 insulates the first electrode 331 to which the active potential is applied from the first cooler 310.
  • the second electrode 332 to which the active potential is applied is insulated from the second cooler 320 by the second electrical insulator 341.
  • the semiconductor power module 1170 is disposed on the second cooler 320.
  • the cooling of the semiconductor power module 1170 is performed by a single-sided cooling structure.
  • the second cooler 320 is attached to the surface to be cooled 1400 of the semiconductor power module 1170, and cools the surface to be cooled 1400 to cool the semiconductor power module 1170.
  • the second cooler 320 has one surface 350 and the other surface 351.
  • the semiconductor power module 1170 and the smoothing capacitor 1110 are both disposed on one surface 350 of the second cooler 320.
  • the first cooler 310 has a first coolant inlet and a first coolant outlet, as with the inverter 100 of the fifth embodiment.
  • the second cooler 320 has a second coolant inlet and a second coolant outlet.
  • the first cooler 310 and the second cooler 320 are fixed to the frame 312.
  • the frame 312 comprises a hollow portion.
  • the hollow portion has a hollow shape and has a flow path through which the coolant flows.
  • the hollow part has one connecting end connected to the first coolant inlet or the first coolant outlet, and the other connecting end connected to the second coolant inlet or the second coolant outlet .
  • the space required to install the first cooler 310 and the second cooler 320 can be reduced, as in the inverter 100 according to the fifth embodiment.
  • the leak of a cooling fluid can be easily prevented similarly to the inverter 100 of 5th Embodiment.
  • the seventh exemplary embodiment of the present invention relates to an inverter.
  • the smoothing capacitor 1110 is not cooled.
  • a first cooler for cooling the first electrode provided in the smoothing capacitor 1110 is provided.
  • a second cooler is provided to cool the second electrode provided on the smoothing capacitor 1110.
  • the frame guides the coolant from the third cooler, which cools the cooled surface 1400 of the semiconductor power module 1170, to the first cooler, and from the first cooler to the second cooler. It also doubles as a pipe that leads the coolant.
  • FIG. 34 is a cross sectional view schematically showing a cross section of the inverter of the seventh embodiment.
  • the position of the cross section shown in FIG. 34 corresponds to the position of the cross section shown in FIG.
  • the inverter 400 illustrated in FIG. 34 includes an inverter circuit 1010, a first cooler 410, a second cooler 411, at least one cooler 412, and a frame 413. At least one cooler 412 includes a third cooler 420.
  • the inverter circuit 1010 provided in the inverter 400 of the seventh embodiment is similar to the inverter circuit 1010 provided in the inverter 1000 of the first embodiment. Therefore, the inverter 400 according to the seventh embodiment includes a smoothing capacitor 1110 and a semiconductor power module 1170 similar to the smoothing capacitor 1110 and the semiconductor power module 1170 provided in the inverter 1000 according to the first embodiment.
  • the smoothing capacitor 1110 comprises a capacitor 434, a first electrode 435 and a second electrode 436.
  • the capacitor 434 has one end and the other end.
  • the first electrode 435 is disposed at one end of the capacitor 434.
  • the second electrode 436 is disposed at the other end of the capacitor 434.
  • the semiconductor power module 1170 has a plate shape.
  • the semiconductor power module 1170 has a surface to be cooled 1400.
  • the cooled surface 1400 is a back surface to be one main surface of the semiconductor power module 1170.
  • the smoothing capacitor 1110 is disposed between the first cooler 410 and the second cooler 411. Cooling of the smoothing capacitor 1110 is performed by a double-sided cooling structure.
  • the inverter 400 further includes a first electrical insulator 440 and a second electrical insulator 441 as in the sixth embodiment.
  • the first electrode 435 is in close contact with or bonded to the first electrical insulator 440.
  • the first electrical insulator 440 is in intimate contact with or bonded to the first cooler 410.
  • the second electrode 436 is in close contact with or bonded to the second electrical insulator 441.
  • the second electrically insulating material 441 is in close contact with the second cooler 411 or joined to the second cooler 411.
  • the first cooler 410 cools the first electrode 435 by bringing the first cooler 410, the first electrical insulator 440, and the first electrode 435 into close contact or bonding. Further, the second cooler 411 cools the second electrode 436 by bringing the second cooler 411, the second electric insulating material 441, and the second electrode 436 into close contact or bonding. .
  • the semiconductor power module 1170 is disposed on the third cooler 420.
  • the cooling of the semiconductor power module 1170 is performed by a single-sided cooling structure.
  • the third cooler 420 is attached to the surface to be cooled 1400 of the semiconductor power module 1170 and cools the surface to be cooled 1400.
  • the first cooler 410 includes a first cooler body 430, a first coolant inlet pipe 431 and a first coolant outlet pipe 432.
  • the tip of the first coolant inlet pipe 431 has a first coolant inlet 450.
  • the tip of the first coolant outlet pipe 432 has a first coolant outlet 460.
  • the first cooler 410 has a first coolant inlet 450 and a first coolant outlet 460.
  • the second cooler 411 includes a second cooler body 470, a second coolant inlet pipe 471 and a second coolant outlet pipe 472.
  • the tip of the second coolant inlet pipe 471 has a second coolant inlet 480.
  • the tip of the second coolant outlet pipe 472 has a second coolant outlet 490.
  • the second cooler 411 has a second coolant inlet 480 and a second coolant outlet 490.
  • the third cooler 420 includes a third cooler body 500, a third coolant inlet pipe 501, and a third coolant outlet pipe 502.
  • the tip of the third coolant inlet piping 501 has a third coolant inlet 510.
  • the tip of the third coolant outlet pipe 502 has a third coolant outlet 520.
  • the third cooler 420 has a third coolant inlet 510 and a third coolant outlet 520.
  • the first cooler 410, the second cooler 411 and the third cooler 420 are fixed to the frame 413.
  • the frame 413 includes a first hollow portion 530 and a second hollow portion 531.
  • the first hollow portion 530 and the second hollow portion 531 have a hollow shape, and have a first flow passage 540 and a second flow passage 550 through which the coolant flows, respectively.
  • the first coolant outlet pipe 432 is inserted into the first flow passage 540.
  • the second coolant inlet pipe 471 is inserted into the first flow passage 540.
  • the first hollow portion 530 has one connection end 560 connected to the first coolant outlet 460 and the other connection end 561 connected to the second coolant inlet 480.
  • the first coolant inlet pipe 431 is inserted into the second flow passage 550.
  • the third coolant outlet pipe 502 is inserted into the second flow passage 550.
  • the second hollow portion 531 has one connection end 570 connected to the first coolant inlet 450 and the other connection end 571 connected to the third coolant outlet 520.
  • the cooling fluid can flow from the first cooler 410 to the first hollow portion 530.
  • the coolant can flow from the first hollow portion 530 to the second cooler 411.
  • the coolant inlet 450 to one connection end 570 of the second hollow portion 531
  • the coolant can flow from the second hollow portion 531 to the first cooler 410.
  • the third coolant outlet 520 to the other connection end 571 of the second hollow portion 531, the coolant can flow from the third cooler 420 to the second hollow portion 531.
  • the inverter 400 includes the third cooler 420, the second hollow portion 531, the first cooler 410, the first hollow portion 530, and the second cooler 411 from the third coolant inlet 510.
  • a flow path passing through the second coolant outlet 490 is configured sequentially. Therefore, the coolant that has flowed into the third coolant inlet 510 is the third cooler 420, the second hollow portion 531, the first cooler 410, the first hollow portion 530, and the second cooler.
  • Flow 411 sequentially flows out of the second coolant outlet 490.
  • the first hollow portion 530 constitutes a path of the coolant between the first cooler 410 and the second cooler 411 and is a part of the coolant pipe.
  • the second hollow portion 531 constitutes a path of the coolant between the third cooler 420 and the first cooler 410 and becomes a part of the coolant pipe.
  • the first coolant inlet pipe 431 may be inserted into the first flow passage 540 at one end of the first hollow portion 530.
  • a second coolant outlet pipe 472 may be inserted into the first flow path 540.
  • the first coolant outlet pipe 432, the second coolant inlet pipe 471 or the second coolant outlet pipe 472 may be inserted into the second flow path 550 at one end of the second hollow portion 531.
  • the third coolant inlet pipe 501 may be inserted into the second flow passage 550.
  • the first hollow portion 530 has one connection end 560 connected to one of the first coolant inlet 450 and the first coolant outlet 460, and the second coolant inlet 480 and the second cooling. It may have the other connection end 561 connected to one of the liquid outlets 490. Also, the second hollow portion 531 is connected to the other of the first coolant inlet 450 and the first coolant outlet 460, or to the other of the second coolant inlet 480 and the second coolant outlet 490. One connection end 570 and the other connection end 571 connected to one of the third coolant inlet 510 and the third coolant outlet 520 may be provided.
  • the inverter 400 of the seventh embodiment it is necessary to cool three surfaces including the surface of the first electrode 435, the surface of the second electrode 436, and the surface to be cooled 1400 of the semiconductor power module 1170.
  • the condition that the three planes are located on the same plane and close to each other is not satisfied.
  • the first flow path 540 through which the cooling fluid flows from the first cooler 410 to the second cooler 411 is the first cooler 410, the second cooling Inside the first hollow portion 530 provided in the frame 413 for supporting and fixing the vessel 411 and the third cooler 420.
  • a first flow passage 530 through which the coolant flows from the third cooler 412 to the first cooler 410 is inside the second hollow portion 531 provided in the frame 413. Therefore, the space required for installing the first cooler 410, the second cooler 411 and the third cooler 420 can be reduced.
  • the leak of a cooling fluid can be easily prevented similarly to the inverter 100 of 5th Embodiment.
  • the first flow path 540 extends in the first direction D1 which is the longitudinal direction
  • the second flow path 550 extends in the second direction D2 which is the lateral direction.
  • the direction D2 in which the second flow channel 550 extends is different from the direction D1 in which the first flow channel 540 extends.
  • An eighth embodiment of the present invention relates to an inverter.
  • first embodiment a cooler for cooling the surface to be cooled 1400 of the semiconductor power module 1170 is provided.
  • the smoothing capacitor 1110 is not cooled.
  • a first cooler for cooling the first electrode provided in the smoothing capacitor 1110 is provided.
  • a second cooler for cooling the second electrode provided on the surface to be cooled 1400 of the semiconductor power module 1170 and the smoothing capacitor 1110 is provided.
  • the frame doubles as a conduit for conducting the coolant from the first cooler to the second cooler.
  • FIG. 35 and FIG. 36 are cross sectional views schematically showing cross sections of the inverter of the eighth embodiment.
  • the inverter 600 illustrated in FIGS. 35 and 36 includes an inverter circuit 1010, a first cooler 610, at least one cooler 611, and a frame 612. At least one cooler 611 includes a second cooler 620.
  • the inverter circuit 1010 provided in the inverter 600 of the eighth embodiment is the same as the inverter circuit 1010 provided in the inverter 1000 of the first embodiment. Therefore, the inverter 600 according to the eighth embodiment includes a smoothing capacitor 1110 and a semiconductor power module 1170 similar to the smoothing capacitor 1110 and the semiconductor power module 1170 provided in the inverter 1000 according to the first embodiment.
  • the smoothing capacitor 1110 comprises a capacitor 630, a first electrode 631 and a second electrode 632.
  • the capacitor 630 has one end and the other end.
  • the first electrode 631 is disposed at one end of the capacitor 630.
  • the second electrode 632 is disposed at the other end of the capacitor 630.
  • the semiconductor power module 1170 has a plate shape.
  • the semiconductor power module 1170 has a surface to be cooled 1400.
  • the cooled surface 1400 is a back surface to be one main surface of the semiconductor power module 1170.
  • the smoothing capacitor 1110 is disposed between the first cooler 610 and the second cooler 620. Cooling of the smoothing capacitor 1110 is performed by a double-sided cooling structure.
  • the inverter 600 further includes a first electrical insulator 640 and a second electrical insulator 641.
  • the first electrode 631 is in close contact with or bonded to the first electrical insulator 640.
  • the first electrical insulator 640 is in intimate contact or bonded to the first cooler 610.
  • the second electrode 632 is in close contact with or bonded to the second electrical insulator 641.
  • the second electrically insulating material 641 is in close contact with the second cooler 620 or joined to the second cooler 620.
  • the first cooler 610 cools the first electrode 631 by bringing the first electrode 631, the first electrical insulator 640, and the first cooler 610 into close contact or bonding.
  • the second cooler 620 cools the second electrode 632 by the second electrode 632, the second electrical insulator 641, and the second cooler 620 being in close contact or bonded.
  • the first electrical insulator 640 insulates the first electrode 631 to which the active potential is applied from the first cooler 610.
  • the second electrode 632 to which an active potential is applied is isolated from the second cooler 620 by the second electrical insulator 641.
  • the semiconductor power module 1170 is disposed on the second cooler 620.
  • the cooling of the semiconductor power module 1170 is performed by a single-sided cooling structure.
  • the second cooler 620 is attached to the surface to be cooled 1400 of the semiconductor power module 1170, and cools the surface to be cooled 1400 to cool the semiconductor power module 1170.
  • the second cooler 620 has one side 650 and the other side 651.
  • the semiconductor power module 1170 is disposed on one side 650.
  • the smoothing capacitor 1110 is disposed on the other surface 651.
  • the semiconductor power module 1170 and the smoothing capacitor 1110 are disposed on one side 650 and the other side 651 of the second cooler 620, respectively, so that both sides of the second cooler 620 are utilized for cooling.
  • the first cooler 610 has a first coolant inlet 660 and a first coolant outlet 670, as in the inverter 100 of the fifth embodiment.
  • the second cooler 620 has a second coolant inlet 680 and a second coolant outlet 690.
  • the first cooler 610 and the second cooler 620 are fixed to the frame 612.
  • the frame 612 comprises a hollow portion 700.
  • the hollow portion 700 has a hollow shape and has a flow path 710 through which the coolant flows.
  • the hollow portion 700 is connected to one connection end 720 connected to the first coolant inlet 660 or the first coolant outlet 670, and to the second coolant inlet 680 or the second coolant outlet 690. It has the other connection end 721.
  • the space required for installing the first cooler 610 and the second cooler 620 can be reduced similarly to the inverter 100 of the fifth embodiment.
  • inverter 600 according to the eighth embodiment it is possible to easily prevent the coolant from leaking similarly to the inverter 100 according to the fifth embodiment.
  • the support of the second cooler 620 by the frame 612 is performed by supporting the four corners of the second cooler 620 with four columns.
  • a flow path 710 through which the coolant flows is provided inside any one of the four columns. For this reason, it is less likely that the frame 612 becomes an obstacle to the mounting of the semiconductor power module 1170 and the smoothing capacitor 1110.
  • the coolant piping does not hinder the mounting of the semiconductor power module 1170 and the smoothing capacitor 1110.
  • the second cooler 620 it is also easy to fix the second cooler 620 to the frame 612 after the semiconductor power module 1170 and the smoothing capacitor 1110 are mounted on the second cooler 620. For this reason, even if it is difficult to mount the heat generating component on the second cooler 620 after the second cooler 620 is fixed to the frame 612 due to restrictions on the mounting process, the second cooler 620 It is possible to cool the semiconductor power module 1170 and the smoothing capacitor 1110 utilizing both sides.
  • the ninth exemplary embodiment of the present invention relates to an inverter.
  • FIG. 37 is a cross sectional view schematically showing a cross section of the inverter of the ninth embodiment.
  • the generated alternating current is a multiphase alternating current having components of first to nth phases.
  • n is an integer of 2 or more.
  • FIG. 37 illustrates the case where the generated alternating current is a three-phase alternating current having a U-phase component, a V-phase component, and a W-phase component.
  • the inverter 800 includes first to nth structures 820, 821 and 822, and a frame 830.
  • the first to n-th structures 820, 821 and 822 respectively include the first to n-th semiconductor power modules and the first to n-th coolers.
  • the first to n-th semiconductor power modules switch direct current to generate components of the first to n-th phases, respectively.
  • the semiconductor power modules included in the first to n-th semiconductor power modules are provided in the inverter according to any of the fifth to eighth embodiments in a structure to which the respective semiconductor power modules belong. Is cooled in the same manner as the semiconductor power module.
  • the first to nth at least one coolers are fixed to the frame 830.
  • First to nth semiconductor power modules are mounted on at least one cooler from the first to nth.
  • at least one cooler from the first to the n-th cools the semiconductor power modules from the first to the n-th, respectively.
  • Each of the at least one cooler included in the at least one cooler from the first to the nth is any one of the fifth to eighth embodiments in a structure to which the at least one cooler belongs.
  • the semiconductor power module is cooled in the same manner as at least one cooler provided in the inverter of the embodiment.
  • each at least one cooler has a coolant inlet and a coolant outlet.
  • the first to n-th structures 820, 821 and 822 are disposed on the first to n-th positions 850, 851 and 852 on the curved surface 840, respectively.
  • the curved surface 840 is a surface of a support that supports the first to n-th structures 820, 821, and 822.
  • the curved surface 840 is, for example, an outer peripheral surface of a motor casing having a cylindrical shape.
  • the first to nth positions 850, 851 and 852 have normal directions different from each other.
  • the first to n-th structures 820, 821 and 822 have inclinations according to the normal directions of the first to n-th positions 850, 851 and 852 on the curved surface 840, respectively.
  • the frame 830 has one connecting end connected to the coolant inlet or the coolant outlet provided in at least one cooler included in the first to n-th coolers, and the first to the first a hollow portion having a cooling fluid inlet or a cooling fluid outlet connected to the cooling fluid outlet provided in at least one other cooling device included in at least one cooler up to n.
  • the hollow portion has a hollow shape and has a flow path through which the coolant flows.
  • the first to n-th structures have different inclinations. For this reason, the hollow portion is often curved or bent. However, when the frame 830 is made of resin, a curved or bent hollow portion can be easily formed.
  • the inverter 800 according to the eighth embodiment can be installed along the curved surface 840, and has a feature that even when installed along the curved surface 840, a dead space such as a gap does not easily occur.
  • the support on which the inverter 800 is mounted can be miniaturized.
  • the tenth embodiment of the present invention relates to a cased inverter.
  • FIG. 38 is a perspective view schematically illustrating the cased inverter of the tenth embodiment.
  • the cased inverter 5000 illustrated in FIG. 38 includes an inverter 5010 and an inverter case 5011.
  • the inverter 5010 is the inverter 1000 according to the first embodiment, and is accommodated in the inverter case 5011.
  • the inverter case 5011 is independent of a motor or a combined device including the motor.
  • the inverter 5010 includes the inverter 2000 of the second embodiment, the inverter 3000 of the third embodiment, the inverter 4000 of the fourth embodiment, the inverter 100 of the fifth embodiment, the inverter 300 of the sixth embodiment, and the inverter of the seventh embodiment.
  • the inverter 400 may be the inverter 400 according to the eighth embodiment or the inverter 800 according to the ninth embodiment.
  • An eleventh embodiment of the present invention relates to a motor with a built-in inverter.
  • FIG. 39 is a perspective view schematically illustrating the motor with a built-in inverter according to the eleventh embodiment.
  • the inverter built-in electric motor 6000 illustrated in FIG. 39 includes an inverter 6010, an electric motor 6011 and an inverter case 6012.
  • the motor 6011 includes a motor case 6020.
  • the inverter 6010 is the inverter 1000 of the first embodiment, and is accommodated in the inverter case 6012.
  • the inverter case 6012 is joined to the motor case 6020 or integrated with the motor case 6020.
  • the inverter 6010 includes the inverter 2000 of the second embodiment, the inverter 3000 of the third embodiment, the inverter 4000 of the fourth embodiment, the inverter 100 of the fifth embodiment, the inverter 300 of the sixth embodiment, and the inverter of the seventh embodiment.
  • the inverter 400 may be the inverter 400 according to the eighth embodiment or the inverter 800 according to the ninth embodiment.
  • the inverter built-in motor 6000 is assembled by housing the inverter 1000 in an inverter case 6012 which is joined to the motor case 6020 or integrated with the motor case 6020. Therefore, the incorporation of the inverter 1000 into the inverter built-in motor 6000 does not affect the manufacture of the motor 6011, and handling such as lifting the motor 6011 hardly occurs when the inverter 1000 is incorporated into the inverter built-in motor 6000.
  • Twelfth Embodiment relates to an inverter-equipped transaxle.
  • FIG. 40 is a schematic view schematically illustrating the internal structure of the inverter built-in transaxle of the twelfth embodiment.
  • the inverter built-in transaxle 7000 illustrated in FIG. 40 includes an inverter 7010, a transaxle 7011 and an inverter case 7012.
  • the transaxle 7011 is mounted, for example, on an electric automobile, and includes an electric motor 7020, a transmission 7021 and a transaxle case 7023.
  • the inverter 7000 is the inverter 1000 of the first embodiment, and is accommodated in the inverter case 7012.
  • the inverter case 7012 is joined to the transaxle case 7023 or integrated with the transaxle case 7023.
  • the inverter 7000 includes the inverter 2000 of the second embodiment, the inverter 3000 of the third embodiment, the inverter 4000 of the fourth embodiment, the inverter 100 of the fifth embodiment, the inverter 300 of the sixth embodiment, and the inverter of the seventh embodiment.
  • the inverter 400 may be the inverter 400 according to the eighth embodiment or the inverter 800 according to the ninth embodiment.
  • the transmission 7021 is a transmission mechanism that transmits the mechanical force generated by the motor 7020.
  • the motor 7020 and the transmission 7021 are accommodated in a transaxle case 7023.
  • the transaxle 7011 which is a combined device including the transmission 7021 may be replaced with a combined device including a transmission mechanism other than the transmission.
  • the thirteenth embodiment of the present invention relates to an inverter-equipped transaxle.
  • FIG. 41 is a schematic view schematically illustrating an internal structure of the inverter built-in transaxle of the thirteenth embodiment.
  • the inverter built-in transaxle 8000 illustrated in FIG. 41 includes an inverter 8010 and a transaxle 8011.
  • the transaxle 8011 is mounted, for example, on an electric automobile, and includes an electric motor 8020, a transmission 8021, and a transaxle case 8022.
  • the inverter 8010 is the inverter 1000 according to the first embodiment, and is accommodated in a hollow space 8030 formed in the transaxle case 8022 and exposed to the outside.
  • the inverter 8010 includes the inverter 2000 of the second embodiment, the inverter 3000 of the third embodiment, the inverter 4000 of the fourth embodiment, the inverter 100 of the fifth embodiment, the inverter 300 of the sixth embodiment, and the inverter of the seventh embodiment.
  • the inverter 400 may be the inverter 400 according to the eighth embodiment or the inverter 800 according to the ninth embodiment.
  • the transaxle case 8022 has a box-like hollow space 8030 that can accommodate the inverter 1000 because it has a complex three-dimensional shape with large unevenness.
  • inverter 1000 is incorporated in inverter built-in transaxle 8000 in a state where it does not significantly protrude from transaxle case 8022.
  • the transmission 8021 is a transmission mechanism that transmits the mechanical force generated by the motor 8020.
  • the motor 8020 and the transmission 8021 are housed in a transaxle case 8023.
  • the transaxle 8011 which is a combined device including the transmission 8021 may be replaced with a combined device including a transmission mechanism other than the transmission.
  • first cooled object Second surface to be cooled 2900, 3900 First cooler, 2901, 3901 Second cooler, 5000 Cased inverter, 5011, 6012, 7012 Inverter case, 6000 ... Motor with built-in inverter, 6011, 7020, 8020 ... motor, 70 0, 8000 ... Transaxle with built-in inverter, 7011, 8011 ... Transaxle, 7021, 8021 ... Transmission, 7023, 8022 ... Transaxle case, 8030 ... Hollow space, 100, 300, 400, 800 ... Inverter, 110, 311, 412, 611 ... at least one cooler, 111, 312, 413, 612, 830 ... frame, 120, 310, 410, 610 ...

Abstract

This inverter is provided with a frame, a semiconductor power module and a cooling device. The frame is configured by combining a plurality of frame members which include a plurality of rod-shaped frame members. The semiconductor power module generates an alternating current by switching the direct current. The cooling device is affixed to the frame and cools the semiconductor power module.

Description

インバータ、ケース入りインバータ、インバータ内蔵電動機及びインバータ内蔵複合装置Inverter, Cased inverter, Inverter built-in motor and inverter built-in combined device
 本発明は、インバータ、ケース入りインバータ、インバータ内蔵電動機及びインバータ内蔵複合装置に関する。 The present invention relates to an inverter, a cased inverter, an inverter built-in motor, and an inverter built-in complex device.
 従来のインバータは、複数の部品及びインバータケースを備える。複数の部品は、冷却器等を含み、インバータケースに固定される。インバータケースは、箱状の形状を有する。部品のインバータケースへの固定は、インバータケースの内壁に設けられたボス部に部品を取り付けることにより行われる。又は、部品のインバータケースへの固定は、部品に設けられた足部をインバータケースの内壁に固定することにより行われる。第1の部品に設けられた足部がインバータケースに固定された第2の部品に固定される場合もある。 The conventional inverter comprises a plurality of parts and an inverter case. The plurality of components include a cooler and the like, and are fixed to the inverter case. The inverter case has a box-like shape. Fixing of the component to the inverter case is performed by attaching the component to a boss provided on the inner wall of the inverter case. Alternatively, fixing of the component to the inverter case is performed by fixing a foot provided on the component to the inner wall of the inverter case. In some cases, the foot provided to the first part is fixed to the second part fixed to the inverter case.
 日本国公開公報特開2017-34757号公報に記載された電子制御装置においては、第1パワー基板が第1のモータを駆動し、第2パワー基板が第2のモータを駆動する(請求項1)。第1パワー基板及び第2パワー基板は、モータ駆動回路を構成する複数のスイッチング素子を備える(段落0018及び0019)。第1パワー基板に生じた熱は、第1放熱板により放熱され、第2パワー基板に生じた熱は、第2放熱板により放熱される(請求項1)。第1パワー基板及び第1放熱板は、一体化され、第2パワー基板及び第2放熱板は、一体化される(段落0008)。第1放熱板の一方の側部及び他方の側部は、それぞれ第1フレーム及び第2フレームの第2脚部に固定され、第2放熱板の一方の側部及び他方の側部は、それぞれ第1フレーム及び第2のフレームの第1脚部に固定される(段落0010)。
日本国公開公報:特開2017-34757号公報
In the electronic control device described in Japanese Patent Laid-Open Publication No. 2017-34757, the first power substrate drives the first motor and the second power substrate drives the second motor (claim 1) ). The first power substrate and the second power substrate include a plurality of switching elements constituting a motor drive circuit (paragraphs 0018 and 0019). The heat generated in the first power substrate is dissipated by the first heat dissipation plate, and the heat generated in the second power substrate is dissipated by the second heat dissipation plate (claim 1). The first power substrate and the first heat sink are integrated, and the second power substrate and the second heat sink are integrated (paragraph 0008). One side and the other side of the first heat sink are fixed to the second leg of the first and second frames, respectively, and one side and the other side of the second heat sink are respectively It is fixed to the first leg of the first frame and the second frame (paragraph 0010).
Japanese Patent Publication: JP-A-2017-34757
 インバータは、コネクタ、平滑コンデンサ、半導体パワーモジュール、電流センサ、冷却器等を備え、これらの部品を配置して構成される。これらの部品は、互いに異なる大きさ及び形状を有する部品を含む。このため、次のような場合には、部品の間の隙間が大きくなるという問題がある。すなわち、インバータケースの内壁に設けられたボス部に部品が取り付けられた場合、部品に設けられた足部がインバータケースの内壁に固定された場合、第1の部品に設けられた足部がインバータケースに固定された第2の部品に固定され第1の部品及び第2の部品が積み重ねられた場合等である。特に、大きな部品とそれに隣接する部品との間の隙間が大きくなった場合、大きな部品の周囲に活用されないデッドスペースが生じる。 The inverter includes a connector, a smoothing capacitor, a semiconductor power module, a current sensor, a cooler, and the like, and these components are arranged. These parts include parts having different sizes and shapes. For this reason, in the following cases, there is a problem that the gap between parts becomes large. That is, when the component is attached to the boss provided on the inner wall of the inverter case, and the foot provided on the component is fixed to the inner wall of the inverter case, the foot provided on the first component is the inverter For example, when the first part and the second part are stacked and fixed to the second part fixed to the case. In particular, when the gap between a large part and an adjacent part becomes large, dead space is generated around the large part.
 本発明は、この問題を解決するためになされる。本発明が解決しようとする課題は、複数の部品の間の隙間を小さくすることを容易にし、インバータを小型化することを容易にすることである。 The present invention is made to solve this problem. The problem to be solved by the present invention is to make it easy to reduce the gap between a plurality of parts and to make the inverter smaller.
 本発明の例示的な一つの態様においては、インバータに、フレーム、半導体パワーモジュール及び冷却器が設けられる。フレームは、複数の棒状のフレームメンバーを含む複数のフレームメンバーを組み合わせて構成される。半導体パワーモジュールは、直流をスイッチングし、交流を生成する。冷却器は、フレームに固定され、半導体パワーモジュールを冷却する。 In one exemplary aspect of the invention, the inverter is provided with a frame, a semiconductor power module and a cooler. The frame is configured by combining a plurality of frame members including a plurality of rod-like frame members. The semiconductor power module switches direct current and generates alternating current. The cooler is fixed to the frame and cools the semiconductor power module.
 本発明の例示的な一つの態様によれば、部品が固定されるフレームメンバーを配置する位置に対する制約が小さくなるので、部品を配置する位置に対する制約が小さくなる。これにより、複数の部品の間の隙間を小さくすることが容易になり、インバータを小型化することが容易になる。 According to an exemplary aspect of the present invention, the restriction on the position at which the part is fixed is reduced, and the restriction on the position at which the part is arranged is reduced. This makes it easy to reduce the gap between the plurality of components, and to miniaturize the inverter.
第1実施形態のインバータを模式的に図示する斜視図である。It is a perspective view which illustrates an inverter of a 1st embodiment typically. 第1実施形態のインバータに設けられたインバータ回路における電気的接続を図示する接続図である。It is a connection diagram illustrating electric connection in an inverter circuit provided in an inverter of a 1st embodiment. 第1実施形態のインバータに設けられたフレームを模式的に図示する斜視図である。It is a perspective view which illustrates a frame provided in an inverter of a 1st embodiment typically. 第1実施形態のインバータの上面を模式的に図示する上面図である。It is a top view which illustrates the upper surface of the inverter of a 1st embodiment typically. 第1実施形態のインバータの図4の切断線A-Aの位置における断面を模式的に図示する断面図である。FIG. 5 is a cross-sectional view schematically illustrating a cross section at a position of a cutting line AA in FIG. 4 of the inverter according to the first embodiment. 第1実施形態のインバータの図4の切断線B-Bの位置における断面を模式的に図示する断面図である。FIG. 5 is a cross-sectional view schematically illustrating a cross-section at the position of cutting line BB in FIG. 4 of the inverter according to the first embodiment. 第1実施形態のインバータの図4の切断線C-Cの位置における断面を模式的に図示する断面図である。FIG. 5 is a cross sectional view schematically illustrating a cross section at a position of a cutting line CC in FIG. 4 of the inverter according to the first embodiment. 第1実施形態のインバータの図4の切断線D-Dの位置における断面を模式的に図示する断面図である。FIG. 5 is a cross-sectional view schematically illustrating a cross section at a position of a cutting line DD in FIG. 4 of the inverter according to the first embodiment. 第1実施形態のインバータの図4の切断線E-Eの位置における断面を模式的に図示する断面図である。FIG. 5 is a cross sectional view schematically illustrating a cross section at a position of a cutting line EE in FIG. 4 of the inverter according to the first embodiment. 第1実施形態のインバータの図4の切断線F-Fの位置における断面を模式的に図示する断面図である。FIG. 5 is a cross-sectional view schematically illustrating a cross section at a position of a cutting line FF in FIG. 4 of the inverter according to the first embodiment. 第1実施形態の第1変形例のインバータに設けられた半導体パワーモジュール、冷却器及びフレームの断面を模式的に図示する断面図である。It is sectional drawing which illustrates typically the cross section of the semiconductor power module provided in the inverter of the 1st modification of 1st Embodiment, a cooler, and a flame | frame. 第1実施形態のインバータに設けられたコンデンサ群及びフレームの断面を模式的に図示する断面図である。FIG. 2 is a cross-sectional view schematically illustrating a cross section of a capacitor group and a frame provided in the inverter of the first embodiment. 第1実施形態のインバータに設けられた平滑コンデンサにおける電気的接続を図示する接続図である。It is a connection diagram illustrating electric connection in a smoothing capacitor provided in an inverter of a 1st embodiment. 第1実施形態の第2変形例のインバータに設けられたコンデンサ群及びフレームの上面を模式的に図示する上面図である。It is a top view which illustrates typically the upper surface of the capacitor group provided in the inverter of the 2nd modification of a 1st embodiment, and a frame. 第1実施形態の第3変形例のインバータに設けられたコンデンサ群、フレーム及びベース板の断面を模式的に図示する断面図である。It is sectional drawing which illustrates typically the cross section of the capacitor group provided in the inverter of the 3rd modification of 1st Embodiment, a flame | frame, and a base board. 第1実施形態の第4変形例のインバータに設けられたコンデンサ群、フレーム及び樹脂体の断面を模式的に図示する断面図である。It is sectional drawing which illustrates typically the cross section of the capacitor group provided in the inverter of the 4th modification of 1st Embodiment, a flame | frame, and a resin body. 第1実施形態の第5変形例のインバータに設けられたコンデンサ群、フレーム、樹脂体及びベース板の断面を模式的に図示する断面図である。It is sectional drawing which illustrates typically the cross section of the capacitor group provided in the inverter of the 5th modification of 1st Embodiment, a flame | frame, a resin body, and a base plate. 第1実施形態のインバータに望ましくは付加される部品の冷却のための構造を模式的に図示する断面図である。FIG. 5 is a cross-sectional view schematically illustrating a structure for cooling a component that is desirably added to the inverter of the first embodiment. 第1実施形態のインバータに望ましくは付加される部品間の遮熱のための構造を模式的に図示する断面図である。It is sectional drawing which illustrates typically the structure for the heat insulation between the components preferably added to the inverter of 1st Embodiment. 第1実施形態の第6変形例のインバータの断面を模式的に図示する断面図である。It is a sectional view which illustrates a section of an inverter of a 6th modification of a 1st embodiment typically. 第2実施形態のインバータの断面を模式的に図示する斜視図である。It is a perspective view which illustrates a cross section of an inverter of a 2nd embodiment typically. 第2実施形態のインバータに設けられたフレームを模式的に図示する斜視図である。It is a perspective view which illustrates a frame provided in an inverter of a 2nd embodiment typically. 第3実施形態のインバータの断面を模式的に図示する斜視図である。It is a perspective view which illustrates a cross section of an inverter of a 3rd embodiment typically. 第4実施形態のインバータの断面を模式的に図示する断面図である。It is a sectional view which illustrates a section of an inverter of a 4th embodiment typically. 第4実施形態のインバータの断面を模式的に図示する断面図である。It is a sectional view which illustrates a section of an inverter of a 4th embodiment typically. 第4実施形態のインバータに設けられたインバータ回路における電気的接続を図示する接続図である。It is a connection diagram illustrating electric connection in an inverter circuit provided in an inverter of a 4th embodiment. 第4実施形態のインバータに設けられたフレームを模式的に図示する斜視図である。It is a perspective view which illustrates a frame provided in an inverter of a 4th embodiment typically. 第5実施形態のインバータの断面を模式的に図示する断面図である。It is a sectional view which illustrates a section of an inverter of a 5th embodiment typically. 第5実施形態のインバータの断面を模式的に図示する断面図である。It is a sectional view which illustrates a section of an inverter of a 5th embodiment typically. 第5実施形態のインバータに設けられた第1の冷却器及び第2の冷却器を模式的に図示する斜視図である。It is a perspective view which illustrates the 1st cooler and the 2nd cooler which were provided in the inverter of a 5th embodiment typically. 第5実施形態のインバータに設けられた第1の冷却器及び第2の冷却器、並びに当該インバータに設けられたフレームの一部を模式的に図示する斜視図である。It is a perspective view which illustrates typically a part of the frame provided in the 1st cooler and the 2nd cooler which were provided in the inverter of a 5th embodiment, and the inverter concerned. 第5実施形態のインバータに設けられた第1の冷却器及び第2の冷却器、並びに当該インバータに設けられたフレームの一部の断面を模式的に図示する断面図である。It is sectional drawing which illustrates typically the cross section of the 1st cooler and 2nd cooler which were provided in the inverter of 5th Embodiment, and a part of flame | frame provided in the said inverter. 第6実施形態のインバータの断面を模式的に図示する断面図である。It is a sectional view which illustrates a section of an inverter of a 6th embodiment typically. 第7実施形態のインバータの断面を模式的に図示する断面図である。It is sectional drawing which illustrates the cross section of the inverter of 7th Embodiment typically. 第8実施形態のインバータの断面を模式的に図示する断面図である。It is sectional drawing which illustrates the cross section of the inverter of 8th Embodiment typically. 第8実施形態のインバータの断面を模式的に図示する断面図である。It is sectional drawing which illustrates the cross section of the inverter of 8th Embodiment typically. 第9実施形態のインバータの断面を模式的に図示する断面図である。It is a sectional view which illustrates a section of an inverter of a 9th embodiment typically. 第10実施形態のケース入りインバータを模式的に図示する斜視図である。It is a perspective view which illustrates the cased inverter of 10th Embodiment typically. 第11実施形態のインバータ内蔵電動機を模式的に図示する斜視図である。It is a perspective view which illustrates an inverter built-in electric motor of an 11th embodiment typically. 第12実施形態のインバータ内蔵トランスアクスルの内部構造を模式的に図示する模式図である。It is a schematic diagram which illustrates the internal structure of the inverter built-in transaxle of 12th Embodiment typically. 第13実施形態のインバータ内蔵トランスアクスルの内部構造を模式的に図示する模式図である。It is a schematic diagram which illustrates the internal structure of the inverter built-in transaxle of 13th Embodiment typically.
 1 第1実施形態
 1.1 インバータの概略
 本発明の例示的な第1実施形態は、インバータに関する。
1 First Embodiment 1.1 Outline of Inverter The first exemplary embodiment of the present invention relates to an inverter.
 図1は、第1実施形態のインバータを模式的に図示する斜視図である。 FIG. 1 is a perspective view schematically illustrating the inverter of the first embodiment.
 図1に図示されるインバータ1000は、インバータ回路1010、少なくともひとつの冷却器1011及びフレーム1012を備える。インバータ1000がこれらの構成要素以外の構成要素を備えてもよい。 The inverter 1000 illustrated in FIG. 1 comprises an inverter circuit 1010, at least one cooler 1011 and a frame 1012. The inverter 1000 may include components other than these components.
 インバータ回路1010には、直流及び制御用の信号が入力される。インバータ回路1010は、入力された信号にしたがって入力された直流をスイッチングし、三相交流を生成する。生成された三相交流は、インバータ回路1010から出力される。これにより、インバータ1000は、直流を三相交流に変換する電力変換装置として動作する。冷却器1011は、インバータ回路1010が発生した熱を放熱する。インバータ回路1010に設けられた主要な部品及び冷却器1011は、支持体となるフレーム1012に固定され、フレーム1012により支持される。出力された三相交流は、電動機に供給される。生成された三相交流が電動機以外の負荷に供給されてもよい。インバータ1000が三相交流以外の交流を生成してもよい。例えば、インバータ1000が単相交流を生成してもよい。 The inverter circuit 1010 receives DC and control signals. The inverter circuit 1010 switches the direct current input according to the input signal to generate a three-phase alternating current. The generated three-phase alternating current is output from the inverter circuit 1010. Thus, inverter 1000 operates as a power converter that converts direct current into three-phase alternating current. The cooler 1011 dissipates the heat generated by the inverter circuit 1010. The main components provided in the inverter circuit 1010 and the cooler 1011 are fixed to a frame 1012 as a support and supported by the frame 1012. The output three-phase alternating current is supplied to the motor. The generated three-phase alternating current may be supplied to loads other than the motor. The inverter 1000 may generate an alternating current other than the three-phase alternating current. For example, inverter 1000 may generate a single phase alternating current.
 1.2 インバータ回路
 図2は、第1実施形態のインバータに設けられたインバータ回路における電気的接続を図示する接続図である。
1.2 Inverter Circuit FIG. 2 is a connection diagram illustrating an electrical connection in the inverter circuit provided in the inverter of the first embodiment.
 インバータ1000は、図2に図示されるように、インバータ回路1010を構成する、DCコネクタ1100、平滑コンデンサ1110、DCバスバ電極1120,1121,1122,1123,1124及び1125、信号端子コネクタ1130、信号配線1140、駆動回路基板1150及び1160、半導体パワーモジュール1170、ACバスバ電極1180,1181及び1182、ACコネクタ1190,1191及び1192並びに電流センサ1200,1201及び1202を備える。インバータ回路1010がこれらの部品以外の部品を備えてもよい。 As illustrated in FIG. 2, the inverter 1000 configures an inverter circuit 1010, and includes a DC connector 1100, a smoothing capacitor 1110, DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125, a signal terminal connector 1130, and signal wiring. 1140, a drive circuit board 1150 and 1160, a semiconductor power module 1170, AC bus bar electrodes 1180, 1181 and 1182, AC connectors 1190, 1191 and 1192 and current sensors 1200, 1201 and 1202. The inverter circuit 1010 may include components other than these components.
 DCコネクタ1100の入力端子1210及び1211は、それぞれ平滑コンデンサ1110の電極1220及び1221に接触する。これにより、入力端子1210及び1211は、それぞれ電極1220及び1221に電気的に接続される。 The input terminals 1210 and 1211 of the DC connector 1100 contact the electrodes 1220 and 1221 of the smoothing capacitor 1110, respectively. Thus, the input terminals 1210 and 1211 are electrically connected to the electrodes 1220 and 1221, respectively.
 平滑コンデンサ1110の電極1230,1231,1232,1233,1234及び1235は、それぞれDCバスバ電極1120,1121,1122,1123,1124及び1125の一方の端部に接触する。DCバスバ電極1120,1121,1122,1123,1124及び1125の他方の端部は、それぞれ半導体パワーモジュール1170のDC電極1240,1241,1242,1243,1244及び1245に接触する。これにより、電極1230,1231,1232,1233,1234及び1235は、それぞれDCバスバ電極1120,1121,1122,1123,1124及び1125を介してDC電極1240,1241,1242,1243,1244及び1245に電気的に接続される。 The electrodes 1230, 1231, 1232, 1233, 1234 and 1235 of the smoothing capacitor 1110 contact one end of the DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125 respectively. The other ends of the DC busbar electrodes 1120, 1121, 1122, 1123, 1124 and 1125 contact the DC electrodes 1240, 1241, 1242, 1243, 1244 and 1245 of the semiconductor power module 1170, respectively. As a result, the electrodes 1230, 1231, 1232, 1233, 1234 and 1235 are electrically connected to the DC electrodes 1240, 1241, 1242, 1243, 1244 and 1245 through the DC busbar electrodes 1120, 1121, 1122, 1123, 1124 and 1125 respectively. Connected.
 DCバスバ電極1120,1122及び1124は、それぞれU相、V相及びW相用のP電極バスバである。DCバスバ電極1121,1123及び1125は、それぞれU相、V相及びW相用のN電極バスバである。 The DC bus bar electrodes 1120, 1122 and 1124 are P electrode bus bars for U phase, V phase and W phase, respectively. The DC bus bar electrodes 1121, 1123 and 1125 are N electrode bus bars for U phase, V phase and W phase, respectively.
 半導体パワーモジュール1170のAC電極1250,1251及び1252は、それぞれACバスバ電極1180,1181及び1182の一方の端部に接触する。ACバスバ電極1180,1181及び1182の他方の端部は、それぞれACコネクタ1190の出力端子1260、ACコネクタ1191の出力端子1261及びACコネクタ1192の出力端子1262に接触する。これにより、AC電極1250,1251及び1252は、それぞれACバスバ電極1180,1181及び1182を介して出力端子1260,1261及び1262に電気的に接続される。 The AC electrodes 1250, 1251 and 1252 of the semiconductor power module 1170 are in contact with one ends of the AC busbar electrodes 1180, 1181 and 1182, respectively. The other ends of the AC bus bar electrodes 1180, 1181 and 1182 contact the output terminal 1260 of the AC connector 1190, the output terminal 1261 of the AC connector 1191, and the output terminal 1262 of the AC connector 1192, respectively. Thus, the AC electrodes 1250, 1251 and 1252 are electrically connected to the output terminals 1260, 1261 and 1262 through the AC busbar electrodes 1180, 1181 and 1182, respectively.
 半導体パワーモジュール1170のDC電極1240,1241,1242,1243,1244及び1245は、直流の入力端子となる。半導体パワーモジュール1170のAC電極1250,1251及び1252は、交流の出力端子となる。 The DC electrodes 1240, 1241, 1242, 1243, 1244 and 1245 of the semiconductor power module 1170 serve as DC input terminals. The AC electrodes 1250, 1251 and 1252 of the semiconductor power module 1170 become an AC output terminal.
 信号端子コネクタ1130の複数の端子1270は、それぞれ複数の信号配線1140の一方の端部に接触する。複数の信号配線1140の他方の端部は、それぞれ駆動回路基板1150及び1160の複数の電極1280に接触する。これにより、複数の端子1270は、それぞれ複数の信号配線1140を介して複数の電極1280に電気的に接続される。 The plurality of terminals 1270 of the signal terminal connector 1130 are in contact with one ends of the plurality of signal wirings 1140, respectively. The other ends of the plurality of signal wirings 1140 contact the plurality of electrodes 1280 of the drive circuit boards 1150 and 1160, respectively. Thus, the plurality of terminals 1270 are electrically connected to the plurality of electrodes 1280 via the plurality of signal wirings 1140, respectively.
 DCコネクタ1100の入力端子1210及び1211には、高電圧の平滑前の直流が外部から入力される。DCコネクタ1100に外部から入力された平滑前の直流は、平滑コンデンサ1110の電極1220及び1221に入力され、平滑コンデンサ1110により平滑される。これにより、平滑コンデンサ1110が平滑後の直流を生成する。平滑後の直流は、平滑コンデンサ1110の電極1230及び1231から出力され、平滑コンデンサ1110の電極1232及び1233から出力され、平滑コンデンサ1110の電極1234及び1235から出力される。電極1230及び1231から出力された平滑後の直流は、DCバスバ電極1120及び1121により伝送され、半導体パワーモジュール1170のDC電極1240及び1241に入力される。電極1232及び1233から出力された平滑後の直流は、DCバスバ電極1122及び1123により伝送され、半導体パワーモジュール1170のDC電極1242及び1243に入力される。電極1234及び1235から出力された平滑後の直流は、DCバスバ電極1124及び1125により伝送され、半導体パワーモジュール1170のDC電極1244及び1245に入力される。これにより、半導体パワーモジュール1170によりスイッチングされる直流が平滑後の直流になる。 A direct current before high voltage smoothing is input from the outside to the input terminals 1210 and 1211 of the DC connector 1100. The direct current before smoothing input from the outside to the DC connector 1100 is input to the electrodes 1220 and 1221 of the smoothing capacitor 1110 and smoothed by the smoothing capacitor 1110. Thus, the smoothing capacitor 1110 generates a smoothed direct current. The smoothed direct current is output from the electrodes 1230 and 1231 of the smoothing capacitor 1110, is output from the electrodes 1232 and 1233 of the smoothing capacitor 1110, and is output from the electrodes 1234 and 1235 of the smoothing capacitor 1110. The smoothed direct current output from the electrodes 1230 and 1231 is transmitted by the DC bus bar electrodes 1120 and 1121, and input to the DC electrodes 1240 and 1241 of the semiconductor power module 1170. The smoothed direct current output from the electrodes 1232 and 1233 is transmitted by the DC bus bar electrodes 1122 and 1123 and input to the DC electrodes 1242 and 1243 of the semiconductor power module 1170. The smoothed direct current output from the electrodes 1234 and 1235 is transmitted by the DC bus bar electrodes 1124 and 1125 and input to the DC electrodes 1244 and 1245 of the semiconductor power module 1170. Thereby, the direct current switched by the semiconductor power module 1170 becomes the smoothed direct current.
 信号端子コネクタ1130の端子1270には、制御用の信号が外部から入力される。信号端子コネクタ1130に入力された信号は、信号配線1140により伝送され、駆動回路基板1150及び1160の電極1280に入力される。 A control signal is input from the outside to the terminal 1270 of the signal terminal connector 1130. The signal input to the signal terminal connector 1130 is transmitted by the signal wiring 1140 and input to the electrodes 1280 of the drive circuit boards 1150 and 1160.
 駆動回路基板1150及び1160は、入力された信号に基づいて半導体パワーモジュール1170を駆動する。半導体パワーモジュール1170は、駆動回路基板1150及び1160による駆動にしたがって、DC電極1240及び1241に入力された直流をスイッチングし、DC電極1242及び1243に入力された直流をスイッチングし、DC電極1244及び1245に入力された直流をスイッチングする。これより、半導体パワーモジュール1170が三相交流を生成する。生成された三相交流は、半導体パワーモジュール1170のAC電極1250,1251及び1252から出力される。出力された三相交流は、ACバスバ電極1180,1181及び1182により伝送され、ACコネクタ1190の出力端子1260、ACコネクタ1191の出力端子1261及びACコネクタ1192の出力端子1262に入力される。入力された三相交流は、出力端子1260,1261及び1262から外部に出力される。インバータ1000が単相交流を生成する場合は、インバータ1000は、直流をスイッチングし単相交流を生成する半導体パワーモジュール、生成された単相交流を伝送するACバスバ電極、及び伝送されてきた単相交流を外部に出力する出力端子を備える。より一般的には、インバータ1000は、直流をスイッチングし交流を生成する半導体パワーモジュール、生成された交流を伝送するACバスバ電極、及び伝送されてきた交流を外部に出力するACコネクタを備える。 The drive circuit boards 1150 and 1160 drive the semiconductor power module 1170 based on the input signal. The semiconductor power module 1170 switches direct current input to the DC electrodes 1240 and 1241 and switches direct current input to the DC electrodes 1242 and 1243 according to driving by the drive circuit boards 1150 and 1160, and DC electrodes 1244 and 1245. Switch the direct current input to. Thus, the semiconductor power module 1170 generates a three-phase alternating current. The generated three-phase alternating current is output from the AC electrodes 1250, 1251 and 1252 of the semiconductor power module 1170. The output three-phase alternating current is transmitted by the AC bus bar electrodes 1180, 1181, and 1182, and is input to the output terminal 1260 of the AC connector 1190, the output terminal 1261 of the AC connector 1191, and the output terminal 1262 of the AC connector 1192. The input three-phase alternating current is output from the output terminals 1260, 1261 and 1262 to the outside. When the inverter 1000 generates a single-phase alternating current, the inverter 1000 is a semiconductor power module that switches direct current to generate a single-phase alternating current, an AC bus bar electrode that transmits the generated single-phase alternating current, and the transmitted single-phase alternating current It has an output terminal for outputting alternating current to the outside. More generally, the inverter 1000 includes a semiconductor power module that switches direct current and generates alternating current, an AC bus bar electrode that transmits the generated alternating current, and an AC connector that outputs the transmitted alternating current to the outside.
 電流センサ1200,1201及び1202は、それぞれ、ACバスバ電極1180,1181及び1182の上又は下に配置され、ACバスバ電極1180,1181及び1182に流れる電流の大きさを検知する。検知された電流の大きさは、電動機に流れる電流を制御するために用いられる。 Current sensors 1200, 1201 and 1202 are disposed above or below AC busbar electrodes 1180, 1181 and 1182, respectively, and detect the magnitude of the current flowing through AC busbar electrodes 1180, 1181 and 1182. The magnitude of the detected current is used to control the current flowing to the motor.
 平滑コンデンサ1110の電極1220は、平滑前の直流を伝送するひとつのDCバスバを構成する。平滑コンデンサ1110の電極1221は、平滑前の直流を伝送するひとつのDCバスバを構成する。 The electrode 1220 of the smoothing capacitor 1110 constitutes one DC bus bar that transmits direct current before smoothing. The electrode 1221 of the smoothing capacitor 1110 constitutes one DC bus bar that transmits direct current before smoothing.
 平滑コンデンサ1110の電極1230、バスバ電極1120及び半導体パワーモジュール1170のDC電極1240は、平滑後の直流を伝送するひとつのDCバスバを構成する。平滑コンデンサ1110の電極1231、バスバ電極1121及び半導体パワーモジュール1170のDC電極1241は、平滑後の直流を伝送するひとつのDCバスバを構成する。平滑コンデンサ1110の電極1232、バスバ電極1122及び半導体パワーモジュール1170のDC電極1242は、平滑後の直流を伝送するひとつのDCバスバを構成する。平滑コンデンサ1110の電極1233、バスバ電極1123及び半導体パワーモジュール1170のDC電極1243は、平滑後の直流を伝送するひとつのDCバスバを構成する。平滑コンデンサ1110の電極1234、バスバ電極1124及び半導体パワーモジュール1170のDC電極1244は、平滑後の直流を伝送するひとつのDCバスバを構成する。平滑コンデンサ1110の電極1235、バスバ電極1125及び半導体パワーモジュール1170のDC電極1245は、平滑後の直流を伝送するひとつのDCバスバを構成する。 The electrode 1230 of the smoothing capacitor 1110, the bus bar electrode 1120, and the DC electrode 1240 of the semiconductor power module 1170 constitute one DC bus bar that transmits the smoothed direct current. The electrode 1231 of the smoothing capacitor 1110, the bus bar electrode 1121, and the DC electrode 1241 of the semiconductor power module 1170 constitute one DC bus bar that transmits the smoothed direct current. The electrode 1232 of the smoothing capacitor 1110, the bus bar electrode 1122, and the DC electrode 1242 of the semiconductor power module 1170 constitute one DC bus bar that transmits the smoothed direct current. The electrode 1233 of the smoothing capacitor 1110, the bus bar electrode 1123, and the DC electrode 1243 of the semiconductor power module 1170 constitute one DC bus bar that transmits the smoothed direct current. The electrode 1234 of the smoothing capacitor 1110, the bus bar electrode 1124, and the DC electrode 1244 of the semiconductor power module 1170 constitute one DC bus bar that transmits the smoothed direct current. The electrode 1235 of the smoothing capacitor 1110, the bus bar electrode 1125, and the DC electrode 1245 of the semiconductor power module 1170 constitute one DC bus bar that transmits the smoothed direct current.
 半導体パワーモジュール1170のAC電極1250及びACバスバ電極1180は、交流を伝送するひとつのACバスバを構成する。半導体パワーモジュール1170のAC電極1251及びACバスバ電極1181は、交流を伝送するひとつのACバスバを構成する。半導体パワーモジュール1170のAC電極1252及びACバスバ電極1182は、交流を伝送するひとつのACバスバを構成する。 The AC electrode 1250 and the AC bus bar electrode 1180 of the semiconductor power module 1170 constitute one AC bus bar transmitting an alternating current. The AC electrode 1251 and the AC bus bar electrode 1181 of the semiconductor power module 1170 constitute one AC bus bar transmitting an alternating current. The AC electrode 1252 and the AC bus bar electrode 1182 of the semiconductor power module 1170 constitute one AC bus bar transmitting an alternating current.
 1.3 フレーム
 図3は、第1実施形態のインバータに設けられたフレームを模式的に図示する斜視図である。
1.3 Frame FIG. 3 is a perspective view schematically illustrating a frame provided in the inverter of the first embodiment.
 フレーム1012は、図3に図示されるように、柱1300,1301,1302及び1303、梁1310,1311,1312,1313,1314,1315,1316及び1317、側板1320及び1321並びに底板1330及び1331を含む複数のフレームメンバーを備える。フレーム1012は、当該複数のフレームメンバーを組み合わせて構成される。当該複数のフレームメンバーは、柱1300,1301,1302及び1303並びに梁1310,1311,1312,1313,1314,1315,1316及び1317を含む複数の棒状のフレームメンバーを含む。 The frame 1012 includes pillars 1300, 1301, 1302 and 1303, beams 1310, 1311, 1312, 1313, 1314, 1316 and 1317, side plates 1320 and 1321, and bottom plates 1330 and 1331, as shown in FIG. It has a plurality of frame members. The frame 1012 is configured by combining the plurality of frame members. The plurality of frame members includes a plurality of rod-like frame members including pillars 1300, 1301, 1302 and 1303 and beams 1310, 1311, 1312, 1313, 1314, 1315, 1316 and 1317.
 柱1300,1301,1302及び1303は、第1の方向D1に延びる第1の棒状のフレームメンバーである。なお、本実施形態では柱の数を4本としたが、柱の数が増減されてもよい。 The pillars 1300, 1301, 1302, and 1303 are first rod-like frame members extending in the first direction D1. Although the number of columns is four in the present embodiment, the number of columns may be increased or decreased.
 梁1310,1311,1312,1313,1314,1315,1316及び1317は、第2の方向D2に延びる第2の棒状のフレームメンバーである。第2の方向D2は、第1の方向D1と異なる方向であり、例えば第1の方向D1と垂直をなす方向である。なお、本実施形態では梁の数を8本としたが、梁の数が増減されてもよい。 Beams 1310, 1311, 1312, 1313, 1314, 1315, 1316 and 1317 are second rod-like frame members extending in the second direction D2. The second direction D2 is a direction different from the first direction D1, and is, for example, a direction perpendicular to the first direction D1. Although the number of beams is eight in the present embodiment, the number of beams may be increased or decreased.
 側板1320及び1321は、広がり方向である第1の方向D1及び第3の方向D3に広がる面を有する板状のフレームメンバーである。第3の方向D3は、第1の方向D1及び第2の方向D2と異なる方向であり、例えば第1の方向D1及び第2の方向D2と垂直をなす方向である。当該面は、主面である。なお、本実施形態では側板の数を2枚としたが、側板の数が増減されてもよい。 The side plates 1320 and 1321 are plate-like frame members having surfaces extending in the first direction D1 and the third direction D3 which are the spreading directions. The third direction D3 is a direction different from the first direction D1 and the second direction D2, and is, for example, a direction perpendicular to the first direction D1 and the second direction D2. The said surface is a main surface. Although the number of side plates is two in the present embodiment, the number of side plates may be increased or decreased.
 底板1330及び1331は、広がり方向である第2の方向D2及び第3の方向D3に広がる面を有する板状のフレームメンバーである。当該面は、主面である。底板の数が増減されてもよい。 The bottom plates 1330 and 1331 are plate-like frame members having surfaces extending in the second direction D2 and the third direction D3 which are the spreading directions. The said surface is a main surface. The number of bottom plates may be increased or decreased.
 側板1320は、第2の方向D2の第1の位置にある。柱1300及び1302は、第2の方向D2の第2の位置にある。柱1301及び1303は、第2の方向D2の第3の位置にある。側板1321は、第2の方向D2の第4の位置にある。第2の方向D2の第1の位置、第2の位置、第3の位置及び第4の位置は、互いに異なる。柱1300及び1301は、第3の方向D3の第1の位置にある。柱1302及び1303は、第3の方向D3の第2の位置にある。第3の方向D3の第1の位置及び第2の位置は、互いに異なる。 The side plate 1320 is at a first position in the second direction D2. The pillars 1300 and 1302 are in the second position in the second direction D2. The pillars 1301 and 1303 are at a third position in the second direction D2. The side plate 1321 is at a fourth position in the second direction D2. The first position, the second position, the third position and the fourth position in the second direction D2 are different from each other. The pillars 1300 and 1301 are in the first position in the third direction D3. The pillars 1302 and 1303 are in the second position in the third direction D3. The first position and the second position in the third direction D3 are different from each other.
 梁1310及び1311並びに底板1330及び1331は、第1の方向D1の第1の位置にある。梁1312及び1313は、第1の方向D1の第2の位置にある。梁1314及び1315は、第1の方向D1の第3の位置にある。梁1316及び1317は、第1の方向D1の第4の位置にある。第1の方向D1の第1の位置、第2の位置、第3の位置及び第4の位置は、互いに異なる。梁1310,1312,1314及び1316は、第3の方向D3の第1の位置にある。梁1311,1313,1315及び1317は、第3の方向D3の第2の位置にある。 The beams 1310 and 1311 and the bottom plates 1330 and 1331 are at a first position in the first direction D1. Beams 1312 and 1313 are at a second position in a first direction D1. Beams 1314 and 1315 are at a third position in the first direction D1. Beams 1316 and 1317 are at a fourth position in the first direction D1. The first position, the second position, the third position and the fourth position in the first direction D1 are different from each other. Beams 1310, 1312, 1314 and 1316 are in a first position in a third direction D3. Beams 1311, 1313, 1315 and 1317 are at a second position in the third direction D3.
 梁1310は、柱1300及び1301並びに側板1320及び1321に固定され、柱1300及び1301並びに側板1320及び1321により支持される。梁1311は、柱1302及び1303並びに側板1320及び1321に固定され、柱1302及び1303並びに側板1320及び1321により支持される。 The beam 1310 is fixed to the columns 1300 and 1301 and the side plates 1320 and 1321, and is supported by the columns 1300 and 1301 and the side plates 1320 and 1321. The beam 1311 is fixed to the columns 1302 and 1303 and the side plates 1320 and 1321, and is supported by the columns 1302 and 1303 and the side plates 1320 and 1321.
 底板1330は、第3の方向D3に広がり、底板1330の第3の方向D3の一方の端部及び他方の端部は、それぞれフレーム1012の外周にある梁1310及び1311に固定される。これにより、底板1330は、梁1310及び1311により支持される。底板1330が、梁1310及び1311を介さずに柱1300及び1302並びに側板1320に固定されてもよい。底板1331は、第3の方向D3に広がり、底板1331の第3の方向D3の一方の端部及び他方の端部は、それぞれフレーム1012の外周にある梁1310及び1311に固定される。これにより、底板1331は、梁1310及び1311により支持される。底板1331が、梁1310及び1311を介さずに柱1300,1301,1302及び1303並びに側板1321に固定されてもよい。 The bottom plate 1330 extends in the third direction D3, and one end and the other end of the bottom plate 1330 in the third direction D3 are fixed to beams 1310 and 1311 on the outer periphery of the frame 1012, respectively. Thus, the bottom plate 1330 is supported by the beams 1310 and 1311. The bottom plate 1330 may be fixed to the pillars 1300 and 1302 and the side plate 1320 without the beams 1310 and 1311. The bottom plate 1331 extends in the third direction D3, and one end and the other end of the bottom plate 1331 in the third direction D3 are fixed to beams 1310 and 1311 on the outer periphery of the frame 1012, respectively. Thus, the bottom plate 1331 is supported by the beams 1310 and 1311. The bottom plate 1331 may be fixed to the columns 1300, 1301, 1302 and 1303 and the side plate 1321 without the beams 1310 and 1311.
 梁1312及び1314は、柱1300及び1301並びに側板1321に固定され、柱1300及び1301並びに側板1321により支持される。梁1313及び1315は、柱1302及び1303並びに側板1321に固定され、柱1302及び1303並びに側板1321により支持される。梁1316は、柱1300及び1301並びに側板1320及び1321に固定され、柱1300及び1301並びに側板1320及び1321により支持される。梁1317は、柱1302及び1303並びに側板1320及び1321に固定され、柱1302及び1303並びに側板1320及び1321により支持される。 Beams 1312 and 1314 are fixed to pillars 1300 and 1301 and side plate 1321 and supported by pillars 1300 and 1301 and side plate 1321. Beams 1313 and 1315 are fixed to columns 1302 and 1303 and side plate 1321 and supported by columns 1302 and 1303 and side plate 1321. The beam 1316 is fixed to the pillars 1300 and 1301 and the side plates 1320 and 1321, and is supported by the pillars 1300 and 1301 and the side plates 1320 and 1321. The beam 1317 is fixed to the columns 1302 and 1303 and the side plates 1320 and 1321, and is supported by the columns 1302 and 1303 and the side plates 1320 and 1321.
 フレーム1012は、柱1300,1301,1302及び1303並びに梁1310,1311,1312,1313,1314,1315,1316及び1317を含む複数の棒状のフレームメンバーを備える。このため、フレーム1012には、棒状のフレームメンバーを含む複数のフレームメンバーに囲まれる開口部1340が形成される。開口部1340により、フレーム1012の外部から開口部1340を経由してフレーム1012の内部に到達すること、及びフレーム1012の内部から開口部1340を経由してフレーム1012の外部に到達することが容易になる。これにより、インバータ1000を組み立てる際にフレーム1012の外部から開口部1340を経由してフレーム1012の内部に工具等を差し込む作業が容易になり、必要に応じて配線等をフレーム1012の内部から開口部1340を経由してフレーム1012の外部に引き出すことが容易になる。 The frame 1012 comprises a plurality of rod-like frame members including pillars 1300, 1301, 1302 and 1303 and beams 1310, 1311, 1312, 1313, 1314, 1315, 1316 and 1317. For this reason, the frame 1012 is formed with an opening 1340 surrounded by a plurality of frame members including rod-like frame members. The opening 1340 makes it easy to reach the inside of the frame 1012 from the outside of the frame 1012 via the opening 1340 and to reach the outside of the frame 1012 from the inside of the frame 1012 via the opening 1340. Become. This makes it easy to insert a tool or the like from the outside of the frame 1012 through the opening 1340 into the interior of the frame 1012 when assembling the inverter 1000, and allows wiring etc. to be opened from the inside of the frame 1012 as necessary. It is easy to pull it out of the frame 1012 via 1340.
 第1の方向D1は、例えば鉛直方向であり、第2の方向D2及び第3の方向D3は、例えば水平方向である。しかし、第1の方向D1、第2の方向D2及び第3の方向D3がこれらの方向とは異なる方向であってもよい。 The first direction D1 is, for example, the vertical direction, and the second direction D2 and the third direction D3 are, for example, the horizontal direction. However, the first direction D1, the second direction D2, and the third direction D3 may be different from these directions.
 1.4 半導体パワーモジュールの冷却
 図4は、第1実施形態のインバータの上面を模式的に図示する上面図である。図5、図6、図7、図8、図9及び図10は、第1実施形態のインバータの断面を模式的に図示する断面図である。図5、図6、図7、図8、図9及び図10に図示される断面は、それぞれ図4の切断線A-A,B-B,C-C,D-D,E-E及びF-Fの位置における断面である。
1.4 Cooling of Semiconductor Power Module FIG. 4 is a top view schematically illustrating the top of the inverter according to the first embodiment. 5, 6, 7, 8, 9, and 10 are cross-sectional views schematically showing cross sections of the inverter of the first embodiment. The cross sections shown in FIG. 5, FIG. 6, FIG. 7, FIG. 8, FIG. 9, and FIG. 10 respectively correspond to the cutting lines AA, BB, CC, DD, EE and FIG. It is a cross section in the position of FF.
 半導体パワーモジュール1170は、図7、図8及び図10に図示されるように、板形状であり、被冷却面1400を有する。被冷却面1400は、半導体パワーモジュール1170の一方の主面となる裏面である。 The semiconductor power module 1170 is plate-shaped and has a surface to be cooled 1400 as shown in FIGS. 7, 8 and 10. The cooled surface 1400 is a back surface to be one main surface of the semiconductor power module 1170.
 少なくともひとつの冷却器1011は、1個の冷却器である。冷却器1011は、半導体パワーモジュール1170の被冷却面1400に取り付けられ、被冷却面1400を冷却する。これにより、少なくともひとつの冷却器1011は、半導体パワーモジュール1170を冷却する。 At least one cooler 1011 is a single cooler. The cooler 1011 is attached to the surface to be cooled 1400 of the semiconductor power module 1170 and cools the surface to be cooled 1400. Accordingly, at least one cooler 1011 cools the semiconductor power module 1170.
 被冷却面1400が半導体パワーモジュール1170の他方の主面である表面であってもよい。また、板形状の半導体パワーモジュール1170が板形状でない半導体パワーモジュールに置き換えられ、冷却器1011が板形状でない半導体パワーモジュールを冷却してもよい。冷却器の数が増加させられてもよい。 The surface to be cooled 1400 may be the other main surface of the semiconductor power module 1170. Alternatively, the plate-shaped semiconductor power module 1170 may be replaced with a non-plate-shaped semiconductor power module, and the cooler 1011 may cool the non-plate-shaped semiconductor power module. The number of coolers may be increased.
 1.5 部品の固定
 DCコネクタ1100、平滑コンデンサ1110、信号端子コネクタ1130、信号配線1140、駆動回路基板1150及び1160、ACバスバ電極1180,1181及び1182、ACコネクタ1190,1191及び1192並びに電流センサ1200,1201及び1202は、図4から図10に図示されるように、フレーム1012に固定され、フレーム1012により支持される。ただし、これらの部品に含まれる主要な部品がフレーム1012に固定されるにとどまる場合もある。例えば、DCバスバ電極1120,1121,1122,1123,1124及び1125並びに半導体パワーモジュール1170に含まれる部品の少なくとも一部がフレーム1012に固定されてもよい。また、信号配線1140、ACバスバ電極1180,1181及び1182等のフレーム1012に埋め込むことができる部品が、フレーム1012に埋め込まれてもよい。したがって、DCコネクタ1100、平滑コンデンサ1110、DCバスバ電極1120,1121,1122,1123,1124及び1125、信号端子コネクタ1130、信号配線1140、駆動回路基板1150及び1160、半導体パワーモジュール1170、ACバスバ電極1180,1181及び1182、ACコネクタ1190,1191及び1192並びに電流センサ1200,1201及び1202からなる群より選択される少なくともひとつの部品は、フレーム1012に固定されるか、又は埋め込まれる。
1.5 Fixing of parts DC connector 1100, smoothing capacitor 1110, signal terminal connector 1130, signal wiring 1140, drive circuit boards 1150 and 1160, AC bus bar electrodes 1180, 1181 and 1182, AC connectors 1190, 1191 and 1192 and current sensor 1200 1201 and 1202 are fixed to the frame 1012 and supported by the frame 1012 as illustrated in FIGS. 4 to 10. However, the main parts included in these parts may remain fixed to the frame 1012. For example, at least a portion of the components included in the DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125 and the semiconductor power module 1170 may be fixed to the frame 1012. In addition, components that can be embedded in the frame 1012 such as the signal wiring 1140 and the AC bus bar electrodes 1180, 1181 and 1182 may be embedded in the frame 1012. Therefore, DC connector 1100, smoothing capacitor 1110, DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125, signal terminal connector 1130, signal wiring 1140, drive circuit boards 1150 and 1160, semiconductor power module 1170, AC bus bar electrode 1180 , 1181 and 1182, AC connectors 1190, 1191 and 1192 and current sensors 1200, 1201 and 1202 are at least one component selected or fixed to the frame 1012.
 半導体パワーモジュール1170が実装された冷却器1011も、図7、図8及び図10に図示されるように、フレーム1012に固定され、フレーム1012により支持される。 The cooler 1011 on which the semiconductor power module 1170 is mounted is also fixed to the frame 1012 and supported by the frame 1012 as illustrated in FIGS. 7, 8 and 10.
 DCコネクタ1100は、図7及び図8に図示されるように、側板1320に形成された開口部1410に挿入される。これにより、DCコネクタ1100は、側板1320に固定され、側板1320により支持される。 The DC connector 1100 is inserted into the opening 1410 formed in the side plate 1320 as illustrated in FIGS. 7 and 8. Thus, the DC connector 1100 is fixed to the side plate 1320 and supported by the side plate 1320.
 平滑コンデンサ1110は、図6、図7、図8及び図9に図示されるように、底板1330の上面に固定される。これにより、平滑コンデンサ1110は、底板1330に固定され、底板1330により支持される。 The smoothing capacitor 1110 is fixed to the upper surface of the bottom plate 1330 as illustrated in FIGS. 6, 7, 8 and 9. Thereby, the smoothing capacitor 1110 is fixed to the bottom plate 1330 and supported by the bottom plate 1330.
 ACバスバ電極1181は、図8に図示されるように、側板1321に設けられた突起1420の先端に固定される。これにより、ACバスバ電極1181は、側板1321に固定され、側板1321により支持される。ACバスバ電極1180及び1182も、側板1321に設けられた突起の先端に固定される。これにより、ACバスバ電極1180及び1182も、側板1321に固定され、側板1321により支持される。ただし、ACバスバ電極1180,1181及び1182が、梁に固定されてもよい。 The AC bus bar electrode 1181 is fixed to the tip of a protrusion 1420 provided on the side plate 1321 as illustrated in FIG. Thus, the AC bus bar electrode 1181 is fixed to the side plate 1321 and supported by the side plate 1321. AC bus bar electrodes 1180 and 1182 are also fixed to the tips of the projections provided on the side plate 1321. Thus, the AC bus bar electrodes 1180 and 1182 are also fixed to the side plate 1321 and supported by the side plate 1321. However, the AC bus bar electrodes 1180, 1181, and 1182 may be fixed to the beam.
 ACコネクタ1191は、図7及び図8に図示されるように、側板1321に形成された開口部1431に挿入される。これにより、ACコネクタ1191は、側板1321に固定され、側板1321により支持される。ACコネクタ1190及び1192も、それぞれ、図3に図示される、側板1321に形成された開口部1430及び1432に挿入される。これにより、ACコネクタ1190及び1192は、側板1321に固定され、側板1321により支持される。 The AC connector 1191 is inserted into an opening 1431 formed in the side plate 1321 as illustrated in FIGS. 7 and 8. Thus, the AC connector 1191 is fixed to the side plate 1321 and supported by the side plate 1321. AC connectors 1190 and 1192 are also inserted into openings 1430 and 1432 formed in side plate 1321, respectively, as illustrated in FIG. Thus, the AC connectors 1190 and 1192 are fixed to the side plate 1321 and supported by the side plate 1321.
 信号端子コネクタ1130は、図5及び図10に図示されるように、梁1317の上面に固定される。これにより、信号端子コネクタ1130は、梁1317に固定され、梁1317により支持される。 The signal terminal connector 1130 is fixed to the top surface of the beam 1317 as illustrated in FIGS. 5 and 10. Thus, the signal terminal connector 1130 is fixed to the beam 1317 and supported by the beam 1317.
 信号配線1140は、図5及び図10に図示されるように、梁1317を貫通する。これにより、信号配線1140は、梁1317に固定され、梁1317により支持される。 The signal wires 1140 pass through the beams 1317 as illustrated in FIGS. Thus, the signal wiring 1140 is fixed to the beam 1317 and supported by the beam 1317.
 フレーム1012に磁性体粉又は金属粉が混入されてもよい。又は、フレーム1012に巻かれた磁性体箔又は金属箔により信号配線1140が囲まれてもよい。これにより、電気シールド効果が生じ、磁性体粉等により(フレームの内と外とで)電磁場が遮蔽され、信号配線1140に対するノイズの出入りが規制され、インバータ1000の電気的動作が安定する。 Magnetic powder or metal powder may be mixed in the frame 1012. Alternatively, the signal wire 1140 may be surrounded by magnetic foil or metal foil wound around the frame 1012. As a result, an electric shielding effect is generated, and the electromagnetic field is shielded (at the inside and the outside of the frame) by the magnetic powder or the like, and the noise ingress to the signal wiring 1140 is restricted, and the electrical operation of the inverter 1000 is stabilized.
 電流センサ1201は、図8に図示されるように、側板1321に設けられた突起1420の先端に固定される。これにより、電流センサ1201は、側板1321に固定され、側板1321により支持される。電流センサ1200及び1202も、側板1321に設けられた突起の先端に固定される。これにより、電流センサ1200及び1202も、側板1321に固定され、側板1321により支持される。電流センサ1200,1201及び1202が梁に固定されてもよい。 The current sensor 1201 is fixed to the tip of a protrusion 1420 provided on the side plate 1321 as illustrated in FIG. Thus, the current sensor 1201 is fixed to the side plate 1321 and supported by the side plate 1321. The current sensors 1200 and 1202 are also fixed to the tips of the protrusions provided on the side plate 1321. Thus, the current sensors 1200 and 1202 are also fixed to the side plate 1321 and supported by the side plate 1321. Current sensors 1200, 1201 and 1202 may be fixed to the beam.
 駆動回路基板1150の一方の端部及び他方の端部は、図10に図示されるように、それぞれ梁1314及び1315の上面に固定される。これにより、駆動回路基板1150は、梁1314及び1315に固定され、梁1314及び1315により支持される。 One end and the other end of the drive circuit board 1150 are fixed to the top surfaces of beams 1314 and 1315, respectively, as illustrated in FIG. Thus, the drive circuit board 1150 is fixed to the beams 1314 and 1315 and supported by the beams 1314 and 1315.
 駆動回路基板1160の一方の端部及び他方の端部は、図10に図示されるように、それぞれ梁1312及び1313の上面に固定される。これにより、駆動回路基板1160は、梁1312及び1313に固定され、梁1312及び1313により支持される。 One end and the other end of the drive circuit board 1160 are fixed to the top surfaces of beams 1312 and 1313, respectively, as shown in FIG. Thus, the drive circuit board 1160 is fixed to the beams 1312 and 1313 and supported by the beams 1312 and 1313.
 冷却器1011は、図6、図7、図8及び図10に図示されるように、底板1331の上面に固定される。これにより、冷却器1011は、底板1331に固定され、底板1331により支持される。 The cooler 1011 is fixed to the upper surface of the bottom plate 1331 as illustrated in FIG. 6, FIG. 7, FIG. 8 and FIG. Thus, the cooler 1011 is fixed to the bottom plate 1331 and supported by the bottom plate 1331.
 互いに分離された底板1330及び1331が一体化された底板に置き換えられ、平滑コンデンサ1110及び冷却器1011が一体化された底板に固定されてもよい。 The bottom plates 1330 and 1331 separated from each other may be replaced with an integrated bottom plate, and the smoothing capacitor 1110 and the cooler 1011 may be fixed to the integrated bottom plate.
 半導体パワーモジュール1170は、図7、図8及び図10に図示されるように、冷却器1011の上面に固定される。これにより、半導体パワーモジュール1170は、冷却器1011に固定され、冷却器1011により支持される。 The semiconductor power module 1170 is fixed to the upper surface of the cooler 1011 as illustrated in FIGS. 7, 8 and 10. Thus, the semiconductor power module 1170 is fixed to the cooler 1011 and supported by the cooler 1011.
 図11は、第1実施形態の第1変形例のインバータに設けられた半導体パワーモジュール、冷却器及びフレームの断面を模式的に図示する断面図である。 FIG. 11 is a cross-sectional view schematically illustrating a cross section of the semiconductor power module, the cooler, and the frame provided in the inverter according to the first modification of the first embodiment.
 第1実施形態の第1変形例のインバータ1000においては、図11に図示されるように、フレーム1012が梁1440をさらに備え、冷却器1011により冷却される半導体パワーモジュール1170が梁1440に固定される。このように半導体パワーモジュール1170がフレーム1012に直接的に固定されてもよい。 In the inverter 1000 according to the first modification of the first embodiment, as illustrated in FIG. 11, the frame 1012 further includes a beam 1440, and the semiconductor power module 1170 cooled by the cooler 1011 is fixed to the beam 1440. Ru. Thus, the semiconductor power module 1170 may be directly fixed to the frame 1012.
 1.6 フレームへの固定の利点
 一般的に言って、複数の棒状のフレームメンバーを含む複数のフレームメンバーを組み合わせて構成されるフレームは、部品が固定されるフレームメンバーを配置する位置に対する制約が小さいという特徴を有する。このため、当該フレームに部品が固定される場合は、部品を配置する位置に対する制約が小さくなる。例えば、複数の柱及び複数の梁を組み合わせて構成されるフレームに設けられた柱に部品が固定される場合は、部品が固定される柱を配置する水平位置に対する制約が小さいため、部品を配置する位置に対する制約が小さくなる。また、当該フレームに設けられた梁に部品が固定される場合は、柱を配置する水平位置に対する制約が小さく、梁を柱に固定する鉛直位置に対する制約が小さいため、部品を配置する位置に対する制約が小さくなる。部品を配置する位置に対する制約の小ささにより、部品を固定することが容易になる。また、複数の部品の間の隙間が小さくなるように複数の部品を配置することが容易になる。特に、大きな部品とそれに隣接する部品との間の隙間が小さくなるように大きな部品及びそれに隣接する部品を配置することが容易になる。また、フレームの外側から離れたフレームの中心部に部品を配置することが容易になる。これにより、インバータを小型化することが容易になり、インバータの製造に要するコストを減らすことが容易になる。
1.6 Advantages of Fixing to Frames Generally speaking, a frame configured by combining a plurality of frame members including a plurality of rod-like frame members has a restriction on a position at which a frame member to which a part is fixed is arranged. It has the feature of being small. For this reason, when the part is fixed to the frame, the restriction on the position at which the part is arranged is reduced. For example, when a component is fixed to a column provided in a frame configured by combining a plurality of columns and a plurality of beams, the restriction on the horizontal position for arranging the column to which the component is fixed is small. There is less restriction on the location of In addition, when the component is fixed to the beam provided in the frame, the restriction on the horizontal position where the column is arranged is small, and the restriction on the vertical position where the beam is fixed to the column is small. Becomes smaller. The small constraint on the position of the part makes it easy to fix the part. In addition, it becomes easy to arrange the plurality of parts so that the gap between the plurality of parts is reduced. In particular, it becomes easy to arrange the large component and the adjacent component so that the gap between the large component and the adjacent component is reduced. Also, it becomes easy to place the components in the center of the frame remote from the outside of the frame. As a result, it becomes easy to miniaturize the inverter, and it becomes easy to reduce the cost required to manufacture the inverter.
 具体的に言って、インバータ1000においては、平滑コンデンサ1110、信号端子コネクタ1130、信号配線1140、駆動回路基板1150及び1160、ACバスバ電極1180,1181及び1182、ACコネクタ1190,1191及び1192並びに電流センサ1200,1201及び1202を固定することが容易になる。また、これらの部品の間の隙間が小さくなるようにこれらの部品を配置することが容易になる。また、フレーム1012の外側から離れたフレーム1012の中心部にこれらの部品の少なくとも一部を配置することが容易になる。これにより、インバータ1000を小型化することが容易になり、インバータ1000の製造に要するコストを減らすことが容易になる。 Specifically, in the inverter 1000, the smoothing capacitor 1110, the signal terminal connector 1130, the signal wiring 1140, the drive circuit boards 1150 and 1160, the AC bus bar electrodes 1180, 1181 and 1182, the AC connectors 1190, 1191 and 1192 and the current sensor It becomes easy to fix 1200, 1201 and 1202. Also, it becomes easy to arrange these parts so that the gap between these parts is small. In addition, it becomes easy to arrange at least a part of these components in the center of the frame 1012 remote from the outside of the frame 1012. As a result, it becomes easy to miniaturize the inverter 1000, and it becomes easy to reduce the cost required to manufacture the inverter 1000.
 また、インバータ1000においては、平滑コンデンサ1110、信号端子コネクタ1130、信号配線1140、駆動回路基板1150及び1160、ACバスバ電極1180,1181及び1182、ACコネクタ1190,1191及び1192並びに電流センサ1200,1201及び1202が、フレーム1012に固定され、冷却器1011に固定されない。特に、これらの部品に含まれる冷却を要しない部品は、フレーム1012に固定されればよく、冷却器1011に固定される必要はない。このため、冷却器1011は、これらの部品を支持する支持体でなくてもよく、これらの部品が固定される部分を有しなくてもよい。 In inverter 1000, smoothing capacitor 1110, signal terminal connector 1130, signal wiring 1140, drive circuit boards 1150 and 1160, AC bus bar electrodes 1180, 1181 and 1182, AC connectors 1190, 1191 and 1192, current sensors 1200 and 1201, and 1202 is fixed to the frame 1012 and not fixed to the cooler 1011. In particular, parts that do not require cooling, which are included in these parts, may be fixed to the frame 1012, and need not be fixed to the cooler 1011. For this reason, the cooler 1011 may not be a support for supporting these components, and may not have a portion to which these components are fixed.
 これらの部品が固定される部分を冷却器1011が有しなくてもよいことにより、冷却器1011を半導体パワーモジュール1170より大きくする必要がなくなり、冷却器1011を小型化、軽量化及び低コスト化することが容易になる。これにより、インバータ1000を小型化することが容易になり、インバータ1000の製造に要するコストを減らすことが容易になる。冷却器1011が金属からなり箱状の形状を有する場合は、この利点がより顕著になる。 Since the cooler 1011 does not have to have a part to which these parts are fixed, it is not necessary to make the cooler 1011 larger than the semiconductor power module 1170, and the cooler 1011 can be miniaturized, reduced in weight and cost. It will be easier to do. As a result, it becomes easy to miniaturize the inverter 1000, and it becomes easy to reduce the cost required to manufacture the inverter 1000. If the cooler 1011 is made of metal and has a box-like shape, this advantage is more pronounced.
 また、インバータ1000においては、冷却器1011がフレーム1012に固定される。このため、冷却器1011をインバータケースに固定する、又はインバータケースと一体化する必要がない。冷却器1011をインバータケースに固定する、又はインバータケースと一体化する必要がないことにより、互いに異なる複数のインバータケースにそれぞれ収容される複数のインバータに要求される電気容量が同程度である場合は、当該複数のインバータを共通化できる。これにより、量産効果によりインバータ1000の製造に要するコストを減らすことが容易になる。互いに異なる複数のインバータケースの各インバータケースにインバータ1000が収容される例は、後述する第10実施形態、第11実施形態、第12実施形態及び第13実施形態において説明する。 Further, in the inverter 1000, the cooler 1011 is fixed to the frame 1012. Therefore, it is not necessary to fix the cooler 1011 to the inverter case or to integrate it with the inverter case. When it is not necessary to fix the cooler 1011 to the inverter case or to integrate it with the inverter case, the electric capacities required for the plurality of inverters respectively accommodated in the plurality of different inverter cases are approximately the same. The plurality of inverters can be shared. As a result, it is easy to reduce the cost required to manufacture the inverter 1000 by the mass production effect. An example in which the inverter 1000 is accommodated in each inverter case of a plurality of different inverter cases will be described in tenth, eleventh, twelfth, and thirteenth embodiments described later.
 また、インバータ1000においては、ACバスバ電極1181及び電流センサ1201の両方が位置合わせ用の突起1420に固定される。これにより、ACバスバ電極1181と電流センサ1201との位置合わせを容易に行うことができる。同様に、ACバスバ電極1180と電流センサ1200との位置合わせを容易に行うことができ、ACバスバ電極1182と電流センサ1202との位置合わせを容易に行うことができる。 Further, in inverter 1000, both AC bus bar electrode 1181 and current sensor 1201 are fixed to alignment projection 1420. Thereby, alignment between the AC bus bar electrode 1181 and the current sensor 1201 can be easily performed. Similarly, alignment between the AC bus bar electrode 1180 and the current sensor 1200 can be easily performed, and alignment between the AC bus bar electrode 1182 and the current sensor 1202 can be easily performed.
 また、インバータ1000においては、フレーム1012の強度を高くすることが容易である。このため、DCコネクタ1100、信号端子コネクタ1130並びにACコネクタ1190,1191及び1192がフレーム1012に固定された場合は、これらのコネクタが強固に固定される。これにより、これらのコネクタに外部ケーブルが接続された場合においても、これらのコネクタの固定に影響が生じにくくなる。 Further, in the inverter 1000, it is easy to increase the strength of the frame 1012. Therefore, when the DC connector 1100, the signal terminal connector 1130, and the AC connectors 1190, 1191 and 1192 are fixed to the frame 1012, these connectors are firmly fixed. Thereby, even when an external cable is connected to these connectors, the fixing of these connectors is less likely to be affected.
 また、インバータ1000においては、多数の信号配線1140が梁1317により支持される。これにより、信号配線1140の支持に要するスペースが小さくなる。 Further, in the inverter 1000, a large number of signal wires 1140 are supported by the beams 1317. This reduces the space required to support the signal wiring 1140.
 1.7 平滑コンデンサ
 図12は、第1実施形態のインバータに設けられたコンデンサ群及びフレームの断面を模式的に図示する断面図である。
1.7 Smoothing Capacitor FIG. 12 is a cross-sectional view schematically showing a cross section of a capacitor group and a frame provided in the inverter of the first embodiment.
 平滑コンデンサ1110は、図12に図示されるように、コンデンサ群1500を備える。コンデンサ群1500は、底板1330に固定される。これにより、コンデンサ群1500は、フレーム1012に固定される。 The smoothing capacitor 1110 comprises a capacitor group 1500 as illustrated in FIG. Capacitor group 1500 is fixed to bottom plate 1330. Thus, the capacitor group 1500 is fixed to the frame 1012.
 コンデンサ群1500は、纏められた複数のコンデンサを含む。当該複数のコンデンサの各々である各コンデンサ1510は、円筒状の形状を有し、一方の円筒端及び他方の円筒端を有する。各コンデンサ1510の円筒軸は、底板1330の上面の法線方向と平行をなす第1の方向D1に延びる。当該複数のコンデンサは、底板1330の上面の法線方向と垂直をなす第2の方向D2に配列される。 Capacitor group 1500 includes a plurality of integrated capacitors. Each capacitor 1510, which is each of the plurality of capacitors, has a cylindrical shape and has one cylindrical end and the other cylindrical end. The cylindrical axis of each condenser 1510 extends in a first direction D1 parallel to the normal direction of the top surface of the bottom plate 1330. The plurality of capacitors are arranged in a second direction D2 perpendicular to the normal direction of the top surface of the bottom plate 1330.
 コンデンサ群1500は、コンデンサケースを用いることなく底板に固定される。コンデンサケースを用いずに固定することにより、コンデンサ群1500を収容するコンデンサケース、及びコンデンサケースを固定するために用いられる端子又は足部が不要になる。これにより、平滑コンデンサ1110を小型化することが容易になり、平滑コンデンサ1110の周辺にデッドスペースが生じないようにすることが容易になる。 Capacitor group 1500 is fixed to the bottom plate without using a capacitor case. Fixing without using the capacitor case eliminates the need for the capacitor case for accommodating the capacitor group 1500 and the terminals or feet used for fixing the capacitor case. As a result, it becomes easy to miniaturize the smoothing capacitor 1110 and it becomes easy to prevent dead space around the smoothing capacitor 1110.
 図13は、第1実施形態のインバータに設けられた平滑コンデンサにおける電気的接続を図示する接続図である。 FIG. 13 is a connection diagram illustrating an electrical connection in the smoothing capacitor provided in the inverter of the first embodiment.
 平滑コンデンサ1110は、図13に図示されるように、コンデンサ群1500、バスバ電極1520及びバスバ電極1521を備える。 The smoothing capacitor 1110 includes a capacitor group 1500, a bus bar electrode 1520 and a bus bar electrode 1521 as illustrated in FIG.
 各コンデンサ1510は、第1の電極1540及び第2の電極1541を備える。第1の電極1540は、各コンデンサ1510の一方の円筒端にある。第2の電極1541は、各コンデンサ1510の他方の円筒端にある。コンデンサ群1500に備えられる複数の第1の電極1540は、バスバ電極1520により互いに電気的に接続される。コンデンサ群1500に備えられる複数の第2の電極1541は、バスバ電極1521により互いに電気的に接続される。これにより、コンデンサ群1500に含まれる複数のコンデンサは、電気的に並列接続される。 Each capacitor 1510 comprises a first electrode 1540 and a second electrode 1541. The first electrode 1540 is at one cylindrical end of each capacitor 1510. The second electrode 1541 is at the other cylindrical end of each capacitor 1510. The plurality of first electrodes 1540 provided in capacitor group 1500 are electrically connected to each other by bus bar electrode 1520. The plurality of second electrodes 1541 provided in the capacitor group 1500 are electrically connected to each other by the bus bar electrode 1521. Thereby, the plurality of capacitors included in capacitor group 1500 are electrically connected in parallel.
 コンデンサ群1500並びにバスバ電極1520及び1521に対して絶縁処理が行われてからコンデンサ群1500が底板1330に固定されてもよい。 The capacitor group 1500 may be fixed to the bottom plate 1330 after the insulating process is performed on the capacitor group 1500 and the bus bar electrodes 1520 and 1521.
 図14は、第1実施形態の第2変形例のインバータに設けられたコンデンサ群及びフレームの上面を模式的に図示する上面図である。 FIG. 14 is a top view schematically illustrating an upper surface of a capacitor group and a frame provided in an inverter according to a second modification of the first embodiment.
 第1実施形態の第2変形例のインバータ1000においては、図14に図示されるように、各コンデンサ1510の円筒軸が底板1330の上面の法線方向と垂直をなす第3の方向D3に延びる。 In the inverter 1000 of the second modification of the first embodiment, as shown in FIG. 14, the cylindrical axis of each capacitor 1510 extends in a third direction D3 perpendicular to the normal direction of the top surface of the bottom plate 1330. .
 図15は、第1実施形態の第3変形例のインバータに設けられたコンデンサ群、フレーム及びベース板の断面を図示する断面図である。 FIG. 15 is a cross-sectional view illustrating cross sections of a capacitor group, a frame, and a base plate provided in an inverter according to a third modification of the first embodiment.
 第1実施形態の第3変形例のインバータ1000においては、インバータ1000が図15に図示されるベース板1550をさらに備え、コンデンサ群1500がベース板1550に固定され、ベース板1550がフレーム1012に固定される。 In the inverter 1000 according to the third modification of the first embodiment, the inverter 1000 further includes a base plate 1550 illustrated in FIG. 15, the capacitor group 1500 is fixed to the base plate 1550, and the base plate 1550 is fixed to the frame 1012. Be done.
 図16は、第1実施形態の第4変形例のインバータに設けられたコンデンサ群、フレーム及び樹脂体の断面を模式的に図示する断面図である。 FIG. 16 is a cross-sectional view schematically illustrating cross sections of a capacitor group, a frame, and a resin body provided in the inverter according to the fourth modification of the first embodiment.
 第1実施形態の第4変形例のインバータ1000においては、インバータ1000が図16に図示される樹脂体1560をさらに備え、樹脂体1560がフレーム1012に固定され、コンデンサ群1500が樹脂体1560に埋め込まれる。樹脂体1560は、樹脂硬化物からなる。コンデンサ群1500は、樹脂体1560に包含され、樹脂体1560により封止される。コンデンサ群1500が、樹脂体1560に封止されない状態で樹脂からなる接合媒体を介してフレーム1012に接合されてもよい。 In the inverter 1000 according to the fourth modification of the first embodiment, the inverter 1000 further includes a resin body 1560 shown in FIG. 16, the resin body 1560 is fixed to the frame 1012, and the capacitor group 1500 is embedded in the resin body 1560. Be The resin body 1560 is made of a resin cured product. Capacitor group 1500 is included in resin body 1560 and is sealed with resin body 1560. The capacitor group 1500 may be bonded to the frame 1012 via a bonding medium made of resin without being sealed by the resin body 1560.
 図17は、第1実施形態の第5変形例のインバータに設けられたコンデンサ群、フレーム、樹脂体及びベース板の断面を模式的に図示する断面図である。 FIG. 17 is a cross-sectional view schematically illustrating cross sections of a capacitor group, a frame, a resin body, and a base plate provided in the inverter according to the fifth modification of the first embodiment.
 第1実施形態の第5変形例のインバータ1000においては、インバータ1000が図17に図示されるベース板1570及び樹脂体1571を備え、ベース板1570がフレーム1012に固定され、樹脂体1571がベース板1570に固定され、コンデンサ群1500が樹脂体1571に埋め込まれる。コンデンサ群1500が、樹脂体1560に封止されない状態で樹脂からなる接合媒体を介してベース板1570に接合されてもよい。 In an inverter 1000 according to a fifth modification of the first embodiment, the inverter 1000 includes a base plate 1570 and a resin body 1571 shown in FIG. 17, the base plate 1570 is fixed to the frame 1012, and the resin body 1571 is a base plate. It is fixed to 1570, and the capacitor group 1500 is embedded in the resin body 1571. Capacitor group 1500 may be bonded to base plate 1570 via a bonding medium made of resin without being sealed by resin body 1560.
 1.8 部品の冷却
 図18は、第1実施形態のインバータに望ましくは付加される部品の冷却のための構造を模式的に図示する断面図である。
1.8 Cooling of Parts FIG. 18 is a cross-sectional view schematically illustrating a structure for cooling a part that is desirably added to the inverter of the first embodiment.
 図18に図示される部品の冷却のための構造1600においては、インバータ1000が、伝熱部材1610をさらに備え、伝熱部材1610が、部品1611及び少なくともひとつの冷却器1011に接触し、部品1611と冷却器1011とを熱的に繋ぐ。伝熱部材1610の部品1611及び冷却器1011への接触により、部品1611から伝熱部材1610を経由して冷却器1011に熱が排熱され、部品1611が冷却される。これにより、部品1611を冷却器1011に直接的に接触させる必要がなくなり、部品1611を冷却することが容易になる。 In the structure 1600 for cooling a part illustrated in FIG. 18, the inverter 1000 further comprises a heat transfer member 1610, the heat transfer member 1610 contacting the part 1611 and at least one cooler 1011, the part 1611 And the cooler 1011 are thermally connected. The contact of the heat transfer member 1610 with the component 1611 and the cooler 1011 causes heat to be dissipated from the component 1611 to the cooler 1011 via the heat transfer member 1610 to cool the component 1611. This eliminates the need for the component 1611 to be in direct contact with the cooler 1011 and makes it easier to cool the component 1611.
 部品1611は、発熱が大きい部品、発熱が大きい部品に接触する部品、発熱が大きい部品に近接する部品、熱に弱い部品等である。発熱が大きい部品は、平滑コンデンサ1110、半導体パワーモジュール1170等である。発熱が大きい部品に接触する部品は、DCバスバ電極1120,1121,1122,1123,1124及び1125、ACバスバ電極1180,1181及び1182等である。発熱が大きい部品に近接する部品は、駆動回路基板1150及び1160、電流センサ1200,1201及び1202等である。熱に弱い部品は、駆動回路基板1150及び1160、電流センサ1200,1201及び1202等である。したがって、部品1611は、平滑コンデンサ1110、DCバスバ電極1120,1121,1122,1123,1124及び1125、駆動回路基板1150及び1160、ACバスバ電極1180,1181及び1182並びに電流センサ1200,1201及び1202からなる群より選択される少なくともひとつの部品である。 The component 1611 is a component that generates a large amount of heat, a component that contacts a component that generates a large amount of heat, a component that is close to a component that generates a large amount of heat, a component that is susceptible to heat, or the like. The components that generate a large amount of heat are the smoothing capacitor 1110, the semiconductor power module 1170, and the like. Parts that contact parts that generate a large amount of heat are DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125, AC bus bar electrodes 1180, 1181 and 1182, and the like. Parts close to the parts that generate a large amount of heat are drive circuit boards 1150 and 1160, current sensors 1200, 1201 and 1202, and the like. Parts susceptible to heat are drive circuit boards 1150 and 1160, current sensors 1200, 1201 and 1202, and so on. Therefore, component 1611 comprises smoothing capacitor 1110, DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125, drive circuit boards 1150 and 1160, AC bus bar electrodes 1180, 1181 and 1182, and current sensors 1200, 1201 and 1202. At least one component selected from the group.
 伝熱部材1610は、フレーム1012に設けられた柱、梁等のフレームメンバー1612に固定される。これにより、伝熱部材1610がフレーム1012に固定される。伝熱部材1610のフレーム1012への固定により、伝熱部材1610が意図しない部位に接触して悪影響が生じることが抑制される。また、伝熱部材1610が宙を通る構造等が採用される場合においても、伝熱部材1610がフレームメンバー1612に容易かつ確実に固定される。伝熱部材1610がフレーム1012に固定されずフレーム1012に保持されるにとどまる場合もある。 The heat transfer member 1610 is fixed to a frame member 1612 such as a column or a beam provided on the frame 1012. Thus, the heat transfer member 1610 is fixed to the frame 1012. Fixing the heat transfer member 1610 to the frame 1012 suppresses the occurrence of an adverse effect due to the heat transfer member 1610 coming into contact with an unintended portion. In addition, even when the heat transfer member 1610 has a structure in which the heat transfer member 1610 passes through the air, the heat transfer member 1610 is easily and reliably fixed to the frame member 1612. The heat transfer member 1610 may not be fixed to the frame 1012 and may be held by the frame 1012.
 伝熱部材1610は、望ましくは柔軟性を有する。これにより、部品1611の表面が凹凸を有する場合、又は部品1611の表面が曲面である場合においても、伝熱部材1610が部品1611に容易に接触させられ、部品1611から伝熱部材1610に効果的に熱が伝えられる。伝熱部材1610が柔軟性を有する場合は、フレームメンバー1612による伝熱部材1610の支持がさらに容易になる。 The heat transfer member 1610 desirably has flexibility. Thereby, even when the surface of the component 1611 has unevenness or the surface of the component 1611 is a curved surface, the heat transfer member 1610 can be easily brought into contact with the component 1611, and the component 1611 can be effectively transferred to the heat transfer member 1610. Heat is transmitted to When the heat transfer member 1610 is flexible, the support of the heat transfer member 1610 by the frame member 1612 is further facilitated.
 伝熱部材1610のフレーム1012への固定も、インバータ1000に設けられたその他の部品のフレーム1012への固定と同様に、容易である。 Fixing of the heat transfer member 1610 to the frame 1012 is also easy, as is fixing of the other components of the inverter 1000 to the frame 1012.
 1.9 部品間の遮熱
 図19は、第1実施形態のインバータに望ましくは付加される、部品間の遮熱のための構造を模式的に図示する断面図である。
1.9 Thermal insulation between parts FIG. 19 is a cross-sectional view schematically showing a structure for thermal insulation between parts, which is preferably added to the inverter of the first embodiment.
 図19に図示される部品間の遮熱のための構造1700においては、インバータ1000が遮熱板1710をさらに備え、遮熱板1710が部品1711と部品1712との間に配置される。これにより、部品1712から部品1711に熱が伝わることが抑制される。 In the structure 1700 for heat insulation between components illustrated in FIG. 19, the inverter 1000 further includes a heat shield plate 1710, and the heat shield plate 1710 is disposed between the components 1711 and 1712. Thus, the transfer of heat from the component 1712 to the component 1711 is suppressed.
 部品1711は、熱に弱い部品等である。部品1712は、発熱が大きい部品等である。熱に弱い部品は、駆動回路基板1150及び1160、電流センサ1200,1201及び1202等である。発熱が大きい部品は、平滑コンデンサ1110、半導体パワーモジュール1170等である。 The component 1711 is a component sensitive to heat. The component 1712 is a component or the like that generates a large amount of heat. Parts susceptible to heat are drive circuit boards 1150 and 1160, current sensors 1200, 1201 and 1202, and so on. The components that generate a large amount of heat are the smoothing capacitor 1110, the semiconductor power module 1170, and the like.
 遮熱板1710は、樹脂等からなり、フレーム1012に設けられた柱、梁等のフレームメンバー1713に固定される。これにより、遮熱板1710がフレーム1012に固定される。 The heat shield plate 1710 is made of resin or the like, and is fixed to a frame member 1713 such as a column or a beam provided on the frame 1012. Thus, the heat shield plate 1710 is fixed to the frame 1012.
 遮熱板1710のフレーム1012への固定も、インバータ1000に設けられたその他の部品のフレーム1012への固定と同様に、容易である。 Fixing of the heat shield plate 1710 to the frame 1012 is also easy, as is fixing of the other components provided in the inverter 1000 to the frame 1012.
 1.10 巻き線の直接的な接続
 図20は、第1実施形態の第6変形例のインバータの断面を模式的に図示する断面図である。
1.10 Direct Connection of Windings FIG. 20 is a cross-sectional view schematically illustrating a cross section of an inverter according to a sixth modification of the first embodiment.
 第1実施形態の第6変形例のインバータ1000においては、図20に図示されるように、側板1321が、フレーム1012の外側を向く表面である外側面1800を有するフレームメンバーであり、ACバスバ電極1181が、外側面1800に配置される端部1810を有する。端部1810は、インバータ1000により駆動される電動機の巻き線1820に接触し、巻き線1820に電気的に接続される。端部1810が側板1321の内部に配置されてもよい。ACバスバ電極1180及び1182も、側板1321の外側面1800又は側板1321の内部に配置され、インバータ1000により駆動される電動機の巻き線に電気的に接続される端部を有する。 In the inverter 1000 according to the sixth modification of the first embodiment, as shown in FIG. 20, the side plate 1321 is a frame member having an outer surface 1800 which is a surface facing the outside of the frame 1012, and an AC bus bar electrode 1181 has an end 1810 disposed on the outer surface 1800. The end 1810 contacts the winding 1820 of the motor driven by the inverter 1000 and is electrically connected to the winding 1820. The end 1810 may be disposed inside the side plate 1321. AC bus bar electrodes 1180 and 1182 are also disposed on the outer side surface 1800 of side plate 1321 or inside side plate 1321 and have ends electrically connected to the windings of the motor driven by inverter 1000.
 ACバスバ電極1180,1181及び1182の各ACバスバ電極の端部には、ボルト締結部のような接続部位が設けられ、各ACバスバ電極の端部は、ACコネクタを介さずに電動機の巻き線に直接的に接触する。各ACバスバ電極の端部の電動機の巻き線への直接的な接触により、各ACバスバ電極の端部は、ACコネクタを介さずに電動機の巻き線に電気的に接続される。これにより、高価で大きいACコネクタを使用せずに電動機をインバータ1000に電気的に接続することが可能になり、電動機をインバータ1000に電気的に接続するのに要するコスト及びスペースを減らすことが容易になる。 A connection portion such as a bolt fastening portion is provided at the end of each AC bus bar electrode of the AC bus bar electrodes 1180, 1181 and 1182, and the end of each AC bus bar electrode is not wound with an AC connector. In direct contact with The direct contact of the end of each AC busbar electrode with the motor windings causes the end of each AC busbar electrode to be electrically connected to the motor windings without an AC connector. This makes it possible to electrically connect the motor to the inverter 1000 without using expensive and large AC connectors, and it is easy to reduce the cost and space required to electrically connect the motor to the inverter 1000. become.
 ACバスバ電極1180,1181及び1182の各ACバスバ電極が先述した冷却される部品1611である場合は、伝熱部材1610が、各ACバスバ電極の端部に沿って配置され、少なくともひとつの冷却器1011に接触する。これにより、電動機の巻き線からインバータ1000に熱が伝わることを抑制できる。伝熱部材1611は、各ACバスバ電極の端部に接触してもよいし、各ACバスバ電極の端部からわずかに離れてもよい。 If each AC bus bar electrode of the AC bus bar electrodes 1180, 1181 and 1182 is the previously described cooled component 1611, the heat transfer member 1610 is disposed along the end of each AC bus bar electrode, and at least one cooler Contact 1011. This can suppress heat transfer from the winding of the motor to the inverter 1000. The heat transfer member 1611 may contact the end of each AC bus bar electrode, or may be slightly separated from the end of each AC bus bar electrode.
 第6変形例は、電動機に設けられた電動機ケースに接合された、又は当該電動機ケースと一体化されたインバータケースにインバータ1000が収容される場合に好適に採用される。 The sixth modification is suitably adopted when the inverter 1000 is accommodated in an inverter case joined to the motor case provided in the motor or integrated with the motor case.
 1.11 他の構造との対比
 1.11.1 同じ大きさを有する複数の回路基板が金属等からなるフレームに固定される構造との対比
 以下では、同じ大きさを有する複数の回路基板が金属等からなるフレームに固定される構造との対比を行う。当該構造は、複数の回路基板を備え、複数の回路基板が電気的に接続された状態で配置され、所定の動作を行う電気機器において採用される。
1.11 Comparison with Other Structures 1.11.1 Comparison with Structures in which Circuit Boards of the Same Size Are Fixed to a Frame Made of Metal etc. Below, Circuit Boards with the Same Size are Contrast with the structure fixed to the frame made of metal etc. The structure includes a plurality of circuit boards, is disposed in a state in which the plurality of circuit boards are electrically connected, and is employed in an electric device that performs a predetermined operation.
 インバータ1000においては、互いに異なる大きさ及び形状を有する複数の部品がフレーム1012に固定される。複数の部品のフレーム1012への固定により、先述したように、複数の部品の間の隙間が小さくなるように複数の部品を固定することが容易になる。特に、大きな部品とそれに隣接する部品との間の隙間が小さくなるように大きな部品及びそれに隣接する部品を配置することが容易になる。これにより、複数の部品を高密度で配置することが容易になり、インバータ1000を小型化することが容易になる。 In the inverter 1000, a plurality of parts having different sizes and shapes are fixed to the frame 1012. Fixing the plurality of parts to the frame 1012 facilitates fixing the plurality of parts so as to reduce the gap between the plurality of parts as described above. In particular, it becomes easy to arrange the large component and the adjacent component so that the gap between the large component and the adjacent component is reduced. Thereby, it becomes easy to arrange a plurality of parts at high density, and it becomes easy to miniaturize the inverter 1000.
 加えて、インバータ1000においては、DCコネクタ1100、DCバスバ電極1120,1121,1122,1123,1124及び1125、信号配線1140並びにACバスバ電極1180,1181及び1182がフレーム1012の表面に固定されてもよい。また、これらの配線を樹脂体に埋設するインサートモールド構造をインバータ1000において必ずしも採用する必要はない。これにより、インバータ1000の製造に要するコストを減らすことが容易になる。伝熱部材1610が設けられた場合は、伝熱部材1610についても同様のことが言える。これらの配線が固定されるフレームメンバーの表面等には、必要に応じて電気絶縁処理が行われる。 In addition, in the inverter 1000, the DC connector 1100, the DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125, the signal wiring 1140 and the AC bus bar electrodes 1180, 1181 and 1182 may be fixed to the surface of the frame 1012. . In addition, it is not necessary to adopt in the inverter 1000 an insert mold structure in which these wires are embedded in a resin body. This makes it easy to reduce the cost required to manufacture the inverter 1000. When the heat transfer member 1610 is provided, the same applies to the heat transfer member 1610. An electrical insulation process is performed on the surface of the frame member to which these wires are fixed, as needed.
 1.11.2 冷却器に立てられた柱に回路基板等が固定される構造との対比
 以下では、冷却器に立てられた柱に回路基板等が固定される構造との対比を行う。当該構造に類似する構造がインバータにおいて採用された場合は、複数の部品が固定される部分を冷却器が有しなくてはならない。このため、冷却器を小型化することが困難になり、冷却器に要するコストを減らすことが困難になる。これにより、インバータを軽量化することが困難になり、インバータ1000を製造するのに要するコストを減らすことが困難になる。
1.11.2 Comparison with the structure in which the circuit board etc. is fixed to the column set in the cooler In the following, the comparison with the structure in which the circuit board etc. is fixed to the column set in the cooler is carried out. If a structure similar to the structure is adopted in the inverter, the cooler must have a part to which a plurality of parts are fixed. For this reason, it becomes difficult to miniaturize the cooler, and it becomes difficult to reduce the cost required for the cooler. As a result, it becomes difficult to reduce the weight of the inverter, and it becomes difficult to reduce the cost required to manufacture the inverter 1000.
 これに対して、インバータ1000においては、半導体パワーモジュール1170以外の部品が、冷却器1011に固定されず、フレーム1012に固定される。半導体パワーモジュール1170以外の部品がフレーム1012に固定されることにより、半導体パワーモジュール1170以外の部品を冷却器1011の主面に対向して配置する必要がなくなる。これにより、冷却器1011を小型化することが容易になり、冷却器1011に要するコストを減らすことが容易になる。 On the other hand, in the inverter 1000, components other than the semiconductor power module 1170 are fixed to the frame 1012 without being fixed to the cooler 1011. By fixing the components other than the semiconductor power module 1170 to the frame 1012, it is not necessary to place the components other than the semiconductor power module 1170 opposite to the main surface of the cooler 1011. As a result, the cooler 1011 can be easily miniaturized, and the cost required for the cooler 1011 can be easily reduced.
 1.11.3 インバータケースに立てられた柱に回路基板等が固定される構造との対比
 以下では、インバータケースに立てられた柱に回路基板等が固定される構造との対比を行う。当該構造に類似する構造がインバータにおいて採用された場合は、互いに異なる複数のインバータケースの各インバータケースに、各インバータケースにおけるインバータ搭載条件に適合するインバータが収容されなければならない。これにより、互いに異なる複数のインバータケースにそれぞれ収容される複数のインバータを共通化することが困難になる。
1.11.3 Comparison with the structure in which the circuit board etc. is fixed to the column set up in the inverter case In the following, the comparison with the structure in which the circuit board etc. is fixed to the column set up in the inverter case is carried out. When the structure similar to the said structure is employ | adopted in the inverter, the inverter which adapts the inverter mounting condition in each inverter case must be accommodated in each inverter case of a several different inverter case. This makes it difficult to share a plurality of inverters respectively accommodated in a plurality of different inverter cases.
 これに対して、インバータ1000は、互いに異なる複数のインバータケースの各インバータケースに収容できる。これにより、互いに異なる複数のインバータケースにそれぞれ収容される複数のインバータを共通化することが容易になる。 On the other hand, the inverter 1000 can be accommodated in each inverter case of a plurality of different inverter cases. This makes it easy to share the plurality of inverters respectively accommodated in the plurality of different inverter cases.
 1.11.4 枠形状を有する板材に素子実装基板、配線基板等が載せられた構造との対比
 以下では、枠形状を有する板材に素子実装基板、配線基板等が載せられた構造との対比を行う。当該構造に類似する構造がインバータにおいて採用された場合は、複数の部品が板材に沿って配置されなければならない。複数の部品が板材に沿って配置されることにより、複数の部品が互いに著しく異なる大きさ及び形状を有する場合に、複数の部品の間の隙間が小さくなるように複数の部品を固定することが困難になる。これにより、インバータを小型化することが困難になる。
1.11.4 Comparison with a structure in which an element mounting substrate, a wiring board, and the like are mounted on a plate material having a frame shape In the following, a comparison with a structure in which an element mounting substrate, a wiring board, and the like is mounted on a plate material having a frame shape I do. If a structure similar to that is employed in the inverter, then multiple parts must be placed along the plate. Fixing the plurality of parts so that a gap between the plurality of parts is reduced when the plurality of parts are arranged along the plate so that the plurality of parts have significantly different sizes and shapes from one another It will be difficult. This makes it difficult to miniaturize the inverter.
 これに対して、インバータ1000においては、複数の部品がフレーム1012に固定される。複数の部品のフレーム1012への固定により、複数の部品が互いに著しく異なる大きさ及び形状を有する場合であっても、先述したように、複数の部品の間の隙間が小さくなるように複数の部品を固定することが容易になる。これにより、インバータ1000を小型化することが容易になる。 On the other hand, in the inverter 1000, a plurality of parts are fixed to the frame 1012. By securing the plurality of parts to the frame 1012, as described above, even if the plurality of parts have significantly different sizes and shapes from each other, the plurality of parts may be reduced so as to reduce the gap between the plurality of parts. It becomes easy to fix. This makes it easy to miniaturize the inverter 1000.
 また、インバータ1000においては、フレーム1012が棒状のフレームメンバーを備えることにより、棒状のフレームメンバーを含む複数のフレームメンバーに囲まれる開口部1340がフレーム1012に形成される。開口部1340により、フレーム1012の外部から開口部1340を経由してフレーム1012の内部に到達すること、及びフレーム1012の内部から開口部1340を経由してフレーム1012の外部に到達することが容易になる。これにより、インバータ1000を組み立てる際にフレーム1012の外部から開口部1340を経由してフレーム1012の内部に工具等を差し込む作業が容易になり、必要に応じて配線等をフレーム1012の内部から当該開口部を経由してフレーム1012の外部に引き出すことが容易になる。 Further, in the inverter 1000, the frame 1012 is provided with a rod-like frame member, whereby an opening 1340 surrounded by a plurality of frame members including the rod-like frame member is formed in the frame 1012. The opening 1340 makes it easy to reach the inside of the frame 1012 from the outside of the frame 1012 via the opening 1340 and to reach the outside of the frame 1012 from the inside of the frame 1012 via the opening 1340. Become. This makes it easy to insert a tool or the like into the frame 1012 from the outside of the frame 1012 through the opening 1340 when assembling the inverter 1000, and wiring or the like from the inside of the frame 1012 as needed. It is easy to pull it out of the frame 1012 via the unit.
 2 第2実施形態
 本発明の例示的な第2実施形態は、インバータに関する。
2 Second Embodiment An exemplary second embodiment of the present invention relates to an inverter.
 第1実施形態と第2実施形態との主な相違は、以下の点にある:第1実施形態においては、半導体パワーモジュール1170の裏面が被冷却面1400となり、被冷却面1400を冷却する冷却器1011が設けられ、冷却器1011が底板1331に固定される。しかし、半導体パワーモジュール1170の表面が被冷却面とならない。これに対して、第2実施形態においては、半導体パワーモジュールの裏面が第1の被冷却面となり、第1の被冷却面を冷却する第1の冷却器が設けられ、第1の冷却器が底板に固定される。加えて、半導体パワーモジュール1170の表面が第2の被冷却面となり、第2の被冷却面を冷却する第2の冷却器が設けられ、第2の冷却器が内部板に固定される。 The main differences between the first embodiment and the second embodiment are as follows: In the first embodiment, the back surface of the semiconductor power module 1170 is the surface to be cooled 1400, and the cooling to cool the surface to be cooled 1400 A vessel 1011 is provided, and a cooler 1011 is fixed to the bottom plate 1331. However, the surface of the semiconductor power module 1170 does not become a surface to be cooled. On the other hand, in the second embodiment, the back surface of the semiconductor power module is the first surface to be cooled, the first cooler for cooling the first surface to be cooled is provided, and the first cooler is It is fixed to the bottom plate. In addition, the surface of the semiconductor power module 1170 is the second surface to be cooled, a second cooler for cooling the second surface to be cooled is provided, and the second cooler is fixed to the inner plate.
 図21は、第2実施形態のインバータの断面を模式的に図示する断面図である。図21に図示される断面の位置は、図7に図示される断面の位置に相当する。 FIG. 21 is a cross-sectional view schematically illustrating a cross-section of the inverter according to the second embodiment. The position of the cross section shown in FIG. 21 corresponds to the position of the cross section shown in FIG.
 図21に図示されるインバータ2000は、インバータ回路1010、少なくともひとつの冷却器2011及びフレーム2012を備える。 The inverter 2000 illustrated in FIG. 21 includes an inverter circuit 1010, at least one cooler 2011 and a frame 2012.
 第2実施形態のインバータ2000に設けられたインバータ回路1010は、第1実施形態のインバータ1000に設けられたインバータ1010と同様のものである。このため、第2実施形態のインバータ2000は、第1実施形態のインバータ1000に設けられた半導体パワーモジュール1170と同様の半導体パワーモジュール1170を備える。 The inverter circuit 1010 provided in the inverter 2000 of the second embodiment is similar to the inverter 1010 provided in the inverter 1000 of the first embodiment. For this reason, the inverter 2000 of the second embodiment includes the same semiconductor power module 1170 as the semiconductor power module 1170 provided in the inverter 1000 of the first embodiment.
 半導体パワーモジュール1170は、板形状である。半導体パワーモジュール1170は、第1の被冷却面2400及び第2の被冷却面2401を有する。第1の被冷却面2400は、半導体パワーモジュール1170の一方の主面となる裏面である。第2の被冷却面2401は、半導体パワーモジュール1170の他方の主面となる表面である。 The semiconductor power module 1170 has a plate shape. The semiconductor power module 1170 has a first surface to be cooled 2400 and a second surface to be cooled 2401. The first cooled surface 2400 is a back surface to be one main surface of the semiconductor power module 1170. The second cooled surface 2401 is a surface to be the other main surface of the semiconductor power module 1170.
 少なくともひとつの冷却器2011は、第1の冷却器2900及び第2の冷却器2901を含む。第1の冷却器2900は、半導体パワーモジュール1170の第1の被冷却面2400に取り付けられ、第1の被冷却面2400を冷却する。第2の冷却器2901は、半導体パワーモジュール1170の第2の被冷却面2401に取り付けられ、第2の被冷却面2401を冷却する。 At least one cooler 2011 includes a first cooler 2900 and a second cooler 2901. The first cooler 2900 is attached to the first cooled surface 2400 of the semiconductor power module 1170 and cools the first cooled surface 2400. The second cooler 2901 is attached to the second cooled surface 2401 of the semiconductor power module 1170 and cools the second cooled surface 2401.
 図22は、第2実施形態のインバータに設けられたフレームを模式的に図示する斜視図である。 FIG. 22 is a perspective view schematically illustrating a frame provided in the inverter of the second embodiment.
 フレーム2012は、図22に図示されるように、柱1300,1301,1302及び1303、梁1310,1311,1312,1313,1314,1315,1316,1317,2318及び2319、側板1320及び1321、底板1330及び1331並びに内部板2332を含む複数のフレームメンバーを備える。フレーム1012は、当該複数のフレームメンバーを組み合わせて構成される。第2実施形態のインバータ2000に設けられた柱1300,1301,1302及び1303、梁1310,1311,1312,1313,1314,1315,1316及び1317、側板1320及び1321並びに底板1330及び1331の各フレームメンバーは、第1実施形態のインバータ1000に設けられた同じ参照符号が付与されたフレームメンバーと同様のものである。 The frame 2012 is, as illustrated in FIG. 22, columns 1300, 1301, 1302 and 1303, beams 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317 and 2318, side plates 1320 and 1321, and a bottom plate 1330. And 1331 and a plurality of frame members including an inner plate 2332. The frame 1012 is configured by combining the plurality of frame members. Frame members of pillars 1300, 1301, 1302, 1303 and 1303, beams 1310, 1311, 1312, 1313, 1314, 1316, 1317, side plates 1320 and 1321 and bottom plates 1330 and 1331 according to the second embodiment. Are similar to the frame members provided with the same reference numerals and provided in the inverter 1000 of the first embodiment.
 梁2318は、柱1300及び1301並びに側板1321に固定され、柱1300及び1301並びに側板1321により支持される。梁2319は、柱1302及び1303並びに側板1321に固定され、柱1302及び1303並びに側板1321により支持される。 The beam 2318 is fixed to the columns 1300 and 1301 and the side plate 1321, and is supported by the columns 1300 and 1301 and the side plate 1321. The beam 2319 is fixed to the columns 1302 and 1303 and the side plate 1321 and is supported by the columns 1302 and 1303 and the side plate 1321.
 内部板2332は、広がり方向である第2の方向D2及び第3の方向D3に広がる面を有する板状のフレームメンバーである。当該面は、主面である。内部板2332は、梁2318及び2319に固定され、梁2318及び2319により支持される。内部板2332が、梁2318及び2319を介さずに柱1300,1301,1302及び1303並びに側板1321に固定され、柱1300,1301,1302及び1303並びに側板1321により支持されてもよい。内部板2332は、底板1331から第1の方向D1に離間して配置される。 The inner plate 2332 is a plate-like frame member having a plane that extends in the second direction D2 and the third direction D3 which are the spreading directions. The said surface is a main surface. The inner plate 2332 is fixed to the beams 2318 and 2319 and is supported by the beams 2318 and 2319. An inner plate 2332 may be fixed to the pillars 1300, 1301, 1302 and 1303 and the side plates 1321 without the beams 2318 and 2319, and may be supported by the pillars 1300, 1301, 1302 and 1303 and the side plates 1321. The inner plate 2332 is spaced from the bottom plate 1331 in the first direction D1.
 第1の冷却器2900は、図21に図示されるように、第1のフレームメンバーとなる底板1331の上面に固定される。これにより、第1の冷却器2900は、底板1331に固定され、底板1331により支持される。第2の冷却器2901は、第2のフレームメンバーとなる内部板2332の下面に固定される。これにより、第2の冷却器2901は、底板2331に固定され、底板2331により支持される。これらにより、少なくともひとつの冷却器2011は、フレーム2012に固定される。 The first cooler 2900 is fixed to the upper surface of the bottom plate 1331 as the first frame member as illustrated in FIG. Thus, the first cooler 2900 is fixed to the bottom plate 1331 and supported by the bottom plate 1331. The second cooler 2901 is fixed to the lower surface of the inner plate 2332 which is the second frame member. Thus, the second cooler 2901 is fixed to the bottom plate 2331 and supported by the bottom plate 2331. Thus, at least one cooler 2011 is fixed to the frame 2012.
 第2実施形態においても、第1実施形態と同様に、インバータ2000を小型化し、インバータ2000の製造に要するコストを減らすことが容易である。 Also in the second embodiment, as in the first embodiment, it is easy to miniaturize the inverter 2000 and reduce the cost required to manufacture the inverter 2000.
 インバータ2000においては、板状の半導体パワーモジュール1170の第1の被冷却面2400及び第2の被冷却面2401の両方を冷却するために第1の冷却器2900及び第2の冷却器2901により半導体モジュール1170が挟まれる。また、第1の冷却器2900及び第2の冷却器2901は、大きく重い。さらに、第1の方向D1について駆動回路基板1150及び1160が第2の冷却器2901に近接し、第2の方向D2について平滑コンデンサ1010、DCバスバ電極1120,1121,1122,1123,1124及び1125、ACバスバ電極1180,1181及び1182並びに電流センサ1200,1201及び1202が第1の冷却器2900及び第2の冷却器2901に近接する。このため、フレーム2012が設けられない場合は、第1の冷却器2900及び第2の冷却器2901を固定することが容易でない。しかし、フレーム2012が設けられた場合は、第1の冷却器2900及び第2の冷却器2901を固定するのに適した位置に第1の冷却器2900及び第2の冷却器2901をそれぞれ固定する底板1331及び内部板2332を配置することが容易である。したがって、インバータ2000においては、第1の冷却器2900及び第2の冷却器2901の固定を容易に行うことができる。これにより、第1の冷却器2900及び第2の冷却器2901を含む2個の冷却器2011を備えるインバータ2000を製造するコストを減らすことが容易になる。 In the inverter 2000, the first cooler 2900 and the second cooler 2901 are used to cool both of the first cooled surface 2400 and the second cooled surface 2401 of the plate-like semiconductor power module 1170. Module 1170 is sandwiched. Also, the first cooler 2900 and the second cooler 2901 are large and heavy. Furthermore, the drive circuit boards 1150 and 1160 are close to the second cooler 2901 in the first direction D1, and the smoothing capacitor 1010, DC bus bar electrodes 1120, 1121, 1122, 1123, 1124, and 1125 in the second direction D2. AC busbar electrodes 1180, 1181 and 1182 and current sensors 1200, 1201 and 1202 are close to the first cooler 2900 and the second cooler 2901. Therefore, when the frame 2012 is not provided, it is not easy to fix the first cooler 2900 and the second cooler 2901. However, when the frame 2012 is provided, the first cooler 2900 and the second cooler 2901 are fixed at positions suitable for fixing the first cooler 2900 and the second cooler 2901, respectively. It is easy to arrange the bottom plate 1331 and the inner plate 2332. Therefore, in inverter 2000, fixing of first cooler 2900 and second cooler 2901 can be easily performed. This facilitates reducing the cost of manufacturing an inverter 2000 comprising two coolers 2011 including a first cooler 2900 and a second cooler 2901.
 3 第3実施形態
 本発明の例示的な第3実施形態は、インバータに関する。
3 Third Embodiment An exemplary third embodiment of the present invention relates to an inverter.
 第1実施形態と第3実施形態との主な相違は、以下の点にある:第1実施形態においては、半導体パワーモジュール1170の裏面が被冷却面1400となり、被冷却面1400を冷却する冷却器1011が設けられ、冷却器1011が底板1331に固定される。しかし、半導体パワーモジュール1170の表面が被冷却面とならない。これに対して、第3実施形態においては、半導体パワーモジュールの裏面が第1の被冷却面となり、第1の被冷却面を冷却する第1の冷却器が設けられ、第1の冷却器が底板に固定される。加えて、半導体パワーモジュールの表面が第2の被冷却面となり、第2の被冷却面を冷却する第2の冷却器が設けられ、第2の冷却器が内部板に固定される。 The main differences between the first embodiment and the third embodiment are as follows: In the first embodiment, the back surface of the semiconductor power module 1170 is the surface to be cooled 1400, and the cooling to cool the surface to be cooled 1400 A vessel 1011 is provided, and a cooler 1011 is fixed to the bottom plate 1331. However, the surface of the semiconductor power module 1170 does not become a surface to be cooled. On the other hand, in the third embodiment, the back surface of the semiconductor power module is the first surface to be cooled, a first cooler for cooling the first surface to be cooled is provided, and the first cooler is It is fixed to the bottom plate. In addition, the surface of the semiconductor power module is a second surface to be cooled, a second cooler for cooling the second surface to be cooled is provided, and the second cooler is fixed to the inner plate.
 図23は、第3実施形態のインバータの断面を模式的に図示する断面図である。図23に図示される断面の位置は、図7に図示される断面の位置に相当する。 FIG. 23 is a cross-sectional view schematically illustrating a cross-section of the inverter according to the third embodiment. The position of the cross section shown in FIG. 23 corresponds to the position of the cross section shown in FIG.
 図23に図示されるインバータ3000は、インバータ回路1010、少なくともひとつの冷却器3011及びフレーム1012を備える。 The inverter 3000 illustrated in FIG. 23 includes an inverter circuit 1010, at least one cooler 3011 and a frame 1012.
 第3実施形態のインバータ3000に設けられたインバータ回路1010及びフレーム1012は、それぞれ第1実施形態のインバータ1000に設けられたインバータ回路1010及びフレーム1012と同様のものである。このため、第3実施形態のインバータ3000は、第1実施形態のインバータ1000に設けられた半導体パワーモジュール1170と同様の半導体パワーモジュール1170、及び第1実施形態のインバータ1000に設けられた底板1331と同様の底板1331を備える。 The inverter circuit 1010 and the frame 1012 provided in the inverter 3000 of the third embodiment are the same as the inverter circuit 1010 and the frame 1012 provided in the inverter 1000 of the first embodiment, respectively. Therefore, the inverter 3000 of the third embodiment includes a semiconductor power module 1170 similar to the semiconductor power module 1170 provided in the inverter 1000 of the first embodiment, and a bottom plate 1331 provided in the inverter 1000 of the first embodiment. A similar bottom plate 1331 is provided.
 半導体パワーモジュール1170は、板形状である。半導体パワーモジュール1170は、第1の被冷却面3400及び第2の被冷却面3401を有する。第1の被冷却面3400は、半導体パワーモジュール1170の一方の主面となる裏面である。第2の被冷却面3401は、半導体パワーモジュール1170の他方の主面となる表面である。 The semiconductor power module 1170 has a plate shape. The semiconductor power module 1170 has a first surface to be cooled 3400 and a second surface to be cooled 3401. The first cooled surface 3400 is a back surface to be one main surface of the semiconductor power module 1170. The second cooled surface 3401 is a surface to be the other main surface of the semiconductor power module 1170.
 少なくともひとつの冷却器3011は、第1の冷却器3900及び第2の冷却器3901を含む。第1の冷却器3900は、半導体パワーモジュール1170の第1の被冷却面3400に取り付けられ、第1の被冷却面3400を冷却する。第2の冷却器3901は、半導体パワーモジュール1170の第2の被冷却面3401に取り付けられ、第2の被冷却面3401を冷却する。 The at least one cooler 3011 includes a first cooler 3900 and a second cooler 3901. The first cooler 3900 is attached to the first cooled surface 3400 of the semiconductor power module 1170 and cools the first cooled surface 3400. The second cooler 3901 is attached to the second cooled surface 3401 of the semiconductor power module 1170 and cools the second cooled surface 3401.
 第1の冷却器3900は、底板1331の上面に固定される。これにより、第1の冷却器3900は、底板1331に固定され、底板1331により支持される。第2の冷却器3901も、底板1331の上面に固定される。これにより、第2の冷却器3901は、底板1331に固定され、底板1331により支持される。これにより、第1の冷却器3900及び第2の冷却器3901は、共通のフレームメンバーである底板1331に共通して固定され、少なくともひとつの冷却器3011は、フレーム1012に固定される。 The first cooler 3900 is fixed to the upper surface of the bottom plate 1331. Thus, the first cooler 3900 is fixed to the bottom plate 1331 and supported by the bottom plate 1331. The second cooler 3901 is also fixed to the upper surface of the bottom plate 1331. Thus, the second cooler 3901 is fixed to the bottom plate 1331 and supported by the bottom plate 1331. Accordingly, the first cooler 3900 and the second cooler 3901 are fixed in common to the bottom plate 1331 which is a common frame member, and at least one cooler 3011 is fixed to the frame 1012.
 第3実施形態においても、第1実施形態と同様に、インバータ3000を小型化し、インバータ3000の製造に要するコストを減らすことが容易である。 Also in the third embodiment, as in the first embodiment, it is easy to miniaturize the inverter 3000 and reduce the cost required to manufacture the inverter 3000.
 梁等のフレームメンバーが第1の方向D1について大きさを有することを利用して、互いに異なる第1の方向D1の位置に配置される第1の冷却器3900及び第2の冷却器3901が当該フレームメンバーに固定されてもよい。例えば、第1の冷却器3900が梁の下面に固定され第2の冷却器3901が当該梁の上面に固定されることにより第1の冷却器3900及び第2の冷却器3901が当該梁に固定されてもよい。 The first cooler 3900 and the second cooler 3901 disposed at positions in the first direction D1 different from each other utilizing the fact that the frame members such as beams have sizes in the first direction D1 It may be fixed to a frame member. For example, the first cooler 3900 is fixed to the lower surface of the beam and the second cooler 3901 is fixed to the upper surface of the beam, so that the first cooler 3900 and the second cooler 3901 are fixed to the beam It may be done.
 4 第4実施形態
 本発明の例示的な第4実施形態は、インバータに関する。
4 Fourth Embodiment The fourth exemplary embodiment of the present invention relates to an inverter.
 第1実施形態と第4実施形態との主な相違は、以下の点にある:第1実施形態においては、平滑前の直流を伝送するDCバスバ電極が設けられず、平滑後の直流を伝送するDCバスバ電極1120,1121,1122,1123,1124及び1125が設けられ、平滑後の直流を伝送するDCバスバ電極1120,1121,1122,1123,1124及び1125がフレーム1012に直接支持されない。これに対して、第4実施形態においては、平滑前の直流を伝送するDCバスバ電極、及び平滑後の直流を伝送するDCバスバ電極が設けられ、平滑前の直流を伝送するDCバスバ電極、並びに平滑後の直流を伝送するDCバスバ電極がフレームに固定される。 The main differences between the first embodiment and the fourth embodiment are as follows: In the first embodiment, no DC bus bar electrode for transmitting direct current before smoothing is provided, and direct current after smoothing is transmitted. The DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125 are provided, and the DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125 for transmitting the smoothed direct current are not directly supported by the frame 1012. On the other hand, in the fourth embodiment, a DC bus bar electrode for transmitting a direct current before smoothing and a DC bus bar electrode for transmitting a direct current after smoothing are provided, and a DC bus bar electrode for transmitting a direct current before smoothing, A DC bus bar electrode for transmitting a direct current after smoothing is fixed to the frame.
 図24及び図25は、第4実施形態のインバータの断面を模式的に図示する断面図である。図24及び図25に図示される断面の位置は、それぞれ図7及び図8に図示される断面の位置に相当する。 24 and 25 are cross-sectional views schematically illustrating cross sections of the inverter according to the fourth embodiment. The positions of the cross sections shown in FIGS. 24 and 25 correspond to the positions of the cross sections shown in FIGS. 7 and 8, respectively.
 図24及び図25に図示されるインバータ4000は、インバータ回路4010、少なくともひとつの冷却器1011及びフレーム4012を備える。 The inverter 4000 illustrated in FIGS. 24 and 25 includes an inverter circuit 4010, at least one cooler 1011 and a frame 4012.
 第4実施形態のインバータ4000に設けられた冷却器1011は、第1実施形態のインバータ1000に設けられた冷却器1011と同様のものである。 The cooler 1011 provided in the inverter 4000 of the fourth embodiment is the same as the cooler 1011 provided in the inverter 1000 of the first embodiment.
 図26は、第4実施形態のインバータに設けられたインバータ回路における電気的接続を図示する接続図である。 FIG. 26 is a connection diagram illustrating electrical connections in the inverter circuit provided in the inverter of the fourth embodiment.
 インバータ4000は、図26に図示されるように、インバータ回路4010を構成する、DCコネクタ1100、DCバスバ電極4290及び4291、平滑コンデンサ1110、DCバスバ電極1120,1121,1122,1123,1124及び1125、信号端子コネクタ1130、信号配線1140、駆動回路基板1150及び1160、半導体パワーモジュール1170、ACバスバ電極1180,1181及び1182、ACコネクタ1190,1191及び1192並びに電流センサ1200,1201及び1202を備える。 As shown in FIG. 26, the inverter 4000 constitutes an inverter circuit 4010, and comprises a DC connector 1100, DC bus bar electrodes 4290 and 4291, a smoothing capacitor 1110, DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125, A signal terminal connector 1130, a signal wiring 1140, drive circuit boards 1150 and 1160, a semiconductor power module 1170, AC busbar electrodes 1180, 1181 and 1182, AC connectors 1190, 1191 and 1192 and current sensors 1200, 1201 and 1202 are provided.
 第4実施形態のインバータ4000に設けられたDCコネクタ1100、平滑コンデンサ1110、DCバスバ電極1120,1121,1122,1123,1124及び1125、信号端子コネクタ1130、信号配線1140、駆動回路基板1150及び1160、半導体パワーモジュール1170、ACバスバ電極1180,1181及び1182、ACコネクタ1190,1191及び1192並びに電流センサ1200,1201及び1202の各部品は、第1実施形態のインバータ1000に設けられた同じ参照符号が付された部品と同様のものである。 DC connector 1100, smoothing capacitor 1110, DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125 provided in the inverter 4000 of the fourth embodiment, signal terminal connector 1130, signal wiring 1140, drive circuit boards 1150 and 1160, The components of semiconductor power module 1170, AC bus bar electrodes 1180, 1181 and 1182, AC connectors 1190, 1191 and 1192 and current sensors 1200, 1201 and 1202 have the same reference symbols as those provided in inverter 1000 of the first embodiment. It is similar to the parts
 以下では、第4実施形態のインバータ4000に設けられたインバータ回路4010が第1実施形態のインバータ1000に設けられたインバータ回路1010と相違する点について説明する。 Hereinafter, differences between the inverter circuit 4010 provided in the inverter 4000 of the fourth embodiment and the inverter circuit 1010 provided in the inverter 1000 of the first embodiment will be described.
 DCコネクタ1100の入力端子1210及び1211は、それぞれDCバスバ電極4290及び4291の一方の端部に接触する。DCバスバ電極4290及び4291の他方の端部は、それぞれ平滑コンデンサ1110の電極1220及び1221に接触する。これにより、入力端子1210及び1211は、それぞれDCバスバ電極4290及び4291を介して電極1220及び1221に電気的に接続される。 Input terminals 1210 and 1211 of DC connector 1100 contact one end of DC bus bar electrodes 4290 and 4291, respectively. The other ends of DC bus bar electrodes 4290 and 4291 contact electrodes 1220 and 1221 of smoothing capacitor 1110, respectively. Thereby, input terminals 1210 and 1211 are electrically connected to electrodes 1220 and 1221 via DC bus bar electrodes 4290 and 4291, respectively.
 DCバスバ電極4290及び平滑コンデンサ1110の電極1220は、平滑前の直流を伝送するひとつのDCバスバを構成する。DCバスバ電極4291及び平滑コンデンサ1110の電極1221は、平滑前の直流を伝送するひとつのDCバスバを構成する。 The DC bus bar electrode 4290 and the electrode 1220 of the smoothing capacitor 1110 constitute one DC bus bar that transmits direct current before smoothing. The DC bus bar electrode 4291 and the electrode 1221 of the smoothing capacitor 1110 constitute one DC bus bar that transmits direct current before smoothing.
 DCコネクタ1100に入力された平滑前の直流は、DCバスバ電極4290及び4291により伝送され、平滑コンデンサ1110の電極1220及び1221に入力される。 The direct current before smoothing input to the DC connector 1100 is transmitted by the DC bus bar electrodes 4290 and 4291 and is input to the electrodes 1220 and 1221 of the smoothing capacitor 1110.
 図27は、第4実施形態のインバータに設けられたフレームを模式的に図示する斜視図である。 FIG. 27 is a perspective view schematically illustrating a frame provided in the inverter of the fourth embodiment.
 フレーム4012は、柱1300,1301,1302及び1303、梁1310,1311,1312,1313,1314,1315,1316及び1317、側板4320及び4321並びに底板1330及び4331を含む複数のフレームメンバーを備える。フレーム4012は、当該複数のフレームメンバーを組み合わせて構成される。 The frame 4012 comprises a plurality of frame members including pillars 1300, 1301, 1302 and 1303, beams 1310, 1311, 1312, 1313, 1314, 1315, 1316 and 1317, side plates 4320 and 4321 and bottom plates 1330 and 4331. The frame 4012 is configured by combining the plurality of frame members.
 第4実施形態のインバータ4000に設けられた柱1300,1301,1302及び1303、梁1310,1311,1312,1313,1314,1315,1316及び1317並びに底板1330の各フレームメンバーは、第1実施形態のインバータ1000に設けられた同じ参照符号が付与されたフレームメンバーと同様のものである。 The frame members of the columns 1300, 1301, 1302, 1303 and 1303, the beams 1310, 1311, 1312, 1313, 1314, 1315, 1316 and 1317 and the bottom plate 1330 provided in the inverter 4000 of the fourth embodiment are the same as in the first embodiment. It is similar to the frame member provided with the same reference numeral provided in the inverter 1000.
 以下では、側板4320及び4321並びに底板4331がそれぞれ第1実施形態のインバータ1000に設けられた側板1320及び1321並びに底板1331と相違する点について説明する。 In the following, differences between the side plates 4320 and 4321 and the bottom plate 4331 with the side plates 1320 and 1321 and the bottom plate 1331 provided in the inverter 1000 according to the first embodiment will be described.
 DCコネクタ1100は、図24及び図25に図示されるように、側板4320の外側面4910に固定される。これにより、DCコネクタ1100は、側板4320に固定され、側板4320により支持され、フレーム4012に固定される。 The DC connector 1100 is fixed to the outer surface 4910 of the side plate 4320 as illustrated in FIGS. 24 and 25. Thus, the DC connector 1100 is fixed to the side plate 4320, supported by the side plate 4320, and fixed to the frame 4012.
 DCバスバ電極4290は、図24に図示されるように、側板4320を貫通する。これにより、DCバスバ電極4290は、側板4320に固定され、側板4320により支持され、フレーム4012に固定される。DCバスバ電極4291も、側板4320を貫通する。これにより、DCバスバ電極4291も、側板4320に固定され、側板4320により支持され、フレーム4012に固定される。 The DC bus bar electrode 4290 penetrates the side plate 4320 as illustrated in FIG. Thus, the DC bus bar electrode 4290 is fixed to the side plate 4320, supported by the side plate 4320, and fixed to the frame 4012. The DC bus bar electrode 4291 also penetrates the side plate 4320. Accordingly, the DC bus bar electrode 4291 is also fixed to the side plate 4320, supported by the side plate 4320, and fixed to the frame 4012.
 DCバスバ電極1122は、図24に図示されるように、底板4331に設けられた突起4920の先端に接触する。これにより、DCバスバ電極1122は、底板4331に固定され、底板4331により支持され、フレーム4012に固定される。DCバスバ電極1120,1121,1123,1124及び1125も、突起4920の先端に接触する。これにより、DCバスバ電極1120,1121,1123,1124及び1125も、底板4331に固定され、底板4331により支持され、フレーム4012に固定される。 The DC bus bar electrode 1122 contacts the tip of the protrusion 4920 provided on the bottom plate 4331 as illustrated in FIG. Thus, the DC bus bar electrode 1122 is fixed to the bottom plate 4331, supported by the bottom plate 4331, and fixed to the frame 4012. The DC busbar electrodes 1120, 1121, 1123, 1124 and 1125 also contact the tips of the protrusions 4920. Thus, the DC bus bar electrodes 1120, 1121, 1123, 1124 and 1125 are also fixed to the bottom plate 4331, supported by the bottom plate 4331, and fixed to the frame 4012.
 インバータ4000においては、DCバスバ電極1122が、幅広の形状を有し、わずかな長さしか有しない。また、DCバスバ電極1122の一方の端部は、平滑コンデンサ1110の電極1232に接触させられ、DCバスバ電極1122の他方の端部は、半導体パワーモジュール1170のDC電極1242に接触させられる。このため、DCバスバ電極1122は、立体的な折り曲げ形状等の複雑な形状を有する。DCバスバ電極1120,1121,1123,1124及び1125も、同様に、複雑な形状を有する。寄生インダクタンスを小さくするために、DCバスバ電極1120,1121,1122,1123,1124及び1125が一体化されDCバスバ電極1121,1123及び1125がDCバスバ電極1120,1122及び1124と積層された場合は、DCバスバ電極1120,1121,1122,1123,1124及び1125の形状はさらに複雑になる。 In inverter 4000, DC bus bar electrode 1122 has a wide shape and only a small length. Further, one end of the DC bus bar electrode 1122 is in contact with the electrode 1232 of the smoothing capacitor 1110, and the other end of the DC bus bar electrode 1122 is in contact with the DC electrode 1242 of the semiconductor power module 1170. For this reason, the DC bus bar electrode 1122 has a complicated shape such as a three-dimensional bent shape. The DC busbar electrodes 1120, 1121, 1123, 1124 and 1125 also have complicated shapes. When the DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125 are integrated and the DC bus bar electrodes 1121, 1123 and 1125 are stacked with the DC bus bar electrodes 1120, 1122 and 1124 in order to reduce parasitic inductance, The shape of the DC busbar electrodes 1120, 1121, 1122, 1123, 1124 and 1125 is further complicated.
 フレーム4012が設けられた場合は、DCバスバ電極1122の固定に適した位置にDCバスバ電極1122を固定する底板4331を配置することが容易である。このため、DCバスバ電極1122が支持困難な複雑な立体形状を有する場合でも、DCバスバ電極1122を容易に支持できる。DCバスバ電極1122が底板4331に固定される場合は、DCバスバ電極1122が底板4331に固定された後に、DCバスバ電極1122の一方の端部を平滑コンデンサ1110の電極1232にねじにて固定し、DCバスバ電極1122の他方の端部を半導体パワーモジュール1170のDC電極1242にねじにて固定することにより、DCバスバ電極1122を実装することが容易になる。これに対して、フレーム4012が設けられない場合は、DCバスバ電極1122を固定する構成要素を設けることが容易ではなく、固定されずに宙に浮いたDCバスバ電極1122の一方の電極を平滑コンデンサ1110の電極1232にねじにて固定し、固定されずに宙に浮いたDCバスバ電極1122の他方の端部を半導体パワーモジュール1170のDC電極1242にねじにて固定する作業が必要になる。DCバスバ電極1120,1121,1123,1124及び1125についても、同様のことがいえる。 When the frame 4012 is provided, it is easy to arrange the bottom plate 4331 for fixing the DC bus bar electrode 1122 at a position suitable for fixing the DC bus bar electrode 1122. Therefore, even when the DC bus bar electrode 1122 has a complicated three-dimensional shape that is difficult to support, the DC bus bar electrode 1122 can be easily supported. When the DC busbar electrode 1122 is fixed to the bottom plate 4331, after the DC busbar electrode 1122 is fixed to the bottom plate 4331, one end of the DC busbar electrode 1122 is screwed to the electrode 1232 of the smoothing capacitor 1110, By fixing the other end of the DC bus bar electrode 1122 to the DC electrode 1242 of the semiconductor power module 1170 with a screw, it becomes easy to mount the DC bus bar electrode 1122. On the other hand, when the frame 4012 is not provided, it is not easy to provide a component for fixing the DC bus bar electrode 1122, and one electrode of the DC bus bar electrode 1122 which is not fixed and floats in the air is smoothed. It is necessary to fix the other end of the DC bus bar electrode 1122 which is fixed to the electrode 1232 of 1110 with a screw and is not fixed and floated in the air to the DC electrode 1242 of the semiconductor power module 1170 with a screw. The same is true for the DC bus bar electrodes 1120, 1121, 1123, 1124 and 1125.
 また、インバータ4000においては、DCバスバ電極4290及び4291がフレーム4012に固定されるため、DCバスバ電極4290及び4291を絶縁しながらDCバスバ電極4290及び4291の周辺に生じるデッドスペースを減らすことができる。これにより、小さなスペースにDCバスバ電極4290及び4291を配置することが容易になる。 Further, in the inverter 4000, since the DC bus bar electrodes 4290 and 4291 are fixed to the frame 4012, the dead space generated around the DC bus bar electrodes 4290 and 4291 can be reduced while insulating the DC bus bar electrodes 4290 and 4291. This facilitates placing the DC bus bar electrodes 4290 and 4291 in a small space.
 ACバスバ電極1181は、図25に図示されるように、側板4321を貫通する。これにより、ACバスバ電極1181は、側板4321に固定され、側板4321により支持され、フレーム4012に固定される。同様に、ACバスバ電極1180及び1182も、側板4321を貫通する。これにより、ACバスバ電極1180及び1182も、側板4321に固定され、側板4321により支持され、フレーム4012に固定される。 The AC bus bar electrode 1181 penetrates the side plate 4321 as illustrated in FIG. Thus, the AC bus bar electrode 1181 is fixed to the side plate 4321, supported by the side plate 4321, and fixed to the frame 4012. Similarly, AC bus bar electrodes 1180 and 1182 also penetrate side plate 4321. Thus, the AC bus bar electrodes 1180 and 1182 are also fixed to the side plate 4321, supported by the side plate 4321, and fixed to the frame 4012.
 ACコネクタ1191は、図24及び図25に図示されるように、側板4321の外側面4930に固定される。これにより、ACコネクタ1191は、側板4321に固定され、側板4321により支持され、フレーム4012に固定される。同様に、ACコネクタ1190及び1192も、側板4321の外側面4930に固定される。これにより、ACコネクタ1190及び1192も、側板4321に固定され、側板4321により支持され、フレーム4012に固定される。 The AC connector 1191 is fixed to the outer side 4930 of the side plate 4321 as illustrated in FIGS. 24 and 25. Thus, the AC connector 1191 is fixed to the side plate 4321, supported by the side plate 4321, and fixed to the frame 4012. Similarly, AC connectors 1190 and 1192 are also fixed to the outer side 4930 of side plate 4321. Thus, the AC connectors 1190 and 1192 are also fixed to the side plate 4321, supported by the side plate 4321, and fixed to the frame 4012.
 DCバスバ電極4290及び4291、DCバスバ電極1120,1121,1122,1123,1124及び1125、信号配線1140、ACバスバ電極1180,1181及び1182等のフレームメンバーに埋め込むことができる部品は、例えば、インサートモールド成型等により、フレームメンバーに埋め込まれてもよい。 Parts that can be embedded in frame members such as DC bus bar electrodes 4290 and 4291, DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125, signal wiring 1140, AC bus bar electrodes 1180, 1181 and 1182 are, for example, insert molds. It may be embedded in the frame member by molding or the like.
 第4実施形態のインバータ4000においては、DCコネクタ1100、DCバスバ電極4290及び4291、平滑コンデンサ1110、DCバスバ電極1120,1121,1122,1123,1124及び1125、信号端子コネクタ1130、複数の信号配線1140、駆動回路基板1150及び1160、半導体パワーモジュール1170、ACバスバ電極1180,1181及び1182、ACコネクタ1190,1191及び1192、電流センサ1200,1201及び1202からなる群より選択される少なくともひとつの部品がフレーム4012に固定されるか、又は埋め込まれる。 In the inverter 4000 of the fourth embodiment, the DC connector 1100, the DC bus bar electrodes 4290 and 4291, the smoothing capacitor 1110, the DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125, the signal terminal connector 1130, a plurality of signal wires 1140. , At least one component selected from the group consisting of drive circuit boards 1150 and 1160, semiconductor power module 1170, AC busbar electrodes 1180, 1181 and 1182, AC connectors 1190, 1191 and 1192, current sensors 1200, 1201 and 1202 as a frame It is fixed to 4012 or embedded.
 第4実施形態のインバータ4000においては、DCバスバ電極4290及び4291、平滑コンデンサ1110、DCバスバ電極1120,1121,1122,1123,1124及び1125、複数の信号配線1140、駆動回路基板1150及び1160、ACバスバ電極1180,1181及び1182、並びに電流センサ1200,1201及び1202からなる群より選択される少なくともひとつの部品が先述した冷却される部品1611になりうる。 In the inverter 4000 of the fourth embodiment, the DC bus bar electrodes 4290 and 4291, the smoothing capacitor 1110, the DC bus bar electrodes 1120, 1121, 1122, 1123, 1124 and 1125, the plurality of signal wires 1140, the drive circuit boards 1150 and 1160, AC At least one component selected from the group consisting of the bus bar electrodes 1180, 1181 and 1182, and the current sensors 1200, 1201 and 1202 may be the cooled component 1611 described above.
 第4実施形態においても、第1実施形態と同様に、インバータ4000を小型化し、インバータ4000の製造に要するコストを減らすことが容易である。 Also in the fourth embodiment, as in the first embodiment, it is easy to miniaturize the inverter 4000 and reduce the cost required to manufacture the inverter 4000.
 5 第5実施形態
 本発明の例示的な第5実施形態は、インバータに関する。
5 Fifth Embodiment The fifth exemplary embodiment of the present invention relates to an inverter.
 第1実施形態と第5実施形態との主な相違は、以下の点にある:第1実施形態においては、半導体パワーモジュール1170の裏面が被冷却面1400となる。また、被冷却面1400を冷却する冷却器1011が設けられる。しかし、半導体パワーモジュール1170の表面が被冷却面とならない。これに対して、第5実施形態においては、半導体パワーモジュール1170の裏面が第1の被冷却面となる。また、第1の被冷却面を冷却する第1の冷却器が設けられる。加えて、半導体パワーモジュール1170の表面が第2の被冷却面となる。また、第2の被冷却面を冷却する第2の冷却器が設けられる。さらに加えて、フレームが、第1の冷却器から第2の冷却器へ冷却液を導く配管を兼ねる。 The main differences between the first embodiment and the fifth embodiment are as follows: In the first embodiment, the back surface of the semiconductor power module 1170 is the surface to be cooled 1400. In addition, a cooler 1011 for cooling the surface to be cooled 1400 is provided. However, the surface of the semiconductor power module 1170 does not become a surface to be cooled. On the other hand, in the fifth embodiment, the back surface of the semiconductor power module 1170 is the first surface to be cooled. Also, a first cooler for cooling the first surface to be cooled is provided. In addition, the surface of the semiconductor power module 1170 becomes a second surface to be cooled. Also, a second cooler is provided for cooling the second surface to be cooled. Additionally, the frame doubles as a conduit for conducting the coolant from the first cooler to the second cooler.
 以下では、上記の相違に関連する第5実施形態のインバータの構成が説明される。 The configuration of the inverter according to the fifth embodiment related to the above difference will be described below.
 図28及び図29は、第5実施形態のインバータの断面を模式的に図示する断面図である。図28及び図29に図示される断面の位置は、それぞれ図6及び図7に図示される断面の位置に相当する。 28 and 29 are cross-sectional views schematically showing cross sections of the inverter of the fifth embodiment. The positions of the cross sections shown in FIGS. 28 and 29 correspond to the positions of the cross sections shown in FIGS. 6 and 7, respectively.
 図28及び図29に図示されるインバータ100は、インバータ回路1010、少なくともひとつの冷却器110及びフレーム111を備える。少なくともひとつの冷却器110は、第1の冷却器120及び第2の冷却器121を含む。 The inverter 100 illustrated in FIGS. 28 and 29 includes an inverter circuit 1010, at least one cooler 110, and a frame 111. At least one cooler 110 includes a first cooler 120 and a second cooler 121.
 第5実施形態のインバータ100に設けられたインバータ回路1010は、第1実施形態のインバータ1000に設けられたインバータ回路1010と同様のものである。このため、第5実施形態のインバータ100は、第1実施形態のインバータ1000に設けられた平滑コンデンサ1110及び半導体パワーモジュール1170とそれぞれ同様の平滑コンデンサ1110及び半導体パワーモジュール1170を備える。 The inverter circuit 1010 provided in the inverter 100 of the fifth embodiment is the same as the inverter circuit 1010 provided in the inverter 1000 of the first embodiment. Therefore, the inverter 100 according to the fifth embodiment includes a smoothing capacitor 1110 and a semiconductor power module 1170 similar to the smoothing capacitor 1110 and the semiconductor power module 1170 provided in the inverter 1000 according to the first embodiment.
 半導体パワーモジュール1170は、板形状である。半導体パワーモジュール1170は、第1の被冷却面130及び第2の被冷却面131を有する。第1の被冷却面130は、半導体パワーモジュール1170の一方の主面となる裏面である。第2の被冷却面131は、半導体パワーモジュール1170の他方の主面となる表面である。 The semiconductor power module 1170 has a plate shape. The semiconductor power module 1170 has a first surface to be cooled 130 and a second surface to be cooled 131. The first cooled surface 130 is a back surface to be one main surface of the semiconductor power module 1170. The second cooled surface 131 is a surface to be the other main surface of the semiconductor power module 1170.
 半導体パワーモジュール1170は、第1の冷却器120と第2の冷却器121との間に配置される。半導体パワーモジュール1170の冷却は、両面冷却構造により行われる。第1の冷却器120は、半導体パワーモジュール1170の第1の被冷却面130に取り付けられ、第1の被冷却面130を冷却する。また、第2の冷却器121は、半導体パワーモジュール1170の第2の被冷却面131に取り付けられ、第2の被冷却面131を冷却する。 The semiconductor power module 1170 is disposed between the first cooler 120 and the second cooler 121. The cooling of the semiconductor power module 1170 is performed by a double-sided cooling structure. The first cooler 120 is attached to the first cooled surface 130 of the semiconductor power module 1170 and cools the first cooled surface 130. Further, the second cooler 121 is attached to the second cooled surface 131 of the semiconductor power module 1170 and cools the second cooled surface 131.
 図30は、第5実施形態のインバータに設けられた第1の冷却器及び第2の冷却器を模式的に図示する斜視図である。 FIG. 30 is a perspective view schematically illustrating a first cooler and a second cooler provided in the inverter according to the fifth embodiment.
 第1の冷却器120は、図30に図示されるように、第1の冷却器本体140、第1の冷却液入口配管141及び第1の冷却液出口配管142を備える。第1の冷却液入口配管141の先端は、第1の冷却液入口150を有する。第1の冷却液出口配管142の先端は、第1の冷却液出口160を有する。したがって、第1の冷却器120は、第1の冷却液入口150及び第1の冷却液出口160を有する。 The first cooler 120 includes a first cooler body 140, a first coolant inlet pipe 141, and a first coolant outlet pipe 142, as shown in FIG. The tip of the first coolant inlet pipe 141 has a first coolant inlet 150. The tip of the first coolant outlet pipe 142 has a first coolant outlet 160. Thus, the first cooler 120 has a first coolant inlet 150 and a first coolant outlet 160.
 第2の冷却器121は、第2の冷却器本体170、第2の冷却液入口配管171及び第2の冷却液出口配管172を備える。第2の冷却液入口配管171の先端は、第2の冷却液入口180を有する。第2の冷却液出口配管172の先端は、第2の冷却液出口190を有する。したがって、第2の冷却器121は、第2の冷却液入口180及び第2の冷却液出口190を有する。 The second cooler 121 includes a second cooler body 170, a second coolant inlet pipe 171, and a second coolant outlet pipe 172. The tip of the second coolant inlet pipe 171 has a second coolant inlet 180. The tip of the second coolant outlet pipe 172 has a second coolant outlet 190. Thus, the second cooler 121 has a second coolant inlet 180 and a second coolant outlet 190.
 図31は、第5実施形態のインバータに設けられた第1の冷却器120及び第2の冷却器121、並びに当該インバータに設けられたフレーム111の一部を模式的に図示する斜視図である。図32は、第5実施形態のインバータに設けられた第1の冷却器120及び第2の冷却器121、並びに当該インバータに設けられたフレーム111の一部の断面を模式的に図示する断面図である。 FIG. 31 is a perspective view schematically illustrating a first cooler 120 and a second cooler 121 provided in the inverter according to the fifth embodiment, and a part of a frame 111 provided in the inverter. . FIG. 32 is a cross-sectional view schematically showing a cross section of the first cooler 120 and the second cooler 121 provided in the inverter of the fifth embodiment, and a part of the frame 111 provided in the inverter. It is.
 第1の冷却器120及び第2の冷却器121は、図31及び図32に図示されるように、フレーム111に固定される。第1の冷却器120及び第2の冷却器121がフレーム111に固定された状態においては、第2の冷却器121は、第1の冷却器120に対向し、第1の冷却器120から第1の方向D1に離れている。また、第2の冷却液入口配管171は、第1の冷却液出口配管142に対向し、第1の冷却液出口配管142から第1の方向D1に離れている。 The first cooler 120 and the second cooler 121 are fixed to the frame 111 as illustrated in FIGS. 31 and 32. In a state where the first cooler 120 and the second cooler 121 are fixed to the frame 111, the second cooler 121 faces the first cooler 120, and the first cooler 120 It is separated in the direction D1 of 1. Further, the second coolant inlet pipe 171 faces the first coolant outlet pipe 142 and is separated from the first coolant outlet pipe 142 in the first direction D1.
 フレーム111は、板200、板201、柱202、柱203、柱204及び柱205を備える。板200及び板201は、広がり方向である第2の方向D2及び第3の方向D3に広がる面を有する板状のフレームメンバーである。柱202、柱203、柱204及び柱205は、第1の方向D1に延びる棒状のフレームメンバーである。 The frame 111 includes a plate 200, a plate 201, a column 202, a column 203, a column 204 and a column 205. The plate 200 and the plate 201 are plate-like frame members having surfaces extending in the second direction D2 and the third direction D3 which are the spreading directions. The pillars 202, the pillars 203, the pillars 204 and the pillars 205 are rod-like frame members extending in the first direction D1.
 第1の冷却器120は、板200、柱202、柱203、柱204及び柱205に固定される。このため、第1の冷却器120は、板200、柱202、柱203、柱204及び柱205により支持される。第1の冷却器120は、直方体状の形状を有し、四隅を備える。第1の冷却器120の四隅は、柱202、柱203、柱204及び柱205に固定される。 The first cooler 120 is fixed to the plate 200, the column 202, the column 203, the column 204 and the column 205. For this reason, the first cooler 120 is supported by the plate 200, the pillars 202, the pillars 203, the pillars 204 and the pillars 205. The first cooler 120 has a rectangular shape and includes four corners. The four corners of the first cooler 120 are fixed to the column 202, the column 203, the column 204 and the column 205.
 第2の冷却器121は、板201、柱202、柱203、柱204及び柱205に固定される。このため、第2の冷却器121は、板201、柱202、柱203、柱204及び柱205により支持される。第2の冷却器121は、直方体状の形状を有し、四隅を備える。第2の冷却器121の四隅は、柱202、柱203、柱204及び柱205に固定される。 The second cooler 121 is fixed to the plate 201, the column 202, the column 203, the column 204 and the column 205. For this reason, the second cooler 121 is supported by the plate 201, the column 202, the column 203, the column 204, and the column 205. The second cooler 121 has a rectangular parallelepiped shape and has four corners. The four corners of the second cooler 121 are fixed to the column 202, the column 203, the column 204 and the column 205.
 柱202、柱203、柱204及び柱205は、第1の冷却液出口配管142及び第2の冷却液入口配管171を支持する柱202を含む。 The column 202, the column 203, the column 204 and the column 205 include a column 202 that supports the first coolant outlet pipe 142 and the second coolant inlet pipe 171.
 フレーム111は、中空部210を備える。中空部210は、中空の形状を有し、冷却液が流れる流路220を有する。中空部210は、柱202に設けられる。 The frame 111 comprises a hollow portion 210. The hollow portion 210 has a hollow shape and has a flow passage 220 through which the coolant flows. The hollow portion 210 is provided in the column 202.
 中空部210の一端においては、第1の冷却液出口配管142が流路220に挿入される。中空部210の他端においては、第2の冷却液入口配管171が流路220に挿入される。このため、中空部210は、第1の冷却液出口160に接続される一方の接続端230、及び第2の冷却液入口180に接続される他方の接続端231を有する。 At one end of the hollow portion 210, the first coolant outlet pipe 142 is inserted into the flow path 220. At the other end of the hollow portion 210, the second cooling fluid inlet pipe 171 is inserted into the flow path 220. For this purpose, the hollow part 210 has one connection end 230 connected to the first coolant outlet 160 and the other connection end 231 connected to the second coolant inlet 180.
 中空部210の一方の接続端230が第1の冷却液出口160に接続されることにより、第1の冷却器120から中空部210に冷却液を流すことができる。また、中空部210の他方の接続端231が第2の冷却液入口180に接続されることにより、中空部210から第2の冷却器121に冷却液を流すことができる。したがって、インバータ100には、第1の冷却液入口150から第1の冷却器120、中空部210及び第2の冷却器121を順次に経由し第2の冷却液出口190に至る流路が構成される。このため、第1の冷却液入口150に流入した冷却液は、第1の冷却器120、中空部210及び第2の冷却器121を順次に流れ、第2の冷却液出口190から流出する。中空部210は、第1の冷却器120と第2の冷却器121との間にある冷却液の経路を構成し、冷却液配管の一部になる。 By connecting one connection end 230 of the hollow portion 210 to the first coolant outlet 160, the coolant can flow from the first cooler 120 to the hollow portion 210. Further, by connecting the other connection end 231 of the hollow portion 210 to the second cooling fluid inlet 180, the cooling fluid can flow from the hollow portion 210 to the second cooler 121. Therefore, in the inverter 100, a flow path from the first coolant inlet 150 to the second coolant outlet 190 via the first cooler 120, the hollow portion 210 and the second cooler 121 sequentially is configured. Be done. For this reason, the coolant that has flowed into the first coolant inlet 150 flows sequentially through the first cooler 120, the hollow portion 210, and the second cooler 121, and flows out from the second coolant outlet 190. The hollow portion 210 constitutes a path of the coolant between the first cooler 120 and the second cooler 121, and becomes a part of the coolant pipe.
 第1の冷却液入口150に流入した冷却液は、第1の冷却液入口配管141、第1の冷却器本体140及び第1の冷却液出口配管142を順次に流れた後に、第1の冷却液出口160から流出する。第1の冷却器本体140に流れる冷却液は、第1の冷却器本体140に接触する第1の被冷却面130から熱を奪い、第1の被冷却面130を冷却する。 The coolant that has flowed into the first coolant inlet 150 flows through the first coolant inlet pipe 141, the first cooler main body 140, and the first coolant outlet pipe 142 sequentially, and then the first cooling is performed. It flows out from the liquid outlet 160. The cooling fluid flowing to the first cooler body 140 removes heat from the first cooled surface 130 in contact with the first cooler body 140 to cool the first cooled surface 130.
 第2の冷却液入口180に流入した冷却液は、第2の冷却液入口配管171、第2の冷却器本体170及び第2の冷却液出口配管172を順次に流れた後に、第2の冷却液出口190から流出する。第2の冷却器本体170に流れる冷却液は、第2の冷却器本体170に接触する第2の被冷却面131から熱を奪い、第2の被冷却面131を冷却する。 The cooling fluid having flowed into the second cooling fluid inlet 180 flows through the second cooling fluid inlet piping 171, the second cooler main body 170, and the second cooling fluid outlet piping 172 sequentially, and then the second cooling It flows out from the liquid outlet 190. The cooling fluid flowing to the second cooler main body 170 removes heat from the second cooled surface 131 in contact with the second cooler main body 170 and cools the second cooled surface 131.
 冷却液は、水又は水溶液からなる冷却水である。したがって、第1の冷却液入口配管141及び第2の冷却液入口配管171は、水入口配管である。また、第1の冷却液出口配管142及び第2の冷却液出口配管172は、水出口配管である。冷却液が冷却水以外の冷却液であってもよい。 The coolant is cooling water composed of water or an aqueous solution. Therefore, the first coolant inlet pipe 141 and the second coolant inlet pipe 171 are water inlet pipes. The first coolant outlet pipe 142 and the second coolant outlet pipe 172 are water outlet pipes. The coolant may be a coolant other than the coolant.
 中空部210の一端において第1の冷却液入口配管141が流路220に挿入されてもよい。中空部210の他端において第2の冷却液出口配管172が流路220に挿入されてもよい。したがって、中空部210は、第1の冷却液入口150及び又は第1の冷却液出口160に接続される一方の接続端230、及び第2の冷却液入口180又は第2の冷却液出口190に接続される他方の接続端231を有しうる。 The first coolant inlet pipe 141 may be inserted into the flow passage 220 at one end of the hollow portion 210. The second coolant outlet pipe 172 may be inserted into the flow path 220 at the other end of the hollow portion 210. Therefore, the hollow portion 210 is connected to the first connection end 230 connected to the first coolant inlet 150 and / or the first coolant outlet 160, and to the second coolant inlet 180 or the second coolant outlet 190. It may have the other connection end 231 connected.
 複数の部品が発熱する場合、発熱体の表面、裏面等の複数の面が発熱する場合等においては、複数の発熱部分が同一平面上に位置し互いに近接しているという条件が満たされない限り、複数の発熱部分をそれぞれ冷却する複数の冷却器が必要である。しかし、複数の冷却器が設けられた場合は、複数の冷却器を保持及び固定するのに必要なスペースに加えて、冷却液が流れる配管が占めるスペース、複数の冷却器と配管とを互いに接続する接続部品が占めるスペース等も必要になる。このため、大きなスペースが必要になる。大きなスペースが必要になることは、インバータを小型化することの障害となる。 When a plurality of parts generate heat, and when a plurality of surfaces such as the front surface and the back surface of the heating element generate heat, etc., the condition that the plurality of heat generation portions are located on the same plane and are close to each other is not satisfied. A plurality of coolers are required to respectively cool the plurality of heat generating parts. However, when multiple coolers are provided, in addition to the space required to hold and fix the multiple coolers, the space occupied by the piping through which the cooling fluid flows, connecting the multiple coolers and the piping to each other The space occupied by connecting parts is also required. This requires a large space. The need for a large space is an obstacle to miniaturizing the inverter.
 これに対して、インバータ100においては、第1の冷却器120から第2の冷却器121へ向かう冷却液が流れる流路220が、第1の冷却器120及び第2の冷却器121を支持及び固定するフレーム111に設けられる中空部210の内部にある。このため、第1の冷却器120から第2の冷却器121へ向かう冷却液が流れる流路を有する冷却配管をフレーム111から独立して設ける必要がなくなる。また、当該冷却配管を第1の冷却器120及び第2の冷却器121に接続する接続部品を設ける必要もなくなる。このため、第1の被冷却面130及び第2の被冷却面131が同一平面上に位置し互いに近接しているという条件が満たされないにもかかわらず、第1の冷却器120及び第2の冷却器121を設置するのに要するスペースを小さくすることができる。 On the other hand, in the inverter 100, the flow path 220 through which the coolant flows from the first cooler 120 to the second cooler 121 supports the first cooler 120 and the second cooler 121, and It is inside the hollow portion 210 provided in the frame 111 to be fixed. For this reason, it is not necessary to provide cooling piping having a flow path in which the cooling fluid from the first cooler 120 to the second cooler 121 flows independently from the frame 111. In addition, it is not necessary to provide connection parts for connecting the cooling pipe to the first cooler 120 and the second cooler 121. Therefore, although the condition that the first surface to be cooled 130 and the second surface to be cooled 131 are located on the same plane and be close to each other is not satisfied, the first cooler 120 and the second The space required to install the cooler 121 can be reduced.
 また、インバータ100においては、第1の冷却液出口配管142及び第2の冷却液入口配管171が、十分な長さを有する中空部210の流路220に挿入されるため、十分な長さを有する被せ代を確保することが容易である。このため、冷却液の漏れを容易に防止することができる。 Further, in the inverter 100, since the first coolant outlet pipe 142 and the second coolant inlet pipe 171 are inserted into the flow path 220 of the hollow portion 210 having a sufficient length, a sufficient length can be obtained. It is easy to secure the covering cost which it has. For this reason, it is possible to easily prevent the coolant from leaking.
 6 第6実施形態
 本発明の例示的な第6実施形態は、インバータに関する。
6 Sixth Embodiment The sixth exemplary embodiment of the present invention relates to an inverter.
 第1実施形態と第6実施形態との主な相違は、以下の点にある:第1実施形態においては、半導体パワーモジュール1170の被冷却面1400を冷却する冷却器が設けられる。しかし、平滑コンデンサ1110が冷却されない。これに対して、第6実施形態においては、平滑コンデンサ1110に設けられた第1の電極を冷却する第1の冷却器が設けられる。加えて、半導体パワーモジュール1170の被冷却面1400及び平滑コンデンサ1110に設けられた第2の電極を冷却する第2の冷却器が設けられる。さらに加えて、フレームが、第2の冷却器から第1の冷却器へ冷却液を導く配管を兼ねる。 The main differences between the first embodiment and the sixth embodiment are as follows: In the first embodiment, a cooler for cooling the surface to be cooled 1400 of the semiconductor power module 1170 is provided. However, the smoothing capacitor 1110 is not cooled. On the other hand, in the sixth embodiment, a first cooler for cooling the first electrode provided in the smoothing capacitor 1110 is provided. In addition, a second cooler is provided to cool the surface to be cooled 1400 of the semiconductor power module 1170 and the second electrode provided on the smoothing capacitor 1110. Additionally, the frame doubles as a conduit for conducting the coolant from the second cooler to the first cooler.
 以下では、上記の相違に関連する第6実施形態のインバータの構成が説明される。 In the following, the configuration of the inverter of the sixth embodiment relating to the above difference will be described.
 図33は、第6実施形態のインバータの断面を模式的に図示する断面図である。図33に図示される断面の位置は、図7に図示される断面の位置に相当する。 FIG. 33 is a cross sectional view schematically illustrating a cross section of the inverter according to the sixth embodiment. The position of the cross section shown in FIG. 33 corresponds to the position of the cross section shown in FIG.
 図33に図示されるインバータ300は、インバータ回路1010、第1の冷却器310、少なくともひとつの冷却器311及びフレーム312を備える。少なくともひとつの冷却器311は、第2の冷却器320を含む。 The inverter 300 illustrated in FIG. 33 includes an inverter circuit 1010, a first cooler 310, at least one cooler 311, and a frame 312. At least one cooler 311 includes a second cooler 320.
 第6実施形態のインバータ300に設けられたインバータ回路1010は、第1実施形態のインバータ1000に設けられたインバータ回路1010と同様のものである。このため、第6実施形態のインバータ300は、第1実施形態のインバータ1000に設けられた平滑コンデンサ1110及び半導体パワーモジュール1170とそれぞれ同様の平滑コンデンサ1110及び半導体パワーモジュール1170を備える。 The inverter circuit 1010 provided in the inverter 300 of the sixth embodiment is the same as the inverter circuit 1010 provided in the inverter 1000 of the first embodiment. Therefore, the inverter 300 according to the sixth embodiment includes a smoothing capacitor 1110 and a semiconductor power module 1170 similar to the smoothing capacitor 1110 and the semiconductor power module 1170 provided in the inverter 1000 according to the first embodiment.
 平滑コンデンサ1110は、コンデンサ330、第1の電極331及び第2の電極332を備える。コンデンサ330は、一端及び他端を有する。第1の電極331は、コンデンサ330の一端に配置される。第2の電極332は、コンデンサ330の他端に配置される。 The smoothing capacitor 1110 comprises a capacitor 330, a first electrode 331 and a second electrode 332. The capacitor 330 has one end and the other end. The first electrode 331 is disposed at one end of the capacitor 330. The second electrode 332 is disposed at the other end of the capacitor 330.
 半導体パワーモジュール1170は、板形状である。半導体パワーモジュール1170は、被冷却面1400を有する。被冷却面1400は、半導体パワーモジュール1170の一方の主面となる裏面である。 The semiconductor power module 1170 has a plate shape. The semiconductor power module 1170 has a surface to be cooled 1400. The cooled surface 1400 is a back surface to be one main surface of the semiconductor power module 1170.
 平滑コンデンサ1110は、第1の冷却器310と第2の冷却器320との間に配置される。平滑コンデンサ1110の冷却は、両面冷却構造により行われる。インバータ300は、第1の電気絶縁材340及び第2の電気絶縁材341をさらに備える。第1の電極331は、第1の電気絶縁材340に密着するか、又は接合される。第1の電気絶縁材340は、第1の冷却器310に密着するか、又は接合される。第2の電極332は、第2の電気絶縁材341に密着するか、又は接合される。第2の電気絶縁材341は、第2の冷却器320に密着するか、又は第2の冷却器320に接合される。第1の冷却器310、第1の電気絶縁材340、および第1の冷却器310とが、密着又は接合されることにより、第1の冷却器310は、第1の電極331を冷却する。第2の冷却器320、第2の電気絶縁材341、および第2の冷却器320とが、密着又は接合されることにより、第2の冷却器320は、第2の電極332を冷却する。第1の電気絶縁材340により、活電位が与えられる第1の電極331が第1の冷却器310から絶縁される。第2の電気絶縁材341により、活電位が与えられる第2の電極332が第2の冷却器320から絶縁される。 The smoothing capacitor 1110 is disposed between the first cooler 310 and the second cooler 320. Cooling of the smoothing capacitor 1110 is performed by a double-sided cooling structure. The inverter 300 further includes a first electrical insulator 340 and a second electrical insulator 341. The first electrode 331 is in close contact with or bonded to the first electrical insulator 340. The first electrical insulator 340 is in intimate contact with or bonded to the first cooler 310. The second electrode 332 is in close contact with or bonded to the second electrical insulator 341. The second electrical insulator 341 adheres to the second cooler 320 or is bonded to the second cooler 320. The first cooler 310 cools the first electrode 331 by the first cooler 310, the first electrical insulating material 340, and the first cooler 310 being in close contact with or bonded to each other. The second cooler 320 cools the second electrode 332 by bringing the second cooler 320, the second electrical insulator 341, and the second cooler 320 into close contact or bonding. The first electrical insulator 340 insulates the first electrode 331 to which the active potential is applied from the first cooler 310. The second electrode 332 to which the active potential is applied is insulated from the second cooler 320 by the second electrical insulator 341.
 半導体パワーモジュール1170は、第2の冷却器320上に配置される。半導体パワーモジュール1170の冷却は、片面冷却構造により行われる。第2の冷却器320は、半導体パワーモジュール1170の被冷却面1400に取り付けられ、被冷却面1400を冷却することにより半導体パワーモジュール1170を冷却する。 The semiconductor power module 1170 is disposed on the second cooler 320. The cooling of the semiconductor power module 1170 is performed by a single-sided cooling structure. The second cooler 320 is attached to the surface to be cooled 1400 of the semiconductor power module 1170, and cools the surface to be cooled 1400 to cool the semiconductor power module 1170.
 第2の冷却器320は、一方の面350及び他方の面351を有する。半導体パワーモジュール1170及び平滑コンデンサ1110は、いずれも第2の冷却器320の一方の面350上に配置される。 The second cooler 320 has one surface 350 and the other surface 351. The semiconductor power module 1170 and the smoothing capacitor 1110 are both disposed on one surface 350 of the second cooler 320.
 第6実施形態のインバータ300においても、第5実施形態のインバータ100と同様に、第1の冷却器310が第1の冷却液入口及び第1の冷却液出口を有する。また、第2の冷却器320が第2の冷却液入口及び第2の冷却液出口を有する。第1の冷却器310及び第2の冷却器320は、フレーム312に固定される。フレーム312は、中空部を備える。中空部は、中空の形状を有し、冷却液が流れる流路を有する。中空部は、第1の冷却液入口又は第1の冷却液出口に接続される一方の接続端、及び第2の冷却液入口又は第2の冷却液出口に接続される他方の接続端を有する。 Also in the inverter 300 of the sixth embodiment, the first cooler 310 has a first coolant inlet and a first coolant outlet, as with the inverter 100 of the fifth embodiment. Also, the second cooler 320 has a second coolant inlet and a second coolant outlet. The first cooler 310 and the second cooler 320 are fixed to the frame 312. The frame 312 comprises a hollow portion. The hollow portion has a hollow shape and has a flow path through which the coolant flows. The hollow part has one connecting end connected to the first coolant inlet or the first coolant outlet, and the other connecting end connected to the second coolant inlet or the second coolant outlet .
 第6実施形態のインバータ300においても、第5実施形態のインバータ100と同様に、第1の冷却器310及び第2の冷却器320を設置するのに要するスペースを小さくすることができる。 Also in the inverter 300 according to the sixth embodiment, the space required to install the first cooler 310 and the second cooler 320 can be reduced, as in the inverter 100 according to the fifth embodiment.
 また、第6実施形態のインバータ300においても、第5実施形態のインバータ100と同様に、冷却液の漏れを容易に防止することができる。 Moreover, also in the inverter 300 of 6th Embodiment, the leak of a cooling fluid can be easily prevented similarly to the inverter 100 of 5th Embodiment.
 7 第7実施形態
 本発明の例示的な第7実施形態は、インバータに関する。
7 Seventh Embodiment The seventh exemplary embodiment of the present invention relates to an inverter.
 第1実施形態と第7実施形態との主な相違は、以下の点にある。第1実施形態においては、平滑コンデンサ1110が冷却されない。これに対して、第7実施形態においては、平滑コンデンサ1110に設けられた第1の電極を冷却する第1の冷却器が設けられる。加えて、平滑コンデンサ1110に設けられた第2の電極を冷却する第2の冷却器が設けられる。さらに加えて、フレームが、半導体パワーモジュール1170の被冷却面1400を冷却する第3の冷却器から第1の冷却器へ冷却液を導く配管、及び第1の冷却器から第2の冷却器へ冷却液を導く配管を兼ねる。 The main differences between the first embodiment and the seventh embodiment are as follows. In the first embodiment, the smoothing capacitor 1110 is not cooled. On the other hand, in the seventh embodiment, a first cooler for cooling the first electrode provided in the smoothing capacitor 1110 is provided. In addition, a second cooler is provided to cool the second electrode provided on the smoothing capacitor 1110. In addition, the frame guides the coolant from the third cooler, which cools the cooled surface 1400 of the semiconductor power module 1170, to the first cooler, and from the first cooler to the second cooler. It also doubles as a pipe that leads the coolant.
 以下では、上記の相違に関連する第7実施形態のインバータの構成が説明される。 Hereinafter, the configuration of the inverter according to the seventh embodiment related to the above difference will be described.
 図34は、第7実施形態のインバータの断面を模式的に図示する断面図である。図34に図示される断面の位置は、図6に図示される断面の位置に相当する。 FIG. 34 is a cross sectional view schematically showing a cross section of the inverter of the seventh embodiment. The position of the cross section shown in FIG. 34 corresponds to the position of the cross section shown in FIG.
 図34に図示されるインバータ400は、インバータ回路1010、第1の冷却器410、第2の冷却器411、少なくともひとつの冷却器412及びフレーム413を備える。少なくともひとつの冷却器412は、第3の冷却器420を含む。 The inverter 400 illustrated in FIG. 34 includes an inverter circuit 1010, a first cooler 410, a second cooler 411, at least one cooler 412, and a frame 413. At least one cooler 412 includes a third cooler 420.
 第7実施形態のインバータ400に設けられたインバータ回路1010は、第1実施形態のインバータ1000に設けられたインバータ回路1010と同様のものである。このため、第7実施形態のインバータ400は、第1実施形態のインバータ1000に設けられた平滑コンデンサ1110及び半導体パワーモジュール1170とそれぞれ同様の平滑コンデンサ1110及び半導体パワーモジュール1170を備える。 The inverter circuit 1010 provided in the inverter 400 of the seventh embodiment is similar to the inverter circuit 1010 provided in the inverter 1000 of the first embodiment. Therefore, the inverter 400 according to the seventh embodiment includes a smoothing capacitor 1110 and a semiconductor power module 1170 similar to the smoothing capacitor 1110 and the semiconductor power module 1170 provided in the inverter 1000 according to the first embodiment.
 平滑コンデンサ1110は、コンデンサ434、第1の電極435及び第2の電極436を備える。コンデンサ434は、一端及び他端を有する。第1の電極435は、コンデンサ434の一端に配置される。第2の電極436は、コンデンサ434の他端に配置される。 The smoothing capacitor 1110 comprises a capacitor 434, a first electrode 435 and a second electrode 436. The capacitor 434 has one end and the other end. The first electrode 435 is disposed at one end of the capacitor 434. The second electrode 436 is disposed at the other end of the capacitor 434.
 半導体パワーモジュール1170は、板形状である。半導体パワーモジュール1170は、被冷却面1400を有する。被冷却面1400は、半導体パワーモジュール1170の一方の主面となる裏面である。 The semiconductor power module 1170 has a plate shape. The semiconductor power module 1170 has a surface to be cooled 1400. The cooled surface 1400 is a back surface to be one main surface of the semiconductor power module 1170.
 平滑コンデンサ1110は、第1の冷却器410と第2の冷却器411との間に配置される。平滑コンデンサ1110の冷却は、両面冷却構造により行われる。インバータ400は、第6実施形態と同様に、第1の電気絶縁材440及び第2の電気絶縁材441をさらに備える。第1の電極435は、第1の電気絶縁材440に密着するか、又は接合される。第1の電気絶縁材440は、第1の冷却器410に密着するか、又は接合される。第2の電極436は、第2の電気絶縁材441に密着するか、又は接合される。第2の電気絶縁材441は、第2の冷却器411に密着するか、又は第2の冷却器411に接合される。第1の冷却器410、第1の電気絶縁材440、および第1の電極435とが、密着又は接合されることにより、第1の冷却器410は、第1の電極435を冷却する。また、第2の冷却器411、第2の電気絶縁材441、および第2の電極436とが、密着又は接合されることにより、第2の冷却器411は、第2の電極436を冷却する。 The smoothing capacitor 1110 is disposed between the first cooler 410 and the second cooler 411. Cooling of the smoothing capacitor 1110 is performed by a double-sided cooling structure. The inverter 400 further includes a first electrical insulator 440 and a second electrical insulator 441 as in the sixth embodiment. The first electrode 435 is in close contact with or bonded to the first electrical insulator 440. The first electrical insulator 440 is in intimate contact with or bonded to the first cooler 410. The second electrode 436 is in close contact with or bonded to the second electrical insulator 441. The second electrically insulating material 441 is in close contact with the second cooler 411 or joined to the second cooler 411. The first cooler 410 cools the first electrode 435 by bringing the first cooler 410, the first electrical insulator 440, and the first electrode 435 into close contact or bonding. Further, the second cooler 411 cools the second electrode 436 by bringing the second cooler 411, the second electric insulating material 441, and the second electrode 436 into close contact or bonding. .
 半導体パワーモジュール1170は、第3の冷却器420上に配置される。半導体パワーモジュール1170の冷却は、片面冷却構造により行われる。第3の冷却器420は、半導体パワーモジュール1170の被冷却面1400に取り付けられ、被冷却面1400を冷却する。 The semiconductor power module 1170 is disposed on the third cooler 420. The cooling of the semiconductor power module 1170 is performed by a single-sided cooling structure. The third cooler 420 is attached to the surface to be cooled 1400 of the semiconductor power module 1170 and cools the surface to be cooled 1400.
 第1の冷却器410は、第1の冷却器本体430、第1の冷却液入口配管431及び第1の冷却液出口配管432を備える。第1の冷却液入口配管431の先端は、第1の冷却液入口450を有する。第1の冷却液出口配管432の先端は、第1の冷却液出口460を有する。したがって、第1の冷却器410は、第1の冷却液入口450及び第1の冷却液出口460を有する。 The first cooler 410 includes a first cooler body 430, a first coolant inlet pipe 431 and a first coolant outlet pipe 432. The tip of the first coolant inlet pipe 431 has a first coolant inlet 450. The tip of the first coolant outlet pipe 432 has a first coolant outlet 460. Thus, the first cooler 410 has a first coolant inlet 450 and a first coolant outlet 460.
 第2の冷却器411は、第2の冷却器本体470、第2の冷却液入口配管471及び第2の冷却液出口配管472を備える。第2の冷却液入口配管471の先端は、第2の冷却液入口480を有する。第2の冷却液出口配管472の先端は、第2の冷却液出口490を有する。したがって、第2の冷却器411は、第2の冷却液入口480及び第2の冷却液出口490を有する。 The second cooler 411 includes a second cooler body 470, a second coolant inlet pipe 471 and a second coolant outlet pipe 472. The tip of the second coolant inlet pipe 471 has a second coolant inlet 480. The tip of the second coolant outlet pipe 472 has a second coolant outlet 490. Thus, the second cooler 411 has a second coolant inlet 480 and a second coolant outlet 490.
 第3の冷却器420は、第3の冷却器本体500、第3の冷却液入口配管501及び第3の冷却液出口配管502を備える。第3の冷却液入口配管501の先端は、第3の冷却液入口510を有する。第3の冷却液出口配管502の先端は、第3の冷却液出口520を有する。したがって、第3の冷却器420は、第3の冷却液入口510及び第3の冷却液出口520を有する。 The third cooler 420 includes a third cooler body 500, a third coolant inlet pipe 501, and a third coolant outlet pipe 502. The tip of the third coolant inlet piping 501 has a third coolant inlet 510. The tip of the third coolant outlet pipe 502 has a third coolant outlet 520. Thus, the third cooler 420 has a third coolant inlet 510 and a third coolant outlet 520.
 第1の冷却器410、第2の冷却器411及び第3の冷却器420は、フレーム413に固定される。 The first cooler 410, the second cooler 411 and the third cooler 420 are fixed to the frame 413.
 フレーム413は、第1の中空部530及び第2の中空部531を備える。第1の中空部530及び第2の中空部531は、中空の形状を有し、それぞれ冷却液が流れる第1の流路540及び第2の流路550を有する。 The frame 413 includes a first hollow portion 530 and a second hollow portion 531. The first hollow portion 530 and the second hollow portion 531 have a hollow shape, and have a first flow passage 540 and a second flow passage 550 through which the coolant flows, respectively.
 第1の中空部530の一端においては、第1の冷却液出口配管432が第1の流路540に挿入される。第1の中空部530の他端においては、第2の冷却液入口配管471が第1の流路540に挿入される。このため、第1の中空部530は、第1の冷却液出口460に接続される一方の接続端560、及び第2の冷却液入口480に接続される他方の接続端561を有する。 At one end of the first hollow portion 530, the first coolant outlet pipe 432 is inserted into the first flow passage 540. At the other end of the first hollow portion 530, the second coolant inlet pipe 471 is inserted into the first flow passage 540. To this end, the first hollow portion 530 has one connection end 560 connected to the first coolant outlet 460 and the other connection end 561 connected to the second coolant inlet 480.
 第2の中空部531の一端においては、第1の冷却液入口配管431が第2の流路550に挿入される。第2の中空部531の他端においては、第3の冷却液出口配管502が第2の流路550に挿入される。このため、第2の中空部531は、第1の冷却液入口450に接続される一方の接続端570、及び第3の冷却液出口520に接続される他方の接続端571を有する。 At one end of the second hollow portion 531, the first coolant inlet pipe 431 is inserted into the second flow passage 550. At the other end of the second hollow portion 531, the third coolant outlet pipe 502 is inserted into the second flow passage 550. To this end, the second hollow portion 531 has one connection end 570 connected to the first coolant inlet 450 and the other connection end 571 connected to the third coolant outlet 520.
 第1の中空部530の一方の接続端560が第1の冷却液出口460に接続されることにより、第1の冷却器410から第1の中空部530に冷却液を流すことができる。また、第1の中空部530の他方の接続端561が第2の冷却液入口480に接続されることにより、第1の中空部530から第2の冷却器411に冷却液を流すことができる。また、第1の冷却液入口450が第2の中空部531の一方の接続端570に接続されることにより、第2の中空部531から第1の冷却器410に冷却液を流すことができる。また、第3の冷却液出口520が第2の中空部531の他方の接続端571に接続されることにより、第3の冷却器420から第2の中空部531に冷却液を流すことができる。したがって、インバータ400には、第3の冷却液入口510から第3の冷却器420、第2の中空部531、第1の冷却器410、第1の中空部530及び第2の冷却器411を順次に経由し第2の冷却液出口490に至る流路が構成される。このため、第3の冷却液入口510に流入した冷却液は、第3の冷却器420、第2の中空部531、第1の冷却器410、第1の中空部530及び第2の冷却器411を順次に流れ、第2の冷却液出口490から流出する。第1の中空部530は、第1の冷却器410と第2の冷却器411との間にある冷却液の経路を構成し、冷却液配管の一部になる。第2の中空部531は、第3の冷却器420と第1の冷却器410との間にある冷却液の経路を構成し、冷却液配管の一部になる。 By connecting one connection end 560 of the first hollow portion 530 to the first coolant outlet 460, the cooling fluid can flow from the first cooler 410 to the first hollow portion 530. Further, by connecting the other connection end 561 of the first hollow portion 530 to the second coolant inlet 480, the coolant can flow from the first hollow portion 530 to the second cooler 411. . Further, by connecting the first coolant inlet 450 to one connection end 570 of the second hollow portion 531, the coolant can flow from the second hollow portion 531 to the first cooler 410. . Further, by connecting the third coolant outlet 520 to the other connection end 571 of the second hollow portion 531, the coolant can flow from the third cooler 420 to the second hollow portion 531. . Therefore, the inverter 400 includes the third cooler 420, the second hollow portion 531, the first cooler 410, the first hollow portion 530, and the second cooler 411 from the third coolant inlet 510. A flow path passing through the second coolant outlet 490 is configured sequentially. Therefore, the coolant that has flowed into the third coolant inlet 510 is the third cooler 420, the second hollow portion 531, the first cooler 410, the first hollow portion 530, and the second cooler. Flow 411 sequentially flows out of the second coolant outlet 490. The first hollow portion 530 constitutes a path of the coolant between the first cooler 410 and the second cooler 411 and is a part of the coolant pipe. The second hollow portion 531 constitutes a path of the coolant between the third cooler 420 and the first cooler 410 and becomes a part of the coolant pipe.
 第1の中空部530の一端において第1の冷却液入口配管431が第1の流路540に挿入されてもよい。第1の中空部530の他端において第2の冷却液出口配管472が第1の流路540に挿入されてもよい。第2の中空部531の一端において第1の冷却液出口配管432、第2の冷却液入口配管471又は第2の冷却液出口配管472が第2の流路550に挿入されてもよい。第2の中空部531の他端において第3の冷却液入口配管501が第2の流路550に挿入されてもよい。したがって、第1の中空部530は、第1の冷却液入口450及び第1の冷却液出口460の一方に接続される一方の接続端560、並びに第2の冷却液入口480及び第2の冷却液出口490の一方に接続される他方の接続端561を有しうる。また、第2の中空部531は、第1の冷却液入口450及び第1の冷却液出口460の他方、又は第2の冷却液入口480及び第2の冷却液出口490の他方に接続される一方の接続端570、並びに第3の冷却液入口510及び第3の冷却液出口520の一方に接続される他方の接続端571を有しうる。 The first coolant inlet pipe 431 may be inserted into the first flow passage 540 at one end of the first hollow portion 530. At the other end of the first hollow portion 530, a second coolant outlet pipe 472 may be inserted into the first flow path 540. The first coolant outlet pipe 432, the second coolant inlet pipe 471 or the second coolant outlet pipe 472 may be inserted into the second flow path 550 at one end of the second hollow portion 531. At the other end of the second hollow portion 531, the third coolant inlet pipe 501 may be inserted into the second flow passage 550. Thus, the first hollow portion 530 has one connection end 560 connected to one of the first coolant inlet 450 and the first coolant outlet 460, and the second coolant inlet 480 and the second cooling. It may have the other connection end 561 connected to one of the liquid outlets 490. Also, the second hollow portion 531 is connected to the other of the first coolant inlet 450 and the first coolant outlet 460, or to the other of the second coolant inlet 480 and the second coolant outlet 490. One connection end 570 and the other connection end 571 connected to one of the third coolant inlet 510 and the third coolant outlet 520 may be provided.
 第7実施形態のインバータ400においては、第1の電極435の表面、第2の電極436の表面及び半導体パワーモジュール1170の被冷却面1400からなる3個の面が冷却される必要がある。一方で、当該3個の面が同一平面上に位置し互いに近接しているという条件は、満たされない。しかし、第7実施形態のインバータ400においては、第1の冷却器410から第2の冷却器411へ向かう冷却液が流れる第1の流路540が、第1の冷却器410、第2の冷却器411及び第3の冷却器420を支持及び固定するフレーム413に設けられた第1の中空部530の内部にある。また、第3の冷却器412から第1の冷却器410へ向かう冷却液が流れる第1の流路530が、当該フレーム413に設けられた第2の中空部531の内部にある。このため、第1の冷却器410、第2の冷却器411及び第3の冷却器420を設置するのに要するスペースを小さくすることができる。 In the inverter 400 of the seventh embodiment, it is necessary to cool three surfaces including the surface of the first electrode 435, the surface of the second electrode 436, and the surface to be cooled 1400 of the semiconductor power module 1170. On the other hand, the condition that the three planes are located on the same plane and close to each other is not satisfied. However, in the inverter 400 according to the seventh embodiment, the first flow path 540 through which the cooling fluid flows from the first cooler 410 to the second cooler 411 is the first cooler 410, the second cooling Inside the first hollow portion 530 provided in the frame 413 for supporting and fixing the vessel 411 and the third cooler 420. In addition, a first flow passage 530 through which the coolant flows from the third cooler 412 to the first cooler 410 is inside the second hollow portion 531 provided in the frame 413. Therefore, the space required for installing the first cooler 410, the second cooler 411 and the third cooler 420 can be reduced.
 また、第7実施形態のインバータ400においては、第5実施形態のインバータ100と同様に、冷却液の漏れを容易に防止することができる。 Moreover, in the inverter 400 of 7th Embodiment, the leak of a cooling fluid can be easily prevented similarly to the inverter 100 of 5th Embodiment.
 また、第7実施形態のインバータ400においては、第1の流路540が縦方向である第1の方向D1に延び、第2の流路550が横方向である第2の方向D2に延びるため、第2の流路550が延びる方向D2が第1の流路540が延びる方向D1と異なる。それにもかかわらず、第7実施形態のインバータ400においては、第1の冷却器410、第2の冷却器411及び第3の冷却器420を設置するのに要するスペースを小さくすることができる。また、冷却液の循環を容易に行うことができる。 In the inverter 400 according to the seventh embodiment, the first flow path 540 extends in the first direction D1 which is the longitudinal direction, and the second flow path 550 extends in the second direction D2 which is the lateral direction. The direction D2 in which the second flow channel 550 extends is different from the direction D1 in which the first flow channel 540 extends. Nevertheless, in the inverter 400 of the seventh embodiment, the space required for installing the first cooler 410, the second cooler 411 and the third cooler 420 can be reduced. In addition, the coolant can be circulated easily.
 8 第8実施形態
 本発明の例示的な第8実施形態は、インバータに関する。
Eighth Embodiment An eighth embodiment of the present invention relates to an inverter.
 第1実施形態と第8実施形態との主な相違は、以下の点にある:第1実施形態においては、半導体パワーモジュール1170の被冷却面1400を冷却する冷却器が設けられる。しかし、平滑コンデンサ1110が冷却されない。これに対して、第8実施形態においては、平滑コンデンサ1110に設けられた第1の電極を冷却する第1の冷却器が設けられる。また、半導体パワーモジュール1170の被冷却面1400及び平滑コンデンサ1110に設けられた第2の電極を冷却する第2の冷却器が設けられる。さらに加えて、フレームが、第1の冷却器から第2の冷却器へ冷却液を導く配管を兼ねる。 The main differences between the first embodiment and the eighth embodiment are as follows: In the first embodiment, a cooler for cooling the surface to be cooled 1400 of the semiconductor power module 1170 is provided. However, the smoothing capacitor 1110 is not cooled. On the other hand, in the eighth embodiment, a first cooler for cooling the first electrode provided in the smoothing capacitor 1110 is provided. In addition, a second cooler for cooling the second electrode provided on the surface to be cooled 1400 of the semiconductor power module 1170 and the smoothing capacitor 1110 is provided. Additionally, the frame doubles as a conduit for conducting the coolant from the first cooler to the second cooler.
 以下では、上記の相違に関連する第8実施形態のインバータの構成が説明される。 Hereinafter, the configuration of the inverter according to the eighth embodiment related to the above difference will be described.
 図35及び図36は、第8実施形態のインバータの断面を模式的に図示する断面図である。 FIG. 35 and FIG. 36 are cross sectional views schematically showing cross sections of the inverter of the eighth embodiment.
 図35及び図36に図示されるインバータ600は、インバータ回路1010、第1の冷却器610、少なくともひとつの冷却器611及びフレーム612を備える。少なくともひとつの冷却器611は、第2の冷却器620を含む。 The inverter 600 illustrated in FIGS. 35 and 36 includes an inverter circuit 1010, a first cooler 610, at least one cooler 611, and a frame 612. At least one cooler 611 includes a second cooler 620.
 第8実施形態のインバータ600に設けられたインバータ回路1010は、第1実施形態のインバータ1000に設けられたインバータ回路1010と同様のものである。このため、第8実施形態のインバータ600は、第1実施形態のインバータ1000に設けられた平滑コンデンサ1110及び半導体パワーモジュール1170とそれぞれ同様の平滑コンデンサ1110及び半導体パワーモジュール1170を備える。 The inverter circuit 1010 provided in the inverter 600 of the eighth embodiment is the same as the inverter circuit 1010 provided in the inverter 1000 of the first embodiment. Therefore, the inverter 600 according to the eighth embodiment includes a smoothing capacitor 1110 and a semiconductor power module 1170 similar to the smoothing capacitor 1110 and the semiconductor power module 1170 provided in the inverter 1000 according to the first embodiment.
 平滑コンデンサ1110は、コンデンサ630、第1の電極631及び第2の電極632を備える。コンデンサ630は、一端及び他端を有する。第1の電極631は、コンデンサ630の一端に配置される。第2の電極632は、コンデンサ630の他端に配置される。 The smoothing capacitor 1110 comprises a capacitor 630, a first electrode 631 and a second electrode 632. The capacitor 630 has one end and the other end. The first electrode 631 is disposed at one end of the capacitor 630. The second electrode 632 is disposed at the other end of the capacitor 630.
 半導体パワーモジュール1170は、板形状である。半導体パワーモジュール1170は、被冷却面1400を有する。被冷却面1400は、半導体パワーモジュール1170の一方の主面となる裏面である。 The semiconductor power module 1170 has a plate shape. The semiconductor power module 1170 has a surface to be cooled 1400. The cooled surface 1400 is a back surface to be one main surface of the semiconductor power module 1170.
 平滑コンデンサ1110は、第1の冷却器610と第2の冷却器620との間に配置される。平滑コンデンサ1110の冷却は、両面冷却構造により行われる。インバータ600は、第1の電気絶縁材640及び第2の電気絶縁材641をさらに備える。第1の電極631は、第1の電気絶縁材640に密着するか、又は接合される。第1の電気絶縁材640は、第1の冷却器610に密着するか、又は接合される。第2の電極632は、第2の電気絶縁材641に密着するか、又は接合される。第2の電気絶縁材641は、第2の冷却器620に密着するか、又は第2の冷却器620に接合される。第1の電極631、第1の電気絶縁材640、及び第1の冷却器610は密着又は接合されることにより、第1の冷却器610は、第1の電極631を冷却する。第2の電極632、第2の電気絶縁材641、及び第2の冷却器620は密着又は接合されることにより、第2の冷却器620は、第2の電極632を冷却する。第1の電気絶縁材640により、活電位が与えられる第1の電極631が第1の冷却器610から絶縁される。第2の電気絶縁材641により、活電位が与えられる第2の電極632が第2の冷却器620から絶縁される。 The smoothing capacitor 1110 is disposed between the first cooler 610 and the second cooler 620. Cooling of the smoothing capacitor 1110 is performed by a double-sided cooling structure. The inverter 600 further includes a first electrical insulator 640 and a second electrical insulator 641. The first electrode 631 is in close contact with or bonded to the first electrical insulator 640. The first electrical insulator 640 is in intimate contact or bonded to the first cooler 610. The second electrode 632 is in close contact with or bonded to the second electrical insulator 641. The second electrically insulating material 641 is in close contact with the second cooler 620 or joined to the second cooler 620. The first cooler 610 cools the first electrode 631 by bringing the first electrode 631, the first electrical insulator 640, and the first cooler 610 into close contact or bonding. The second cooler 620 cools the second electrode 632 by the second electrode 632, the second electrical insulator 641, and the second cooler 620 being in close contact or bonded. The first electrical insulator 640 insulates the first electrode 631 to which the active potential is applied from the first cooler 610. The second electrode 632 to which an active potential is applied is isolated from the second cooler 620 by the second electrical insulator 641.
 半導体パワーモジュール1170は、第2の冷却器620上に配置される。半導体パワーモジュール1170の冷却は、片面冷却構造により行われる。第2の冷却器620は、半導体パワーモジュール1170の被冷却面1400に取り付けられ、被冷却面1400を冷却することにより半導体パワーモジュール1170を冷却する。 The semiconductor power module 1170 is disposed on the second cooler 620. The cooling of the semiconductor power module 1170 is performed by a single-sided cooling structure. The second cooler 620 is attached to the surface to be cooled 1400 of the semiconductor power module 1170, and cools the surface to be cooled 1400 to cool the semiconductor power module 1170.
 第2の冷却器620は、一方の面650及び他方の面651を有する。半導体パワーモジュール1170は、一方の面650上に配置される。平滑コンデンサ1110は、他方の面651上に配置される。半導体パワーモジュール1170及び平滑コンデンサ1110がそれぞれ第2の冷却器620の一方の面650及び他方の面651上に配置されることにより、第2の冷却器620の両面が冷却に活用される。 The second cooler 620 has one side 650 and the other side 651. The semiconductor power module 1170 is disposed on one side 650. The smoothing capacitor 1110 is disposed on the other surface 651. The semiconductor power module 1170 and the smoothing capacitor 1110 are disposed on one side 650 and the other side 651 of the second cooler 620, respectively, so that both sides of the second cooler 620 are utilized for cooling.
 第8実施形態のインバータ600においても、第5実施形態のインバータ100と同様に、第1の冷却器610が第1の冷却液入口660及び第1の冷却液出口670を有する。また、第2の冷却器620が第2の冷却液入口680及び第2の冷却液出口690を有する。第1の冷却器610及び第2の冷却器620は、フレーム612に固定される。フレーム612は、中空部700を備える。中空部700は、中空の形状を有し、冷却液が流れる流路710を有する。中空部700は、第1の冷却液入口660又は第1の冷却液出口670に接続される一方の接続端720、及び第2の冷却液入口680又は第2の冷却液出口690に接続される他方の接続端721を有する。 Also in the inverter 600 of the eighth embodiment, the first cooler 610 has a first coolant inlet 660 and a first coolant outlet 670, as in the inverter 100 of the fifth embodiment. Also, the second cooler 620 has a second coolant inlet 680 and a second coolant outlet 690. The first cooler 610 and the second cooler 620 are fixed to the frame 612. The frame 612 comprises a hollow portion 700. The hollow portion 700 has a hollow shape and has a flow path 710 through which the coolant flows. The hollow portion 700 is connected to one connection end 720 connected to the first coolant inlet 660 or the first coolant outlet 670, and to the second coolant inlet 680 or the second coolant outlet 690. It has the other connection end 721.
 第8実施形態のインバータ600においても、第5実施形態のインバータ100と同様に、第1の冷却器610及び第2の冷却器620を設置するのに要するスペースを小さくすることができる。 Also in the inverter 600 of the eighth embodiment, the space required for installing the first cooler 610 and the second cooler 620 can be reduced similarly to the inverter 100 of the fifth embodiment.
 また、第8実施形態のインバータ600においても、第5実施形態のインバータ100と同様に、冷却液の漏れを容易に防止することができる。 Further, also in the inverter 600 according to the eighth embodiment, it is possible to easily prevent the coolant from leaking similarly to the inverter 100 according to the fifth embodiment.
 また、第8実施形態のインバータ600においては、フレーム612による第2の冷却器620の支持が、第2の冷却器620の四隅をそれぞれ4本の柱により支持することにより行われる。また、冷却液が流れる流路710が4本の柱のいずれかの柱の内部に設けられる。このため、フレーム612が半導体パワーモジュール1170及び平滑コンデンサ1110の実装の障害となることは起こりにくい。また、冷却液配管が半導体パワーモジュール1170及び平滑コンデンサ1110の実装の障害となることはない。 In the inverter 600 according to the eighth embodiment, the support of the second cooler 620 by the frame 612 is performed by supporting the four corners of the second cooler 620 with four columns. In addition, a flow path 710 through which the coolant flows is provided inside any one of the four columns. For this reason, it is less likely that the frame 612 becomes an obstacle to the mounting of the semiconductor power module 1170 and the smoothing capacitor 1110. In addition, the coolant piping does not hinder the mounting of the semiconductor power module 1170 and the smoothing capacitor 1110.
 また、第8実施形態のインバータ600においては、半導体パワーモジュール1170及び平滑コンデンサ1110を第2の冷却器620に実装した後に第2の冷却器620をフレーム612に固定することも容易である。このため、実装工程上の制約により第2の冷却器620をフレーム612に固定した後に発熱部品を第2の冷却器620に実装することが困難である場合においても、第2の冷却器620の両面を活用した半導体パワーモジュール1170及び平滑コンデンサ1110の冷却が可能である。 In the inverter 600 according to the eighth embodiment, it is also easy to fix the second cooler 620 to the frame 612 after the semiconductor power module 1170 and the smoothing capacitor 1110 are mounted on the second cooler 620. For this reason, even if it is difficult to mount the heat generating component on the second cooler 620 after the second cooler 620 is fixed to the frame 612 due to restrictions on the mounting process, the second cooler 620 It is possible to cool the semiconductor power module 1170 and the smoothing capacitor 1110 utilizing both sides.
 9 第9実施形態
 本発明の例示的な第9実施形態は、インバータに関する。
9 ninth embodiment The ninth exemplary embodiment of the present invention relates to an inverter.
 図37は、第9実施形態のインバータの断面を模式的に図示する断面図である。 FIG. 37 is a cross sectional view schematically showing a cross section of the inverter of the ninth embodiment.
 図37に図示されるインバータ800においては、生成される交流が、第1から第nまでの相の成分を有する多相交流である。nは、2以上の整数である。図37には、nが3である場合が例示される。すなわち、図37には、生成される交流がU相成分、V相成分及びW相成分を有する三相交流である場合が例示される。 In the inverter 800 illustrated in FIG. 37, the generated alternating current is a multiphase alternating current having components of first to nth phases. n is an integer of 2 or more. The case where n is 3 is illustrated by FIG. That is, FIG. 37 illustrates the case where the generated alternating current is a three-phase alternating current having a U-phase component, a V-phase component, and a W-phase component.
 インバータ800は、第1から第nまでの構造体820,821及び822、及びフレーム830を備える。第1から第nまでの構造体820,821及び822は、それぞれ第1から第nまでの半導体パワーモジュール及び第1から第nまでの少なくともひとつの冷却器を備える。 The inverter 800 includes first to nth structures 820, 821 and 822, and a frame 830. The first to n- th structures 820, 821 and 822 respectively include the first to n-th semiconductor power modules and the first to n-th coolers.
 第1から第nまでの半導体パワーモジュールは、直流をスイッチングし、それぞれ第1から第nまでの相の成分を生成する。第1から第nまでの半導体パワーモジュールに含まれる各半導体パワーモジュールは、当該各半導体パワーモジュールが属する構造体において、第5実施形態から第8実施形態までのいずれかの実施形態のインバータに設けられる半導体パワーモジュールと同様に冷却される。 The first to n-th semiconductor power modules switch direct current to generate components of the first to n-th phases, respectively. The semiconductor power modules included in the first to n-th semiconductor power modules are provided in the inverter according to any of the fifth to eighth embodiments in a structure to which the respective semiconductor power modules belong. Is cooled in the same manner as the semiconductor power module.
 第1から第nまでの少なくともひとつの冷却器は、フレーム830に固定される。第1から第nまでの少なくともひとつの冷却器には、それぞれ第1から第nまでの半導体パワーモジュールが実装される。このため、第1から第nまでの少なくともひとつの冷却器は、それぞれ第1から第nまでの半導体パワーモジュールを冷却する。第1から第nまでの少なくともひとつの冷却器に含まれる各少なくともひとつの冷却器は、当該各少なくともひとつの冷却器が属する構造体において、第5実施形態から第8実施形態までのいずれかの実施形態のインバータに設けられる少なくともひとつの冷却器と同様に半導体パワーモジュールを冷却する。このため、各少なくともひとつの冷却器は、冷却液入口及び冷却液出口を有する。 The first to nth at least one coolers are fixed to the frame 830. First to nth semiconductor power modules are mounted on at least one cooler from the first to nth. For this reason, at least one cooler from the first to the n-th cools the semiconductor power modules from the first to the n-th, respectively. Each of the at least one cooler included in the at least one cooler from the first to the nth is any one of the fifth to eighth embodiments in a structure to which the at least one cooler belongs. The semiconductor power module is cooled in the same manner as at least one cooler provided in the inverter of the embodiment. For this purpose, each at least one cooler has a coolant inlet and a coolant outlet.
 第1から第nまでの構造体820,821及び822は、それぞれ湾曲面840上の第1から第nまでの位置850,851及び852上に配置される。湾曲面840は、第1から第nまでの構造体820,821及び822を支持する支持体の表面であり、例えば円筒状の形状を有するモータ筐体の外周面である。第1から第nまでの位置850,851及び852は、互いに異なる法線方向を有する。第1から第nまでの構造体820,821及び822は、それぞれ湾曲面840上の第1から第nまでの位置850,851及び852が有する法線方向に応じた傾きを有する。 The first to n- th structures 820, 821 and 822 are disposed on the first to n- th positions 850, 851 and 852 on the curved surface 840, respectively. The curved surface 840 is a surface of a support that supports the first to n- th structures 820, 821, and 822. The curved surface 840 is, for example, an outer peripheral surface of a motor casing having a cylindrical shape. The first to nth positions 850, 851 and 852 have normal directions different from each other. The first to n- th structures 820, 821 and 822 have inclinations according to the normal directions of the first to n- th positions 850, 851 and 852 on the curved surface 840, respectively.
 フレーム830は、第1から第nまでの少なくともひとつの冷却器に含まれる一の少なくともひとつの冷却器に備えられる冷却液入口又は冷却液出口に接続される一方の接続端、及び第1から第nまでの少なくともひとつの冷却器に含まれる他の少なくともひとつの冷却器に備えられる冷却液入口又は冷却液出口に接続される他方の接続端を有する中空部を備える。中空部は、中空の形状を有し、冷却液が流れる流路を有する。 The frame 830 has one connecting end connected to the coolant inlet or the coolant outlet provided in at least one cooler included in the first to n-th coolers, and the first to the first a hollow portion having a cooling fluid inlet or a cooling fluid outlet connected to the cooling fluid outlet provided in at least one other cooling device included in at least one cooler up to n. The hollow portion has a hollow shape and has a flow path through which the coolant flows.
 第1から第nまでの構造物は、互いに異なる傾きを有する。このため、中空部は、湾曲又は屈曲することが多い。しかし、フレーム830を樹脂により構成することにより、湾曲又は屈曲した中空部を容易に形成することができる。 The first to n-th structures have different inclinations. For this reason, the hollow portion is often curved or bent. However, when the frame 830 is made of resin, a curved or bent hollow portion can be easily formed.
 第8実施形態のインバータ800は、湾曲面840に沿って設置することができ、湾曲面840に沿って設置された場合においても隙間等のデッドスペースを生じにくいという特徴を有する。このため、インバータ800が搭載された支持体を小型化することができる。 The inverter 800 according to the eighth embodiment can be installed along the curved surface 840, and has a feature that even when installed along the curved surface 840, a dead space such as a gap does not easily occur. Thus, the support on which the inverter 800 is mounted can be miniaturized.
 10 第10実施形態
 本発明の例示的な第10実施形態は、ケース入りインバータに関する。
10 Tenth Embodiment The tenth embodiment of the present invention relates to a cased inverter.
 図38は、第10実施形態のケース入りインバータを模式的に図示する斜視図である。 FIG. 38 is a perspective view schematically illustrating the cased inverter of the tenth embodiment.
 図38に図示されるケース入りインバータ5000は、インバータ5010及びインバータケース5011を備える。 The cased inverter 5000 illustrated in FIG. 38 includes an inverter 5010 and an inverter case 5011.
 インバータ5010は、第1実施形態のインバータ1000であり、インバータケース5011に収容される。インバータケース5011は、電動機、又は電動機を備える複合装置から独立している。インバータ5010が、第2実施形態のインバータ2000、第3実施形態のインバータ3000、第4実施形態のインバータ4000、第5実施形態のインバータ100、第6実施形態のインバータ300、第7実施形態のインバータ400、第8実施形態のインバータ600又は第9実施形態のインバータ800であってもよい。 The inverter 5010 is the inverter 1000 according to the first embodiment, and is accommodated in the inverter case 5011. The inverter case 5011 is independent of a motor or a combined device including the motor. The inverter 5010 includes the inverter 2000 of the second embodiment, the inverter 3000 of the third embodiment, the inverter 4000 of the fourth embodiment, the inverter 100 of the fifth embodiment, the inverter 300 of the sixth embodiment, and the inverter of the seventh embodiment. The inverter 400 may be the inverter 400 according to the eighth embodiment or the inverter 800 according to the ninth embodiment.
 11 第11実施形態
 本発明の例示的な第11実施形態は、インバータ内蔵電動機に関する。
Eleventh Embodiment An eleventh embodiment of the present invention relates to a motor with a built-in inverter.
 図39は、第11実施形態のインバータ内蔵電動機を模式的に図示する斜視図である。 FIG. 39 is a perspective view schematically illustrating the motor with a built-in inverter according to the eleventh embodiment.
 図39に図示されるインバータ内蔵電動機6000は、インバータ6010、電動機6011及びインバータケース6012を備える。 The inverter built-in electric motor 6000 illustrated in FIG. 39 includes an inverter 6010, an electric motor 6011 and an inverter case 6012.
 電動機6011は、電動機ケース6020を備える。 The motor 6011 includes a motor case 6020.
 インバータ6010は、第1実施形態のインバータ1000であり、インバータケース6012に収容される。インバータケース6012は、電動機ケース6020に接合されるか、又は電動機ケース6020と一体化される。インバータ6010が、第2実施形態のインバータ2000、第3実施形態のインバータ3000、第4実施形態のインバータ4000、第5実施形態のインバータ100、第6実施形態のインバータ300、第7実施形態のインバータ400、第8実施形態のインバータ600又は第9実施形態のインバータ800であってもよい。 The inverter 6010 is the inverter 1000 of the first embodiment, and is accommodated in the inverter case 6012. The inverter case 6012 is joined to the motor case 6020 or integrated with the motor case 6020. The inverter 6010 includes the inverter 2000 of the second embodiment, the inverter 3000 of the third embodiment, the inverter 4000 of the fourth embodiment, the inverter 100 of the fifth embodiment, the inverter 300 of the sixth embodiment, and the inverter of the seventh embodiment. The inverter 400 may be the inverter 400 according to the eighth embodiment or the inverter 800 according to the ninth embodiment.
 インバータ内蔵電動機6000は、電動機ケース6020に接合されるか、又は電動機ケース6020と一体化されたインバータケース6012にインバータ1000を収容することにより組み立てられる。このため、インバータ内蔵電動機6000へのインバータ1000の内蔵は、電動機6011の製造に影響を与えず、インバータ内蔵電動機6000へのインバータ1000の内蔵にあたって電動機6011を持ち上げる等のハンドリングは発生しにくい。 The inverter built-in motor 6000 is assembled by housing the inverter 1000 in an inverter case 6012 which is joined to the motor case 6020 or integrated with the motor case 6020. Therefore, the incorporation of the inverter 1000 into the inverter built-in motor 6000 does not affect the manufacture of the motor 6011, and handling such as lifting the motor 6011 hardly occurs when the inverter 1000 is incorporated into the inverter built-in motor 6000.
 12 第12実施形態
 本発明の例示的な第12実施形態は、インバータ内蔵トランスアクスルに関する。
Twelfth Embodiment The twelfth embodiment of the present invention relates to an inverter-equipped transaxle.
 図40は、第12実施形態のインバータ内蔵トランスアクスルの内部構造を模式的に図示する模式図である。 FIG. 40 is a schematic view schematically illustrating the internal structure of the inverter built-in transaxle of the twelfth embodiment.
 図40に図示されるインバータ内蔵トランスアクスル7000は、インバータ7010、トランスアクスル7011及びインバータケース7012を備える。トランスアクスル7011は、例えば電動自動車に搭載され、電動機7020、変速機7021及びトランスアクスルケース7023を備える。 The inverter built-in transaxle 7000 illustrated in FIG. 40 includes an inverter 7010, a transaxle 7011 and an inverter case 7012. The transaxle 7011 is mounted, for example, on an electric automobile, and includes an electric motor 7020, a transmission 7021 and a transaxle case 7023.
 インバータ7000は、第1実施形態のインバータ1000であり、インバータケース7012に収容される。インバータケース7012は、トランスアクスルケース7023に接合されるか、又はトランスアクスルケース7023と一体化される。インバータ7000が、第2実施形態のインバータ2000、第3実施形態のインバータ3000、第4実施形態のインバータ4000、第5実施形態のインバータ100、第6実施形態のインバータ300、第7実施形態のインバータ400、第8実施形態のインバータ600又は第9実施形態のインバータ800であってもよい。 The inverter 7000 is the inverter 1000 of the first embodiment, and is accommodated in the inverter case 7012. The inverter case 7012 is joined to the transaxle case 7023 or integrated with the transaxle case 7023. The inverter 7000 includes the inverter 2000 of the second embodiment, the inverter 3000 of the third embodiment, the inverter 4000 of the fourth embodiment, the inverter 100 of the fifth embodiment, the inverter 300 of the sixth embodiment, and the inverter of the seventh embodiment. The inverter 400 may be the inverter 400 according to the eighth embodiment or the inverter 800 according to the ninth embodiment.
 変速機7021は、電動機7020により発生させられた機械力を伝達する伝達機構である。電動機7020及び変速機7021は、トランスアクスルケース7023に収容される。 The transmission 7021 is a transmission mechanism that transmits the mechanical force generated by the motor 7020. The motor 7020 and the transmission 7021 are accommodated in a transaxle case 7023.
 変速機7021を備える複合装置であるトランスアクスル7011が、変速機以外の伝達機構を備える複合装置に置き換えられてもよい。 The transaxle 7011 which is a combined device including the transmission 7021 may be replaced with a combined device including a transmission mechanism other than the transmission.
 13 第13実施形態
 本発明の例示的な第13実施形態は、インバータ内蔵トランスアクスルに関する。
Thirteenth Embodiment The thirteenth embodiment of the present invention relates to an inverter-equipped transaxle.
 図41は、第13実施形態のインバータ内蔵トランスアクスルの内部構造を模式的に図示する模式図である。 FIG. 41 is a schematic view schematically illustrating an internal structure of the inverter built-in transaxle of the thirteenth embodiment.
 図41に図示されるインバータ内蔵トランスアクスル8000は、インバータ8010及びトランスアクスル8011を備える。トランスアクスル8011は、例えば電動自動車に搭載され、電動機8020、変速機8021及びトランスアクスルケース8022を備える。 The inverter built-in transaxle 8000 illustrated in FIG. 41 includes an inverter 8010 and a transaxle 8011. The transaxle 8011 is mounted, for example, on an electric automobile, and includes an electric motor 8020, a transmission 8021, and a transaxle case 8022.
 インバータ8010は、第1実施形態のインバータ1000であり、トランスアクスルケース8022に形成され外部に露出する窪み空間8030に収容される。インバータ8010が、第2実施形態のインバータ2000、第3実施形態のインバータ3000、第4実施形態のインバータ4000、第5実施形態のインバータ100、第6実施形態のインバータ300、第7実施形態のインバータ400、第8実施形態のインバータ600又は第9実施形態のインバータ800であってもよい。 The inverter 8010 is the inverter 1000 according to the first embodiment, and is accommodated in a hollow space 8030 formed in the transaxle case 8022 and exposed to the outside. The inverter 8010 includes the inverter 2000 of the second embodiment, the inverter 3000 of the third embodiment, the inverter 4000 of the fourth embodiment, the inverter 100 of the fifth embodiment, the inverter 300 of the sixth embodiment, and the inverter of the seventh embodiment. The inverter 400 may be the inverter 400 according to the eighth embodiment or the inverter 800 according to the ninth embodiment.
 トランスアクスルケース8022は、大きな凹凸を有する複雑な立体形状を有するため、インバータ1000を収容できる箱状の窪み空間8030を有する。そのような窪み空間8030にインバータ1000を収容することにより、インバータ1000がトランスアクスルケース8022から著しく突出しない状態でインバータ内蔵トランスアクスル8000に内蔵される。 The transaxle case 8022 has a box-like hollow space 8030 that can accommodate the inverter 1000 because it has a complex three-dimensional shape with large unevenness. By housing inverter 1000 in such a hollow space 8030, inverter 1000 is incorporated in inverter built-in transaxle 8000 in a state where it does not significantly protrude from transaxle case 8022.
 変速機8021は、電動機8020により発生させられた機械力を伝達する伝達機構である。電動機8020及び変速機8021は、トランスアクスルケース8023に収容される。 The transmission 8021 is a transmission mechanism that transmits the mechanical force generated by the motor 8020. The motor 8020 and the transmission 8021 are housed in a transaxle case 8023.
 変速機8021を備える複合装置であるトランスアクスル8011が、変速機以外の伝達機構を備える複合装置に置き換えられてもよい。 The transaxle 8011 which is a combined device including the transmission 8021 may be replaced with a combined device including a transmission mechanism other than the transmission.
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is an exemplification in all aspects, and the present invention is not limited thereto. It is understood that countless variations not illustrated are conceivable without departing from the scope of the present invention.
 1000,2000,3000,4000,5010,6010,7010,8010…インバータ、1011,2011,3011…少なくともひとつの冷却器、1012,2012…フレーム、1100…DCコネクタ、1110…平滑コンデンサ1120,1121,1122,1123,1124,1125,4290,4291…DCバスバ電極、1130…信号端子コネクタ、1140…信号配線、1150,1160…駆動回路基板、1170…半導体パワーモジュール、1180,1181,1182…ACバスバ電極、1190,1191,1192…ACコネクタ、1200,1201,1202…電流センサ、1300,1301,1302,1303…柱、1310,1311,1312,1313,1314,1315,1316,1317,1440,2319,2320…梁、1320,1321…側板、1330,1331…底板、1400…被冷却面、1500…コンデンサ群、1510…各コンデンサ、1540…第1の電極、1541…第2の電極、1550,1570…ベース板、1560,1571…樹脂体、1610…伝熱部材、1612…フレームメンバー、1820…巻き線、2332…内部板、2400,3400…第1の被冷却面、 2401,3401…第2の被冷却面、2900,3900…第1の冷却器、2901,3901…第2の冷却器、5000…ケース入りインバータ、5011,6012,7012…インバータケース、6000…インバータ内蔵電動機、6011,7020,8020…電動機、7000,8000…インバータ内蔵トランスアクスル、7011,8011…トランスアクスル、7021,8021…変速機、7023,8022…トランスアクスルケース、8030…窪み空間、100,300,400,800…インバータ、110,311,412,611…少なくともひとつの冷却器、111,312,413,612,830…フレーム、120,310,410,610…第1の冷却器、121,320,411,620…第2の冷却器、420…第3の冷却器、130…第1の被冷却面、131…第2の被冷却面、150,450…第1の冷却液入口、160,460…第1の冷却液出口、180,480…第2の冷却液入口、190,490…第2の冷却液出口、510…第3の冷却液入口、520…第3の冷却液出口、210…中空部、530…第1の中空部、531…第2の中空部、330,434,630…コンデンサ、331,435,631…第1の電極、332,436,632…第2の電極、820,821,822…構造体 1000, 2000, 3000, 4000, 5010, 6010, 7010, 8010 ... inverter, 1011, 2011, 3011 ... at least one cooler, 1012, 2012 ... frame, 1100 ... DC connector, 1110 ... smoothing capacitor 1120, 1121, 1122 , 1123, 1124, 1125, 4290, 4291 ... DC bus bar electrode, 1130 ... signal terminal connector, 1140 ... signal wiring, 1150, 1160 ... drive circuit board, 1170 ... semiconductor power module, 1180, 1181, 1182 ... AC bus bar electrode, 1190, 1191, 1192 ... AC connector, 1200, 1201, 1202 ... current sensor, 1300, 1301, 1302, 1303 ... pillar, 1310, 1311, 1312, 1313, 1314, 315, 1316, 1317, 1440, 2319, 2320 ... beam, 1320, 1321 ... side plate, 1330, 1331 ... bottom plate, 1400 ... cooled surface, 1500 ... capacitor group, 1510 ... each capacitor, 1540 ... first electrode, 1541 ... second electrode, 1550, 1570 ... base plate, 1560, 1571 ... resin body, 1610 ... heat transfer member, 1612 ... frame member, 1820 ... winding, 2332 ... inner plate, 2400, 3400 ... first cooled object Second surface to be cooled, 2900, 3900 First cooler, 2901, 3901 Second cooler, 5000 Cased inverter, 5011, 6012, 7012 Inverter case, 6000 ... Motor with built-in inverter, 6011, 7020, 8020 ... motor, 70 0, 8000 ... Transaxle with built-in inverter, 7011, 8011 ... Transaxle, 7021, 8021 ... Transmission, 7023, 8022 ... Transaxle case, 8030 ... Hollow space, 100, 300, 400, 800 ... Inverter, 110, 311, 412, 611 ... at least one cooler, 111, 312, 413, 612, 830 ... frame, 120, 310, 410, 610 ... first cooler, 121, 320, 411, 620 ... second cooler, 420: third cooler, 130: first cooled surface, 131: second cooled surface, 150, 450: first coolant inlet, 160, 460: first coolant outlet, 180, 480 ... second coolant inlet, 190, 490 ... second coolant outlet, 510 ... third coolant inlet, 520 ... third Cooling fluid outlet 210 hollow portion 530 first hollow portion 531 second hollow portion 330, 434, 630 condenser, 331 435 631 first electrode 332 436 632 Second electrode, 820, 821, 822 ... structure

Claims (30)

  1.  複数の棒状のフレームメンバーを含む複数のフレームメンバーを備え、前記複数のフレームメンバーを組み合わせて構成されるフレームと、
     直流をスイッチングし、交流を生成する半導体パワーモジュールと、
     前記フレームに固定され、前記半導体パワーモジュールを冷却する少なくともひとつの冷却器と、
    を備えるインバータ。
    A frame comprising a plurality of frame members including a plurality of rod-like frame members, and configured by combining the plurality of frame members;
    A semiconductor power module that switches direct current and generates alternating current;
    At least one cooler fixed to the frame and cooling the semiconductor power module;
    An inverter comprising:
  2.  前記半導体パワーモジュールは、前記フレームに固定される、請求項1のインバータ。 The inverter according to claim 1, wherein the semiconductor power module is fixed to the frame.
  3.  前記半導体パワーモジュールは、第1の被冷却面及び第2の被冷却面を有し、
     前記少なくともひとつの冷却器は、前記第1の被冷却面を冷却する第1の冷却器、及び前記第2の被冷却面を冷却する第2の冷却器を含み、
     前記複数のフレームメンバーは、前記第1の冷却器が固定される第1のフレームメンバー、及び前記第2の冷却器が固定される第2のフレームメンバーを含む、請求項1又は2のインバータ。
    The semiconductor power module has a first cooled surface and a second cooled surface.
    The at least one cooler includes a first cooler for cooling the first surface to be cooled, and a second cooler for cooling the second surface to be cooled,
    The inverter according to claim 1, wherein the plurality of frame members include a first frame member to which the first cooler is fixed, and a second frame member to which the second cooler is fixed.
  4.  前記半導体パワーモジュールは、板形状であり、
     前記第1の被冷却面は、一方の主面であり、
     前記第2の被冷却面は、他方の主面であり、
     前記複数の棒状のフレームメンバーは、第1の方向に延びる第1の棒状のフレームメンバー、及び前記第1の方向と異なる第2の方向に延びる第2の棒状のフレームメンバーを含み、
     前記第1のフレームメンバーは、前記第1の棒状のフレームメンバー又は前記第2の棒状のフレームメンバーに固定され、前記第1の方向と異なる広がり方向に広がる面を有し、
     前記第2のフレームメンバーは、前記第1の棒状のフレームメンバー又は前記第2の棒状のフレームメンバーに固定され、前記広がり方向に広がる面を有し、前記第1のフレームメンバーから前記第1の方向に離間して配置される、請求項3のインバータ。
    The semiconductor power module has a plate shape,
    The first cooled surface is one of the main surfaces,
    The second cooled surface is the other main surface,
    The plurality of rod-like frame members includes a first rod-like frame member extending in a first direction, and a second rod-like frame member extending in a second direction different from the first direction,
    The first frame member is fixed to the first rod-shaped frame member or the second rod-shaped frame member, and has a surface which spreads in a spreading direction different from the first direction.
    The second frame member is fixed to the first rod-shaped frame member or the second rod-shaped frame member, and has a surface that spreads in the spreading direction, and the first frame member is extended from the first frame member. The inverter of claim 3, wherein the inverters are spaced apart in a direction.
  5.  前記半導体パワーモジュールは、第1の被冷却面及び第2の被冷却面を有し、
     前記少なくともひとつの冷却器は、前記第1の被冷却面を冷却する第1の冷却器、及び前記第2の被冷却面を冷却する第2の冷却器を含み、
     前記複数のフレームメンバーは、前記第1の冷却器及び前記第2の冷却器が共通して固定される共通のフレームメンバーを含む、請求項1又は2のインバータ。
    The semiconductor power module has a first cooled surface and a second cooled surface.
    The at least one cooler includes a first cooler for cooling the first surface to be cooled, and a second cooler for cooling the second surface to be cooled,
    The inverter according to claim 1, wherein the plurality of frame members include a common frame member to which the first cooler and the second cooler are fixed in common.
  6.  前記半導体パワーモジュールは、板形状であり、
     前記第1の被冷却面は、一方の主面であり、
     前記第2の被冷却面は、他方の主面であり、
     前記複数の棒状のフレームメンバーは、第1の方向に延びる第1の棒状のフレームメンバー、及び前記第1の方向と異なる第2の方向に延びる第2の棒状のフレームメンバーを含み、
     前記共通のフレームメンバーは、前記第1の棒状のフレームメンバー又は前記第2の棒状のフレームメンバーに固定され、前記第1の方向と異なる広がり方向に広がる面を有する、請求項5のインバータ。
    The semiconductor power module has a plate shape,
    The first cooled surface is one of the main surfaces,
    The second cooled surface is the other main surface,
    The plurality of rod-like frame members includes a first rod-like frame member extending in a first direction, and a second rod-like frame member extending in a second direction different from the first direction,
    The inverter according to claim 5, wherein the common frame member is fixed to the first rod-shaped frame member or the second rod-shaped frame member and has a surface that spreads in a spreading direction different from the first direction.
  7.  平滑前の直流を平滑し、平滑後の直流を生成する平滑コンデンサをさらに備え、
     前記直流は、前記平滑後の直流であり、
     前記平滑コンデンサは、電気的に並列接続される複数のコンデンサを備え前記フレームに固定されるコンデンサ群を備える、請求項1から6までのいずれかのインバータ。
    It further comprises a smoothing capacitor that smoothes the DC before smoothing and generates the DC after smoothing,
    The direct current is a direct current after the smoothing,
    The inverter according to any one of claims 1 to 6, wherein the smoothing capacitor comprises a plurality of capacitors electrically connected in parallel, and a capacitor group fixed to the frame.
  8.  平滑前の直流を平滑し、平滑後の直流を生成する平滑コンデンサと、
     前記フレームに固定されるベース板と、
    をさらに備え、
     前記直流は、前記平滑後の直流であり、
     前記平滑コンデンサは、電気的に並列接続される複数のコンデンサを備え前記ベース板に固定されるコンデンサ群を備える、請求項1から6までのいずれかのインバータ。
    A smoothing capacitor for smoothing the DC before smoothing and generating the smoothed DC;
    A base plate fixed to the frame;
    And further
    The direct current is a direct current after the smoothing,
    The inverter according to any one of claims 1 to 6, wherein the smoothing capacitor comprises a plurality of capacitors electrically connected in parallel, and a capacitor group fixed to the base plate.
  9.  平滑前の直流を平滑し、平滑後の直流を生成する平滑コンデンサと、
     前記フレームに固定される樹脂体と、
    をさらに備え、
     前記直流は、前記平滑後の直流であり、
     前記平滑コンデンサは、電気的に並列接続される複数のコンデンサを備え前記樹脂体に埋め込まれるコンデンサ群を備える、請求項1から6までのいずれかのインバータ。
    A smoothing capacitor for smoothing the DC before smoothing and generating the smoothed DC;
    A resin body fixed to the frame;
    And further
    The direct current is a direct current after the smoothing,
    The inverter according to any one of claims 1 to 6, wherein the smoothing capacitor comprises a plurality of capacitors electrically connected in parallel and a capacitor group embedded in the resin body.
  10.  平滑前の直流を平滑し、平滑後の直流を生成する平滑コンデンサと、
     前記フレームに固定されるベース板と、
     前記ベース板に固定される樹脂体と、
    をさらに備え、
     前記直流は、前記平滑後の直流であり、
     前記平滑コンデンサは、電気的に並列接続される複数のコンデンサを備え前記樹脂体に埋め込まれるコンデンサ群を備える、請求項1から6までのいずれかのインバータ。
    A smoothing capacitor for smoothing the DC before smoothing and generating the smoothed DC;
    A base plate fixed to the frame;
    A resin body fixed to the base plate;
    And further
    The direct current is a direct current after the smoothing,
    The inverter according to any one of claims 1 to 6, wherein the smoothing capacitor comprises a plurality of capacitors electrically connected in parallel and a capacitor group embedded in the resin body.
  11.  前記複数のコンデンサの各々は、円筒状の形状を有し、一方の円筒端及び他方の円筒端を有し、前記一方の円筒端にある第1の電極及び前記他方の円筒端にある第2の電極を備え、
     前記コンデンサ群に備えられる複数の第1の電極が互いに電気的に接続され、
     前記コンデンサ群に備えられる複数の第2の電極が互いに電気的に接続される、請求項7から10までのいずれかのインバータ。
    Each of the plurality of capacitors has a cylindrical shape, has one cylindrical end and the other cylindrical end, and has a first electrode at the one cylindrical end and a second electrode at the other cylindrical end. Equipped with an electrode of
    A plurality of first electrodes provided in the capacitor group are electrically connected to each other;
    The inverter according to any one of claims 7 to 10, wherein a plurality of second electrodes provided in said capacitor group are electrically connected to each other.
  12.  前記フレームに固定され、平滑前の直流が外部から入力されるDCコネクタと、
     前記平滑前の直流を平滑し、平滑後の直流を生成する平滑コンデンサと、
    をさらに備え、
     前記直流は、前記平滑後の直流である、請求項1から11までのいずれかのインバータ。
    A DC connector fixed to the frame and to which a direct current before smoothing is input from the outside;
    A smoothing capacitor for smoothing the direct current before the smoothing and generating the smoothed direct current;
    And further
    The inverter according to any one of claims 1 to 11, wherein the direct current is a direct current after the smoothing.
  13.  前記フレームに固定されるか又は埋め込まれ、平滑前の直流を伝送するDCバスバ電極と、
     前記平滑前の直流を平滑し、平滑後の直流を生成する平滑コンデンサと、をさらに備え、
     前記直流は、前記平滑後の直流である、請求項1から12までのいずれかのインバータ。
    A DC bus bar electrode fixed to or embedded in the frame and transmitting a direct current before smoothing;
    And a smoothing capacitor for smoothing the direct current before the smoothing and generating the smoothed direct current.
    The inverter according to any one of claims 1 to 12, wherein the direct current is a direct current after the smoothing.
  14.  平滑前の直流を平滑し、平滑後の直流を生成する平滑コンデンサと、
     前記フレームに固定されるか又は埋め込まれ、前記平滑後の直流を伝送するDCバスバ電極と、をさらに備え、
     前記直流は、前記平滑後の直流である、請求項1から13までのいずれかのインバータ。
    A smoothing capacitor for smoothing the DC before smoothing and generating the smoothed DC;
    And DC bus bar electrodes fixed to or embedded in the frame and transmitting the smoothed direct current.
    The inverter according to any one of claims 1 to 13, wherein the direct current is a direct current after the smoothing.
  15.  前記フレームに固定されるか又は埋め込まれ、前記交流を伝送するACバスバ電極をさらに備える、請求項1から14までのいずれかのインバータ。 15. An inverter according to any of the preceding claims, further comprising an AC bus bar electrode fixed or embedded in the frame and transmitting the alternating current.
  16.  信号が外部から入力される信号端子コネクタ、前記信号を伝送する信号配線、前記信号に基づいて前記半導体パワーモジュールを駆動する駆動回路基板、前記交流を伝送するACバスバ電極、前記交流を外部に出力するACコネクタ、及び前記ACバスバ電極に流れる電流の大きさを検知する電流センサからなる群より選択され、前記フレームに固定されるか又は埋め込まれる少なくともひとつの部品をさらに備える、請求項1から15までのいずれかのインバータ。 A signal terminal connector to which a signal is input from the outside, a signal wiring to transmit the signal, a drive circuit board to drive the semiconductor power module based on the signal, an AC bus bar electrode to transmit the alternating current, and the alternating current to the outside 16. The method according to claim 1, further comprising at least one component selected from the group consisting of: an AC connector, and a current sensor for detecting the magnitude of the current flowing through the AC bus bar electrode, and fixed or embedded in the frame. Up to any inverter.
  17.  平滑前の直流を伝送するDCバスバ電極、前記平滑前の直流を平滑し平滑後の直流を生成する平滑コンデンサ、前記平滑後の直流を伝送するDCバスバ電極、前記半導体パワーモジュールを駆動する駆動回路基板、前記交流を伝送するACバスバ電極及び前記ACバスバ電極に流れる電流の大きさを検知する電流センサからなる群より選択される少なくともひとつの部品、並びに前記少なくともひとつの冷却器に固定され、前記フレームに固定されるか又は保持される伝熱部材をさらに備える、請求項1から16までのいずれかのインバータ。 DC bus bar electrode for transmitting DC before smoothing, smoothing capacitor for smoothing DC before smoothing and generating DC after smoothing, DC bus bar electrode for transmitting DC after smoothing, driving circuit for driving the semiconductor power module Fixed to at least one component selected from the group consisting of a substrate, an AC bus bar electrode for transmitting the alternating current, and a current sensor for detecting the magnitude of current flowing in the AC bus bar electrode, and fixed to the at least one cooler; 17. An inverter according to any of the preceding claims, further comprising a heat transfer member fixed or held to the frame.
  18.  前記交流を伝送するACバスバ電極をさらに備え、
     前記複数のフレームメンバーは、前記フレームの外側を向く表面を有するフレームメン
    バーを備え、
     前記ACバスバ電極は、前記表面又は前記フレームメンバーの内部に配置され電動機の
    巻き線に電気的に接続される端部を有し、
     前記端部に沿って配置され前記少なくともひとつの冷却器に固定される伝熱部材をさらに備える、請求項1から17までのいずれかのインバータ。
    It further comprises an AC bus bar electrode for transmitting the alternating current,
    The plurality of frame members comprises a frame member having an outwardly facing surface of the frame,
    The AC bus bar electrode has an end disposed on the surface or inside the frame member and electrically connected to a winding of a motor,
    18. An inverter according to any of the preceding claims, further comprising a heat transfer member disposed along the end and secured to the at least one cooler.
  19.  前記複数の棒状のフレームメンバーは、第1の方向に延びる第1の棒状のフレームメンバー、及び前記第1の方向と異なる第2の方向に延び前記第1の棒状のフレームメンバーに固定される第2の棒状のフレームメンバーを含む、請求項1から18までのいずれかのインバータ。 The plurality of rod-like frame members are fixed to a first rod-like frame member extending in a first direction and a second rod-like frame member extending in a second direction different from the first direction 19. An inverter according to any of the preceding claims, comprising two rod-shaped frame members.
  20.  前記半導体パワーモジュールは、第1の被冷却面及び第2の被冷却面を有し、
     前記少なくともひとつの冷却器は、前記第1の被冷却面を冷却し第1の冷却液入口及び第1の冷却液出口を有する第1の冷却器、並びに前記第2の被冷却面を冷却し第2の冷却液入口及び第2の冷却液出口を有する第2の冷却器を含み、
     前記フレームは、中空部を備え、
     前記中空部は、前記第1の冷却液入口又は前記第1の冷却液出口に接続される一方の接続端、及び前記第2の冷却液入口又は前記第2の冷却液出口に接続される他方の接続端を有し、中空の形状を有し、冷却液が流れる流路を有する中空部を備える、請求項1から19までのいずれかのインバータ。
    The semiconductor power module has a first cooled surface and a second cooled surface.
    The at least one cooler cools the first surface to be cooled and cools the first cooler having a first coolant inlet and a first coolant outlet, and the second surface to be cooled Including a second cooler having a second coolant inlet and a second coolant outlet;
    The frame comprises a hollow portion,
    The hollow portion is connected to the first coolant inlet or one connection end connected to the first coolant outlet, and the other connected to the second coolant inlet or the second coolant outlet. 20. An inverter according to any of the preceding claims, comprising a hollow portion having a connection end, a hollow shape, and a flow passage through which the coolant flows.
  21.  直流を平滑し、一端及び他端を有するコンデンサと、前記一端に配置される第1の電極と、前記他端に配置される第2の電極とを備える平滑コンデンサと、
     前記フレームに固定され、前記第1の電極を冷却し、第1の冷却液入口及び第1の冷却液出口を有する第1の冷却器と、
     前記フレームに固定され、前記第2の電極を冷却し、第2の冷却液入口及び第2の冷却液出口を有する第2の冷却器と、をさらに備え、
     前記フレームは、第1の中空部を備え、
     前記第1の中空部は、前記第1の冷却液入口及び前記第1の冷却液出口の一方に接続される一方の接続端、並びに前記第2の冷却液入口及び前記第2の冷却液出口の一方に接続される他方の接続端を有し、中空の形状を有し、冷却液が流れる第1の流路を有する、請求項1から19までのいずれかのインバータ。
    Smoothing a direct current, a smoothing capacitor comprising a capacitor having one end and the other end, a first electrode disposed at the one end, and a second electrode disposed at the other end;
    A first cooler fixed to the frame, cooling the first electrode, and having a first coolant inlet and a first coolant outlet;
    Further comprising a second cooler fixed to the frame, cooling the second electrode, and having a second coolant inlet and a second coolant outlet.
    The frame comprises a first hollow portion,
    The first hollow portion has one connecting end connected to one of the first coolant inlet and the first coolant outlet, and the second coolant inlet and the second coolant outlet. 20. An inverter according to any of the preceding claims, having the other connection end connected to one of the two, having a hollow shape and having a first flow path through which the coolant flows.
  22.  前記少なくともひとつの冷却器は、第3の冷却液入口及び第3の冷却液出口を有する第3の冷却器を含み、
     前記フレームは、第2の中空部をさらに備え、
     前記第2の中空部は、前記第1の冷却液入口及び前記第1の冷却液出口の他方、又は前記第2の冷却液入口及び前記第2の冷却液出口の他方に接続される一方の接続端、並びに前記第3の冷却液入口及び前記第3の冷却液出口の一方に接続される他方の接続端を有し、中空の形状を有し、冷却液が流れる第2の流路を有する、請求項21のインバータ。
    The at least one cooler includes a third cooler having a third coolant inlet and a third coolant outlet.
    The frame further comprises a second hollow portion,
    The second hollow portion is connected to the other of the first coolant inlet and the first coolant outlet, or to the other of the second coolant inlet and the second coolant outlet. A connection end, and the other connection end connected to one of the third coolant inlet and the third coolant outlet, having a hollow shape and having a second flow path through which the coolant flows 22. The inverter of claim 21.
  23.  直流を平滑し、一端及び他端を有するコンデンサと、前記一端に配置される第1の電極と、前記他端に配置される第2の電極とを備える平滑コンデンサと、
     前記フレームに固定され、前記第1の電極を冷却し、第1の冷却液入口及び第1の冷却液出口を有する第1の冷却器と、をさらに備え、
     前記少なくともひとつの冷却器は、前記半導体パワーモジュール及び前記第2の電極を冷却し、第2の冷却液入口及び第2の冷却液出口を有する第2の冷却器を含み、
     前記フレームは、中空部を備え、
     前記中空部は、前記第1の冷却液入口又は前記第1の冷却液出口に接続される一方の接続端、及び前記第2の冷却液入口又は前記第2の冷却液出口に接続される他方の接続端を有し、中空の形状を有し、冷却液が流れる流路を有する、請求項1から19までのいずれかのインバータ。
    Smoothing a direct current, a smoothing capacitor comprising a capacitor having one end and the other end, a first electrode disposed at the one end, and a second electrode disposed at the other end;
    Further comprising: a first cooler fixed to the frame, cooling the first electrode, and having a first coolant inlet and a first coolant outlet;
    The at least one cooler includes a second cooler for cooling the semiconductor power module and the second electrode and having a second coolant inlet and a second coolant outlet.
    The frame comprises a hollow portion,
    The hollow portion is connected to the first coolant inlet or one connection end connected to the first coolant outlet, and the other connected to the second coolant inlet or the second coolant outlet. 20. An inverter according to any of the preceding claims, having a connecting end, having a hollow shape and having a flow path through which the coolant flows.
  24.  前記第2の冷却器は、一方の面及び他方の面を有し、
     前記半導体パワーモジュール及び前記平滑コンデンサは、前記一方の面上に配置される、請求項23のインバータ。
    The second cooler has one side and the other side,
    The inverter according to claim 23, wherein the semiconductor power module and the smoothing capacitor are disposed on the one surface.
  25.  前記第2の冷却器は、一方の面及び他方の面を有し、
     前記半導体パワーモジュールは、前記一方の面上に配置され、
     前記平滑コンデンサは、前記他方の面上に配置される、請求項23のインバータ。
    The second cooler has one side and the other side,
    The semiconductor power module is disposed on the one surface,
    24. The inverter of claim 23, wherein the smoothing capacitor is disposed on the other side.
  26.  前記交流は、第1から第nまでの相の成分を有しnが2以上の整数である多相交流であり、
     前記半導体パワーモジュールを含み、直流をスイッチングし前記第1から第nまでの相の成分をそれぞれ生成する第1から第nまでの半導体パワーモジュールと、
     前記フレームに固定され、前記少なくともひとつの冷却器を含み、前記第1から第nまでの半導体パワーモジュールをそれぞれ冷却する第1から第nまでの少なくともひとつの冷却器と、を備え、
     前記第1から第nまでの半導体パワーモジュール及び前記第1から第nまでの少なくともひとつの冷却器をそれぞれ備える第1から第nまでの構造体が、湾曲面上の互いに異なる法線方向を有する第1から第nまでの位置の上にそれぞれ配置され、
     第1から第nまでの少なくともひとつの冷却器の各々は、冷却液入口及び冷却液出口を備え、
     前記フレームは、中空部を備え、
     前記中空部は、前記第1から第nまでの少なくともひとつの冷却器に含まれる一の少なくともひとつの冷却器に備えられる冷却液入口及び冷却液出口の一方に接続される一方の接続端、並びに前記第1から第nまでの少なくともひとつの冷却器に含まれる他の少なくともひとつの冷却器に備えられる冷却液入口及び冷却液出口の一方に接続される他方の接続端を有し、中空の形状を有し、冷却液が流れる流路を有する、請求項1から25までのいずれかのインバータ。
    The alternating current is a polyphase alternating current having components of the first to n-th phases and n is an integer of 2 or more,
    First to nth semiconductor power modules, each of which includes the semiconductor power module, switches direct current, and generates components of the first to nth phases, respectively;
    And at least one cooler, which is fixed to the frame, includes the at least one cooler, and cools the first to n-th semiconductor power modules, respectively.
    The first to n-th structures respectively including the first to n-th semiconductor power modules and the first to n-th coolers have different normal directions on curved surfaces. Respectively disposed on the first to nth positions,
    Each of the first to n-th at least one coolers comprises a coolant inlet and a coolant outlet,
    The frame comprises a hollow portion,
    The hollow portion is one connection end connected to one of a coolant inlet and a coolant outlet provided in at least one cooler included in the at least one cooler from the first to the nth, and A hollow shape having a cooling fluid inlet provided to at least one other cooler included in the first to n-th at least one coolers and the other connection end connected to one of the cooling fluid outlets 26. An inverter according to any of the preceding claims, comprising a flow path through which the coolant flows.
  27.  請求項1から26までのいずれかのインバータと、
     前記インバータを収容するインバータケースと、を備えるケース入りインバータ。
    An inverter according to any one of claims 1 to 26,
    And an inverter case accommodating the inverter.
  28.  請求項1から26までのいずれかのインバータと、
     電動機ケースを備える電動機と、
     前記電動機ケースに接合されるか又は前記電動機ケースと一体化され、前記インバータを収容するインバータケースと、を備えるインバータ内蔵電動機。
    An inverter according to any one of claims 1 to 26,
    A motor comprising a motor case,
    An inverter built-in electric motor comprising: an inverter case joined to the motor case or integrated with the motor case and accommodating the inverter.
  29.  請求項1から26までのいずれかのインバータと、
     機械力を発生する電動機、前記機械力を伝達する伝達機構、並びに前記電動機及び前記伝達機構を収容する複合装置ケースを備える複合装置と、
     前記複合装置ケースに接合されるか又は前記複合装置ケースと一体化され、前記インバータを収容するインバータケースと、を備えるインバータ内蔵複合装置。
    An inverter according to any one of claims 1 to 26,
    A composite device comprising a motor generating mechanical force, a transmission mechanism transmitting the mechanical force, and a composite device case accommodating the motor and the transmission mechanism;
    An inverter case joined to the integrated device case or integrated with the integrated device case and containing the inverter.
  30.  請求項1から26までのいずれかのインバータと、
     機械力を発生する電動機、前記機械力を伝達する伝達機構、並びに前記電動機及び前記伝達機構を収容する複合装置ケースを備え、外部に露出し前記インバータを収容する窪み空間が前記複合装置ケースに形成される複合装置と、を備えるインバータ内蔵複合装置。
    An inverter according to any one of claims 1 to 26,
    An electric machine generating mechanical force, a transmission mechanism transmitting the mechanical force, and a combined device case accommodating the electric motor and the transmission mechanism, and a recessed space exposed to the outside and accommodating the inverter is formed in the combined device case And an integrated device with an inverter.
PCT/JP2018/045424 2017-12-14 2018-12-11 Inverter, inverter in case, electric motor having built-in inverter, and composite device having built-in inverter WO2019117119A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-239609 2017-12-14
JP2017239609 2017-12-14
JP2018090529 2018-05-09
JP2018-090529 2018-05-09

Publications (1)

Publication Number Publication Date
WO2019117119A1 true WO2019117119A1 (en) 2019-06-20

Family

ID=66819660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045424 WO2019117119A1 (en) 2017-12-14 2018-12-11 Inverter, inverter in case, electric motor having built-in inverter, and composite device having built-in inverter

Country Status (1)

Country Link
WO (1) WO2019117119A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4188046A1 (en) * 2021-11-29 2023-05-31 Rockwell Automation Technologies, Inc. System and method for cooling switching devices in an integrated motor drive

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100265744A1 (en) * 2007-11-13 2010-10-21 Siemens Aktiengesellschaft Power semiconductor module
JP2010252460A (en) * 2009-04-14 2010-11-04 Denso Corp Power converter
JP2012241327A (en) * 2011-05-16 2012-12-10 Hitachi Constr Mach Co Ltd Construction machine
JP2013062996A (en) * 2011-09-15 2013-04-04 Hitachi Automotive Systems Ltd Motor drive device
WO2015148007A1 (en) * 2014-03-27 2015-10-01 Eaton Corporation Power pole isolated heat pipe inverter assembly
WO2016051535A1 (en) * 2014-09-30 2016-04-07 日産自動車株式会社 Rotating electrical machine system
WO2016056532A1 (en) * 2014-10-06 2016-04-14 日立オートモティブシステムズ株式会社 Power module and power conversion device
JP2016122744A (en) * 2014-12-25 2016-07-07 八洋エンジニアリング株式会社 Server rack and server cooling device
JP2017189033A (en) * 2016-04-06 2017-10-12 株式会社デンソー Drive device, and electric power steering apparatus using the same
JP2017216845A (en) * 2016-06-02 2017-12-07 株式会社Subaru Electric unit of electric vehicle

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100265744A1 (en) * 2007-11-13 2010-10-21 Siemens Aktiengesellschaft Power semiconductor module
JP2010252460A (en) * 2009-04-14 2010-11-04 Denso Corp Power converter
JP2012241327A (en) * 2011-05-16 2012-12-10 Hitachi Constr Mach Co Ltd Construction machine
JP2013062996A (en) * 2011-09-15 2013-04-04 Hitachi Automotive Systems Ltd Motor drive device
WO2015148007A1 (en) * 2014-03-27 2015-10-01 Eaton Corporation Power pole isolated heat pipe inverter assembly
WO2016051535A1 (en) * 2014-09-30 2016-04-07 日産自動車株式会社 Rotating electrical machine system
WO2016056532A1 (en) * 2014-10-06 2016-04-14 日立オートモティブシステムズ株式会社 Power module and power conversion device
JP2016122744A (en) * 2014-12-25 2016-07-07 八洋エンジニアリング株式会社 Server rack and server cooling device
JP2017189033A (en) * 2016-04-06 2017-10-12 株式会社デンソー Drive device, and electric power steering apparatus using the same
JP2017216845A (en) * 2016-06-02 2017-12-07 株式会社Subaru Electric unit of electric vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4188046A1 (en) * 2021-11-29 2023-05-31 Rockwell Automation Technologies, Inc. System and method for cooling switching devices in an integrated motor drive

Similar Documents

Publication Publication Date Title
JP5249365B2 (en) Power converter
US8929079B2 (en) Electronic control device
US9713292B2 (en) DC-DC converter and power conversion apparatus
JP5289348B2 (en) Automotive power converter
CN107863891B (en) Power conversion device
US20140140119A1 (en) Power Inverter
JP6032149B2 (en) Power converter
JP2009106073A (en) Inverter unit
CN104380461A (en) Power converter
JP6066780B2 (en) Inverter-integrated electric compressor
JP4538474B2 (en) Inverter device
JP5931778B2 (en) Bus bar assembly for power conversion module connection
JP2006174572A (en) Power converter
JP2012191766A (en) Power conversion device
WO2019117119A1 (en) Inverter, inverter in case, electric motor having built-in inverter, and composite device having built-in inverter
JP6945671B2 (en) Power converter
JP2007068294A (en) Power converter
JP5893312B2 (en) Semiconductor control device
JP5872223B2 (en) Semiconductor control device
JP6631332B2 (en) Power converter
JP2008259398A (en) Power converter
JP5816504B2 (en) Semiconductor device
JP5859790B2 (en) Power converter
JP2015076933A (en) Power conversion device
JP5698637B2 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP