WO2019116755A1 - Pellicle frame body for flat panel display (fpd) and manufacturing method therefor - Google Patents

Pellicle frame body for flat panel display (fpd) and manufacturing method therefor Download PDF

Info

Publication number
WO2019116755A1
WO2019116755A1 PCT/JP2018/040227 JP2018040227W WO2019116755A1 WO 2019116755 A1 WO2019116755 A1 WO 2019116755A1 JP 2018040227 W JP2018040227 W JP 2018040227W WO 2019116755 A1 WO2019116755 A1 WO 2019116755A1
Authority
WO
WIPO (PCT)
Prior art keywords
fpd
flat panel
panel display
pellicle frame
frame
Prior art date
Application number
PCT/JP2018/040227
Other languages
French (fr)
Japanese (ja)
Inventor
飯塚 章
耕一 中野
直人 古村
政仁 谷津倉
勇斗 岡畠
Original Assignee
日本軽金属株式会社
日軽金アクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社, 日軽金アクト株式会社 filed Critical 日本軽金属株式会社
Priority to EP18888674.1A priority Critical patent/EP3726292A4/en
Priority to US16/771,529 priority patent/US20210173298A1/en
Priority to KR1020207018244A priority patent/KR20200093598A/en
Priority to CN201880079613.5A priority patent/CN111448516A/en
Publication of WO2019116755A1 publication Critical patent/WO2019116755A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C35/00Removing work or waste from extruding presses; Drawing-off extruded work; Cleaning dies, ducts, containers, or mandrels
    • B21C35/02Removing or drawing-off work
    • B21C35/023Work treatment directly following extrusion, e.g. further deformation or surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/129Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding specially adapted for particular articles or workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • B23K20/2336Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer both layers being aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • G03F1/64Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof characterised by the frames, e.g. structure or material, including bonding means therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/181Enclosures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Definitions

  • the present invention relates to a pellicle frame for preventing foreign matter from adhering to a photomask or reticle used in a lithography process in the manufacture of an FPD (flat panel display), and in particular to a large FPD (flat)
  • the present invention relates to a pellicle frame for a panel display) and a method of manufacturing the same.
  • a pattern is formed by irradiating light to a semiconductor wafer and an original plate for flat panel display (FPD) (pattern formation by lithography).
  • FPD flat panel display
  • the dust is absorbed and / or inverted, so that the pattern is not transferred well (for example, deformation of the pattern or unclear edge).
  • the quality and appearance of the semiconductor device and the FPD (flat panel display) panel are impaired, and there is a problem that the performance and the manufacturing yield decrease.
  • the pellicle is composed of a pellicle frame and a pellicle film stretched over the pellicle frame, and is disposed so as to surround a pattern area formed on the surface of the exposure master. If the focus is set on the pattern of the exposure master plate at the time of lithography, even if dust adheres to the pellicle film, the dust does not affect transfer.
  • the conventional general pellicle for semiconductors is at most about 150 mm square, but with the recent increase in size of FPDs (flat panel displays), the enlargement of pellicles is also progressing, for example, 1000 mm A pellicle frame that exceeds the size of the corner is also required.
  • the pellicle frame is required to have a strength that does not deform due to the tension of the pellicle film in addition to high dimensional accuracy and flatness, it has become difficult to meet these requirements as the pellicle frame becomes larger.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-3111
  • the material aluminum alloy exceeds Mg: 3.5% by mass%, While containing 5.5% or less, Ti: 0.005 to 0.15%, B: 0.0005 to 0.05%, containing one or two of them, Fe: 0.15% or less, Si: 0
  • a pellicle frame is disclosed, characterized in that it has a texture having a total area ratio of at most 5%, and the largest crystallized material observed in the crystallized material has an equivalent circle diameter of at most 3 ⁇ m.
  • patent document 2 (Unexamined-Japanese-Patent No. 2006-284927), it is a supporting frame provided with the frame made of aluminum alloy and the reinforcement member which consists of material with a larger elastic coefficient than the said frame, Comprising: A support frame is disclosed, characterized in that a reinforcing member is embedded in an embedded recess formed in the frame.
  • the present inventors use the extrusion material of the aluminum alloy powder sintered compact which has a specific composition, as a result of repeating earnest research about the pellicle frame for FPD (flat panel display), and its manufacturing method, in order to achieve the said objective. It has been found that the present invention is very effective.
  • the present invention Si: 20 to 40% by mass, Mg: 0.2 to 1.2% by mass, Cu: 2% by mass or less, Fe: 2% by mass or less, Cr: 0.4% by mass or less, and the balance is Al and unavoidable Being made of an extruded material of aluminum alloy powder (or powder sinter) consisting of impurities; A pellicle frame for FPD (flat panel display) characterized by the above.
  • the pellicle frame for FPD (flat panel display) of the present invention is composed of the extruded material of the aluminum alloy powder sintered body in the above composition range, the 7000 series (a conventional pellicle frame is used) It has a high Young's modulus as compared with Al-Zn-Mg based aluminum alloy, 6000 series (Al-Mg-Si based) aluminum alloy and 5000 series (Al-Mg based) aluminum alloy.
  • the pellicle frame for FPD flat panel display
  • the Si content is 24 to 28% by mass.
  • the extruded materials are integrated by the friction stir welding portion.
  • bonding of the extruded materials is essential, but solid-phase bonding is performed, and the extruded materials are joined by friction stir welding having a relatively low bonding temperature. Can be achieved without causing significant distortion or strength reduction.
  • the joint becomes a rapidly solidified structure and the difference in mechanical and thermal properties from the base material becomes large, so the dimensions are high. It is difficult to use for a pellicle frame which requires accuracy, reliability and the like.
  • a pellicle frame which requires accuracy, reliability and the like.
  • a very small defect in the pellicle frame causes a serious problem.
  • the joint portion in addition to the fact that the distortion of the material to be joined by friction stir welding is extremely small, the joint portion (stirred portion) basically has a recrystallized structure without melting and solidification, and makes the difference with the base material relatively small. be able to.
  • the Young's modulus of the frame is 80 GPa or more.
  • the length of the short side is 330 mm or more and the length of the long side is 430 mm or more.
  • the pellicle frame for FPD (flat panel display) according to the present invention is made of an extruded material of aluminum alloy powder sintered body having a high Young's modulus, and has sufficient rigidity, so even if the frame is enlarged It can be used as a pellicle frame.
  • the pellicle frame for FPD flat panel display
  • the present invention is Si: 20 to 40% by mass, Mg: 0.2 to 1.2% by mass, Cu: 2% by mass or less, Fe: 2% by mass or less, Cr: 0.4% by mass or less, and the balance is Al and unavoidable
  • a first step of sintering an aluminum alloy powder comprising impurities to obtain an aluminum alloy powder sintered body A second step of extruding the aluminum alloy powder sintered body to obtain an extruded material; Friction stir welding the extruded materials to each other to obtain a frame body; and
  • a method of manufacturing a pellicle frame for FPD flat panel display
  • the extruded materials of the aluminum alloy powder sintered body are joined together by friction stir welding without significant distortion or strength reduction. Bonding can be achieved. In addition, it is possible to suppress the occurrence of minute pore defects and the like in the joint portion. In addition, the difference between the joint and the area other than the joint can be reduced as compared with the case of using general fusion welding.
  • bonding of the extruded material of the aluminum alloy powder sintered body for example, a relatively inexpensive bonding tool made of hot tool steel can be used. Since an external heat source or the like is not required in the bonding step, bonding can be achieved simply and inexpensively.
  • the length of the short side of the frame after cutting is 330 mm or more, and the length of the long side is 430 mm or more. Is preferred.
  • the extruded material of the aluminum alloy powder sintered body having a high Young's modulus is joined by friction stir welding which is solid phase bonding, the frame Even when the plate width is increased and the plate width is decreased, a good frame can be obtained.
  • the frame in the third step, is made of the four extruded materials having substantially the same shape and size, Is preferred.
  • the friction stir welding be performed by position control of a bonding tool.
  • the main control methods of friction stir welding include tool position control, load control and torque control, but in the case of aluminum alloy with smaller plastic deformation resistance compared to steel etc., the position control is used to make the joint
  • the position (depth) of the (stirring unit) can be accurately controlled.
  • the formation of the unjoined part on the back of the joined part becomes a serious problem, but the formation of the unjoined part is appropriately performed by performing friction stir welding using position control. It can be completely suppressed.
  • the present invention even if the cross-sectional area of the frame is reduced, the rigidity required for a large-sized FPD (flat panel display) pellicle can be maintained, and the reduction of the cross-sectional area enlarges the inner size of the frame. It is possible to provide a pellicle frame for FPD (flat panel display) having high dimensional accuracy and flatness and an efficient manufacturing method thereof.
  • FIG. It is a general view photograph of the frame after friction stir welding in an Example. It is an overview photograph of the pellicle frame for FPD (flat panel display) in an Example.
  • FIG. 1 shows a perspective view of a pellicle frame for FPD (flat panel display) of the present invention.
  • the pellicle frame 1 for FPD (flat panel display) comprises 20 to 40% by mass of Si, 0.2 to 1.2% by mass of Mg, 2% by mass or less of Cu, 2% by mass or less of Fe, Cr: 0 .4% by mass or less, an extruded material of an aluminum alloy powder sintered body having a balance of Al and unavoidable impurities, and 7000 series (Al-Zn-Mg) conventionally used as a material of a pellicle frame It has a high Young's modulus, as compared with a series) aluminum alloy, a 6000 series (Al-Mg-Si series) aluminum alloy and a 5000 series (Al-Mg series) aluminum alloy.
  • Al-Mg-Si series Al-Mg series
  • Si In addition to contributing to the improvement of the Young's modulus by crystallizing as a Si phase in the Al matrix, Si has an effect of improving the wear resistance and reducing the thermal expansion coefficient.
  • the Si content is 20% by mass or more, high Young's modulus, excellent abrasion resistance and low thermal expansion coefficient are realized, and 40% by mass
  • the Si content is 24 to 28% by mass.
  • Mg The content of Mg is 0.2 to 1.2% by mass. By setting the content of Mg in this range, it is possible to improve the strength by precipitation strengthening. (Precipitate strengthening by Mg 2 Si, Al 2 CuMg). The more preferable Mg content is 0.55 to 0.90% by mass.
  • Cu The content of Cu is 2% by mass or less. By setting the content of Cu in this range, it is possible to improve the strength by precipitation strengthening similarly to the above-mentioned Mg. (Precipitate strengthening by Mg 2 Si, Al 2 CuMg). It also contributes to the improvement of Young's modulus and corrosion resistance. When the content is more than 2% by mass, the anodic oxide film property is lowered. The more preferable Cu content is 0.11 to 0.30 mass%.
  • Fe The content of Fe is 2% by mass or less. By setting the content of Fe in this range, it contributes to the improvement of Young's modulus and corrosion resistance. When the amount is more than 2% by mass, elongation, thermal conductivity, and extrusion decrease. In addition, more preferable Fe content is 0.7 mass% or less.
  • the content of Cr is not more than 0.4% by mass. By setting the content of Cr in this range, the crystal is refined and contributes to the improvement of toughness.
  • the more preferable Cr content is 0.03 to 0.26% by mass.
  • the pellicle frame 1 for FPD (flat panel display) is constituted by the extruded material 2 of the aluminum alloy powder sintered body, and the four extruded materials 2 are integrated by the friction stir joint 4.
  • the region of the friction stir welding portion 4 is shown exaggeratingly in FIG. 1, in the pellicle frame 1 for FPD (Flat Panel Display) obtained by cutting, the friction stir welding portion 4 and the other portions are described. There is no big difference in appearance in the area.
  • the pellicle frame 1 for FPD (flat panel display) is comprised with the four extrusion materials 2 which have substantially the same shape and magnitude
  • the parts 4 can be arranged evenly, and various characteristics of the pellicle frame 1 for FPD (flat panel display) can be homogenized.
  • the friction stir welded joint 4 and the extruded material 2 formed by the friction stir welding can have relatively similar mechanical properties, and the pellicle frame 1 for FPD (flat panel display) has homogeneous mechanical properties as a whole. have.
  • the Vickers hardness of the friction stir welding portion 4 and the heat-affected zone in the vicinity of the friction stir welding portion 4 is preferably 70 to 130% of that of the extruded material 2 (the region other than the friction stir welding portion 4).
  • the Young's modulus of the extruded material 2 is preferably 80 GPa or more. By setting the Young's modulus of the extruded material 2 to 80 GPa or more, sufficient rigidity can be secured even for a pellicle frame for a large FPD (flat panel display), and the frame is thinner than a conventional pellicle frame. can do.
  • the more preferable Young's modulus of the extruded material 2 is 85 GPa or more.
  • the length of the short side (A in FIG. 1) of the pellicle frame 1 for FPD (flat panel display) is 330 mm or more, and the length of the long side (B in FIG. 1) is preferably 430 mm or more . Since pellicle frame 1 for FPD (flat panel display) is composed of extruded material 2 of aluminum alloy powder sintered body having high Young's modulus, it should be sufficiently used as pellicle frame even if the frame is enlarged. Can.
  • FIG. 2 shows a C-C 'cross-sectional view of a pellicle frame 1 for FPD (flat panel display).
  • the maximum width (W in FIG. 2) of the frame of the pellicle frame 1 for FPD (flat panel display) is preferably 6 mm or less, and more preferably 5 mm or less. Since the pellicle frame 1 for FPD (flat panel display) is comprised with the extruded material 2 of the aluminum alloy powder sintered compact which has high Young's modulus, rigidity can be ensured even if frame width is made small.
  • the maximum width of the frame is 6 mm or less, exposure defects in the vicinity of the frame can be suppressed, and by setting the maximum width to 5 mm or less, the inner size of pellicle frame 1 for FPD (flat panel display) is further enlarged. can do.
  • the cross-sectional shape of the pellicle frame 1 for FPD is not particularly limited as long as the effects of the present invention are not impaired, and various shapes known in the prior art can be used. It is preferable to make it a form.
  • the upper side of the pellicle frame 1 for FPD (flat panel display) needs a width for stretching the pellicle film, and the lower side needs a width for providing an adhesive layer for bonding and bonding to the exposure master plate is there.
  • the flatness of the pellicle frame 1 for FPD is preferably 150 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the above-mentioned flatness is calculated by measuring the height at a total of eight points of four corners of the pellicle frame 1 for FPD (flat panel display) and four points at the center of four sides, and the virtual plane is calculated. Of the distances of each point from the virtual plane, the difference can be calculated by subtracting the lowest point from the highest point.
  • various pellicles can be configured using the pellicle frame 1 for FPD (flat panel display).
  • a transparent pellicle film is covered on the upper surface of pellicle frame 1 for FPD (flat panel display), and an adhesive layer is formed on the lower surface of pellicle frame 1 for FPD (flat panel display), If the protective film is releasably covered on the lower surface of the case, distortion or the like is less likely to occur even if the size is increased.
  • the pellicle frame 1 for FPD flat panel display
  • FIG. 3 is a process diagram of a method of manufacturing a pellicle frame for FPD (flat panel display) of the present invention.
  • the method for producing a pellicle frame for FPD (flat panel display) according to the present invention comprises a first step (S01) of sintering an aluminum alloy powder to obtain an aluminum alloy powder sintered body, and extruding the aluminum alloy powder sintered body.
  • S01 first step
  • S02 sintering an aluminum alloy powder to obtain an aluminum alloy powder sintered body
  • S03 the third step
  • the first step (S01) is a step of sintering the aluminum alloy powder in order to obtain the extruded material 2 in the second step (S02).
  • the aluminum alloy powder contains Si: 20 to 40% by mass, Mg: 0.2 to 1.2% by mass, Cu: 2% by mass or less, Fe: 2% by mass or less, Cr: 0.4% by mass or less And the balance consists of Al and unavoidable impurities.
  • the aluminum alloy powder is preferably preformed.
  • the method of preforming is not particularly limited as long as the effects of the present invention are not impaired, and can be applied by various conventionally known methods. For example, a pressing method, a CIP method, etc. can be used. In addition, what is necessary is just to set the molding pressure of preforming suitably according to a composition, a shape, a particle size, etc. of aluminum alloy powder.
  • the conditions for sintering the preform can be appropriately adjusted according to the composition, particle size, shape, etc. of the aluminum alloy powder, the density of the preform, etc., and a good extruded material can be obtained by hot extrusion.
  • Sintering conditions that can obtain a sintered body in a state may be used.
  • the sintering conditions for example, after holding the preformed body at a vacuum degree of 1 Torr or less in a vacuum furnace controlled at a furnace temperature of 100 to 400 ° C.
  • the vacuum degree is 1 Torr or less
  • the temperature in the furnace may be raised so that the temperature of the preform becomes 520 to 570 ° C., and held for 1 to 6 hours.
  • the second step (S02) is a step for obtaining the extruded material 2 by hot extrusion of the sintered body obtained in the first step (S01).
  • the method and conditions of the hot extrusion are not particularly limited as long as the effects of the present invention are not impaired, and the hot extrusion method and conditions of the conventionally known aluminum alloy powder sintered body may be used.
  • the temperature may be set to about 400 to 500.degree.
  • a metal plate for example, pure aluminum, 5000 series aluminum alloy, etc.
  • a metal plate may be placed in front of the mold before the sintered body which is the extrusion material.
  • the thin dissimilar alloy film present on the surface of the metal plate is entrained in the agitating portion by friction stir welding, the dissimilar alloy film may be removed from the region to be joined as a pretreatment for friction stir welding. preferable.
  • the hot-extruded compact is subjected to forging or the like to impart a desired shape, as required.
  • the heat treatment of the formed body may be performed prior to the forging or the like. For example, by performing heat treatment at 200 to 400 ° C. for about 0.5 to 2 hours, the forgeability of the hot-extruded molded body can be enhanced.
  • the third step (S03) is a step for obtaining the pellicle frame 1 for FPD (flat panel display) by friction stir welding the extruded materials 2 obtained in the second step (S02).
  • the joint portion When the extruded members 2 are joined together by fusion welding such as laser welding, the joint portion may have a rapidly solidified structure and may have a hardness higher than that of the region other than the joint portion. In addition, since the amount of heat sufficient to melt the material is input, the softening in the heat-affected zone becomes remarkable.
  • FPD flat panel display
  • friction stir welding which is solid phase bonding, the mechanical properties of the joint and other areas The difference in nature can be reduced.
  • positioning of the extrusion material 2 at the time of giving friction stir welding in FIG. 4 is shown.
  • FPD Full panel display
  • the workability of extrusion and friction stir welding can be improved, and the manufacturing cost can be reduced. it can.
  • FIG. 5 shows a schematic view of a frame obtained by subjecting the extruded material 2 to friction stir welding.
  • the four extruded members 2 are integrated by the friction stir welding portion 4, in a general friction stir welding, a tool hole is formed at the welding end.
  • FPD flat panel display
  • the length of the short side of the frame 10 after cutting is 330 mm or more, and the length of the long side is 430 mm or more. Since the extruded material 2 of aluminum alloy powder sintered body having high Young's modulus is joined by friction stir welding which is solid phase welding, the case where the frame 10 after cutting is enlarged and the plate width is reduced Even if it is, a good pellicle frame 1 for FPD (flat panel display) can be obtained.
  • the method of friction stir welding is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known friction stir welding methods can be used, but it is preferable to perform control by position control of a bonding tool.
  • position control By using position control, it is possible to accurately control the position (depth) of the joint (stirring portion).
  • the pellicle frame 1 for FPD flat panel display
  • the formation of the unjoined portion on the back of the joined portion is a serious problem, but the formation of the unjoined portion is appropriately performed by performing friction stir welding using position control. Can be completely suppressed.
  • the resulting sintered body was subjected to hot extrusion as a billet for hot extrusion.
  • the billet was heated at 450 ° C., inserted into a container of a 10-inch extruder, and extruded to obtain a plate-like extruded material having a width of 100 mm and a thickness of 8 mm (second step).
  • a pellicle frame for FPD flat panel display
  • FPD flat panel display
  • FIG. 1 An overview photograph of the obtained pellicle frame for FPD (flat panel display) is shown in FIG. No distortion or the like is recognized in the FPD (flat panel display) pellicle frame, and a good pellicle frame for FPD (flat panel display) is obtained.
  • FIG. 1 An enlarged photograph of the friction stir welding portion of the pellicle frame for the FPD (flat panel display) is shown in FIG. The friction stir welding portion and the other region have no difference to the extent that it is difficult to distinguish at first glance, and an FPD (Flat Panel Display) pellicle frame is obtained which is extremely uniform in appearance.
  • the material used for the obtained pellicle frame for FPD (flat panel display) was subjected to a tensile test, and the Young's modulus was determined from the stress-strain curve, to be 89 GPa.
  • the Young's modulus of the material used for the pellicle frame for FPD (flat panel display) made of conventionally known A5052 aluminum alloy is about 69 GPa, and the material used for the obtained pellicle frame for FPD (flat panel display) is high It turns out that it has Young's modulus.
  • the crosshead displacement speed was set to 0.5 mm / min until Young's modulus and proof stress measurement, and thereafter to 5 mm / min.
  • the hardness distribution in the horizontal direction of the joint section of the pellicle frame for FPD is shown in FIG.
  • the joint was cut perpendicularly to the longitudinal direction of the frame, and the hardness distribution in the horizontal direction at the center of the plate thickness was measured.
  • the hardness increases due to the refinement of the structure, and the hardness decrease due to the thermal effect is recognized outside the joint (stirred part), but the hardness increase and the hardness decrease are not remarkable. It is in the range of 70 to 130%.
  • pellicle frame for FPD flat panel display
  • extruded material 2 ... extruded material
  • 4 ⁇ ⁇ ⁇ friction stir joint 10 ... frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

Provided are: a pellicle frame body for a flat panel display (FPD) having high dimensional accuracy and flatness, the pellicle frame body being capable of maintaining the rigidity required for a pellicle for a large flat panel display (FPD) even if the cross-sectional area of the frame is reduced, and enlarging the inside dimension of the frame body by reducing the cross-sectional area; and an efficient manufacturing method therefor. The present invention provides a pellicle frame body for a flat panel display (FPD), the pellicle frame body being characterized by being composed of an extruded material of an aluminum alloy powder sintered body comprising 20-40 mass% of Si, 0.2-1.2 mass% of Mg, 2 mass% or less of Cu, 2 mass% or less of Fe, 0.4 mass% or less of Cr, and the balance comprising Al and inevitable impurities.

Description

FPD(フラットパネルディスプレイ)用ペリクル枠体及びその製造方法Pellicle frame for FPD (flat panel display) and method of manufacturing the same
 本発明は、FPD(フラットパネルディスプレイ)の製造において、リソグラフィ工程で使用されるフォトマスクやレティクルに異物が付着するのを防止するペリクルの枠体及びその製造方法に関し、特に、大型のFPD(フラットパネルディスプレイ)用ペリクル枠体及びその製造方法に関する。 The present invention relates to a pellicle frame for preventing foreign matter from adhering to a photomask or reticle used in a lithography process in the manufacture of an FPD (flat panel display), and in particular to a large FPD (flat) The present invention relates to a pellicle frame for a panel display) and a method of manufacturing the same.
 LSI及び超LSI等の半導体装置やFPD(フラットパネルディスプレイ)パネルは、半導体ウエハやFPD(フラットパネルディスプレイ)用原版に光を照射することでパターンが形成される(リソグラフィによるパターン形成)。ここで、ゴミが付着した露光原版を用いた場合は当該ゴミが光を吸収及び/又は反転するため、パターンが良好に転写されない(例えば、パターンの変形やエッジの不明瞭)。その結果、半導体装置やFPD(フラットパネルディスプレイ)パネルの品質及び外観等が損なわれ、性能や製造歩留まりの低下が生じてしまうという問題があった。 In semiconductor devices such as LSI and VLSI and flat panel display (FPD) panels, a pattern is formed by irradiating light to a semiconductor wafer and an original plate for flat panel display (FPD) (pattern formation by lithography). Here, in the case of using an exposure master plate to which dust is attached, the dust is absorbed and / or inverted, so that the pattern is not transferred well (for example, deformation of the pattern or unclear edge). As a result, the quality and appearance of the semiconductor device and the FPD (flat panel display) panel are impaired, and there is a problem that the performance and the manufacturing yield decrease.
 このため、リソグラフィに関する工程は通常クリーンルームで行われるが、当該環境下においても露光原版へのゴミの付着を完全に防止することはできないため、露光原版の表面にゴミよけのためのペリクルが設けられるのが一般的である。ペリクルはペリクル枠体及び当該ペリクル枠体に張設したペリクル膜から構成され、露光原版の表面に形成されたパターン領域を囲むように設置される。リソグラフィ時に焦点を露光原版のパターン上に合わせておけば、ペリクル膜にゴミが付着した場合であっても、当該ゴミが転写に影響することはない。 For this reason, although the process relating to lithography is usually performed in a clean room, it is impossible to completely prevent the adhesion of dust to the exposure master even under the environment, so a pellicle for dust protection is provided on the surface of the exposure master. It is common to The pellicle is composed of a pellicle frame and a pellicle film stretched over the pellicle frame, and is disposed so as to surround a pattern area formed on the surface of the exposure master. If the focus is set on the pattern of the exposure master plate at the time of lithography, even if dust adheres to the pellicle film, the dust does not affect transfer.
 ここで、従来の一般的な半導体用のペリクルは大きくても150mm角程度であったが、近年のFPD(フラットパネルディスプレイ)の大型化に伴ってペリクルの大型化も進んでおり、例えば、1000mm角を超える大きさのペリクル枠体も要求されるようになっている。ペリクル枠体には高い寸法精度や平坦度に加えて、ペリクル膜の張力で変形しない強度が要求されるところ、ペリクル枠体の大型化に伴ってこれらの要求を満たすことが難しくなっている。 Here, the conventional general pellicle for semiconductors is at most about 150 mm square, but with the recent increase in size of FPDs (flat panel displays), the enlargement of pellicles is also progressing, for example, 1000 mm A pellicle frame that exceeds the size of the corner is also required. Although the pellicle frame is required to have a strength that does not deform due to the tension of the pellicle film in addition to high dimensional accuracy and flatness, it has become difficult to meet these requirements as the pellicle frame becomes larger.
 これに対し、例えば、特許文献1(特開2009-3111号公報)においては、アルミニウム合金からなるペリクル枠であって、この素材アルミニウム合金が、質量%で、Mg:3.5%を超え、5.5%以下を含み、更にTi:0.005~0.15%、B:0.0005~0.05%の一種または二種を含むとともに、Fe:0.15%以下、Si:0.10%以下に各々規制し、残部がAl及び不可避的不純物からなる組成を有するとともに、このアルミニウム合金の1万倍の走査型電子顕微鏡による組織観察において、観察される晶出物の視野内に占める合計面積率が5%以下であり、かつ観察される晶出物で最大の晶出物の径が円相当径で3μm以下である組織を有することを特徴とするペリクル枠、が開示されている。 On the other hand, for example, in Patent Document 1 (Japanese Patent Laid-Open No. 2009-3111), it is a pellicle frame made of an aluminum alloy, and the material aluminum alloy exceeds Mg: 3.5% by mass%, While containing 5.5% or less, Ti: 0.005 to 0.15%, B: 0.0005 to 0.05%, containing one or two of them, Fe: 0.15% or less, Si: 0 Within the field of view of crystallized materials observed in the structure observation with a 10,000 × scanning electron microscope of this aluminum alloy, while having a composition in which each is regulated to 10% or less and the balance is Al and unavoidable impurities A pellicle frame is disclosed, characterized in that it has a texture having a total area ratio of at most 5%, and the largest crystallized material observed in the crystallized material has an equivalent circle diameter of at most 3 μm. There is.
 上記特許文献1に記載のペリクル枠においては、ペリクル枠の素材をMg含有量が比較的高い5000系アルミニウム合金とし、晶出物が少ない組織とすることで、白点欠陥の発生が抑制されることに加えて、厚みが比較的薄くても剛性を確保でき、薄型テレビの著しい大型化に対応する、大型化を可能としたアルミニウム合金製ペリクル枠を提供することができる、とされている。 In the pellicle frame described in Patent Document 1, generation of white point defects is suppressed by making the material of the pellicle frame a 5000 series aluminum alloy having a relatively high Mg content and having a structure with a small amount of crystallized matter. In addition to the above, it is said that the rigidity can be secured even if the thickness is relatively thin, and an aluminum alloy pellicle frame which can be enlarged can be provided to cope with the remarkable enlargement of a flat-screen TV.
 また、特許文献2(特開2006-284927号公報)においては、アルミニウム合金製の枠体と、前記枠体よりも弾性係数の大きい材料からなる補強部材と、を備える支持枠であって、前記補強部材が、前記枠体に形成された埋設凹部に埋め込まれていることを特徴とする支持枠、が開示されている。 Moreover, in patent document 2 (Unexamined-Japanese-Patent No. 2006-284927), it is a supporting frame provided with the frame made of aluminum alloy and the reinforcement member which consists of material with a larger elastic coefficient than the said frame, Comprising: A support frame is disclosed, characterized in that a reinforcing member is embedded in an embedded recess formed in the frame.
 前記特許文献2に記載のペリクル用支持枠においては、アルミニウム合金製の枠体のみで構成した場合よりも曲げ剛性やせん断剛性が高くなるので、これを大型化しても撓みや歪みが発生し難い。しかも、枠体に形成した埋設凹部に補強部材を埋め込む構成としたので、枠体と補強部材とを簡単かつ確実に一体化させることが可能となる、とされている。 In the supporting frame for pellicle described in Patent Document 2, bending rigidity and shearing rigidity become higher than in the case of using only a frame made of aluminum alloy, so bending and distortion hardly occur even if the size is increased. . Moreover, since the reinforcing member is embedded in the embedded recess formed in the frame, the frame and the reinforcing member can be integrated easily and reliably.
特開2009-3111号公報JP, 2009-3111, A 特開2006-284927号公報Unexamined-Japanese-Patent No. 2006-284927
 しかしながら、上記特許文献1に記載されているペリクル枠であっても、大型が急速に進んでいるFPD(フラットパネルディスプレイ)用パネルに用いられるペリクル枠体に要求される高い寸法精度、平坦度、ヤング率及び強度等を全て実現することは困難である。特に、近年では、露光エリアを最大化するためにペリクル枠体の内寸を拡大することが切望されているところ、枠を細くすると十分な剛性を担保することができなかった。 However, even with the pellicle frame described in Patent Document 1, the high dimensional accuracy, flatness required for the pellicle frame used for the panel of FPD (flat panel display) whose size is rapidly advancing. It is difficult to realize all of Young's modulus and strength. In particular, in recent years, although it has been desired to enlarge the inner size of the pellicle frame in order to maximize the exposure area, sufficient rigidity can not be secured if the frame is made thinner.
 また、上記特許文献2に記載されているペリクル用支持枠においては、枠体への埋設凹部の形成や補強部材との一体化等が必要であり、製造工程が複雑化すると共に高価になってしまう。加えて、補強部材には、枠体よりも弾性係数が大きい鉄やチタン等の異種材料を用いることから、加工精度や信頼性を十分に担保することが困難であった。 Further, in the supporting frame for pellicle described in the above-mentioned Patent Document 2, the formation of the embedded recessed portion in the frame, the integration with the reinforcing member, etc. are necessary, and the manufacturing process becomes complicated and expensive. I will. In addition, it is difficult to sufficiently secure processing accuracy and reliability because different materials such as iron and titanium having a larger elastic modulus than that of the frame are used for the reinforcing member.
 以上のような従来技術における問題点に鑑み、本発明の目的は、枠の断面積を低減しても大型のFPD(フラットパネルディスプレイ)用ペリクルに要求される剛性を維持することができ、当該断面積の低減によって枠体の内寸を拡大することができると共に、高い寸法精度や平坦度を有するFPD(フラットパネルディスプレイ)用ペリクル枠体及びその効率的な製造方法を提供することにある。 In view of the problems in the prior art as described above, it is an object of the present invention to maintain the rigidity required for a large FPD (flat panel display) pellicle even if the cross-sectional area of the frame is reduced. It is an object of the present invention to provide a pellicle frame for FPD (flat panel display) having high dimensional accuracy and flatness, and an efficient manufacturing method thereof, while being able to enlarge the inner size of the frame by reducing the cross-sectional area.
 本発明者らは、上記目的を達成すべく、FPD(フラットパネルディスプレイ)用ペリクル枠及びその製造方法について鋭意研究を重ねた結果、特定の組成を有するアルミニウム合金粉末焼結体の押出材を用いること等が極めて有効であることを見出し、本発明に到達した。 MEANS TO SOLVE THE PROBLEM The present inventors use the extrusion material of the aluminum alloy powder sintered compact which has a specific composition, as a result of repeating earnest research about the pellicle frame for FPD (flat panel display), and its manufacturing method, in order to achieve the said objective. It has been found that the present invention is very effective.
 即ち、本発明は、
 Si:20~40質量%、Mg:0.2~1.2質量%、Cu:2質量%以下、Fe:2質量%以下、Cr:0.4質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金粉末(または粉末焼結体の)押出材で構成されていること、
 を特徴とするFPD(フラットパネルディスプレイ)用ペリクル枠体、を提供する。
That is, the present invention
Si: 20 to 40% by mass, Mg: 0.2 to 1.2% by mass, Cu: 2% by mass or less, Fe: 2% by mass or less, Cr: 0.4% by mass or less, and the balance is Al and unavoidable Being made of an extruded material of aluminum alloy powder (or powder sinter) consisting of impurities;
A pellicle frame for FPD (flat panel display) characterized by the above.
 本発明のFPD(フラットパネルディスプレイ)用ペリクル枠体は、上記組成範囲のアルミニウム合金粉末焼結体の押出材で構成されていることから、ペリクル枠体の材質として従来用いられている7000系(Al-Zn-Mg系)アルミニウム合金、6000系(Al-Mg-Si系)アルミニウム合金及び5000系(Al-Mg系)アルミニウム合金と比較して、高いヤング率を有している。 Since the pellicle frame for FPD (flat panel display) of the present invention is composed of the extruded material of the aluminum alloy powder sintered body in the above composition range, the 7000 series (a conventional pellicle frame is used) It has a high Young's modulus as compared with Al-Zn-Mg based aluminum alloy, 6000 series (Al-Mg-Si based) aluminum alloy and 5000 series (Al-Mg based) aluminum alloy.
 特に、SiはAl母相中にSi相として晶出することでヤング率の向上に寄与することに加え、耐摩耗性を向上させると共に熱膨張率を低下させる効果を有している。本発明のFPD(フラットパネルディスプレイ)用ペリクル枠体においては、Si含有量を20質量%以上とすることで、高いヤング率、優れた耐摩耗性及び低い熱膨張係数を実現し、40質量%以下とすることで、加工性の低下及びSi相の粗大化による強度・靭性の低下を抑制している。なお、より好ましいSi含有量は24~28質量%である。 In particular, in addition to contributing to the improvement of the Young's modulus by crystallizing Si as an Si phase in the Al matrix phase, it has an effect of improving the wear resistance and reducing the thermal expansion coefficient. In the pellicle frame for FPD (flat panel display) of the present invention, by setting the Si content to 20% by mass or more, high Young's modulus, excellent abrasion resistance and low thermal expansion coefficient are realized, and 40% by mass By setting it as the following, the fall of the strength and toughness by the fall of workability and the coarsening of Si phase is suppressed. More preferably, the Si content is 24 to 28% by mass.
 また、本発明のFPD(フラットパネルディスプレイ)用ペリクル枠体においては、摩擦攪拌接合部によって前記押出材同士が一体となっていること、が好ましい。アルミニウム合金粉末焼結体の押出材を用いてペリクル枠体を構成するためには押出材同士の接合が必須となるが、固相接合であり比較的接合温度が低い摩擦攪拌接合によって押出材同士を一体化することで、顕著な歪みや強度低下等を伴うことなく接合を達成することができる。 Further, in the pellicle frame for FPD (flat panel display) of the present invention, it is preferable that the extruded materials are integrated by the friction stir welding portion. In order to form a pellicle frame using an extruded material of an aluminum alloy powder sintered body, bonding of the extruded materials is essential, but solid-phase bonding is performed, and the extruded materials are joined by friction stir welding having a relatively low bonding temperature. Can be achieved without causing significant distortion or strength reduction.
 アーク溶接やレーザ溶接等の溶融溶接を用いて押出材同士を接合すると、接合部が急冷凝固組織となって母材との機械的及び熱的性質の差異が大きくなってしまうことから、高い寸法精度や信頼性等が要求されるペリクル枠体に用いることは困難である。また、溶融溶接では接合部に小さな気孔欠陥が形成される場合があるが、ペリクル枠体では極めて小さな欠陥であっても深刻な問題となる。これに対し、摩擦攪拌接合による被接合材の歪みは極めて小さいことに加え、接合部(攪拌部)は基本的に溶融凝固を伴わない再結晶組織となり、母材との差異を比較的小さくすることができる。 When extruding materials are joined together using fusion welding such as arc welding or laser welding, the joint becomes a rapidly solidified structure and the difference in mechanical and thermal properties from the base material becomes large, so the dimensions are high. It is difficult to use for a pellicle frame which requires accuracy, reliability and the like. In addition, although a small pore defect may be formed in the joint in the fusion welding, a very small defect in the pellicle frame causes a serious problem. On the other hand, in addition to the fact that the distortion of the material to be joined by friction stir welding is extremely small, the joint portion (stirred portion) basically has a recrystallized structure without melting and solidification, and makes the difference with the base material relatively small. be able to.
 また、本発明のFPD(フラットパネルディスプレイ)用ペリクル枠体においては、枠体のヤング率が80GPa以上であること、が好ましい。枠体のヤング率を80GPa以上とすることで、大型FPD(フラットパネルディスプレイ)用のペリクル枠体であっても剛性を十分に担保することができ、従来のペリクル枠体よりも枠を細くすることができる。 Further, in the pellicle frame for FPD (flat panel display) of the present invention, it is preferable that the Young's modulus of the frame is 80 GPa or more. By setting the Young's modulus of the frame to 80 GPa or more, even a pellicle frame for a large FPD (flat panel display) can secure sufficient rigidity, and the frame is made thinner than conventional pellicle frames. be able to.
 また、本発明のFPD(フラットパネルディスプレイ)用ペリクル枠体においては、短辺の長さが330mm以上であり、長辺の長さが430mm以上であること、が好ましい。本発明のFPD(フラットパネルディスプレイ)用ペリクル枠体は高いヤング率を有するアルミニウム合金粉末焼結体の押出材で構成され、十分な剛性を有していることから、枠体が大型化してもペリクル枠体として用いることができる。 Moreover, in the pellicle frame for FPD (flat panel display) of the present invention, it is preferable that the length of the short side is 330 mm or more and the length of the long side is 430 mm or more. The pellicle frame for FPD (flat panel display) according to the present invention is made of an extruded material of aluminum alloy powder sintered body having a high Young's modulus, and has sufficient rigidity, so even if the frame is enlarged It can be used as a pellicle frame.
 更に、本発明のFPD(フラットパネルディスプレイ)用ペリクル枠体においては、略同一の形状及び大きさを有する4つの前記押出材で構成されていること、が好ましい。ペリクル枠体を構成する押出材の形状及び大きさを統一することで、各押出材間の品質のばらつきを抑制することができ、摩擦攪拌接合部の位置も均等に配置することができることから、ペリクル枠体の各種特性を均質化することができる。 Furthermore, in the pellicle frame for FPD (flat panel display) of the present invention, it is preferable to be composed of the four extruded materials having substantially the same shape and size. By unifying the shapes and sizes of the extruded materials constituting the pellicle frame, it is possible to suppress the variation in quality among the extruded materials, and the positions of the friction stir welds can be uniformly arranged, Various properties of the pellicle frame can be homogenized.
 また、本発明は、
 Si:20~40質量%、Mg:0.2~1.2質量%、Cu:2質量%以下、Fe:2質量%以下、Cr:0.4質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金粉末を焼結し、アルミニウム合金粉末焼結体を得る第一工程と、
 前記アルミニウム合金粉末焼結体を押出し、押出材を得る第二工程と、
 前記押出材同士を摩擦攪拌接合し、枠体を得る第三工程と、を含むこと、
 を特徴とするFPD(フラットパネルディスプレイ)用ペリクル枠体の製造方法も提供する。
Also, the present invention is
Si: 20 to 40% by mass, Mg: 0.2 to 1.2% by mass, Cu: 2% by mass or less, Fe: 2% by mass or less, Cr: 0.4% by mass or less, and the balance is Al and unavoidable A first step of sintering an aluminum alloy powder comprising impurities to obtain an aluminum alloy powder sintered body;
A second step of extruding the aluminum alloy powder sintered body to obtain an extruded material;
Friction stir welding the extruded materials to each other to obtain a frame body; and
There is also provided a method of manufacturing a pellicle frame for FPD (flat panel display) characterized by
 本発明のFPD(フラットパネルディスプレイ)用ペリクル枠体の製造方法においては、アルミニウム合金粉末焼結体の押出材同士を摩擦攪拌接合によって接合することで、顕著な歪みや強度低下等を伴うことなく接合を達成することができる。また、接合部における微小な気孔欠陥等の発生を抑制することができる。加えて、一般的な溶融溶接を用いる場合と比較して、接合部と接合部以外の領域との差異を小さくすることができる。 In the method of manufacturing a pellicle frame for FPD (flat panel display) according to the present invention, the extruded materials of the aluminum alloy powder sintered body are joined together by friction stir welding without significant distortion or strength reduction. Bonding can be achieved. In addition, it is possible to suppress the occurrence of minute pore defects and the like in the joint portion. In addition, the difference between the joint and the area other than the joint can be reduced as compared with the case of using general fusion welding.
 また、アルミニウム合金粉末焼結体の押出材の接合には、例えば、比較的安価な熱間工具鋼製の接合ツールを用いることができる。接合工程に外部熱源等が必要ないことから、簡便かつ安価に接合を達成することができる。 Further, for bonding of the extruded material of the aluminum alloy powder sintered body, for example, a relatively inexpensive bonding tool made of hot tool steel can be used. Since an external heat source or the like is not required in the bonding step, bonding can be achieved simply and inexpensively.
 また、本発明のFPD(フラットパネルディスプレイ)用ペリクル枠体の製造方法においては、前記切削加工後の前記枠体の短辺の長さを330mm以上、長辺の長さを430mm以上とすること、が好ましい。本発明のFPD(フラットパネルディスプレイ)用ペリクル枠体の製造方法においては、高いヤング率を有するアルミニウム合金粉末焼結体の押出材を固相接合である摩擦攪拌接合で接合することから、枠体を大型化すると共に板幅を小さくした場合であっても、良好な枠体を得ることができる。 In the method of manufacturing a pellicle frame for FPD (flat panel display) according to the present invention, the length of the short side of the frame after cutting is 330 mm or more, and the length of the long side is 430 mm or more. Is preferred. In the method of manufacturing a pellicle frame for FPD (flat panel display) according to the present invention, since the extruded material of the aluminum alloy powder sintered body having a high Young's modulus is joined by friction stir welding which is solid phase bonding, the frame Even when the plate width is increased and the plate width is decreased, a good frame can be obtained.
 また、本発明のFPD(フラットパネルディスプレイ)用ペリクル枠体の製造方法においては、前記第三工程において、略同一の形状及び大きさを有する4つの前記押出材で前記枠体を構成すること、が好ましい。ペリクル枠体を構成する押出材の形状及び大きさを統一することで、押出及び摩擦攪拌接合の作業性を向上させることができ、製造コストを低減することができる。 Further, in the method of manufacturing a pellicle frame for FPD (flat panel display) according to the present invention, in the third step, the frame is made of the four extruded materials having substantially the same shape and size, Is preferred. By unifying the shape and size of the extruded material constituting the pellicle frame, the workability of the extrusion and friction stir welding can be improved, and the manufacturing cost can be reduced.
 更に、本発明のFPD(フラットパネルディスプレイ)用ペリクル枠体の製造方法においては、前記摩擦攪拌接合を接合用ツールの位置制御にて施すこと、が好ましい。摩擦攪拌接合の主な制御方法には、ツールの位置制御、荷重制御及びトルク制御が存在するが、鋼等と比較すると塑性変形抵抗が小さいアルミニウム合金の場合、位置制御を用いることで、接合部(攪拌部)の位置(深さ)を正確に制御することができる。FPD(フラットパネルディスプレイ)用ペリクル枠体では、接合部裏面における未接合部の形成は深刻な問題となるが、位置制御を用いて適切に摩擦攪拌接合を施すことによって当該未接合部の形成を完全に抑制することができる。 Furthermore, in the method of manufacturing a pellicle frame for FPD (flat panel display) according to the present invention, it is preferable that the friction stir welding be performed by position control of a bonding tool. The main control methods of friction stir welding include tool position control, load control and torque control, but in the case of aluminum alloy with smaller plastic deformation resistance compared to steel etc., the position control is used to make the joint The position (depth) of the (stirring unit) can be accurately controlled. In the pellicle frame for FPD (flat panel display), the formation of the unjoined part on the back of the joined part becomes a serious problem, but the formation of the unjoined part is appropriately performed by performing friction stir welding using position control. It can be completely suppressed.
 本発明によれば、枠の断面積を低減しても大型のFPD(フラットパネルディスプレイ)用ペリクルに要求される剛性を維持することができ、当該断面積の低減によって枠体の内寸を拡大することができると共に、高い寸法精度や平坦度を有するFPD(フラットパネルディスプレイ)用ペリクル枠体及びその効率的な製造方法を提供することができる。 According to the present invention, even if the cross-sectional area of the frame is reduced, the rigidity required for a large-sized FPD (flat panel display) pellicle can be maintained, and the reduction of the cross-sectional area enlarges the inner size of the frame. It is possible to provide a pellicle frame for FPD (flat panel display) having high dimensional accuracy and flatness and an efficient manufacturing method thereof.
本発明のFPD(フラットパネルディスプレイ)用ペリクル枠体の斜視図である。It is a perspective view of a pellicle frame for FPD (flat panel display) of the present invention. FPD(フラットパネルディスプレイ)用ペリクル枠体1のC-C’断面図である。It is a C-C 'sectional view of pellicle frame 1 for FPD (flat panel display). 本発明のFPD(フラットパネルディスプレイ)用ペリクル枠体の製造方法の工程図である。It is process drawing of the manufacturing method of the pellicle frame for FPD (flat panel display) of this invention. 摩擦攪拌接合を施す際の押出材の配置例である。It is an example of arrangement of an extrusion material at the time of giving friction stir welding. 押出材2に摩擦攪拌接合を施して得られた枠体の概略図である。It is the schematic of the frame obtained by giving friction stir welding to the extrusion material 2. FIG. 実施例における摩擦攪拌接合後の枠体の概観写真である。It is a general view photograph of the frame after friction stir welding in an Example. 実施例におけるFPD(フラットパネルディスプレイ)用ペリクル枠体の概観写真である。It is an overview photograph of the pellicle frame for FPD (flat panel display) in an Example. 実施例におけるFPD(フラットパネルディスプレイ)用ペリクル枠体の接合部の拡大写真である。It is an enlarged photograph of the junction of the pellicle frame for FPD (flat panel display) in an example. 実施例におけるFPD(フラットパネルディスプレイ)用ペリクル枠体の接合部断面の水平方向の硬度分布である。It is hardness distribution of the horizontal direction of the junction part cross section of the pellicle frame for FPD (flat panel display) in an Example. 比較例におけるFPD(フラットパネルディスプレイ)用ペリクル枠体の接合部断面の水平方向の硬度分布である。It is hardness distribution of the horizontal direction of the junction part cross section of the pellicle frame for FPD (flat panel display) in a comparative example.
 以下、図面を参照しながら本発明のFPD(フラットパネルディスプレイ)用ペリクル枠体及びその製造方法についての代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。 Hereinafter, representative embodiments of the pellicle frame for FPD (flat panel display) and the method of manufacturing the same according to the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto. . In the following description, the same or corresponding parts will be denoted by the same reference numerals, and overlapping descriptions may be omitted. Further, since the drawings are for explaining the present invention conceptually, the dimensions of the components shown and their ratios may be different from the actual ones.
1.FPD(フラットパネルディスプレイ)用ペリクル枠体
 図1に、本発明のFPD(フラットパネルディスプレイ)用ペリクル枠体の斜視図を示す。FPD(フラットパネルディスプレイ)用ペリクル枠体1は、Si:20~40質量%、Mg:0.2~1.2質量%、Cu:2質量%以下、Fe:2質量%以下、Cr:0.4質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金粉末焼結体の押出材で構成されており、ペリクル枠体の材質として従来用いられている7000系(Al-Zn-Mg系)アルミニウム合金、6000系(Al-Mg-Si系)アルミニウム合金及び5000系(Al-Mg系)アルミニウム合金と比較して、高いヤング率を有している。以下、各添加元素の限定理由について説明する。
1. Pellicle Frame for FPD (Flat Panel Display) FIG. 1 shows a perspective view of a pellicle frame for FPD (flat panel display) of the present invention. The pellicle frame 1 for FPD (flat panel display) comprises 20 to 40% by mass of Si, 0.2 to 1.2% by mass of Mg, 2% by mass or less of Cu, 2% by mass or less of Fe, Cr: 0 .4% by mass or less, an extruded material of an aluminum alloy powder sintered body having a balance of Al and unavoidable impurities, and 7000 series (Al-Zn-Mg) conventionally used as a material of a pellicle frame It has a high Young's modulus, as compared with a series) aluminum alloy, a 6000 series (Al-Mg-Si series) aluminum alloy and a 5000 series (Al-Mg series) aluminum alloy. Hereinafter, the reasons for limitation of each additive element will be described.
(1)Si
 SiはAl母相中にSi相として晶出することでヤング率の向上に寄与することに加え、耐摩耗性を向上させると共に熱膨張率を低下させる効果を有している。本発明のFPD(フラットパネルディスプレイ)用ペリクル枠体においては、Si含有量を20質量%以上とすることで、高いヤング率、優れた耐摩耗性及び低い熱膨張係数を実現し、40質量%以下とすることで、加工性の低下及びSi相の粗大化による強度・靭性の低下を抑制している。なお、より好ましいSi含有量は24~28質量%である。
(1) Si
In addition to contributing to the improvement of the Young's modulus by crystallizing as a Si phase in the Al matrix, Si has an effect of improving the wear resistance and reducing the thermal expansion coefficient. In the pellicle frame for FPD (flat panel display) of the present invention, by setting the Si content to 20% by mass or more, high Young's modulus, excellent abrasion resistance and low thermal expansion coefficient are realized, and 40% by mass By setting it as the following, the fall of the strength and toughness by the fall of workability and the coarsening of Si phase is suppressed. More preferably, the Si content is 24 to 28% by mass.
(2)Mg
 Mgの含有量は、0.2~1.2質量%となっている。Mgの含有量をこの範囲に設定することによって、析出強化による強度向上を図ることができる。(MgSi、AlCuMgによる析出強化)。なお、より好ましいMg含有量は0.55~0.90質量%である。
(2) Mg
The content of Mg is 0.2 to 1.2% by mass. By setting the content of Mg in this range, it is possible to improve the strength by precipitation strengthening. (Precipitate strengthening by Mg 2 Si, Al 2 CuMg). The more preferable Mg content is 0.55 to 0.90% by mass.
(3)Cu
 Cuの含有量は、2質量%以下となっている。Cuの含有量をこの範囲に設定することによって、上記のMgと同様に析出強化による強度向上を図ることができる。(MgSi、AlCuMgによる析出強化)。また、ヤング率向上、耐食性向上にも寄与する。2質量%より多くなると、陽極酸化皮膜性が低下する。なお、より好ましいCu含有量は0.11~0.30質量%である。
(3) Cu
The content of Cu is 2% by mass or less. By setting the content of Cu in this range, it is possible to improve the strength by precipitation strengthening similarly to the above-mentioned Mg. (Precipitate strengthening by Mg 2 Si, Al 2 CuMg). It also contributes to the improvement of Young's modulus and corrosion resistance. When the content is more than 2% by mass, the anodic oxide film property is lowered. The more preferable Cu content is 0.11 to 0.30 mass%.
(4)Fe
 Feの含有量は、2質量%以下となっている。Feの含有量をこの範囲に設定することによって、ヤング率向上、耐食性向上に寄与する。2質量%より多くなると、伸び、熱伝導性、押出が低下する。なお、より好ましいFe含有量は0.7質量%以下である。
(4) Fe
The content of Fe is 2% by mass or less. By setting the content of Fe in this range, it contributes to the improvement of Young's modulus and corrosion resistance. When the amount is more than 2% by mass, elongation, thermal conductivity, and extrusion decrease. In addition, more preferable Fe content is 0.7 mass% or less.
(5)Cr
 Crの含有量は、Cr:0.4質量%以下となっている。Crの含有量をこの範囲に設定することによって、結晶を微細化し、靱性の向上に寄与する。なお、より好ましいCr含有量は0.03~0.26質量%である。
(5) Cr
The content of Cr is not more than 0.4% by mass. By setting the content of Cr in this range, the crystal is refined and contributes to the improvement of toughness. The more preferable Cr content is 0.03 to 0.26% by mass.
(6)Al
 (1)~(5)の成分の他、残部は実質的にAlからなる。また、その他の成分として、不可避不純物が含まれていてもよい。
(6) Al
Besides the components (1) to (5), the balance substantially consists of Al. In addition, as other components, unavoidable impurities may be contained.
 FPD(フラットパネルディスプレイ)用ペリクル枠体1は、アルミニウム合金粉末焼結体の押出材2によって構成されており、4つの押出材2が摩擦攪拌接合部4によって一体となっている。なお、図1では摩擦攪拌接合部4の領域を誇張して示しているが、切削加工を施して得られるFPD(フラットパネルディスプレイ)用ペリクル枠体1においては、摩擦攪拌接合部4とその他の領域は外観上大差が無い。ここで、FPD(フラットパネルディスプレイ)用ペリクル枠体1は略同一の形状及び大きさを有する4つの押出材2で構成されていることが好ましい。FPD(フラットパネルディスプレイ)用ペリクル枠体1を構成する押出材2の形状及び大きさを統一することで、各押出材2間の品質のばらつきを抑制することができることに加えて、摩擦攪拌接合部4を均等に配置することができ、FPD(フラットパネルディスプレイ)用ペリクル枠体1の各種特性を均質化することができる。 The pellicle frame 1 for FPD (flat panel display) is constituted by the extruded material 2 of the aluminum alloy powder sintered body, and the four extruded materials 2 are integrated by the friction stir joint 4. Although the region of the friction stir welding portion 4 is shown exaggeratingly in FIG. 1, in the pellicle frame 1 for FPD (Flat Panel Display) obtained by cutting, the friction stir welding portion 4 and the other portions are described. There is no big difference in appearance in the area. Here, it is preferable that the pellicle frame 1 for FPD (flat panel display) is comprised with the four extrusion materials 2 which have substantially the same shape and magnitude | size. In addition to being able to suppress the variation in the quality between each extruded material 2 by unifying the shape and size of the extruded material 2 constituting the pellicle frame 1 for FPD (flat panel display), in addition to friction stir welding. The parts 4 can be arranged evenly, and various characteristics of the pellicle frame 1 for FPD (flat panel display) can be homogenized.
 また、摩擦攪拌接合によって形成される摩擦攪拌接合部4と押出材2は比較的近い機械的性質とすることができ、FPD(フラットパネルディスプレイ)用ペリクル枠体1は全体として均質な機械的性質を有している。ここで、摩擦攪拌接合部4及び摩擦攪拌接合部4近傍の熱影響部のビッカース硬度は、押出材2(摩擦攪拌接合部4以外の領域)の70~130%となることが好ましい。 In addition, the friction stir welded joint 4 and the extruded material 2 formed by the friction stir welding can have relatively similar mechanical properties, and the pellicle frame 1 for FPD (flat panel display) has homogeneous mechanical properties as a whole. have. Here, the Vickers hardness of the friction stir welding portion 4 and the heat-affected zone in the vicinity of the friction stir welding portion 4 is preferably 70 to 130% of that of the extruded material 2 (the region other than the friction stir welding portion 4).
 押出材2のヤング率は、80GPa以上であることが好ましい。押出材2のヤング率を80GPa以上とすることで、大型FPD(フラットパネルディスプレイ)用のペリクル枠体であっても剛性を十分に担保することができ、従来のペリクル枠体よりも枠を細くすることができる。なお、押出材2のより好ましいヤング率は85GPa以上である。 The Young's modulus of the extruded material 2 is preferably 80 GPa or more. By setting the Young's modulus of the extruded material 2 to 80 GPa or more, sufficient rigidity can be secured even for a pellicle frame for a large FPD (flat panel display), and the frame is thinner than a conventional pellicle frame. can do. The more preferable Young's modulus of the extruded material 2 is 85 GPa or more.
 また、FPD(フラットパネルディスプレイ)用ペリクル枠体1の短辺(図1のA)の長さは330mm以上であり、長辺(図1のB)の長さは430mm以上であることが好ましい。FPD(フラットパネルディスプレイ)用ペリクル枠体1は高いヤング率を有するアルミニウム合金粉末焼結体の押出材2で構成されていることから、枠体が大型化してもペリクル枠体として十分に用いることができる。 The length of the short side (A in FIG. 1) of the pellicle frame 1 for FPD (flat panel display) is 330 mm or more, and the length of the long side (B in FIG. 1) is preferably 430 mm or more . Since pellicle frame 1 for FPD (flat panel display) is composed of extruded material 2 of aluminum alloy powder sintered body having high Young's modulus, it should be sufficiently used as pellicle frame even if the frame is enlarged. Can.
 図2にFPD(フラットパネルディスプレイ)用ペリクル枠体1のC-C’断面図を示す。FPD(フラットパネルディスプレイ)用ペリクル枠体1の枠の最大幅(図2のW)は6mm以下であることが好ましく、5mm以下であることがより好ましい。FPD(フラットパネルディスプレイ)用ペリクル枠体1は高いヤング率を有するアルミニウム合金粉末焼結体の押出材2で構成されていることから、枠幅を小さくしても剛性を担保することができる。ここで、枠の最大幅を6mm以下とすることで枠体近傍における露光不良を抑制することができ、5mm以下とすることでFPD(フラットパネルディスプレイ)用ペリクル枠体1の内寸をより拡大することができる。 FIG. 2 shows a C-C 'cross-sectional view of a pellicle frame 1 for FPD (flat panel display). The maximum width (W in FIG. 2) of the frame of the pellicle frame 1 for FPD (flat panel display) is preferably 6 mm or less, and more preferably 5 mm or less. Since the pellicle frame 1 for FPD (flat panel display) is comprised with the extruded material 2 of the aluminum alloy powder sintered compact which has high Young's modulus, rigidity can be ensured even if frame width is made small. Here, by setting the maximum width of the frame to 6 mm or less, exposure defects in the vicinity of the frame can be suppressed, and by setting the maximum width to 5 mm or less, the inner size of pellicle frame 1 for FPD (flat panel display) is further enlarged. can do.
 FPD(フラットパネルディスプレイ)用ペリクル枠体1の断面形状は、本発明の効果を損なわない範囲で特に制限されず、従来公知の種々の形状とすることができるが、上辺及び下辺が平行な四辺形とすることが好ましい。FPD(フラットパネルディスプレイ)用ペリクル枠体1の上辺にはペリクル膜を張設するための幅が必要であり、下辺には接着用粘着層を設けて露光原版に接着するための幅が必要である。 The cross-sectional shape of the pellicle frame 1 for FPD (flat panel display) is not particularly limited as long as the effects of the present invention are not impaired, and various shapes known in the prior art can be used. It is preferable to make it a form. The upper side of the pellicle frame 1 for FPD (flat panel display) needs a width for stretching the pellicle film, and the lower side needs a width for providing an adhesive layer for bonding and bonding to the exposure master plate is there.
 FPD(フラットパネルディスプレイ)用ペリクル枠体1の平坦度は、150μm以下とすることが好ましく、100μm以下とすることがより好ましい。FPD(フラットパネルディスプレイ)用ペリクル枠体1の平坦度を向上させることで、ペリクルを露光原版に貼り付けた場合のFPD(フラットパネルディスプレイ)用ペリクル枠体1の変形量を小さくすることができる。なお、上記の平坦度は、FPD(フラットパネルディスプレイ)用ペリクル枠体1の各コーナー4点と4辺の中央4点の計8点において高さを測定することで仮想平面を算出し、当該仮想平面からの各点の距離のうち、最高点から最低点を差引いた差により算出することができる。 The flatness of the pellicle frame 1 for FPD (flat panel display) is preferably 150 μm or less, and more preferably 100 μm or less. By improving the flatness of the pellicle frame 1 for FPD (flat panel display), it is possible to reduce the amount of deformation of the pellicle frame 1 for FPD (flat panel display) when the pellicle is attached to the exposure master. . Note that the above-mentioned flatness is calculated by measuring the height at a total of eight points of four corners of the pellicle frame 1 for FPD (flat panel display) and four points at the center of four sides, and the virtual plane is calculated. Of the distances of each point from the virtual plane, the difference can be calculated by subtracting the lowest point from the highest point.
 また、FPD(フラットパネルディスプレイ)用ペリクル枠体1を用いて、各種ペリクルを構成することができる。例えば、FPD(フラットパネルディスプレイ)用ペリクル枠体1の上面に透明性のペリクル膜を覆設すると共に、FPD(フラットパネルディスプレイ)用ペリクル枠体1の下面に接着層を形成し、当該接着層の下面に保護膜を剥離可能に覆設すると、大型化した場合であっても歪み等が発生し難い。なお、従来公知の種々の表面処理や表面被覆によってFPD(フラットパネルディスプレイ)用ペリクル枠体1を黒色化することができ、露光時の光の反射が転写パターンを不鮮明にするといった問題を回避することができる。 Moreover, various pellicles can be configured using the pellicle frame 1 for FPD (flat panel display). For example, a transparent pellicle film is covered on the upper surface of pellicle frame 1 for FPD (flat panel display), and an adhesive layer is formed on the lower surface of pellicle frame 1 for FPD (flat panel display), If the protective film is releasably covered on the lower surface of the case, distortion or the like is less likely to occur even if the size is increased. In addition, the pellicle frame 1 for FPD (flat panel display) can be blackened by various surface treatment and surface coating conventionally known, and the problem that the reflection of the light at the time of exposure makes the transfer pattern unclear is avoided. be able to.
2.FPD(フラットパネルディスプレイ)用ペリクル枠体の製造方法
 図3に、本発明のFPD(フラットパネルディスプレイ)用ペリクル枠体の製造方法の工程図を示す。本発明のFPD(フラットパネルディスプレイ)用ペリクル枠体の製造方法は、アルミニウム合金粉末を焼結してアルミニウム合金粉末焼結体を得る第一工程(S01)と、アルミニウム合金粉末焼結体を押出して押出材を得る第二工程(S02)と、押出材同士を摩擦攪拌接合して枠体を得る第三工程(S03)と、を含んでいる。以下、各工程等について詳細に説明する。
2. Method of manufacturing pellicle frame for FPD (flat panel display) FIG. 3 is a process diagram of a method of manufacturing a pellicle frame for FPD (flat panel display) of the present invention. The method for producing a pellicle frame for FPD (flat panel display) according to the present invention comprises a first step (S01) of sintering an aluminum alloy powder to obtain an aluminum alloy powder sintered body, and extruding the aluminum alloy powder sintered body The second step (S02) of obtaining the extruded material, and the third step (S03) of obtaining the frame by friction stir welding of the extruded materials. Each step will be described in detail below.
(1)第一工程(S01:アルミニウム合金粉末の焼結)
 第一工程(S01)は、第二工程(S02)で押出材2を得るために、アルミニウム合金粉末を焼結する工程である。ここで、アルミニウム合金粉末は、Si:20~40質量%、Mg:0.2~1.2質量%、Cu:2質量%以下、Fe:2質量%以下、Cr:0.4質量%以下であり、残部がAl及び不可避不純物からなっている。
(1) First step (S01: Sintering of aluminum alloy powder)
The first step (S01) is a step of sintering the aluminum alloy powder in order to obtain the extruded material 2 in the second step (S02). Here, the aluminum alloy powder contains Si: 20 to 40% by mass, Mg: 0.2 to 1.2% by mass, Cu: 2% by mass or less, Fe: 2% by mass or less, Cr: 0.4% by mass or less And the balance consists of Al and unavoidable impurities.
 アルミニウム合金粉末は、予備成形することが好ましい。予備成形の方法は、本発明の効果を損なわない範囲で特に制限されず、従来公知の種々の方法で施すことができ、例えば、プレス法やCIP法等を用いることができる。なお、予備成形の成形圧は、アルミニウム合金粉末の組成、形状及び粒径等に応じて適宜設定すればよい。 The aluminum alloy powder is preferably preformed. The method of preforming is not particularly limited as long as the effects of the present invention are not impaired, and can be applied by various conventionally known methods. For example, a pressing method, a CIP method, etc. can be used. In addition, what is necessary is just to set the molding pressure of preforming suitably according to a composition, a shape, a particle size, etc. of aluminum alloy powder.
 また、予備成形体を焼結する条件はアルミニウム合金粉末の組成、粒径及び形状等や、予備成形体の密度等に応じて適宜調整し、熱間押出によって良好な押出材を得ることができる状態の焼結体が得られる焼結条件を用いればよい。当該焼結条件としては、例えば、予備成形体を1Torr以下の真空度で炉内温度が100~400℃に制御された真空炉内で0.5~2時間保持した後、真空度を1Torr以下(好ましくは0.1Torr以下)に保ちながら、予備成形体の温度が520~570℃になるように炉内を昇温し、1~6時間保持すればよい。 Further, the conditions for sintering the preform can be appropriately adjusted according to the composition, particle size, shape, etc. of the aluminum alloy powder, the density of the preform, etc., and a good extruded material can be obtained by hot extrusion. Sintering conditions that can obtain a sintered body in a state may be used. As the sintering conditions, for example, after holding the preformed body at a vacuum degree of 1 Torr or less in a vacuum furnace controlled at a furnace temperature of 100 to 400 ° C. for 0.5 to 2 hours, the vacuum degree is 1 Torr or less While maintaining the temperature (preferably 0.1 Torr or less), the temperature in the furnace may be raised so that the temperature of the preform becomes 520 to 570 ° C., and held for 1 to 6 hours.
(2)第二工程(S02:焼結体の熱間押出)
 第二工程(S02)は、第一工程(S01)で得られた焼結体の熱間押出により、押出材2を得るための工程である。
(2) Second step (S02: hot extrusion of sintered body)
The second step (S02) is a step for obtaining the extruded material 2 by hot extrusion of the sintered body obtained in the first step (S01).
 熱間押出の方法及び条件は、本発明の効果を損なわない範囲で特に制限されず、従来公知のアルミニウム合金粉末焼結体の熱間押出方法及び条件を用いればよいが、熱間押出の温度は400~500℃程度に設定すればよい。 The method and conditions of the hot extrusion are not particularly limited as long as the effects of the present invention are not impaired, and the hot extrusion method and conditions of the conventionally known aluminum alloy powder sintered body may be used. The temperature may be set to about 400 to 500.degree.
 また、熱間押出する場合、金型前方に金属板(例えば、純アルミニウムや5000系のアルミニウム合金等)を押出材料である焼結体の前に配置してもよい。これにより、押出材2の表面に金属板組成の薄い皮膜を形成させることができ、Al-Si系材料が最表面にある場合に起こり得るSiとAlの界面における経時的な孔食や全面腐食を抑制することができる。ここで、金属板の表面に存在する薄い異種合金皮膜は摩擦攪拌接合によって攪拌部中に巻き込まれることから、摩擦攪拌接合の予備処理として当該異種合金皮膜を被接合領域から除去しておくことが好ましい。 In the case of hot extrusion, a metal plate (for example, pure aluminum, 5000 series aluminum alloy, etc.) may be placed in front of the mold before the sintered body which is the extrusion material. This makes it possible to form a thin film of metal plate composition on the surface of the extruded material 2 and may cause pitting or surface corrosion over time at the interface between Si and Al which may occur when the Al-Si based material is on the outermost surface. Can be suppressed. Here, since the thin dissimilar alloy film present on the surface of the metal plate is entrained in the agitating portion by friction stir welding, the dissimilar alloy film may be removed from the region to be joined as a pretreatment for friction stir welding. preferable.
 熱間押出された成形体は、必要に応じて、所望の形状を付与するために鍛造等を行う。この場合、当該鍛造等に先立って、成形体の熱処理を実施してもよい。例えば、200~400℃で0.5~2時間程度の熱処理を施すことにより、熱間押出された成形体の鍛造性を高めることができる。 The hot-extruded compact is subjected to forging or the like to impart a desired shape, as required. In this case, the heat treatment of the formed body may be performed prior to the forging or the like. For example, by performing heat treatment at 200 to 400 ° C. for about 0.5 to 2 hours, the forgeability of the hot-extruded molded body can be enhanced.
(3)第三工程(S03:押出材の摩擦攪拌接合)
 第三工程(S03)は、第二工程(S02)で得られた押出材2同士を摩擦攪拌接合することにより、FPD(フラットパネルディスプレイ)用ペリクル枠体1を得るための工程である。
(3) Third step (S03: friction stir welding of extruded material)
The third step (S03) is a step for obtaining the pellicle frame 1 for FPD (flat panel display) by friction stir welding the extruded materials 2 obtained in the second step (S02).
 レーザ溶接等の溶融溶接で押出材2同士を接合する場合、接合部は急冷凝固組織となり接合部以外の領域と比較して硬度が高くなる場合がある。また、材料が溶融する程の熱量が投入されるため、熱影響部での軟化も顕著になる。これらの局所的な機械的性質の変化はFPD(フラットパネルディスプレイ)用ペリクル枠体1に関して好ましくないが、固相接合である摩擦攪拌接合を用いることで、接合部とそれ以外の領域の機械的性質の差異を小さくすることができる。 When the extruded members 2 are joined together by fusion welding such as laser welding, the joint portion may have a rapidly solidified structure and may have a hardness higher than that of the region other than the joint portion. In addition, since the amount of heat sufficient to melt the material is input, the softening in the heat-affected zone becomes remarkable. These local changes in mechanical properties are not preferable for the pellicle frame 1 for FPD (flat panel display), but using friction stir welding, which is solid phase bonding, the mechanical properties of the joint and other areas The difference in nature can be reduced.
 図4に、摩擦攪拌接合を施す際の押出材2の配置例を示す。略同一の形状及び大きさを有する押出材2を用い、4つの押出材2を摩擦攪拌接合で一体とすることにより、FPD(フラットパネルディスプレイ)用ペリクル枠体1を構成することが好ましい。FPD(フラットパネルディスプレイ)用ペリクル枠体1を構成する押出材2の形状及び大きさを統一することで、押出及び摩擦攪拌接合の作業性を向上させることができ、製造コストを低減することができる。 The example of arrangement | positioning of the extrusion material 2 at the time of giving friction stir welding in FIG. 4 is shown. It is preferable to constitute the pellicle frame 1 for FPD (Flat panel display) by uniting the four extruded materials 2 by friction stir welding using the extruded materials 2 having substantially the same shape and size. By unifying the shape and size of the extruded material 2 constituting the pellicle frame 1 for FPD (flat panel display), the workability of extrusion and friction stir welding can be improved, and the manufacturing cost can be reduced. it can.
 図5に、押出材2に摩擦攪拌接合を施して得られた枠体の概略図を示す。4つの押出材2が摩擦攪拌接合部4によって一体となっているが、一般的な摩擦攪拌接合においては接合終端部にツール穴が形成されてしまう。これに対し、例えば、図5に示す点線で枠体10の両側部を切断することで、接合欠陥を含まないFPD(フラットパネルディスプレイ)用ペリクル枠体1を確実に得ることができる。 FIG. 5 shows a schematic view of a frame obtained by subjecting the extruded material 2 to friction stir welding. Although the four extruded members 2 are integrated by the friction stir welding portion 4, in a general friction stir welding, a tool hole is formed at the welding end. On the other hand, for example, by cutting both sides of the frame 10 with dotted lines shown in FIG. 5, it is possible to reliably obtain the pellicle frame 1 for FPD (flat panel display) which does not include a bonding defect.
 また、切削加工後の枠体10の短辺の長さを330mm以上、長辺の長さを430mm以上とすること、が好ましい。高いヤング率を有するアルミニウム合金粉末焼結体の押出材2を固相接合である摩擦攪拌接合で接合することから、切削加工後の枠体10を大型化すると共に板幅を低下させた場合であっても、良好なFPD(フラットパネルディスプレイ)用ペリクル枠1を得ることができる。 Moreover, it is preferable that the length of the short side of the frame 10 after cutting is 330 mm or more, and the length of the long side is 430 mm or more. Since the extruded material 2 of aluminum alloy powder sintered body having high Young's modulus is joined by friction stir welding which is solid phase welding, the case where the frame 10 after cutting is enlarged and the plate width is reduced Even if it is, a good pellicle frame 1 for FPD (flat panel display) can be obtained.
 摩擦攪拌接合の方法は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の摩擦攪拌接合方法を用いることができるが、接合用ツールの位置制御にて施すことが好ましい。位置制御を用いることで、接合部(攪拌部)の位置(深さ)を正確に制御することができる。FPD(フラットパネルディスプレイ)用ペリクル枠体1では、接合部裏面における未接合部の形成は深刻な問題となるが、位置制御を用いて適切に摩擦攪拌接合を施すことによって当該未接合部の形成を完全に抑制することができる。 The method of friction stir welding is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known friction stir welding methods can be used, but it is preferable to perform control by position control of a bonding tool. By using position control, it is possible to accurately control the position (depth) of the joint (stirring portion). In the pellicle frame 1 for FPD (flat panel display), the formation of the unjoined portion on the back of the joined portion is a serious problem, but the formation of the unjoined portion is appropriately performed by performing friction stir welding using position control. Can be completely suppressed.
 以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。 As mentioned above, although the typical embodiment of the present invention was described, the present invention is not limited only to these, and various design changes are possible, and all the design changes are included in the technical scope of the present invention. Be
≪実施例≫
 Si27%、Fe0.25%、Cu0.25%、Mg0.7%、Cr0.15%の組成を有するアルミニウム合金粉末をCIP成形後に565℃真空雰囲気中で4時間保持することで焼結し、かさ密度2.3g/cmの外径250mmの円柱状に成形した(第一工程)。なお、原料として用いたアルミニウム合金粉末の粒度は93%が150μm未満である(ロータップ法)。
<< Example >>
An aluminum alloy powder having a composition of Si 27%, Fe 0.25%, Cu 0.25%, Mg 0.7%, Cr 0.15% is sintered by holding it in a vacuum atmosphere at 565 ° C. for 4 hours after CIP forming, bulk It was formed into a cylindrical shape having an outer diameter of 250 mm and a density of 2.3 g / cm 3 (first step). In addition, 93% of the particle size of the aluminum alloy powder used as a raw material is less than 150 micrometers (a row tap method).
 次に、得られた焼結体を熱間押出用ビレットとして熱間押出を施した。具体的には、ビレットを450℃で加熱し10インチ押出機のコンテナに挿入し、押出成形によって幅100mm、厚さ8mmの板状の押出材を得た(第二工程)。 Next, the resulting sintered body was subjected to hot extrusion as a billet for hot extrusion. Specifically, the billet was heated at 450 ° C., inserted into a container of a 10-inch extruder, and extruded to obtain a plate-like extruded material having a width of 100 mm and a thickness of 8 mm (second step).
 次に、4枚の押出材を図4に示す状態に配置し、押出材同士を摩擦攪拌接合することによって図5に示す枠体を得た(第三工程)。なお、接合には専用の摩擦攪拌接合装置を用い、ツールの位置制御によって摩擦攪拌接合を施すことで、押出材同士の突合せ領域に無欠陥接合部を形成させた(接合終端部にはツールの引抜穴が残存する)。摩擦攪拌接合後の枠体の概観写真を図6に示す。 Next, four extruded materials were disposed in the state shown in FIG. 4, and the extruded materials were friction stir welded to obtain a frame shown in FIG. 5 (third step). A special friction stir welding apparatus was used for welding, and friction stir welding was performed by position control of the tool to form a non-defective joint in the butt region between the extruded materials Plunging holes remain). An overview photograph of the frame after friction stir welding is shown in FIG.
 次に、得られた枠体を切削加工することで長辺940mm、短辺760mm、枠幅6mm及び枠厚6mmのFPD(フラットパネルディスプレイ)用ペリクル枠体を得た。得られたFPD(フラットパネルディスプレイ)用ペリクル枠体の概観写真を図7に示す。FPD(フラットパネルディスプレイ)ペリクル枠体には歪み等は認められず、良好なFPD(フラットパネルディスプレイ)用ペリクル枠体が得られている。当該FPD(フラットパネルディスプレイ)用ペリクル枠体の摩擦攪拌接合部の拡大写真を図8に示す。摩擦攪拌接合部とそれ以外の領域は、一見して判別が困難な程度に差異が無く、外観上も極めて均質なFPD(フラットパネルディスプレイ)用ペリクル枠体が得られている。 Next, the obtained frame was cut to obtain a pellicle frame for FPD (flat panel display) having a long side of 940 mm, a short side of 760 mm, a frame width of 6 mm, and a frame thickness of 6 mm. An overview photograph of the obtained pellicle frame for FPD (flat panel display) is shown in FIG. No distortion or the like is recognized in the FPD (flat panel display) pellicle frame, and a good pellicle frame for FPD (flat panel display) is obtained. An enlarged photograph of the friction stir welding portion of the pellicle frame for the FPD (flat panel display) is shown in FIG. The friction stir welding portion and the other region have no difference to the extent that it is difficult to distinguish at first glance, and an FPD (Flat Panel Display) pellicle frame is obtained which is extremely uniform in appearance.
 得られたFPD(フラットパネルディスプレイ)用ペリクル枠体に使用する材料に引張試験を施し、応力-ひずみ曲線からヤング率を求めたところ、89GPaであった。従来知られているA5052アルミニウム合金製のFPD(フラットパネルディスプレイ)用ペリクル枠体使用する材料のヤング率は69GPa程度であり、得られたFPD(フラットパネルディスプレイ)用ペリクル枠体使用する材料は高いヤング率を有していることが分かる。なお、引張試験の条件はヤング率および耐力測定までは、クロスヘッド変位速度を0.5mm/minとし、それ以降は5mm/minとした。 The material used for the obtained pellicle frame for FPD (flat panel display) was subjected to a tensile test, and the Young's modulus was determined from the stress-strain curve, to be 89 GPa. The Young's modulus of the material used for the pellicle frame for FPD (flat panel display) made of conventionally known A5052 aluminum alloy is about 69 GPa, and the material used for the obtained pellicle frame for FPD (flat panel display) is high It turns out that it has Young's modulus. In the tensile test, the crosshead displacement speed was set to 0.5 mm / min until Young's modulus and proof stress measurement, and thereafter to 5 mm / min.
 FPD(フラットパネルディスプレイ)用ペリクル枠体の接合部断面の水平方向の硬度分布を図9に示す。なお、接合部は枠体の長手方向に対して垂直に切断し、板厚中心における水平方向の硬度分布を測定した。接合部(攪拌部)は組織の微細化による硬度上昇、接合部(攪拌部)の外側には熱影響による硬度低下が認められるが、これらの硬度上昇及び硬度低下は顕著ではなく、母材の70~130%の範囲となっている。 The hardness distribution in the horizontal direction of the joint section of the pellicle frame for FPD (flat panel display) is shown in FIG. The joint was cut perpendicularly to the longitudinal direction of the frame, and the hardness distribution in the horizontal direction at the center of the plate thickness was measured. In the joint (stirred part), the hardness increases due to the refinement of the structure, and the hardness decrease due to the thermal effect is recognized outside the joint (stirred part), but the hardness increase and the hardness decrease are not remarkable. It is in the range of 70 to 130%.
≪比較例≫
 押出材同士の接合にレーザ溶接を用いたこと以外は実施例と同様にして、FPD(フラットパネルディスプレイ)用ペリクル枠体を得た。また、実施例と同様にして、レーザ溶接部の硬度分布を測定した。得られた結果を図10に示す。
«Comparative example»
A pellicle frame for FPD (flat panel display) was obtained in the same manner as in the example except that laser welding was used to join the extruded materials. Moreover, it carried out similarly to the Example, and measured hardness distribution of a laser welding part. The obtained result is shown in FIG.
 急冷凝固組織からなるレーザ溶接部では顕著な硬度上昇が認められ、熱影響部の硬度低下も大きい。接合部とそれ以外の領域における機械的性質の差異に起因する、寸法精度や長期信頼性の低下は、大型となるFPD(フラットパネルディスプレイ)用ペリクル枠体において特に顕著になるため、アルミニウム合金粉末押出材の接合にレーザ溶接を用いることは困難であることが分かる。 A marked increase in hardness is observed in the laser welds made of a rapidly solidified structure, and the decrease in hardness of the heat-affected zone is also large. The reduction in dimensional accuracy and long-term reliability due to the difference in mechanical properties between the joint and the other area is particularly noticeable in pellicle frames for FPDs (flat panel displays) that become large, so aluminum alloy powder The use of laser welding for joining of extruded materials proves to be difficult.
1・・・FPD(フラットパネルディスプレイ)用ペリクル枠体、
2・・・押出材、
4・・・摩擦攪拌接合部、
10・・・枠体。
1 ... pellicle frame for FPD (flat panel display),
2 ... extruded material,
4 · · · friction stir joint,
10 ... frame.

Claims (10)

  1.  Si:20~40質量%、Mg:0.2~1.2質量%、Cu:2質量%以下、Fe:2質量%以下、Cr:0.4質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金粉末(または粉末焼結体の)押出材で構成されていること、
     を特徴とするFPD(フラットパネルディスプレイ)用ペリクル枠体。
    Si: 20 to 40% by mass, Mg: 0.2 to 1.2% by mass, Cu: 2% by mass or less, Fe: 2% by mass or less, Cr: 0.4% by mass or less, and the balance is Al and unavoidable Being made of an extruded material of aluminum alloy powder (or powder sinter) consisting of impurities;
    A pellicle frame for FPD (flat panel display) characterized by
  2.  摩擦攪拌接合部によって前記押出材同士が一体となっていること、
     を特徴とする請求項1に記載のFPD(フラットパネルディスプレイ)用ペリクル枠体。
    That the extruded materials are integrated by the friction stir welding portion;
    The pellicle frame for FPD (flat panel display) of Claim 1 characterized by the above-mentioned.
  3.  枠体に使用する材料のヤング率が80GPa以上であること、
     を特徴とする請求項1又は2に記載のFPD(フラットパネルディスプレイ)用ペリクル枠体。
    The Young's modulus of the material used for the frame is 80 GPa or more,
    The pellicle frame for FPD (flat panel display) of Claim 1 or 2 characterized by these.
  4.  短辺の長さが330mm以上であり、
     長辺の長さが430mm以上であること、
     を特徴とする請求項1~3のうちのいずれかに記載のFPD(フラットパネルディスプレイ)用ペリクル枠体。
    The short side length is 330 mm or more,
    That the long side length is 430 mm or more,
    The pellicle frame for FPD (flat panel display) according to any one of claims 1 to 3, characterized in that
  5.  略同一の形状及び大きさを有する4つの前記押出材で構成されていること、
     を特徴とする請求項1~4のうちのいずれかに記載のFPD(フラットパネルディスプレイ)用ペリクル枠体。
    Being composed of the four extruded materials having substantially the same shape and size;
    The pellicle frame for FPD (flat panel display) according to any one of claims 1 to 4, characterized in that
  6.  Si:20~40質量%、Mg:0.2~1.2質量%、Cu:2質量%以下、Fe:2質量%以下、Cr:0.4質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金粉末を焼結し、アルミニウム合金粉末焼結体を得る第一工程と、
     前記アルミニウム合金粉末焼結体を押出し、押出材を得る第二工程と、
     前記押出材同士を摩擦攪拌接合し、枠体を得る第三工程と、を含むこと、
     を特徴とするFPD(フラットパネルディスプレイ)用ペリクル枠体の製造方法。
    Si: 20 to 40% by mass, Mg: 0.2 to 1.2% by mass, Cu: 2% by mass or less, Fe: 2% by mass or less, Cr: 0.4% by mass or less, and the balance is Al and unavoidable A first step of sintering an aluminum alloy powder comprising impurities to obtain an aluminum alloy powder sintered body;
    A second step of extruding the aluminum alloy powder sintered body to obtain an extruded material;
    Friction stir welding the extruded materials to each other to obtain a frame body; and
    The manufacturing method of the pellicle frame for FPD (flat panel display) characterized by these.
  7.  前記枠体に切削加工を施すこと、
     を特徴とする請求項6に記載のFPD(フラットパネルディスプレイ)用ペリクル枠体の製造方法。
    Cutting the frame;
    The manufacturing method of the pellicle frame for FPD (flat panel display) of Claim 6 characterized by the above-mentioned.
  8.  前記切削加工後の前記枠体の短辺の長さを330mm以上、長辺の長さを430mm以上とすること、
     を特徴とする請求項6又は7に記載のFPD(フラットパネルディスプレイ)用ペリクル枠体の製造方法。
    The length of the short side of the frame after the cutting is 330 mm or more, and the length of the long side is 430 mm or more.
    The manufacturing method of the pellicle frame for FPD (flat panel display) of Claim 6 or 7 characterized by these.
  9.  前記第三工程において、略同一の形状及び大きさを有する4つの前記押出材で前記枠体を構成すること、
     を特徴とする請求項6~8のうちのいずれかに記載のFPD(フラットパネルディスプレイ)用ペリクル枠体の製造方法。
    In the third step, the frame may be made of the four extruded materials having substantially the same shape and size,
    A method of manufacturing a pellicle frame for FPD (flat panel display) according to any one of claims 6 to 8, characterized in that
  10.  前記摩擦攪拌接合を接合用ツールの位置制御にて施すこと、
     を特徴とする請求項6~9のうちのいずれかに記載のFPD(フラットパネルディスプレイ)用ペリクル枠体の製造方法。
    Performing the friction stir welding by position control of a welding tool;
    The method for producing a pellicle frame for FPD (flat panel display) according to any one of claims 6 to 9, characterized in that
PCT/JP2018/040227 2017-12-12 2018-10-30 Pellicle frame body for flat panel display (fpd) and manufacturing method therefor WO2019116755A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18888674.1A EP3726292A4 (en) 2017-12-12 2018-10-30 Pellicle frame body for flat panel display (fpd) and manufacturing method therefor
US16/771,529 US20210173298A1 (en) 2017-12-12 2018-10-30 Pellicle frame body for flat panel display (fpd) and manufacturing method therefor
KR1020207018244A KR20200093598A (en) 2017-12-12 2018-10-30 Felicle frame body for FPD (Flat Panel Display) and its manufacturing method
CN201880079613.5A CN111448516A (en) 2017-12-12 2018-10-30 Protective film frame for FPD (flat panel display) and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-237595 2017-12-12
JP2017237595A JP6899759B2 (en) 2017-12-12 2017-12-12 Pellicle frame for FPD (flat panel display) and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2019116755A1 true WO2019116755A1 (en) 2019-06-20

Family

ID=66820284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040227 WO2019116755A1 (en) 2017-12-12 2018-10-30 Pellicle frame body for flat panel display (fpd) and manufacturing method therefor

Country Status (7)

Country Link
US (1) US20210173298A1 (en)
EP (1) EP3726292A4 (en)
JP (1) JP6899759B2 (en)
KR (1) KR20200093598A (en)
CN (1) CN111448516A (en)
TW (1) TWI762737B (en)
WO (1) WO2019116755A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4130315A4 (en) * 2020-03-27 2023-08-23 Nippon Light Metal Co., Ltd. Aluminum alloy member and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330263A (en) * 1993-05-24 1994-11-29 Sumitomo Light Metal Ind Ltd Production of high toughness al-si series alloy
JPH10324940A (en) * 1997-03-28 1998-12-08 Nissan Motor Co Ltd Wear resistant aluminum ally, and production of sliding member using the same
JP2001279359A (en) * 2000-01-25 2001-10-10 Nippon Light Metal Co Ltd Method for producing pellicle frame and hollow extruded material for pellicle frame
JP2006284927A (en) 2005-03-31 2006-10-19 Nippon Light Metal Co Ltd Pellicle, support frame, frame, and method for manufacturing frame
JP2009003111A (en) 2007-06-20 2009-01-08 Kobelco Kaken:Kk Pellicle frame
JP2011007827A (en) * 2009-06-23 2011-01-13 Shin Etsu Polymer Co Ltd Storage container for large precision member

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131352A (en) * 1990-09-21 1992-05-06 Mitsubishi Materials Corp Al-si-mg sintered alloy having excellent wear resistance
DE19950595C1 (en) * 1999-10-21 2001-02-01 Dorn Gmbh C Production of sintered parts made of aluminum sintered mixture comprises mixing pure aluminum powder and aluminum alloy powder to form a sintered mixture, mixing with a pressing auxiliary agent, pressing, and sintering
JP3691399B2 (en) * 2001-02-15 2005-09-07 日本軽金属株式会社 Method for producing hot-worked aluminum alloy powder
JP4388467B2 (en) * 2004-12-28 2009-12-24 信越化学工業株式会社 Pellicle and pellicle frame for photolithography
KR20070087967A (en) * 2006-02-24 2007-08-29 강준모 Pellicle frame
CN102681334B (en) * 2007-07-06 2015-09-30 旭化成电子材料株式会社 From the removing method holding container taking-up large pellicle component
JP2009025559A (en) * 2007-07-19 2009-02-05 Shin Etsu Chem Co Ltd Pellicle frame
JP5411595B2 (en) * 2009-06-24 2014-02-12 信越化学工業株式会社 Pellicle frame and lithography pellicle
JP4889778B2 (en) * 2009-10-02 2012-03-07 信越化学工業株式会社 Pellicle manufacturing method and lithography pellicle
JP5619436B2 (en) * 2010-03-10 2014-11-05 旭化成イーマテリアルズ株式会社 Large pellicle frame and large pellicle
TWI456341B (en) * 2010-03-10 2014-10-11 Asahi Kasei E Materials Corp Large protective film frame and large protective film
US9599889B2 (en) * 2012-07-17 2017-03-21 Nippon Light Metal Company, Ltd. Method for manufacturing support frame for pellicle, support frame for pellicle, and pellicle
JP6439792B2 (en) * 2014-03-31 2018-12-19 日立金属株式会社 Al-Si-Mg-based aluminum alloy for casting excellent in specific rigidity, strength and ductility, cast member made thereof and road wheel for automobile
WO2017168892A1 (en) * 2016-03-30 2017-10-05 昭和電工株式会社 Method for producing al-mg-si alloy plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330263A (en) * 1993-05-24 1994-11-29 Sumitomo Light Metal Ind Ltd Production of high toughness al-si series alloy
JPH10324940A (en) * 1997-03-28 1998-12-08 Nissan Motor Co Ltd Wear resistant aluminum ally, and production of sliding member using the same
JP2001279359A (en) * 2000-01-25 2001-10-10 Nippon Light Metal Co Ltd Method for producing pellicle frame and hollow extruded material for pellicle frame
JP2006284927A (en) 2005-03-31 2006-10-19 Nippon Light Metal Co Ltd Pellicle, support frame, frame, and method for manufacturing frame
JP2009003111A (en) 2007-06-20 2009-01-08 Kobelco Kaken:Kk Pellicle frame
JP2011007827A (en) * 2009-06-23 2011-01-13 Shin Etsu Polymer Co Ltd Storage container for large precision member

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3726292A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4130315A4 (en) * 2020-03-27 2023-08-23 Nippon Light Metal Co., Ltd. Aluminum alloy member and method for manufacturing same

Also Published As

Publication number Publication date
JP6899759B2 (en) 2021-07-07
JP2019105714A (en) 2019-06-27
EP3726292A4 (en) 2021-02-24
TW201930607A (en) 2019-08-01
US20210173298A1 (en) 2021-06-10
TWI762737B (en) 2022-05-01
CN111448516A (en) 2020-07-24
KR20200093598A (en) 2020-08-05
EP3726292A1 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
Jamaati et al. High-strength and highly-uniform composite produced by anodizing and accumulative roll bonding processes
JP2019131890A (en) Strip having excellent corrosion resistance after blazing
RU2635675C2 (en) Ribbing material super-resistant to deflection and melting material with very high strength
WO2019116755A1 (en) Pellicle frame body for flat panel display (fpd) and manufacturing method therefor
CN112602018B (en) Pellicle frame for flat panel display and method of manufacturing the same
JP5950791B2 (en) Composite member made of corrosion-resistant Ni-based alloy and aluminum or aluminum alloy
KR101635793B1 (en) Aluminum alloy matrix composite clad and fabrication method thereof
WO2018012323A1 (en) Pellicle frame and pellicle
WO2018012324A1 (en) Pellicle frame and pellicle
JP2009030106A (en) Aluminum alloy panel and manufacturing method therefor
KR20160092558A (en) Preparing method of high uniform and ductile magnesium alloy sheet
KR101489745B1 (en) Three-layer aluminum alloy clad sheet and the method for manufacturing thereof
WO2016056240A1 (en) Superplastic-forming aluminium alloy plate and production method therefor
KR20150127875A (en) High strength clad material having good sag resistance and sacrificed protection property and producing method for the same
KR20170132808A (en) Aluminum alloy tube excellent in corrosion resistance and workability and manufacturing method thereof
JP2007186748A (en) Aluminum alloy material to be formed at high temperature and high speed, manufacturing method therefor and method for manufacturing formed article from aluminum alloy
JP2006188730A (en) SMALL STRUCTURAL PARTS WITH EXCELLENT IMPACT FORMABILITY USING Al-Mg-Zn-BASED ALLOY
JP2023043056A (en) Aluminum alloy clad material, and heat exchanger
JP5510812B2 (en) Cu alloy film for wiring film and sputtering target material for forming wiring film
JP2004158608A (en) Square tube for housing electronic component and package for optical-electrical conversion component using the same, and method of manufacturing square tube and package
JP2012040609A (en) Structure using aluminum alloy extruded material, and method for joining the same
JP2006144118A (en) Backing plate for sputtering target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207018244

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018888674

Country of ref document: EP

Effective date: 20200713