WO2019116486A1 - Excavator - Google Patents

Excavator Download PDF

Info

Publication number
WO2019116486A1
WO2019116486A1 PCT/JP2017/044847 JP2017044847W WO2019116486A1 WO 2019116486 A1 WO2019116486 A1 WO 2019116486A1 JP 2017044847 W JP2017044847 W JP 2017044847W WO 2019116486 A1 WO2019116486 A1 WO 2019116486A1
Authority
WO
WIPO (PCT)
Prior art keywords
lever
control
arm
sensitivity
boom
Prior art date
Application number
PCT/JP2017/044847
Other languages
French (fr)
Japanese (ja)
Inventor
春男 呉
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to PCT/JP2017/044847 priority Critical patent/WO2019116486A1/en
Priority to JP2019559483A priority patent/JPWO2019116486A1/en
Priority to CN201780097676.9A priority patent/CN111465737A/en
Publication of WO2019116486A1 publication Critical patent/WO2019116486A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G9/00Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously
    • G05G9/02Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only
    • G05G9/04Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously
    • G05G9/047Manually-actuated control mechanisms provided with one single controlling member co-operating with two or more controlled members, e.g. selectively, simultaneously the controlling member being movable in different independent ways, movement in each individual way actuating one controlled member only in which movement in two or more ways can occur simultaneously the controlling member being movable by hand about orthogonal axes, e.g. joysticks

Definitions

  • the present disclosure relates to a shovel including an operation lever configured to simultaneously operate a plurality of actuators.
  • the operator of a shovel may perform combined operation of boom lowering operation, arm closing operation, and bucket closing operation.
  • the shovel according to the embodiment of the present invention includes a lower traveling body, an upper revolving superstructure mounted on the lower traveling body, a driver's cab attached to the upper revolving superstructure, and a plurality installed in the operator's cab And a control device for adjusting the sensitivity of the operating lever.
  • It is a flowchart of use promotion processing It is a figure which shows the structural example of the operation system containing an electrical control apparatus. It is a figure which shows another structural example of the operation system containing an electrical control apparatus.
  • FIG. 1 is a side view of a shovel.
  • An upper swing body 3 is mounted on a lower traveling body 1 of the shovel shown in FIG. 1 via a turning mechanism 2.
  • a boom 4 as a working element is attached to the upper swing body 3.
  • An arm 5 as a working element is attached to the tip of the boom 4, and a bucket 6 as a working element and an end attachment is attached to the tip of the arm 5.
  • the boom 4, the arm 5 and the bucket 6 constitute a digging attachment as an attachment.
  • the boom 4, the arm 5 and the bucket 6 are hydraulically driven by the boom cylinder 7, the arm cylinder 8 and the bucket cylinder 9 respectively.
  • the upper revolving superstructure 3 is provided with a cabin 10 as a driver's cab, and a power source such as an engine 11 is mounted.
  • FIG. 2 is a block diagram showing a configuration example of a drive system of the shovel shown in FIG. 1, and the mechanical power transmission line, the hydraulic oil line, the pilot line and the electric control line are shown by double lines, thick solid lines, broken lines and dotted lines, respectively. Show.
  • the drive system of the shovel mainly includes the engine 11, the regulator 13, the main pump 14, the pilot pump 15, the control valve 17, the operating device 26, the pressure reducing valve 27, the discharge pressure sensor 28, the pressure sensor 29, the controller 30, the switch 31, etc. including.
  • the engine 11 is a driving source of a shovel.
  • the engine 11 is, for example, a diesel engine as an internal combustion engine that operates to maintain a predetermined rotational speed.
  • the output shaft of the engine 11 is connected to the input shaft of the main pump 14 and the pilot pump 15.
  • the main pump 14 is a device for supplying hydraulic fluid to the control valve 17 via a hydraulic fluid line, and is, for example, a swash plate type variable displacement hydraulic pump.
  • the regulator 13 is a device for controlling the discharge amount of the main pump 14.
  • the regulator 13 controls the discharge amount of the main pump 14 by adjusting the swash plate tilt angle of the main pump 14 according to, for example, the discharge pressure of the main pump 14, the command current from the controller 30, and the like. Do.
  • the pilot pump 15 is a device that supplies hydraulic fluid to various hydraulic control devices including the operating device 26 via a pilot line, and is, for example, a fixed displacement hydraulic pump.
  • the control valve 17 is a hydraulic control device that controls a hydraulic system mounted on a shovel.
  • the control valve 17 includes a plurality of control valves that control the flow of the hydraulic fluid discharged by the main pump 14.
  • the control valve 17 selectively supplies the hydraulic fluid discharged by the main pump 14 to one or more hydraulic actuators through the control valves.
  • the control valves control the flow rate of hydraulic fluid flowing from the main pump 14 to the hydraulic actuator and the flow rate of hydraulic fluid flowing from the hydraulic actuator to the hydraulic fluid tank.
  • the hydraulic actuator includes a boom cylinder 7, an arm cylinder 8, a bucket cylinder 9, a left traveling hydraulic motor 1L, a right traveling hydraulic motor 1R, and a turning hydraulic motor 2A.
  • the turning hydraulic motor 2A is an example of a turning device for turning the upper swing body 3 with respect to the lower traveling body 1 and may be replaced by a turning electric motor as an electric actuator.
  • the operating device 26 is a device used by the operator for operating the actuator.
  • the actuator includes a hydraulic actuator and an electric actuator.
  • the operating device 26 supplies the hydraulic fluid discharged by the pilot pump 15 to the pilot port of the control valve corresponding to each of the hydraulic actuators via the pilot line and the pressure reducing valve 27.
  • the pressure of the hydraulic fluid supplied to each of the pilot ports (hereinafter referred to as "pilot pressure") is a pressure corresponding to the operating direction and operating amount of the lever or pedal of the operating device 26 corresponding to each of the hydraulic actuators. is there.
  • the pressure reducing valve 27 is a device that reduces the pilot pressure generated by the operating device 26 and outputs it.
  • the pressure reducing valve 27 increases or decreases the pilot pressure according to the command current from the controller 30.
  • the pressure reducing valve 27 reduces the pilot pressure as the command current increases.
  • the discharge pressure sensor 28 is a sensor for detecting the discharge pressure of the main pump 14, and outputs the detected value to the controller 30.
  • the pressure sensor 29 is a sensor for detecting the operation content of the operator using the operating device 26.
  • the pressure sensor 29 detects, for example, the operating direction and operating amount of the lever or pedal of the operating device 26 corresponding to each of the hydraulic actuators in the form of pressure, and outputs the detected values to the controller 30 Do.
  • the operation content of the operating device 26 may be detected using another sensor other than the pressure sensor.
  • the controller 30 is a control device for controlling a shovel.
  • the controller 30 is configured by, for example, a computer provided with a CPU, a RAM, an NVRAM, a ROM, and the like. Further, the controller 30 reads a program corresponding to the sensitivity adjustment unit 300 from the ROM and loads the program into the RAM, and causes the CPU to execute a corresponding process.
  • the controller 30 executes the processing by the sensitivity adjustment unit 300 based on the output of the pressure sensor 29, the switch 31, and the like. Then, the controller 30 outputs a command according to the processing result of the sensitivity adjustment unit 300 to the pressure reducing valve 27 or the like.
  • the sensitivity adjustment unit 300 is a functional element that adjusts the sensitivity of the operation lever as the operation device 26.
  • the left control lever of the two control levers installed in the cabin 10 functions as an arm control lever and a turning control lever
  • the right control lever functions as a boom control lever and a bucket control lever.
  • the operation in the front-rear direction of the left operation lever corresponds to the operation of the arm operation lever
  • the operation in the left-right direction of the left operation lever corresponds to the operation of the turn operation lever.
  • the forward operation of the left operation lever corresponds to the arm opening operation
  • the backward operation opposite to the front direction corresponds to the arm closing operation.
  • the operation of the left operation lever in the left direction corresponds to the left turn operation
  • the operation in the right direction opposite to the left direction corresponds to the right turn operation
  • the operation of the right operating lever in the front-rear direction corresponds to the operation of the boom operating lever
  • the operation of the right operating lever in the left-right direction corresponds to the operation of the bucket operating lever.
  • the operation in the forward direction of the right control lever corresponds to the boom lowering operation
  • the operation in the backward direction opposite to the front direction corresponds to the boom raising operation
  • the operation of the right control lever in the left direction corresponds to the bucket closing operation
  • the operation in the right direction opposite to the left direction corresponds to the bucket opening operation.
  • the operator can operate the arm 5 and the turning device at the same time using the left operation lever, and can operate the boom 4 and the bucket 6 simultaneously using the right operation lever.
  • the longitudinal direction and the lateral direction of the operating lever are substantially orthogonal to each other.
  • the sensitivity adjustment unit 300 can maintain, for example, the sensitivity of the arm operation lever and lower the sensitivity of the swing operation lever with respect to the left operation lever. In this case, the operator may move the turning device even when the driver intends to operate (tilt) the left operation lever in the front-rear direction but operates (tilt) slightly in a diagonal direction. Absent. By lowering the sensitivity of the turning operation lever, it is difficult to reflect the operation on the turning operation lever.
  • the switch 31 is a functional element that switches the operation mode of the shovel.
  • the switch 31 is a software switch displayed on the screen of a display device such as a car-mounted display with a touch panel.
  • the switch 31 may be a hardware switch installed in the cabin 10.
  • the operation mode of the shovel includes an operation error prevention mode.
  • the erroneous operation preventing mode is an operation mode for suppressing or preventing the erroneous operation of the operating lever.
  • the shovel starts adjustment of the sensitivity of the operation lever by the sensitivity adjustment unit 300 as needed. With this configuration, the operator can switch between activation and deactivation of the function of adjusting the sensitivity of the operation lever.
  • FIG. 3 is a schematic view showing a configuration example of a hydraulic system mounted on the shovel of FIG. Similar to FIG. 2, FIG. 3 shows the mechanical power transmission line, the hydraulic fluid line, the pilot line, and the electrical control line, respectively, by a double line, a thick solid line, a broken line, and a dotted line.
  • the hydraulic system circulates the hydraulic oil from the main pumps 14L, 14R driven by the engine 11 to the hydraulic oil tank through the center bypass pipelines 40L, 40R and the parallel pipelines 42L, 42R.
  • the main pumps 14L, 14R correspond to the main pump 14 of FIG.
  • the center bypass line 40L is a hydraulic oil line passing through control valves 171L to 175L disposed in the control valve 17.
  • the center bypass line 40R is a hydraulic oil line passing through control valves 171R to 175R disposed in the control valve 17.
  • the control valve 171L supplies the hydraulic fluid discharged by the main pump 14L to the left traveling hydraulic motor 1L, and the flow of the hydraulic oil for discharging the hydraulic fluid discharged by the left traveling hydraulic motor 1L to the hydraulic oil tank It is a spool valve which switches.
  • the control valve 171R is a spool valve as a straight traveling valve.
  • the control valve 171R switches the flow of hydraulic fluid so that the hydraulic fluid is supplied from the main pump 14L to the left side traveling hydraulic motor 1L and the right side traveling hydraulic motor 1R in order to improve the rectilinearity of the lower traveling body 1.
  • the main pump 14L is the left side traveling hydraulic motor 1L and the right side traveling hydraulic Hydraulic oil is supplied to both of the motor 1R.
  • the main pump 14L supplies hydraulic fluid to the left traveling hydraulic motor 1L
  • the main pump 14R supplies hydraulic fluid to the right traveling hydraulic motor 1R.
  • the control valve 172L supplies hydraulic fluid discharged by the main pump 14L to the optional hydraulic actuator, and a spool valve that switches the flow of hydraulic fluid to discharge hydraulic fluid discharged by the optional hydraulic actuator to the hydraulic fluid tank. It is.
  • the option hydraulic actuator 50 is, for example, a grapple open / close cylinder.
  • the control valve 172R supplies the hydraulic fluid discharged by the main pump 14R to the right-side traveling hydraulic motor 1R, and the flow of the hydraulic oil for discharging the hydraulic fluid discharged by the right-side traveling hydraulic motor 1R to the hydraulic oil tank. It is a spool valve which switches.
  • the control valve 173L supplies the hydraulic fluid discharged by the main pump 14L to the swing hydraulic motor 2A, and switches the flow of the hydraulic fluid to discharge the hydraulic fluid discharged by the swing hydraulic motor 2A to the hydraulic fluid tank. It is a spool valve.
  • the control valve 173R is a spool valve for supplying the hydraulic fluid discharged by the main pump 14R to the bucket cylinder 9 and discharging the hydraulic fluid in the bucket cylinder 9 to a hydraulic fluid tank.
  • the control valves 174L and 174R supply hydraulic fluid discharged by the main pumps 14L and 14R to the boom cylinder 7, and switch the flow of hydraulic fluid to discharge the hydraulic fluid in the boom cylinder 7 to the hydraulic fluid tank. It is a valve.
  • the control valve 174L operates only when the raising operation of the boom 4 is performed, and does not operate when the lowering operation of the boom 4 is performed.
  • the control valves 175L and 175R supply hydraulic fluid discharged by the main pumps 14L and 14R to the arm cylinder 8, and switch the flow of hydraulic fluid to discharge the hydraulic fluid in the arm cylinder 8 to the hydraulic fluid tank. It is a valve.
  • the parallel line 42L is a hydraulic oil line parallel to the center bypass line 40L.
  • the parallel pipeline 42L can supply hydraulic fluid to the control valve further downstream if the flow of hydraulic fluid through the center bypass pipeline 40L is restricted or shut off by any of the control valves 171L to 174L.
  • the parallel line 42R is a hydraulic oil line parallel to the center bypass line 40R.
  • the parallel line 42R can supply hydraulic fluid to the control valve further downstream if the flow of hydraulic fluid through the center bypass line 40R is restricted or shut off by any of the control valves 172R to 174R.
  • the regulators 13L, 13R control the discharge amounts of the main pumps 14L, 14R by adjusting the swash plate tilt angles of the main pumps 14L, 14R according to the discharge pressures of the main pumps 14L, 14R.
  • the regulators 13L and 13R correspond to the regulator 13 of FIG.
  • the regulators 13L, 13R for example, adjust the swash plate tilt angles of the main pumps 14L, 14R to decrease the discharge amount when the discharge pressures of the main pumps 14L, 14R become equal to or greater than a predetermined value. This is to prevent the absorption horsepower of the main pump 14 represented by the product of the discharge pressure and the discharge amount from exceeding the output horsepower of the engine 11.
  • the arm control lever 26 ⁇ / b> A is an example of the control device 26 and is used to operate the arm 5. Further, the arm control lever 26A applies the pilot pressure corresponding to the lever operation amount to the pilot ports of the control valves 175L and 175R by using the hydraulic oil discharged by the pilot pump 15. Specifically, when the arm control lever 26A is operated in the arm closing direction, the pilot pressure is applied to the right pilot port of the control valve 175L and the pilot pressure is applied to the left pilot port of the control valve 175R. . The pilot pressure at this time is generated by the remote control valve 26AVL using the hydraulic oil discharged by the pilot pump 15.
  • the pilot pressure is applied to the left pilot port of the control valve 175L and the pilot pressure is applied to the right pilot port of the control valve 175R.
  • the pilot pressure at this time is generated by the remote control valve 26AVR using the hydraulic oil discharged by the pilot pump 15.
  • the pressure reducing valves 27AL and 27AR are solenoid valves that operate in response to a command from the controller 30, and correspond to the pressure reducing valve 27 in FIG.
  • the pressure reducing valve 27AL reduces the pilot pressure generated by the remote control valve 26AVL when the arm operating lever 26A is operated in the closing direction and causes the pilot pressure on the right pilot port of the control valve 175L and the left pilot port of the control valve 175R.
  • the pressure reducing valve 27AR reduces the pilot pressure generated by the remote control valve 26AVR when the arm operating lever 26A is operated in the opening direction, and applies the pressure to the left pilot port of the control valve 175L and the right pilot port of the control valve 175R.
  • the pressure sensor 27A is a sensor for detecting the post-decompression pilot pressure after the decompression by the decompression valves 27AL and 27AR, and outputs the detected value to the controller 30.
  • the pressure sensor 29A corresponds to the pressure sensor 29 of FIG.
  • the pressure sensor 29A detects the operation content of the operator on the arm control lever 26A in the form of pressure, and outputs the detected value to the controller 30.
  • the operation content is, for example, a lever operation direction, a lever operation amount (lever operation angle), and the like.
  • the left and right travel levers (or pedals), the boom operation lever, the bucket operation lever, and the turning operation lever (all not shown) respectively travel the lower traveling body 1, move the boom 4 up and down, open and close the bucket 6, It is an operating device for operating turning of upper revolving unit 3. Similar to the arm control lever 26A, these control devices control the pilot pressure corresponding to the lever operation amount (or the pedal operation amount) corresponding to each of the hydraulic actuators using the hydraulic oil discharged by the pilot pump 15 Act on either the left or right pilot port of the valve. In addition, the operation content of the operator with respect to each of these operation devices is detected in the form of pressure by the corresponding pressure sensor as in the pressure sensor 29A, and the detected value is output to the controller 30.
  • FIG. 3 shows only the arm control lever 26A and the pilot line thereof for the sake of clarity, but in practice the boom control lever, the bucket control lever, the turning control lever and the like also correspond via the pilot line. It is connected to the pilot port of the control valve.
  • negative control control (hereinafter referred to as "negative control") employed in the hydraulic system of FIG. 3 will be described.
  • the center bypass lines 40L, 40R are provided with negative control throttles 18L, 18R between the hydraulic oil tanks and the control valves 175L, 175R located most downstream.
  • the flow of hydraulic fluid discharged by the main pumps 14L, 14R is limited by the negative control throttles 18L, 18R.
  • the negative control diaphragms 18L and 18R generate control pressure (hereinafter referred to as "negative control pressure") for controlling the regulators 13L and 13R.
  • the negative control pressure sensors 19L and 19R are sensors for detecting the negative control pressure generated upstream of the negative control stops 18L and 18R. In the present embodiment, the negative control pressure sensors 19L and 19R output the detected values to the controller 30.
  • the controller 30 outputs a command corresponding to the negative control pressure to the regulators 13L and 13R.
  • the regulators 13L, 13R control the discharge amounts of the main pumps 14L, 14R by adjusting the swash plate tilt angles of the main pumps 14L, 14R according to the command. Specifically, the regulators 13L and 13R reduce the discharge amount of the main pumps 14L and 14R as the negative control pressure is larger, and increase the discharge amounts of the main pumps 14L and 14R as the negative control pressure is smaller.
  • the hydraulic fluid discharged by the main pumps 14L, 14R passes through the center bypass pipelines 40L, 40R and the negative control throttles 18L, 18R. Lead to The flow of hydraulic fluid discharged by the main pumps 14L, 14R increases the negative control pressure generated upstream of the negative control throttles 18L, 18R. As a result, the regulators 13L and 13R reduce the discharge amount of the main pumps 14L and 14R to the allowable minimum discharge amount, and the pressure loss (pumping loss) when the discharged hydraulic oil passes through the center bypass pipelines 40L and 40R. Suppress.
  • the hydraulic fluid discharged by the main pumps 14L, 14R flows into the hydraulic actuator to be operated via the control valve corresponding to the hydraulic actuator to be operated.
  • the control valve reduces or eliminates the amount of hydraulic oil reaching the negative control throttles 18L and 18R, and reduces the negative control pressure generated upstream of the negative control throttles 18L and 18R.
  • the regulators 13L and 13R increase the discharge amount of the main pumps 14L and 14R, circulate sufficient hydraulic oil to the hydraulic actuator to be operated, and ensure the driving of the hydraulic actuator to be operated.
  • the hydraulic system of FIG. 3 can suppress unnecessary energy consumption in the main pumps 14L and 14R in the standby mode.
  • the wasteful energy consumption includes the pumping loss generated by the hydraulic fluid discharged by the main pumps 14L, 14R in the center bypass lines 40L, 40R.
  • FIG. 4 is a flowchart showing the flow of sensitivity adjustment processing.
  • sensitivity adjustment processing of the arm operation lever 26A and the left operation lever that functions as a turning operation lever will be described.
  • the following description is equally applied to the right control lever which functions as the boom control lever and the bucket control lever.
  • the sensitivity adjustment unit 300 of the controller 30 determines whether or not the erroneous operation preventing mode is set (step ST1).
  • the erroneous operation prevention mode is selected, for example, by the operation input of the operator via the switch 31.
  • the sensitivity adjustment unit 300 may automatically select the erroneous operation prevention mode when a predetermined condition is satisfied.
  • the sensitivity adjustment unit 300 compares the lever operation amount of the arm operation lever 26A with the lever operation amount of the turning operation lever, and operates the lever operation of the arm operation lever 26A. It is determined whether the amount is equal to or more than the amount obtained by adding the predetermined amount ⁇ to the lever operation amount of the turning operation lever (step ST2).
  • the predetermined amount ⁇ is an amount preset in the controller 30 or the like, and for example, is used to determine whether the lever operation amount of the arm operation lever 26A is overwhelmingly larger than the lever operation amount of the turning operation lever Be
  • the sensitivity adjustment unit 300 acquires the lever operation amounts of the arm operation lever 26A and the turning operation lever as comparable values.
  • the lever operation amounts of the arm control lever 26A and the turning control lever are obtained in the form of comparable values such as pilot pressure and lever inclination angle.
  • the sensitivity adjustment unit 300 detects the arm operation lever 26A.
  • the amount of lever operation of the lever and the amount of lever operation of the turning operation lever are compared, and it is determined whether the amount of lever operation of the turning operation lever is equal to or greater than the predetermined amount ⁇ added to the amount of lever operation of the arm operation lever 26A.
  • the predetermined amount ⁇ is an amount preset in the controller 30 or the like, and for example, it is determined whether the lever operation amount of the turning operation lever is overwhelmingly larger than the lever operation amount of the arm operation lever 26A. Used for The predetermined amount ⁇ in step ST3 may be different from the predetermined amount ⁇ in step ST2.
  • the sensitivity adjustment unit 300 detects the arm operation lever 26A. Lower the sensitivity (step ST4). For example, the sensitivity adjustment unit 300 outputs a control command to each of the pressure reducing valve 27AL and the pressure reducing valve 27AR shown in FIG. 3 to reduce the pilot pressure generated by the arm control lever 26A.
  • the arm 5 is opened even when the operator intends to operate the left operation lever in the right direction to turn right but operates in the slightly forward right direction. It can be suppressed or prevented. This is because the arm opening side pilot pressure that has been increased unintentionally can be reduced.
  • the sensitivity adjustment unit 300 adjusts the sensitivity of the operation lever
  • the normal control is executed without performing (step ST5).
  • the difference between the lever operation amount of the turning operation lever and the lever operation amount of the arm operation lever 26A is less than a predetermined amount ⁇ , that is, the turning operation lever and the arm operation lever 26A are simultaneously operated with substantially the same lever operation amount, This is because it can be determined that it is not necessary to adjust the sensitivity of the lever.
  • the normal control is a control based on the pilot pressure generated by the operating device 26 without sensitivity adjustment.
  • the sensitivity adjustment unit 300 detects the sensitivity of the turning operation lever. Lower (step ST6). For example, the sensitivity adjustment unit 300 outputs a control command to the pressure reducing valve as described above, and reduces the pilot pressure generated by the turning operation lever.
  • the sensitivity adjustment unit 300 automatically reduces the sensitivity of the operation lever with the smaller lever operation amount.
  • the present invention is not limited to this configuration.
  • the operator may set the sensitivity of the desired operating lever to be reduced to the desired level.
  • the operator may set the sensitivity so that only the sensitivity of the specific operation lever is reduced using the switch 31, and the degree of the reduction may be set in detail.
  • the operator may significantly reduce the sensitivity of the operating lever that he does not intend to move.
  • the detected value of pressure sensor 29A (hereinafter referred to as "primary side pilot pressure") representing the lever operation amount of arm operation lever 26A and the detected value of pressure sensor 27A (hereinafter referred to as " It is a figure which shows the relationship between "the secondary side pilot pressure”.
  • the primary side pilot pressure is a pilot pressure on the upstream side (arm control lever 26A side) of the pressure reducing valves 27AL, 27AR, and the secondary side pilot pressure is downstream of the pressure reducing valves 27AL, 27AR (control valves 175L, 175R side Pilot pressure).
  • the lever operation amount can be calculated based on the primary side pilot pressure and the characteristics of the remote control valve 26AV.
  • the primary side pilot pressure is actually represented by a positive value
  • the primary side pilot pressure in the arm opening direction is represented by a positive value
  • the primary side pilot in the arm closing direction is represented.
  • Pressure is expressed as a negative value.
  • the right side of the horizontal axis indicates the primary side pilot pressure (positive value) in the arm opening direction
  • the left side of the horizontal axis indicates the primary side pilot pressure (negative value) in the arm closing direction.
  • the vertical axis represents the secondary side pilot pressure acting on the pilot port.
  • the solid line shows the relationship after sensitivity adjustment, and the broken line shows the relationship before sensitivity adjustment.
  • FIG. 5A shows a method of reducing the sensitivity of the arm control lever 26A by expanding the dead zone of the arm control lever 26A. Specifically, a method of shifting the secondary side pilot pressure with the pressure reducing valve based on the lever operation amount is shown.
  • the dead zone means a range in which the lever operation amount is considered to be zero even if it is not zero.
  • the sensitivity adjustment unit 300 outputs a command to the pressure reducing valve 27AL and the pressure reducing valve 27AR, and the dead zone in the range W1 of the primary side pilot pressure -L1 to + L1 is set to the range W2 of the primary side pilot pressure -L2 to + L2. Expanding.
  • the secondary side pilot pressure acting on the arm open side pilot port displaces the control valve 175L and the control valve 175R from the neutral position It is maintained at the level which does not Similarly, if the primary side pilot pressure on the closing side of the arm control lever 26A is -L2 to 0, the secondary side pilot pressure acting on the arm closing side pilot port moves the control valve 175L and the control valve 175R to the neutral position. Maintained at a level that does not displace from In the example of FIG. 5A, the dead zone is changed by the same width (L2-L1) on both the arm open side and the arm closed side, but the dead zone is changed by different widths on the arm open side and the arm closed side. It is also good.
  • FIG. 5B shows a method of lowering the sensitivity of the arm control lever 26A by reducing the rate of increase of the secondary side pilot pressure with respect to the primary side pilot pressure of the arm control lever 26A. Specifically, a method is shown in which the rate of increase (inclination) of the secondary side pilot pressure is changed by the pressure reducing valve based on the lever operation amount.
  • the sensitivity adjustment unit 300 outputs a command to the pressure reducing valve 27AL and the pressure reducing valve 27AR, and increases the rate of increase of the secondary side pilot pressure to the primary side pilot pressure when operating the arm control lever 26A in the opening direction from ⁇ 1 to ⁇ 2. Reduce.
  • the secondary side pilot pressure which has started to increase when the primary side pilot pressure is + L1 and reaches the maximum value at + L2 is delayed to reach the maximum value when + L3 instead of + L2.
  • the arm control lever 26A is operated in the closing direction.
  • the increase rate is changed by the same slope ( ⁇ 1- ⁇ 2) on both the arm open side and the arm close side, the increase rate is changed by different slopes on the arm open side and the arm close side.
  • the sensitivity adjustment unit 300 can adjust the sensitivity of the control lever by controlling the pressure reducing valve 27AL and the pressure reducing valve 27AR to change the relationship between the primary side pilot pressure and the secondary side pilot pressure. Therefore, when the operator tries to operate the left operating lever only in the turning direction, the arm 5 does not open even if the left operating lever is unintentionally tilted in the arm opening direction. As a result, it is possible to prevent an arm opening operation not intended by the operator. Moreover, although FIG. 5A and FIG. 5B demonstrated regarding arm control lever 26A, the same may be said of the other control lever.
  • FIG. 6 is a view of the left operating lever as viewed from directly above.
  • the vertical axis corresponds to the operating direction of the arm operating lever 26A, and the horizontal axis corresponds to the operating direction of the turning operating lever.
  • the shaded area in FIG. 6 indicates a dead zone. Specifically, a hatched region extending in the lateral direction indicates the dead zone of the arm control lever 26A, and a hatched region extending in the longitudinal direction indicates the dead zone of the turning operation lever.
  • the dot pattern area in FIG. 6 indicates a fine operation area. Specifically, the dot pattern area extending in the lateral direction indicates the fine operation area of the arm control lever 26A, and the dot pattern area extending in the longitudinal direction indicates the fine operation area of the turning control lever.
  • the lever position P0 indicates that the left operation lever is in the neutral position
  • the lever position P1 indicates that the turn operation lever is operated in the left turn direction as intended by the operator.
  • the lever position P2 indicates a state in which the turning operation lever is operated in the right turning direction and the arm operation lever 26A is operated in the closing direction as intended by the operator.
  • the lever position P4 indicates that the arm control lever 26A is operated in the opening direction as intended by the operator, but the turning operation lever has been erroneously operated in the left turning direction against the operator's intention. .
  • the state shown by each of the lever position P3 and the lever position P4 indicates a state in which an erroneous operation is being performed. That is, in the above-described example, the erroneous operation is performed when the swing operation lever is finely operated when the arm operation lever 26A is operated beyond the fine operation area (a state indicated by the lever position P4 )including. Also, it includes a state in which the arm control lever 26A is finely operated (a state indicated by the lever position P3) when the turning operation lever is operated beyond the fine operation area.
  • the erroneous operation rate is calculated based on the statistical value of the time operated in the fine operation area shown in FIG. 6 (the time when the erroneous operation is performed) within a predetermined time. For example, it is derived as a ratio of the erroneous operation time to the total operation time of the left operation lever.
  • the total operation time is, for example, the time when the control lever is at a position other than the neutral position or the time when the control lever is at a position other than the dead zone.
  • the erroneous operation time is, for example, a time during which an erroneous operation is being performed.
  • the erroneous operation rate may be derived as a ratio of the number of erroneous operations to the total number of operations of the operating lever, or may be derived in other manners.
  • One operation of the operating lever is, for example, an operation from when the operating lever comes out of the neutral position and returns to the neutral position.
  • the controller 30 can grasp not only the calculation of the erroneous operation rate but also the feature of the lever operation which the operator can easily operate erroneously. For example, the controller 30 can grasp for each operator a tendency that a certain operator unintentionally tilts the left operation lever in the right turning direction when attempting to close the arm only. In this case, the controller 30 may reduce only the sensitivity to the right turn operation. That is, no change from the normal control is necessary for the sensitivity to the left turn operation.
  • FIG. 7 is a flowchart of the use promotion process.
  • the controller 30 repeatedly executes the usage promotion process at a predetermined control cycle.
  • the controller 30 determines whether the misoperation rate is equal to or greater than a predetermined threshold (step ST11). For example, the controller 30 stores the operation content of the operation lever in time series. Then, an erroneous operation rate is derived based on the operation history at a predetermined time.
  • the predetermined time is, for example, a predetermined time (for example, one hour) after the start of the engine. Then, it is determined whether the erroneous operation rate in a predetermined time is equal to or more than a threshold.
  • the controller 30 promotes the use of the misoperation prevention mode (step ST12). For example, the controller 30 displays a text message promoting the use of the erroneous operation prevention mode on the screen of the display device together with the switch 31 as a software switch. The operator can start the erroneous operation prevention mode by pressing the switch 31. A voice message may be output from the on-vehicle speaker that promotes the use of the erroneous operation prevention mode.
  • the controller 30 may automatically start the erroneous operation prevention mode.
  • the controller 30 may display an image indicating that the operation error prevention mode is in progress on the screen of the display device, and periodically output a voice message indicating that the operation error prevention mode is in progress from the on-vehicle speaker It is also good.
  • a voice message may be output from the in-vehicle speaker indicating that the operation error prevention mode has been started.
  • the sensitivity adjustment unit 300 may change the adjustment content of the sensitivity of the operation lever according to the erroneous operation rate. For example, the sensitivity adjustment unit 300 may increase the width of the dead zone as the erroneous operation rate is higher. Alternatively, the sensitivity adjustment unit 300 may reduce the increase rate of the pilot pressure with respect to the lever operation amount as the erroneous operation rate is higher.
  • the controller 30 ends the current use promotion process without promoting the use of the erroneous operation prevention mode.
  • the controller 30 can derive an erroneous operation rate based on the operation history of the operation lever, and when the erroneous operation rate is equal to or higher than a predetermined threshold, can prompt the operator to use the erroneous operation prevention mode or prevent erroneous operation
  • the mode can be started automatically.
  • the controller 30 can change the adjustment content of the sensitivity of the operation lever according to the erroneous operation rate. Therefore, appropriate sensitivity adjustment can be performed according to the frequency of erroneous operation. Furthermore, the feature of the operation can be grasped for each operator, and in accordance with the feature, the lever operation direction to which the sensitivity is to be changed and the sensitivity adjustment amount can be determined.
  • the controller 30 can suppress or prevent the turning operation from being accidentally entered during the arm operation in the sequence work such as the trench digging work in a narrow space. Therefore, it can control or prevent that a shovel accidentally contacts surrounding local features. As a result, the safety, operability and work efficiency of the shovel can be improved.
  • the sensitivity adjustment unit 300 automatically reduces the sensitivity of the control lever with the smaller lever operation amount.
  • the present invention is not limited to this configuration.
  • the sensitivity adjustment unit 300 determines whether or not an erroneous operation is being performed using the fine operation area as shown in FIG. 6, and determines that the erroneous operation is being performed, The sensitivity of the control lever with the smaller lever operation amount may be automatically reduced. That is, even in the erroneous operation prevention mode, when it is determined that no erroneous operation is performed, the sensitivity of the operation lever with the smaller lever operation amount may be maintained without being reduced.
  • FIG. 8 shows a configuration example of an operation system including an electric operation device.
  • the operation system of FIG. 8 is an example of a boom operation system, and mainly includes a pilot pressure control valve 17, a boom operation lever 26B as an electric operation lever, a controller 30, and a boom It is comprised by the solenoid valve 60 for raising operation, and the solenoid valve 62 for boom lowering operation.
  • the operation system of FIG. 8 may be applied to an arm operation system, a bucket operation system, and the like as well.
  • the pilot pressure operated control valve 17 includes control valves 174L and 174R for the boom cylinder 7, as shown in FIG.
  • the solenoid valve 60 is configured to be able to adjust the flow passage area of the oil passage connecting the pilot pump 15 with the right (raised) pilot port of the control valve 174L and the left (raised) pilot port of the control valve 174R.
  • the solenoid valve 62 is configured to adjust the flow passage area of the oil passage connecting the pilot pump 15 and the right (lower) pilot port of the control valve 174R.
  • the controller 30 receives the boom raising operation signal (electric signal) or the boom lowering operation signal (electric signal) according to the operation signal (electric signal) output from the operation signal generation unit of the boom operation lever 26B.
  • the operation signal output from the operation signal generation unit of the boom operation lever 26B is an electrical signal that changes in accordance with the operation amount and the operation direction of the boom operation lever 26B.
  • the controller 30 when the boom control lever 26B is operated in the boom raising direction, the controller 30 outputs, to the solenoid valve 60, a boom raising operation signal (electric signal) according to the lever operation amount.
  • the solenoid valve 60 adjusts the flow passage area according to the boom raising operation signal (electric signal), and acts on the right side (raising side) pilot port of the control valve 174L and the left side (raising side) pilot port of the control valve 174R. Control the pilot pressure.
  • the controller 30 when the boom control lever 26B is operated in the boom lowering direction, the controller 30 outputs a boom lowering operation signal (electric signal) corresponding to the lever operation amount to the solenoid valve 62.
  • the solenoid valve 62 adjusts the flow passage area according to the boom lowering operation signal (electric signal), and controls the pilot pressure applied to the right (lower side) pilot port of the control valve 174R.
  • the controller 30 controls the boom raising operation signal (electric signal) or the boom lowering according to the correction operation signal (electric signal) instead of the operation signal output from the operation signal generation unit of the boom operation lever 26B.
  • An operation signal (electrical signal) is generated.
  • the correction operation signal may be an electrical signal generated by the controller 30, or may be an electrical signal generated by an external control device or the like other than the controller 30.
  • FIG. 9 shows another configuration example of the operation system including the electric operation device.
  • the operation system of FIG. 9 is another example of a boom operation system, and mainly includes an electromagnetic control valve 17, a boom operation lever 26B as an electric operation lever, and a controller 30. It is configured.
  • the operation system of FIG. 9 may be applied to an arm operation system, a bucket operation system, and the like as well.
  • the electromagnetic control valve 17 includes a boom control valve, an arm control valve, a bucket control valve, and the like, each of which is configured of an electromagnetic spool valve that operates in response to a command from the controller 30.
  • the boom operating system of FIG. 9 differs from the boom operating system of FIG. 8 in that the controller 30 directly controls the boom control valve.
  • the controller 30 is configured to indirectly control the control valve 17B (see FIG. 3) via the solenoid valve 60 or the solenoid valve 62.
  • the controller 30 when the manual operation is performed, the controller 30 generates a boom operation signal (electric signal) according to the operation signal (electric signal) output from the operation signal generation unit of the boom operation lever 26B.
  • the controller 30 when the boom control lever 26B is operated in the boom raising direction, the controller 30 outputs a boom raising operation signal (electric signal) according to the lever operation amount to the boom control valve.
  • the boom control valve is displaced by a spool stroke amount according to the boom raising operation signal (electric signal), and adjusts the flow rate of the hydraulic fluid flowing into the bottom side oil chamber of the boom cylinder 7.
  • the controller 30 when the boom control lever 26B is operated in the boom lowering direction, the controller 30 outputs a boom lowering operation signal (electric signal) corresponding to the lever operation amount to the boom control valve.
  • the boom control valve is displaced by a spool stroke amount according to the boom lowering operation signal (electric signal), and adjusts the flow rate of hydraulic fluid flowing into the rod side oil chamber of the boom cylinder 7.
  • the controller 30 controls the boom raising operation signal (electric signal) or the boom lowering according to the correction operation signal (electric signal) instead of the operation signal output from the operation signal generation unit of the boom operation lever 26B.
  • An operation signal (electrical signal) is generated.
  • the correction operation signal may be an electrical signal generated by the controller 30, or may be an electrical signal generated by an external control device or the like other than the controller 30.
  • the shovel according to the embodiment of the present invention can operate similarly to the case where the hydraulic operating device is adopted even when the electric operating device is adopted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

An excavator according to an embodiment of the present invention comprises a lower traveling body (1), an upper turning body (3) that is mounted on the lower traveling body (1), a cabin (10) that is mounted on the upper turning body (3), an operation lever that is disposed in the cabin (10) and that can simultaneously operate a plurality of actuators, and a controller (30) that adjusts the sensitivity of the operation lever. The controller (30), for example, adjusts the operation lever sensitivity by adjusting the size of the operation lever dead zone.

Description

ショベルShovel
 本開示は、複数のアクチュエータを同時に操作できるように構成された操作レバーを備えるショベルに関する。 The present disclosure relates to a shovel including an operation lever configured to simultaneously operate a plurality of actuators.
 2つの操作レバーでブームシリンダ、アームシリンダ、バケットシリンダ及び旋回モータを動かすことができるように構成されたショベルが知られている(特許文献1参照。)。 DESCRIPTION OF RELATED ART The shovel comprised so that a boom cylinder, an arm cylinder, a bucket cylinder, and a turning motor could be moved with two control levers is known (refer patent document 1).
特開2003-56011号公報JP 2003-56011 A
 特許文献1に記載されるようなショベルで溝掘作業等を行う際に、ショベルの操作者は、ブーム下げ操作、アーム閉じ操作及びバケット閉じ操作の複合操作を行う場合がある。 When performing grooving work etc. with a shovel as described in patent document 1, the operator of a shovel may perform combined operation of boom lowering operation, arm closing operation, and bucket closing operation.
 しかしながら、例えば一つの操作レバーを前後方向に操作することでアームシリンダを動かし左右方向に操作することで旋回モータを動かす構成において、操作者は、アームシリンダを動かす際に誤って旋回モータを動かしてしまうおそれがある。操作レバーを前後方向に正確に操作しようとしても僅かに斜め方向に操作してしまう場合があるためである。 However, for example, in the configuration in which the swing motor is moved by moving the arm cylinder by operating one operation lever in the front-back direction and operating the arm cylinder in the left-right direction, the operator erroneously moves the swing motor when moving the arm cylinder. There is a risk of This is because even if the operating lever is operated accurately in the front-rear direction, the operating lever may be operated slightly diagonally.
 上述に鑑み、複数のアクチュエータを同時に操作できるように構成された操作レバーでの誤操作を抑制するショベルを提供することが望ましい。 In view of the above, it is desirable to provide a shovel that suppresses erroneous operations with an operation lever configured to simultaneously operate a plurality of actuators.
 本発明の実施例に係るショベルは、下部走行体と、前記下部走行体上に搭載された上部旋回体と、前記上部旋回体に取り付けられた運転室と、前記運転室内に設置された、複数のアクチュエータを同時操作可能な操作レバーと、前記操作レバーの感度を調整する制御装置と、を備える。 The shovel according to the embodiment of the present invention includes a lower traveling body, an upper revolving superstructure mounted on the lower traveling body, a driver's cab attached to the upper revolving superstructure, and a plurality installed in the operator's cab And a control device for adjusting the sensitivity of the operating lever.
 上述の手段により、複数のアクチュエータを同時に操作できるように構成された操作レバーでの誤操作を抑制するショベルを提供できる。 By the above-mentioned means, it is possible to provide a shovel that suppresses erroneous operation with the operation lever configured to simultaneously operate a plurality of actuators.
本発明の実施例に係るショベルの側面図である。It is a side view of a shovel concerning an example of the present invention. 図1のショベルの駆動系の構成例を示すブロック図である。It is a block diagram which shows the structural example of the drive system of the shovel of FIG. 図1のショベルに搭載される油圧システムの構成例を示す概略図である。It is the schematic which shows the structural example of the hydraulic system mounted in the shovel of FIG. 感度調整処理の流れを示すフローチャートである。It is a flowchart which shows the flow of sensitivity adjustment processing. アーム操作レバーのレバー操作量とパイロット圧との関係を示す図である。It is a figure which shows the relationship between the lever operation amount of an arm control lever, and pilot pressure. アーム操作レバーのレバー操作量とパイロット圧との関係を示す図である。It is a figure which shows the relationship between the lever operation amount of an arm control lever, and pilot pressure. 操作レバーを真上から見た図である。It is the figure which looked at the control lever from just above. 利用促進処理のフローチャートである。It is a flowchart of use promotion processing. 電気式操作装置を含む操作システムの構成例を示す図である。It is a figure which shows the structural example of the operation system containing an electrical control apparatus. 電気式操作装置を含む操作システムの別の構成例を示す図である。It is a figure which shows another structural example of the operation system containing an electrical control apparatus.
 最初に、図1を参照して、本発明の実施例に係る建設機械としてのショベル(掘削機)について説明する。図1はショベルの側面図である。図1に示すショベルの下部走行体1には旋回機構2を介して上部旋回体3が搭載されている。上部旋回体3には作業要素としてのブーム4が取り付けられている。ブーム4の先端には作業要素としてのアーム5が取り付けられ、アーム5の先端には作業要素及びエンドアタッチメントとしてのバケット6が取り付けられている。ブーム4、アーム5及びバケット6は、アタッチメントとしての掘削アタッチメントを構成する。ブーム4、アーム5及びバケット6は、ブームシリンダ7、アームシリンダ8、バケットシリンダ9によりそれぞれ油圧駆動される。上部旋回体3には、運転室としてのキャビン10が設けられ、且つエンジン11等の動力源が搭載されている。 First, with reference to FIG. 1, a shovel (excavator) as a construction machine according to an embodiment of the present invention will be described. FIG. 1 is a side view of a shovel. An upper swing body 3 is mounted on a lower traveling body 1 of the shovel shown in FIG. 1 via a turning mechanism 2. A boom 4 as a working element is attached to the upper swing body 3. An arm 5 as a working element is attached to the tip of the boom 4, and a bucket 6 as a working element and an end attachment is attached to the tip of the arm 5. The boom 4, the arm 5 and the bucket 6 constitute a digging attachment as an attachment. The boom 4, the arm 5 and the bucket 6 are hydraulically driven by the boom cylinder 7, the arm cylinder 8 and the bucket cylinder 9 respectively. The upper revolving superstructure 3 is provided with a cabin 10 as a driver's cab, and a power source such as an engine 11 is mounted.
 図2は、図1のショベルの駆動系の構成例を示すブロック図であり、機械的動力伝達ライン、作動油ライン、パイロットライン、電気制御ラインをそれぞれ二重線、太実線、破線、点線で示す。 FIG. 2 is a block diagram showing a configuration example of a drive system of the shovel shown in FIG. 1, and the mechanical power transmission line, the hydraulic oil line, the pilot line and the electric control line are shown by double lines, thick solid lines, broken lines and dotted lines, respectively. Show.
 ショベルの駆動系は、主に、エンジン11、レギュレータ13、メインポンプ14、パイロットポンプ15、コントロールバルブ17、操作装置26、減圧弁27、吐出圧センサ28、圧力センサ29、コントローラ30、スイッチ31等を含む。 The drive system of the shovel mainly includes the engine 11, the regulator 13, the main pump 14, the pilot pump 15, the control valve 17, the operating device 26, the pressure reducing valve 27, the discharge pressure sensor 28, the pressure sensor 29, the controller 30, the switch 31, etc. including.
 エンジン11は、ショベルの駆動源である。本実施例では、エンジン11は、例えば、所定の回転数を維持するように動作する内燃機関としてのディーゼルエンジンである。また、エンジン11の出力軸は、メインポンプ14及びパイロットポンプ15の入力軸に連結されている。 The engine 11 is a driving source of a shovel. In the present embodiment, the engine 11 is, for example, a diesel engine as an internal combustion engine that operates to maintain a predetermined rotational speed. The output shaft of the engine 11 is connected to the input shaft of the main pump 14 and the pilot pump 15.
 メインポンプ14は、作動油ラインを介して作動油をコントロールバルブ17に供給するための装置であり、例えば、斜板式可変容量型油圧ポンプである。 The main pump 14 is a device for supplying hydraulic fluid to the control valve 17 via a hydraulic fluid line, and is, for example, a swash plate type variable displacement hydraulic pump.
 レギュレータ13は、メインポンプ14の吐出量を制御するための装置である。本実施例では、レギュレータ13は、例えば、メインポンプ14の吐出圧、コントローラ30からの指令電流等に応じてメインポンプ14の斜板傾転角を調節することによってメインポンプ14の吐出量を制御する。 The regulator 13 is a device for controlling the discharge amount of the main pump 14. In the present embodiment, the regulator 13 controls the discharge amount of the main pump 14 by adjusting the swash plate tilt angle of the main pump 14 according to, for example, the discharge pressure of the main pump 14, the command current from the controller 30, and the like. Do.
 パイロットポンプ15は、パイロットラインを介して操作装置26を含む各種油圧制御機器に作動油を供給する装置であり、例えば、固定容量型油圧ポンプである。 The pilot pump 15 is a device that supplies hydraulic fluid to various hydraulic control devices including the operating device 26 via a pilot line, and is, for example, a fixed displacement hydraulic pump.
 コントロールバルブ17は、ショベルに搭載されている油圧システムを制御する油圧制御装置である。具体的には、コントロールバルブ17は、メインポンプ14が吐出する作動油の流れを制御する複数の制御弁を含む。そして、コントロールバルブ17は、それら制御弁を通じ、メインポンプ14が吐出する作動油を1又は複数の油圧アクチュエータに選択的に供給する。それら制御弁は、メインポンプ14から油圧アクチュエータに流れる作動油の流量、及び、油圧アクチュエータから作動油タンクに流れる作動油の流量を制御する。油圧アクチュエータは、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、左側走行用油圧モータ1L、右側走行用油圧モータ1R及び旋回用油圧モータ2Aを含む。旋回用油圧モータ2Aは、下部走行体1に対して上部旋回体3を旋回させる旋回装置の一例であり、電動アクチュエータとしての旋回用電動モータで置き換えられてもよい。 The control valve 17 is a hydraulic control device that controls a hydraulic system mounted on a shovel. Specifically, the control valve 17 includes a plurality of control valves that control the flow of the hydraulic fluid discharged by the main pump 14. The control valve 17 selectively supplies the hydraulic fluid discharged by the main pump 14 to one or more hydraulic actuators through the control valves. The control valves control the flow rate of hydraulic fluid flowing from the main pump 14 to the hydraulic actuator and the flow rate of hydraulic fluid flowing from the hydraulic actuator to the hydraulic fluid tank. The hydraulic actuator includes a boom cylinder 7, an arm cylinder 8, a bucket cylinder 9, a left traveling hydraulic motor 1L, a right traveling hydraulic motor 1R, and a turning hydraulic motor 2A. The turning hydraulic motor 2A is an example of a turning device for turning the upper swing body 3 with respect to the lower traveling body 1 and may be replaced by a turning electric motor as an electric actuator.
 操作装置26は、操作者がアクチュエータの操作のために用いる装置である。アクチュエータは、油圧アクチュエータ及び電動アクチュエータを含む。本実施例では、操作装置26は、パイロットライン及び減圧弁27を介して、パイロットポンプ15が吐出する作動油を油圧アクチュエータのそれぞれに対応する制御弁のパイロットポートに供給する。パイロットポートのそれぞれに供給される作動油の圧力(以下、「パイロット圧」とする。)は、油圧アクチュエータのそれぞれに対応する操作装置26のレバー又はペダルの操作方向及び操作量に応じた圧力である。 The operating device 26 is a device used by the operator for operating the actuator. The actuator includes a hydraulic actuator and an electric actuator. In the present embodiment, the operating device 26 supplies the hydraulic fluid discharged by the pilot pump 15 to the pilot port of the control valve corresponding to each of the hydraulic actuators via the pilot line and the pressure reducing valve 27. The pressure of the hydraulic fluid supplied to each of the pilot ports (hereinafter referred to as "pilot pressure") is a pressure corresponding to the operating direction and operating amount of the lever or pedal of the operating device 26 corresponding to each of the hydraulic actuators. is there.
 減圧弁27は、操作装置26が生成したパイロット圧を減圧して出力する装置である。本実施例では、減圧弁27は、コントローラ30からの指令電流に応じてパイロット圧を増減させる。減圧弁27は、例えば、指令電流が大きいほどパイロット圧を低減させる。 The pressure reducing valve 27 is a device that reduces the pilot pressure generated by the operating device 26 and outputs it. In the present embodiment, the pressure reducing valve 27 increases or decreases the pilot pressure according to the command current from the controller 30. For example, the pressure reducing valve 27 reduces the pilot pressure as the command current increases.
 吐出圧センサ28は、メインポンプ14の吐出圧を検出するためのセンサであり、検出した値をコントローラ30に対して出力する。 The discharge pressure sensor 28 is a sensor for detecting the discharge pressure of the main pump 14, and outputs the detected value to the controller 30.
 圧力センサ29は、操作装置26を用いた操作者の操作内容を検出するためのセンサである。本実施例では、圧力センサ29は、例えば、油圧アクチュエータのそれぞれに対応する操作装置26のレバー又はペダルの操作方向及び操作量を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作装置26の操作内容は、圧力センサ以外の他のセンサを用いて検出されてもよい。 The pressure sensor 29 is a sensor for detecting the operation content of the operator using the operating device 26. In the present embodiment, the pressure sensor 29 detects, for example, the operating direction and operating amount of the lever or pedal of the operating device 26 corresponding to each of the hydraulic actuators in the form of pressure, and outputs the detected values to the controller 30 Do. The operation content of the operating device 26 may be detected using another sensor other than the pressure sensor.
 コントローラ30は、ショベルを制御するための制御装置である。本実施例では、コントローラ30は、例えば、CPU、RAM、NVRAM、ROM等を備えたコンピュータで構成される。また、コントローラ30は、感度調整部300に対応するプログラムをROMから読み出してRAMにロードし、対応する処理をCPUに実行させる。 The controller 30 is a control device for controlling a shovel. In the present embodiment, the controller 30 is configured by, for example, a computer provided with a CPU, a RAM, an NVRAM, a ROM, and the like. Further, the controller 30 reads a program corresponding to the sensitivity adjustment unit 300 from the ROM and loads the program into the RAM, and causes the CPU to execute a corresponding process.
 具体的には、コントローラ30は、圧力センサ29、スイッチ31等の出力に基づいて感度調整部300による処理を実行する。そして、コントローラ30は、感度調整部300の処理結果に応じた指令を減圧弁27等に対して出力する。 Specifically, the controller 30 executes the processing by the sensitivity adjustment unit 300 based on the output of the pressure sensor 29, the switch 31, and the like. Then, the controller 30 outputs a command according to the processing result of the sensitivity adjustment unit 300 to the pressure reducing valve 27 or the like.
 感度調整部300は、操作装置26としての操作レバーの感度を調整する機能要素である。本実施例では、キャビン10内に設置された2本の操作レバーのうちの左操作レバーはアーム操作レバー及び旋回操作レバーとして機能し、右操作レバーはブーム操作レバー及びバケット操作レバーとして機能する。具体的には、左操作レバーの前後方向への操作がアーム操作レバーの操作に対応し、左操作レバーの左右方向への操作が旋回操作レバーの操作に対応する。より具体的には、左操作レバーの前方向への操作がアーム開き操作に対応し、前方向とは逆の後方向への操作がアーム閉じ操作に対応する。また、左操作レバーの左方向への操作が左旋回操作に対応し、左方向とは逆の右方向への操作が右旋回操作に対応する。また、右操作レバーの前後方向への操作がブーム操作レバーの操作に対応し、右操作レバーの左右方向への操作がバケット操作レバーの操作に対応する。より具体的には、右操作レバーの前方向への操作がブーム下げ操作に対応し、前方向とは逆の後方向への操作がブーム上げ操作に対応する。また、右操作レバーの左方向への操作がバケット閉じ操作に対応し、左方向とは逆の右方向への操作がバケット開き操作に対応する。操作者は、左操作レバーを利用してアーム5と旋回装置を同時に操作でき、右操作レバーを利用してブーム4とバケット6を同時に操作できる。操作レバーの前後方向と左右方向はほぼ直交する。 The sensitivity adjustment unit 300 is a functional element that adjusts the sensitivity of the operation lever as the operation device 26. In the present embodiment, the left control lever of the two control levers installed in the cabin 10 functions as an arm control lever and a turning control lever, and the right control lever functions as a boom control lever and a bucket control lever. Specifically, the operation in the front-rear direction of the left operation lever corresponds to the operation of the arm operation lever, and the operation in the left-right direction of the left operation lever corresponds to the operation of the turn operation lever. More specifically, the forward operation of the left operation lever corresponds to the arm opening operation, and the backward operation opposite to the front direction corresponds to the arm closing operation. Further, the operation of the left operation lever in the left direction corresponds to the left turn operation, and the operation in the right direction opposite to the left direction corresponds to the right turn operation. Further, the operation of the right operating lever in the front-rear direction corresponds to the operation of the boom operating lever, and the operation of the right operating lever in the left-right direction corresponds to the operation of the bucket operating lever. More specifically, the operation in the forward direction of the right control lever corresponds to the boom lowering operation, and the operation in the backward direction opposite to the front direction corresponds to the boom raising operation. Further, the operation of the right control lever in the left direction corresponds to the bucket closing operation, and the operation in the right direction opposite to the left direction corresponds to the bucket opening operation. The operator can operate the arm 5 and the turning device at the same time using the left operation lever, and can operate the boom 4 and the bucket 6 simultaneously using the right operation lever. The longitudinal direction and the lateral direction of the operating lever are substantially orthogonal to each other.
 感度調整部300は、例えば、左操作レバーに関し、アーム操作レバーの感度を維持し且つ旋回操作レバーの感度を下げることができる。この場合、操作者は、左操作レバーを前後方向に操作した(傾けた)つもりが僅かに斜め方向に操作して(傾けて)しまったときであっても、旋回装置を動かしてしまうことはない。旋回操作レバーの感度を下げることで、旋回操作レバーに対する操作が反映され難くなっているためである。 The sensitivity adjustment unit 300 can maintain, for example, the sensitivity of the arm operation lever and lower the sensitivity of the swing operation lever with respect to the left operation lever. In this case, the operator may move the turning device even when the driver intends to operate (tilt) the left operation lever in the front-rear direction but operates (tilt) slightly in a diagonal direction. Absent. By lowering the sensitivity of the turning operation lever, it is difficult to reflect the operation on the turning operation lever.
 スイッチ31は、ショベルの動作モードを切り替える機能要素である。本実施例では、スイッチ31は、タッチパネル付きの車載ディスプレイ等の表示装置の画面に表示されるソフトウェアスイッチである。スイッチ31は、キャビン10内に設置されたハードウェアスイッチであってもよい。 The switch 31 is a functional element that switches the operation mode of the shovel. In the present embodiment, the switch 31 is a software switch displayed on the screen of a display device such as a car-mounted display with a touch panel. The switch 31 may be a hardware switch installed in the cabin 10.
 ショベルの動作モードは誤操作防止モードを含む。誤操作防止モードは操作レバーの誤操作を抑制或いは防止する動作モードである。誤操作防止モードが選択されると、ショベルは、必要に応じて感度調整部300による操作レバーの感度の調整を開始させる。この構成により、操作者は、操作レバーの感度を調整する機能の作動と停止を切り替えることができる。 The operation mode of the shovel includes an operation error prevention mode. The erroneous operation preventing mode is an operation mode for suppressing or preventing the erroneous operation of the operating lever. When the erroneous operation prevention mode is selected, the shovel starts adjustment of the sensitivity of the operation lever by the sensitivity adjustment unit 300 as needed. With this configuration, the operator can switch between activation and deactivation of the function of adjusting the sensitivity of the operation lever.
 次に図3を参照し、ショベルに搭載される油圧システムの詳細について説明する。図3は、図1のショベルに搭載される油圧システムの構成例を示す概略図である。図3は、図2と同様に、機械的動力伝達ライン、作動油ライン、パイロットライン、電気制御ラインをそれぞれ二重線、太実線、破線、点線で示す。 Next, with reference to FIG. 3, the details of the hydraulic system mounted on the shovel will be described. FIG. 3 is a schematic view showing a configuration example of a hydraulic system mounted on the shovel of FIG. Similar to FIG. 2, FIG. 3 shows the mechanical power transmission line, the hydraulic fluid line, the pilot line, and the electrical control line, respectively, by a double line, a thick solid line, a broken line, and a dotted line.
 図3において、油圧システムは、エンジン11によって駆動されるメインポンプ14L、14Rから、センターバイパス管路40L、40R、パラレル管路42L、42Rを経て作動油タンクまで作動油を循環させる。メインポンプ14L、14Rは、図2のメインポンプ14に対応する。 In FIG. 3, the hydraulic system circulates the hydraulic oil from the main pumps 14L, 14R driven by the engine 11 to the hydraulic oil tank through the center bypass pipelines 40L, 40R and the parallel pipelines 42L, 42R. The main pumps 14L, 14R correspond to the main pump 14 of FIG.
 センターバイパス管路40Lは、コントロールバルブ17内に配置された制御弁171L~175Lを通る作動油ラインである。センターバイパス管路40Rは、コントロールバルブ17内に配置された制御弁171R~175Rを通る作動油ラインである。 The center bypass line 40L is a hydraulic oil line passing through control valves 171L to 175L disposed in the control valve 17. The center bypass line 40R is a hydraulic oil line passing through control valves 171R to 175R disposed in the control valve 17.
 制御弁171Lは、メインポンプ14Lが吐出する作動油を左側走行用油圧モータ1Lへ供給し、且つ、左側走行用油圧モータ1Lが吐出する作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。 The control valve 171L supplies the hydraulic fluid discharged by the main pump 14L to the left traveling hydraulic motor 1L, and the flow of the hydraulic oil for discharging the hydraulic fluid discharged by the left traveling hydraulic motor 1L to the hydraulic oil tank It is a spool valve which switches.
 制御弁171Rは、走行直進弁としてのスプール弁である。制御弁171Rは、下部走行体1の直進性を高めるべくメインポンプ14Lから左側走行用油圧モータ1L及び右側走行用油圧モータ1Rのそれぞれに作動油が供給されるように作動油の流れを切り換える。具体的には、左側走行用油圧モータ1L及び右側走行用油圧モータ1Rと他の何れかの油圧アクチュエータとが同時に操作された場合、メインポンプ14Lは、左側走行用油圧モータ1L及び右側走行用油圧モータ1Rの双方に作動油を供給する。他の油圧アクチュエータが何れも操作されていない場合には、メインポンプ14Lが左側走行用油圧モータ1Lに作動油を供給し、メインポンプ14Rが右側走行用油圧モータ1Rに作動油を供給する。 The control valve 171R is a spool valve as a straight traveling valve. The control valve 171R switches the flow of hydraulic fluid so that the hydraulic fluid is supplied from the main pump 14L to the left side traveling hydraulic motor 1L and the right side traveling hydraulic motor 1R in order to improve the rectilinearity of the lower traveling body 1. Specifically, when the left side traveling hydraulic motor 1L and the right side traveling hydraulic motor 1R and any other hydraulic actuators are operated at the same time, the main pump 14L is the left side traveling hydraulic motor 1L and the right side traveling hydraulic Hydraulic oil is supplied to both of the motor 1R. When none of the other hydraulic actuators are operated, the main pump 14L supplies hydraulic fluid to the left traveling hydraulic motor 1L, and the main pump 14R supplies hydraulic fluid to the right traveling hydraulic motor 1R.
 制御弁172Lは、メインポンプ14Lが吐出する作動油をオプション用油圧アクチュエータへ供給し、且つ、オプション用油圧アクチュエータが吐出する作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。オプション用油圧アクチュエータ50は、例えば、グラップル開閉シリンダである。 The control valve 172L supplies hydraulic fluid discharged by the main pump 14L to the optional hydraulic actuator, and a spool valve that switches the flow of hydraulic fluid to discharge hydraulic fluid discharged by the optional hydraulic actuator to the hydraulic fluid tank. It is. The option hydraulic actuator 50 is, for example, a grapple open / close cylinder.
 制御弁172Rは、メインポンプ14Rが吐出する作動油を右側走行用油圧モータ1Rへ供給し、且つ、右側走行用油圧モータ1Rが吐出する作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。 The control valve 172R supplies the hydraulic fluid discharged by the main pump 14R to the right-side traveling hydraulic motor 1R, and the flow of the hydraulic oil for discharging the hydraulic fluid discharged by the right-side traveling hydraulic motor 1R to the hydraulic oil tank. It is a spool valve which switches.
 制御弁173Lは、メインポンプ14Lが吐出する作動油を旋回用油圧モータ2Aへ供給し、且つ、旋回用油圧モータ2Aが吐出する作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。 The control valve 173L supplies the hydraulic fluid discharged by the main pump 14L to the swing hydraulic motor 2A, and switches the flow of the hydraulic fluid to discharge the hydraulic fluid discharged by the swing hydraulic motor 2A to the hydraulic fluid tank. It is a spool valve.
 制御弁173Rは、メインポンプ14Rが吐出する作動油をバケットシリンダ9へ供給し、且つ、バケットシリンダ9内の作動油を作動油タンクへ排出するためのスプール弁である。 The control valve 173R is a spool valve for supplying the hydraulic fluid discharged by the main pump 14R to the bucket cylinder 9 and discharging the hydraulic fluid in the bucket cylinder 9 to a hydraulic fluid tank.
 制御弁174L、174Rは、メインポンプ14L、14Rが吐出する作動油をブームシリンダ7へ供給し、且つ、ブームシリンダ7内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。本実施例では、制御弁174Lは、ブーム4の上げ操作が行われた場合にのみ作動し、ブーム4の下げ操作が行われた場合には作動しない。 The control valves 174L and 174R supply hydraulic fluid discharged by the main pumps 14L and 14R to the boom cylinder 7, and switch the flow of hydraulic fluid to discharge the hydraulic fluid in the boom cylinder 7 to the hydraulic fluid tank. It is a valve. In the present embodiment, the control valve 174L operates only when the raising operation of the boom 4 is performed, and does not operate when the lowering operation of the boom 4 is performed.
 制御弁175L、175Rは、メインポンプ14L、14Rが吐出する作動油をアームシリンダ8へ供給し、且つ、アームシリンダ8内の作動油を作動油タンクへ排出するために作動油の流れを切り換えるスプール弁である。 The control valves 175L and 175R supply hydraulic fluid discharged by the main pumps 14L and 14R to the arm cylinder 8, and switch the flow of hydraulic fluid to discharge the hydraulic fluid in the arm cylinder 8 to the hydraulic fluid tank. It is a valve.
 パラレル管路42Lは、センターバイパス管路40Lに並行する作動油ラインである。パラレル管路42Lは、制御弁171L~174Lの何れかによってセンターバイパス管路40Lを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。パラレル管路42Rは、センターバイパス管路40Rに並行する作動油ラインである。パラレル管路42Rは、制御弁172R~174Rの何れかによってセンターバイパス管路40Rを通る作動油の流れが制限或いは遮断された場合に、より下流の制御弁に作動油を供給できる。 The parallel line 42L is a hydraulic oil line parallel to the center bypass line 40L. The parallel pipeline 42L can supply hydraulic fluid to the control valve further downstream if the flow of hydraulic fluid through the center bypass pipeline 40L is restricted or shut off by any of the control valves 171L to 174L. The parallel line 42R is a hydraulic oil line parallel to the center bypass line 40R. The parallel line 42R can supply hydraulic fluid to the control valve further downstream if the flow of hydraulic fluid through the center bypass line 40R is restricted or shut off by any of the control valves 172R to 174R.
 レギュレータ13L、13Rは、メインポンプ14L、14Rの吐出圧に応じてメインポンプ14L、14Rの斜板傾転角を調節することによって、メインポンプ14L、14Rの吐出量を制御する。レギュレータ13L、13Rは、図2のレギュレータ13に対応する。レギュレータ13L、13Rは、例えば、メインポンプ14L、14Rの吐出圧が所定値以上となった場合にメインポンプ14L、14Rの斜板傾転角を調節して吐出量を減少させる。吐出圧と吐出量との積で表されるメインポンプ14の吸収馬力がエンジン11の出力馬力を超えないようにするためである。 The regulators 13L, 13R control the discharge amounts of the main pumps 14L, 14R by adjusting the swash plate tilt angles of the main pumps 14L, 14R according to the discharge pressures of the main pumps 14L, 14R. The regulators 13L and 13R correspond to the regulator 13 of FIG. The regulators 13L, 13R, for example, adjust the swash plate tilt angles of the main pumps 14L, 14R to decrease the discharge amount when the discharge pressures of the main pumps 14L, 14R become equal to or greater than a predetermined value. This is to prevent the absorption horsepower of the main pump 14 represented by the product of the discharge pressure and the discharge amount from exceeding the output horsepower of the engine 11.
 アーム操作レバー26Aは、操作装置26の一例であり、アーム5を操作するために用いられる。また、アーム操作レバー26Aは、パイロットポンプ15が吐出する作動油を利用して、レバー操作量に応じたパイロット圧を制御弁175L、175Rのパイロットポートに作用させる。具体的には、アーム操作レバー26Aは、アーム閉じ方向に操作された場合に、制御弁175Lの右側パイロットポートにパイロット圧を作用させ、且つ、制御弁175Rの左側パイロットポートにパイロット圧を作用させる。このときのパイロット圧は、パイロットポンプ15が吐出する作動油を利用するリモコン弁26AVLによって生成される。一方、アーム操作レバー26Aは、アーム開き方向に操作された場合には、制御弁175Lの左側パイロットポートにパイロット圧を作用させ、且つ、制御弁175Rの右側パイロットポートにパイロット圧を作用させる。このときのパイロット圧は、パイロットポンプ15が吐出する作動油を利用するリモコン弁26AVRによって生成される。 The arm control lever 26 </ b> A is an example of the control device 26 and is used to operate the arm 5. Further, the arm control lever 26A applies the pilot pressure corresponding to the lever operation amount to the pilot ports of the control valves 175L and 175R by using the hydraulic oil discharged by the pilot pump 15. Specifically, when the arm control lever 26A is operated in the arm closing direction, the pilot pressure is applied to the right pilot port of the control valve 175L and the pilot pressure is applied to the left pilot port of the control valve 175R. . The pilot pressure at this time is generated by the remote control valve 26AVL using the hydraulic oil discharged by the pilot pump 15. On the other hand, when the arm control lever 26A is operated in the arm opening direction, the pilot pressure is applied to the left pilot port of the control valve 175L and the pilot pressure is applied to the right pilot port of the control valve 175R. The pilot pressure at this time is generated by the remote control valve 26AVR using the hydraulic oil discharged by the pilot pump 15.
 減圧弁27AL、27ARは、コントローラ30からの指令に応じて動作する電磁弁であり、図2の減圧弁27に対応する。減圧弁27ALは、アーム操作レバー26Aが閉じ方向に操作されたときにリモコン弁26AVLが生成したパイロット圧を減圧して制御弁175Lの右側パイロットポート及び制御弁175Rの左側パイロットポートに作用させる。減圧弁27ARは、アーム操作レバー26Aが開き方向に操作されたときにリモコン弁26AVRが生成したパイロット圧を減圧して制御弁175Lの左側パイロットポート及び制御弁175Rの右側パイロットポートに作用させる。 The pressure reducing valves 27AL and 27AR are solenoid valves that operate in response to a command from the controller 30, and correspond to the pressure reducing valve 27 in FIG. The pressure reducing valve 27AL reduces the pilot pressure generated by the remote control valve 26AVL when the arm operating lever 26A is operated in the closing direction and causes the pilot pressure on the right pilot port of the control valve 175L and the left pilot port of the control valve 175R. The pressure reducing valve 27AR reduces the pilot pressure generated by the remote control valve 26AVR when the arm operating lever 26A is operated in the opening direction, and applies the pressure to the left pilot port of the control valve 175L and the right pilot port of the control valve 175R.
 圧力センサ27Aは、減圧弁27AL、27ARが減圧した減圧後パイロット圧を検出するためのセンサであり、検出した値をコントローラ30に対して出力する。 The pressure sensor 27A is a sensor for detecting the post-decompression pilot pressure after the decompression by the decompression valves 27AL and 27AR, and outputs the detected value to the controller 30.
 圧力センサ29Aは、図2の圧力センサ29に対応する。圧力センサ29Aは、アーム操作レバー26Aに対する操作者の操作内容を圧力の形で検出し、検出した値をコントローラ30に対して出力する。操作内容は、例えば、レバー操作方向、レバー操作量(レバー操作角度)等である。 The pressure sensor 29A corresponds to the pressure sensor 29 of FIG. The pressure sensor 29A detects the operation content of the operator on the arm control lever 26A in the form of pressure, and outputs the detected value to the controller 30. The operation content is, for example, a lever operation direction, a lever operation amount (lever operation angle), and the like.
 左右走行レバー(又はペダル)、ブーム操作レバー、バケット操作レバー、旋回操作レバー(何れも図示せず。)はそれぞれ、下部走行体1の走行、ブーム4の上下動、バケット6の開閉、及び、上部旋回体3の旋回を操作するための操作装置である。これらの操作装置は、アーム操作レバー26Aと同様に、パイロットポンプ15が吐出する作動油を利用して、レバー操作量(又はペダル操作量)に応じたパイロット圧を油圧アクチュエータのそれぞれに対応する制御弁の左右何れかのパイロットポートに作用させる。また、これらの操作装置のそれぞれに対する操作者の操作内容は、圧力センサ29Aと同様、対応する圧力センサによって圧力の形で検出され、検出値がコントローラ30に対して出力される。 The left and right travel levers (or pedals), the boom operation lever, the bucket operation lever, and the turning operation lever (all not shown) respectively travel the lower traveling body 1, move the boom 4 up and down, open and close the bucket 6, It is an operating device for operating turning of upper revolving unit 3. Similar to the arm control lever 26A, these control devices control the pilot pressure corresponding to the lever operation amount (or the pedal operation amount) corresponding to each of the hydraulic actuators using the hydraulic oil discharged by the pilot pump 15 Act on either the left or right pilot port of the valve. In addition, the operation content of the operator with respect to each of these operation devices is detected in the form of pressure by the corresponding pressure sensor as in the pressure sensor 29A, and the detected value is output to the controller 30.
 また、図3は、明瞭化のため、アーム操作レバー26A及びそのパイロットラインのみを示すが、実際には、ブーム操作レバー、バケット操作レバー、旋回操作レバー等も同様にパイロットラインを介して対応する制御弁のパイロットポートに接続されている。 Further, FIG. 3 shows only the arm control lever 26A and the pilot line thereof for the sake of clarity, but in practice the boom control lever, the bucket control lever, the turning control lever and the like also correspond via the pilot line. It is connected to the pilot port of the control valve.
 ここで、図3の油圧システムで採用されるネガティブコントロール制御(以下、「ネガコン制御」とする。)について説明する。 Here, negative control control (hereinafter referred to as "negative control") employed in the hydraulic system of FIG. 3 will be described.
 センターバイパス管路40L、40Rは、最も下流にある制御弁175L、175Rのそれぞれと作動油タンクとの間にネガティブコントロール絞り18L、18Rを備える。メインポンプ14L、14Rが吐出した作動油の流れは、ネガティブコントロール絞り18L、18Rで制限される。そして、ネガティブコントロール絞り18L、18Rは、レギュレータ13L、13Rを制御するための制御圧(以下、「ネガコン圧」とする。)を発生させる。 The center bypass lines 40L, 40R are provided with negative control throttles 18L, 18R between the hydraulic oil tanks and the control valves 175L, 175R located most downstream. The flow of hydraulic fluid discharged by the main pumps 14L, 14R is limited by the negative control throttles 18L, 18R. Then, the negative control diaphragms 18L and 18R generate control pressure (hereinafter referred to as "negative control pressure") for controlling the regulators 13L and 13R.
 ネガコン圧センサ19L、19Rは、ネガティブコントロール絞り18L、18Rの上流で発生させたネガコン圧を検出するセンサである。本実施例では、ネガコン圧センサ19L、19Rは、検出した値をコントローラ30に対して出力する。 The negative control pressure sensors 19L and 19R are sensors for detecting the negative control pressure generated upstream of the negative control stops 18L and 18R. In the present embodiment, the negative control pressure sensors 19L and 19R output the detected values to the controller 30.
 コントローラ30は、ネガコン圧に応じた指令をレギュレータ13L、13Rに対して出力する。レギュレータ13L、13Rは、指令に応じてメインポンプ14L、14Rの斜板傾転角を調節することによって、メインポンプ14L、14Rの吐出量を制御する。具体的には、レギュレータ13L、13Rは、ネガコン圧が大きいほどメインポンプ14L、14Rの吐出量を減少させ、ネガコン圧が小さいほどメインポンプ14L、14Rの吐出量を増大させる。 The controller 30 outputs a command corresponding to the negative control pressure to the regulators 13L and 13R. The regulators 13L, 13R control the discharge amounts of the main pumps 14L, 14R by adjusting the swash plate tilt angles of the main pumps 14L, 14R according to the command. Specifically, the regulators 13L and 13R reduce the discharge amount of the main pumps 14L and 14R as the negative control pressure is larger, and increase the discharge amounts of the main pumps 14L and 14R as the negative control pressure is smaller.
 油圧アクチュエータが何れも操作されていない場合(以下、「待機モード」とする。)、メインポンプ14L、14Rが吐出する作動油は、センターバイパス管路40L、40Rを通ってネガティブコントロール絞り18L、18Rに至る。そして、メインポンプ14L、14Rが吐出する作動油の流れは、ネガティブコントロール絞り18L、18Rの上流で発生するネガコン圧を増大させる。その結果、レギュレータ13L、13Rは、メインポンプ14L、14Rの吐出量を許容最小吐出量まで減少させ、吐出した作動油がセンターバイパス管路40L、40Rを通過する際の圧力損失(ポンピングロス)を抑制する。 When none of the hydraulic actuators are operated (hereinafter referred to as "standby mode"), the hydraulic fluid discharged by the main pumps 14L, 14R passes through the center bypass pipelines 40L, 40R and the negative control throttles 18L, 18R. Lead to The flow of hydraulic fluid discharged by the main pumps 14L, 14R increases the negative control pressure generated upstream of the negative control throttles 18L, 18R. As a result, the regulators 13L and 13R reduce the discharge amount of the main pumps 14L and 14R to the allowable minimum discharge amount, and the pressure loss (pumping loss) when the discharged hydraulic oil passes through the center bypass pipelines 40L and 40R. Suppress.
 一方、何れかの油圧アクチュエータが操作された場合、メインポンプ14L、14Rが吐出する作動油は、操作対象の油圧アクチュエータに対応する制御弁を介して、操作対象の油圧アクチュエータに流れ込む。そして、その制御弁は、ネガティブコントロール絞り18L、18Rに至る作動油の量を減少或いは消失させ、ネガティブコントロール絞り18L、18Rの上流で発生するネガコン圧を低下させる。その結果、レギュレータ13L、13Rは、メインポンプ14L、14Rの吐出量を増大させ、操作対象の油圧アクチュエータに十分な作動油を循環させ、操作対象の油圧アクチュエータの駆動を確かなものとする。 On the other hand, when any hydraulic actuator is operated, the hydraulic fluid discharged by the main pumps 14L, 14R flows into the hydraulic actuator to be operated via the control valve corresponding to the hydraulic actuator to be operated. The control valve reduces or eliminates the amount of hydraulic oil reaching the negative control throttles 18L and 18R, and reduces the negative control pressure generated upstream of the negative control throttles 18L and 18R. As a result, the regulators 13L and 13R increase the discharge amount of the main pumps 14L and 14R, circulate sufficient hydraulic oil to the hydraulic actuator to be operated, and ensure the driving of the hydraulic actuator to be operated.
 上述のような構成により、図3の油圧システムは、待機モードにおいては、メインポンプ14L、14Rにおける無駄なエネルギ消費を抑制できる。無駄なエネルギ消費は、メインポンプ14L、14Rが吐出する作動油がセンターバイパス管路40L、40Rで発生させるポンピングロスを含む。 With the configuration as described above, the hydraulic system of FIG. 3 can suppress unnecessary energy consumption in the main pumps 14L and 14R in the standby mode. The wasteful energy consumption includes the pumping loss generated by the hydraulic fluid discharged by the main pumps 14L, 14R in the center bypass lines 40L, 40R.
 また、図3の油圧システムは、油圧アクチュエータを作動させる場合には、メインポンプ14L、14Rから必要十分な作動油を作動対象の油圧アクチュエータに確実に供給できるようにする。 Further, in the hydraulic system of FIG. 3, when operating the hydraulic actuators, it is possible to reliably supply necessary and sufficient hydraulic oil from the main pumps 14L and 14R to the hydraulic actuator to be operated.
 次に図4を参照し、コントローラ30が操作レバーの感度を調整する処理(以下、「感度調整処理」とする。)について説明する。図4は、感度調整処理の流れを示すフローチャートである。図4の例では、アーム操作レバー26A及び旋回操作レバーとして機能する左操作レバーの感度調整処理について説明する。但し、以下の説明は、ブーム操作レバー及びバケット操作レバーとして機能する右操作レバーにも同様に適用される。 Next, with reference to FIG. 4, a process in which the controller 30 adjusts the sensitivity of the operation lever (hereinafter, referred to as “sensitivity adjustment process”) will be described. FIG. 4 is a flowchart showing the flow of sensitivity adjustment processing. In the example of FIG. 4, sensitivity adjustment processing of the arm operation lever 26A and the left operation lever that functions as a turning operation lever will be described. However, the following description is equally applied to the right control lever which functions as the boom control lever and the bucket control lever.
 最初に、コントローラ30の感度調整部300は、誤操作防止モードであるか否かを判定する(ステップST1)。誤操作防止モードは、例えば、スイッチ31を介した操作者の操作入力によって選択される。感度調整部300は、所定の条件が満たされた場合に誤操作防止モードを自動的に選択してもよい。 First, the sensitivity adjustment unit 300 of the controller 30 determines whether or not the erroneous operation preventing mode is set (step ST1). The erroneous operation prevention mode is selected, for example, by the operation input of the operator via the switch 31. The sensitivity adjustment unit 300 may automatically select the erroneous operation prevention mode when a predetermined condition is satisfied.
 誤操作防止モードであると判定した場合(ステップST1のYES)、感度調整部300は、アーム操作レバー26Aのレバー操作量と旋回操作レバーのレバー操作量とを比較し、アーム操作レバー26Aのレバー操作量が旋回操作レバーのレバー操作量に所定量αを加えた量以上であるか否かを判定する(ステップST2)。所定量αは、コントローラ30等に予め設定された量であり、例えば、アーム操作レバー26Aのレバー操作量が旋回操作レバーのレバー操作量よりも圧倒的に大きいか否かを判定するために用いられる。感度調整部300は、例えば、圧力センサ29Aの出力に基づき、アーム操作レバー26A及び旋回操作レバーのそれぞれのレバー操作量を比較可能な値として取得する。例えば、アーム操作レバー26A及び旋回操作レバーのそれぞれのレバー操作量をパイロット圧、レバー傾斜角度等の比較可能な値の形で取得する。 When it is determined that the operation error prevention mode is set (YES in step ST1), the sensitivity adjustment unit 300 compares the lever operation amount of the arm operation lever 26A with the lever operation amount of the turning operation lever, and operates the lever operation of the arm operation lever 26A. It is determined whether the amount is equal to or more than the amount obtained by adding the predetermined amount α to the lever operation amount of the turning operation lever (step ST2). The predetermined amount α is an amount preset in the controller 30 or the like, and for example, is used to determine whether the lever operation amount of the arm operation lever 26A is overwhelmingly larger than the lever operation amount of the turning operation lever Be For example, based on the output of the pressure sensor 29A, the sensitivity adjustment unit 300 acquires the lever operation amounts of the arm operation lever 26A and the turning operation lever as comparable values. For example, the lever operation amounts of the arm control lever 26A and the turning control lever are obtained in the form of comparable values such as pilot pressure and lever inclination angle.
 そして、アーム操作レバー26Aのレバー操作量が旋回操作レバーのレバー操作量に所定量αを加えた量未満であると判定した場合(ステップST2のNO)、感度調整部300は、アーム操作レバー26Aのレバー操作量と旋回操作レバーのレバー操作量とを比較し、旋回操作レバーのレバー操作量がアーム操作レバー26Aのレバー操作量に所定量αを加えた量以上であるか否かを判定する(ステップST3)。ここでの所定量αは、コントローラ30等に予め設定された量であり、例えば、旋回操作レバーのレバー操作量がアーム操作レバー26Aのレバー操作量よりも圧倒的に大きいか否かを判定するために用いられる。ステップST3における所定量αは、ステップST2における所定量αと異なる量であってもよい。 When it is determined that the lever operation amount of the arm operation lever 26A is less than the amount obtained by adding the predetermined amount α to the lever operation amount of the turning operation lever (NO in step ST2), the sensitivity adjustment unit 300 detects the arm operation lever 26A. The amount of lever operation of the lever and the amount of lever operation of the turning operation lever are compared, and it is determined whether the amount of lever operation of the turning operation lever is equal to or greater than the predetermined amount α added to the amount of lever operation of the arm operation lever 26A. (Step ST3). Here, the predetermined amount α is an amount preset in the controller 30 or the like, and for example, it is determined whether the lever operation amount of the turning operation lever is overwhelmingly larger than the lever operation amount of the arm operation lever 26A. Used for The predetermined amount α in step ST3 may be different from the predetermined amount α in step ST2.
 そして、旋回操作レバーのレバー操作量がアーム操作レバー26Aのレバー操作量に所定量αを加えた量以上であると判定した場合(ステップST3のYES)、感度調整部300は、アーム操作レバー26Aの感度を下げる(ステップST4)。例えば、感度調整部300は、図3に示す減圧弁27AL及び減圧弁27ARのそれぞれに制御指令を出力し、アーム操作レバー26Aが生成するパイロット圧を減圧する。 When it is determined that the lever operation amount of the turning operation lever is equal to or more than the amount obtained by adding the predetermined amount α to the lever operation amount of the arm operation lever 26A (YES in step ST3), the sensitivity adjustment unit 300 detects the arm operation lever 26A. Lower the sensitivity (step ST4). For example, the sensitivity adjustment unit 300 outputs a control command to each of the pressure reducing valve 27AL and the pressure reducing valve 27AR shown in FIG. 3 to reduce the pilot pressure generated by the arm control lever 26A.
 この処理により、操作者が右旋回のために左操作レバーを右方向に操作したつもりが僅かに右斜め前方向に操作してしまったときであっても、アーム5が開いてしまうのを抑制或いは防止できる。意図せず増大させてしまったアーム開き側パイロット圧を減圧できるためである。 By this processing, the arm 5 is opened even when the operator intends to operate the left operation lever in the right direction to turn right but operates in the slightly forward right direction. It can be suppressed or prevented. This is because the arm opening side pilot pressure that has been increased unintentionally can be reduced.
 旋回操作レバーのレバー操作量がアーム操作レバー26Aのレバー操作量に所定量αを加えた量未満であると判定した場合(ステップST3のNO)、感度調整部300は、操作レバーの感度を調整することなく、通常制御を実行する(ステップST5)。旋回操作レバーのレバー操作量とアーム操作レバー26Aのレバー操作量との差が所定量α未満、すなわち、旋回操作レバーとアーム操作レバー26Aとがほぼ同じレバー操作量で同時に操作されており、操作レバーの感度を調整する必要がないと判断できるためである。通常制御は、操作装置26が生成したパイロット圧に基づく、感度調整を伴わない制御である。 When it is determined that the lever operation amount of the turning operation lever is less than the amount obtained by adding the predetermined amount α to the lever operation amount of the arm operation lever 26A (NO in step ST3), the sensitivity adjustment unit 300 adjusts the sensitivity of the operation lever The normal control is executed without performing (step ST5). The difference between the lever operation amount of the turning operation lever and the lever operation amount of the arm operation lever 26A is less than a predetermined amount α, that is, the turning operation lever and the arm operation lever 26A are simultaneously operated with substantially the same lever operation amount, This is because it can be determined that it is not necessary to adjust the sensitivity of the lever. The normal control is a control based on the pilot pressure generated by the operating device 26 without sensitivity adjustment.
 一方、アーム操作レバーのレバー操作量が旋回操作レバーのレバー操作量に所定量αを加えた量以上であると判定した場合(ステップST2のYES)、感度調整部300は、旋回操作レバーの感度を下げる(ステップST6)。例えば、感度調整部300は、上述のように減圧弁に制御指令を出力し、旋回操作レバーが生成するパイロット圧を減圧する。 On the other hand, when it is determined that the lever operation amount of the arm operation lever is equal to or more than the amount obtained by adding the predetermined amount α to the lever operation amount of the turning operation lever (YES in step ST2), the sensitivity adjustment unit 300 detects the sensitivity of the turning operation lever. Lower (step ST6). For example, the sensitivity adjustment unit 300 outputs a control command to the pressure reducing valve as described above, and reduces the pilot pressure generated by the turning operation lever.
 この処理により、操作者がアーム閉じのために左操作レバーを後方(手前側)に操作したつもりが僅かに左斜め後方向に操作してしまったときであっても、上部旋回体3が左旋回してしまうのを抑制或いは防止できる。意図せず増大させてしまった左旋回側パイロット圧を減圧できるためである。 By this processing, even if the operator intends to operate the left operation lever to the rear (front side) to close the arm but operates it slightly diagonally to the left, the upper swing body 3 rotates left. It can control or prevent that it turns. This is because it is possible to reduce the left turn side pilot pressure which has been unintentionally increased.
 また、図4の例では、感度調整部300は、レバー操作量が小さい方の操作レバーの感度を自動的に低減させる。しかしながら、本発明はこの構成に限定されない。例えば、操作者は、所望の操作レバーの感度が所望のレベルに低減されるようにその感度を設定してもよい。例えば、操作者は、スイッチ31を用いて特定の操作レバーの感度のみが低減されるようにその感度を設定してもよく、その低減の程度を詳細に設定してもよい。例えば、操作者は、動かすつもりのない操作レバーの感度を大幅に低減させてもよい。 Further, in the example of FIG. 4, the sensitivity adjustment unit 300 automatically reduces the sensitivity of the operation lever with the smaller lever operation amount. However, the present invention is not limited to this configuration. For example, the operator may set the sensitivity of the desired operating lever to be reduced to the desired level. For example, the operator may set the sensitivity so that only the sensitivity of the specific operation lever is reduced using the switch 31, and the degree of the reduction may be set in detail. For example, the operator may significantly reduce the sensitivity of the operating lever that he does not intend to move.
 次に図5A及び図5Bを参照し、操作レバーの感度を調整する具体的な方法について説明する。図5A及び図5Bは何れも、アーム操作レバー26Aのレバー操作量を表す圧力センサ29Aの検出値(以下、「1次側パイロット圧」とする。)と圧力センサ27Aの検出値(以下、「2次側パイロット圧」とする。)との関係を示す図である。1次側パイロット圧は、減圧弁27AL、27ARの上流側(アーム操作レバー26A側)のパイロット圧であり、2次側パイロット圧は、減圧弁27AL、27ARの下流側(制御弁175L、175R側)のパイロット圧である。レバー操作量は、1次側パイロット圧とリモコン弁26AVの特性とに基づいて算出され得る。1次側パイロット圧は実際には正値で表されるが、図5A及び図5Bでは、便宜上、アーム開き方向の1次側パイロット圧が正値で表され、アーム閉じ方向の1次側パイロット圧が負値で表される。横軸右側がアーム開き方向の1次側パイロット圧(正値)を示し、横軸左側がアーム閉じ方向の1次側パイロット圧(負値)を示す。また、縦軸がパイロットポートに作用する2次側パイロット圧を示す。また、実線は感度調整後の関係を示し、破線は感度調整前の関係を示す。 Next, referring to FIGS. 5A and 5B, a specific method of adjusting the sensitivity of the operating lever will be described. In both FIGS. 5A and 5B, the detected value of pressure sensor 29A (hereinafter referred to as "primary side pilot pressure") representing the lever operation amount of arm operation lever 26A and the detected value of pressure sensor 27A (hereinafter referred to as " It is a figure which shows the relationship between "the secondary side pilot pressure". The primary side pilot pressure is a pilot pressure on the upstream side (arm control lever 26A side) of the pressure reducing valves 27AL, 27AR, and the secondary side pilot pressure is downstream of the pressure reducing valves 27AL, 27AR (control valves 175L, 175R side Pilot pressure). The lever operation amount can be calculated based on the primary side pilot pressure and the characteristics of the remote control valve 26AV. Although the primary side pilot pressure is actually represented by a positive value, in FIGS. 5A and 5B, for convenience, the primary side pilot pressure in the arm opening direction is represented by a positive value, and the primary side pilot in the arm closing direction is represented. Pressure is expressed as a negative value. The right side of the horizontal axis indicates the primary side pilot pressure (positive value) in the arm opening direction, and the left side of the horizontal axis indicates the primary side pilot pressure (negative value) in the arm closing direction. The vertical axis represents the secondary side pilot pressure acting on the pilot port. The solid line shows the relationship after sensitivity adjustment, and the broken line shows the relationship before sensitivity adjustment.
 図5Aは、アーム操作レバー26Aの不感帯を拡げることでアーム操作レバー26Aの感度を下げる方法を示す。具体的には、レバー操作量に基づき、減圧弁で2次側パイロット圧をシフトさせる方法を示す。不感帯は、レバー操作量が実際にはゼロでなくてもゼロと見なされる範囲を意味する。感度調整部300は、減圧弁27AL及び減圧弁27ARに指令を出力し、1次側パイロット圧-L1~+L1の範囲W1であった不感帯を、1次側パイロット圧-L2~+L2の範囲W2まで拡大する。そのため、アーム操作レバー26Aの開き側の1次側パイロット圧が0~+L2であれば、アーム開き側パイロットポートに作用する2次側パイロット圧は、制御弁175L及び制御弁175Rを中立位置から変位させないレベルで維持される。同様に、アーム操作レバー26Aの閉じ側の1次側パイロット圧が-L2~0であれば、アーム閉じ側パイロットポートに作用する2次側パイロット圧は、制御弁175L及び制御弁175Rを中立位置から変位させないレベルで維持される。図5Aの例では、アーム開き側とアーム閉じ側の両方で同じ幅(L2-L1)だけ不感帯を変更しているが、アーム開き側とアーム閉じ側のそれぞれで異なる幅だけ不感帯を変更してもよい。 FIG. 5A shows a method of reducing the sensitivity of the arm control lever 26A by expanding the dead zone of the arm control lever 26A. Specifically, a method of shifting the secondary side pilot pressure with the pressure reducing valve based on the lever operation amount is shown. The dead zone means a range in which the lever operation amount is considered to be zero even if it is not zero. The sensitivity adjustment unit 300 outputs a command to the pressure reducing valve 27AL and the pressure reducing valve 27AR, and the dead zone in the range W1 of the primary side pilot pressure -L1 to + L1 is set to the range W2 of the primary side pilot pressure -L2 to + L2. Expanding. Therefore, if the primary side pilot pressure on the open side of the arm control lever 26A is 0 to + L2, the secondary side pilot pressure acting on the arm open side pilot port displaces the control valve 175L and the control valve 175R from the neutral position It is maintained at the level which does not Similarly, if the primary side pilot pressure on the closing side of the arm control lever 26A is -L2 to 0, the secondary side pilot pressure acting on the arm closing side pilot port moves the control valve 175L and the control valve 175R to the neutral position. Maintained at a level that does not displace from In the example of FIG. 5A, the dead zone is changed by the same width (L2-L1) on both the arm open side and the arm closed side, but the dead zone is changed by different widths on the arm open side and the arm closed side. It is also good.
 図5Bは、アーム操作レバー26Aの1次側パイロット圧に対する2次側パイロット圧の増大率を小さくすることでアーム操作レバー26Aの感度を下げる方法を示す。具体的には、レバー操作量に基づき、減圧弁で2次側パイロット圧の増大率(傾き)を変える方法を示す。感度調整部300は、減圧弁27AL及び減圧弁27ARに指令を出力し、アーム操作レバー26Aを開き方向に操作したときの1次側パイロット圧に対する2次側パイロット圧の増大率をθ1からθ2に低減させる。そのため、1次側パイロット圧が+L1のときに増大し始めて+L2のときに最大値に達していた2次側パイロット圧は+L2ではなく+L3のときに遅れて最大値に達するようになる。アーム操作レバー26Aを閉じ方向に操作したときも同様である。図5Bの例では、アーム開き側とアーム閉じ側の両方で同じ傾き(θ1-θ2)だけ増大率を変更しているが、アーム開き側とアーム閉じ側のそれぞれで異なる傾きだけ増大率を変更してもよい。 FIG. 5B shows a method of lowering the sensitivity of the arm control lever 26A by reducing the rate of increase of the secondary side pilot pressure with respect to the primary side pilot pressure of the arm control lever 26A. Specifically, a method is shown in which the rate of increase (inclination) of the secondary side pilot pressure is changed by the pressure reducing valve based on the lever operation amount. The sensitivity adjustment unit 300 outputs a command to the pressure reducing valve 27AL and the pressure reducing valve 27AR, and increases the rate of increase of the secondary side pilot pressure to the primary side pilot pressure when operating the arm control lever 26A in the opening direction from θ1 to θ2. Reduce. Therefore, the secondary side pilot pressure which has started to increase when the primary side pilot pressure is + L1 and reaches the maximum value at + L2 is delayed to reach the maximum value when + L3 instead of + L2. The same applies when the arm control lever 26A is operated in the closing direction. In the example of FIG. 5B, although the increase rate is changed by the same slope (θ1-θ2) on both the arm open side and the arm close side, the increase rate is changed by different slopes on the arm open side and the arm close side. You may
 このように、感度調整部300は、減圧弁27AL及び減圧弁27ARを制御して1次側パイロット圧と2次側パイロット圧との関係を変更することで操作レバーの感度を調整できる。したがって、操作者が左操作レバーを旋回方向のみに操作しようとした際に、意図せずアーム開き方向へ左操作レバーを傾けてしまったとしても、アーム5が開くことはない。その結果、操作者が意図しないアーム開き動作を防止することができる。また、図5A及び図5Bでは、アーム操作レバー26Aに関して説明したが、他の操作レバーについても同様である。 As described above, the sensitivity adjustment unit 300 can adjust the sensitivity of the control lever by controlling the pressure reducing valve 27AL and the pressure reducing valve 27AR to change the relationship between the primary side pilot pressure and the secondary side pilot pressure. Therefore, when the operator tries to operate the left operating lever only in the turning direction, the arm 5 does not open even if the left operating lever is unintentionally tilted in the arm opening direction. As a result, it is possible to prevent an arm opening operation not intended by the operator. Moreover, although FIG. 5A and FIG. 5B demonstrated regarding arm control lever 26A, the same may be said of the other control lever.
 次に図6を参照し、誤操作率について説明する。図6は、左操作レバーを真上から見た図であり、縦軸がアーム操作レバー26Aの操作方向に対応し、横軸が旋回操作レバーの操作方向に対応する。 Next, the erroneous operation rate will be described with reference to FIG. FIG. 6 is a view of the left operating lever as viewed from directly above. The vertical axis corresponds to the operating direction of the arm operating lever 26A, and the horizontal axis corresponds to the operating direction of the turning operating lever.
 図6の斜線領域は不感帯を示す。具体的には、横方向に延びる斜線領域がアーム操作レバー26Aの不感帯を示し、縦方向に延びる斜線領域が旋回操作レバーの不感帯を示す。図6のドットパターン領域は微操作領域を示す。具体的には、横方向に延びるドットパターン領域がアーム操作レバー26Aの微操作領域を示し、縦方向に延びるドットパターン領域が旋回操作レバーの微操作領域を示す。 The shaded area in FIG. 6 indicates a dead zone. Specifically, a hatched region extending in the lateral direction indicates the dead zone of the arm control lever 26A, and a hatched region extending in the longitudinal direction indicates the dead zone of the turning operation lever. The dot pattern area in FIG. 6 indicates a fine operation area. Specifically, the dot pattern area extending in the lateral direction indicates the fine operation area of the arm control lever 26A, and the dot pattern area extending in the longitudinal direction indicates the fine operation area of the turning control lever.
 レバー位置P0は、左操作レバーが中立位置にある状態を示し、レバー位置P1は、操作者が意図した通りに旋回操作レバーが左旋回方向に操作された状態を示す。 The lever position P0 indicates that the left operation lever is in the neutral position, and the lever position P1 indicates that the turn operation lever is operated in the left turn direction as intended by the operator.
 レバー位置P2は、操作者が意図した通りに旋回操作レバーが右旋回方向に操作され且つアーム操作レバー26Aが閉じ方向に操作された状態を示す。 The lever position P2 indicates a state in which the turning operation lever is operated in the right turning direction and the arm operation lever 26A is operated in the closing direction as intended by the operator.
 レバー位置P3は、操作者が意図した通りに旋回操作レバーが右旋回方向に操作されたが、操作者の意図に反してアーム操作レバー26Aが開き方向に誤って操作されてしまった状態を示す。 In the lever position P3, the turning operation lever is operated in the right turning direction as intended by the operator, but contrary to the operator's intention, the arm operating lever 26A is erroneously operated in the opening direction. Show.
 レバー位置P4は、操作者が意図した通りにアーム操作レバー26Aが開き方向に操作されたが、操作者の意図に反して旋回操作レバーが左旋回方向に誤って操作されてしまった状態を示す。 The lever position P4 indicates that the arm control lever 26A is operated in the opening direction as intended by the operator, but the turning operation lever has been erroneously operated in the left turning direction against the operator's intention. .
 上述の例では、レバー位置P3及びレバー位置P4のそれぞれが示す状態は、誤操作が行われている状態を示す。すなわち、上述の例では、誤操作が行われている状態は、アーム操作レバー26Aが微操作領域を超えて操作されているときに旋回操作レバーが微操作されている状態(レバー位置P4が示す状態)を含む。また、旋回操作レバーが微操作領域を超えて操作されているときにアーム操作レバー26Aが微操作されている状態(レバー位置P3が示す状態)を含む。 In the above-mentioned example, the state shown by each of the lever position P3 and the lever position P4 indicates a state in which an erroneous operation is being performed. That is, in the above-described example, the erroneous operation is performed when the swing operation lever is finely operated when the arm operation lever 26A is operated beyond the fine operation area (a state indicated by the lever position P4 )including. Also, it includes a state in which the arm control lever 26A is finely operated (a state indicated by the lever position P3) when the turning operation lever is operated beyond the fine operation area.
 誤操作率は、通常制御において、所定時間内に、図6で示す微操作領域で操作された時間(誤操作が行われた時間)の統計値に基づいて算出される。例えば、左操作レバーの総操作時間に対する誤操作時間の比率として導き出される。総操作時間は、例えば、操作レバーが中立位置以外の位置に存在する時間、又は、不感帯以外の位置に存在する時間である。誤操作時間は、例えば、誤操作が行われている状態の時間である。誤操作率は、操作レバーの総操作回数に対する誤操作回数の比率として導き出されてもよく、他の方法で導き出されてもよい。操作レバーの1回の操作は、例えば、操作レバーが中立位置から出た後で中立位置に戻るまでの操作である。コントローラ30は、誤操作率の算出だけでなく、操作者が誤操作し易いレバー操作の特徴を把握することもできる。例えば、コントローラ30は、ある操作者はアーム閉じのみを行おうとする際に意図せず左操作レバーを右旋回方向へ傾けてしまうといった傾向を操作者毎に把握できる。この場合、コントローラ30は、右旋回操作に対する感度のみを低減させればよい。すなわち、左旋回操作に対する感度については、通常制御からの変更は不要である。 In the normal control, the erroneous operation rate is calculated based on the statistical value of the time operated in the fine operation area shown in FIG. 6 (the time when the erroneous operation is performed) within a predetermined time. For example, it is derived as a ratio of the erroneous operation time to the total operation time of the left operation lever. The total operation time is, for example, the time when the control lever is at a position other than the neutral position or the time when the control lever is at a position other than the dead zone. The erroneous operation time is, for example, a time during which an erroneous operation is being performed. The erroneous operation rate may be derived as a ratio of the number of erroneous operations to the total number of operations of the operating lever, or may be derived in other manners. One operation of the operating lever is, for example, an operation from when the operating lever comes out of the neutral position and returns to the neutral position. The controller 30 can grasp not only the calculation of the erroneous operation rate but also the feature of the lever operation which the operator can easily operate erroneously. For example, the controller 30 can grasp for each operator a tendency that a certain operator unintentionally tilts the left operation lever in the right turning direction when attempting to close the arm only. In this case, the controller 30 may reduce only the sensitivity to the right turn operation. That is, no change from the normal control is necessary for the sensitivity to the left turn operation.
 次に図7を参照し、コントローラ30が誤操作防止モードの利用を操作者に促す処理(以下、「利用促進処理」とする。)について説明する。図7は、利用促進処理のフローチャートである。コントローラ30は、所定の制御周期で繰り返し利用促進処理を実行する。 Next, with reference to FIG. 7, a process (hereinafter, referred to as “use promotion process”) in which the controller 30 prompts the operator to use the erroneous operation prevention mode will be described. FIG. 7 is a flowchart of the use promotion process. The controller 30 repeatedly executes the usage promotion process at a predetermined control cycle.
 最初に、コントローラ30は、誤操作率が所定の閾値以上であるかを判定する(ステップST11)。例えば、コントローラ30は、操作レバーの操作内容を時系列で記憶する。そして、所定時間における操作履歴に基づいて誤操作率を導き出す。所定時間は、例えば、エンジン始動後の所定時間(例えば1時間)である。その上で、所定時間における誤操作率が閾値以上であるか否かを判定する。 First, the controller 30 determines whether the misoperation rate is equal to or greater than a predetermined threshold (step ST11). For example, the controller 30 stores the operation content of the operation lever in time series. Then, an erroneous operation rate is derived based on the operation history at a predetermined time. The predetermined time is, for example, a predetermined time (for example, one hour) after the start of the engine. Then, it is determined whether the erroneous operation rate in a predetermined time is equal to or more than a threshold.
 誤操作率が閾値以上であると判定した場合(ステップST11のYES)、コントローラ30は、誤操作防止モードの利用を促進する(ステップST12)。例えば、コントローラ30は、誤操作防止モードの利用を促進するテキストメッセージをソフトウェアスイッチとしてのスイッチ31とともに表示装置の画面に表示させる。操作者は、スイッチ31を押下することで誤操作防止モードを開始させることができる。誤操作防止モードの利用を促進する音声メッセージを車載スピーカから出力させてもよい。 When it is determined that the misoperation rate is equal to or higher than the threshold (YES in step ST11), the controller 30 promotes the use of the misoperation prevention mode (step ST12). For example, the controller 30 displays a text message promoting the use of the erroneous operation prevention mode on the screen of the display device together with the switch 31 as a software switch. The operator can start the erroneous operation prevention mode by pressing the switch 31. A voice message may be output from the on-vehicle speaker that promotes the use of the erroneous operation prevention mode.
 コントローラ30は、誤操作防止モードを自動的に開始させてもよい。この場合、コントローラ30は、誤操作防止モード中であることを表す画像を表示装置の画面に表示させてもよく、誤操作防止モード中であることを表す音声メッセージを定期的に車載スピーカから出力させてもよい。誤操作防止モードが開始されたことを表す音声メッセージを車載スピーカから出力させてもよい。 The controller 30 may automatically start the erroneous operation prevention mode. In this case, the controller 30 may display an image indicating that the operation error prevention mode is in progress on the screen of the display device, and periodically output a voice message indicating that the operation error prevention mode is in progress from the on-vehicle speaker It is also good. A voice message may be output from the in-vehicle speaker indicating that the operation error prevention mode has been started.
 誤操作防止モードが開始された場合、感度調整部300は、誤操作率に応じて操作レバーの感度の調整内容を変更してもよい。例えば、感度調整部300は、誤操作率が高いほど不感帯の幅を大きくしてもよい。或いは、感度調整部300は、誤操作率が高いほどレバー操作量に対するパイロット圧の増大率を低減させてもよい。 When the erroneous operation prevention mode is started, the sensitivity adjustment unit 300 may change the adjustment content of the sensitivity of the operation lever according to the erroneous operation rate. For example, the sensitivity adjustment unit 300 may increase the width of the dead zone as the erroneous operation rate is higher. Alternatively, the sensitivity adjustment unit 300 may reduce the increase rate of the pilot pressure with respect to the lever operation amount as the erroneous operation rate is higher.
 誤操作率が閾値未満であると判定した場合(ステップST11のNO)、コントローラ30は、誤操作防止モードの利用を促進することなく、今回の利用促進処理を終了させる。 When it is determined that the erroneous operation rate is less than the threshold (NO in step ST11), the controller 30 ends the current use promotion process without promoting the use of the erroneous operation prevention mode.
 このように、コントローラ30は、操作レバーの操作履歴に基づいて誤操作率を導き出し、その誤操作率が所定の閾値以上の場合、誤操作防止モードの利用を操作者に促すことができ、或いは、誤操作防止モードを自動的に開始させることができる。 Thus, the controller 30 can derive an erroneous operation rate based on the operation history of the operation lever, and when the erroneous operation rate is equal to or higher than a predetermined threshold, can prompt the operator to use the erroneous operation prevention mode or prevent erroneous operation The mode can be started automatically.
 また、コントローラ30は、誤操作率に応じて操作レバーの感度の調整内容を変更できる。そのため、誤操作の頻度に応じた適切な感度調整を行うことができる。更に、操作の特徴を操作者毎に把握することもでき、その特徴に応じて感度を変更すべきレバー操作方向と感度調整量とを決定できる。 Further, the controller 30 can change the adjustment content of the sensitivity of the operation lever according to the erroneous operation rate. Therefore, appropriate sensitivity adjustment can be performed according to the frequency of erroneous operation. Furthermore, the feature of the operation can be grasped for each operator, and in accordance with the feature, the lever operation direction to which the sensitivity is to be changed and the sensitivity adjustment amount can be determined.
 以上の構成により、コントローラ30は、例えば狭小空間での溝掘り作業等のシーケンス作業においてアーム操作中に誤って旋回操作が入ってしまうのを抑制或いは防止できる。そのため、ショベルが周囲の地物に誤って接触するのを抑制或いは防止できる。その結果、ショベルの安全性、操作性及び作業効率を向上させることができる。 With the above configuration, the controller 30 can suppress or prevent the turning operation from being accidentally entered during the arm operation in the sequence work such as the trench digging work in a narrow space. Therefore, it can control or prevent that a shovel accidentally contacts surrounding local features. As a result, the safety, operability and work efficiency of the shovel can be improved.
 以上、本発明の好ましい実施例について詳説した。しかしながら、本発明は、上述した実施例に制限されることはない。上述した実施例は、本発明の範囲を逸脱することなしに、種々の変形、置換等が適用され得る。また、別々に説明された特徴は、技術的な矛盾が生じない限り、組み合わせが可能である。 The preferred embodiments of the present invention have been described above in detail. However, the present invention is not limited to the embodiments described above. Various modifications, substitutions, and the like may be applied to the embodiment described above without departing from the scope of the present invention. Also, the features described separately can be combined as long as no technical contradiction arises.
 例えば、上述の実施例では、感度調整部300は、レバー操作量が小さい方の操作レバーの感度を自動的に低減させる。しかしながら、本発明はこの構成に限定されない。例えば、感度調整部300は、図6に示すような微操作領域を利用して誤操作が行われている状態であるか否かを判定し、誤操作が行われていると判定した場合に限り、レバー操作量が小さい方の操作レバーの感度を自動的に低減させてもよい。すなわち、誤操作防止モードにおいても、誤操作が行われていないと判定した場合には、レバー操作量が小さい方の操作レバーの感度を低減させずに維持してもよい。 For example, in the above-described embodiment, the sensitivity adjustment unit 300 automatically reduces the sensitivity of the control lever with the smaller lever operation amount. However, the present invention is not limited to this configuration. For example, the sensitivity adjustment unit 300 determines whether or not an erroneous operation is being performed using the fine operation area as shown in FIG. 6, and determines that the erroneous operation is being performed, The sensitivity of the control lever with the smaller lever operation amount may be automatically reduced. That is, even in the erroneous operation prevention mode, when it is determined that no erroneous operation is performed, the sensitivity of the operation lever with the smaller lever operation amount may be maintained without being reduced.
 また、上述の実施例では、操作装置26として油圧式操作装置が採用されているが、電気式操作装置が採用されてもよい。図8は、電気式操作装置を含む操作システムの構成例を示す。具体的には、図8の操作システムは、ブーム操作システムの一例であり、主に、パイロット圧作動型のコントロールバルブ17と、電気式操作レバーとしてのブーム操作レバー26Bと、コントローラ30と、ブーム上げ操作用の電磁弁60と、ブーム下げ操作用の電磁弁62とで構成されている。図8の操作システムは、アーム操作システム、バケット操作システム等にも同様に適用され得る。 Moreover, in the above-mentioned Example, although the hydraulic control apparatus is employ | adopted as the control device 26, an electrical control apparatus may be employ | adopted. FIG. 8 shows a configuration example of an operation system including an electric operation device. Specifically, the operation system of FIG. 8 is an example of a boom operation system, and mainly includes a pilot pressure control valve 17, a boom operation lever 26B as an electric operation lever, a controller 30, and a boom It is comprised by the solenoid valve 60 for raising operation, and the solenoid valve 62 for boom lowering operation. The operation system of FIG. 8 may be applied to an arm operation system, a bucket operation system, and the like as well.
 パイロット圧作動型のコントロールバルブ17は、図3に示すように、ブームシリンダ7に関する制御弁174L、174Rを含む。電磁弁60は、パイロットポンプ15と制御弁174Lの右側(上げ側)パイロットポート及び制御弁174Rの左側(上げ側)パイロットポートのそれぞれとを繋ぐ油路の流路面積を調整できるように構成されている。電磁弁62は、パイロットポンプ15と制御弁174Rの右側(下げ側)パイロットポートとを繋ぐ油路の流路面積を調整できるように構成されている。 The pilot pressure operated control valve 17 includes control valves 174L and 174R for the boom cylinder 7, as shown in FIG. The solenoid valve 60 is configured to be able to adjust the flow passage area of the oil passage connecting the pilot pump 15 with the right (raised) pilot port of the control valve 174L and the left (raised) pilot port of the control valve 174R. ing. The solenoid valve 62 is configured to adjust the flow passage area of the oil passage connecting the pilot pump 15 and the right (lower) pilot port of the control valve 174R.
 手動操作が行われる場合、コントローラ30は、ブーム操作レバー26Bの操作信号生成部が出力する操作信号(電気信号)に応じてブーム上げ操作信号(電気信号)又はブーム下げ操作信号(電気信号)を生成する。ブーム操作レバー26Bの操作信号生成部が出力する操作信号は、ブーム操作レバー26Bの操作量及び操作方向に応じて変化する電気信号である。 When the manual operation is performed, the controller 30 receives the boom raising operation signal (electric signal) or the boom lowering operation signal (electric signal) according to the operation signal (electric signal) output from the operation signal generation unit of the boom operation lever 26B. Generate The operation signal output from the operation signal generation unit of the boom operation lever 26B is an electrical signal that changes in accordance with the operation amount and the operation direction of the boom operation lever 26B.
 具体的には、コントローラ30は、ブーム操作レバー26Bがブーム上げ方向に操作された場合、レバー操作量に応じたブーム上げ操作信号(電気信号)を電磁弁60に対して出力する。電磁弁60は、ブーム上げ操作信号(電気信号)に応じて流路面積を調整し、制御弁174Lの右側(上げ側)パイロットポートと制御弁174Rの左側(上げ側)パイロットポートとに作用するパイロット圧を制御する。同様に、コントローラ30は、ブーム操作レバー26Bがブーム下げ方向に操作された場合、レバー操作量に応じたブーム下げ操作信号(電気信号)を電磁弁62に対して出力する。電磁弁62は、ブーム下げ操作信号(電気信号)に応じて流路面積を調整し、制御弁174Rの右側(下げ側)パイロットポートに作用するパイロット圧を制御する。 Specifically, when the boom control lever 26B is operated in the boom raising direction, the controller 30 outputs, to the solenoid valve 60, a boom raising operation signal (electric signal) according to the lever operation amount. The solenoid valve 60 adjusts the flow passage area according to the boom raising operation signal (electric signal), and acts on the right side (raising side) pilot port of the control valve 174L and the left side (raising side) pilot port of the control valve 174R. Control the pilot pressure. Similarly, when the boom control lever 26B is operated in the boom lowering direction, the controller 30 outputs a boom lowering operation signal (electric signal) corresponding to the lever operation amount to the solenoid valve 62. The solenoid valve 62 adjusts the flow passage area according to the boom lowering operation signal (electric signal), and controls the pilot pressure applied to the right (lower side) pilot port of the control valve 174R.
 自動制御を実行する場合、コントローラ30は、ブーム操作レバー26Bの操作信号生成部が出力する操作信号の代わりに、補正操作信号(電気信号)に応じてブーム上げ操作信号(電気信号)又はブーム下げ操作信号(電気信号)を生成する。補正操作信号は、コントローラ30が生成する電気信号であってもよく、コントローラ30以外の外部の制御装置等が生成する電気信号であってもよい。 When executing the automatic control, the controller 30 controls the boom raising operation signal (electric signal) or the boom lowering according to the correction operation signal (electric signal) instead of the operation signal output from the operation signal generation unit of the boom operation lever 26B. An operation signal (electrical signal) is generated. The correction operation signal may be an electrical signal generated by the controller 30, or may be an electrical signal generated by an external control device or the like other than the controller 30.
 図9は、電気式操作装置を含む操作システムの別の構成例を示す。具体的には、図9の操作システムは、ブーム操作システムの別の一例であり、主に、電磁作動型のコントロールバルブ17と、電気式操作レバーとしてのブーム操作レバー26Bと、コントローラ30とで構成されている。図9の操作システムは、アーム操作システム、バケット操作システム等にも同様に適用され得る。 FIG. 9 shows another configuration example of the operation system including the electric operation device. Specifically, the operation system of FIG. 9 is another example of a boom operation system, and mainly includes an electromagnetic control valve 17, a boom operation lever 26B as an electric operation lever, and a controller 30. It is configured. The operation system of FIG. 9 may be applied to an arm operation system, a bucket operation system, and the like as well.
 電磁作動型のコントロールバルブ17は、コントローラ30からの指令に応じて動作する電磁スプール弁で構成されたブーム用制御弁、アーム用制御弁、バケット用制御弁等を含む。 The electromagnetic control valve 17 includes a boom control valve, an arm control valve, a bucket control valve, and the like, each of which is configured of an electromagnetic spool valve that operates in response to a command from the controller 30.
 図9のブーム操作システムは、コントローラ30がブーム用制御弁を直接的に制御する点で、図8のブーム操作システムと異なる。図8のブーム操作システムでは、コントローラ30は、電磁弁60又は電磁弁62を介して制御弁17B(図3参照。)を間接的に制御するように構成されている。 The boom operating system of FIG. 9 differs from the boom operating system of FIG. 8 in that the controller 30 directly controls the boom control valve. In the boom operating system of FIG. 8, the controller 30 is configured to indirectly control the control valve 17B (see FIG. 3) via the solenoid valve 60 or the solenoid valve 62.
 図9の構成では、手動操作が行われる場合、コントローラ30は、ブーム操作レバー26Bの操作信号生成部が出力する操作信号(電気信号)に応じてブーム操作信号(電気信号)を生成する。 In the configuration of FIG. 9, when the manual operation is performed, the controller 30 generates a boom operation signal (electric signal) according to the operation signal (electric signal) output from the operation signal generation unit of the boom operation lever 26B.
 具体的には、コントローラ30は、ブーム操作レバー26Bがブーム上げ方向に操作された場合、レバー操作量に応じたブーム上げ操作信号(電気信号)をブーム用制御弁に対して出力する。ブーム用制御弁は、ブーム上げ操作信号(電気信号)に応じたスプールストローク量だけ変位し、ブームシリンダ7のボトム側油室に流入する作動油の流量を調整する。同様に、コントローラ30は、ブーム操作レバー26Bがブーム下げ方向に操作された場合、レバー操作量に応じたブーム下げ操作信号(電気信号)をブーム用制御弁に対して出力する。ブーム用制御弁は、ブーム下げ操作信号(電気信号)に応じたスプールストローク量だけ変位し、ブームシリンダ7のロッド側油室に流入する作動油の流量を調整する。 Specifically, when the boom control lever 26B is operated in the boom raising direction, the controller 30 outputs a boom raising operation signal (electric signal) according to the lever operation amount to the boom control valve. The boom control valve is displaced by a spool stroke amount according to the boom raising operation signal (electric signal), and adjusts the flow rate of the hydraulic fluid flowing into the bottom side oil chamber of the boom cylinder 7. Similarly, when the boom control lever 26B is operated in the boom lowering direction, the controller 30 outputs a boom lowering operation signal (electric signal) corresponding to the lever operation amount to the boom control valve. The boom control valve is displaced by a spool stroke amount according to the boom lowering operation signal (electric signal), and adjusts the flow rate of hydraulic fluid flowing into the rod side oil chamber of the boom cylinder 7.
 自動制御を実行する場合、コントローラ30は、ブーム操作レバー26Bの操作信号生成部が出力する操作信号の代わりに、補正操作信号(電気信号)に応じてブーム上げ操作信号(電気信号)又はブーム下げ操作信号(電気信号)を生成する。補正操作信号は、コントローラ30が生成する電気信号であってもよく、コントローラ30以外の外部の制御装置等が生成する電気信号であってもよい。 When executing the automatic control, the controller 30 controls the boom raising operation signal (electric signal) or the boom lowering according to the correction operation signal (electric signal) instead of the operation signal output from the operation signal generation unit of the boom operation lever 26B. An operation signal (electrical signal) is generated. The correction operation signal may be an electrical signal generated by the controller 30, or may be an electrical signal generated by an external control device or the like other than the controller 30.
 このように、本発明の実施例に係るショベルは、電気式操作装置が採用される場合にも、油圧式操作装置が採用される場合と同様に動作可能である。 Thus, the shovel according to the embodiment of the present invention can operate similarly to the case where the hydraulic operating device is adopted even when the electric operating device is adopted.
 1・・・下部走行体 1L・・・左側走行用油圧モータ 1R・・・右側走行用油圧モータ 2・・・旋回機構 2A・・・旋回用油圧モータ 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 10・・・キャビン 11・・・エンジン 13、13L、13R・・・レギュレータ 14、14L、14R・・・メインポンプ 15・・・パイロットポンプ 17・・・コントロールバルブ 18L、18R・・・ネガティブコントロール絞り 19L、19R・・・ネガコン圧センサ 26・・・操作装置 26A・・・アーム操作レバー 26B・・・ブーム操作レバー 26AV、26AVL、26AVR・・・リモコン弁 27、27AL、27AR・・・減圧弁 27A・・・圧力センサ 28、28L、28R・・・吐出圧センサ 29、29A・・・圧力センサ 30・・・コントローラ 31・・・スイッチ 40L、40R・・・センターバイパス管路 42L、42R・・・パラレル管路 50・・・オプション用油圧アクチュエータ 60、62・・・電磁弁 171L~175L、171R~175R・・・制御弁 300・・・感度調整部 1 ····················································································································································································································································· By the left traveling hydraulic motor 1R · · · right hydraulic traveling motor 2 · · · turning mechanism 2 A · · · turning hydraulic motor 3 · · · upper revolving unit Boom 5 ··· Arm 6 ··· Bucket 7 ··· Boom cylinder 8 ··· Arm cylinder 9 ··· Bucket cylinder 10 ··· Cabin 11 ··· Engine 13, 13L, 13R ··· Regulator 14, 14L, 14R: Main pump 15: Pilot pump 17: Control valve 18L, 18R: Negative control throttle 19L, 19R: Negative control pressure sensor 26: Operating device 26A: Arm operation Lever 26B: Boom control lever 26AV, 26AVL, 26AVR ... remote control 27, 27AL, 27AR ... pressure reducing valve 27A ... pressure sensor 28, 28L, 28R ... discharge pressure sensor 29, 29A ... pressure sensor 30 ... controller 31 ... switch 40L, 40R · · · · Center bypass line 42L, 42R · · · Parallel line 50 · · · Optional hydraulic actuator 60, 62 · · · Solenoid valve 171L to 175L, 171R to 175R · · · Control valve 300 · · · Sensitivity adjustment section

Claims (6)

  1.  下部走行体と、
     前記下部走行体上に搭載された上部旋回体と、
     前記上部旋回体に取り付けられた運転室と、
     前記運転室内に設置された、複数のアクチュエータを同時操作可能な操作レバーと、
     前記操作レバーの感度を調整する制御装置と、を備える、
     ショベル。
    The lower traveling body,
    An upper revolving unit mounted on the lower traveling unit,
    A driver's cab attached to the upper revolving superstructure;
    An operating lever installed in the operator's cab, which can simultaneously operate a plurality of actuators;
    A control device for adjusting the sensitivity of the control lever;
    Excavator.
  2.  下部走行体と、
     前記下部走行体上に搭載された上部旋回体と、
     前記上部旋回体に取り付けられた運転室と、
     前記運転室内に設置された操作レバーと、
     前記操作レバーが中立位置から第1の方向又は該第1の方向とは逆の第2の方向へ傾けられると、前記第1の方向又は前記第2の方向に対応する方向へ駆動される第1のアクチュエータと、
     前記操作レバーが中立位置から前記第1の方向にほぼ直交する第3の方向又は該第3の方向とは逆の第4の方向へ傾けられると、前記第3の方向又は前記第4の方向に対応する方向へ駆動される第2のアクチュエータと、
     前記操作レバーの前記第1の方向、前記第2の方向、前記第3の方向及び前記第4の方向のうちの少なくとも1つの方向に関する感度を調整する制御装置と、を備える、
     ショベル。
    The lower traveling body,
    An upper revolving unit mounted on the lower traveling unit,
    A driver's cab attached to the upper revolving superstructure;
    An operating lever installed in the driver's cabin;
    When the operating lever is tilted in a first direction or a second direction opposite to the first direction from a neutral position, the control lever is driven in a direction corresponding to the first direction or the second direction 1 actuator,
    The third direction or the fourth direction when the control lever is tilted in a third direction substantially orthogonal to the first direction from the neutral position or in a fourth direction opposite to the third direction. A second actuator driven in a direction corresponding to
    A controller configured to adjust sensitivity of at least one of the first direction, the second direction, the third direction, and the fourth direction of the operation lever;
    Excavator.
  3.  前記制御装置は、前記操作レバーの不感帯の大きさを調整することで前記操作レバーの感度を調整する、
     請求項1に記載のショベル。
    The control device adjusts the sensitivity of the operating lever by adjusting the size of the dead zone of the operating lever.
    The shovel according to claim 1.
  4.  前記操作レバーの感度を調整する機能の作動・停止を切り替える際に用いる画面を表示する表示装置を備える、
     請求項1に記載のショベル。
    It has a display device for displaying a screen used when switching on / off of the function of adjusting the sensitivity of the operation lever.
    The shovel according to claim 1.
  5.  前記制御装置は、前記操作レバーの状態に応じて前記操作レバーの感度を調整する、
     請求項1に記載のショベル。
    The control device adjusts the sensitivity of the control lever according to the state of the control lever.
    The shovel according to claim 1.
  6.  前記制御装置は、前記操作レバーの操作履歴に基づいて前記操作レバーの感度を調整する、
     請求項1に記載のショベル。
    The control device adjusts the sensitivity of the control lever based on the operation history of the control lever.
    The shovel according to claim 1.
PCT/JP2017/044847 2017-12-14 2017-12-14 Excavator WO2019116486A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/044847 WO2019116486A1 (en) 2017-12-14 2017-12-14 Excavator
JP2019559483A JPWO2019116486A1 (en) 2017-12-14 2017-12-14 Excavator
CN201780097676.9A CN111465737A (en) 2017-12-14 2017-12-14 Excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044847 WO2019116486A1 (en) 2017-12-14 2017-12-14 Excavator

Publications (1)

Publication Number Publication Date
WO2019116486A1 true WO2019116486A1 (en) 2019-06-20

Family

ID=66820087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044847 WO2019116486A1 (en) 2017-12-14 2017-12-14 Excavator

Country Status (3)

Country Link
JP (1) JPWO2019116486A1 (en)
CN (1) CN111465737A (en)
WO (1) WO2019116486A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110098A (en) * 2020-01-06 2021-08-02 日立建機株式会社 Construction machine
WO2022210981A1 (en) * 2021-03-31 2022-10-06 住友建機株式会社 Work machine and operation device for work machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307703A (en) * 1987-06-10 1988-12-15 Hitachi Constr Mach Co Ltd Electric lever device
JP2004092841A (en) * 2002-09-03 2004-03-25 Hitachi Constr Mach Co Ltd Operating device of construction machine
JP2005178978A (en) * 2003-12-18 2005-07-07 Furukawa Co Ltd Working machine operating device
JP2013014981A (en) * 2011-07-06 2013-01-24 Hitachi Constr Mach Co Ltd Operation device for work machine
JP2014133480A (en) * 2013-01-10 2014-07-24 Kubota Corp Work machine
JP2017057644A (en) * 2015-09-17 2017-03-23 住友重機械工業株式会社 Shovel
JP2017227045A (en) * 2016-06-22 2017-12-28 住友重機械工業株式会社 Shovel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248867A (en) * 2009-04-20 2010-11-04 Caterpillar Sarl Working machine controller
JPWO2014136622A1 (en) * 2013-03-07 2017-02-09 日立建機株式会社 Operation equipment for work machines
CN103628517B (en) * 2013-11-15 2016-03-30 中外合资沃得重工(中国)有限公司 Excavator safety control system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307703A (en) * 1987-06-10 1988-12-15 Hitachi Constr Mach Co Ltd Electric lever device
JP2004092841A (en) * 2002-09-03 2004-03-25 Hitachi Constr Mach Co Ltd Operating device of construction machine
JP2005178978A (en) * 2003-12-18 2005-07-07 Furukawa Co Ltd Working machine operating device
JP2013014981A (en) * 2011-07-06 2013-01-24 Hitachi Constr Mach Co Ltd Operation device for work machine
JP2014133480A (en) * 2013-01-10 2014-07-24 Kubota Corp Work machine
JP2017057644A (en) * 2015-09-17 2017-03-23 住友重機械工業株式会社 Shovel
JP2017227045A (en) * 2016-06-22 2017-12-28 住友重機械工業株式会社 Shovel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110098A (en) * 2020-01-06 2021-08-02 日立建機株式会社 Construction machine
WO2022210981A1 (en) * 2021-03-31 2022-10-06 住友建機株式会社 Work machine and operation device for work machine

Also Published As

Publication number Publication date
CN111465737A (en) 2020-07-28
JPWO2019116486A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
JP5015091B2 (en) Engine lag down suppression device for hydraulic work machines
JPWO2005098148A1 (en) Hydraulic drive device for work machine
WO2014084213A1 (en) Hydraulic drive device of electric hydraulic machinery
WO2014115527A1 (en) Hydraulic pressure drive device
KR102159596B1 (en) Construction machinery
JP6858723B2 (en) Wheel loader
WO2019116486A1 (en) Excavator
JP4993575B2 (en) Steering system for work vehicle
JP2013181287A (en) Construction machine
JP6640039B2 (en) Excavator
US11378101B2 (en) Shovel
EP3543198B1 (en) Control device of hydraulic winch
JP7130474B2 (en) Excavator
JP6752686B2 (en) Excavator
JP7210451B2 (en) Excavator
JP7227830B2 (en) Excavator
JP7474626B2 (en) Excavator
JP2023151650A (en) Shovel
JP2005226678A (en) Hydraulic drive mechanism
JP2023151651A (en) Shovel
JP7463163B2 (en) Excavator
JP2023151653A (en) Shovel
WO2020203906A1 (en) Excavator
JP2023151644A (en) Shovel
JP2022157910A (en) Shovel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559483

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934967

Country of ref document: EP

Kind code of ref document: A1