WO2014115527A1 - Hydraulic pressure drive device - Google Patents

Hydraulic pressure drive device Download PDF

Info

Publication number
WO2014115527A1
WO2014115527A1 PCT/JP2014/000237 JP2014000237W WO2014115527A1 WO 2014115527 A1 WO2014115527 A1 WO 2014115527A1 JP 2014000237 W JP2014000237 W JP 2014000237W WO 2014115527 A1 WO2014115527 A1 WO 2014115527A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
valve
output
hydraulic
command
Prior art date
Application number
PCT/JP2014/000237
Other languages
French (fr)
Japanese (ja)
Inventor
哲弘 近藤
伊藤 誠
藤山 和人
浩次 坂下
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201480001593.1A priority Critical patent/CN104364535A/en
Publication of WO2014115527A1 publication Critical patent/WO2014115527A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6316Electronic controllers using input signals representing a pressure the pressure being a pilot pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6346Electronic controllers using input signals representing a state of input means, e.g. joystick position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components

Definitions

  • the present invention relates to a hydraulic drive device that is connected to a plurality of actuators and supplies each of the hydraulic pressures discharged from a hydraulic pump to the actuators to drive each of the actuators.
  • Construction machines such as hydraulic excavators are equipped with a plurality of hydraulic actuators, and by driving the hydraulic actuators, various components such as booms, arms, buckets, swiveling devices, and traveling devices are moved to perform various operations. Can be done.
  • the construction machine is provided with a hydraulic drive device as disclosed in Patent Document 1, for example, in order to drive these hydraulic actuators.
  • the hydraulic drive device described in Patent Document 1 has a hydraulic pump, and drives the actuator by supplying hydraulic pressure discharged from the hydraulic pump to the actuator.
  • the hydraulic drive device has a control valve (including a flow rate control function and a direction control function), and each control valve is located between the hydraulic pump and the actuator.
  • An operation valve is connected to this control valve.
  • the operation valve is provided with an operation lever, and the operation valve outputs a pilot pressure corresponding to the operation amount of the operation lever to the control valve.
  • the spool of the control valve moves to a position corresponding to the input pilot pressure, and supplies a flow rate corresponding to the position and the load of the actuator to the actuator.
  • an operation signal output from an operation lever as an operation means is input to a controller, and a drive current corresponding to (or processed) an operation amount of the operation lever output from the controller.
  • a drive current corresponding to (or processed) an operation amount of the operation lever output from the controller is input to the electromagnetic proportional control valve, and the control valve is controlled using the output pressure of the electromagnetic proportional control valve as a hydraulic pilot.
  • the present invention provides a hydraulic drive device that enables control of an actuator even when an electronic device related to a pilot operation system including a controller becomes electrically uncontrollable. It is aimed.
  • the hydraulic drive device of the present invention is a hydraulic drive device that is connected to a plurality of actuators and supplies each of the actuators with the hydraulic fluid discharged from the hydraulic pump to drive each of the actuators.
  • a control valve that is provided every time and that is supplied to at least one of the control valve and the control valve that supplies the actuator with a flow rate of a pressure according to the applied pilot pressure and the load pressure of the actuator, and according to a command signal that is provided
  • a pressure adjusting valve that applies an output pressure to the control valve as the pilot pressure, an operation valve that is provided for each of the pressure adjusting valves and that outputs a command pressure corresponding to an operation amount of the operation lever, and a predetermined operating condition
  • the command signal is calculated based on the output characteristics of the pressure regulating valve to be switched and the command pressure output from the operation valve.
  • a control device that outputs the calculated command signal to the pressure regulating valve corresponding to the operation valve; and the pilot pressure applied to the control valve is changed from the output pressure of the pressure regulating valve to
  • the hydraulic pressure applied to the control valve as the pilot pressure can be automatically switched from the output pressure of the pressure regulating valve to the command pressure of the operation valve by the switching valve.
  • the pilot pressure applied to the control valve can be controlled from the output pressure of the pressure adjustment valve even when the electronic equipment related to the pilot operation system including the controller becomes electrically uncontrollable and the pressure adjustment valve does not operate.
  • the actuator can be driven by switching to the command pressure of the valve by the switching valve.
  • the pilot pressure input to the control valve is output based on the output characteristics, the flow rate of the pressure oil flowing through each actuator can be suitably controlled according to the operating conditions by adjusting the contents of the output characteristics. it can.
  • the control device when the control device satisfies an operating condition including operating at least two or more of the operation levers among the operation levers of the plurality of operation valves, the pressure corresponding to the operated operation valve is selected. It is preferable that the output characteristic of the regulating valve is switched.
  • each operated operation valve is switched by switching the output characteristics of the pressure regulating valve corresponding to the operated operation valve.
  • the flow rate to each actuator corresponding to can be suitably distributed. That is, it is possible to preferentially distribute the flow rate among the actuators that require a relatively high flow rate among the actuators. Therefore, the operation lever can be operated with the same feeling in both the single operation and the multiple simultaneous operations, and the operability is improved.
  • the control device when switching the output characteristics of the pressure regulating valve, the pressure regulating valve so that the output pressure when the operating condition is satisfied is larger than the output pressure when the operating condition is not satisfied. It is preferable to switch the output characteristics.
  • the output characteristics are switched so that the pilot pressure of the corresponding spool is increased, thereby suppressing a decrease in the flow rate flowing through the actuator with a large load.
  • an increase in the flow rate flowing through the actuator with a small load can be suppressed.
  • the control device when the control device switches the output characteristics of the pressure regulating valve so that the flow rate flowing through each actuator corresponds to the command pressure, the control device satisfies the output pressure when the operation condition is not satisfied. It is preferable that the output characteristics of the pressure regulating valve are switched so that the output pressure becomes smaller.
  • the flow rate flowing to the actuator with a small load can be limited by switching the output characteristics so that the pilot pressure of the corresponding spool is small.
  • the flow rate flowing through the actuator with a large load can be increased.
  • the deviation of the flow rate distribution due to the simultaneous driving can be suppressed and the flow rate distribution can be suitably performed, and a plurality of actuators can be moved with the same operation feeling as when operated alone.
  • the pressure regulating valve is a normally closed electromagnetic proportional control valve, and the switching valve is activated when an output pressure from the pressure regulating valve becomes larger than a predetermined switching pressure.
  • a predetermined switching pressure Preferably it is.
  • FIG. 3 is an enlarged circuit diagram showing a part of a hydraulic circuit of the hydraulic drive device of FIG. 2.
  • A is a graph which shows the relationship between the command pressure output from an operation valve, and the operation amount of an operation lever
  • (b) is the relationship between the output pressure output from an electromagnetic proportional control valve, and the operation amount of an operation lever.
  • C is a graph which shows the relationship between the opening degree of a direction control valve, and the operation amount of an operation lever.
  • the configurations of the hydraulic drive devices 1 and 1A and the hydraulic excavator 2 including the hydraulic drive devices according to the first and second embodiments of the present invention will be described with reference to the drawings described above.
  • the concept of the direction in the embodiment is used for convenience of explanation, and regarding the structure of the hydraulic drive devices 1 and 1A and the hydraulic excavator 2, the arrangement and orientation of the configuration thereof are limited to that direction. It is not a suggestion.
  • the structures of the hydraulic drive devices 1 and 1A and the excavator 2 described below are only one embodiment of the present invention, and the present invention is not limited to the embodiment and is added within the scope of the invention. Can be deleted, changed.
  • a hydraulic excavator 2 that is a construction machine can perform various operations such as excavation and transportation by an attachment, for example, a bucket 3, attached to a tip portion.
  • the excavator 2 has a traveling device 4 such as a crawler, and a revolving body 5 is placed on the traveling device 4 so as to be capable of turning.
  • the revolving structure 5 is configured to be capable of being swiveled by a revolving motor 10 to be described later, and a driver's seat 5a for a driver to board is formed.
  • the revolving body 5 is provided with a boom 6 extending upward and obliquely forward from the revolving body 5 so as to be swingable in the vertical direction.
  • a boom cylinder 7 is installed on the boom 6 and the swing body 5, and the boom 6 swings with respect to the swing body 5 by expanding and contracting the boom cylinder 7.
  • An arm cylinder 9 is installed on the boom 6 and the arm 8, and the arm 8 swings with respect to the boom 6 by expanding and contracting the arm cylinder 9.
  • a bucket 3 is provided at the tip of the arm 8 so as to be swingable in the front-rear direction.
  • the bucket 3 is also provided with a bucket cylinder, and the bucket 3 swings back and forth by expanding and contracting the bucket cylinder.
  • the hydraulic excavator 2 configured as described above includes a hydraulic drive device 1 that supplies hydraulic pressure to actuators such as a boom cylinder 7, an arm cylinder 9, and a turning motor 10 to drive them, as will be described later. There are various effects. Below, the structure of the hydraulic drive device 1 is demonstrated, referring FIG.2 and FIG.3.
  • the hydraulic drive device 1 is configured by a so-called negative control type hydraulic drive circuit, and includes a hydraulic pump 11.
  • the hydraulic pump 11 is connected to the engine E, and is configured to discharge hydraulic pressure when the engine E is rotationally driven.
  • the hydraulic pump 11 employs a variable displacement hydraulic pump having a swash plate 11a, and discharges hydraulic pressure at a flow rate corresponding to the angle of the swash plate 11a.
  • the discharge port 11 b of the hydraulic pump 11 configured in this way is connected to the main passage 12.
  • a tank 25 is connected to the downstream side of the valve units 21, 22, 23 via a throttle 24.
  • a relief passage 13 is connected to the main passage 12 before and after the restrictor 24 so as to bypass the restrictor 24, and a relief valve 14 is provided in the relief passage 13.
  • a negative control passage 15 is connected to the main passage 12 upstream of the throttle 24 and downstream of the three valve units 21, 22, and 23. Negative control passage 15 is connected to the servo piston mechanism 16 provided in the hydraulic pump 11, a pressure higher than the tank pressure by diaphragm 24 through the negative control passage 15 is guided to the servo piston mechanism 16 as negative control pressure p n Yes.
  • Servo piston mechanism 16 has a servo piston 16a, the servo piston 16a is adapted to move to a position corresponding to the negative control pressure p n flowing through a negative control passage 15.
  • a swash plate 11a of the hydraulic pump 11 is connected to the servo piston 16a, and the swash plate 11a is tilted at an angle corresponding to the position of the servo piston 16a. Specifically, when the negative control pressure pn is increased, the swash plate 11a is tilted so as to reduce its angle to decrease the discharge flow rate of the hydraulic pump 11, and when the negative control pressure pn is decreased, the swash plate 11a is The discharge flow rate of the hydraulic pump 11 is increased by tilting to increase the angle.
  • a supply passage 17 is connected to the main passage 12, and hydraulic pressure discharged through the supply passage 17 is supplied to the actuators 7, 9, 10.
  • the supply passage 17 is branched from the main passage 12 downstream of the hydraulic pump 11 and upstream of the three valve units 21, 22, and 23.
  • the supply passage 17 is also branched into three on the downstream side, and three valve units 21, 22, and 23 are connected to the branched passage portions 17a, 17b, and 17c, respectively.
  • the three valve units 21, 22, and 23 are connected to the tank passage 18, and are connected to the tank 25 via the tank passage 18.
  • the boom valve unit 21 located on the most upstream side controls the flow direction and flow rate of hydraulic pressure flowing through the boom cylinder 7, and is located on the most downstream side. 23 controls the flow direction and flow rate of the hydraulic pressure flowing through the arm cylinder 9. Further, the turning valve unit 22 located between the two valve units 21 and 23 controls the flow direction and flow rate of the hydraulic pressure flowing to the turning motor 10 for turning the turning body 5.
  • These three valve units 21, 22, and 23 have the same configuration and function except that the actuators to be driven are different.
  • the configuration of the boom valve unit 21 will be described in detail.
  • the configurations of the turning valve unit 22 and the arm valve unit 23 will mainly be described with respect to different points, and the same components will be denoted by the same reference numerals. The description is omitted. Further, regarding the functions of the turning valve unit 22 and the arm valve unit 23, different points will be mainly described, and description of the same functions will be omitted.
  • the boom valve unit 21 has a direction control valve (control valve) 26 for controlling the direction of flow of hydraulic pressure and the flow rate thereof.
  • a supply passage 17, a tank passage 18, a first supply / discharge passage 31 and a second supply / discharge passage 32 are connected to the direction control valve 26.
  • the first supply / discharge passage 31 is connected to the head side 7 a of the boom cylinder 7, and the second supply / discharge passage 32 is connected to the rod side 7 b of the boom cylinder 7.
  • the direction control valve 26 has a spool 27, and controls the direction and flow rate of hydraulic pressure in accordance with the position of the spool 27.
  • the spool 27 is configured to be movable from the neutral position M toward the first offset position S1 and the second offset position S2.
  • the neutral position M the main passage 12 communicates and is supplied.
  • the passage 17, the tank passage 18, the first supply / discharge passage 31 and the second supply / discharge passage 32 are blocked. Thereby, the supply and discharge of hydraulic pressure to the boom cylinder 7 is stopped, and the movement of the boom 6 is stopped.
  • the main passage 12 communicates, the negative control pressure pn increases and the discharge flow rate of the hydraulic pump 11 decreases.
  • pilot pressures p 1 and p 2 that oppose each other are applied to the spool 27 that switches the connection destination, and the spool 27 moves to a position corresponding to the pilot pressures p 1 and p 2.
  • the direction control valve 26 supplies the boom cylinder 7 with a hydraulic pressure having a direction and a flow rate corresponding to the pilot pressures p 1 and p 2 .
  • These two pilot pressures p 1 and p 2 are guided through the first pilot passage 34 and the second pilot passage 35.
  • a first switching valve 41 is provided, and the first switching valve 41 is connected to an operation valve 36 and a first electromagnetic proportional control valve (pressure adjusting valve) 42, respectively.
  • the first switching valve 41 receives the output pressure from the first electromagnetic proportional control valve 42 as a pilot pressure.
  • the pilot pressure is equal to or lower than a predetermined pressure
  • the first pilot passage 34 is connected to the operation valve 36, and the pilot pressure is reduced.
  • the connection destination of the first pilot passage 34 is switched from the operation valve 36 to the output pressure from the first electromagnetic proportional control valve 42.
  • a second switching valve 44 is provided in the second pilot passage 35, and the second switching valve 44 is connected to the operation valve 36 and the second electromagnetic proportional control valve (pressure adjusting valve) 45, respectively. .
  • the second switching valve 44 receives the output pressure from the second electromagnetic proportional control valve 45 as a pilot pressure.
  • the pilot pressure is equal to or lower than a predetermined pressure
  • the second pilot passage 35 is connected to the operation valve 36, and the pilot pressure is reduced.
  • the connection destination of the second pilot passage 35 is switched from the operation valve 36 to the output pressure from the second electromagnetic proportional control valve 45.
  • the first switching valve 41 (or the second switching valve 44) operates the hydraulic pressure given to the direction control valve 26 as a pilot pressure from the output pressure of the first electromagnetic proportional control valve 42 (or the second electromagnetic proportional control valve 45). It is possible to switch to the command pressure of the valve 36. As a result, even if the first electromagnetic proportional control valve 42 (or the second electromagnetic proportional control valve 45) malfunctions and does not operate, the pilot pressure applied to the directional control valve 26 is supplied to the first electromagnetic proportional control valve 42 ( Alternatively, the actuator can be driven normally by switching from the output pressure of the second electromagnetic proportional control valve 45) to the command pressure of the operation valve 36 by the first switching valve 41 (or the second switching valve 44).
  • the actuator can be controlled in the conventional manner. Safe can be realized.
  • the first electromagnetic proportional control valve 42 and the second electromagnetic proportional control valve 45 which are pressure regulating valves, are so-called normally closed direct proportional control valves.
  • Each of the electromagnetic proportional control valves 42 and 45 is connected to a pilot pump 47.
  • the pilot pump 47 is connected to the engine E (not shown), and discharges hydraulic pressure when the engine E is driven to rotate. It is configured.
  • Each of the electromagnetic proportional control valves 42 and 45 adjusts the hydraulic pressure from the pilot pump 47 to the output pressure corresponding to the current flowing therethrough, and outputs it to the respective solenoid valve passages 43 and 46, respectively.
  • the output pressure is output to the solenoid valve passages 43, 46.
  • the first output pressure is output from the first electromagnetic proportional control valve 42 to the first solenoid valve passage 43.
  • the first switching valve 41 switches the connection destination of the first pilot passage 34 to the first solenoid valve passage 43.
  • the first output pressure is input to the directional control valve 26 as a first pilot pressure p 1.
  • the connection destination of the first pilot passage 34 is switched from the first electromagnetic proportional control valve 42 to the operation valve 36 by the first switching valve 41. .
  • the second switching valve 44 causes the second output pressure to be increased.
  • the connection destination of the pilot passage 35 is switched to the second electromagnetic valve passage 46.
  • the second output pressure is input to the directional control valve 26 as a second pilot pressure p 2.
  • the connection destination of the second pilot passage 35 is switched from the second electromagnetic proportional control valve 45 to the operation valve 36 by the second switching valve 44.
  • the operation valve 36 has an operation lever 37 and outputs hydraulic pressure corresponding to the operation amount of the operation lever 37 in a direction corresponding to the operation direction of the operation lever 37. More specifically, the operation valve 36 is connected to a pilot pump 47 and has a first operation valve passage 48 and a second operation valve passage 49. The first operation valve passage 48 is connected to the first switching valve 41, and the second operation valve passage 49 is connected to the second switching valve 44. The operation valve 36 outputs a first command pressure corresponding to the operation amount of the operation lever 37 to the first operation valve passage 48 when the operation lever 37 is operated in a first direction (for example, forward). Is operated in the second direction (for example, rearward), the second command pressure corresponding to the operation amount of the operation lever 37 is output to the second operation valve passage 49.
  • a first direction for example, forward
  • the second direction for example, rearward
  • the first operation valve passage 48 is provided with a first pressure sensor PS1 for detecting the first command pressure output thereto.
  • the second operating valve passage 49 is provided with a second pressure sensor PS2 for detecting the second command pressure output thereto.
  • the control device 50 is configured to acquire the first command pressure and the second command pressure from the two pressure sensors PS1 and PS2, respectively, and based on the acquired first command pressure and second command pressure, An operation state (operation amount and operation direction) is detected.
  • the control device 50 allows current (command signal) to flow through the two electromagnetic proportional control valves 42 and 45, and the output command signal includes a predetermined output characteristic and an operation amount of the operation lever 37. To be determined.
  • a plurality of output characteristics of the electromagnetic proportional control valves 42 and 45 for determining the command signal are stored in the controller 50 for each of the electromagnetic proportional control valves 42 and 45 (for example, a first output characteristic to a third output described later). Characteristic).
  • the control device 50 determines whether or not the operation state of the hydraulic drive device 1 satisfies a predetermined operation condition, and determines which output characteristic to use based on the determination result. The details of the method for determining the characteristics will be described later.
  • the operating conditions include, for example, operating states of the other valve units 22 and 23 (that is, operating states of the other operating lever 37), the rotational speed of the engine E, and the oil temperature. And the rotation speed and oil temperature of the engine E are detected by a sensor (not shown).
  • the first pressure sensor PS1 reduces the first command pressure.
  • the detected first command pressure is sent to the control device 50.
  • the control device 50 determines which operating condition the operating state of the hydraulic drive device 1 satisfies, and selects an output characteristic used for calculating the command signal based on the determination result.
  • the control device 50 calculates a command signal corresponding to the first command pressure based on the selected output characteristic.
  • the calculated command signal is sent to the first electromagnetic proportional control valve 42 by the control device 50, and the first output pressure of the pressure corresponding to the command signal is sent to the first electromagnetic valve passage 43 by the first electromagnetic proportional control valve 42.
  • the second pressure sensor PS2 detects the second command pressure, and the detected second command pressure is the control device. 50. Then, the control device 50 determines which operating condition the operating state of the hydraulic drive device 1 satisfies, and selects an output characteristic used for calculating the command signal based on the determination result. Thereafter, the control device 50 calculates a command signal corresponding to the second command pressure based on the selected output characteristic. The calculated command signal is caused to flow to the second electromagnetic proportional control valve 45 by the control device 50, and a second output pressure corresponding to the command signal is output to the second electromagnetic valve passage 46 by the second electromagnetic proportional control valve 45. Is done.
  • the operating state of the hydraulic drive device 1 is detected by various sensors, and based on the detection result, it is determined which operating condition is satisfied, and output characteristics that are used. Is selected. For example, when the control device 50 determines that the operating condition that the oil temperature detected by the oil temperature sensor is equal to or higher than a predetermined first predetermined temperature is satisfied, the control device 50 supplies hydraulic pressure to the boom cylinder 7.
  • the output characteristic that makes it difficult that is, the output characteristic that lowers the output pressure by reducing the current flowing through the electromagnetic proportional control valves 42 and 45 with respect to the command pressure) is selected.
  • the flow rate of the hydraulic pressure flowing through the boom cylinder 7 can be regulated, and the impact caused by the excessive supply by suppressing the excessive supply to the boom cylinder 7 at the start of the operation of the boom 6 in a high temperature environment where the viscosity is low. Can be relaxed.
  • the control device 50 determines that the operating condition that the oil temperature detected by the oil temperature sensor is equal to or higher than another second predetermined temperature ( ⁇ first predetermined temperature) is not satisfied, the control device 50 An output characteristic that facilitates the flow of hydraulic pressure to the boom cylinder 7 (that is, an output characteristic that increases the current flow through the electromagnetic proportional control valves 42 and 45 with respect to the command pressure to increase the output pressure) is selected. Thereby, the flow rate of the oil flowing into the boom cylinder 7 can be increased, and the operation of the boom 6 caused by the supply shortage is suppressed by suppressing the supply of the boom cylinder 7 under the low temperature environment where the viscosity is high. You can eliminate the sluggishness.
  • control device 50 selects an output characteristic that reduces the shock at the start of operation by regulating the flow rate of the hydraulic pressure flowing through the boom cylinder 7 when the rotational speed of the engine E is the operating condition and the rotational speed is high.
  • the control device 50 selects an output characteristic that makes it easy to flow hydraulic pressure from the boom valve unit 21 to the boom cylinder 7 when the rotational speed is small, and eliminates the slack at the start of the operation of the boom 6. May be.
  • the load of the boom 6 can be set as an operating condition, and the flow rate can be regulated or allowed according to the load.
  • the spool 27 moves to a position corresponding to the command signal. Therefore, by changing the contents of the output characteristics, it is possible to suppress fluctuations in the flow rate flowing through the boom cylinder 7 according to the operating conditions. Thereby, the drive speed of the boom cylinder 7 with respect to the operation amount of the operation lever 37 can be suppressed according to the operating conditions.
  • the spool 27 is tuned to adjust the opening degree of the spool 27 or to resist the pilot pressures p 1 and p 2 , respectively. It is necessary to change the springs 27a, 27b provided in the.
  • the drive speed of the boom cylinder 7 with respect to the operation amount of the operation lever 37 can be changed by changing the content of the output characteristics with the control device 50, the boom cylinder with respect to the operation amount of the operation lever 37 can be changed. 7 can be easily adjusted.
  • the boom valve unit 21 employs the normally closed electromagnetic proportional control valves 42 and 45, an electric system malfunction or the like (including a malfunction of the controller) occurs, causing them to operate. When it disappears, the output pressure is not output to the solenoid valve passages 43 and 46. Then, even after the operation lever 37 is operated, the connection destinations of the pilot passages 34 and 35 are not switched to the electromagnetic valve passages 43 and 46 but remain connected to the operation valve passages 48 and 49. Therefore, when the electronic devices related to the pilot operation system including the control device 50 become electrically uncontrollable and the electromagnetic proportional control valves 42 and 45 do not operate, the command pressure output from the operation valve 36 is directional controlled. The valve 26 is provided. Therefore, the boom cylinder 7 can be operated even if the electromagnetic proportional control valves 42 and 45 are not operated, and failsafe can be realized in the boom valve unit 21.
  • the first supply / discharge passage 31 and the second supply / discharge passage 32 are connected to the turning motor 10.
  • the turning motor 10 is a so-called hydraulic motor, and has two ports 10a and 10b.
  • the turning motor 10 rotates forward and backward according to the ports 10a and 10b to which hydraulic pressure is supplied.
  • the first supply / discharge passage 31 is connected to the first port 10a and the second port 10b is connected to the second port 10b.
  • a second supply / discharge passage 32 is connected.
  • the turning valve unit 22 configured as described above, when the spool 27 is located at the neutral position M, the supply and discharge of the hydraulic pressure to the turning motor 10 is stopped and the turning of the turning body 5 is stopped.
  • the spool 27 is located at the first offset position S1
  • the turning motor 10 rotates forward and the turning body 5 turns.
  • the spool 27 is located at the second offset position S2
  • the turning motor 10 rotates reversely and the turning body 5 rotates. Turns.
  • the third pressure sensor PS3 for detecting the first command pressure is provided in the first operation valve passage 48, and the fourth pressure sensor PS4 for detecting the second command pressure is the second operation valve.
  • the passage 49 is provided.
  • the third pressure sensor PS3 and the fourth pressure sensor PS4 are electrically connected to the control device 50, and the control device 50 receives the first command pressure and the second command pressure from the third pressure sensor PS3 and the fourth pressure sensor PS4. To get.
  • swivel valve unit 22 configured in this way, first, output characteristics corresponding to the operating conditions satisfied by the control device 50 are selected.
  • the operating conditions and output characteristics are set separately for each valve unit 21, 22, 23 and for each electromagnetic proportional control valve 42, 45. Then, based on the selected output characteristics, a command signal corresponding to the first command pressure or the second command pressure sent from the third pressure sensor PS3 and the fourth pressure sensor PS4 is calculated. For example, when the operation lever 37 is operated in the first direction, the control device 50 causes a command signal corresponding to the output pressure to flow through the first electromagnetic proportional control valve 42 based on the selected output characteristic.
  • the spool 27 moves to the first offset position S ⁇ b> 1, and a hydraulic pressure having a flow rate corresponding to the command signal is supplied to the first port 10 a of the turning motor 10.
  • the control device 50 causes a command signal corresponding to the output pressure to flow through the second electromagnetic proportional control valve 45 based on the selected output characteristic.
  • the spool 27 moves to the second offset position S2, and a hydraulic pressure having a flow rate corresponding to the command signal is supplied to the second port 10b.
  • the command signal is calculated based on the output characteristics selected according to the operating state of the hydraulic drive device 1, so that the turning motor 10 is the same as the boom valve unit 21. It is possible to reduce impact and shaking at the start of the operation. Further, in the turning valve unit 22, a large amount of high-pressure oil is prevented from flowing into the turning motor 10 by selecting an output characteristic so that the opening degree of the direction control valve 26 is reduced when the operation of the turning motor 10 is started. Energy saving can be achieved.
  • the first supply / discharge passage 31 and the second supply / discharge passage 32 are connected to the head side 9a and the rod side 9b of the arm cylinder 9, respectively.
  • the arm cylinder 9 expands when hydraulic pressure is supplied to the head side 9a, and contracts when hydraulic pressure is supplied to the rod side 9b.
  • the arm valve unit 23 connected to the arm cylinder 9 stops the movement of the arm 8 by stopping the supply and discharge of the hydraulic pressure to the arm cylinder 9 when the spool 27 is located at the neutral position M. It has become. Further, when the spool 27 is located at the first offset position S1, the arm valve unit 23 supplies hydraulic pressure to the head side 9a of the arm cylinder 9 to swing the arm 8 rearward (pulling side), so that the spool 27 Is positioned at the second offset position S2, the hydraulic pressure is supplied to the rod side 9b of the arm cylinder 9 to swing the arm 8 forward (pushing side).
  • the fifth pressure sensor PS5 for detecting the first command pressure is provided in the first operation valve passage 48
  • the sixth pressure sensor PS6 for detecting the second command pressure is the second operation valve.
  • the passage 49 is provided.
  • the fifth pressure sensor PS5 and the sixth pressure sensor PS6 are electrically connected to the control device 50, and the control device 50 receives the first command pressure and the second command pressure from the fifth pressure sensor PS5 and the sixth pressure sensor PS6. To get.
  • the control device 50 calculates a command signal based on the first command pressure or the second command pressure sent from the fifth pressure sensor PS5 and the sixth pressure sensor PS6 based on the selected output characteristic. For example, when the operation lever 37 is operated in the first direction, the control device 50 causes a command signal corresponding to the output pressure to flow through the first electromagnetic proportional control valve 42 based on the selected output characteristic. As a result, the spool 27 moves in the direction of the first offset position S1, and a hydraulic pressure having a flow rate corresponding to the command signal and the load pressure is supplied to the head side 9a of the arm cylinder 9.
  • the control device 50 causes a command signal corresponding to the output pressure to flow through the second electromagnetic proportional control valve 45 based on the selected output characteristic.
  • the spool 27 moves in the direction of the second offset position S2, and a hydraulic pressure having a flow rate corresponding to the command signal and the load pressure is supplied to the rod side 9b of the arm cylinder 9.
  • the arm valve unit 23 calculates the command signal based on the output characteristics selected according to the operating state of the hydraulic drive device 1, the arm cylinder 9 is similar to the boom valve unit 21. It is possible to reduce impact and shaking at the start of the operation.
  • a command signal corresponding to the operation amount of the operation lever 37 is supplied to the electromagnetic proportional control valves 42 and 45.
  • an output pressure corresponding to the command signal is output from the electromagnetic proportional control valves 42 and 45, and the actuators 7, 9, and 10 are driven according to the operation amount of the operation lever 37 corresponding thereto and the load pressure of each actuator. It can be moved with.
  • the control device 50 selects the output characteristics of the electromagnetic proportional control valves 42 and 45 that output the output pressure.
  • the control device 50 determines that the operation condition that two or more operation levers 37 are simultaneously operated is satisfied, an output characteristic is selected based on the determination result, and each electromagnetic proportional control valve 42, A command signal to be output to 45 is calculated.
  • the output characteristics to be selected will be described in more detail.
  • the actuators 7, 9, and 10 that are driven by the actuators 7, 9, and 10 have a large load.
  • a second output characteristic with a command signal output to the control valves 42 and 45 greater than the first output characteristic is selected.
  • the opening degree of the directional control valve 26 becomes larger than in the case of the first output characteristic, and the flow rate of oil flowing from the directional control valve 26 to the actuators 7, 9, 10 increases.
  • the flow rate flowing through the other actuators 7, 9, 10 decreases.
  • the actuators 7, 9, and 10 that are driven by the actuators 7, 9, and 10 have a small load.
  • the second output characteristic may be selected such that the command signal output to 45 is larger than the first output characteristic.
  • the correspondence relationship between the operation speed of the actuators 7, 9, and 10 and the operation amount of the operation lever 37 differs depending on whether two or more operation levers 37 are operated simultaneously.
  • the flow rate of the pressure oil flowing through the actuators 7, 9, 10 can be controlled according to the output characteristics of the electromagnetic proportional control valves. it can. Further, by adjusting the contents of the output characteristics, the flow distribution of the pressure oil flowing through the actuators 7, 9, 10 can be adjusted.
  • the output characteristic of each electromagnetic proportional control valve corresponding to the operated operation lever 37 is appropriately selected regardless of whether the operation lever 37 is operated individually or simultaneously. .
  • the vertical axis represents the first command pressure of the operation valve 36 of the boom valve unit 21, the first output pressure of the first electromagnetic proportional control valve of the boom valve unit 21, and The opening area of the direction control valve 26 of the boom valve unit 21 is shown, and the horizontal axis shows the operation amount of the operation lever 37 of the boom valve unit 21.
  • step ST1 the control device 50 determines whether or not the operation lever 37 of the turning valve unit 22 is operated. That is, the control device 50 determines whether or not the output pressures detected by the third pressure sensor PS3 and the fourth pressure sensor PS4 are equal to or lower than a predetermined pressure (for example, 0.05 MPa). When it is determined that the output pressures detected by the third pressure sensor PS3 and the fourth pressure sensor PS4 are both equal to or lower than the predetermined pressure, the process proceeds to step ST2.
  • a predetermined pressure for example, 0.05 MPa
  • step ST2 whether the operation lever 37 of the arm valve unit 23 is operated in the first direction, that is, whether the fifth pressure sensor PS5 and the sixth pressure sensor PS6 are equal to or lower than a predetermined pressure (for example, 0.05 MPa). Determine whether. If it is determined that the output pressures detected by the fifth pressure sensor PS5 and the sixth pressure sensor PS6 are equal to or lower than the predetermined pressure, the process proceeds to step ST3.
  • a predetermined pressure for example, 0.05 MPa
  • the control device 50 executes control when it is determined that the operation lever 37 of the boom valve unit 21 is operated alone by moving to step ST3.
  • step ST3 first, the control device 50 selects the first output characteristic.
  • This output pressure characteristic is the same as the output pressure (command pressure) of the operation valve.
  • a command signal corresponding to the first command pressure detected by the first pressure sensor PS1 is calculated based on the first output characteristic. When calculated, the process proceeds to step ST4.
  • step ST4 the command signal calculated by the control device 50 is supplied to the first electromagnetic proportional control valve 42 of the boom valve unit 21. Then, the operation of the operation lever 37 from the first electromagnetic proportional control valve 42 with respect to the output pressure (command pressure) of the operation valve 36 that monotonously increases with respect to the operation amount of the operation lever 37 as shown in FIG. A first output pressure as shown by the solid line in FIG. By outputting such a first output pressure, the opening degree of the direction control valve 26 of the boom valve unit 21 changes as indicated by the solid line in FIG. 5C with respect to the operation amount of the operation lever 37. .
  • step ST5 determines whether the fifth pressure sensor PS5 and the sixth pressure sensor PS6 exceed the predetermined pressure. If it is determined in step ST2 that the fifth pressure sensor PS5 and the sixth pressure sensor PS6 exceed the predetermined pressure, the process proceeds to step ST5.
  • the control device 50 executes control when it is determined in step ST5 that the operation levers 37 of the boom valve unit 21 and the arm valve unit 23 are simultaneously operated.
  • step ST5 first, the control device 50 selects the second output characteristic for the first electromagnetic proportional control valve 42 of the boom valve unit 21. This second output characteristic has the same characteristic as the command pressure of the operation valve in a range where the output pressure is lower than the switching pressure of the switching valve.
  • the control device 50 calculates a command signal corresponding to the first command pressure detected by the first pressure sensor PS1 based on the second output characteristic. When calculated, the process proceeds to step ST4.
  • step ST4 the control device 50 causes the calculated command signal to flow through the first electromagnetic proportional control valve 42 of the boom valve unit 21. If it does so, with respect to the operation amount of the operation lever 37 from the 1st electromagnetic proportional control valve 42 with respect to the output pressure of the operation valve 36 which monotonously increases like FIG. A first output pressure as indicated by the alternate long and short dash line in FIG. By outputting such first output pressure, the opening degree of the directional control valve 26 of the boom valve unit 21 changes as indicated by the one-dot chain line in FIG. To do. That is, when the opening degree of the direction control valve 26 of the boom valve unit 21 is independently operated (the solid line in FIG. 5C), the opening of the direction control valve 26 of the boom valve unit 21 is greatly opened.
  • the boom cylinder 7 Since the boom cylinder 7 has a larger load than the arm cylinder 9, if the two operation levers 37 are operated simultaneously, the hydraulic pressure does not easily flow to the boom cylinder 7.
  • the command signal calculated based on the first output characteristic flows through the electromagnetic proportional control valves 42 and 45 of the arm valve unit 23, and the electromagnetic proportional control valves 42 and 45 of the arm valve unit 23, for example, FIG.
  • An output pressure as shown by the solid line in (b) is output.
  • the present invention is not limited to the case where the first output characteristic is selected in this way, and the control device 50 selects the third output characteristic described later to reduce the flow rate of the oil flowing through the arm valve unit 23, and this third output characteristic is selected.
  • the command signal may be calculated based on the output characteristics.
  • step ST6 If it is determined in step ST1 that one of the third pressure sensor PS3 and the fourth pressure sensor PS4 exceeds the predetermined pressure, the process proceeds to step ST6.
  • the control device 50 executes control when it is determined that the operation levers 37 of the boom valve unit 21 and the turning valve unit 22 are simultaneously operated by moving to step ST6.
  • step ST6 first, the control device 50 selects the third output characteristic for the first electromagnetic proportional control valve 42 of the boom valve unit 21.
  • This third output characteristic also has the same characteristic as the command pressure of the operation valve in a range where the output pressure is lower than the switching pressure of the switching valve.
  • a command signal corresponding to the first command pressure detected by the first pressure sensor PS1 is calculated based on the third output characteristic. Once calculated, the process proceeds to step ST4.
  • step ST4 the control device 50 causes the calculated command signal to flow through the first electromagnetic proportional control valve 42 of the boom valve unit 21. If it does so, with respect to the operation amount of the operation lever 37 from the 1st electromagnetic proportional control valve 42 with respect to the output pressure of the operation valve 36 which monotonously increases like FIG. An output pressure as indicated by a two-dot chain line in FIG. 5B is output. By outputting such output pressure, the opening degree of the directional control valve 26 of the boom valve unit 21 changes as shown by a two-dot chain line in FIG. 5C with respect to the operation amount of the operation lever 37. . That is, when the opening degree of the direction control valve 26 of the boom valve unit 21 is independently operated (solid line in FIG. 5C), the opening of the direction control valve 26 of the boom valve unit 21 is narrowed.
  • the hydraulic pressure flows preferentially to the boom cylinder 7 when the two operation levers 37 are operated simultaneously.
  • the direction control valve 26 of the boom valve unit 21 By restricting the opening, an increase in the flow rate of the oil flowing into the boom cylinder 7 can be suppressed. Then, by correcting the command signal in the control device 50, even when the two operation levers 27 are operated simultaneously, the boom cylinder 7 and the turning motor 10 are driven more faithfully by the operation amounts of the corresponding operation levers 37. It can be driven at speed.
  • a command signal calculated based on the first output characteristic flows through the electromagnetic proportional control valves 42 and 45 of the turning valve unit 22, and the electromagnetic proportional control valves 42 and 45 of the turning valve unit 22, for example, FIG.
  • An output pressure as shown by the solid line in (b) is output.
  • the present invention is not limited to the case where the first output characteristic is selected in this way, and the control device 50 selects the second output characteristic in order to increase the flow rate of the oil flowing through the turning valve unit 22, and this second output characteristic.
  • the command signal may be calculated based on the above.
  • the output characteristics of the command signal are switched in accordance with the operating state of the hydraulic drive device 1, so that the flow rate of oil that is extremely faithful to the operation amount of the operation lever 37 is supplied to each actuator 7. , 9, 10 can be supplied.
  • the relief valve of the turning motor 10 is actuated to reduce energy consumption released as heat or the like, and energy saving of the hydraulic drive device 1 can be achieved.
  • the drive speed of the actuators 7, 9, 10 with respect to the operation amount of the operation lever 37 can be changed by adjusting the content of the output characteristics. Therefore, it is sufficient to perform tuning (that is, setting the optimum opening area) to a minimum as in the case of adopting hydraulic pilot control (control using the command pressure of the operation valve as a pilot signal for the control valve). 1 development man-hours can be shortened.
  • the hydraulic drive device 1A of the second embodiment is similar in configuration to the hydraulic drive device 1 of the first embodiment.
  • the configuration of the hydraulic drive device 1A of the second embodiment will be described mainly with respect to differences from the hydraulic drive device 1 of the first embodiment, and the same components will be denoted by the same reference numerals and the description thereof will be given. May be omitted.
  • the hydraulic drive device 1 ⁇ / b> A is configured by a positive control hydraulic drive circuit, and the main passage 12 ⁇ / b> A is directly connected to the tank 25 without the throttle 24.
  • a pilot pump 47 is connected to the servo piston mechanism 16 via a positive control passage 15A, and an electromagnetic valve 19 is interposed in the positive control passage 15A.
  • Solenoid valve 19 is an electromagnetic control valve of normally closed type, and outputs under reduced pressure the hydraulic pressure discharged from the pilot pump 47 to a pressure corresponding to the current flowing through the solenoid valve 19 as the lever-regulated, pump control pressure p p .
  • the lever-regulated, pump control pressure p p which is output in this way is guided to the servo piston mechanism 16, servo piston 16a is adapted to move to a position corresponding to the positive control pressure p p.
  • the swash plate 11a is tilted to an angle corresponding to the lever-regulated, pump control pressure p p.
  • the electromagnetic valve 19 configured as described above is connected to the control device 50, and the control device 50 determines the current to flow through the electromagnetic valve 19 based on the output pressure obtained from each of the pressure sensors PS1 to PS6. .
  • the control device 50 causes a current corresponding to the acquired output pressure, that is, a large current to flow to the solenoid valve 19 when the output pressure is large, and a small current corresponding to the solenoid valve 19 to flow when the output pressure is small. It has become.
  • the control device 50 causes the current corresponding to the operation amount of the operation lever 37 to flow through the solenoid valve 19, and causes the hydraulic pump 11 to output oil having a flow rate corresponding to the operation amount.
  • the control device 50 also adjusts the current flowing through the electromagnetic valve 19 in accordance with the number of pressure sensors PS1 to PS6 that detect the output pressure, and when the output pressure is simultaneously detected by the plurality of pressure sensors PS1 to PS6.
  • a large current corresponding to the number is supplied to the electromagnetic valve 19. That is, the control device 50 causes the current corresponding to the number of the operation levers 37 operated simultaneously to flow through the electromagnetic valve 19, and causes the hydraulic pump 11 to output oil having a flow rate corresponding to the operation amount.
  • the maximum value of the current flowing through the solenoid valve 19 is determined in advance, and the above control is executed within a range not exceeding the maximum value.
  • the hydraulic drive device 1A configured as described above has the same operational effects as the hydraulic drive device 1 of the first embodiment, except for the operational effects due to the application of a positive control hydraulic drive circuit.
  • the control device 50 switches the output characteristic for mainly calculating the command signal to be sent to the first electromagnetic proportional control valve 42 of the boom valve unit 21, but the turning valve unit 22 that operates simultaneously. Or you may make it switch the control apparatus 50 the output characteristic which calculates the command signal sent to the electromagnetic proportional control valves 42 and 45 of the valve unit 23 for arms. At this time, the output characteristic for calculating the command signal to be sent to the first electromagnetic proportional control valve 42 may not be switched from the first output characteristic regardless of the operating state of the hydraulic drive device 1.
  • the actuator driven by the hydraulic drive devices 1 and 1A is not limited to the one described above, and may be a bucket cylinder, a steering cylinder, or a travel drive motor.
  • the hydraulic pump 11 is not necessarily a variable displacement pump, and may be a fixed displacement pump or an oblique axis pump. Further, the hydraulic pump 11 is rotationally driven not only by the engine but also by an electric motor.
  • the electromagnetic proportional control valves 42 and 45 are preferably normally closed, but may be normally open electromagnetic proportional control valves.
  • the pressure liquid used as the operating pressure is not limited to oil, and may be water or other liquid.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

A hydraulic pressure drive device (1) is provided with direction control valves (26), electromagnetic proportion control valves (42), operating valves (37), and a control device (50). The direction control valves (26), which are provided to each of three actuators (7, 9, 10), supply oil to the actuators (7, 9, 10) at a flow rate corresponding to pilot pressure. The electromagnetic proportion control valves (42), which are provided corresponding to each of the direction control valves (26), provide the direction control valves (26) with output pressure of a pressure corresponding to a received command signal as the pilot pressure. The operating valves (36), which are provided corresponding to each of the electromagnetic proportion control valves (42), output a command pressure corresponding to the manipulated variables of operating levers (37). The control device (50) calculates a command signal corresponding to the command pressure from the operating valves (36) on the basis of output characteristics that are switched according to an actuation condition, and outputs the command signal to the electromagnetic proportion control valves (42) that correspond to the operating valves (36).

Description

液圧駆動装置Hydraulic drive device
 本発明は、複数のアクチュエータに接続され、液圧ポンプから吐出される液圧を前記アクチュエータに夫々供給して前記アクチュエータの各々を駆動する液圧駆動装置に関する。 The present invention relates to a hydraulic drive device that is connected to a plurality of actuators and supplies each of the hydraulic pressures discharged from a hydraulic pump to the actuators to drive each of the actuators.
 油圧ショベル等の建設機械は、複数の油圧アクチュエータを備えており、油圧アクチュエータを駆動させることでブーム、アーム、バケット、旋回装置、及び走行装置等の様々な構成要素を動かして様々な作業等を行うことができるようになっている。建設機械は、これらの油圧アクチュエータを駆動させるべく、例えば特許文献1のような油圧駆動装置を備えている。 Construction machines such as hydraulic excavators are equipped with a plurality of hydraulic actuators, and by driving the hydraulic actuators, various components such as booms, arms, buckets, swiveling devices, and traveling devices are moved to perform various operations. Can be done. The construction machine is provided with a hydraulic drive device as disclosed in Patent Document 1, for example, in order to drive these hydraulic actuators.
 特許文献1に記載の油圧駆動装置は、油圧ポンプを有しており、油圧ポンプから吐出される油圧をアクチュエータに供給することでアクチュエータを駆動するようになっている。油圧駆動装置は、コントロール弁(流量制御機能と方向制御機能を含むもの)を有しており、コントロール弁は、油圧ポンプとアクチュエータとの間に夫々位置している。このコントロール弁には、操作弁が繋がっている。操作弁には操作レバーが設けられており、操作弁は、操作レバーの操作量に応じた圧力のパイロット圧をコントロール弁に出力するようになっている。コントロール弁のスプールは、入力されるパイロット圧に応じた位置に移動し、その位置とアクチュエータの負荷の大きさに応じた流量をアクチュエータに供給するようになっている。 The hydraulic drive device described in Patent Document 1 has a hydraulic pump, and drives the actuator by supplying hydraulic pressure discharged from the hydraulic pump to the actuator. The hydraulic drive device has a control valve (including a flow rate control function and a direction control function), and each control valve is located between the hydraulic pump and the actuator. An operation valve is connected to this control valve. The operation valve is provided with an operation lever, and the operation valve outputs a pilot pressure corresponding to the operation amount of the operation lever to the control valve. The spool of the control valve moves to a position corresponding to the input pilot pressure, and supplies a flow rate corresponding to the position and the load of the actuator to the actuator.
特開昭64-6501号公報Japanese Patent Laid-Open No. 64-6501
 特許文献1に記載の油圧駆動装置では、操作手段である操作レバーから出力される操作信号がコントローラに入力され、コントローラから出力される操作レバーの操作量に応じた(または加工された)駆動電流が電磁比例制御弁に入力されることで、電磁比例制御弁の出力圧を油圧パイロットとしてコントロール弁を制御している。 In the hydraulic drive device described in Patent Document 1, an operation signal output from an operation lever as an operation means is input to a controller, and a drive current corresponding to (or processed) an operation amount of the operation lever output from the controller. Is input to the electromagnetic proportional control valve, and the control valve is controlled using the output pressure of the electromagnetic proportional control valve as a hydraulic pilot.
 ところが、操作レバーからコントローラに接続される操作信号線の断線やこれらのコネクタ部の接続不良、あるいはコントローラから電磁比例制御弁に接続される操作信号線の断線やこれらのコネクタ部の接続不良、あるいはコントローラの作動不良が発生すると、操作レバーを動かしてもアクチュエータを操作できなくなるという問題があった。 However, disconnection of the operation signal line connected to the controller from the operation lever and connection failure of these connector parts, disconnection of the operation signal line connected from the controller to the electromagnetic proportional control valve, connection failure of these connector parts, or When the controller malfunctions, the actuator cannot be operated even if the operation lever is moved.
 そこで、本発明は、コントローラを含めたパイロット操作系に係る電子機器が電気的に制御不能となった場合にも、アクチュエータの制御を可能とすることを特徴とする油圧駆動装置を提供することを目的としている。 Therefore, the present invention provides a hydraulic drive device that enables control of an actuator even when an electronic device related to a pilot operation system including a controller becomes electrically uncontrollable. It is aimed.
 本発明の液圧駆動装置は、複数のアクチュエータに接続され、液圧ポンプから吐出される圧液を前記アクチュエータに夫々供給して前記アクチュエータの各々を駆動する液圧駆動装置であって、前記アクチュエータ毎に設けられ、与えられるパイロット圧と前記アクチュエータの負荷圧に応じた流量の圧液を前記アクチュエータに供給するコントロール弁と、前記コントロール弁の少なくとも一つに設けられ、与えられる指令信号に応じた出力圧を前記パイロット圧として前記コントロール弁に与える圧力調整弁と、前記圧力調整弁毎に設けられ、操作レバーの操作量に応じた指令圧を出力する操作弁と、予め定める作動条件に応じて切換わる前記圧力調整弁の出力特性と前記操作弁から出力される前記指令圧に基づいて前記指令信号を算出し、算出された前記指令信号を前記操作弁に対応する前記圧力調整弁に出力する制御装置と、前記コントロール弁に与える前記パイロット圧を前記圧力調整弁の出力圧から前記操作弁の指令圧に切換える切換弁とを備えているものである。 The hydraulic drive device of the present invention is a hydraulic drive device that is connected to a plurality of actuators and supplies each of the actuators with the hydraulic fluid discharged from the hydraulic pump to drive each of the actuators. A control valve that is provided every time and that is supplied to at least one of the control valve and the control valve that supplies the actuator with a flow rate of a pressure according to the applied pilot pressure and the load pressure of the actuator, and according to a command signal that is provided A pressure adjusting valve that applies an output pressure to the control valve as the pilot pressure, an operation valve that is provided for each of the pressure adjusting valves and that outputs a command pressure corresponding to an operation amount of the operation lever, and a predetermined operating condition The command signal is calculated based on the output characteristics of the pressure regulating valve to be switched and the command pressure output from the operation valve. A control device that outputs the calculated command signal to the pressure regulating valve corresponding to the operation valve; and the pilot pressure applied to the control valve is changed from the output pressure of the pressure regulating valve to the command pressure of the operation valve. And a switching valve for switching.
 本発明に従えば、切換弁によって、パイロット圧としてコントロール弁に与えられる液圧を前記圧力調整弁の出力圧から前記操作弁の指令圧に自動的に切換えることができる。これにより、コントローラを含めたパイロット操作系に係る電子機器が電気的に制御不能となって圧力調整弁が作動しない場合であっても、コントロール弁に与えるパイロット圧を圧力調整弁の出力圧から操作弁の指令圧へと切換弁によって切換えることでアクチュエータを駆動することができる。さらに、コントロール弁に入力されるパイロット圧が出力特性に基づいて出力されるので、出力特性の内容を調整することで各アクチュエータに流れる圧油の流量を作動条件に応じて好適に制御することができる。 According to the present invention, the hydraulic pressure applied to the control valve as the pilot pressure can be automatically switched from the output pressure of the pressure regulating valve to the command pressure of the operation valve by the switching valve. As a result, the pilot pressure applied to the control valve can be controlled from the output pressure of the pressure adjustment valve even when the electronic equipment related to the pilot operation system including the controller becomes electrically uncontrollable and the pressure adjustment valve does not operate. The actuator can be driven by switching to the command pressure of the valve by the switching valve. Furthermore, since the pilot pressure input to the control valve is output based on the output characteristics, the flow rate of the pressure oil flowing through each actuator can be suitably controlled according to the operating conditions by adjusting the contents of the output characteristics. it can.
 上記発明において、前記制御装置は、複数の前記操作弁の操作レバーのうち少なくとも2つ以上の前記操作レバーが操作されることを含む作動条件を充足すると、操作された操作弁に対応する前記圧力調整弁の前記出力特性を切換えるようになっていることが好ましい。 In the above invention, when the control device satisfies an operating condition including operating at least two or more of the operation levers among the operation levers of the plurality of operation valves, the pressure corresponding to the operated operation valve is selected. It is preferable that the output characteristic of the regulating valve is switched.
 上記構成に従えば、複数の操作レバーが同時に操作されて複数のアクチュエータが同時に作動しても、操作された操作弁に対応する圧力調整弁の出力特性を切換えることにより、操作された各操作弁に対応する各アクチュエータへの流量を好適に配分できる。つまり、各アクチュエータ間で、流量が相対的に必要なアクチュエータに優先的に流量配分することができる。それ故、単独操作及び複数同時操作のどちらの場合も同じようなフィーリングで操作レバーを操作することができ、操作性が向上する。 According to the above configuration, even if a plurality of operation levers are operated simultaneously and a plurality of actuators are operated simultaneously, each operated operation valve is switched by switching the output characteristics of the pressure regulating valve corresponding to the operated operation valve. The flow rate to each actuator corresponding to can be suitably distributed. That is, it is possible to preferentially distribute the flow rate among the actuators that require a relatively high flow rate among the actuators. Therefore, the operation lever can be operated with the same feeling in both the single operation and the multiple simultaneous operations, and the operability is improved.
 上記発明において、前記制御装置は、前記圧力調整弁の出力特性を切換える際、前記作動条件を充足しない場合の前記出力圧より、充足する場合の前記出力圧のほうが大きくなるように前記圧力調整弁の出力特性を切換えるようになっていることが好ましい。 In the above invention, the control device, when switching the output characteristics of the pressure regulating valve, the pressure regulating valve so that the output pressure when the operating condition is satisfied is larger than the output pressure when the operating condition is not satisfied. It is preferable to switch the output characteristics.
 上記構成に従えば、圧油が流れにくい負荷の大きいアクチュエータに対しては、対応するスプールのパイロット圧が大きくなるように出力特性を切換えることによって、負荷の大きいアクチュエータに流れる流量の減少を抑えることができ、これにより負荷の小さいアクチュエータに流れる流量の増加を抑えることができる。これにより、同時駆動に起因する流量配分の偏りを抑え、好適に流量配分を行うことができ、単独で操作されている場合と同様の操作フィーリングで複数のアクチュエータを動かすことができる。 According to the above configuration, for actuators with a large load where pressure oil does not flow easily, the output characteristics are switched so that the pilot pressure of the corresponding spool is increased, thereby suppressing a decrease in the flow rate flowing through the actuator with a large load. As a result, an increase in the flow rate flowing through the actuator with a small load can be suppressed. Thereby, the deviation of the flow rate distribution due to the simultaneous driving can be suppressed and the flow rate distribution can be suitably performed, and a plurality of actuators can be moved with the same operation feeling as when operated alone.
 上記発明において、前記制御装置は、各アクチュエータに流れる流量が前記指令圧に対応するように前記圧力調整弁の出力特性を切換える際、前記作動条件を充足しない場合の前記出力圧より、充足する場合の前記出力圧のほうが小さくなるように前記圧力調整弁の出力特性を切換えるようになっていることが好ましい。 In the above invention, when the control device switches the output characteristics of the pressure regulating valve so that the flow rate flowing through each actuator corresponds to the command pressure, the control device satisfies the output pressure when the operation condition is not satisfied. It is preferable that the output characteristics of the pressure regulating valve are switched so that the output pressure becomes smaller.
 上記構成に従えば、圧油が流れやすい負荷の小さいアクチュエータに対しては、対応するスプールのパイロット圧が小さくなるように出力特性を切換えることによって、負荷の小さいアクチュエータに流れる流量を制限することができ、これにより、負荷の大きいアクチュエータに流れる流量を増加させることができる。これにより、同時駆動に起因する流量配分の偏りを抑え、好適に流量配分を行うことができ、単独で操作されている場合と同様の操作フィーリングで複数のアクチュエータを動かすことができる。 According to the above configuration, for an actuator with a small load in which pressure oil easily flows, the flow rate flowing to the actuator with a small load can be limited by switching the output characteristics so that the pilot pressure of the corresponding spool is small. Thus, the flow rate flowing through the actuator with a large load can be increased. Thereby, the deviation of the flow rate distribution due to the simultaneous driving can be suppressed and the flow rate distribution can be suitably performed, and a plurality of actuators can be moved with the same operation feeling as when operated alone.
 上記発明において、前記圧力調整弁は、ノーマルクローズド形の電磁比例制御弁であり、前記切換弁は、前記圧力調整弁からの出力圧が予め定められた切換圧より大きくなると作動するようになっていることが好ましい。 In the above invention, the pressure regulating valve is a normally closed electromagnetic proportional control valve, and the switching valve is activated when an output pressure from the pressure regulating valve becomes larger than a predetermined switching pressure. Preferably it is.
 上記構成に従えば、圧力調整弁に不具合が生じて圧力調整弁が作動しなくなると、圧力調整弁の出力圧が切換圧以下になる。これにより、パイロット圧としてコントロール弁に与えられる液圧が切換弁によって自動的に操作弁の指令圧に切換えられる。このように、圧力調整弁に不具合が生じて圧力調整弁が作動しなくなった場合、コントロール弁に与えられるパイロット圧が自動的に操作弁の指令圧に切り替わるようになっており、フェイルセーフを実現することができる。 According to the above configuration, when a malfunction occurs in the pressure regulating valve and the pressure regulating valve stops operating, the output pressure of the pressure regulating valve becomes lower than the switching pressure. Thereby, the hydraulic pressure given to the control valve as the pilot pressure is automatically switched to the command pressure of the operation valve by the switching valve. In this way, when a malfunction occurs in the pressure control valve and the pressure control valve does not operate, the pilot pressure applied to the control valve is automatically switched to the command pressure of the operation valve, realizing fail-safe can do.
 本発明によれば、コントローラを含めるパイロット操作系の電子制御装置が電気的に制御不能となった場合にも、アクチュエータの制御を可能とすることができる。 According to the present invention, it is possible to control the actuator even when the electronic control device of the pilot operation system including the controller becomes electrically uncontrollable.
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。 The above object, other objects, features, and advantages of the present invention will become apparent from the following detailed description of preferred embodiments with reference to the accompanying drawings.
本件発明の実施形態の油圧駆動装置を備える油圧ショベルを示す側面図である。It is a side view showing a hydraulic excavator provided with a hydraulic drive unit of an embodiment of the present invention. 第1実施形態の油圧駆動装置の油圧回路を示す回路図である。It is a circuit diagram which shows the hydraulic circuit of the hydraulic drive device of 1st Embodiment. 図2の油圧駆動装置の油圧回路の一部を拡大して示す回路図である。FIG. 3 is an enlarged circuit diagram showing a part of a hydraulic circuit of the hydraulic drive device of FIG. 2. 図2の油圧駆動装置の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the hydraulic drive unit of FIG. (a)は操作弁から出力される指令圧と操作レバーの操作量との関係を示すグラフであり、(b)は電磁比例制御弁から出力される出力圧と操作レバーの操作量との関係を示すグラフであり、(c)は方向制御弁の開度と操作レバーの操作量との関係を示すグラフである。(A) is a graph which shows the relationship between the command pressure output from an operation valve, and the operation amount of an operation lever, (b) is the relationship between the output pressure output from an electromagnetic proportional control valve, and the operation amount of an operation lever. (C) is a graph which shows the relationship between the opening degree of a direction control valve, and the operation amount of an operation lever. 第2実施形態の油圧駆動装置の油圧回路を示す回路図である。It is a circuit diagram which shows the hydraulic circuit of the hydraulic drive device of 2nd Embodiment.
 以下では、前述する図面を参照しながら、本発明の第1及び第2実施形態に係る油圧駆動装置1,1A及びそれを備える油圧ショベル2の構成を説明する。なお、実施形態における方向の概念は、説明の便宜上使用するものであって、油圧駆動装置1,1A及び油圧ショベル2の構造に関して、それらの構成の配置及び向き等をその方向に限定することを示唆するものではない。また、以下に説明する油圧駆動装置1,1A及び油圧ショベル2の構造は、本発明の一実施形態に過ぎず、本発明は実施の形態に限定されず、発明の趣旨を逸脱しない範囲で追加、削除、変更が可能である。 Hereinafter, the configurations of the hydraulic drive devices 1 and 1A and the hydraulic excavator 2 including the hydraulic drive devices according to the first and second embodiments of the present invention will be described with reference to the drawings described above. In addition, the concept of the direction in the embodiment is used for convenience of explanation, and regarding the structure of the hydraulic drive devices 1 and 1A and the hydraulic excavator 2, the arrangement and orientation of the configuration thereof are limited to that direction. It is not a suggestion. Further, the structures of the hydraulic drive devices 1 and 1A and the excavator 2 described below are only one embodiment of the present invention, and the present invention is not limited to the embodiment and is added within the scope of the invention. Can be deleted, changed.
 <第1実施形態>
 [油圧ショベル]
 図1に示すように、建設機械である油圧ショベル2は、先端部に取り付けられたアタッチメント、例えばバケット3によって掘削や運搬等の様々な作業を行うことができるようになっている。油圧ショベル2は、クローラ等の走行装置4を有しており、走行装置4の上に旋回体5が旋回可能に載せられている。旋回体5は、後述する旋回用モータ10によって旋回駆動可能に構成されており、運転者が搭乗するための運転席5aが形成されている。
<First Embodiment>
[Hydraulic excavator]
As shown in FIG. 1, a hydraulic excavator 2 that is a construction machine can perform various operations such as excavation and transportation by an attachment, for example, a bucket 3, attached to a tip portion. The excavator 2 has a traveling device 4 such as a crawler, and a revolving body 5 is placed on the traveling device 4 so as to be capable of turning. The revolving structure 5 is configured to be capable of being swiveled by a revolving motor 10 to be described later, and a driver's seat 5a for a driver to board is formed.
 また、旋回体5には、そこから上斜め前方に延在するブーム6が上下方向に揺動可能に設けられている。ブーム6と旋回体5とには、ブーム用シリンダ7が架設されており、ブーム用シリンダ7を伸縮させることで旋回体5に対してブーム6が揺動するようになっている。このように揺動するブーム6の先端部には、そこから下斜め前方に延在するアーム8が前後方向に揺動可能に設けられている。ブーム6とアーム8とには、アーム用シリンダ9が架設されており、アーム用シリンダ9を伸縮させることでブーム6に対してアーム8が揺動するようになっている。更に、アーム8の先端部には、前後方向に揺動可能にバケット3が設けられている。なお、詳しくは説明しないが、バケット3にもバケット用シリンダが設けられており、バケット用シリンダを伸縮させることでバケット3が前後方向に揺動するようになっている。 Also, the revolving body 5 is provided with a boom 6 extending upward and obliquely forward from the revolving body 5 so as to be swingable in the vertical direction. A boom cylinder 7 is installed on the boom 6 and the swing body 5, and the boom 6 swings with respect to the swing body 5 by expanding and contracting the boom cylinder 7. At the tip of the swinging boom 6, an arm 8 extending obliquely downward and forward is provided so as to be swingable in the front-rear direction. An arm cylinder 9 is installed on the boom 6 and the arm 8, and the arm 8 swings with respect to the boom 6 by expanding and contracting the arm cylinder 9. Further, a bucket 3 is provided at the tip of the arm 8 so as to be swingable in the front-rear direction. Although not described in detail, the bucket 3 is also provided with a bucket cylinder, and the bucket 3 swings back and forth by expanding and contracting the bucket cylinder.
 このように構成される油圧ショベル2は、ブーム用シリンダ7、アーム用シリンダ9及び旋回用モータ10等のアクチュエータに油圧を供給してそれらを駆動する油圧駆動装置1を備えており、後述するような作用効果を奏する。以下では、油圧駆動装置1の構成について、図2及び図3を参照しながら説明する。 The hydraulic excavator 2 configured as described above includes a hydraulic drive device 1 that supplies hydraulic pressure to actuators such as a boom cylinder 7, an arm cylinder 9, and a turning motor 10 to drive them, as will be described later. There are various effects. Below, the structure of the hydraulic drive device 1 is demonstrated, referring FIG.2 and FIG.3.
 [油圧駆動装置]
 油圧駆動装置1は、いわゆるネガティブコントロール式の油圧駆動回路で構成されており、油圧ポンプ11を備えている。油圧ポンプ11は、エンジンEに連結されており、このエンジンEが回転駆動することによって油圧を吐出するように構成されている。また、油圧ポンプ11は、斜板11aを有する可変容量型油圧ポンプが採用されており、斜板11aの角度に応じた流量で油圧を吐出するようになっている。このように構成されている油圧ポンプ11の吐出ポート11bは、主通路12に繋がっている。
[Hydraulic drive]
The hydraulic drive device 1 is configured by a so-called negative control type hydraulic drive circuit, and includes a hydraulic pump 11. The hydraulic pump 11 is connected to the engine E, and is configured to discharge hydraulic pressure when the engine E is rotationally driven. The hydraulic pump 11 employs a variable displacement hydraulic pump having a swash plate 11a, and discharges hydraulic pressure at a flow rate corresponding to the angle of the swash plate 11a. The discharge port 11 b of the hydraulic pump 11 configured in this way is connected to the main passage 12.
 主通路12には、後述する3つのバルブユニット21,22,23が介在しており、バルブユニット21,22,23の更に下流側には、絞り24を介してタンク25が接続されている。また、主通路12には、絞り24を迂回するように絞り24の前後にリリーフ通路13が繋がれており、リリーフ通路13には、リリーフ弁14が設けられている。また、主通路12には、絞り24の上流側であって3つのバルブユニット21,22,23の下流側にネガコン通路15が接続されている。ネガコン通路15は、油圧ポンプ11に設けられるサーボピストン機構16に繋がっており、このネガコン通路15を通じて絞り24によりタンク圧より高い圧力がネガコン圧pとしてサーボピストン機構16に導かれるようになっている。 Three valve units 21, 22, 23 described later are interposed in the main passage 12, and a tank 25 is connected to the downstream side of the valve units 21, 22, 23 via a throttle 24. In addition, a relief passage 13 is connected to the main passage 12 before and after the restrictor 24 so as to bypass the restrictor 24, and a relief valve 14 is provided in the relief passage 13. Further, a negative control passage 15 is connected to the main passage 12 upstream of the throttle 24 and downstream of the three valve units 21, 22, and 23. Negative control passage 15 is connected to the servo piston mechanism 16 provided in the hydraulic pump 11, a pressure higher than the tank pressure by diaphragm 24 through the negative control passage 15 is guided to the servo piston mechanism 16 as negative control pressure p n Yes.
 サーボピストン機構16は、サーボピストン16aを有しており、サーボピストン16aは、ネガコン通路15を通じて流れてくるネガコン圧pに応じた位置に移動するようになっている。サーボピストン16aには、油圧ポンプ11の斜板11aが連結されており、斜板11aはサーボピストン16aの位置に応じた角度に傾転するようになっている。具体的には、ネガコン圧pが上昇すると、斜板11aがその角度を小さくするように傾転して油圧ポンプ11の吐出流量を減少させ、ネガコン圧pが下降すると斜板11aがその角度を大きくするように傾転して油圧ポンプ11の吐出流量を増加させるようになっている。 Servo piston mechanism 16 has a servo piston 16a, the servo piston 16a is adapted to move to a position corresponding to the negative control pressure p n flowing through a negative control passage 15. A swash plate 11a of the hydraulic pump 11 is connected to the servo piston 16a, and the swash plate 11a is tilted at an angle corresponding to the position of the servo piston 16a. Specifically, when the negative control pressure pn is increased, the swash plate 11a is tilted so as to reduce its angle to decrease the discharge flow rate of the hydraulic pump 11, and when the negative control pressure pn is decreased, the swash plate 11a is The discharge flow rate of the hydraulic pump 11 is increased by tilting to increase the angle.
 また、主通路12には供給通路17が繋がっており、この供給通路17を介して吐出された油圧が各アクチュエータ7,9,10に供給される。供給通路17は、油圧ポンプ11の下流側であって3つのバルブユニット21,22,23の上流側において主通路12から分岐している。供給通路17もまたその下流側で3つに分岐しており、分岐する各々の通路部17a,17b,17cには、3つのバルブユニット21,22,23が夫々接続されている。また、3つのバルブユニット21,22,23は、タンク通路18に繋がっており、このタンク通路18を介してタンク25に繋がっている。 Further, a supply passage 17 is connected to the main passage 12, and hydraulic pressure discharged through the supply passage 17 is supplied to the actuators 7, 9, 10. The supply passage 17 is branched from the main passage 12 downstream of the hydraulic pump 11 and upstream of the three valve units 21, 22, and 23. The supply passage 17 is also branched into three on the downstream side, and three valve units 21, 22, and 23 are connected to the branched passage portions 17a, 17b, and 17c, respectively. The three valve units 21, 22, and 23 are connected to the tank passage 18, and are connected to the tank 25 via the tank passage 18.
 これら3つのバルブユニット21,22,23のうち最も上流側にあるブーム用バルブユニット21は、ブーム用シリンダ7に流す油圧の流れる方向及び流量を制御し、最も下流側に位置するアーム用バルブユニット23は、アーム用シリンダ9に流す油圧の流れる方向及び流量を制御するようになっている。更に、これら2つのバルブユニット21,23の間に位置する旋回用バルブユニット22は、旋回体5を旋回させる旋回用モータ10に流す油圧の流れる方向及び流量を制御するようになっている。これら3つのバルブユニット21,22,23は、駆動するアクチュエータが異なる点を除いて同様の構成及び機能を有している。以下では、ブーム用バルブユニット21の構成について詳しく説明し、旋回用バルブユニット22及びアーム用バルブユニット23の構成については、異なる点について主に説明し、同一の構成については同一の符号を付して説明を省略する。また、旋回用バルブユニット22及びアーム用バルブユニット23の機能については、異なる点について主に説明し、同一の機能については説明を省略する。 Among these three valve units 21, 22, and 23, the boom valve unit 21 located on the most upstream side controls the flow direction and flow rate of hydraulic pressure flowing through the boom cylinder 7, and is located on the most downstream side. 23 controls the flow direction and flow rate of the hydraulic pressure flowing through the arm cylinder 9. Further, the turning valve unit 22 located between the two valve units 21 and 23 controls the flow direction and flow rate of the hydraulic pressure flowing to the turning motor 10 for turning the turning body 5. These three valve units 21, 22, and 23 have the same configuration and function except that the actuators to be driven are different. Hereinafter, the configuration of the boom valve unit 21 will be described in detail. The configurations of the turning valve unit 22 and the arm valve unit 23 will mainly be described with respect to different points, and the same components will be denoted by the same reference numerals. The description is omitted. Further, regarding the functions of the turning valve unit 22 and the arm valve unit 23, different points will be mainly described, and description of the same functions will be omitted.
 [ブーム用バルブユニット]
 ブーム用バルブユニット21は、油圧の流れる方向及びその流量を制御する方向制御弁(コントロール弁)26を有している。方向制御弁26には、供給通路17、タンク通路18、第1給排通路31及び第2給排通路32が接続されている。第1給排通路31は、ブーム用シリンダ7のヘッド側7aに繋がっており、第2給排通路32は、ブーム用シリンダ7のロッド側7bに繋がっている。また、方向制御弁26は、スプール27を有しており、このスプール27の位置に応じて油圧の流れる方向及び流量を制御するようになっている。
[Boom valve unit]
The boom valve unit 21 has a direction control valve (control valve) 26 for controlling the direction of flow of hydraulic pressure and the flow rate thereof. A supply passage 17, a tank passage 18, a first supply / discharge passage 31 and a second supply / discharge passage 32 are connected to the direction control valve 26. The first supply / discharge passage 31 is connected to the head side 7 a of the boom cylinder 7, and the second supply / discharge passage 32 is connected to the rod side 7 b of the boom cylinder 7. The direction control valve 26 has a spool 27, and controls the direction and flow rate of hydraulic pressure in accordance with the position of the spool 27.
 更に詳細に説明すると、スプール27は、中立位置Mから第1オフセット位置S1及び第2オフセット位置S2の方へと移動可能に構成されており、中立位置Mでは、主通路12が連通し、供給通路17、タンク通路18、第1給排通路31及び第2給排通路32が夫々遮断されている。これにより、ブーム用シリンダ7への油圧の給排が止まり、ブーム6の動きが止まるようになっている。他方、主通路12が連通することでネガコン圧pが高くなり、油圧ポンプ11の吐出流量が減少する。 More specifically, the spool 27 is configured to be movable from the neutral position M toward the first offset position S1 and the second offset position S2. In the neutral position M, the main passage 12 communicates and is supplied. The passage 17, the tank passage 18, the first supply / discharge passage 31 and the second supply / discharge passage 32 are blocked. Thereby, the supply and discharge of hydraulic pressure to the boom cylinder 7 is stopped, and the movement of the boom 6 is stopped. On the other hand, when the main passage 12 communicates, the negative control pressure pn increases and the discharge flow rate of the hydraulic pump 11 decreases.
 中立位置Mから第1オフセット位置S1の方へとスプール27を移動させると、供給通路17が第1給排通路31に繋がり、第2給排通路32がタンク通路18に繋がる。これにより、ブーム用シリンダ7のヘッド側7aに油圧が供給されてブーム用シリンダ7が伸長し、ブーム6が上方に向かって揺動する。他方、主通路12はスプール27によって絞られ、やがて遮断されるようになっている。これにより、ネガコン圧pが低下し、油圧ポンプ11の吐出流量が増加する。 When the spool 27 is moved from the neutral position M toward the first offset position S 1, the supply passage 17 is connected to the first supply / discharge passage 31, and the second supply / discharge passage 32 is connected to the tank passage 18. As a result, hydraulic pressure is supplied to the head side 7a of the boom cylinder 7, the boom cylinder 7 extends, and the boom 6 swings upward. On the other hand, the main passage 12 is squeezed by the spool 27 and is eventually blocked. As a result, the negative control pressure pn decreases and the discharge flow rate of the hydraulic pump 11 increases.
 また、中立位置Mから第2オフセット位置S2の方へとスプール27を移動させると、供給通路17が第2給排通路32に繋がり、第1給排通路31がタンク通路18に繋がる。これにより、ブーム用シリンダ7のロッド側に油圧が供給されてブーム用シリンダ7が収縮し、ブーム6が下方に向かって揺動する。他方、主通路12は、スプール27によって絞られ、やがて遮断されるようになっている。これにより、ネガコン圧pが低下し、油圧ポンプ11の吐出流量が増加する。 When the spool 27 is moved from the neutral position M to the second offset position S2, the supply passage 17 is connected to the second supply / discharge passage 32, and the first supply / discharge passage 31 is connected to the tank passage 18. As a result, hydraulic pressure is supplied to the rod side of the boom cylinder 7, the boom cylinder 7 contracts, and the boom 6 swings downward. On the other hand, the main passage 12 is squeezed by the spool 27 and is eventually shut off. As a result, the negative control pressure pn decreases and the discharge flow rate of the hydraulic pump 11 increases.
 このように接続先を切換えるスプール27には、互いに抗する2つのパイロット圧p,pが与えられており、パイロット圧p、pに応じた位置にスプール27が移動するようになっている。即ち、方向制御弁26は、パイロット圧p、pに応じた方向及び流量の油圧をブーム用シリンダ7に供給するようになっている。これら2つのパイロット圧p,pは、第1パイロット通路34及び第2パイロット通路35を通じて導かれるようになっている。 Thus, two pilot pressures p 1 and p 2 that oppose each other are applied to the spool 27 that switches the connection destination, and the spool 27 moves to a position corresponding to the pilot pressures p 1 and p 2. ing. That is, the direction control valve 26 supplies the boom cylinder 7 with a hydraulic pressure having a direction and a flow rate corresponding to the pilot pressures p 1 and p 2 . These two pilot pressures p 1 and p 2 are guided through the first pilot passage 34 and the second pilot passage 35.
 第1パイロット通路34には、第1切換弁41が設けられており、この第1切換弁41は、操作弁36及び第1電磁比例制御弁(圧力調整弁)42に夫々繋がっている。第1切換弁41は、第1電磁比例制御弁42からの出力圧をパイロット圧として受けており、このパイロット圧が所定圧力以下で第1パイロット通路34を操作弁36に接続し、パイロット圧が所定圧力を超えると第1パイロット通路34の接続先を操作弁36から第1電磁比例制御弁42からの出力圧に切換えるように構成されている。 In the first pilot passage 34, a first switching valve 41 is provided, and the first switching valve 41 is connected to an operation valve 36 and a first electromagnetic proportional control valve (pressure adjusting valve) 42, respectively. The first switching valve 41 receives the output pressure from the first electromagnetic proportional control valve 42 as a pilot pressure. When the pilot pressure is equal to or lower than a predetermined pressure, the first pilot passage 34 is connected to the operation valve 36, and the pilot pressure is reduced. When the pressure exceeds a predetermined pressure, the connection destination of the first pilot passage 34 is switched from the operation valve 36 to the output pressure from the first electromagnetic proportional control valve 42.
 また、第2パイロット通路35にも同様に第2切換弁44が設けられており、第2切換弁44は、操作弁36及び第2電磁比例制御弁(圧力調整弁)45に夫々繋がっている。第2切換弁44は、第2電磁比例制御弁45からの出力圧をパイロット圧として受けており、このパイロット圧が所定圧力以下で第2パイロット通路35を操作弁36に接続し、パイロット圧が所定圧力を超えると第2パイロット通路35の接続先を操作弁36から第2電磁比例制御弁45からの出力圧に切換えるように構成されている。 Similarly, a second switching valve 44 is provided in the second pilot passage 35, and the second switching valve 44 is connected to the operation valve 36 and the second electromagnetic proportional control valve (pressure adjusting valve) 45, respectively. . The second switching valve 44 receives the output pressure from the second electromagnetic proportional control valve 45 as a pilot pressure. When the pilot pressure is equal to or lower than a predetermined pressure, the second pilot passage 35 is connected to the operation valve 36, and the pilot pressure is reduced. When the pressure exceeds a predetermined pressure, the connection destination of the second pilot passage 35 is switched from the operation valve 36 to the output pressure from the second electromagnetic proportional control valve 45.
 第1切換弁41(又は第2切換弁44)によって、パイロット圧として方向制御弁26に与えられる液圧を第1電磁比例制御弁42(又は第2電磁比例制御弁45)の出力圧から操作弁36の指令圧とに切換えることができる。これにより、第1電磁比例制御弁42(又は第2電磁比例制御弁45)に不具合が生じて作動しない場合であっても、方向制御弁26に与えるパイロット圧を第1電磁比例制御弁42(又は第2電磁比例制御弁45)の出力圧から操作弁36の指令圧へと第1切換弁41(又は第2切換弁44)によって切換えることでアクチュエータを通常通り駆動することができる。 The first switching valve 41 (or the second switching valve 44) operates the hydraulic pressure given to the direction control valve 26 as a pilot pressure from the output pressure of the first electromagnetic proportional control valve 42 (or the second electromagnetic proportional control valve 45). It is possible to switch to the command pressure of the valve 36. As a result, even if the first electromagnetic proportional control valve 42 (or the second electromagnetic proportional control valve 45) malfunctions and does not operate, the pilot pressure applied to the directional control valve 26 is supplied to the first electromagnetic proportional control valve 42 ( Alternatively, the actuator can be driven normally by switching from the output pressure of the second electromagnetic proportional control valve 45) to the command pressure of the operation valve 36 by the first switching valve 41 (or the second switching valve 44).
 つまり、後述する制御装置50を含めたパイロット操作系に係る電子機器が電気的に制御不能となった場合であっても、アクチュエータの従来通りの制御が可能となるため、液圧駆動装置のフェールセーフが実現できる。 That is, even when the electronic equipment related to the pilot operation system including the control device 50 to be described later becomes electrically uncontrollable, the actuator can be controlled in the conventional manner. Safe can be realized.
 圧力調整弁である第1電磁比例制御弁42及び第2電磁比例制御弁45は、いわゆるノーマルクローズド形の正比例制御弁である。各電磁比例制御弁42,45は、パイロットポンプ47に接続されており、パイロットポンプ47は、エンジンEに連結されており(図示せず)、エンジンEが回転駆動することによって油圧を吐出するように構成されている。各電磁比例制御弁42,45は、そこに流される電流に応じた出力圧にパイロットポンプ47からの油圧を調整して各電磁弁用通路43,46に夫々出力するようになっている。 The first electromagnetic proportional control valve 42 and the second electromagnetic proportional control valve 45, which are pressure regulating valves, are so-called normally closed direct proportional control valves. Each of the electromagnetic proportional control valves 42 and 45 is connected to a pilot pump 47. The pilot pump 47 is connected to the engine E (not shown), and discharges hydraulic pressure when the engine E is driven to rotate. It is configured. Each of the electromagnetic proportional control valves 42 and 45 adjusts the hydraulic pressure from the pilot pump 47 to the output pressure corresponding to the current flowing therethrough, and outputs it to the respective solenoid valve passages 43 and 46, respectively.
 電磁弁用通路43,46に出力圧が出力される、例えば第1電磁比例制御弁42から第1電磁弁用通路43に第1出力圧が出力され、その出力圧が第1切換弁41の切換圧を超えると、第1切換弁41によって第1パイロット通路34の接続先が第1電磁弁用通路43に切換えられる。これにより、第1出力圧が第1パイロット圧pとして方向制御弁26に入力される。他方、第1電磁比例制御弁42からの出力圧が前記切換圧より低くなると、第1パイロット通路34の接続先が第1切換弁41によって第1電磁比例制御弁42から操作弁36に切換えられる。 The output pressure is output to the solenoid valve passages 43, 46. For example, the first output pressure is output from the first electromagnetic proportional control valve 42 to the first solenoid valve passage 43. When the switching pressure is exceeded, the first switching valve 41 switches the connection destination of the first pilot passage 34 to the first solenoid valve passage 43. Thus, the first output pressure is input to the directional control valve 26 as a first pilot pressure p 1. On the other hand, when the output pressure from the first electromagnetic proportional control valve 42 becomes lower than the switching pressure, the connection destination of the first pilot passage 34 is switched from the first electromagnetic proportional control valve 42 to the operation valve 36 by the first switching valve 41. .
 また、第2電磁比例制御弁45から第2電磁弁用通路46に第2出力圧が出力され、その出力圧が第2切換弁44の切換圧を越えると、第2切換弁44によって第2パイロット通路35の接続先が第2電磁弁用通路46に切換えられる。これにより、第2出力圧が第2パイロット圧pとして方向制御弁26に入力される。他方、第2電磁比例制御弁45からの出力圧が前記切換圧より低くなると第2パイロット通路35の接続先が第2切換弁44によって第2電磁比例制御弁45から操作弁36に切換えられる。 Further, when the second output pressure is output from the second electromagnetic proportional control valve 45 to the second electromagnetic valve passage 46 and the output pressure exceeds the switching pressure of the second switching valve 44, the second switching valve 44 causes the second output pressure to be increased. The connection destination of the pilot passage 35 is switched to the second electromagnetic valve passage 46. Thus, the second output pressure is input to the directional control valve 26 as a second pilot pressure p 2. On the other hand, when the output pressure from the second electromagnetic proportional control valve 45 becomes lower than the switching pressure, the connection destination of the second pilot passage 35 is switched from the second electromagnetic proportional control valve 45 to the operation valve 36 by the second switching valve 44.
 操作弁36は、操作レバー37を有し、操作レバー37の操作量に応じた油圧を操作レバー37の操作方向に応じた方向に出力するようになっている。更に詳細に説明すると、操作弁36は、パイロットポンプ47に接続されており、第1操作弁用通路48及び第2操作弁用通路49を有している。第1操作弁用通路48が第1切換弁41に繋がり、第2操作弁用通路49が第2切換弁44に繋がっている。操作弁36は、操作レバー37が第1方向(例えば前方)に操作されると操作レバー37の操作量に応じた第1指令圧を第1操作弁用通路48に出力し、また操作レバー37が第2方向(例えば、後方)に操作されると操作レバー37の操作量に応じた第2指令圧を第2操作弁用通路49に出力するようになっている。 The operation valve 36 has an operation lever 37 and outputs hydraulic pressure corresponding to the operation amount of the operation lever 37 in a direction corresponding to the operation direction of the operation lever 37. More specifically, the operation valve 36 is connected to a pilot pump 47 and has a first operation valve passage 48 and a second operation valve passage 49. The first operation valve passage 48 is connected to the first switching valve 41, and the second operation valve passage 49 is connected to the second switching valve 44. The operation valve 36 outputs a first command pressure corresponding to the operation amount of the operation lever 37 to the first operation valve passage 48 when the operation lever 37 is operated in a first direction (for example, forward). Is operated in the second direction (for example, rearward), the second command pressure corresponding to the operation amount of the operation lever 37 is output to the second operation valve passage 49.
 また、第1操作弁用通路48には、そこに出力された第1指令圧を検出する第1圧力センサPS1が設けられている。また、第2操作弁用通路49には、そこに出力された第2指令圧を検出する第2圧力センサPS2が設けられている。これら2つの圧力センサPS1,PS2は、前述する2つの電磁比例制御弁42,45と共に制御装置50に電気的に接続されている。 The first operation valve passage 48 is provided with a first pressure sensor PS1 for detecting the first command pressure output thereto. The second operating valve passage 49 is provided with a second pressure sensor PS2 for detecting the second command pressure output thereto. These two pressure sensors PS1 and PS2 are electrically connected to the control device 50 together with the two electromagnetic proportional control valves 42 and 45 described above.
 制御装置50は、2つの圧力センサPS1及びPS2から第1指令圧及び第2指令圧を夫々取得するようになっており、取得した第1指令圧及び第2指令圧に基づいて操作レバー37の操作状態(操作量及び操作方向)を検出するようになっている。また、制御装置50は、2つの電磁比例制御弁42,45に電流(指令信号)を流すようになっており、出力される指令信号は、予め定められた出力特性及び操作レバー37の操作量に基づいて決定される。指令信号を決定する電磁比例制御弁42,45の出力特性は、電磁比例制御弁42,45毎に複数個が制御装置50で記憶されている(例えば、後述する第1出力特性~第3出力特性)。制御装置50は、油圧駆動装置1の作動状態が所定の作動条件を充足しているか否かを判定し、その判定結果に基づいていずれの出力特性を用いるかを決定するようになっている
 出力特性の決定方法の詳細については後述するが、作動条件には、例えば、他のバルブユニット22,23の作動状態(即ち、他の操作レバー37の操作状態)、エンジンEの回転数、油温が含まれ、エンジンEの回転数、油温については、図示しないセンサにより検出されるようになっている。
The control device 50 is configured to acquire the first command pressure and the second command pressure from the two pressure sensors PS1 and PS2, respectively, and based on the acquired first command pressure and second command pressure, An operation state (operation amount and operation direction) is detected. In addition, the control device 50 allows current (command signal) to flow through the two electromagnetic proportional control valves 42 and 45, and the output command signal includes a predetermined output characteristic and an operation amount of the operation lever 37. To be determined. A plurality of output characteristics of the electromagnetic proportional control valves 42 and 45 for determining the command signal are stored in the controller 50 for each of the electromagnetic proportional control valves 42 and 45 (for example, a first output characteristic to a third output described later). Characteristic). The control device 50 determines whether or not the operation state of the hydraulic drive device 1 satisfies a predetermined operation condition, and determines which output characteristic to use based on the determination result. The details of the method for determining the characteristics will be described later. The operating conditions include, for example, operating states of the other valve units 22 and 23 (that is, operating states of the other operating lever 37), the rotational speed of the engine E, and the oil temperature. And the rotation speed and oil temperature of the engine E are detected by a sensor (not shown).
 このように構成されているブーム用バルブユニット21では、操作レバー37が第1方向に操作されて操作弁36から第1指令圧が出力されると、第1圧力センサPS1が第1指令圧を検出し、検出した第1指令圧が制御装置50に送られる。そうすると、制御装置50は、油圧駆動装置1の作動状態がいずれの作動条件を充足しているかを判定し、この判定結果に基づいて指令信号の算出に利用する出力特性を選択する。その後、制御装置50は、選択した出力特性に基づいて第1指令圧に応じた指令信号を算出する。算出された指令信号は、制御装置50によって第1電磁比例制御弁42に流され、第1電磁比例制御弁42によって指令信号に応じた圧力の第1出力圧が第1電磁弁用通路43に出力される。この通路43の圧力が予め定められた第1切換弁の切換圧より高くなると、第1切換弁41によって第1パイロット通路34の接続先が第1操作弁用通路48から第1電磁弁用通路43に切換えられ、第1出力圧が第1パイロット圧pとして方向制御弁26に入力される。これにより、スプール27が第1パイロット圧pによって第1オフセット位置S1の方へと押される。これにより、ブーム用シリンダ7のヘッド側7aに導かれ、ブーム6が上方に持ち上げられる。 In the boom valve unit 21 configured as described above, when the operation lever 37 is operated in the first direction and the first command pressure is output from the operation valve 36, the first pressure sensor PS1 reduces the first command pressure. The detected first command pressure is sent to the control device 50. Then, the control device 50 determines which operating condition the operating state of the hydraulic drive device 1 satisfies, and selects an output characteristic used for calculating the command signal based on the determination result. Thereafter, the control device 50 calculates a command signal corresponding to the first command pressure based on the selected output characteristic. The calculated command signal is sent to the first electromagnetic proportional control valve 42 by the control device 50, and the first output pressure of the pressure corresponding to the command signal is sent to the first electromagnetic valve passage 43 by the first electromagnetic proportional control valve 42. Is output. When the pressure in the passage 43 becomes higher than a predetermined switching pressure of the first switching valve, the connection destination of the first pilot passage 34 is changed from the first operating valve passage 48 to the first electromagnetic valve passage by the first switching valve 41. is switched to 43, the first output pressure is input to the directional control valve 26 as a first pilot pressure p 1. Accordingly, it pushed the spool 27 toward the first offset position S1 by the first pilot pressure p 1. Thereby, it guide | induces to the head side 7a of the cylinder 7 for booms, and the boom 6 is lifted upwards.
 他方、操作レバー37が第2方向に操作されて操作弁36から第2指令圧が出力されると、第2圧力センサPS2が第2指令圧を検出し、検出した第2指令圧が制御装置50に送られる。そうすると、制御装置50は、油圧駆動装置1の作動状態がいずれの作動条件を充足しているかを判定し、この判定結果に基づいて指令信号の算出に利用する出力特性を選択する。その後、制御装置50は、選択した出力特性に基づいて第2指令圧に応じた指令信号を算出する。算出された指令信号は制御装置50によって第2電磁比例制御弁45に流され、第2電磁比例制御弁45によって指令信号に応じた圧力の第2出力圧が第2電磁弁用通路46に出力される。その通路46の圧力が予め定められた第2切換弁の切換圧より高くなると、第2切換弁44によって第2パイロット通路35の接続先が第2操作弁用通路49から第2電磁弁用通路46に切換えられ、第2出力圧が第2パイロット圧pとして方向制御弁26に入力される。これにより、スプール27が第2パイロット圧pによって第2オフセット位置S2の方へと押される。これにより、ブーム用シリンダ7のロッド側7bに導かれ、ブーム6が下方に下げられる。 On the other hand, when the operation lever 37 is operated in the second direction and the second command pressure is output from the operation valve 36, the second pressure sensor PS2 detects the second command pressure, and the detected second command pressure is the control device. 50. Then, the control device 50 determines which operating condition the operating state of the hydraulic drive device 1 satisfies, and selects an output characteristic used for calculating the command signal based on the determination result. Thereafter, the control device 50 calculates a command signal corresponding to the second command pressure based on the selected output characteristic. The calculated command signal is caused to flow to the second electromagnetic proportional control valve 45 by the control device 50, and a second output pressure corresponding to the command signal is output to the second electromagnetic valve passage 46 by the second electromagnetic proportional control valve 45. Is done. When the pressure of the passage 46 becomes higher than a predetermined switching pressure of the second switching valve, the connection point of the second pilot passage 35 is changed from the second operation valve passage 49 to the second electromagnetic valve passage by the second switching valve 44. is switched to 46, the second output pressure is input to the directional control valve 26 as a second pilot pressure p 2. Accordingly, it pushed the spool 27 towards the second pilot pressure p 2 by the second offset position S2. Thereby, it guide | induces to the rod side 7b of the cylinder 7 for booms, and the boom 6 is lowered | hung below.
 このように制御する制御装置50では、油圧駆動装置1の作動状態を様々なセンサによって検出し、その検出結果に基づいていずれの作動条件を充足しているか否かを判定して利用する出力特性を選択している。例えば、油温センサにより検出される油温が予め定められた第1の所定温度以上であるという作動条件を充足すると制御装置50が判定すると、制御装置50は、ブーム用シリンダ7に油圧を流れにくくするような出力特性(即ち、指令圧に対して各電磁比例制御弁42,45に流す電流を小さくして出力圧を低くするような出力特性)を選択する。これにより、ブーム用シリンダ7に流れる油圧の流量を規制することができ、粘度が低い高温環境下においてブーム6の動作開始時に生じるブーム用シリンダ7への供給過多を抑えて供給過多によって生じる衝撃を緩和することができる。 In the control device 50 that controls in this way, the operating state of the hydraulic drive device 1 is detected by various sensors, and based on the detection result, it is determined which operating condition is satisfied, and output characteristics that are used. Is selected. For example, when the control device 50 determines that the operating condition that the oil temperature detected by the oil temperature sensor is equal to or higher than a predetermined first predetermined temperature is satisfied, the control device 50 supplies hydraulic pressure to the boom cylinder 7. The output characteristic that makes it difficult (that is, the output characteristic that lowers the output pressure by reducing the current flowing through the electromagnetic proportional control valves 42 and 45 with respect to the command pressure) is selected. As a result, the flow rate of the hydraulic pressure flowing through the boom cylinder 7 can be regulated, and the impact caused by the excessive supply by suppressing the excessive supply to the boom cylinder 7 at the start of the operation of the boom 6 in a high temperature environment where the viscosity is low. Can be relaxed.
 逆に、油温センサにより検出された油温が別の第2の所定温度(<第1の所定温度)以上であるという作動条件を充足しないと制御装置50が判定すると、制御装置50は、ブーム用シリンダ7に油圧を流れやすくするような出力特性(即ち、指令圧に対して電磁比例制御弁42,45に流す電流を大きくして出力圧を大きくするような出力特性)を選択する。これにより、ブーム用シリンダ7に流れる油の流量を増やすことができ、粘度が高い低温環境下においてブーム6の動作開始時に生じるブーム用シリンダ7の供給過少を抑えて供給過少によって生じるブーム6の動作のもたつきを解消することができる。 Conversely, when the control device 50 determines that the operating condition that the oil temperature detected by the oil temperature sensor is equal to or higher than another second predetermined temperature (<first predetermined temperature) is not satisfied, the control device 50 An output characteristic that facilitates the flow of hydraulic pressure to the boom cylinder 7 (that is, an output characteristic that increases the current flow through the electromagnetic proportional control valves 42 and 45 with respect to the command pressure to increase the output pressure) is selected. Thereby, the flow rate of the oil flowing into the boom cylinder 7 can be increased, and the operation of the boom 6 caused by the supply shortage is suppressed by suppressing the supply of the boom cylinder 7 under the low temperature environment where the viscosity is high. You can eliminate the sluggishness.
 同様に、エンジンEの回転数を作動条件とし、回転数が大きい場合にブーム用シリンダ7に流れる油圧の流量を規制して動作開始時の衝撃を緩和させるような出力特性を制御装置50に選択させ、回転数が小さい場合にブーム用バルブユニット21からブーム用シリンダ7に油圧を流れやすくしてブーム6の動作開始時のもたつきを解消することができるような出力特性を制御装置50に選択させてもよい。また、ブーム6の負荷を作動条件とし、その負荷に応じて流量を規制したり許容したりするようにすることもできる。 Similarly, the control device 50 selects an output characteristic that reduces the shock at the start of operation by regulating the flow rate of the hydraulic pressure flowing through the boom cylinder 7 when the rotational speed of the engine E is the operating condition and the rotational speed is high. The control device 50 selects an output characteristic that makes it easy to flow hydraulic pressure from the boom valve unit 21 to the boom cylinder 7 when the rotational speed is small, and eliminates the slack at the start of the operation of the boom 6. May be. Moreover, the load of the boom 6 can be set as an operating condition, and the flow rate can be regulated or allowed according to the load.
 このようにブーム6を動作させるブーム用バルブユニット21では、スプール27が指令信号に応じた位置に移動する。それ故、出力特性の内容を変更することで、作動条件に応じてブーム用シリンダ7に流れる流量が変動することを抑えることができる。これにより、作動条件に応じて操作レバー37の操作量に対するブーム用シリンダ7の駆動速度が変化することをおさえることができる。 In the boom valve unit 21 that operates the boom 6 in this way, the spool 27 moves to a position corresponding to the command signal. Therefore, by changing the contents of the output characteristics, it is possible to suppress fluctuations in the flow rate flowing through the boom cylinder 7 according to the operating conditions. Thereby, the drive speed of the boom cylinder 7 with respect to the operation amount of the operation lever 37 can be suppressed according to the operating conditions.
 従来では、操作レバー37の操作量に対するブーム用シリンダ7の駆動速度を変更するためには、スプール27の開度をチューニングしたり、各パイロット圧p、pに夫々抗するようにスプール27に設けられているばね27a、27bを変えたりする必要がある。これに対して、出力特性の内容を制御装置50で変更することで操作レバー37の操作量に対するブーム用シリンダ7の駆動速度を変更すことができるので、操作レバー37の操作量に対するブーム用シリンダ7の駆動速度の調整が容易になる。 Conventionally, in order to change the drive speed of the boom cylinder 7 with respect to the operation amount of the operation lever 37, the spool 27 is tuned to adjust the opening degree of the spool 27 or to resist the pilot pressures p 1 and p 2 , respectively. It is necessary to change the springs 27a, 27b provided in the. On the other hand, since the drive speed of the boom cylinder 7 with respect to the operation amount of the operation lever 37 can be changed by changing the content of the output characteristics with the control device 50, the boom cylinder with respect to the operation amount of the operation lever 37 can be changed. 7 can be easily adjusted.
 また、ブーム用バルブユニット21では、ノーマルクローズド形の各電磁比例制御弁42,45を採用しているので、これらに電気系の不具合等(コントローラの作動不良も含む)が生じてそれらが作動しなくなると、電磁弁用通路43,46に出力圧が出力されなくなる。そうすると、操作レバー37の操作後もパイロット通路34,35の接続先が電磁弁用通路43,46に切換えられずに各操作弁用通路48,49に繋がったままとなる。そのため、制御装置50を含めたパイロット操作系に係る電子機器が電気的に制御不能になって、各電磁比例制御弁42,45が作動しない場合、操作弁36から出力される指令圧が方向制御弁26に与えられる。それ故、各電磁比例制御弁42,45が作動しなくてもブーム用シリンダ7を作動させることができ、ブーム用バルブユニット21においてフェイルセーフを実現することができる。 Further, since the boom valve unit 21 employs the normally closed electromagnetic proportional control valves 42 and 45, an electric system malfunction or the like (including a malfunction of the controller) occurs, causing them to operate. When it disappears, the output pressure is not output to the solenoid valve passages 43 and 46. Then, even after the operation lever 37 is operated, the connection destinations of the pilot passages 34 and 35 are not switched to the electromagnetic valve passages 43 and 46 but remain connected to the operation valve passages 48 and 49. Therefore, when the electronic devices related to the pilot operation system including the control device 50 become electrically uncontrollable and the electromagnetic proportional control valves 42 and 45 do not operate, the command pressure output from the operation valve 36 is directional controlled. The valve 26 is provided. Therefore, the boom cylinder 7 can be operated even if the electromagnetic proportional control valves 42 and 45 are not operated, and failsafe can be realized in the boom valve unit 21.
 [旋回用バルブユニット]
 旋回用バルブユニット22では、第1給排通路31及び第2給排通路32が旋回用モータ10に接続されている。旋回用モータ10は、いわゆる油圧モータであり、2つのポート10a,10bを有している。旋回用モータ10は、油圧が供給されるポート10a,10bに応じて正回転及び逆回転するようになっており、第1ポート10aに第1給排通路31が接続され、第2ポート10bに第2給排通路32が接続されている。
[Swivel valve unit]
In the turning valve unit 22, the first supply / discharge passage 31 and the second supply / discharge passage 32 are connected to the turning motor 10. The turning motor 10 is a so-called hydraulic motor, and has two ports 10a and 10b. The turning motor 10 rotates forward and backward according to the ports 10a and 10b to which hydraulic pressure is supplied. The first supply / discharge passage 31 is connected to the first port 10a and the second port 10b is connected to the second port 10b. A second supply / discharge passage 32 is connected.
 このように構成される旋回用バルブユニット22では、スプール27が中立位置Mに位置すると、旋回用モータ10への油圧の給排が止まって旋回体5の旋回が止まる。スプール27が第1オフセット位置S1に位置すると旋回用モータ10が正回転して旋回体5が旋回し、スプール27が第2オフセット位置S2に位置すると旋回用モータ10が逆回転して旋回体5が旋回するようになっている。 In the turning valve unit 22 configured as described above, when the spool 27 is located at the neutral position M, the supply and discharge of the hydraulic pressure to the turning motor 10 is stopped and the turning of the turning body 5 is stopped. When the spool 27 is located at the first offset position S1, the turning motor 10 rotates forward and the turning body 5 turns. When the spool 27 is located at the second offset position S2, the turning motor 10 rotates reversely and the turning body 5 rotates. Turns.
 また、旋回用バルブユニット22では、第1指令圧を検出する第3圧力センサPS3が第1操作弁用通路48に設けられ、第2指令圧を検出する第4圧力センサPS4が第2操作弁用通路49に設けられている。第3圧力センサPS3及び第4圧力センサPS4は制御装置50に電気的に接続されており、制御装置50は第3圧力センサPS3及び第4圧力センサPS4から第1指令圧及び第2指令圧を取得するようになっている。 In the turning valve unit 22, the third pressure sensor PS3 for detecting the first command pressure is provided in the first operation valve passage 48, and the fourth pressure sensor PS4 for detecting the second command pressure is the second operation valve. The passage 49 is provided. The third pressure sensor PS3 and the fourth pressure sensor PS4 are electrically connected to the control device 50, and the control device 50 receives the first command pressure and the second command pressure from the third pressure sensor PS3 and the fourth pressure sensor PS4. To get.
 このように構成される旋回用バルブユニット22では、まず制御装置50が充足する作動条件に応じた出力特性を選択する。なお、作動条件及び出力特性は、各バルブユニット21,22,23毎に、且つ電磁比例制御弁42,45毎に別々に設定されている。そして、選択された出力特性に基づいて第3圧力センサPS3及び第4圧力センサPS4から送られてくる第1指令圧又は第2指令圧に応じた指令信号を算出する。例えば、操作レバー37が第1方向に操作されると、制御装置50は選択した出力特性に基づいて出力圧に応じた指令信号を第1電磁比例制御弁42に流す。これにより、スプール27が第1オフセット位置S1に移動し、指令信号に応じた流量の油圧が旋回用モータ10の第1ポート10aに供給される。他方、操作レバー37が第2方向に操作されると、制御装置50は選択した出力特性に基づいて出力圧に応じた指令信号を第2電磁比例制御弁45に流す。これにより、スプール27が第2オフセット位置S2に移動し、指令信号に応じた流量の油圧が第2ポート10bに供給される。 In the swivel valve unit 22 configured in this way, first, output characteristics corresponding to the operating conditions satisfied by the control device 50 are selected. The operating conditions and output characteristics are set separately for each valve unit 21, 22, 23 and for each electromagnetic proportional control valve 42, 45. Then, based on the selected output characteristics, a command signal corresponding to the first command pressure or the second command pressure sent from the third pressure sensor PS3 and the fourth pressure sensor PS4 is calculated. For example, when the operation lever 37 is operated in the first direction, the control device 50 causes a command signal corresponding to the output pressure to flow through the first electromagnetic proportional control valve 42 based on the selected output characteristic. As a result, the spool 27 moves to the first offset position S <b> 1, and a hydraulic pressure having a flow rate corresponding to the command signal is supplied to the first port 10 a of the turning motor 10. On the other hand, when the operation lever 37 is operated in the second direction, the control device 50 causes a command signal corresponding to the output pressure to flow through the second electromagnetic proportional control valve 45 based on the selected output characteristic. As a result, the spool 27 moves to the second offset position S2, and a hydraulic pressure having a flow rate corresponding to the command signal is supplied to the second port 10b.
 このように、旋回用バルブユニット22では、油圧駆動装置1の作動状態に応じて選択される出力特性に基づいて指令信号を算出しているので、ブーム用バルブユニット21と同様に旋回用モータ10の動作開始時における衝撃及びもたつきを低減することができる。また、旋回用バルブユニット22では、旋回用モータ10の動作開始時に方向制御弁26の開度を絞るように出力特性を選択させることで多量の高圧の油が旋回用モータ10に流れることを防ぐことができ、省エネルギー化を達成することができる。 As described above, in the turning valve unit 22, the command signal is calculated based on the output characteristics selected according to the operating state of the hydraulic drive device 1, so that the turning motor 10 is the same as the boom valve unit 21. It is possible to reduce impact and shaking at the start of the operation. Further, in the turning valve unit 22, a large amount of high-pressure oil is prevented from flowing into the turning motor 10 by selecting an output characteristic so that the opening degree of the direction control valve 26 is reduced when the operation of the turning motor 10 is started. Energy saving can be achieved.
 [アーム用バルブユニット]
 アーム用バルブユニット23では、第1給排通路31及び第2給排通路32がアーム用シリンダ9のヘッド側9a及びロッド側9bに夫々繋がっている。アーム用シリンダ9は、そのヘッド側9aに油圧が供給されると伸長し、ロッド側9bに油圧が供給されると収縮するようになっている。
[Valve unit for arm]
In the arm valve unit 23, the first supply / discharge passage 31 and the second supply / discharge passage 32 are connected to the head side 9a and the rod side 9b of the arm cylinder 9, respectively. The arm cylinder 9 expands when hydraulic pressure is supplied to the head side 9a, and contracts when hydraulic pressure is supplied to the rod side 9b.
 このようにアーム用シリンダ9に接続されているアーム用バルブユニット23は、そのスプール27が中立位置Mに位置すると、アーム用シリンダ9への油圧の給排を止めてアーム8の動きを止めるようになっている。また、アーム用バルブユニット23は、スプール27が第1オフセット位置S1に位置すると、アーム用シリンダ9のヘッド側9aに油圧を供給してアーム8を後方(引く側)に揺動させ、スプール27が第2オフセット位置S2に位置すると、アーム用シリンダ9のロッド側9bに油圧を供給してアーム8を前方(押す側)に揺動させるようになっている。 Thus, the arm valve unit 23 connected to the arm cylinder 9 stops the movement of the arm 8 by stopping the supply and discharge of the hydraulic pressure to the arm cylinder 9 when the spool 27 is located at the neutral position M. It has become. Further, when the spool 27 is located at the first offset position S1, the arm valve unit 23 supplies hydraulic pressure to the head side 9a of the arm cylinder 9 to swing the arm 8 rearward (pulling side), so that the spool 27 Is positioned at the second offset position S2, the hydraulic pressure is supplied to the rod side 9b of the arm cylinder 9 to swing the arm 8 forward (pushing side).
 また、アーム用バルブユニット23では、第1指令圧を検出する第5圧力センサPS5が第1操作弁用通路48に設けられ、第2指令圧を検出する第6圧力センサPS6が第2操作弁用通路49に設けられている。第5圧力センサPS5及び第6圧力センサPS6は制御装置50に電気的に接続されており、制御装置50は第5圧力センサPS5及び第6圧力センサPS6から第1指令圧及び第2指令圧を取得するようになっている。 In the arm valve unit 23, the fifth pressure sensor PS5 for detecting the first command pressure is provided in the first operation valve passage 48, and the sixth pressure sensor PS6 for detecting the second command pressure is the second operation valve. The passage 49 is provided. The fifth pressure sensor PS5 and the sixth pressure sensor PS6 are electrically connected to the control device 50, and the control device 50 receives the first command pressure and the second command pressure from the fifth pressure sensor PS5 and the sixth pressure sensor PS6. To get.
 このように構成されるアーム用バルブユニット23では、まず制御装置50が充足する作動条件に応じた出力特性を選択する。そして、選択された出力特性に基づいて第5圧力センサPS5及び第6圧力センサPS6から送られてくる第1指令圧又は第2指令圧に基づいて制御装置50が指令信号を算出する。例えば、操作レバー37が第1方向に操作されると、制御装置50は選択した出力特性に基づいて出力圧に応じた指令信号を第1電磁比例制御弁42に流す。これにより、スプール27が第1オフセット位置S1方向に移動し、指令信号並びに負荷圧力に応じた流量の油圧がアーム用シリンダ9のヘッド側9aに供給される。他方、操作レバー37が第2方向に操作されると、制御装置50は選択した出力特性に基づいて出力圧に応じた指令信号を第2電磁比例制御弁45に流す。これにより、スプール27が第2オフセット位置S2方向に移動し、指令信号並びに負荷圧力に応じた流量の油圧がアーム用シリンダ9のロッド側9bに供給される。 In the arm valve unit 23 configured as described above, first, output characteristics corresponding to the operating conditions satisfied by the control device 50 are selected. Then, the control device 50 calculates a command signal based on the first command pressure or the second command pressure sent from the fifth pressure sensor PS5 and the sixth pressure sensor PS6 based on the selected output characteristic. For example, when the operation lever 37 is operated in the first direction, the control device 50 causes a command signal corresponding to the output pressure to flow through the first electromagnetic proportional control valve 42 based on the selected output characteristic. As a result, the spool 27 moves in the direction of the first offset position S1, and a hydraulic pressure having a flow rate corresponding to the command signal and the load pressure is supplied to the head side 9a of the arm cylinder 9. On the other hand, when the operation lever 37 is operated in the second direction, the control device 50 causes a command signal corresponding to the output pressure to flow through the second electromagnetic proportional control valve 45 based on the selected output characteristic. As a result, the spool 27 moves in the direction of the second offset position S2, and a hydraulic pressure having a flow rate corresponding to the command signal and the load pressure is supplied to the rod side 9b of the arm cylinder 9.
 このように、アーム用バルブユニット23では、油圧駆動装置1の作動状態に応じて選択される出力特性に基づいて指令信号を算出しているので、ブーム用バルブユニット21と同様にアーム用シリンダ9の動作開始時における衝撃及びもたつきを低減することができる。 Thus, since the arm valve unit 23 calculates the command signal based on the output characteristics selected according to the operating state of the hydraulic drive device 1, the arm cylinder 9 is similar to the boom valve unit 21. It is possible to reduce impact and shaking at the start of the operation.
 [油圧駆動装置の機能]
 油圧駆動装置1では、前述のように各バルブユニット21,22,23の操作レバー37が操作されるとそれの操作方向に応じた出力圧が操作弁36から出力される。出力された出力圧が圧力センサPS1~PS6のいずれかで検出されると、制御装置50は、操作された操作弁36又は操作レバー37に対応する電磁比例制御弁42,45に指令信号を流すべく、対応する電磁比例制御弁42,45の出力特性を油圧駆動装置1の作動条件に応じて選択し、選択された出力特性に基づいて指令信号を算出する。操作レバー37が単独で夫々操作されている場合、制御装置50は、上述するような動作開始時を除いて基本的に基準となる第1出力特性を選択し、この第1出力特性に基づいて操作レバー37の操作量に対応する指令信号を電磁比例制御弁42,45に流す。これにより、電磁比例制御弁42,45から指令信号に対応する出力圧が出力され、各アクチュエータ7,9,10をそれに対応する操作レバー37の操作量と各アクチュエータの負荷圧力に応じた駆動速度で動かすことができる。
[Hydraulic drive function]
In the hydraulic drive device 1, when the operation lever 37 of each valve unit 21, 22, 23 is operated as described above, an output pressure corresponding to the operation direction is output from the operation valve 36. When the output pressure output is detected by any of the pressure sensors PS1 to PS6, the control device 50 sends a command signal to the electromagnetic proportional control valves 42 and 45 corresponding to the operated operation valve 36 or the operation lever 37. Therefore, the output characteristics of the corresponding electromagnetic proportional control valves 42 and 45 are selected according to the operating conditions of the hydraulic drive device 1, and the command signal is calculated based on the selected output characteristics. When the operation lever 37 is operated independently, the control device 50 selects the first output characteristic that is basically a reference except when the operation is started as described above, and based on the first output characteristic. A command signal corresponding to the operation amount of the operation lever 37 is supplied to the electromagnetic proportional control valves 42 and 45. As a result, an output pressure corresponding to the command signal is output from the electromagnetic proportional control valves 42 and 45, and the actuators 7, 9, and 10 are driven according to the operation amount of the operation lever 37 corresponding thereto and the load pressure of each actuator. It can be moved with.
 他方、2つ以上の操作レバー37が同時に操作されている場合、以下のように機能する。制御装置50は、複数の圧力センサPS1~PS6のうち2つ以上で指令圧が検出されると、出力圧を出力させる電磁比例制御弁42,45の出力特性を選択する。ここで、制御装置50は、2つ以上の操作レバー37が同時に操作されているという作動条件を充足すると判定するので、この判定結果に基づいて出力特性の選択し、各電磁比例制御弁42,45に出力する指令信号を算出する。 On the other hand, when two or more operation levers 37 are operated at the same time, they function as follows. When the command pressure is detected by two or more of the plurality of pressure sensors PS1 to PS6, the control device 50 selects the output characteristics of the electromagnetic proportional control valves 42 and 45 that output the output pressure. Here, since the control device 50 determines that the operation condition that two or more operation levers 37 are simultaneously operated is satisfied, an output characteristic is selected based on the determination result, and each electromagnetic proportional control valve 42, A command signal to be output to 45 is calculated.
 選択される出力特性について更に詳しく説明すると、操作レバー37が同時に操作されたバルブユニット21,22,23のうちそれが駆動するアクチュエータ7,9,10の負荷が大きいものに対しては、電磁比例制御弁42,45に出力する指令信号が第1出力特性より大きい第2出力特性が選択される。この第2出力特性が選択されると、第1出力特性の場合より方向制御弁26の開度が大きくなり、その方向制御弁26からアクチュエータ7,9,10に流れる油の流量が増加し、他のアクチュエータ7,9,10に流れる流量が減少する。 The output characteristics to be selected will be described in more detail. Among the valve units 21, 22, and 23 in which the operation lever 37 is simultaneously operated, the actuators 7, 9, and 10 that are driven by the actuators 7, 9, and 10 have a large load. A second output characteristic with a command signal output to the control valves 42 and 45 greater than the first output characteristic is selected. When this second output characteristic is selected, the opening degree of the directional control valve 26 becomes larger than in the case of the first output characteristic, and the flow rate of oil flowing from the directional control valve 26 to the actuators 7, 9, 10 increases. The flow rate flowing through the other actuators 7, 9, 10 decreases.
 また、上記とは逆に、操作レバー37が同時に操作されたバルブユニット21,22,23のうちそれが駆動するアクチュエータ7,9,10の負荷が小さいものに対して、電磁比例制御弁42,45に出力する指令信号が第1出力特性より大きい第2出力特性が選択されるように構成しても良い。 Contrary to the above, among the valve units 21, 22, and 23 in which the operation lever 37 is simultaneously operated, the actuators 7, 9, and 10 that are driven by the actuators 7, 9, and 10 have a small load. The second output characteristic may be selected such that the command signal output to 45 is larger than the first output characteristic.
 そのため、2つ以上の操作レバー37が同時に操作されている場合と単独操作されている場合とでは、アクチュエータ7,9,10の動作速度と操作レバー37の操作量との対応関係が異なる。 Therefore, the correspondence relationship between the operation speed of the actuators 7, 9, and 10 and the operation amount of the operation lever 37 differs depending on whether two or more operation levers 37 are operated simultaneously.
 上述するように操作レバー37の操作状態に応じて出力特性を変更することにより、各アクチュエータ7,9,10に流れる圧油の流量を各電磁比例制御弁の出力特性に応じて制御することができる。また、出力特性の内容を調整することで、各アクチュエータ7,9,10に流れる圧油の流量配分を調整することができる。本実施形態では、操作レバー37が単独及び複数同時のどちらで操作された場合でも、操作された操作レバー37に対応する各電磁比例制御弁の出力特性が適宜選択されるように構成されている。 As described above, by changing the output characteristics according to the operation state of the operation lever 37, the flow rate of the pressure oil flowing through the actuators 7, 9, 10 can be controlled according to the output characteristics of the electromagnetic proportional control valves. it can. Further, by adjusting the contents of the output characteristics, the flow distribution of the pressure oil flowing through the actuators 7, 9, 10 can be adjusted. In the present embodiment, the output characteristic of each electromagnetic proportional control valve corresponding to the operated operation lever 37 is appropriately selected regardless of whether the operation lever 37 is operated individually or simultaneously. .
 以下では、ブーム用バルブユニット21の操作レバー37がブーム6を上げるように操作された場合を例にとって、図4のフローチャートと図5(a)~(c)のグラフを参照しながら具体的に説明する。なお、図5(a)~(c)の縦軸は、ブーム用バルブユニット21の操作弁36の第1指令圧、ブーム用バルブユニット21の第1電磁比例制御弁の第1出力圧、及びブーム用バルブユニット21の方向制御弁26の開口面積を示しており、横軸は、ブーム用バルブユニット21の操作レバー37の操作量を示している。 In the following, the case where the operation lever 37 of the boom valve unit 21 is operated to raise the boom 6 will be described as an example with reference to the flowchart of FIG. 4 and the graphs of FIGS. explain. 5A to 5C, the vertical axis represents the first command pressure of the operation valve 36 of the boom valve unit 21, the first output pressure of the first electromagnetic proportional control valve of the boom valve unit 21, and The opening area of the direction control valve 26 of the boom valve unit 21 is shown, and the horizontal axis shows the operation amount of the operation lever 37 of the boom valve unit 21.
 ブーム用バルブユニット21の操作レバー37が第1方向に操作されて操作弁36から第1指令圧が出力されると、制御装置50がブーム6の上げの動作を行うことを検出してブーム上げ処理が実行され、ステップST1に移行する。ステップST1では、旋回用バルブユニット22の操作レバー37が操作されているか否かを制御装置50が判定する。即ち、第3圧力センサPS3及び第4圧力センサPS4で夫々検出される出力圧が所定圧力(例えば、0.05MPa)以下であるか否かを制御装置50が判定する。第3圧力センサPS3及び第4圧力センサPS4で検出される出力圧が共に所定圧力以下であると判定されると、ステップST2に移行する。ステップST2では、アーム用バルブユニット23の操作レバー37が第1方向に操作されているか、即ち第5圧力センサPS5及び第6圧力センサPS6が所定圧力(例えば、0.05MPa)以下であるか否かを判定する。第5圧力センサPS5及び第6圧力センサPS6で夫々検出される出力圧が所定圧力以下であると判定されると、ステップST3に移行する。 When the operation lever 37 of the boom valve unit 21 is operated in the first direction and the first command pressure is output from the operation valve 36, the control device 50 detects that the boom 6 is raised and the boom is raised. A process is performed and it transfers to step ST1. In step ST1, the control device 50 determines whether or not the operation lever 37 of the turning valve unit 22 is operated. That is, the control device 50 determines whether or not the output pressures detected by the third pressure sensor PS3 and the fourth pressure sensor PS4 are equal to or lower than a predetermined pressure (for example, 0.05 MPa). When it is determined that the output pressures detected by the third pressure sensor PS3 and the fourth pressure sensor PS4 are both equal to or lower than the predetermined pressure, the process proceeds to step ST2. In step ST2, whether the operation lever 37 of the arm valve unit 23 is operated in the first direction, that is, whether the fifth pressure sensor PS5 and the sixth pressure sensor PS6 are equal to or lower than a predetermined pressure (for example, 0.05 MPa). Determine whether. If it is determined that the output pressures detected by the fifth pressure sensor PS5 and the sixth pressure sensor PS6 are equal to or lower than the predetermined pressure, the process proceeds to step ST3.
 制御装置50は、ステップST3に移行することでブーム用バルブユニット21の操作レバー37が単独操作であると判定された場合の制御を実行する。ステップST3では、まず制御装置50が第1出力特性を選択する。この出力圧の特性は操作弁の出力圧(指令圧)と同じ特性を有する。この第1出力特性に基づいて第1圧力センサPS1で検出された第1指令圧に応じた指令信号を算出する。算出されると、ステップST4に移行する。 The control device 50 executes control when it is determined that the operation lever 37 of the boom valve unit 21 is operated alone by moving to step ST3. In step ST3, first, the control device 50 selects the first output characteristic. This output pressure characteristic is the same as the output pressure (command pressure) of the operation valve. A command signal corresponding to the first command pressure detected by the first pressure sensor PS1 is calculated based on the first output characteristic. When calculated, the process proceeds to step ST4.
 ステップST4では、制御装置50が算出された指令信号をブーム用バルブユニット21の第1電磁比例制御弁42に流す。そうすると、操作レバー37の操作量に対して図5(a)のように単調に増加する操作弁36の出力圧(指令圧)に対して、第1電磁比例制御弁42から操作レバー37の操作量に対して図5(b)の実線で示すような第1出力圧が出力される。このような第1出力圧が出力されることで、操作レバー37の操作量に対してブーム用バルブユニット21の方向制御弁26の開度が図5(c)の実線で示すように変化する。これにより、操作レバー37の操作量並びに負荷圧力(ブーム用シリンダのヘッド側7aの圧力)に応じた流量の油圧がブーム用シリンダ7のヘッド側7aに導かれ、その流量に応じた駆動速度でブーム6が作動する。 In step ST4, the command signal calculated by the control device 50 is supplied to the first electromagnetic proportional control valve 42 of the boom valve unit 21. Then, the operation of the operation lever 37 from the first electromagnetic proportional control valve 42 with respect to the output pressure (command pressure) of the operation valve 36 that monotonously increases with respect to the operation amount of the operation lever 37 as shown in FIG. A first output pressure as shown by the solid line in FIG. By outputting such a first output pressure, the opening degree of the direction control valve 26 of the boom valve unit 21 changes as indicated by the solid line in FIG. 5C with respect to the operation amount of the operation lever 37. . As a result, the hydraulic pressure at a flow rate corresponding to the operation amount of the operation lever 37 and the load pressure (pressure on the head side 7a of the boom cylinder) is guided to the head side 7a of the boom cylinder 7 at a driving speed corresponding to the flow rate. The boom 6 operates.
 他方、ステップST2で第5圧力センサPS5及び第6圧力センサPS6が所定圧力を超えていると判定されると、ステップST5に移行する。制御装置50は、ステップST5においてブーム用バルブユニット21及びアーム用バルブユニット23の操作レバー37が同時に操作されていると判定された場合の制御を実行する。ステップST5では、まず制御装置50がブーム用バルブユニット21の第1電磁比例制御弁42に関して第2出力特性を選択する。この第2出力特性は、その出力圧が切換弁の切換圧より低い範囲では操作弁の指令圧と同じ特性を有する。制御装置50は、この第2出力特性に基づいて第1圧力センサPS1で検出された第1指令圧に応じた指令信号を算出する。算出されると、ステップST4に移行する。 On the other hand, if it is determined in step ST2 that the fifth pressure sensor PS5 and the sixth pressure sensor PS6 exceed the predetermined pressure, the process proceeds to step ST5. The control device 50 executes control when it is determined in step ST5 that the operation levers 37 of the boom valve unit 21 and the arm valve unit 23 are simultaneously operated. In step ST5, first, the control device 50 selects the second output characteristic for the first electromagnetic proportional control valve 42 of the boom valve unit 21. This second output characteristic has the same characteristic as the command pressure of the operation valve in a range where the output pressure is lower than the switching pressure of the switching valve. The control device 50 calculates a command signal corresponding to the first command pressure detected by the first pressure sensor PS1 based on the second output characteristic. When calculated, the process proceeds to step ST4.
 ステップST4では、制御装置50は、算出された指令信号をブーム用バルブユニット21の第1電磁比例制御弁42に流す。そうすると、操作レバー37の操作量に対して図5(a)のように単調に増加する操作弁36の出力圧に対して、第1電磁比例制御弁42から操作レバー37の操作量に対して図5(b)の一点鎖線で示すような第1出力圧が出力される。このような第1出力圧が出力されることで、操作レバー37の操作量に対してブーム用バルブユニット21の方向制御弁26の開度が図5(c)の一点鎖線で示すように変化する。即ち、ブーム用バルブユニット21の方向制御弁26の開度が単独操作された場合(図5(c)の実線)よりブーム用バルブユニット21の方向制御弁26の開口が大きく開くようになる。 In step ST4, the control device 50 causes the calculated command signal to flow through the first electromagnetic proportional control valve 42 of the boom valve unit 21. If it does so, with respect to the operation amount of the operation lever 37 from the 1st electromagnetic proportional control valve 42 with respect to the output pressure of the operation valve 36 which monotonously increases like FIG. A first output pressure as indicated by the alternate long and short dash line in FIG. By outputting such first output pressure, the opening degree of the directional control valve 26 of the boom valve unit 21 changes as indicated by the one-dot chain line in FIG. To do. That is, when the opening degree of the direction control valve 26 of the boom valve unit 21 is independently operated (the solid line in FIG. 5C), the opening of the direction control valve 26 of the boom valve unit 21 is greatly opened.
 ブーム用シリンダ7はアーム用シリンダ9より負荷が大きいので、2つの操作レバー37が同時に操作されるとブーム用シリンダ7に油圧が流れにくくなる。ブーム用バルブユニット21の方向制御弁26の開口を大きくすることでブーム用シリンダ7に流れる油圧の流量の減少を抑えることができる。そして、制御装置50において指令信号の補正を実行することで、2つの操作レバー37が同時に操作されても、ブーム用シリンダ7及びアーム用シリンダ9が対応する操作レバー37の操作量により忠実な駆動速度で駆動させることができる。 Since the boom cylinder 7 has a larger load than the arm cylinder 9, if the two operation levers 37 are operated simultaneously, the hydraulic pressure does not easily flow to the boom cylinder 7. By increasing the opening of the direction control valve 26 of the boom valve unit 21, it is possible to suppress a decrease in the flow rate of the hydraulic pressure flowing through the boom cylinder 7. Then, by correcting the command signal in the control device 50, even if the two operation levers 37 are operated simultaneously, the boom cylinder 7 and the arm cylinder 9 are driven more faithfully by the operation amount of the corresponding operation lever 37. It can be driven at speed.
 なお、アーム用バルブユニット23の電磁比例制御弁42,45には第1出力特性に基づいて算出された指令信号が流れ、アーム用バルブユニット23の電磁比例制御弁42,45からは例えば図5(b)の実線に示されるような出力圧が出力される。但し、このように第1出力特性が選択される場合に限定されず、アーム用バルブユニット23に流れる油の流量を減少させるべく制御装置50が後述する第3出力特性を選択してこの第3出力特性に基づいて指令信号を算出するようにしてもよい。 The command signal calculated based on the first output characteristic flows through the electromagnetic proportional control valves 42 and 45 of the arm valve unit 23, and the electromagnetic proportional control valves 42 and 45 of the arm valve unit 23, for example, FIG. An output pressure as shown by the solid line in (b) is output. However, the present invention is not limited to the case where the first output characteristic is selected in this way, and the control device 50 selects the third output characteristic described later to reduce the flow rate of the oil flowing through the arm valve unit 23, and this third output characteristic is selected. The command signal may be calculated based on the output characteristics.
 また、ステップST1において第3圧力センサPS3及び第4圧力センサPS4のいずれか一方が所定圧力を超えていると判定されると、ステップST6に移行する。制御装置50は、ステップST6に移行することでブーム用バルブユニット21及び旋回用バルブユニット22の操作レバー37が同時に操作されていると判定された場合の制御を実行する。ステップST6では、まず制御装置50がブーム用バルブユニット21の第1電磁比例制御弁42に関して第3出力特性を選択する。この第3出力特性も、その出力圧が切換弁の切換圧より低い範囲では操作弁の指令圧と同じ特性を有する。この第3出力特性に基づいて第1圧力センサPS1で検出された第1指令圧に応じた指令信号を算出する。算出すると、ステップST4に移行する。 If it is determined in step ST1 that one of the third pressure sensor PS3 and the fourth pressure sensor PS4 exceeds the predetermined pressure, the process proceeds to step ST6. The control device 50 executes control when it is determined that the operation levers 37 of the boom valve unit 21 and the turning valve unit 22 are simultaneously operated by moving to step ST6. In step ST6, first, the control device 50 selects the third output characteristic for the first electromagnetic proportional control valve 42 of the boom valve unit 21. This third output characteristic also has the same characteristic as the command pressure of the operation valve in a range where the output pressure is lower than the switching pressure of the switching valve. A command signal corresponding to the first command pressure detected by the first pressure sensor PS1 is calculated based on the third output characteristic. Once calculated, the process proceeds to step ST4.
 ステップST4では、制御装置50は、算出された指令信号をブーム用バルブユニット21の第1電磁比例制御弁42に流す。そうすると、操作レバー37の操作量に対して図5(a)のように単調に増加する操作弁36の出力圧に対して、第1電磁比例制御弁42から操作レバー37の操作量に対して図5(b)の二点鎖線で示すような出力圧が出力される。このような出力圧が出力されることで、操作レバー37の操作量に対してブーム用バルブユニット21の方向制御弁26の開度が図5(c)の二点鎖線で示すように変化する。即ち、ブーム用バルブユニット21の方向制御弁26の開度が単独操作された場合(図5(c)の実線)よりブーム用バルブユニット21の方向制御弁26の開口が絞られる。 In step ST4, the control device 50 causes the calculated command signal to flow through the first electromagnetic proportional control valve 42 of the boom valve unit 21. If it does so, with respect to the operation amount of the operation lever 37 from the 1st electromagnetic proportional control valve 42 with respect to the output pressure of the operation valve 36 which monotonously increases like FIG. An output pressure as indicated by a two-dot chain line in FIG. 5B is output. By outputting such output pressure, the opening degree of the directional control valve 26 of the boom valve unit 21 changes as shown by a two-dot chain line in FIG. 5C with respect to the operation amount of the operation lever 37. . That is, when the opening degree of the direction control valve 26 of the boom valve unit 21 is independently operated (solid line in FIG. 5C), the opening of the direction control valve 26 of the boom valve unit 21 is narrowed.
 ブーム用シリンダ7は旋回用モータ10より負荷が小さいので、2つの操作レバー37が同時に操作されるとブーム用シリンダ7に油圧が優先的に流れるが、ブーム用バルブユニット21の方向制御弁26の開口を絞ることでブーム用シリンダ7に流れる油の流量の増加を抑えることができる。そして、制御装置50において指令信号の補正を実行することで、2つの操作レバー27が同時に操作されても、ブーム用シリンダ7及び旋回用モータ10が対応する操作レバー37の操作量により忠実な駆動速度で駆動させることができる。 Since the boom cylinder 7 has a smaller load than the turning motor 10, the hydraulic pressure flows preferentially to the boom cylinder 7 when the two operation levers 37 are operated simultaneously. However, the direction control valve 26 of the boom valve unit 21 By restricting the opening, an increase in the flow rate of the oil flowing into the boom cylinder 7 can be suppressed. Then, by correcting the command signal in the control device 50, even when the two operation levers 27 are operated simultaneously, the boom cylinder 7 and the turning motor 10 are driven more faithfully by the operation amounts of the corresponding operation levers 37. It can be driven at speed.
 なお、旋回用バルブユニット22の電磁比例制御弁42,45には第1出力特性に基づいて算出された指令信号が流れ、旋回用バルブユニット22の電磁比例制御弁42,45からは例えば図5(b)の実線に示されるような出力圧が出力される。但し、このように第1出力特性が選択される場合に限定されず、旋回用バルブユニット22に流れる油の流量を増加させるべく制御装置50が第2出力特性を選択してこの第2出力特性に基づいて指令信号を算出するようにしてもよい。 A command signal calculated based on the first output characteristic flows through the electromagnetic proportional control valves 42 and 45 of the turning valve unit 22, and the electromagnetic proportional control valves 42 and 45 of the turning valve unit 22, for example, FIG. An output pressure as shown by the solid line in (b) is output. However, the present invention is not limited to the case where the first output characteristic is selected in this way, and the control device 50 selects the second output characteristic in order to increase the flow rate of the oil flowing through the turning valve unit 22, and this second output characteristic. The command signal may be calculated based on the above.
 このような動作をする油圧駆動装置1では、油圧駆動装置1の作動状態に応じて指令信号の出力特性を切換えているので、操作レバー37の操作量に極めて忠実な流量の油を各アクチュエータ7,9,10に供給することができる。これにより、旋回用モータ10のリリーフ弁が作動して、熱等として放出するエネルギ消費を減少することができ、油圧駆動装置1の省エネルギー化を図ることができる。 In the hydraulic drive device 1 that performs such an operation, the output characteristics of the command signal are switched in accordance with the operating state of the hydraulic drive device 1, so that the flow rate of oil that is extremely faithful to the operation amount of the operation lever 37 is supplied to each actuator 7. , 9, 10 can be supplied. As a result, the relief valve of the turning motor 10 is actuated to reduce energy consumption released as heat or the like, and energy saving of the hydraulic drive device 1 can be achieved.
 また、油圧駆動装置1では、上述するように、出力特性の内容を調整することによって、操作レバー37の操作量に対するアクチュエータ7,9,10の駆動速度を変更することができる。従って、油圧パイロット式制御(操作弁の指令圧をコントロール弁のパイロット信号として用いる制御)を採用した場合のようなチューニング(つまり、最適開口面積の設定)を最小限だけ行えばよく、油圧駆動装置1の開発工数を短縮することができる。 Further, in the hydraulic drive device 1, as described above, the drive speed of the actuators 7, 9, 10 with respect to the operation amount of the operation lever 37 can be changed by adjusting the content of the output characteristics. Therefore, it is sufficient to perform tuning (that is, setting the optimum opening area) to a minimum as in the case of adopting hydraulic pilot control (control using the command pressure of the operation valve as a pilot signal for the control valve). 1 development man-hours can be shortened.
 <第2実施形態>
 第2実施形態の油圧駆動装置1Aは、第1実施形態の油圧駆動装置1と構成が類似している。以下では、第2実施形態の油圧駆動装置1Aの構成については、第1実施形態の油圧駆動装置1と異なる点について主に説明し、同一の構成については同一の符号を付してその説明を省略する場合がある。
Second Embodiment
The hydraulic drive device 1A of the second embodiment is similar in configuration to the hydraulic drive device 1 of the first embodiment. In the following, the configuration of the hydraulic drive device 1A of the second embodiment will be described mainly with respect to differences from the hydraulic drive device 1 of the first embodiment, and the same components will be denoted by the same reference numerals and the description thereof will be given. May be omitted.
 油圧駆動装置1Aは、ポジティブコントロール方式の油圧駆動回路で構成されており、主通路12Aが絞り24を介することなくタンク25に直接接続されている。また、油圧駆動装置1Aでは、サーボピストン機構16にポジコン通路15Aを介してパイロットポンプ47が接続されており、ポジコン通路15Aに電磁弁19が介在している。 The hydraulic drive device 1 </ b> A is configured by a positive control hydraulic drive circuit, and the main passage 12 </ b> A is directly connected to the tank 25 without the throttle 24. In the hydraulic drive apparatus 1A, a pilot pump 47 is connected to the servo piston mechanism 16 via a positive control passage 15A, and an electromagnetic valve 19 is interposed in the positive control passage 15A.
 電磁弁19は、ノーマルクローズ形の電磁制御弁であり、パイロットポンプ47から吐出された油圧を電磁弁19に流れる電流に応じた圧力に減圧してポジコン圧pとして出力するようになっている。このようにして出力されたポジコン圧pは、サーボピストン機構16に導かれ、サーボピストン16aは、このポジコン圧pに応じた位置に移動するようになっている。これにより、斜板11aがポジコン圧pに応じた角度に傾転する。 Solenoid valve 19 is an electromagnetic control valve of normally closed type, and outputs under reduced pressure the hydraulic pressure discharged from the pilot pump 47 to a pressure corresponding to the current flowing through the solenoid valve 19 as the lever-regulated, pump control pressure p p . The lever-regulated, pump control pressure p p which is output in this way is guided to the servo piston mechanism 16, servo piston 16a is adapted to move to a position corresponding to the positive control pressure p p. Thus, the swash plate 11a is tilted to an angle corresponding to the lever-regulated, pump control pressure p p.
 このように構成される電磁弁19は、制御装置50に接続されており、制御装置50は、各圧力センサPS1~6から取得する出力圧に基づいて電磁弁19に流す電流を決定している。例えば、制御装置50は取得する出力圧に応じた電流、即ち出力圧が大きいとそれに応じた大きな電流を電磁弁19に流し、出力圧が小さいとそれに応じた小さな電流を電磁弁19に流すようになっている。つまり、制御装置50は、操作レバー37の操作量に応じた電流を電磁弁19に流し、その操作量に応じた流量の油を油圧ポンプ11から出力させるようになっている。 The electromagnetic valve 19 configured as described above is connected to the control device 50, and the control device 50 determines the current to flow through the electromagnetic valve 19 based on the output pressure obtained from each of the pressure sensors PS1 to PS6. . For example, the control device 50 causes a current corresponding to the acquired output pressure, that is, a large current to flow to the solenoid valve 19 when the output pressure is large, and a small current corresponding to the solenoid valve 19 to flow when the output pressure is small. It has become. In other words, the control device 50 causes the current corresponding to the operation amount of the operation lever 37 to flow through the solenoid valve 19, and causes the hydraulic pump 11 to output oil having a flow rate corresponding to the operation amount.
 また、制御装置50は、出力圧を検出する圧力センサPS1~6の個数に応じても電磁弁19に流す電流を調整しており、複数の圧力センサPS1~6にて同時に出力圧を検出するとその個数に応じた大きな電流を電磁弁19に流すようになっている。つまり、制御装置50は、同時に操作される操作レバー37の個数に応じた電流を電磁弁19に流し、その操作量に応じた流量の油を油圧ポンプ11から出力させるようになっている。ただし、電磁弁19に流す電流は、最大値が予め定められており、上記の制御は最大値を超えない範囲で実行される。 The control device 50 also adjusts the current flowing through the electromagnetic valve 19 in accordance with the number of pressure sensors PS1 to PS6 that detect the output pressure, and when the output pressure is simultaneously detected by the plurality of pressure sensors PS1 to PS6. A large current corresponding to the number is supplied to the electromagnetic valve 19. That is, the control device 50 causes the current corresponding to the number of the operation levers 37 operated simultaneously to flow through the electromagnetic valve 19, and causes the hydraulic pump 11 to output oil having a flow rate corresponding to the operation amount. However, the maximum value of the current flowing through the solenoid valve 19 is determined in advance, and the above control is executed within a range not exceeding the maximum value.
 このように構成される油圧駆動装置1Aは、ポジティブコントロール方式の油圧駆動回路を適用している点による作用効果を除いて、第1実施形態の油圧駆動装置1と同様の作用効果を奏する。 The hydraulic drive device 1A configured as described above has the same operational effects as the hydraulic drive device 1 of the first embodiment, except for the operational effects due to the application of a positive control hydraulic drive circuit.
 <その他の形態>
 油圧駆動装置1,1Aでは、主にブーム用バルブユニット21の第1電磁比例制御弁42に流す指令信号を算出する出力特性を制御装置50が切換えていたが、同時に作動する旋回用バルブユニット22又はアーム用バルブユニット23の電磁比例制御弁42,45に流す指令信号を算出する出力特性を制御装置50を切換えるようにしてもよい。この際、油圧駆動装置1の作動状態にかかわらず第1電磁比例制御弁42に流す指令信号を算出するための出力特性を第1出力特性から切換えないようにしてもよい。
<Other forms>
In the hydraulic drive devices 1 and 1A, the control device 50 switches the output characteristic for mainly calculating the command signal to be sent to the first electromagnetic proportional control valve 42 of the boom valve unit 21, but the turning valve unit 22 that operates simultaneously. Or you may make it switch the control apparatus 50 the output characteristic which calculates the command signal sent to the electromagnetic proportional control valves 42 and 45 of the valve unit 23 for arms. At this time, the output characteristic for calculating the command signal to be sent to the first electromagnetic proportional control valve 42 may not be switched from the first output characteristic regardless of the operating state of the hydraulic drive device 1.
 油圧駆動装置1,1Aで駆動するアクチュエータは、上述するものに限定されず、バケット用シリンダ、ステアリング用シリンダ、又は走行駆動用モータであってもよい。また、油圧ポンプ11は、必ずしも可変容量型のポンプである必要はなく、固定容量型のポンプであっても、斜軸型のポンプであってもよい。また、油圧ポンプ11を回転駆動するのはエンジンに限らず電動機であってもよい。更に、電磁比例制御弁42,45は、ノーマルクローズド形であることが好ましいが、ノーマルオープン形の電磁比例制御弁であってもよい。また、作動圧として使用される圧液は、油に限定されず、水やその他の液体であってもよい。 The actuator driven by the hydraulic drive devices 1 and 1A is not limited to the one described above, and may be a bucket cylinder, a steering cylinder, or a travel drive motor. Further, the hydraulic pump 11 is not necessarily a variable displacement pump, and may be a fixed displacement pump or an oblique axis pump. Further, the hydraulic pump 11 is rotationally driven not only by the engine but also by an electric motor. Furthermore, the electromagnetic proportional control valves 42 and 45 are preferably normally closed, but may be normally open electromagnetic proportional control valves. Further, the pressure liquid used as the operating pressure is not limited to oil, and may be water or other liquid.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
 1,1A 油圧駆動装置
 2 油圧ショベル
 7 ブーム用シリンダ
 9 アーム用シリンダ
 10 旋回用モータ
 11 油圧ポンプ
 26 方向制御弁(コントロール弁)
 27 スプール
 36 操作弁
 37 操作レバー
 41 第1切換弁
 42 第1電磁比例制御弁(圧力調整弁)
 44 第2切換弁
 45 第2電磁比例制御弁(圧力調整弁)
 50 制御装置
DESCRIPTION OF SYMBOLS 1,1A Hydraulic drive device 2 Hydraulic excavator 7 Boom cylinder 9 Arm cylinder 10 Turning motor 11 Hydraulic pump 26 Direction control valve (control valve)
27 Spool 36 Operating valve 37 Operating lever 41 First switching valve 42 First electromagnetic proportional control valve (pressure adjusting valve)
44 Second switching valve 45 Second electromagnetic proportional control valve (pressure regulating valve)
50 Control device

Claims (5)

  1.  複数のアクチュエータに接続され、液圧ポンプから吐出される圧液を前記アクチュエータに夫々供給して前記アクチュエータの各々を駆動する液圧駆動装置であって、
     前記アクチュエータ毎に設けられ、与えられるパイロット圧と前記アクチュエータの負荷圧に応じた流量の圧液を前記アクチュエータに供給するコントロール弁と、
     前記コントロール弁の少なくとも一つに設けられ、与えられる指令信号に応じた出力圧を前記パイロット圧として前記コントロール弁に与える圧力調整弁と、
     前記圧力調整弁毎に設けられ、操作レバーの操作量に応じた指令圧を出力する操作弁と、
     予め定める作動条件に応じて切換わる前記圧力調整弁の出力特性と前記操作弁から出力される前記指令圧に基づいて前記指令信号を算出し、算出された前記指令信号を前記操作弁に対応する前記圧力調整弁に出力する制御装置と、
     前記コントロール弁に与える前記パイロット圧を前記圧力調整弁の出力圧から前記操作弁の指令圧に切換える切換弁とを備えている、液圧駆動装置。
    A hydraulic pressure driving device connected to a plurality of actuators and supplying each of the hydraulic fluid discharged from a hydraulic pump to the actuators to drive each of the actuators,
    A control valve that is provided for each actuator and supplies the actuator with a flow rate of a pressure fluid corresponding to a given pilot pressure and a load pressure of the actuator;
    A pressure regulating valve that is provided in at least one of the control valves and applies an output pressure corresponding to a given command signal to the control valve as the pilot pressure;
    An operation valve that is provided for each pressure adjusting valve and outputs a command pressure according to the operation amount of the operation lever;
    The command signal is calculated based on an output characteristic of the pressure regulating valve that is switched in accordance with a predetermined operating condition and the command pressure output from the operation valve, and the calculated command signal corresponds to the operation valve. A control device for outputting to the pressure regulating valve;
    A hydraulic pressure drive device comprising: a switching valve that switches the pilot pressure applied to the control valve from the output pressure of the pressure adjustment valve to the command pressure of the operation valve.
  2.  前記制御装置は、複数の前記操作弁の操作レバーのうち少なくとも2つ以上の前記操作レバーが操作されることを含む作動条件を充足すると、操作された操作弁に対応する前記圧力調整弁の出力特性を切換えるようになっている、請求項1に記載の液圧駆動装置。 The control device outputs an output of the pressure adjusting valve corresponding to the operated operation valve when an operation condition including operation of at least two or more of the operation levers among the operation levers of the plurality of operation valves is satisfied. 2. The hydraulic drive device according to claim 1, wherein the characteristics are switched.
  3.  前記制御装置は、前記圧力調整弁の出力特性を切換える際、前記作動条件を充足しない場合の前記出力圧より、充足する場合の前記出力圧のほうが大きくなるように前記圧力調整弁の出力特性を切換えるようになっている、請求項1又は2に記載の液圧駆動装置。 When switching the output characteristic of the pressure regulating valve, the control device sets the output characteristic of the pressure regulating valve so that the output pressure when the operating condition is satisfied is larger than the output pressure when the operating condition is not satisfied. The hydraulic drive device according to claim 1 or 2, wherein the hydraulic drive device is adapted to be switched.
  4.  前記制御装置は、前記圧力調整弁の出力特性を切換える際、前記作動条件を充足しない場合の前記出力圧より、充足する場合の前記出力圧のほうが小さくなるように圧力調整弁の出力特性を切換えるようになっている、請求項1又は2に記載の液圧駆動装置。 When switching the output characteristic of the pressure regulating valve, the control device switches the output characteristic of the pressure regulating valve so that the output pressure when the operating condition is satisfied is smaller than the output pressure when the operating condition is not satisfied. The hydraulic drive device according to claim 1, wherein the hydraulic drive device is configured as described above.
  5.  前記圧力調整弁は、ノーマルクローズド形の電磁比例制御弁であり、
     前記切換弁は、前記圧力調整弁からの出力圧が予め定められた切換圧より小さくなると作動するようになっている、請求項3又は4に記載の液圧駆動装置。
     
    The pressure regulating valve is a normally closed electromagnetic proportional control valve,
    The hydraulic pressure driving device according to claim 3 or 4, wherein the switching valve is activated when an output pressure from the pressure regulating valve becomes smaller than a predetermined switching pressure.
PCT/JP2014/000237 2013-01-25 2014-01-20 Hydraulic pressure drive device WO2014115527A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480001593.1A CN104364535A (en) 2013-01-25 2014-01-20 Hydraulic pressure drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-011707 2013-01-25
JP2013011707A JP2014142032A (en) 2013-01-25 2013-01-25 Hydraulic drive device

Publications (1)

Publication Number Publication Date
WO2014115527A1 true WO2014115527A1 (en) 2014-07-31

Family

ID=51227320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000237 WO2014115527A1 (en) 2013-01-25 2014-01-20 Hydraulic pressure drive device

Country Status (3)

Country Link
JP (1) JP2014142032A (en)
CN (1) CN104364535A (en)
WO (1) WO2014115527A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115362296A (en) * 2021-01-27 2022-11-18 株式会社久保田 Working machine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6475522B2 (en) * 2015-03-13 2019-02-27 川崎重工業株式会社 Hydraulic system
JP6845736B2 (en) * 2017-04-28 2021-03-24 川崎重工業株式会社 Hydraulic drive system
JP6687993B2 (en) * 2017-09-13 2020-04-28 日立建機株式会社 Work machine
JP6982474B2 (en) 2017-11-22 2021-12-17 川崎重工業株式会社 Hydraulic drive system
JP6957414B2 (en) * 2018-06-11 2021-11-02 日立建機株式会社 Work machine
JP7329316B2 (en) 2018-07-12 2023-08-18 ナブテスコ株式会社 Valve structures and construction machinery
JP2021038787A (en) * 2019-09-03 2021-03-11 川崎重工業株式会社 Hydraulic system of construction machine
TWI747174B (en) * 2020-02-25 2021-11-21 國立虎尾科技大學 Position controlling system
WO2022163303A1 (en) * 2021-01-27 2022-08-04 株式会社クボタ Work machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222745A (en) * 1992-02-13 1993-08-31 Yutani Heavy Ind Ltd Automatic controller of construction machinery
JPH1061604A (en) * 1996-08-24 1998-03-06 Yutani Heavy Ind Ltd Hydraulic driving device for construction machine and control method therefor
JP2010285828A (en) * 2009-06-12 2010-12-24 Komatsu Ltd Working machine and control method for the working machine
JP2011179208A (en) * 2010-02-28 2011-09-15 Tadao Osuga Hydraulic controller of hydraulic excavator
JP2011247282A (en) * 2010-05-21 2011-12-08 Hitachi Constr Mach Co Ltd Hydraulic driving device for wheel type working machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222745A (en) * 1992-02-13 1993-08-31 Yutani Heavy Ind Ltd Automatic controller of construction machinery
JPH1061604A (en) * 1996-08-24 1998-03-06 Yutani Heavy Ind Ltd Hydraulic driving device for construction machine and control method therefor
JP2010285828A (en) * 2009-06-12 2010-12-24 Komatsu Ltd Working machine and control method for the working machine
JP2011179208A (en) * 2010-02-28 2011-09-15 Tadao Osuga Hydraulic controller of hydraulic excavator
JP2011247282A (en) * 2010-05-21 2011-12-08 Hitachi Constr Mach Co Ltd Hydraulic driving device for wheel type working machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115362296A (en) * 2021-01-27 2022-11-18 株式会社久保田 Working machine

Also Published As

Publication number Publication date
CN104364535A (en) 2015-02-18
JP2014142032A (en) 2014-08-07

Similar Documents

Publication Publication Date Title
WO2014115527A1 (en) Hydraulic pressure drive device
JP5870205B2 (en) Hydraulic control device
JP6134263B2 (en) Hydraulic drive system
US10947699B2 (en) Construction machine
JP6474908B2 (en) Hydraulic system of work machine
JP6235917B2 (en) Hydraulic drive system
EP3203089A1 (en) Work vehicle hydraulic drive system
KR102460499B1 (en) shovel
JP6450487B1 (en) Hydraulic excavator drive system
WO2018021288A1 (en) Excavator, and control valve for excavator
JP6228430B2 (en) Hydraulic drive device
US11378101B2 (en) Shovel
JP2011226491A (en) Turning hydraulic circuit of hydraulic shovel
JP6071821B2 (en) Hydraulic drive device
KR102642076B1 (en) Hydraulic circuit of work vehicle
JP7152968B2 (en) hydraulic excavator drive system
JP7165016B2 (en) hydraulic excavator drive system
JP7001554B2 (en) Hydraulic excavator with crane function
JP3981101B2 (en) Hydraulic excavator turning single operation detection circuit
JP7268435B2 (en) Working machine hydraulic drive
JP6989548B2 (en) Construction machinery
JP6964059B2 (en) Construction machinery
JP2023142310A (en) Work machine
JP2010150773A (en) Hydraulic drive device for construction machinery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743078

Country of ref document: EP

Kind code of ref document: A1